
Post Quantum Cryptography with random
split of St-Gen codes

Samy Saad Samy Shehata

Master in Security and Mobile Computing

Supervisor: Danilo Gligoroski, IIK

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology

To my late father, my mother and my sister. If ever I had a reason to succeed, it is you.

Preface

This thesis titled ”Post Quantum Cryptography with Random Split of ST-Gen Codes”, is
submitted in discussion of cryptographic systems in general, and one in particular, under
a post quantum threat. It was written in fulfillment of the graduation requirements for
the Security and Mobile Computing – NordSecMob – master’s program at the Norwegian
University of Science and Technology. The writing of this thesis was concluded on the 6th

of June, 2017.
This thesis was carried out under the supervision of Professor Danilo Gligoroski of

NTNU, and is based on his previous work in the field of post quantum cryptography. It
was also remotely co-supervised by Professor Antti Yl-Jski from the University of Aalto.

First I would like to thank the Erasmus Mundus Programme, and all those involved
with it, for facilitating this great opportunity. I give my thanks to Professor Danilo, with-
out whose patient explanations, I would have been utterly lost amidst cryptographic hiero-
glyphics. I would also be remiss not to thank Mona Nordone, the NordSecMob program
coordinator at NTNU, who I have often turned to for help, only to find her generous with
advice and assistance. Finally, I would like to thank my friends and family. You are a
constant reminder of the value of undertaking such endeavours.

Thank you each, thank you all.

Table of Contents

Preface 3

Table of Contents 7

List of Tables 9

List of Figures 11

Abbreviations 12

1 Introduction 1
1.1 Background . 2
1.2 Terminology . 5
1.3 Objectives . 5
1.4 Methodology . 6
1.5 Limitations . 7
1.6 Outline . 7

2 Literature Review 9
2.1 Classical cryptography under quantum computation 9
2.2 Post quantum cryptographic paradigms 11

2.2.1 Hash-based Cryptography . 11
2.2.2 Lattice-based Cryptography . 12
2.2.3 Multivariate Cryptography . 12
2.2.4 Code-based Cryptography . 13

2.3 The McEliece Cryptosystem . 14
2.4 St-Gen Code Based Cryptography . 14
2.5 Information Set Decoding attack . 15
2.6 Random split of St-Gen Codes . 15

5

3 Basic Theory 17
3.1 Coding Theory . 17

3.1.1 Linear Binary Code . 17
3.1.2 The Hamming Code . 19
3.1.3 The Decoding Problem . 19
3.1.4 Goppa Codes . 20
3.1.5 Hard Problems . 20

3.2 Code Based Cryptosystem . 20
3.3 The McEliece cryptosystem . 21

3.3.1 Key Generation Procedure . 21
3.3.2 The Encryption Procedure . 21
3.3.3 The Decryption Procedure . 21
3.3.4 Analysis of the McEliece Cryptosystem 22

3.4 The Niederreiter Cryptosystem . 23
3.4.1 Key Generation Procedure . 23
3.4.2 The Encryption Procedure . 23
3.4.3 The Decryption Procedure . 23
3.4.4 Analysis of the Niederreiter Cryptosystem 24
3.4.5 The CFS Digital Signature Scheme 24

3.5 The Staircase Generator Codes Cryptosystem 25
3.5.1 Error Sets . 25
3.5.2 Staircase Generator Codes . 27
3.5.3 Key Generation Procedure . 27
3.5.4 The Encryption Scheme . 27
3.5.5 The Digital Signatures Scheme 28
3.5.6 Analysis Of St-Gen Codes Cryptosystem 28

3.6 Random Split of Staircase Generator Codes Cryptosystem 31
3.6.1 Valid Error Splits . 31
3.6.2 Key Generation Procedure . 32
3.6.3 The Encryption Scheme . 32
3.6.4 The Digital Signatures Scheme 32
3.6.5 Analysis of St-Gen codes cryptosystem with random split 33

4 Experiment 37
4.1 Design Choices . 37

4.1.1 Programming Language . 37
4.1.2 Data Structures and Interface . 37

4.2 Setup . 38

5 Analysis 39
5.0.1 Correctness . 39
5.0.2 Efficiency . 39

6 Conclusion 43

Bibliography 45

Appendix 47

List of Tables

2.1 State of classic cryptographic systems under the quantum computing. . . 10

3.1 Public key sizes for the McEliece Cryptosystem 22

5.1 Running times for RST-GEN . 40
5.2 Running times for RSA . 40
5.3 Comparing average running times for RSA and RST-GEN 41

9

List of Figures

1.1 Public key encryption. 2
1.2 Public key signature. 2

3.1 Encoding and decoding a message. 18
3.2 The distance between two codewords define the correcting capability of

the code. 18
3.3 CFS signature procedure. (Buchmann and Ding, 2008) 25
3.4 Classic error sets represented by a hamming sphere around a codeword. . 26
3.5 Limitations of unique decoding for classical error sets. 26
3.6 Arbitary error set surrounding a codeword. 26
3.7 Arbitary error sets does not allow unqiue decoding. However, list decoding

succeeds with overwhelming probability. 27
3.8 Generator matrix for (n, k) binary code with stepwise block structure. . . 27

11

Abbreviations

ISD = Information Set Decoding
St-Gen = Staircase Generator
RST-Gen = Randomly split staircase generator

Chapter 1
Introduction

Cryptography has been historically defined as “the art of writing or solving codes”. It
remains one of the oldest sciences in existence today. Based on the history outlined in
The Codebreakers by David Kahn, we can see early limited uses of cryptography by the
ancient Egyptians around 4000 years ago. Fast forwarding to the 20th century, we can see
cryptography play a huge role in the determining the outcome of both world wars.

Throughout history, cryptography was predominantly the industry of militant and po-
litical parties, meant to be used for protecting state secrets and war strategies. As comput-
ers and communication systems began to be commercialized, demand arose for security
measures that can protect digital information. Efforts to meet the demand started with the
work of Feistel and IBM in the 1970s, which lead to the introduction of Data Encryption
Standard (DES) in 1977. This was the birth moment of symmetric cryptography and wide
spread use of encryption in the private sector. (Menezes et al., 1996)

In 1976, Deffie and Hellman revolutionized cryptography once again, when they pub-
lished their paper, New Directions in Cryptography, where they propose the idea of public
key cryptography and introduce a new method for key exchange. It was not until 1978
that Rivest, Shamir and Adleman introduced RSA as the first practical implementation of
public key cryptography. To this day, there are no known practical attacks that can ren-
der RSA insecure. Another achievement that can be attributed to public key cryptography
is digital signatures, which widen the influence of cryptography from just the domain of
confidentiality, to include both authentication and integrity.

The widespread use of public key cryptography necessitated new efforts to find effi-
cient ways for solving the factorization problem and the discrete logarithm problem, two
hard mathematical problems that provide the corner stone for RSA security. While there
have been no successful attempt to solve those problems using classic computers, those
efforts finally bore fruit in 1994, when Peter Shor demonstrated an algorithm for efficient
factorization using quantum computers. (Buchmann and Ding, 2008)

Thus, the advent of quantum computers threatens to make the current cryptographic
and security infrastructure, relied on by millions of internet users, both obsolete and irrel-
evant. This thesis is a small part of a wide spread, organized and consistent effort to keep

1

Chapter 1. Introduction

the current cryptographic infrastructure one step ahead of malicious attacks.

