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Problem Description

• Give an introduction to stochastic modeling of repairable systems, in particular the
nonhomogenous Poisson process (NHPP) and the trend-renewal process (TRP).

• Study kernel-based methods for nonparametric estimation of the trend function of
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• Apply the methods to real and simulated data.
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Abstract

This thesis gives an introduction to stochastic modeling of repairable systems with failure
and maintenance data, in particular the nonhomogeneous Poisson process and the trend-
renewal process. It is studying kernel-based methods for nonparametric estimation of the
trend function of trend-renewal processes and presents a method using weighted kernel
estimation. These weights are found by maximization of the likelihood function that they
are included in. The method is then tested on both real and simulated data sets.

Samandrag

Denne oppgåva gjer ein introduksjon til stokastisk modellering av reparerbare system med
feil- og vedlikehaldsdata, spesielt ikkje-homogene Poisson prosessar og trend-renewal-
prosessar. Den studerer kjernebaserte metodar for ikkje-parametrisk estimering av trend-
funksjonen i trend-renewal-prosessar og presenterer ein metode som brukar vekta kjernees-
timering. Desse vektene vert funne ved maksimering av likelihoodfunksjonen som dei
inngår i. Metoden vert så testa både på verkelege og simulerte datasett.
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Chapter 1
Introduction

1.1 Modeling repairable systems

We assume that the data from the repairable systems are given as failure times T1, T2, . . . ,
Tn. When doing modeling we are looking at the interfailure times, Xi = Ti − Ti−1 as
illustrated in figure 1.1.

0 T1 T2 T3 T4

X1 X2

Figure 1.1: Illustrating the failure times T1, T2, . . . , Tn and interfailure times X1, X2, . . . , Xn on
a timeline.

The most common models used to model the failure process of repairable systems are
renewal processes (RP), homogeneous Poisson processes (HPP) and non-homogeneous
Poisson processes (NHPP). If there seems to be a trend in the interfailure times, meaning
that the frequency of failures are changing as time goes by, one can use a NHPP model
with an intensity function λ(t). If there does not seem to be a trend one can use a RP
model. The RP model is what we call a perfect repair model, which means that after a
failure the system is repaired to be as good as new. The NHPP model is what we call a
minimal repair model, where the repair only restores the system to the state it was just
before the failure occurred. The HPP model is a special case and corresponds to a NHPP
with constant intensity λ, or it can also be seen as a RP with exponentially distributed
interfailure times. The trend-renewal process (TRP), which we are working with in this
thesis, is a supplement to these models that can be used for cases not satisfactory covered
by the extreme cases with perfect or minimal repair in RP and NHPP. In this model we
can have both a trend in the failure data, handled with the intensity function λ(t), as well

1



Chapter 1. Introduction

as interfailure times other than the exponential one. All of these processes are described
in [7].

In this master thesis we will be looking at nonparametric estimation of the intensity
function λ(t) of TRP’s. A lot of the previous work on this topic has been done by Knut
Heggland, Bo Henry Lindqvist and Maria Luz Gámiz in [3], [4], [5] and [8]. The method
used in this thesis is based on the one from chapter 4 in [3], modifying it where some po-
tential weaknesses were found. Using this method we will estimate λ(t) of both simulated
and real data sets.

2



Chapter 2
Theory

2.1 The Non-Homogeneous Poisson Process
The NHPP is similar to an ordinary Poisson process, with the difference that the rate of
failures can change over time. This means that the NHPP has a varying intensity function
λ(t) where the ordinary Poisson process has a constant intensity λ. We denote an NHPP
with intensity function λ(t) as NHPP(λ(t)). The number of failures in (0, t] for a NHPP is
Poisson-distributed with expectation

∫ t
0
λ(u)du. The NHPP can model a trend in the rate

of failures. An intensity λ(t) increasing over time corresponds to a deteriorating system,
like a mechanical system aging and getting worse. An intensity λ(t) decreasing over
time corresponds to an improving system, like some software reliability getting better and
better.

LetFt− denote the history of events until time t. We then have the conditional intensity
at t given the history until time t defined as

γ(t|Ft−) = lim
h→0

Pr(failure in [t, t+ h)|Ft−)

h
. (2.1)

For the NHPP we have γ(t|Ft−) = λ(t), which means that the conditional intensity is
independent of history. This is why the NHPP is a minimal repair model as stated in the
previous chapter.

2.2 The Renewal Process
In a renewal process the interfailure timesX1, X2, . . . , Xn are independent and identically
distributed with a common distribution function F . We denote a process like this RP(F ).
If F is exponentially distributed then RP(F ) is a Poisson process. For a renewal process
RP(F ) we have γ(t|Ft−) = z(t − TN(t−)), where z(t) is the hazard rate of F . Here the
conditional intensity only depends on the time since the previous failure, which is why we
call this a perfect repair model.

3



Chapter 2. Theory

2.3 The Trend-Renewal Process
The trend-renewal process is a generalization of the NHPP and RP, where we have an
intensity given by λ(t) and a cumulative intensity Λ(t) =

∫ t
0
λ(u)du. If we have an

NHPP(λ(t)) with failure times T1, T2, . . . , Tn, then the time transformed process Λ(T1),
Λ(T2), . . . , Λ(Tn) is a HPP(1). TRP extends this model by letting this time transformed
process be any renewal process RP(F ) as shown in figure 2.1. This means that the TRP
has both an intensity λ(t), also called trend function, and a distribution function F of the
interfailure times of the time transformed process. This renewal distribution F is usually
assumed to have expected value 1, to ensure uniqueness of the model.

