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Abstract In this paper, a cellular automaton model is developed to generate spatio-temporal 

population maps that estimate population distributions in an urban area in a random working 

day. The resulting population maps are at 50 by 50 meter spatial resolution and 5 minutes 

temporal resolution, showing clearly how the distribution of population varies throughout a 

24-hour period. Places that are sparsely populated during night-time can be densely populated 

during day-time. The generated maps can be used to estimate population-at-risk in the wake 

of major disasters when they occur in an urban area at any time of a day. In addition to 

assessing exposure to hazards, the resulting maps also reveal the movement patterns, 

transition trends, peak hours, activity levels, etc. Possible applications, thus, range from 

public safety, disaster management, transport modeling and urban growth studies to strategic 

energy distribution planning. The developed cellular automata model assumes that the 

population transition trends follow similar dynamics and propagation patterns of a contagious 

disease. Thus the cellular automaton is designed to change the states of each grid cell 

(Stable/Dynamic) similarly as state changes of an individual being exposed to an infective 

disease (Susceptible/Infected).  The modeling space is further informed by several geographic 

features, such as the transport routes, land use categories, population attraction points, etc. 

The model is geosimulated for the city of Trondheim in Norway, where the synthetic day 

population could be validated upon an estimated day-population map based on the registered 

work place addresses and employee statistics. 

Keywords: Cellular automata, Attraction-based, Population-at-risk, Ambient Population 

Maps, Day population, Geosimulation 

1 Introduction 

Exposure assessment is an important aspect of risk-based disaster modeling (Modarres, 2006), 

which is nevertheless often either neglected or simply assumed to be embedded into the 

vulnerability indices (IPCC, 2012; Purdy, 2010; UNISDR, 2011). In any disaster management 

framework, saving human lives takes the highest priority. This implies that, the size of any 

formal evacuation planning, search and rescue operation, recovery and emergency housing, 
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etc., must necessarily be incorporated to a reliable estimate of the number of people, being 

exposed to the hazard.  

The efficiency of such estimation is to a large extent, a matter of accuracy as well as 

the spatio-temporal resolution of the available population datasets (Dobson et al., 2000). For 

example, being able to accurately estimate the number of people at risk in the wake of a major 

hazard, such as a hurricane, can clearly determine the required capacity of evacuation routes, 

the number of logistical vehicles or the amount of food and medicines that must be stored 

when planning for an emergency response operation. The most commonly used method for 

locating people in a city is by using the population density maps, made from official censuses 

that are developed based on the registered residence addresses. This neglects the fact that 

many people may stay at home for only a few hours from late afternoon until the next 

morning, when they commute to work, study, shop or to where other urban daily activities 

take place. As a result, developing models for estimating the ambient population or the 

number of people actively moving within the built environment of a city during the day 

becomes vital. Population movements could also involve diurnal activities of sub-urban 

commuters travelling to main cities for work, who account for a significant difference 

between day and night population counts as well as part of the peak hour traffic congestions 

(National Research Council (US), 2007). 

The conceptual model in this paper, adopts epidemiological concepts into the 

geosimulation of population movements. Spatially explicit elements of the simulated 

phenomenon are assumed to spread through time and space, following stochastic epidemic 

modeling approaches. In this sense, the modeling space has turned into a discrete modeling 

environment of autonomous geographical elements (e.g. gridded land cells).  

This approach is based on the assumption that, the emergent behaviors of the 

population movements as a complex system would probably follow the dynamics of an 

epidemic disease. There are several mathematical formulations related to studying the 

dynamics of contagious diseases’ epidemics, which could be used to mimic the population 

transition patterns. Comparing their characteristics and behaviors, population movements and 

the disease propagation have many similar features and characteristics in common. For 

example, if we consider people’s movements as a contagious disease that can travel through 

the modeling space, there are some times of the day, during which the level of activity in a 

city peaks and drops again, such as the morning and the afternoon rush hours. This behavior is 

analogous to the epidemic behavior of the contagious diseases, when their break out and 

suppression periods varies in different months of their propagation season. Other 
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characteristics of these complex systems also motivate the use of epidemiologic predictions 

for modeling population movements. The way people are transported in a diffusive manner 

from core residential areas to commercial areas in the morning and the way back in the 

afternoon resembles the cyclic behavior of epidemic diseases with diffusive growth patterns. 

Another analogy can be seen based on the possible states that can be similarly assumed for the 

dynamic state of gridded land cells of a city. A land cell can become dynamic or stable the 

same way as the individuals that can be susceptible or become infected. 

The main purpose of this paper, which should be considered more of a proof of 

concept rather than a fully operational predictive structure, is to take the first step to 

incorporate the epidemiological concepts into the modeling of population movements so that 

the resulting geosimulations would be able to generate synthetic population maps that have a 

temporal resolution. This modeling approach is expected to enhance the credibility and 

usefulness of previous models by reducing the size of required input data, with a 

concentration on validation and calibration issues. A two-dimensional evaluation strategy is 

therefore employed in order to improve the operational as well as the numerical reliability of 

the modeling results. 