1.1 Background

In asymmetric cryptography, also known as public key cryptography, each party must have
two separate keys. If Alice and Bob would like to communicate securely, using public key
cryptography, each of them would generate a private key only known to its owner and a
public key that is known to each other (and possibly publicly available). For Alice to send
a message to Bob, she would use Bob’s public key to encrypt the message, at which point
only Bob can decrypt that message since he is the only one with the private key.

For authentication, before encrypting the message, Alice can use her own private key
to add a digital signature to the message. After decrypting the message, Bob can use
Alice’s public key to verify that the message, or rather the signature, really came from her.
Figures 1.1 and 1.2 summarizes the above process. RSA is one of the most popular public
key cryptography systems today.

Figure 1.1: Public key encryption.

Figure 1.2: Public key signature.

RSA security is built around the factorization problem and the discrete logarithm prob-
lem. Two hard mathematical problems with no efficient algorithms to solve using classical
computers. The two problems are defined as follows:

2

1.1 Background

The Factorization Problem The factorization problem is defined as follows: Let n be
a composite natural number such that n ∈ N and n = pq where p and q are two unique
prime numbers. By finding p and q in polynomial time, RSA can be broken. The factoring
problem is considered a hard problem.

The Discrete Logarithm Problem The discrete logarithm problem is defined as fol-
lows: Given α, β such that β = αa, find a in polynomial time. This is considered a hard
problem if the given numbers are large enough.

Since its conception, RSA was considered unbreakable for lack of efficient solutions
for those problems. This is no longer the case, since the introduction of Shor’s algorithm,
capable of efficiently factorizing a number using a quantum computer. In classical com-
puters, information is encoded in bits as the most basic unit of data. The state of a single
bit is always defined as either 0 or 1 exclusively, i.e an n bit word can be represented by
a string of 0s and 1s. In quantum computers, the basic unit of information is the qubit. It
can be represented by an atom, also in one of two different states, detonated as 0 or 1.

In contrast with classical computers, however, qubits can exist in a superposition of the
two states, as in one qubit can have both states 0 and 1 at a single point in time, each with a
given probability. This means that a quantum computer with just two qubits can have four
states at a single point in time and act on all of them simultaneously. This has been shown
to offer great speedups in many areas of computations such as solving hard mathematical
problems.

Here we give a brief overview of Shor’s algorithm taken from Buchmann and Ding
(2008). For a detailed discussion of the correctness of Shor’s algorithm, the reader is
refered to Buchmann and Ding (2008). For an input of a composite number n ∈ N , the
algorithm does the following steps:

1. Pick x ∈ 2, . . . , n− 1 uniformly at random.

2. If gcd(x, n) 6= 1, return gcd(x, n).

3. Find period r of f(a) = xamod n.
(This part requires quantum computation.)

4. if r is odd or xr/2 ≡ −1mod n, Goto 1.

5. return gcd(xr/2 ± 1, n)

Post-quantum cryptography is a field of study that aims to update the current crypto-
graphic primitives such that it remains secure with the existence of quantum computers.
Research efforts in this field revolve around studying cryptosystems that make use of dif-
ferent problems, other than the two already mentioned, that remain hard to solve even by
an attacker armed with quantum computing. Several classes of cryptographic algorithms
in existence today are already believed to resist quantum attacks (Chen et al., 2016). Those
classes are:

• Code based cryptosystems are encryption algorithms that use the same principles
of retrieving the original bits of information transmitted over a noisy channel. This
is done by encoding the signal with a specific scheme that can be recovered up to

3

Chapter 1. Introduction

a certain number of errors in transmission. This can be translated to the problem
of encryption by adding some artificial noise to the secret message that can then be
decrypted if specific information about the coding scheme is known.
Example: McEliece hidden-Goppa-code public key encryption. (1978)

• Lattice-based cryptosystems rely on the hardness of solving certain problems in
multidimensional lattices.
Example: Hoffstein-Pipher-Silverman ”NTRU” public-key-encryption system. (1998)

• Multivariate public key cryptosystems make use of random sets of quadratic equa-
tions where the encryption/decryption procedure uses the evaluation of these equa-
tions at certain points. These algorithms security rely on the hardness of solving
such equations simultaneously.
Example: Patarin’s “HFEv ” public key signature system. (1996)

• Hash-based cryptography uses hash functions to ensure the integrity of messages.
Example: Merkle’s hash-tree public-key signature system. (1979)

Of the existing quantum resistant cryptographic paradigms, this thesis will mainly deal
with code based cryptography, specifically the McEliece cryptosystem. Coding based
cryptography is built on coding theory introduced by Claude Shannon in 1948. Coding
theory was originally need to be able to retrieve an original message that has been modified
due to transmission errors after being sent through a noisy channel.

A simple way to achieve this would be to duplicate the message multiple times and
use a majority vote method at the destination to determine the original message. This,
however, is not efficient. While redundancy is needed to be able to recover from errors,
this redundancy can have a better structure that allows correcting errors with less extra
information sent.

This concept is easily adaptable to cryptography. In cryptography, the plain text can
be thought of as the original message. The encryption process would include encoding the
message with a certain structure before adding some artificial noise giving the cipher text.
Only the intended receiver, by knowing additional information about the encoding scheme
can retrieve the original message.

Code based cryptography suffers from certain disadvantages that prevent it form com-
peting with RSA on a level playing field. The McEliece cryptosystem for example has
much larger memory requirements and large key sizes compared to RSA. However, it is
expected to see a gain in popularity as we move into a post quantum cryptographic era.

The recent work done by Gligoroski et al. (2014), introduced a new family of linear
codes known as staircase-generated codes. These are (n, k) binary codes that support a
fast list decoding algorithm. The efficiency of the decoding algorithm is a result of the
random step wise structure of the generator matrix. ST-Gen codes decoding algorithm can
correct up to n

2 errors in a bounded channel with error density ρ.
In Moody and Perlner (2016), it was demonstrated that both schemes are susceptible to

key recovery attacks using Information Set decoding and a distinguishing strategy similar
to the one used in Sendrier and Tillich (2014). Information Set Decoding is a technique to
find the error vector used to encrypt a message m. It works by selecting a sub matrix of
the generator matrix G, called GI . Then determining error pattern eI that corresponds to

4

1.2 Terminology

the error vector with respect to I . Finally, m can be calculated as m = (cI + eI)G
−1
I . cI

is a part of the cipher text that corresponds to I .
To remedy this flaw, a new technique is developed that splits the generator matrix

exposed in the public key randomly into several matrices. These requires the addition of a
new security parameter s, specifying the number of splits. A new encryption and a digital
signature schemes were developed in Gligoroski and Samardjiska (2016a), Gligoroski and
Samardjiska (2016b) and Samardjiska and Gligoroski (2016) using this new technique.
This thesis will provide a practical C code implementation of this modification and show
case the algorithms new performance.

1.2 Terminology
Block Codes In coding theory, a block code is any error correcting codes that operates
on data in blocks. It is considered one of the most important and commonly used family
of error correcting codes.