0

0

T1 T2 T3 T4 t

Λ(T1) Λ(T2) Λ(T3) Λ(T4)

TRP(F,λ(·))

RP(F)

Figure 2.1: A figure illustrating the defining property of the TRP.

We are interested in the likelihood function for the TRP, and we start with a general
counting process where the likelihood function is given as

L =

N(τ)∏
i=1

γ(Ti)

 exp

(
−
∫ τ

0

γ(u)du

)
, (2.2)

where γ is the conditional intensity function. For the TRP we have

γ(t) = z
(
Λ(t)− Λ(TN(t−))

)
λ(t), (2.3)

where z(t) is the hazard rate corresponding to the renewal distribution F and TN(t−) is the
last failure before time t. If we now insert the conditional intensity function for the TRP
(2.3) into the likelihood function for a counting process (2.2) we get

L =

N(τ)∏
i=1

z (Λ(Ti)− Λ(Ti−1))λ(Ti)

 exp

−N(τ)∑
i=1

∫ Ti

Ti−1

z(Λ(u)− Λ(Ti−1))λ(u)du


× exp

(
−
∫ τ

TN(τ)

z(Λ(u)− Λ(TN(τ)))λ(u)du

)
.

(2.4)

If we now make the substitution v = Λ(u) − Λ(Ti−1), use the cumulative hazard
Z(t) =

∫ t
0
z(v)dv and take the log, we get the following log likelihood function

4



2.3 The Trend-Renewal Process

l = logL =

N(τ)∑
i=1

{log(z(Λ(Ti)− Λ(Ti−1))) + log(λ(Ti))− Z(Λ(Ti)− Λ(Ti−1))}

− Z(Λ(τ)− Λ(TN(τ))),

(2.5)

which will be the basis for the method presented later.

5



Chapter 2. Theory

6



Chapter 3
Nonparametric estimation of λ(t)

3.1 Weighted kernel density estimation

We will now look at estimation of the intensity function λ(t) of TRP’s. First we present
the method of chapter 4 in [3] and then we present a modification which turns out to work
better in practice. Let the trend function λ(t) be nonparametric and the renewal distribu-
tion F = F (t;β) is given on parametric form with hazard rate z(t;β) and expected value
1. The algorithm presented in [3] will maximize the log likelihood (2.5) with respect to the
trend function λ(t) and the parameter β of z(t;β) and Z(t;β). The idea is to iteratively
maximizing with respect to λ(t) with β fixed, and with respect to β with λ(t) fixed alter-
nately until convergence. The maximization with respect to β can be done by computing
the time transformed interfailure times Yi = Λ(Ti)−Λ(Ti−1) for i = 1, 2, . . . , N(τ) + 1,
where T0 = 0 and TN(τ)+1 = τ , and then maximizing

N(τ)∑
i=1

{log z(Yi;β)− Z(Yi;β)} − Z(YN(τ)+1;β), (3.1)

which is just the ordinary log likelihood function for maximum likelihood estimation of β
for the time transformed data.

To model the trend function λ(t), weighted kernel density estimation will be used, and
the estimator will be on the form

λ(t; a) =
1

h

N(τ)∑
i=1

w

(
t− Ti
h

)
ai, (3.2)

where w is a bounded density function symmetric around 0, h is a bandwidth to be chosen,
and a = (ai; i = 1, 2, . . . , N(τ)) is the weights. We will be using the Epanechnikov
kernel, w(u) = 3

4

(
1− u2

)
for |u| ≤ 1 and w(u) = 0 otherwise. By substituting (3.2) into

the log likelihood (2.5) and maximizing with respect to the weights a and β we can find
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Chapter 3. Nonparametric estimation of λ(t)

the optimal values for these parameters. In [3] the following approximation is suggested
in order to simplify the computations

Λ(Ti; a)− Λ(Ti−1; a) ≈ λ(Ti; a)(Ti − Ti−1) ≡ λ(Ti; a)Xi (3.3)

for i = 1, 2, . . . , N(τ) + 1. By using this approximation and doing the substitution men-
tioned above the approximation of the log likelihood (2.5) now becomes

la(β) =

N(τ)∑
i=1

{log(z(λ(Ti; a)Xi;β)) + log(λ(Ti; a))− Z(λ(Ti; a)Xi;β)}

− Z(λ(τ ; a)XN(τ)+1;β),

(3.4)

where XN(τ)+1 = τ − TN(τ).
We will work with F being Weibull distributed in this thesis, and the hazard rate of a

Weibull distribution with shape parameter β and expected value 1 is given by

z(t;β) = β[Γ(β−1 + 1)]βtβ−1. (3.5)

If we substitute (3.5) into (3.4) we can write the log likelihood as

la(β) =N(τ) log β +N(τ)β log Γ(β−1 + 1) +

N(τ)∑
i=1

{β log(λ(Ti; a)Xi)− logXi

− [Γ(β−1 + 1)λ(Ti; a)Xi]
β} − [Γ(β−1 + 1)λ(τ ; a)XN(τ)+1]β .