 

2 Literature review 

The available models for mapping the ambient population are mainly limited to the Landscan 

Global and the GPW (Gridded Population of the World), which are developed based on the 

disaggregation of low resolution census counts to a higher resolution often using preferential 

weighing techniques. These probabilistic approaches commonly require several additional 

data inputs, such as satellite imagery. They are, therefore, heavily dependent on the 

availability of the required cutting-edge technology and resources. Both of these models 

employ diverse methodologies such as dasymetric techniques, spatial interpolation, 

disaggregation, and imagery analysis to estimate an average population value for the day 

population. 

Despite the acceptable level of consistency delivered by these invaluable efforts to 

estimate tempo-spatial population maps, there are two main reasons why we might have to 

look for alternative methodologies. Firstly, the practical usefulness and usability of these 

types of population representations is curbed to a few countries, in which a large quantity and 

variety of spatial census data sets are available, which ironically is not usually the case when 

it comes to severe natural disasters. A significant part of the disasters occur in less-developed 

parts of the world, where poor nations suffer more death tolls than rich nations from natural 
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disasters (Kahn, 2005). Secondly, since the population distribution is based on local 

disaggregation or some other forms of extrapolation, the estimation results are heavily 

dependent on the preferential weighting of the estimation parameters such as land use, time of 

the day, slope gradient, etc. This approach is normally based on human inference 

approximations, or the so-called preferential weightings (“LandScan - Documentation,” 

2013), which could be hard to validate if used as an input for generating the model 

estimations rather than for calibration purposes. The temporal resolution of the mentioned 

models also may not satisfy the required needs for exposure assessment of several time-

sensitive natural hazards, in which the number of casualties is heavily dependent on the time 

of their occurrence, such as earthquakes and tsunamis (Freire, 2010).  

Furthermore, the intrinsic stochasticity of people’s decision-making process in their 

choice of destination, route selection, etc. can not be well explained when models tend to 

represent the currently estimated data rather than actually predicting values for the population 

counts. This is a result of the weighting process that comes with the assumption of uniform 

distribution of disaggregated population assignments to all of the areas with the same land use 

category in every time interval of the day (Bhaduri et al., 2007). 

Among other methodologies that are somehow capable of incorporating human 

decision-making mechanisms into geosimulations are the Agent-based models. In these 

models, urban areas are considered as complex systems. The complexity of the system 

emerges global and structural behaviors from actions, each of which are simple in themselves, 

of relatively autonomous agents, interacting with each other and other system elements (Batty 

et al., 1998). Even though this type of modeling might preserve some of the intrinsic 

stochasticity of the people’s/agents’ behavior, they appear to be relatively limited to the 

modeling of local movement patterns, and behaviors in only small-scale built environments 

such as shopping malls or a neighborhood’s pedestrian flows (Ali and Moulin, 2005). This is 

partly because, trying to increase the number of the agents to the size of a large city’s 

population, would need much higher resolution of spatio-temporal data that could affect their 

usability, as well as imposing even more challenges when trying to calibrate and validate 

them. In addition, the expensive handling of the massive raw data will limit the flexibility of 

the model and may make alternative calibration techniques, such as replicative calibration, 

infeasible. Similar approaches have been developed previously in modeling population 

growth and land use change using an activity-based CA (White et al., 2012). Cellular 

automata (CA) that are known to be mathematical idealizations of complex systems in 

discrete space and time, were developed by Ulam in the 1940s and improved by Von 
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Neumann exploring the logical nature of self-reproducible systems (Adamatzky et al., 2008). 

CA can be viewed as a simple model of a spatially extended decentralized system made up of 

a number of individual components, called cells, each of which communicate between 

themselves following a set of simple rules. Each cell is in a specific state, which changes over 

time depending on the state of its local neighbors and various inputs from outside the 

automaton (Ganguly et al., 2003).  

 

3 Methods and Materials 

A third approach after the dasymetric and agent-based models, which we follow, is an 

alternative automaton-based modeling infrastructure, in which the macroscopic behavior of a 

complex urban system, the urban area, is assumed to be obtained from the microscopic 

behaviors of their spatial entities.  

The proposed model is designed in form of an algorithm driven by an attraction-based 

cellular automaton that distributes the night population of an urban area from their origin at 

the nighttime, the residential cells, to other land use categories during different time-intervals 

of a 24-hour day. The map of a city (Trondheim) is therefore gridded into 50 by 50 meter 

cells. Each cell can be visualized by the estimated number of people staying in that cell, in 

every time-step of the simulation.  