Codeword The result of applying an error correcting code to a plain text message.

Error-correcting-code An error correcting code is the name given to any encoding
scheme used to attach extra information to a message. This redundant information can
be used to recover the message in the case of transmission errors.

Generator Matrix A generator matrix of a linear code C is any matrix G such that
∀s, w = sG where w is a codeword in C.

Hamming Distance The hamming distance is defined as the number of positions in
which two strings of equal length vary in symbols. For example, the two strings 1100 and
1010 have a hamming distance of 2.

Hamming Weight The hamming weight of a string is defined as the number of positions
that are not equal to the null-symbol of the alphabet used. For example, using the binary
alphabet {0, 1}, the string 1001 and all its permutations would have a hamming weight of
2.

Linear Binary Codes A linear code is any error correcting code where the linear com-
bination of any codewords is also a codeword. If the linear code is defined over a binary
alphabet, it is called a linear binary code.

1.3 Objectives
As the current cryptographic primitives are shown to be vulnerable to quantum attacks,
new primitives will need to be developed to maintain our current level of security. Two
such algorithms are introduced in Gligoroski et al. (2014). The first one is an encryption

5

Chapter 1. Introduction

scheme and the second one is a digital signature scheme, both are based on the McEliece
cryptosystem.

These schemes make use of a specific sub family of error correcting codes known as
stair-case generator codes which is a subgroup of binary Goppa codes. These codes allow
decoding of a given error set with overwhelming probability. The name comes from the
distinct random stepwise block structure of the generator matrix. This gives way to a very
efficient list decoding algorithm.

These schemes, however, were proven to be non secure due to vulnerability of their
public keys to distinguishing strategies as was shown by Sendrier and Tillich (2014). In
Moody and Perlner (2016), a practical ISD attack is demonstrated for full key recovery.
This is inherent to the fact that a public key scheme based on staircase generator codes
must, in some form, expose the staircase generator matrix as part of the public key, making
it susceptible to structural attacks.

In order to address this vulnerability a modification to the above schemes is proposed
in Samardjiska and Gligoroski (2016) and Gligoroski and Samardjiska (2016a). The pro-
posed solution is a random split of the generator matrix exposed in the public key. This
introduces a new parameter s which determines the number of splits. By applying this
modification it can be shown that the probability of an attacker mounting a successful
ISD attack as described by Moody and Perlner (2016) and Sendrier and Tillich (2014) is
negligible.

The purpose of this thesis is provide practical C code implementations of the two
schemes using concrete parameter sets given in Samardjiska and Gligoroski (2016) and
Gligoroski and Samardjiska (2016a). This is followed by an analysis of the resulting
performance and a discussion of both their advantages and disadvantages compared to
other existing solutions.

1.4 Methodology
The aim of this study is to provide a practical implementation of two cryptographic prim-
itives, an encryption scheme and a digital signature scheme. The starting point of this
study will be to review similar and alternative solutions that have been developed to ad-
dress the research problem in recent literature. This will be used to develop some simple
metrics to measure the performance of the final implementation as well as a framework
for comparison with said solutions.

A key point of the literature review is investigating ISD attacks and understanding
how the proposed modifications would allow the implemented algorithms to resist such
attacks. Hopefully the literature review will also provide a clear understanding of the
advantages and disadvantages of other existing solutions, thus bringing the areas in need
of improvement into clear focus.

Following the literature review, the study will move into implementation phase. The
first clear milestone of a successful implementation is to achieve successful encryption
and decryption of a single message in the case of the encryption scheme. For the digital
signature scheme, obtaining a signature and successfully verifying its authenticity will be
the same. The implementation will use the concrete parameter sets given in Samardjiska
and Gligoroski (2016) and Gligoroski and Samardjiska (2016a).

6

1.5 Limitations

The chosen programming language of implementation will be the C programming lan-
guage. The choice of programming language is motivated by the need for an efficient
implementations. While programming purely in C can significantly increase the complex-
ity of the implementation due to lack of standard libraries and other programming idioms
present in more high level languages, C offers a programming level that is lower than
most other programming languages. This provides a more refined control over running
complexity and allows for a wider range of optimizations. Hence, the C programming
language is often used in software where efficiency is of critical importance.

Once working implementations are obtained and verified, the implementation process
will continue onto optimization. Different optimizations will be added to the code wher-
ever possible in order to bring down running time and memory requirements of the algo-
rithms.

After the implementations are considered sufficiently optimized, we will start analyz-
ing its performance. The implementations will be tested on a personal laptop with the
following specifications:

• Intel(R) Core(TM) i7-6600U CPU @ 2.6Ghz

• 16 GB of RAM

• Operating System is Arch Linux version: 4.10.13-1-ARCH

After monitoring run times and memory consumption of several runs, we will draw several
comparisons with other cryptosystems. This will be followed by final analysis of the
complete solution and a brief discussion of its perceived advantages and disadvantages.

1.5 Limitations
Due to the limited capabilities of the test machine, running parameters are kept within prac-
tical limitations. Also due to time constraints, these implementations are considered far
from optimal. Several known optimizations were not implemented but will be discussed
at the end of this thesis. We encourage future work to expand on these optimizations and
further reduce both space complexity and running time.

1.6 Outline
This thesis is split into six chapters. The first chapter provides some background informa-
tion to establish the need for post quantum cryptographic primitives. The chapters will go
as follows:

Chapter 2 will cover the literature review, describing the state of current popular cryp-
tographic algorithm with the existence of quantum computers. It will also describe other
attempts and alternative approaches to building post quantum cryptographic algorithms. It
will also provide an in depth analysis of the proposed attacks against the previous versions
of staircase generator codes cryptographic primitives.

Chapter 3 will explain the theoretical basis upon which these implementations are built.
We will go through some additional background information on staircase generated codes,

7

Chapter 1. Introduction

ISD attacks, the McEliece system and the notion behind the idea of randomly splitting the
public key. Some previously mentioned concepts will also be expanded upon for further
reference.

Chapter 4 will discuss the final implementations, showcasing the performance met-
rics and explaining the setup for the test runs. It will also provide a brief summary of
optimizations both implemented and proposed for future work.

Chapter 5 will draw some comparisons of the observed performance with that of other
existing solutions. It will also proved a brief discussion of the advantages and disadvan-
tages of the final solution.

Chapter 6 is a summary of the study proceedings as well as the most prominent find-
ings. It will also include some recommendations for future work.

8

Chapter 2
Literature Review

This chapter will attempt to outline the research effort that has already gone into solving
the problem of maintaining cryptographic primitives in the quantum era as found in recent
literature. It will describe the effects quantum computation is expected to have on classical
cryptography, give an overview of different solutions that have been proposed as quantum
resistant cryptographic primitives as well as lay the ground work for this thesis research
questions.

2.1 Classical cryptography under quantum computation
Cryptography, specifically public key cryptography has become indispensable in the past
three decades. Just as research has gone into optimizing the current cryptographic primi-
tives and securing their implementation, it has also went into the search for a viable method
of compromising their security. This has included intensive search for efficient algorithms
to solve the factorization problem and the discrete logarithm problem.