(3.6)

The algorithm starts out with all the weights ai = 1 and then alternately and iteratively
maximizes (3.1) with respect to β, and (3.6) with respect to the weights ai for the given
value of β.

3.2 Choosing bandwidth
The value of the bandwidth h decides how much smoothing is done in the estimation.
From (3.2), with w(u) being the Epanechnikov kernel, we can see we can see that at any
time t the value of λ(t) will only be affected by failure times Ti within [t − h, t + h].
This means that with a large bandwidth h the value of λ(t) will be influenced by many
failure times Ti at all times, and λ(t) will be smoother since points close to each other will
have most influencing failure times in common with each other. On the other hand, a too
small value of h, will cause the value of λ(t) to only be influenced by a few failure times
Ti within [t − h, t + h]. In this case λ(t) will be less smooth since points close to each
other will have a smaller proportion of influencing failure times Ti in common. We want
to choose a bandwidth h that gives a good result. If a too big h is chosen, any interesting
trends will be smoothed out. With a too small value of h on the other hand the estimate
of λ(t) will become erratic, moving up and down all the time, and follow the failure times
more exactly than is reasonable to assume. With that being said we find it better to choose
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3.3 Final method

h a little too small rather than a little too big. The reason for this is that one can always
do a little bit of smoothing by eye just from looking at the graph of λ(t), however you can
not see details that has been smoothed out by a large h.

Choosing bandwidths in this thesis were mostly done by trial and error, often guided
by the automatic value of h found by the function density in R.

3.3 Final method
While working with the method of chapter 4 in [3] it was gradually modified either as
problems occurred or to get more accurate estimations. These issues are described in the
next chapter, here we present the final method we ended up using. One small change was
just to not use the approximation (3.3) in order to get more accurate results. This means
that the log likelihood (2.5), with the hazard rate (3.5), now becomes

la(β) =N(τ) log β +N(τ)β log Γ(β−1 + 1) +

N(τ)∑
i=1

{(β − 1) log(Λ(Ti; a)− Λ(Ti−1; a))

+ log(λ(Ti; a))− [Γ(β−1 + 1)(Λ(Ti; a)− Λ(Ti−1; a))]β}
− [Γ(β−1 + 1)(Λ(τ ; a)− Λ(TN(τ); a))]β .

(3.7)

Here we have that

Λ(t; a) =

∫ t

0

λ(u; a)du =
1

h

∫ t

0

N(τ)∑
i=1

w

(
u− Ti
h

)
aidu, (3.8)

and if we substitute y = u−Ti
h and have dy = du

h we get that

Λ(t; a) =

∫ t−Ti
h

−Ti
h

N(τ)∑
i=1

w(y)aidy =

N(τ)∑
i=1

(
W

(
t− Ti
h

)
−W

(
−Ti
h

))
ai, (3.9)

where W (t) =
∫ u
−∞ w(u)du. We are using the Epanechnikov kernel, which means that in

this case we have

W (t) =


∫ t
−1

3
4 (1− u2)du = −t3+3t+2

4 for |t| ≤ 1,

0 for t < −1,

1 for t > 1.

(3.10)

The other modification to the method was to simply use (3.7) to find the optimal values
for both β and the weights ai at the same time, instead of the iterative method from [3]
described above.
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Chapter 4
Real data sets and simulation
studies

4.1 Maximizing the likelihood function in R

4.1.1 First approach
All the functions used within the log likelihood functions (3.1) and (3.6), like λ(t; a),
Λ(t; a), w(t) and W (t) =

∫ t
−∞ w(u)du are implemented as functions in R [9], shown in

appendix B. This makes it so that the Optim function [10] in R can be used to maximize
these log likelihoods directly. The first approach was to follow the mentioned algorithm
in chapter 4 in [3], and using Optim to iteratively maximize these two log likelihood func-
tions. It would start out with all the weights ai = 1, maximize (3.1) to get a first estimate
of β and then use this value for β to maximize (3.6) and get new estimates of the weights
ai. Then it would run this alternately using the previous estimate until convergence.

4.1.2 Final approach
In the final approach there is only one call of Optim done, to maximize (3.7) with respect
to both β and the weights ai at the same time. Same as for the first approach all the weights
ai are given starting value 1, but now we also need an initial value for β. This was often
just set to 1 as well, unless it was assumed that it would have a value in some other range.
This choice turned out to not make any difference in practice.

4.1.3 Computation time
Since the maximization of (3.6) is optimizing a number of weights equal to the number
of failures, in addition to the parameter β of the Weibull renewal distribution, the compu-
tation time obviously increases rapidly with increasing sizes of data sets. Some different
approaches for the optimization were considered, and several of the different optimization
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Chapter 4. Real data sets and simulation studies

algorithms available in the Optim function in R were tried. The weights ai, and the pa-
rameter β, needs to be non-negative, and the first solution to this was to use the method
”L-BFGS-B” [10] in Optim, where you can give lower and upper bounds for the param-
eters. The cost you pay for this is that it is a slow method. Some other approaches were
explored to allow for usage of quicker methods. For instance the idea of implementing
a parameter substitution to take care of the non-negative restraint. However this brought
up some other problems. Using the substitution ai = eui would not allow for weights
being equal to zero, which we will see later is important. Trying the substitution ai = u2i
would not give unique solutions, which could cause problems. These other approaches
were therefore discarded, and the slow method ”L-BFGS-B” with lower and upper bounds
in R were used.