In this approach, unlike an agent-based model, people in a city are not modeled 

individually but quite similarly, the cellular automaton follows an individual’s mind-set of 

traveling through the city both autonomously and stochastically. In other words, instead of 

modeling the individuals physically, their state of the mind in making decisions for moving 

across the city’s context is parameterized. For this reason, every gridded land-cell on the map 

can be affected by its surrounding movement trends and a movement trend can lead to other 

movements locally and form a global movement pattern. Alternatively, adding the people’s 

need for travel to their stochastic behavior, some of the cities main activity-gaining places are 

introduced into the model as attraction-centroids. This is handled by choosing the city’s most 

populated areas as attraction-centroids in residential areas, and the main daily active places in 

the commercial areas. In the simplest words, the residential attraction-centroids are assumed 

to attract the population during the afternoon hours and the commercial attraction-centroids 

are assumed to attract people in the morning. The model simply divides an entire 24-hour day 

into five main time-intervals and weights the different land use categories’ attraction values in 

each interval. Figure 1 shows a schematic illustration of the time intervals and the way people 

are generally believed to move between various land use categories. By the following 
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Figure 1: A schematic illustration of our basic understanding of urban movement patterns 

in three different time-intervals of a day. 

	  

sections, we will see; based on what modeling principles, and how, the movement patterns 

and population counts could be estimated. 

 

The urban area is first gridded into 50 by 50 meter cells, which hold one of the two 

states at a time, (1) Stable and (2) Dynamic. Every cell is assumed to have a balance of 

emigrant and immigrant population to and from the neighboring cells when it holds the Stable 

state. When it is more likely that the grid cell is either losing or gaining population counts, it 

shifts to the Dynamic state. In order to estimate this likelihood, a random value is assigned to 

every cell in every time step. Then the average estimated value for a local Moore 

neighborhood of a cell is compared to a global threshold probability, Beta. Any Static state 

cell can turn into a Dynamic cell if the threshold probability is passed. It is therefore assumed 

from the actual behavior of people’s transition within a city that the Dynamic state is 

propagated through a neighborhood effect that is influenced passively by some suitability 

factors, i.e. road accessibility.  

 

 

 

 

 

 

 

 

 

 

 

The main idea is to determine, whether the complex population movement patterns 

could be drawn based on our basic understandings of their microscopic behaviors, such as 

their travel habits. The decision making process of the moving crowd in a city, if assumed to 

account for this microscopic behavior, can then be rationalized based on their obvious needs 

and the city’s spatial characteristics. In other words, people can first be categorized based on 

their daily activities such as students, workers, etc., then assumed to move to their desired 

destinations based on their related land use category in different times of the day on a 

spatially explicit modeling platform of an urban area. For example, students go to institutional 

land use categories in the morning and commute back to the residential lands in the afternoon. 
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Another approach in setting destination for individuals, employed in this research, is to set 

highly populated commercial and institutional lands as attraction-centroids in the morning and 

highly populated residential areas in the afternoon, in a way that the autonomous land cells 

change their states based on the land use categories and day time intervals. 

The CA’s development direction is guided towards the main population attraction-

centroids (similar to that of referred to as the ‘’city centroids’’) that attract the majority of the 

population transition during different time intervals of the day. In simple words, work places 

and universities attract population counts during the morning rush hours of a city, while 

residential lands play the same role in the afternoon, when people are mostly heading back to 

their homes. This is analogous to the concepts of the conventional gravity-based transport 

modeling, where highly populated city-cores generate trips by attracting and repelling 

population during the 24 hours of a day. The algorithm chooses the largest population clusters 

as different attraction-centroids in different time intervals of the day. This attraction rule is 

simply implemented into the model, by estimating the cells’ population probability, according 

to their Euclidean distance to the nearest attraction point and their associated attraction 

weight. 

3.1 Attraction-based Cellular Automaton 

A standard form of cellular automata can be generalized as follows: 

𝑆𝑇!!! = 𝑓 𝑆𝑇! ,𝑁                                                                                                                                         (1) 

Where ST is a set of all possible states of the CA, N is a neighborhood of all cells 

providing input information, and 𝑓 is a transition function that determines how the system 

states change from t to t+1. 

Despite their simplicity, CA has been used to model numerous physical and 

geographic phenomena, and ultimately, CA have been increasingly used to model spatial 

dynamics (Batty and Xie, 1994; Itami, 1994; Li and Yeh, 2000; Vliet et al., 2009; Wu, 1998). 