These efforts have not been successful up until the point where Peter Shor published
his factorization algorithm in 1994, demonstrating the possibility for factorizing a com-
plex natural number N in polynomial time. Since Shor’s algorithm conception, research
into quantum computing theory has intensified greatly. While the question of when large
scale quantum computers will be practically available to an attacker remains unanswered,
experts have estimated the deadline to be within the next twenty years.

The looming threat of rendering our current cryptographic infrastructure obsolete has
sparked a dedicated community of international researchers that endeavour to find viable
solution to the problem. In Chen et al. (2016), researches from the National institute of
Standards and Technology (NIST) give a report of the current status of classical crypto-
graphic primitives (both symmetric and asymmetric) with regards to the impact of large
scale quantum computation. Table 2.1 summarizes their findings.

It can be seen from their report that main contenders in the field of public key cryptog-
raphy, Elliptic curve and RSA, are both no longer secure under quantum computation as
they both rely on hard mathematical problems where quantum computers have been shown

9

Chapter 2. Literature Review

Cryptosystem Current status
AES Large key sizes needed

SHA-2 Larger output needed
SHA-3 Larger output needed

RSA public key encryption Broken
Deffie-Hellman key-exchange Broken

Elliptic curve cryptography Broken
Buchmann-Williams key-exchange Broken

Algebraically Homomorphic Broken
McEliece public key encryption Not broken yet

NTRU public key encryption Not broken yet
Lattice-based public key encryption Not broken yet

Table 2.1: State of classic cryptographic systems under the quantum computing.

to give exponential speed ups. Key exchange protocols such as Deffie-Hellman will also
be affected and symmetric encryption systems like AES will be forced to use much larger
key sizes. Even with the use of larger key sizes for symmetric encryption and larger output
for hash algorithms, it is unlikely that such temporary solutions will continue to keep up
with improvements in quantum computations in any practical sense.

For further motivation of this thesis, we address the concern that research into quantum
resistant cryptography has started prematurely while practical large scale quantum compu-
tations remains far away. Bernstein et al. (2009) outlines several reasons why this research
needs to be addressed today, rather than 15 years from now. Below is quick overview of
the reasons given.

Efficiency While slow cryptographic operations might be viable in some applications,
one of the main use cases of cryptography is in transferring secure digital information
across the internet. This means web servers must be able to respond to thousands of
clients requests each second using encrypted and signed data packets.

Elliptic curve signature algorithm has a space complexity of O(b)-bits for b-bits of
security which is considered barely able to match the efficiency demands. If quantum re-
sistant cryptography algorithms intend to be practical replacements to such systems, they
must be able to boost similar or better efficiency standards. While research has already
produced some impressive improvements in space and time constraints of quantum resis-
tant algorithms, it remains a slow and challenging process.

Confidence McEliece hidden Goppa codes public key encryption system remains secure
after thirty years of continued research into ways of compromising its security. Other
quantum resistant algorithms such as lattice based cryptography and multivariate-quadratic
cryptography, however, are not as old and are yet to withstand the same level of testing.

The community’s choice of cryptographic system is greatly influenced by the amount
of confidence garnered by that system that can only be gained over years of testing and
improvements. Thus, such younger systems will remain a second preference to older more

10

2.2 Post quantum cryptographic paradigms

practically tested systems. The sooner new quantum resistant cryptographic standards are
established, the sooner cryptoanalysts can start their search for viable attacks that may
compromise the security of such systems.

Usability Taking RSA as an example, there is a clear gap between its original conception
as trapdoor one way function and the complete encryption and signature system that is used
today. RSA implementation does not simply calculate the cube of a message modulo n.
Instead several layers of randomization, padding and techniques to handle long messages
were added to the system before it could reach its current polished state.

This infrastructure was developed gradually over many years, and many initial pro-
posals turned out to be a disaster (PKCS#1 v15̇ padding scheme). Furthermore once
correctness of the infrastructure is established, many software and hardware implemen-
tations are needed, each customized to a different type of applications. Many of such
implementations expose their own vulnerabilities and new vectors of attacks.

In conclusion, the process of moving the current secure applications from using clas-
sical cryptography to post quantum cryptography is a time consuming process that can
not be delayed until the point when it is actually needed. Time must be allowed for many
revisions, mistakes and general improvement.

2.2 Post quantum cryptographic paradigms
Fortunately quantum resistant cryptographic systems do not need to be built from scratch.
Many existing cryptographic systems are already believed to resist quantum attacks, as
they rely on a variety of hard problems for their security other than mathematical problems
relied on by RSA and Elliptic Curve Cryptography. Some of this systems have existed
for over thirty years (the McEliece cryptosystem was proposed in 1978) while others are
relatively new.

2.2.1 Hash-based Cryptography

Hash functions can be used for digital signature schemes. The only requirement is a stan-
dard cryptographic hash function that produces 2b bits of information. SHA-256 have
been used for cases of b = 128, although many concerns have been raised in recent years
over its security. While all known classic attacks remain extremely expensive, SHA-256
is unlikely to remain secure in the quantum era.

An example of a quantum-resistant hash based digital signature scheme is the Lamport-
Diffie One-Time Signature, published in 1979. As the name suggests the scheme is de-
signed for cases where only one signature is needed, however, it can be adapted for use
with multiple messages using a technique called “chaining”.

In this scheme, the public key and private key each have 8b2 bits: i.e 16 kilobytes
for b = 128. The size of a signature produced by this scheme is 2b(2b + 1) bits. To
guarantee the security of the algorithm the signer must use the key pair for signing a
message only once. For signing multiple messages, the signer can include a new public

11

Chapter 2. Literature Review

key in the contents of the first message, after which the corresponding new private key can
be used to sign a second message.

That means the signature of the nth message will contain all n − 1 previously signed
messages, causing the size of the signature to grow linearly with the size of the chain.
A more advanced system such as Merkel’s hash tree signature system offers logarithmic
growth rate relative to the number of messages signed. For detailed information on the
working of both systems, the reader is referred to Buchmann and Ding (2008).

2.2.2 Lattice-based Cryptography
Lattice based cryptographic systems rely on lattice related hard problems. In cryptography,
a lattice is defined as an abelian subgroup of Rn where n is greater than 0. There are
different lattice based computational problems that can be used for cryptographic systems
such as:

• shortest vector problem.

• closest vector problem.

• shortest independent vector problem.

The shortest vector problem, being the most commonly used problem, is computationally
hard as it tries to approximate the minimum euclidean distance of a non-zero lattice vector.
(Buchmann and Ding, 2008)

2.2.3 Multivariate Cryptography
In multivariate cryptography, public keys are formed of a sequence of 2b polynomials using
4b variables that have binary coefficients ∈ F2 = {0, 1}. There can be no squared terms,
i.e each polynomial can at most be of the 2nd degree. The public key can be represented
as a sequence of bits 1 + 4b + 4b(4b − 1). Calculating the final size of the public key, it
comes out to 16b3 + 4b2 + 2b. For b = 128, the public key is 16 megabytes.