4.2 Modifying the method
We started simple by simulating some data from a TRP with a Weibull renewal function
and all parameters known. At some point during the process we came across a set of
simulated failure times that did not converge using the first approach explained above.
The estimate for β was oscillating between two different values, and hence the estimates
for the weights ai was oscillating between two sets of values. We calculated the profile
log likelihood of β for some values of β and manually found the approximate optimal
value for β, which was in between the two values it was oscillating between. We then
tried feeding in a starting value for β to the algorithm that was close to this value, but
that did not solve the problem. The next idea was to only use the log likelihood (3.6) and
maximize it with respect to both β and the weights ai at the same time, removing the need
for the alternating iteration. This new method gave an estimate of β that was concurring
with the one found by the profile likelihood test. This method will therefore be used in the
following.

4.3 Data sets
In this chapter we present modeling done with both real and simulated data sets. We
look closely at how λ(t), β and the weights ai behave for different data sets and different
bandwidths h.

4.3.1 U.S.S. Halfbeak diesel engine
The first data set we look at is failure times in operating hours for the number 3 main
propulsion engine of the submarine U.S.S. Halfbeak [2]. The failure times themselves are
presented in table 4.1.

Figure 4.1 shows the estimated λ(t) using the final method with optimizing both β and
the weights ai at the same time, and also not using the approximation (3.3). The time axis
is here scaled down by a factor of 1000. In this figure we have presented λ(t) estimated
with three different bandwidths to illustrate the smoothing effect. We can see how the blue
line with h = 2 is moving up and down quite a bit and the highest peak is pretty pointy.
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4.3 Data sets

Table 4.1: U.S.S. Halfbeak failure times

1382 2990 4124 6827 7472 7567 8845 9450 9794
10848 11993 12300 15413 16497 17352 17632 18122 19067
19172 19299 19360 19686 19940 19944 20121 20132 20431
20525 21057 21061 21309 21310 21378 21391 21456 21461
21603 21658 21688 21750 21815 21820 21822 21888 21930
21943 21946 22181 22311 22634 22635 22669 22691 22846
22947 23149 23305 23491 23526 23774 23791 23822 24006
24286 25000 25010 25048 25268 25400 25500 25518

The green line with h = 10 on the other hand is very smooth, with less variance in the first
part and much more blunt peak in the last part. We can see how this green line has lost
some of the details due to the smoothing. The red line with h = 5 is naturally somewhere
in between the two other lines. In this figure we can see the point made earlier that the
graph of λ(t) with a choice of a small bandwidth can be smoothed out by eye. If we look at
the blue line, and just smooth out the small kinks by eye, it quickly becomes very similar
to the red line. We can not however get from the smooth green line to the red or blue line
just by changing it by eye, we would need to do the actual estimation with a smaller h.
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Figure 4.1: λ(t) estimated from the U.S.S. Halfbeak data set with bandwidths h = 2, h = 5 and
h = 10. The time axis is scaled down by a factor of 1000.

The estimated values of β can be found in table 4.2 and the values of the weights ai
are shown in table 4.3 for bandwidth h = 2 and in tables A.1 and A.2 in appendix A for
bandwidths h = 5 and h = 10. A plot of the weights with bandwidth h = 5 is also
shown in figure 4.2. We see that a large proportion of the weights have value 0. These
results matches with what is noted by Jones and Henderson in [6] where they say only a
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Chapter 4. Real data sets and simulation studies

few weights will be nonzero and they will be clustered around common values of the Ti.
It is possible that some of these weights that has a very low value would also become 0 if
a lower tolerance was used in the maximization of the log likelihood.

Table 4.2: Estimated values of β for the U.S.S. Halfbeak data set.

h = 2 h = 5 h = 10
β 0.959 0.908 0.868

Table 4.3: Values of the weights ai for the U.S.S. Halfbeak data set with bandwidth h = 2.

0 0.98 0.98 0 0 3.28 1.33 0 0
4.30 0 0 0 2.83 0 0 2.88 0

0 0 0 0 0 0 0 0 0
17.30 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 13.29 6.63 6.49 0.74 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7.57 10.12

5 10 15 20 25

0
2

4
6

8
10

12

Time

W
ei
gh
t

Figure 4.2: Plot of the weights with the U.S.S. Halfbeak data set using bandwidth h = 5.

4.3.2 U.S.S. Grampus diesel engine
Next we look at failure data from another submarine, called U.S.S. Grampus [2]. The
failure times is in operating hours of unscheduled maintenance actions for one of its diesel
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4.3 Data sets

engines and can be found in table A.3 in appendix A. There is a pair of failures with the
same failure time 14 173, and that does cause some problems for the method used here.
These issues will be addressed more thoroughly for the next data set, and we just note that
for this data set one of these failure times was simply changed to 14 174. Such a small
change in one out of 56 failure times has no practical influence on the estimates done. We
did a similar study of this data set as of the Halfbeak data set, comparing the effects of
different choices of bandwidths. A plot of the different estimated λ(t) is shown in figure
4.3, with the time axis scaled down by a factor of 1000.
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Figure 4.3: λ(t) estimated from the U.S.S. Grampus data set with bandwidths h = 2, h = 4 and
h = 6. The time axis is scaled down by a factor of 1000.