There have been numerous invaluable efforts made to alternate this uncomplicated format in 

order to enhance its suitability in different modeling environments, such as the development 

of constrained CA (White et al., 1997) and Geographical Automata Systems (Torrens and 

Benenson, 2005), by adding suitability or even geo-referencing factors into the right side of 

the equation. However, adding more variables and introducing much more input information 

into a model does not necessarily make it explain certain complex phenomena better 

(Wolfram, 2002). 
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Conforming to the preceding arguments, the cellular automata presented in this 

research is formulated as its classical structure, with the difference that the status change is 

influenced by a logical comparison of local averages probabilities to a global threshold. The 

CA’s development direction is also guided in relation to its weighted Euclidean distance to 

the indicated urban attraction-centroids stochastically. In addition, the geographical system is 

transformed from its original geo-referenced format into unilateral grid cells so that it can be 

mathematically manipulated much easier in the form of matrices. Alternatively, the spatial 

information of every grid cell is converted into single-subscripted matrix indices so that it 

could be easily manipulated by the algorithm. The rest of the geo-referencing information, 

including the projection data, etc., is stored in the MATLAB text files during the conversion 

of GIS maps. 

Hence, the attraction-based CA is formulated as: 

𝑆𝑇!!! 𝑖, 𝑗 = 𝑓!" 𝑆𝑇! 𝑖, 𝑗 ,𝑃!"! 𝑖, 𝑗                                                                                                            (2) 

Where 𝑆𝑇!!! 𝑖, 𝑗  and 𝑆𝑇! 𝑖, 𝑗  represent the status (Dynamic or Stable) of cell 𝑖, 𝑗  

at times t+1 and t respectively, 𝑃!"! 𝑖, 𝑗  is an estimated random variable representing the 

probability of cell 𝑖, 𝑗  transition to the state ST at time t, and 𝑓!" is a transition function, 

averaging the cell probabilities in a Moore neighborhood of the cell 𝑖, 𝑗  including itself.  

So,  

  𝑓!"    ∶
𝑆𝑇 = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝜎 ≥ 𝛽

𝑆𝑡𝑎𝑏𝑙𝑒 𝜎 < 𝛽  

  𝜎 = 𝑃!"! 𝑖𝑑𝑥 +𝑀!!
!! /9

                                                                                                    (3) 

Where 𝜎 is an average of the estimated probabilities assigned to the cell and all its 

eight Moore neighbors, 𝑖𝑑𝑥 is the Matrix index of cell 𝑖, 𝑗   in  a  𝑚  ×  𝑛  Matrix, and M is a set 

of offset values that indicate the nearest neighbors of the designated cell as illustrated here: 

𝑀   = 𝐶𝑒𝑙𝑙, 𝐸𝑎𝑠𝑡, 𝑆𝑜𝑢𝑡ℎ𝑒𝑎𝑠𝑡, 𝑆𝑜𝑢𝑡ℎ, 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡,𝑊𝑒𝑠𝑡,𝑁𝑜𝑟𝑡ℎ𝑤𝑒𝑠𝑡,𝑁𝑜𝑟𝑡ℎ,𝑁𝑜𝑟𝑡ℎ𝑒𝑎𝑠𝑡   (4) 

𝑃!"! 𝑖𝑑𝑥  is estimated randomly based on 𝐴𝑡𝑉   𝑖𝑑𝑥 , the attraction value at cell 𝑖𝑑𝑥 , 

and 𝑅𝐴𝑁𝐷! 𝑖𝑑𝑥 , which is a random variable that is generated in every iteration without a 

memory as following: 

𝑃!"! 𝑖𝑑𝑥 = (𝐴𝑡𝑉   𝑖𝑑𝑥 ∗ 𝑅𝐴𝑁𝐷! 𝑖𝑑𝑥 )                                                                                                  (5) 
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Figure 2: A schematic illustration of urban movement patterns between different land use 

categories and the epidemiological interpretation of the spread of the movement. 

	  

Note that, 𝑃!"! 𝑖𝑑𝑥  is an estimate of P (ST) and is therefore not dependent on the ST 

itself. The attraction value is formulated as: 

𝐴𝑡𝑉!   𝑖𝑑𝑥 = 𝐴𝑡𝑊!

!

!!!

𝑖𝑑𝑥 ∗ 𝐸𝑈𝐷 𝑖𝑑𝑥                                                                                   (6) 

in which, 𝐴𝑡𝑉!   𝑖𝑑𝑥   is calculated in every grid cell by summing the Euclidean distances of 

the cell to all the attraction-centroids multiplied by their associated attraction weight, denoted 

by 𝐴𝑡𝑊!, given by a set of weights like:  

𝐴𝑡𝑊! =      𝐴𝑡𝑊!,𝐴𝑡𝑊!,𝐴𝑡𝑊!,… ,𝐴𝑡𝑊!                                            (7) 

These weights are generated by the algorithm based on the registered population size 

of the related attraction.  

3.2 SIS-based Model 

There are several classical models for explaining different diseases’ dynamics that suit 

their characteristics and behaviors, with SIR and SIS being the most popular ones. In SIR 

models the disease leads to death or immunity, meaning that the individuals can hold three 

different states (Susceptible, Infectious, Removed) (Brauer and Castillo-Chávez, 2012). In our 

modeling environment, every gridded piece of land can only hold two possible states (Stable 

and Dynamic), which fits well in the SIS model representing no-mortality diseases. 