The signature of a message m has a size of 6b bits, consisting of 4b binary values
∈ F2 and a 2b-bits string r. For a multivariate digital signature system S with polynomials
P1, P2, ...P2b and polynomial variables w1, w2, ..., w4b, r would satisfy the formula:

H(r,m) = (P1(w1, w2, . . . , w4b), . . . , P2b(w1, w2, . . . , w4b)) (2.1)

where H is a standard hash function.
Verifying the signature would involve calculating the values of the polynomials using

the given values for the variables as well as calculating the hash function. That gives a
total of 3b+ n operations where n is the cost of evaluating the hash function. Multivariate
cryptographic systems hold the advantage of giving very small signature sizes, with more
modern systems reducing the size even further. Some systems even give the option of
shorter public keys.

The security of multivariate cryptosystems depends the hardness of finding a sequence
of bitsw1, w2, . . . , w4b that can satisfy the above equation i.e produce the desired 2b output
H(r,m). On average, a brute force attack would need 22b operations. Advanced equation

12

2.2 Post quantum cryptographic paradigms

solving attacks can reduce the number of operations, but no known attack can practically
be expected to succeed in 2b operations or less.

For a legitimate user to verify a signature, the signer generates a public key containing
the polynomials P1, P2, . . . , P2b with a secret structure known as Hidden Field Equations
”HFEv−”. It is theoretically possible for an attacker to find the polynomials hidden in
the public key using several legitimate signatures but no such attacks have been found. For
futher discussion of multivariate cryptosystems key generation and signature procedures,
the reader is refered to Bernstein et al. (2009)

2.2.4 Code-based Cryptography

Most interesting to the subject of this thesis, is code based cryptography. Code based
cryptosystems use coding theory and error correcting codes for encryption and digital
signature schemes. A classic code based cryptosystem is defined by parameters: n, d and
t. Assuming b is a power of 2, we define those parameters as n = 4b logb, d = dlogne
and t = b0.5n/dc.

The public key is a generator matrixG with dimensions dt×n with binary coefficients
∈ F2. The input message is a bit string with length n and hamming weight t. The encryp-
tion procedure of a code based cryptosystem is simple multiplication of the input vector
and the generator matrix. The cipher text is a bit vector of size dt.

The process of reversing the multiplication is known as syndrome decoding, which is
the problem presented to an attacker of the system. While it is relatively easy to find an n
bit vector v that satisfies the equation:

Gv = Gm (2.2)

the number of possibilities for v is too large. The known solutions to such problem have
exponential performance at best.

In order for the receiver to decrypt the message, there needs to be a matrix with secret
structure known as hidden Goppa codes that allows the use of decoding algorithms such
as unique decoding and list decoding.

As the basis for our new cryptosystem, we will cover in detail the workings of the
McEliece system, which is considered the first code based cryptosystem proposed, as well
as the Niederriter variant, as the more commonly used version of it.

It is worth noting that the cryptographic paradigms described so far can offer several
advantages over the commonly used RSA cryptosystem, aside from them being quantum
resistant. Code based cryptosystems have extremely efficient encryption, decryption and
key generation procedures and multivariate cryptosystem produce signatures of very small
space complexity.

However, these systems have historically been outdone by the RSA cryptosystems
and similar classical cryptographic systems mainly because of their much larger key sizes
requirements. Now that recommendations for RSA key size continue to grow consistently
in order to maintain the same level of security with faster machines, and as we approach
the quantum era, these considerations are likely to soon become inconsequential.

13

Chapter 2. Literature Review

2.3 The McEliece Cryptosystem
The McEliece cryptosystem was proposed in 1978 as the first code based cryptographic
system. During the key generation procedure a generator matrix G is chosen from the
key space of Gobba codes, a random invertible binary matrix S dimensions k × k and
permutation matrix P with dimensions n× n 1.

The three matrices are used as the private key and kept secret. The public key is a
matrix G’ = SGP. The sender takes an k bit vector as the message m and calculates the
cipher text C as C = mG′ + e where e is a random n bit with hamming weight t, known
as the error vector.

For decryption, the receiver calculates P−1 and S−1. In order to retrieve mS, the
receiver first calculates CP−1 giving mSG + eP−1 and then applies one of several syn-
drome decoding algorithms that calculates x = mS. Finally, to get the original message
m, x is simply multiplied by S−1.

The original McEliece system and its subsequent variations exposed two types of at-
tack vectors:

Structural Attack Structural attacks aim at reconstructing the decoder matrix G given
the knowledge of the cipher text C and the encrypting public key matrix G′. If the attack
is successful, the private key G is revealed and the attacker becomes able to decrypt the
message.

Decoding Attack A decoding attack aims at decrypting a single cipher text to retrieve
the original plain text. While this attack would compromise a single message, the secrets
of the cryptosystem remains intact. (Au et al., 2003)

2.4 St-Gen Code Based Cryptography
In Gligoroski et al. (2014), the original version of the cryptosystem presented in thesis, is
proposed. The proposal starts with introducing a novelty family of codes that can decode
a given error set with overwhelming probability. The codes are named staircase generator
codes in reference to the special structure of the generator matrix, which can be described
as a step wise random block structure. Like the McEliece system, this cryptosystem re-
lies on the hardness of the decoding problem and the hardness of recovering the original
structure of the code for its security.

Another novelty approach proposed in the paper, is imposing a specific structure on
the error vectors. In the McEliece system, and other code based cryptosystems, the error
vectors have traditionally been completely random vectors with the only restriction of
having a hamming weight of t, where t is lower bound of the error correcting capability of
the generator matrix G. This goes back to coding theory where error vectors are used to
model transmission errors occurring due to a noisy channel.

1In some literature the notation of k and n are interchanged, making n refer to the size of the input vector
and k refer to the size of the output cipher text. This is inconsequential as the only restriction on k and n is that
the size of the cipher text is larger than the input vector i.e in our case k > n. This is the notation that will be
used throughout this thesis.

14

2.5 Information Set Decoding attack

While a random error vector is a proper model in such context, it does not offer any
advantages in the context of code based cryptosystems. Thus, the paper proposes replacing
the noisy channel model with artificial noise where the sender has full control over the
level and structure of the noise. This translates into a set of accepted error vectors known
as error sets, all sharing the same two characteristics: granulation and density (instead of
hamming weight as in the case of the classic McEliece system).

Finally the proposal outlines an encryption and a signature scheme that follow the
same basic structure of the McEliece system. It should be noted the the specific structure
of the generator matrix make it more susceptible to structural attacks as pointed out by the
proposal. However, a clear advantage of this cryptosystem is the natural progression from
an encryption scheme to a digital signature scheme. While other code based cryptosystems
required specific tweaking to the decoding algorithm in order to maximize the probability
of finding a decodable syndrome, this cryptosystem makes use of the decoding algorithm
directly with high probability of success.

2.5 Information Set Decoding attack
Information Set Decoding was proposed by Prange in Prange (1962), followed by later
optimizations. It is essentially a set of techniques used to compromise the security of code
based cryptosystems. It can be used to recover error vectors or find the hidden structure of
the generator matrix. It relies in both cases on finding low weight code words.