In this case with Grampus, λ(t) is very different from the case with Hafbeak in figure
4.1. Here the estimate is swinging up and down around the same value over the whole
area compared to the low start and high peak towards the end for the Halfbeak data set.
The fact that the estimated values of β is approximately 1, see figure 4.4, and λ(t) closer
resembling a constant, especially for higher values for the bandwidth, one could possibly
consider this to be a homogeneous Poisson process.

Table 4.4: Estimated values of β for the U.S.S. Grampus data set.

h = 2 h = 4 h = 6
β 1.122 1.072 1.022

The values of the weights ai are found in tables A.4, A.5 and A.6 in appendix A for
bandwidths h = 2, h = 4 and h = 6 respectively. Again there are a lot of weights equal
to 0, and the nonzero weights are clustered around common values of the Ti.
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Chapter 4. Real data sets and simulation studies

4.3.3 Photocopier

The next data set we look at is age in days of a photocopier at 92 successive failures shown
in table A.7. This data set was gathered from [1]. One thing to note about this data set is
that the failure times are only recorded in whole days, so there are several occurrences of
two failures at the same time. This is is causing trouble with the modeling method used
here as we will get log(0) in the log likelihood function (3.7). Two different workarounds
were used for this problem. One workaround was to just push every second failure on a
single day forward to the next day. The second workaround was to assume that two failures
in one day would be the same failure twice, where it had not been repaired properly the
first time, and therefore just count it as one single failure. The resulting estimates of λ(t)
with these two methods, both with bandwidth h = 255, is shown in figure 4.4. We can
see that the estimate of λ(t) with the method of counting double failures as a single failure
is lower on average than the one moving the second failures forward in time. This makes
sense because by combining failures it will have less failures overall in the same time
period, and thus lower intensity. The estimated values for β were 0.99 for the method
moving failures, and 1.06 for the method combining failures. The values of the weights ai
are found in table A.8 and A.9 in appendix A for the first and second methods respectively.
In addition a graphical plot of the weights with the first method is shown in figure 4.5. Here
we can visually see that many of the weights are 0 and the others clusters together.
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Figure 4.4: Photocopier data, h = 255. Blue line is with second failure in a single day is moved 1
day forward, red line with two failures in a single day counted as one. Blue estimated β = 0.99, red
estimated β = 1.06.
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Figure 4.5: Plot of the weights with the photocopier data set using the method of pushing every
second failure on a single day one day forward in time.

4.3.4 Simulated data sets
One big data set

In order to explore the edge effects of kernel density estimation a data set was simulated
from a TRP with constant λ = 1, β = 2 and τ = 150. τ = 150 means that the simulation
runs until a failure occurs after time τ = 150. This last failure is not included in the
data set. With a constant λ = 1 the expected number of failures is just τ itself, and in
this particular simulation we ended up with 146 failures times, as shown in table A.10 in
appendix A. This data set should be suited to see how the estimate of λ(t) behaves close to
the edges. What happens in regular kernel density estimation without weights (all weights
equal to 1) is that the value is underestimated within the bandwidth of each of the edges.
This happens because there are no failures before the start points or after the endpoint that
can contribute to the estimate in these areas. One solution is to mirror all failure times
within the bandwidth h of each edge illustrated in figure 4.6. This means that for any

0 T1 T2 T3 T4-h h τ τ+hτ-h··· Tn-1 Tn

Figure 4.6: Illustration of the mirroring edge correction.

failure at Ti in [0, h] a failure is added at −Ti and for any failure Ti in [τ − h, τ ] a failure
is added at 2τ −Ti. Then the estimate is calculated within the edges as if these new added
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Chapter 4. Real data sets and simulation studies

failures also had happened. The results of this for the simulated data set is shown in figure
4.7. Bandwidth h = 20 was used here.
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Figure 4.7: All weights ai = 1. Red line is with failures within h = 20 from 0 or τ = 150 mirrored
for edge correction. The data set was simulated from a TRP with constant λ = 1.

As mentioned, this was simulated data from a TRP with constant λ = 1, and we can
see how the blue line is clearly underestimated at the edges. We also see how the edge
corrected red line is approximately 1 over the whole area 0 to 150 as it should be.

In figure 4.8 is the results of estimating λ(t) with optimized weights shown, also with
bandwidth h = 20. These weights can be found in table A.11 in appendix A. Although we
here also see a lot of zero valued weights, there are more weights with a non-zero value
here than what we have seen in the previous data sets. There are also quite a few values that
are very close to zero. The reason for this is probably the size of this data set, and number
of parameters being optimized at the same time, resulting in Optim not quite finding the
optimal solution. If we had changed the tolerance and maximum iterations allowed in the
Optim call, we might have seen results similar to the previous ones. But this method was
already running very slow with this many parameters, so we left it like this. If we look at
figure 4.8 we see that we do not get the same underestimation near the edges as for the blue
line with all weights ai = 1 in figure 4.7. It seems that in the process of optimizing the
weights to maximize the log likelihood function (3.6) it somewhat counteracts this effect.
We see that it would not make sense to use the mirroring method at the edges here.