	  
	  
	  
	  
 

 

 

 

 

 

 

 

If the urban area would assumedly be divided into several unilateral grid-cells, each 

representing a population count point, every piece of land can then represent either a 
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susceptible or infectious individual that can change its status due to its contact with the 

neighboring cells. When people travel between the grid cells, every grid cell is assigned by an 

estimated number of people staying in that certain piece of land in a certain time of the day. 

Then in different times of the day, some parts of an urban area are more likely to attract or 

repel the population, while others are more likely to maintain equilibrium between the number 

of people travelling to and from these places. The infectious state is assumed to be similar to a 

condition, under which a grid cell is more likely to lose or gain population, rather than 

remaining stable. Similarly, the level of activity in a grid cell is assumed to be stable, when 

the number of people moving to and from that cell is almost the same. Figure 2 illustrates the 

urban movements between different land use categories and its epidemiologic interpretation. 

In this metaphor, 𝛽 is the probability by which the Dynamic state (Infectious) spreads 

through the Stable state (Susceptible) cells, while 𝜐 is the probability by which the Dynamic 

cells become Stable again. Then R becomes an efficiency factor being 𝛽/𝜐 so that whenever 

R>1, the disease (Dynamic state) is dominating the modeling site, and if R≤1, then the 

Dynamic state is being suppressed, and the Stable state dominates. These two latter settings 

are mimicking the real situation within the peak traffic hours in the morning and afternoon. R 

is therefore randomly selected between 1 and 2 during the peak hours, and between 0 and 1 

during other time intervals of a day using an exponential time decaying function. This is also 

consistent with the periodic emergence and decline of a disease, like flu during the cold 

seasons. 𝛽 is also generated by a random variable generator with values chosen between 0 and 

1, and 𝜐 is the dependent variable. 

3.3 Geosimulation Infrastructure 

Automaton-driven geosimulations, irrespective of their modeling engine, whether agent-based 

or CA, are computationally quite demanding, due to the integration of large spatially explicit 

datasets with necessary computation of updates for agents/cells in every time step of the 

simulation. This process can become unaffordably expensive when the simulation algorithm 

has to be repeated for several replicates for calibration purposes. It is therefore beneficial to 

build a robust simulation infrastructure that would be able to, not only handle the large 

number of replicates (104), but also to visualize the spatial data simultaneously, so that it 

keeps all the map projection information intact. 

In this framework, where the gridded maps resemble a large matrix of land cells, 

MATLAB is chosen to perform the numerical computations. The use of matrix cells 

representing the gridded land cells could be particularly helpful in a discrete simulation 
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Figure 3: A schematic illustration of the geosimulation platform. 

architecture, in which there are several data layers for the mapped area, namely the land use 

category, accessibility, attraction-centroids and the Day/Night population. These numerous 

data layers can easily be represented by several uniform matrices that interact with each other 

and get updated in every time step, without losing their spatial precision, through a 

MATLAB-scripted algorithm. 

As the visualization interface, ArcGIS was integrated into the geosimulation platform, 

in which the MATLAB algorithm takes charge of data handling and CA-driven simulation as 

well as replicative calibration of the simulation. The geo-referenced data, in the form of text 

files, are automatically imported into the MATLAB environment, where the simulation 

algorithm builds the CA (using Image processing, Mapping and Statistical toolboxes), runs 

the computations and exports the results back to an environment, accessible by Python, that 

automatically applies the ArcGIS toolboxes and exports the maps. Figure 3 is a schematic 

illustration of the geosimulation platform used in this research. 

 

 

 

 

 

 

 

 

 

 

 

 

4 Study Area 

In this research, the developed model was applied to the city of Trondheim for simulation and 

validation purposes. Trondheim has Norway’s third most populous urban area with the 

population of over 176 000 (“Statistics Norway,” 2013), a relatively medium size for a non-

capital European city. The main activities in Trondheim are dominated by the Norwegian 

University of Science and Technology (NTNU), St. Olav’s Hospital and a few other leading 

research firms and organizations such as SINTEF, Statoil, and the Norwegian Geological 

Survey, as well as a few leisure and shopping centers that form the city’s main crowd-
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Figure 4: Location of Trondheim, the study 

area on the map of Norway. 

transition attraction centroids. It is also recognized as a natural hazard-prone area in Norway, 

especially with regards to quick clay slides (Nadim et al., 2008). Figure 4 indicates the 

geographical location of Trondheim on the map of Norway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Simulation Results  

In every replication, the output of the geosimulation consists of 288 data sets 

corresponding to a 5-minute estimation of Trondheim’s ambient population in a 50-meter 

spatial resolution. Figure 5 compares the synthetic ambient population map of Trondheim, 

representing day and night population respectively. It highlights dramatic shifts in population 

transition trends within the city’s urban areas in daytime versus the nighttime. There are 

several places on the day population map, clearly indicated by the dark red color that show 

high-density population areas, which could cause a serious under-estimation in the process of 

calculating the number of people at risk. 