In Moody and Perlner (2016), two valid attacks are demonstrated, one for the recovery
of the error vector and the other for the private key. As these attacks are the main moti-
vation for the modifications done in this thesis, we give a detailed overview of the error
vector attack below:

LetC be a cipher text, whereC = mG′+e. An ISD attack can be used to recover both
e and m given C. The basic approach of the attack is to guess k bits of the error vector
and calculating the rest of vector using linear algebra. As the probability of guessing k
bits of the error vector correctly increase, the number of iterations needed for the attack
decreases. Algorithm 1 gives a simple outline for an ISD attack, taken from Moody and
Perlner (2016).

Moody and Perlner (2016) provides a valid approach to maximizing the probability of
guessing k bits. Let e be the error vector form of consecutive 2 bit blocks drawn randomly
from the set E = 00, 01, 10. It can be seen, that within each block, a single bit has a
probability 2

3 of being 0. This means if the attack chooses to guess a single bit within each
2 bit block, the probability of success is (23)

k. This greatly undermines the 80-bit security
expected from the original version of the algorithm.

For a detailed discussion of this attack as well as the private key ISD attack, the reader
is referred to Moody and Perlner (2016).

2.6 Random split of St-Gen Codes
In order to address the security vulnerabilities outlined by Moody and Perlner (2016), a
modification to the staircase generator codes cryptosystem is proposed. A key point of

15

Chapter 2. Literature Review

Algorithm 1: ISD attack for the Error Vector
Input : cipher text c, and a parameter k
Output: message m, error e

1. Choose random permutation matrix P ′, and use it to permute cipher text C.

c′ = (mG′ + e)P ′

= mG′P ′ + eP ′

= m(A|B) + (e′1|e′2)
= (mA+ e′1)|(mB + e′2)

(2.3)

where A and e′1 are the first k columns of the matrix G′P ′ and the error vector eP ′

respectively.

2. If A is not invertible go to step 1.

3. Guess e′1. If correct the message can be reconstructed as:

m = ((mA+ e′1)− e′1)A−1 (2.4)

the error vector can also be recovered as e = c−mG′.

4. If the error vector belongs to the error set (which is publicly known), return m and
e. Otherwise go back to step1.

the ISD attacks is the exposure of the very specific structure of the generator matrix in the
public key. To thwart such attack, the new proposal suggests splitting the public key into
several random matrices. This introduces a new parameter s to the cryptosystem, where s
is the number of splits.

This proposal is then translated into two new schemes for encryption and digital sig-
natures. The purpose of this thesis is to implement these two schemes in C and provide an
analysis of their performance. The next chapter will provide a detailed, ground up explana-
tion of the theoretical background behind this modification. (Gligoroski and Samardjiska,
2016a; Samardjiska and Gligoroski, 2016)

16

Chapter 3
Basic Theory

This chapter will give a ground up construction of the background theory and workings
of the cryptosystem implemented during this thesis. We will start with an explanation
of code based cryptography and the way it draws on the practicalities of coding theory.
Following that, will give an overview of the workings of the McEliece system as the basis
of the current system. Finally, this chapter will conclude with the detailed workings of the
staircase generator codes cryptosystem with random splitting of the public key.

3.1 Coding Theory
Coding theory goes back to the principles introduced by claude shannon in 1948. The
original purpose of coding theory was not cryptography, but integrity. When a message
is sent through a communication channel, transmission errors may occur due to noise that
cause the message to be distorted. A binary message for example can have some of its
bits flipped. Coding theory is a collection of techniques and methods of attaching extra
information to the message that allows the receiver to recover the original message free of
errors. (Buchmann and Ding, 2008)

A simple example of using coding theory for error recovery is the triple redundancy
method, where three copies of the message are sent instead of one. At the message desti-
nation, the receiver used a majority vote method to determine the contents of the original
message. This method may be effective but it is very inefficient. Coding theory revolves
around finding optimized methods that can allow the receiver to recover from as many
transmission errors as possible while keeping message redundancy and overhead to a min-
imum.

3.1.1 Linear Binary Code
Let V be the set of all n length vectors of size k defined over the elements of F2. We
can define a linear binary code of dimension n as a subspace of V ∼= Fn2 . This binary
linear code is defined by its parameters n and k, written as (n, k), and called the length

17

Chapter 3. Basic Theory

Figure 3.1: Encoding and decoding a message.

and dimension of the code. A codeword is any vector that happens to occur in the code.
The code is considered linear since any linear combination of two codewords will itself be
a codeword.

Studying some interesting properties of codewords, we start with the weight of a code-
word. The weight of a codeword in linear binary code is the number of non zero elements
in the codeword i.e the weight of the codeword 0111 is 3. This gives rise to a property
known as the minimum weight d of the code, which is the smallest weight of any non zero
codeword i.e excluding the all zero codeword.

The minimum weight of a code is not always trivial to find, however, when known it
is used as a third parameter of the code, written as (n, k, d). This gives a direct formula to
the number of errors the code can correct. An (n, k, d) can correct up to t errors, where
t = bd−12 c. This result is apparent from figure 3.2.

Figure 3.2: The distance between two codewords define the correcting capability of the code.

While d defines the effectiveness of a code, in how many errors it can correct, the
ration between n and k define the efficiency of the code. If n is large compared to k, then
the code sends too many extra bits with each message, and so not very efficient. In our
previous code example of triple duplication would have n = 3k, which gives a ratio of
3, illustrating the fact that for each bit of the original message we send 3 bits through the

18

3.1 Coding Theory

communication channel. A clearly very inefficient transmission rate.
In order to generate the codewords of a specific code, we use a generator matrix. For a

(n, k) code, the generator matrix is formed of k linearly independent vectors with entries
in BF . By taking different linear combinations of the vectors in the generator matrix, we
can generate all codewords in the code.

3.1.2 The Hamming Code
The Hamming code is an example of a linear binary code used to describe general encoding
and decoding procedures. The Hamming code is defined as a (7, 4, 3) code. The generator
matrix of the Hamming code is:

1 1 0 1 0 0 1
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0

Using the parameters of the code, we can see that an input vector to this code would

be 4 bits and the output vector will have length of 7 bits. The encoding process uses the
equation:

c = vG (3.1)

where c is the codeword, v is input vector andG is the above generator matrix. An example
input would be the vector 1100 which would give the codeword 0011001.(Au et al., 2003)

3.1.3 The Decoding Problem
Once a message is encoded using the above mentioned technique and sent, it must be
decoded on the receiver end to recover the original message. Continuing the example of
the hamming code, we know that it can only recover messages with only 1 transmission
error, as given by the equation

d =
3− 1

2
= 1 (3.2)

This means that any message being decoded must be of the form: c = m+e, where e is
the error vector of hamming weight 1. A simple decoding method would be to construct a
look up table that matches all possible error vectors with all possible input vectors giving
all possible decodable messages. For the hamming Code the table would contain 128
codewords, which is already quite large. For a proper code with larger parameters, this
method would be completely impractical.

Coding theory offers a more practical method of decoding, known as syndrome decod-
ing. First, we define a parity check matrix H for an (n, k) code C, which is a (n− k)× n
matrix such that the dot product of any row of the matrix with any codeword in C is 0.