Several smaller data sets

120 smaller data sets with τ = 50 were simulated, also with constant λ = 1 and β = 2,
to study the estimates of λ(t) and β more closely. Bandwidth h = 12 were used here.
A plot of the average estimated λ(t) over the 120 data sets are shown in figure 4.9. Here
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Figure 4.8: Same data set used as in figure 4.7, with optimal weights now applied. Mirroring edge
correction does not make sense anymore.

the edge effect becomes even more clear than before. We see how the red line, estimates
without weights, is clearly underestimating λ(t) near the edges. The blue line, estimates
with weights applied, does not have nearly as much of that underestimating trend near the
edges, and swings up and down around λ = 1 over the whole interval. The average value
is λ = 0.997 of the blue line and λ = 0.907 of the red line. This means that overall the
estimates with weights applied are very close to the λ = 1 all the data were simulated
from. However it seems this blue line gets some specific trend in the fluctuation around
λ = 1 from the weights being applied, and not give as accurate estimate in the middle
area.

In figure 4.10 is a histogram of all the estimated values of β in the 120 simulated data
sets shown. Overall the values of β were a little overestimated compared with the value
the data were simulated from with β = 2. Over all the 120 estimated β′s, the mean value
was 2.25 and median 2.20. This overestimation of β seemed to be bigger for smaller data
sets, and smaller for bigger data sets.

To investigate how the choice of bandwidth influences these estimates we did the same
again, simulated 120 data sets with τ = 50, constant λ = 1 and β = 2, but we used
bandwidth h = 20 for the estimation. The plot of this average estimated λ(t) is shown
in figure 4.11. Now with a larger bandwidth the areas near the edges where the red line,
without weights applied, underestimates are obviously larger as well. And there seems to
be an even bigger difference overall between the two lines. This is confirmed by looking at
the mean values for λ(t) in this plot, which is λ = 0.998 for the blue line and λ = 0.850
for the red line. Again, the overall average of the weighted line is nearly spot on the
actual value λ = 1 used in the simulations. The larger bandwidth, and thus larger areas
of underestimation for the red line, means that the overall average for this line gets even
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Figure 4.9: Average estimated λ(t) over the 120 simulated data sets with λ = 1, β = 2 and h = 12.
Blue line is with optimal weights applied, red line is with all weights ai = 1.
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Figure 4.10: Histogram of the estimated values of β in the 120 simulated data sets with β = 2 and
h = 12. Mean = 2.25, median = 2.20.

smaller now.
A histogram of the estimated values of β in these 120 simulated data sets is shown

in figure 4.12. This looks very similar to the histogram in figure 4.10, but without any
estimate exceeding 3. The mean value of all the estimated β′s were here 2.21, and median
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Figure 4.11: Average estimated λ(t) over the 120 simulated data sets with λ = 1, β = 2 and
h = 20. Blue line is with optimal weights applied, red line is with all weights ai = 1.

2.18. The median is 0.02 less that of figure 4.10, and the mean is 0.04 less. This change is
probably because of fewer really big estimates of β.
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Figure 4.12: Histogram of the estimated values of β in the 120 simulated data sets with β = 2 and
h = 20. Mean = 2.21, median = 2.18.

We also tried changing the value of β in the simulated data sets to see what effect this
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would have, first we tried with β = 0.8. We still used τ = 50 to have the same number of
expected failures as before, but with bigger variance because of the smaller value of β. The
number of failures in the time interval plays a big role when choosing the bandwidth, and
it gets harder to generalize one value for the bandwidth when there now is bigger variance
between the data sets, but for this test we will go back to h = 12. So again λ(t) and β were
estimated from 120 simulated data sets, now as said with the value β = 0.8 and the other
values as before τ = 50, λ = 1 and h = 12. The resulting average estimated λ(t) can be
seen in figure 4.13. It is similar to the results in figure 4.9, with β = 2 and h = 12, though
the symmetries are not quite as clear. This probably has to do with the higher variance in
the interfailure times with β = 0.8.
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Figure 4.13: Average estimated λ(t) over the 120 simulated data sets with λ = 1, β = 0.8 and
h = 12. Blue line is with optimal weights applied, red line is with all weights ai = 1.

The histogram of the estimated values of β is shown in figure 4.14. The trend of
overestimation seems to be present also with a smaller value of β = 0.8 in the simulated
data sets, with a mean value of 0.907 and median 0.902.
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Figure 4.14: Histogram of the estimated values of β in the 120 simulated data sets with β = 0.8
and h = 12. Mean = 0.907, median = 0.902.
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Chapter 5
Discussion

5.1 Further work
A clear thing to improve is the run time of code. The time it takes for the optimization
to run increases rapidly with increasing size of data sets, as there is one parameter to be
optimized for each single failure. Working on this thesis there was not spent too much time
on finding the fastest way to do the optimization, though a few different approaches were
tried. If quicker computation time was achieved one could do larger simulation studies
more easily.

5.2 Conclusion
This thesis gives an introduction to stochastic modeling of repairable systems, with focus
on the nonhomogeneous Poisson process and the trend-renewal process. It presents a
kernel-based method for nonparametric estimation of the trend function of trend-renewal
processes, a modified version of the method described in chapter 4 in [3]. This method
is using weighted kernel estimation and is tested on several real and simulated data sets.
These optimal weights are found to concur with what is said in [6], that a large proportion
of the weights are zero, and the nonzero weights being clustered together. Simulation
studies were done, and some characteristics were found in the methods estimates of the
trend functions of the TRPs. It was also found that the method often overestimates the
parameter β of the Weibull renewal distribution used in this thesis, but this overestimation
got smaller the larger the data set was.
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Appendix A

Tables
U.S.S. Halfbeak

Table A.1: Values of the weights ai for the U.S.S. Halfbeak data set with bandwidth h = 5.