We have initially tried to present the raw numbers, i.e. the number of people in every 

gridded cell in every time step, but due to the very high resolution of our datasets (50 meters 

and 5 minutes) the resulting images and graphs were almost unreadable. Instead, we have 

aggregated the results into visual representations so that we can show the population trend 

changes in coarser time and space scales. Another reason for using visual representations 

instead of numbers is that the actual number of people in one gridded cell in a single time-step 

of the simulation is not of our major interest, because the same as the real world, they are just 
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Figure 5: A Synthetic Ambient (Day) Population Map of Trondheim (Norway) based on an 

epidemiologically formulated geosimulation (A), compared to the so-called ’Night 

Population Map’ based on the national census counts (B). 

	  

Figure 6: Geosimulation results for Night time, Morning-rush, Day-rest and the Afternoon-

rush. (A to D) 

	  

some random events when looked at individually but form a clear trend when considered as a 

whole complex system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows the geosimulated ambient population distribution in Trondheim for 

four different time intervals: Nighttime, Morning-rush, Day-rest and the Afternoon-rush. Each 

elevated bar in every cell indicates the estimated value for the number of people locating in 

that part of the city. The blue areas indicate water bodies, such as rivers and lakes. 

Figure 7 shows the CA output and the corresponding simulation for five selected times 

of the day: 09:15, 13:15, 17:30, 21:50 and 23:00. The red dots on the CA picture display cells 
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Figure 8: Plotting Commercial and Residential Activity values (A), and the Number of 
assigned people to different land uses, and the amount of moving population X 102 (B) 

against the simulation clock. 

 

A	   B	  

that hold the Dynamic state while black cells correspond to either the Stable state or some 

fixed cells (which are excluded from the simulation). The CA changes the states of the cells 

based on their initial state, neighborhood effect, proximity to attraction-centroids and roads, 

forming a local estimated value, which is compared to a global mean that functions as a 

threshold point in every iteration of the simulation. In parallel, the algorithm changes the 

estimated values for population counts in Dynamic state cells based on the prioritization of 

land use categories in different time-intervals and a random factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8a compares the percentage of Dynamic cells in Residential versus Commercial 

land use categories in different time intervals of the day. Percentage of Dynamic cells 

acknowledges the level of activity in the city in each time interval of a random day. When this 

percentage is increasing for the residential cells, it means that the residential cells are getting 

more active in sense of attracting or repelling population. It is obvious from the graph that the 

Dynamicity of the city goes to a long rest in the afternoon until the next morning in both 

residential and commercial land uses. 

 Figure 8b shows estimated values for the number of population counts assigned to 

different land use categories and the number of people on the move within the 24 hours of the 

day. Numbers on the vertical axis correspond to the estimated number of people who are 

assigned to different land use categories in every time step and the estimated number of 

people still being on an inter-city travel (x 102 for the number of people on the move). 
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A comparison between the trends of these graphs and our basic understanding of 

population transitions within different times of the day, clearly shows that the model is 

capable of mimicking the peak hours as well as the calm hours of the day. Studying these 

estimated values could especially be useful for transport modeling and strategic energy 

planning. 

6. Model Evaluation 

Adequate calibration and validation, which is commonly referred to as model evaluation, is 

critical for ensuring the credibility of any geosimulation structure (Marceau and Benenson, 

2011). In this regard, the model’s randomly selected parameters were calibrated first by a 

replicative mapping technique. Then, the numerical validation is applied in the form of 

statistical testing and deviance measurements, by comparing the synthetic maps and the 

available census datasets, generated by statistical surveys. As there are obviously no actual 

real-world ambient population datasets in a fine scale spatio-temporal resolution, the decline 

in the amount of standard errors (RMSE and MAE) and an increasing trend in the 𝑅! values is 

considered as a state of goodness-of-fit in this model. 

6.1 Replicative Calibration 

The idea of replicative calibration emerges in response to a major challenge in validating 

certain types of models, for which there are scarcely available ‘observed’ datasets and a set of 

parameters are generated stochastically. The results of such models could be considered as 

being sensitively dependent on the initial conditions. Replicative calibration, in this research, 

refers to an evaluation approach, in which the algorithm repeats the simulation for a 

significant number of replicates with different initial conditions every time. Then, the varying 

parameters are mapped against a form of measured error term so that the modeler can easily 

spot the criterion, for which the model has a better validity. This approach is conceptually 

similar to the “variant-invariant” method developed by (Brown et al., 2005) that shows areas, 

where the model has a better fit. The calibration method presented here has been previously 

used in similar works for running simulations with several initial conditions (Belcher et al., 

2010; Gregory and Smith, 1991). Even though this method is not fully conforming to the 

formal calibration techniques, which are driven by error functions and adjust the model in 

every iterating step (Straatman et al., 2004), it has the advantage of preventing the error from 

propagating into the model results through the step-by-step corrections. Particularly, in 
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Figure 9: Plotting Simulation fitting values against the model parameter Beta with 104 
replicates. 