The parity check matrix can be used to calculate the syndrome of a vector c, where c
is the received message in need of decoding, as given by the formula:

Syndrome(c) = H.ct (3.3)

19

Chapter 3. Basic Theory

It can be shown that for encoded message c and transmission error e, the syndrome of the
message is the same as the syndrom of the error vector e, as given by the equation:

H.ct = H.(c+ e)t = H.ct +H.et = 0 +H.et = H.et (3.4)

Hence, by using the party check matrix we can find the syndrome of the received message
which lets us identify the error vector of the message. Other decoding algorithms exist in
coding theory, all based on the idea of syndrome decoding. (Au et al., 2003)

3.1.4 Goppa Codes
The McEiece cryptosystems, as well as the system implemented rely on a family of codes
known as Goppa codes. These are codes of fixed length and dimension that exhibit inter-
esting properties. While we will not go into the details of Goppa codes, we will argue the
case of why they are used. A Gobba code is generated though an irreducible polynomial
of degree t, where t defines the lower bound of the error correcting capability of the code.

Goppa codes give the advantage of a fast polynomial time decoding algorithm. Gener-
ator matrices of Goppa codes are nearly random, making them very hard to find. There are
also many Goppa codes, for any fixed length n and their number increases exponentially
with the length of the code and with the degree of the polynomial. (Au et al., 2003)

3.1.5 Hard Problems
Binary Syndrome Decoding problem Given an r × n parity check matrix H over F2,
a target binary vector s and an integer t ≥ 0, find a binary x where s = HxT .

This problem has been shown to be NP-complete. There exists a q-ary version of this
problem defined over Fq , that is also NP-complete, though it is of little importance to code
based cryptosystems.

Goppa Code Distinguishing problem Given a random (n, k) Gobba-code C, find an
(n− k)× n binary matrix H , where H is the parity check matrix of C. This problem has
also been proven to be NB-complete.

This two hard problems form the basis of security for the McEliece system and other
code based cryptosystems.

3.2 Code Based Cryptosystem
Though not its original purpose, the techniques of coding theory and error correcting codes
lend themselves easily to cryptography. Taking the plain text to be the original message,
the encryption process would first be encoding the message with a generator matrix. A
random error vector would then be added to the resulting vector as artificial noise. This
effectively hides the original contents of the message giving the cipher text.

For the decryption process, the receiver would have the generator matrix as part of the
private key. The receiver would use a decoding algorithm to get the original message. Only
by having the private key, the generator matrix, can the receiver have enough knowledge

20

3.3 The McEliece cryptosystem

of the code that allows decoding the message. This concept is the basis on which the
McEliece cryptosystem and other code based cryptosystems, including the ones discussed
in following sections, are built.

3.3 The McEliece cryptosystem

The McEliece system is considered one of the first code based cryptosystems introduced.
It was proposed by McEliece in 1978, followed by several modifications and optimiza-
tions. The most commonly known version of the McEliece system today is the Niederre-
iter variant in 1986. The McEliece system is one of the major candidates for post quantum
cryptography research as it remains unbroken after nearly thirty years of cryptoanalysis

3.3.1 Key Generation Procedure

Algorithm 2 outlines the key generation procedure of the McEliece system. Initial pa-
rameters n, k and t are chosen according to the security parameter required. (Au et al.,
2003)

Algorithm 2: McEliece Key Generation Procedure

1. Select parameters n, k and t to form the length, dimension and error correcting
capability of the Goppa code to be used as the key.

2. Generate a random generator matrix G of dimension k × n, capable of generating
an (n, k, 2n+ t) linear binary code.

3. Select a random n× n permutation matrix P over F2.

4. Select a random invertible k × k matrix S over F2.

5. Compute Gpub = SGP .

The public key of the algorithm is formed of (Gpub, t) and the private key of the algo-
rithm is given by (S,G, P).

3.3.2 The Encryption Procedure

Algorithm 3 shows the procedure of encrypting message m ∈ Fk2 using the public key.

3.3.3 The Decryption Procedure

Algorithm 4 shows decryption procedure of the McEliece cryptosystem, using the private
key.

21

Chapter 3. Basic Theory

Algorithm 3: McEliece Encryption Procedure
Input : message m, public key (Gpub, t)
Output: cipher text c

1. Randomly generate an error vector e of length k and weight t.

2. Calculate c = mGpub + e.

Algorithm 4: McEliece Decryption Procedure
Input : cipher text c, private key (S,G, P)
Output: original plain text m

1. Compute cP−1 according to the following equation.

cP−1 = (mG′ + e)P−1

= mSG+ eP−1
(3.5)

Since P is a permutation matrix, It is clear that the hamming weight of eP−1 is
equal to the hamming weight of e.

2. Use the decoding alogrithm to decode cP−1, getting y = mS.

3. compute m = yS−1

3.3.4 Analysis of the McEliece Cryptosystem

The first clear advantage of the McEliece cryptosystem is the efficiency of the encryption
and decryption procedures. Both procedures rely solely on matrix multiplication which is
much faster than exponentiation required by the RSA system.

However, the McEliece cryptosystem, as well as all code based cryptosystems, suffers
from the disadvantage of large key sizes due to the requirement of storing the generator
matrix, which can get very large as the security parameter increases.

Table 3.1 relates the sizes of the public keys to generator matrix sizes and security pa-
rameters. For comparison, the current recommendation for the RSA key size is 2048-bits.
It should also be noted that the McEliece cryptosystem does not offer a digital signature
scheme. (Au et al., 2003)

Table 3.1: Public key sizes for the McEliece Cryptosystem

Code security size of public key in bits
(1024, 524, 2 50+1) 264 535,576

(2048, 1025, 2 93+1) 2106 2,099,200
(4096, 2056, 2 170+1) 2136 8,421,376

22

3.4 The Niederreiter Cryptosystem

3.4 The Niederreiter Cryptosystem

A variation of the McEliece cryptosystem that was introduced in 1986. The key difference
between the Niederreiter scheme and the original McEliece proposal is that the Nieder-
rreiter scheme uses the party check matrix while the McEliece scheme uses the generator
matrix. (Buchmann and Ding, 2008)

3.4.1 Key Generation Procedure

Algorithm 5: Niederreiter Key Generation Procedure

1. Select parameters n, k and t to form the length, dimension and error correcting
capability of the Goppa code to be used as the key.

2. Generate a random parity check matrix H of dimension n− k × n, capable of
generating an (n, k, 2n+ t) linear binary code.

3. Select a random n× n permutation matrix P over F2.

4. Select a random invertible n− k × n− k matrix S over F2.

5. Compute Hpub = SHP .

The public key of the algorithm is formed of (Hpub, t) and the private key of the
algorithm is given by (S,H, P).

3.4.2 The Encryption Procedure

Algorithm 6 shows the procedure of encrypting message m ∈ Fk2 using the public key.

Algorithm 6: Niederreiter Encryption Procedure
Input : message m, public key (Hpub, t)
Output: cipher text c

1. Calculate c = HmT .

3.4.3 The Decryption Procedure

Algorithm 7 shows decryption procedure of the Niederreiter cryptosystem, using the pri-
vate key.

23

Chapter 3. Basic Theory

Algorithm 7: Niederreiter Decryption Procedure
Input : cipher text c, private key (S,G, P)
Output: original plain text m

1. Compute S−1c according to the following equation.

S−1c = S−1SHPmT

= HPmT
(3.6)

Since P is a permutation matrix, It is clear that the hamming weight of PmT is
equal to the hamming weight of m.