0.97 0 0 3.75 0 0 0 0 6.34
0 0 0 0 0 0 0 0 0
0 0 3.44 12.22 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0.99 8.53 12.59 12.74 8.03 7.33 5.93 0
0 0 0 0 0 0 0 0

Table A.2: Values of the weights ai for the U.S.S. Halfbeak data set with bandwidth h = 10.

0 0 0.34 4.83 3.62 3.41 0.02 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 2.61 2.78 3.08 4.82

7.19 11.67 11.72 11.89 12.74 13.14 13.74 13.85

U.S.S. Grampus

Table A.3: U.S.S. Grampus failure times

860 1258 1317 1442 1897 2011 2122 2439
3203 3298 3902 3910 4000 4247 4411 4456
4517 4899 4910 5676 5755 6137 6221 6311
6613 6975 7335 8158 8498 8690 9042 9330
9394 9426 9872 10191 11511 11575 12100 12126

12368 12681 12795 13399 13668 13780 13877 14007
14028 14035 14173 14174 14449 14587 14610 15070
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Table A.4: Values of the weights ai for the U.S.S. Grampus data set with bandwidth h = 2.

10.46 0 0 0 0 0 0 0
6.47 0 0 0 0 0 0 0

0 3.54 1.46 8.51 0 0 0 0
0 0 0 0 0 5.74 4.31 0
0 0 0 0 0 0 0 0
0 0 11.13 0 0 0 0 0
0 0 0 0 0 0 0 17.46

Table A.5: Values of the weights ai for the U.S.S. Grampus data set with bandwidth h = 4.

0 2.14 6.79 3.18 0 0 0 0
8.98 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 18.20 0 0 0 0 0 0
0 0 0 0 0 4.68 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 34.26

Table A.6: Values of the weights ai for the U.S.S. Grampus data set with bandwidth h = 6.

0 0 0 6.54 0 0 0 0
0 0 0 0 0 0 0 0

11.62 10.25 8.27 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0.12 8.33 5.73

3.83 3.10 0 0 0 0 0 20.27
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Photocopier

Table A.7: Photocopier data set

7 8 9 58 84 86 98 104 104 112
113 119 121 127 127 194 195 212 216 229
229 230 266 267 279 292 300 301 308 317
324 335 337 352 384 393 411 419 461 470
475 482 505 509 527 533 552 555 561 561
575 587 603 622 630 635 639 646 651 651
673 684 692 693 695 698 709 712 714 722
731 742 768 831 868 875 925 937 940 943
946 946 952 954 957 993 1013 1077 1099 1108

1125 1135

Table A.8: Values of the weights ai for the photocopier data set with bandwidth h = 255 and every
second failure in a single day moved forward to the next day.

1.35 1.30 1.24 0 0 0 0.13 0.85 0.96 1.77
1.89 2.55 2.77 3.41 3.51 4.08 4.08 3.12 2.49 1.10
1.03 0.95 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 2.42 2.95 3.66 3.47 2.67 2.51 2.67 2.71

3.61 2.21 1.28 0.07 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1.36 3.42 6.11 6.67 0 0 0 0 0 0
0 0 0 0 0 0 0 5.33 5.26 4.27

2.10 0.16
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Table A.9: Values of the weights ai for the photocopier data set with bandwidth h = 255 and two
failures on the same day counted as a single failure.

0 0 0 0 0 0 0 0.34 2.23 2.43
3.46 3.74 4.38 6.07 5.89 1.88 1.00 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 5.42

6.00 6.03 5.73 2.60 1.93 1.27 0 0.02 0.03 0.03
0.03 0.02 0.02 0 0 0 0 0 0 0

0 0 0 0 0 0.82 4.68 10.65 0.24 0
0 0 0 0 0 0 0 0 0 0
0 7.35 6.07 4.70 0.87 0
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Simulated data sets

Table A.10: Failure times simulated from a TRP with constant λ = 1, β = 2 and τ = 150.

0.65 1.66 2.98 3.95 4.68 5.44 5.90 6.92 7.53 10.45
11.97 12.80 14.15 15.54 16.59 16.91 17.74 18.34 20.06 20.89
22.04 22.59 23.97 25.37 26.82 28.41 28.82 29.27 30.20 30.39
30.63 31.54 32.21 32.94 34.43 36.27 36.37 36.91 37.48 38.68
39.31 39.63 41.50 42.25 42.90 43.12 44.42 45.82 47.47 49.53
51.05 52.16 53.21 54.61 55.50 57.01 58.08 59.36 61.25 62.42
63.99 65.25 66.80 67.96 68.79 70.83 72.19 72.92 73.30 74.39
75.24 76.47 78.73 79.36 80.75 81.15 82.44 82.89 83.20 84.50
85.28 86.78 88.07 89.26 89.91 91.66 92.81 94.24 94.71 95.74
96.26 97.25 98.90 99.38 100.45 101.23 101.76 103.06 104.24 105.27

105.54 105.98 107.12 108.09 109.38 110.81 111.40 112.17 113.24 114.81
115.36 116.62 118.32 120.13 121.76 123.62 124.45 125.66 127.11 128.45
129.45 130.16 130.39 130.79 131.21 131.46 132.15 132.55 133.07 133.88
134.45 134.92 135.70 136.46 137.22 138.18 139.30 140.13 140.74 142.25
143.39 144.00 145.87 147.24 148.27 149.07

Table A.11: Optimal weights for the simulated data set A.10 with bandwidth h = 20.