 

modeling environments where a large amount of variability is introduced into the model and 

the uncertainty levels are high, risk of over-controlling the model will significantly rise when 

using iterative correction or automatic calibration techniques. Over-control is a statistical 

term, generally used for situations, in which the modeler inserts more variation into the 

modeling process by imposing corrections (as random disturbances) after each estimation 

step, rather than informing the model (Montgomery and Runger, 2010). In turn, studying the 

model results with a significant number of different initial conditions could lead us to a better 

understanding of the sensitivity of the model to its parameters as well.  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

In our approach, the simulation is performed for 104 replicates with various values for 

Beta, Sigma and R, first for 𝛽 in (0,1) and then for a suitable criterion (0.1310, 0.1551) as 

indicated by section C in figure 9. In every simulation, the estimated values were compared to 

a collection of samples from real data and the minimum RMSEs and MAEs were recorded in 

accordance to the recorded values for Beta, Sigma and R in that simulation. This way, 

efficient values for these parameters could be calibrated based on the model’s goodness-of-fit. 

Figure 9 shows the plotted goodness-of-fit-values against randomly generated values of the 

model parameter 𝛽 for 104 replicates.      

6.2 Numerical Validation 

Among common numerical validation techniques, statistical testing and deviance 

measurements are used to examine the goodness-of-fit of the model in this research, because 

of their suitability to the simulations’ spatio-temporal attributes. Therefore, in every time-step 
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of every replication of the simulation, the coefficient of determination, denoted by 𝑅!, was 

calculated as: 

𝑅! = 1−   
𝑆𝑆!""
𝑆𝑆!"!

,                                                                                                                                        (8) 

in which, 𝑆𝑆!"" is the sum of squares of errors (residual sum of squares) and 𝑆𝑆!"! is the total 

sum of squares. 𝑅! is often interpreted as the proportion of variation explained by the fitted 

regression line. In this statistical testing, 𝑅! values are recorded in every time step and plotted 

against time in a way that its variations in time shows the trend in the model’s goodness-of-fit. 

As clearly shown in Figure 12, 𝑅! is solidly increasing from the beginning of the simulation 

and approaches toward 1.0 in every time-interval of the day. It should be mentioned that, 

because we are not comparing models of different parameter sizes in every time-step, it is not 

necessary to calculate the adjusted version of 𝑅!, which is less sensitive than 𝑅!, to additional 

parameters in model selection approaches. 

Deviance measurements are often useful when observed and simulated data can be 

paired according to time, location, treatment, etc. and are normally calculated as the 

difference between the observed values and the predicted (simulated) values (Mayer and 

Butler, 1993). In this validation approach, the simulated values for population counts in every 

grid-cell of the map were compared with the observed values by calculating the Route Mean 

Square Error (RMSE) and Mean Absolute Error (MAE) values.  

The best available population census maps for Trondheim were found only in 500-

meter resolution, therefore the simulated values were geographically aggregated by averaging 

the number of synthetic population in every 10 grid-cell and the deviance measurements were 

performed consistently. 

𝑅𝑀𝑆𝐸 =
(𝑃! − 𝑂!)!!

!!!
𝑁                                                                                                         (9) 

𝑀𝐴𝐸 =   
𝑃! − 𝑂! !!

!!!

𝑁                                                                                                             (10) 

As shown bellow, the RMSE measures (𝑃! − 𝑂!)!, the distance between the Predicted 

and the Observed value, in a quadratic sense; therefore it is rather sensitive to outliers. Hence, 

MAE is alternatively calculated as another measure of deviance so that a few well-fitted 

points on the geosimulated map would not affect the validation.   
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Figure 10: Plotting Goodness-of fit, Error measurements and activity values against the 
simulation clock. (RMSE=Root Mean Squared Error, MAE=Mean Absolute Error, R2= 

Coefficient of determination, RZERO= β/υ Basic reproduction number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure 10, the RMSE and MAE are both declining by time, which 

indicates that the values on the synthetic day population are gradually merging with the real-

world day population maps. In other words, the predicted values for cell population counts are 

getting closer to their observed values, which are taken from the employment address points 

in Trondheim. 

7 Conclusions 

The goal of this work was to introduce a novel approach in modeling urban population 

movements in order to improve the existing methodologies in the field of automaton-based 

modeling of geographical systems.  