4.15 3.43 2.94 2.99 2.84 2.64 2.38 1.74 1.08 0
0 0 0.03 0.03 0.01 0 0 0 0 0
0 0 0 0 0 0 1.09 2.37 4.54 4.97

4.74 3.09 1.87 0.78 0 0 0 0 0 0
0 0.29 1.39 1.25 1.46 1.61 2.26 2.29 1.40 0
0 0 0 0 0.06 0.67 1.07 0.31 0 0
0 1.42 3.57 4.24 4.34 3.59 2.27 1.35 0.88 0
0 0 0 0 0.16 0.26 0.20 0.37 0.42 0.17
0 0.23 0.47 1.13 1.52 0.89 0 0.05 0.32 1.01

1.67 3.07 4.84 4.34 3.60 2.68 2.34 1.04 0.56 0.03
0.05 0.04 0 0 0 0 0 0 0 0

0 0 1.14 2.23 2.99 3.36 3.03 2.62 1.62 0.39
0.09 0 0 0 0 0 0 0 0 0

0 0 0.01 0.61 1.33 2.35 3.19 3.82 3.93 4.05
3.85 3.31 1.28 0 0 0
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Appendix B

R code

Listing 1: Making the λ(t) function

lambda_est <- function(failures , k, h){
# Makes the lambda function.
#
# Args:
# failures: A vector with failure times
# k: Kernel function
# h: Bandwidth
#
# Returns:
# A lambda function that takes in time t
# and vector a with weights

function(t, a){
l = 0
for (i in 1: length(failures )){

l = l + (k((t-failures[i])/h)/h)*a[i]
}
return(l)

}
}
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Listing 2: Making the Λ(t) function

lambda_big_est <- function(failures , K, h){
# Makes the big lambda function.
#
# Args:
# failures: A vector with failure times
# K: Integrated Kernel function
# h: Bandwidth
#
# Returns:
# A big lambda function that takes in time t
# and vector a with weights

function(t, a){
l = 0
for (i in 1: length(failures )){

l = l + (K((t-failures[i])/h)
- K(-failures[i]/h))*a[i]

}
return(l)

}
}

Listing 3: Epanechnikov kernel

epanech <- function(u){
# Epanechnikov kernel
if (abs(u) <= 1){

return (3*(1-uˆ2)/4)
}
else{

return (0)
}

}
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Listing 4: Integrated Epanechnikov kernel

epanech_int <- function(u){
# Integrated Epanechnikov kernel
if (u <= -1){

return (0)
}
else if (u >=1){

return (1)
}
else{

return ((3*u-uˆ3)/4 + 0.5)
}

}
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Listing 5: Log likelihood function (3.7)

likelihood <- function(failures , tau){
# Makes the log likelihood function.
#
# Args:
# failures: A vector with failure times
# tau: Observation end point
#
# Returns:
# Log likelihood function that takes weights as input
#
# The parameter beta is stored as the
# last element of the vector a
#

function(a){
l = 0
N = length(failures)

l = l + N*(log(a[length(failures )+1])
+ a[length(failures )+1]
*log(gamma(a[length(failures )+1]ˆ( -1)+1)))

failures2 = c(0, failures)
for (i in 2:N+1){
l = l + (a[length(failures )+1] -1)

*log(lambda_big(failures2[i], a)
- lambda_big(failures2[i-1], a))
+ log(lambda(failures2[i], a))
- (gamma(a[length(failures )+1]ˆ( -1)+1)
*(lambda_big(failures2[i], a)
- lambda_big(failures2[i-1], a)))
ˆa[length(failures )+1]

}
l = l - (gamma(a[length(failures )+1]ˆ( -1)+1)

*(lambda_big(tau , a) - lambda_big(failures2[
length(failures2)], a)))ˆa[length(failures )+1]

return(-l)
}

}
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Listing 6: Script to run the method

# Insert failure data , this is the start of
# the USS Halfbeak data shown

failures = c(1382 ,2990 ,4124 ,6827 ,7472 ,7567...)/1000
tau = 25.518

# Set initial values for the weights and beta = 1
a = rep(1, length(failures )+1)
# Choose bandwidth
h = 2
# Make lambda function
lambda = lambda_est(failures , epanech , h)
# Make big lambda function
lambda_big = lambda_big_est(failures , epanech_int , h)

# Make log likelihood function
lklh = likelihood(failures , tau)

# Optimize log likelihood function with respect
# to weights and beta
a = optim(a, lklh , method = "L-BFGS -B",

lower = 0, upper = Inf)$par

# Plot estimate of lambda
x = 0
y = 0
x = seq(0, tau , tau/500)
for(i in 1: length(x)){

y[i] = lambda(x[i], a)
}
plot(x, y, "l", col="blue", ylim=c(0, max(y)),

ylab = expression(lambda (t)), xlab = "t")
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