A classical epidemiologic model was used as the driver of the cellular automata model 

that incorporated several advantages to this type of modeling. It enhanced the predictive 

capabilities, as well as the efficiency, of conventional automaton-based geosimulation 

platforms. The possibility of parameterizing the model by a notably few number of dependent 

and independent variables allowed for more efficient validation options, as well as less noise 

in the system. The implication of the model could have been exceedingly computationally 

expensive if the replicative calibration were to be performed on numerous independent 

variables, since the number of required simulation in every replicate grows geometrically, by 

increasing the number of initial conditions.  
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The appropriately small size of the required input data in this model, compared to 

other similar platforms that utilize a wide range of available input data from survey-based 

population census counts to high-resolution satellite imagery, opens the window for its further 

usability in other parts of the world. This would especially be more sensible in less developed 

countries, where the available technology and resources does not allow for the development 

of high resolution data collection. Instead, synthetic spatio-temporal population maps can be 

used to estimate the number of people being at risk in different times of a day in the wake of a 

major hazard. Studying the movement patterns can be used in planning for evacuation routes 

or even testing their efficiency by simulating the interruptions caused by different hazard 

scenarios. The range of hazards that the method can be used for is almost unlimited since 

incorporating a numerical exposure assessment could significantly reduce the damage caused 

by any natural as well as man-made hazard. Exposure assessment is a crucial part of the 

conventional Hazard-Vulnerability-Exposure trio in assessing the level or quantity of the 

threatening risk. Miscalculating the exposure, especially when estimating the endangered 

lives can disastrously affect the calculated risk, even if we have improved the vulnerability or 

predicted the hazard well in advance. This implies that there is an increasing need for more 

comprehensive models of exposure assessments. On the other hand, the growing boom in the 

availability of the so-called ‘’geo-located big data’’ about almost any urban service in modern 

cities has opened new grounds for modelers to think about finer scales of spatio-temporal 

models. Models similar to the one presented in this paper can benefit a lot from using these 

types of large data sets for calibration as well as validation of exposure assessment models.  

Besides, the relative consistency of this type of modeling with the formal theories of 

complex systems’ dynamics, which is simulated through the stochastic development of the 

attraction-based CA, improves its credibility. The inter-dependency of the system components 

such as the cell states, the transition rule, the population probability estimation, the emergent 

behavior of the cell states, and the travel trends may all account for such consistency. 

Epidemiologically formulated geosimulation is therefore, considered as providing a new 

platform of modeling for future approaches in modeling spatially explicit complex systems. 

It is inferable that it may be possible to build advanced models of urban movement 

patterns based on our basic understanding of the peoples’ inter-city travel habits. In other 

terms, a broadly accepted understanding of the microscopic decision making processes of the 

travellers could form a basis for predicting the emergent macroscopic behaviors of the system 

as a whole, which is useful for future conceptualization of modeling other urban systems. As 

discussed in this paper, even the obvious fact that various land use categories attract or repel 
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people differently in different time-intervals of the day could serve as a foundation for the 

development of high-resolution numerical estimation models. 

Even though the predicted values were aggregated for numerical validation due to the 

lack of real-world data, we argue that it had little effect on the credibility of the output data 

since the model results have fairly satisfied the primary objectives of this modeling 

experiment. We believe that automaton-driven geosimulations, which have been previously 

validated mostly by visual techniques, must necessarily proceed toward methodologies that 

involve a combination of numerical as well as operational evaluation techniques. It might be 

the case, as it is here, that the unavailability of fine-scale real-world data does not let the 

formal numerical validation tests be comprehensively performed. In turn, using alternative 

numerical evaluation techniques such as replicative calibration and deviance measurements 

could be efficiently used in combination with operational tests so that an acceptable level of 

consistency, as well as validity, is maintained. 

In this paper, the population was estimated for just a random working day in order to 

reduce the amount of calculations by the software so that we can replicate the simulation for 

several times. It could be a better practice if the time sensitivity of the algorithm is improved 

in a way that recognizes the difference between seasons, public holidays, weekends or even 

the days with extremely bad or desirable weather conditions. It is expected that population 

transition patterns are very much sensitive to these variations. 

The evaluation of the data could have also been improved by comparing the datasets 

with other synthetic population models if found in similarly high resolutions, since the use of 

real-world input data such as mobile phone geo-locations are purposely avoided to extend the 

usability of the model. 

There are broader potential applications to the presented work. Generating fine-scale 

spatio-temporal synthetic population maps, which are critically beneficial to the accuracy as 

well as the efficiency of disaster management or any similar contingency plans, where 

initially targeted in this research, while several other applications of this model could still be 

experimented. Specifically, the presented model is believed to be able to be used as a 

powerful decision-support tool if integrated to any other spatial modeling infrastructure. It 

could either act as an exposure assessment tool or a model for pattern detection and trend 

prediction applications with a wide variety of implications, ranging from transport modeling 

and urban growth analyses to business development location analysis, strategic energy 

planning, and climate-change adaptation strategy testing.  
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