2. Use the decoding algorithm to decode HPmt, getting y = PmT .

3. compute mT = P−1y

3.4.4 Analysis of the Niederreiter Cryptosystem
The Niederreiter scheme offers several improvements over the McEliece scheme. Mainly
the smaller matrix dimensions ofH compared toG, which allows for a near 10 times faster
encryption procedure. It also reduces the sizes of the public key and the private key, which
is key goal for any code based cryptosystem as it remains one of the major drawbacks.
However, the main advantage of the Niederrieter cryptosystem is it can be translated into
a digital signature scheme as shown by Courtois, Finiasz and Sendrier. (Buchmann and
Ding, 2008)

3.4.5 The CFS Digital Signature Scheme
The CFS signature scheme is built on the same basics of the Niederreiter encryption
scheme using the party check matrix. Given a message m, a hash function h with out-
puts of length n− k and a syndrom decoding algorithm, we do the following.

1. Set initial value of i to 0.

2. Find s ∈ Fn2 of given weight t such that h(h(m)||i) = HsT where H is the parity
check matrix. This can be done by applying the decoding algorithm to h(h(m)||i)

3. If h(h(m)||i) is not decodable, increase i and try again.

The signature of the message is given by (s||i). Figure 3.3 shows the procedure of incre-
menting a counter until a decodable signature is found.

Goppa codes are very useful for this kind of scheme as they are a dense family codes,
increasing the probability of finding a decodable signature. The CFS scheme gives signa-
tures of length 131 bits with signature cost of 12× 1010 operations. The verification cost
of the scheme is 1296 operations and the size of the public key 9 Mbits for parameters that
offer 80-bits of security against ISD attacks.

24

3.5 The Staircase Generator Codes Cryptosystem

Figure 3.3: CFS signature procedure. (Buchmann and Ding, 2008)

It can be seen from these parameters that the CFS is a very expensive scheme. Many
codewords need to be decoded before a valid signature can be found, as well as, the usual
concern over the size of the public key. (Courtois et al., 2001)

3.5 The Staircase Generator Codes Cryptosystem
Based on the McEliece system, Gligoroski et al. (2014) introduces a code based cryp-
tosystem called staircase generator codes cryptosystem. This system includes both an
encryption and a digital signature scheme. It imposes new restriction on the code gener-
ator matrix and the error vectors. It also replaces the classically used unique syndrome
decoding algorithm with a list decoding algorithm.

3.5.1 Error Sets
In traditional coding theory, and in previous code based cryptosystems, the error vector is
a random vector of hamming weight less than t. The restriction of the hamming weight
guarantees the ability of the generator matrix to recover the original message after adding
the error vector to it.

This classic approach has been chosen with the intention of modeling transmission
errors that occur when the message passes through a noisy channel. This, however, offers
no real advantage when dealing with cryptographic systems. Error vectors added to plain
text messages in cryptographic systems simulate artificial noise, with the purpose of hiding
the original contents of the message.

Using the hamming weight of the error vector as the only restriction, we get an error
set that partially covers a hamming sphere surrounding each codeword. In this case, the
codeword c can be recovered from the hidden cipher text c = c + e, where e is the error
vector, as long as the hamming distance between c and c do not exceed the minimum
hamming distance d of the code. If d is exceeded, then c lies in the area where its no
longer possible to uniquely decide on the original codeword. Figures 3.4 and 3.5 visualize
this idea.

In contrast, to define the error set for this cryptosystem first we define a positive integer
l known as the granulation of the error set. Then we define S as a set of multivariate

25

Chapter 3. Basic Theory

Figure 3.4: Classic error sets represented by a hamming sphere around a codeword.

Figure 3.5: Limitations of unique decoding for classical error sets.

polynomials defined over F2. El is an error set if it is the kernel of S as given in the
following definition:

El = Ker(S) = e ∈ Fl2|f(e) = 0,∀f ∈ S (3.7)

Another property of the error set is its density ρ, where ρ = |El|1/2. Having defined
an error set El, we can find codes that can correct error vectors drawn from En = m

l =
El × El × · · · × El. This allows for larger error sets unrestricted by the hamming metric.
Figures 3.7 and 3.6 highlight the difference between this approach to error vectors and the
classic approach.

Figure 3.6: Arbitary error set surrounding a codeword.

As a concrete example, we can take the set E2
2 = 00, 01, 10 to be an error set, where

error vectors would be constructed form elements randomly chosen from E. That is, the
error vector e of length n would be equal to e1||e2|| . . . ||em, where ei ∈ E, m = n

l and
l = 2

26

3.5 The Staircase Generator Codes Cryptosystem

Figure 3.7: Arbitary error sets does not allow unqiue decoding. However, list decoding succeeds
with overwhelming probability.

3.5.2 Staircase Generator Codes
Having defined the notion of an error set, proposes a new family of codes that can correct
such errors with overwhelming probability. These codes are called staircase generator
codes, due to the specific random stepwise block structure of the generator matrix.

Let C be a binary code with length n, dimension k and generator matrix G. Figure
3.8 show an example of the matrix G. The matrix G is formed of several random binary
matrices, each matrixBi is of the dimension

∑i
j=1Kj×ni, where k = k1+k2+ · · ·+kw

and n = k + n1 + n2 + · · ·+ nw.

Figure 3.8: Generator matrix for (n, k) binary code with stepwise block structure.

A big advantage of using staircase generator codes is that it allows using an efficient
list decoding algorithm. Unlike the classic syndrome decoding algorithms that output only
one unique decoding of the codeword, list decoding can output a list of possible decoding.
This means it can correct a larger number of errors. A general list decoding algorithm is
given by algorithm 8, for (n, k) code C with error set El, where l divides n and m = n

l

3.5.3 Key Generation Procedure
The staircase generator codes cryptosystem follow a key generation procedure very similar
to that of the McEliece cryptosystem. Algorithm 9 outlines this procedure.

The public key of the algorithm is formed of Gpub = SGP and the private key of the
algorithm is given by (S,G, P).

3.5.4 The Encryption Scheme
Algorithm 10 and 11 shows the procedure of encrypting and decrypting a messagem ∈ Fk2
using the generated keys. Both procedures are identical to the McEliece procedures, with

27

Chapter 3. Basic Theory

Algorithm 8: General List Decoding
Input : vector y ∈ Fn2 , generator matrix G
Output : List Lw ⊂ Fk2 of valid decodings of y
Preliminaries: Let Ki = K1 + · · ·+Ki. Let decoding x ∈ Fk2 = x1||x2|| . . . ||xw

where the length of xi is ki. The same is done for y ∈ Fn2 , hence
y = y0||y1||y2|| . . . ||yw, such that the length of yi is ni and
|y0| = k. Finally, y0 is defined as y0 = y0[1]||y0[2]|| . . . ||y0[w]
where the length of y0[i] is ki.

1. Start with list T0 = L0 with all possible decodings of y0[1].

T0 ← {x′ = y0[1] + e|e ∈ Ek1/l} (3.8)

2. While i ≤ w, For each x′ ∈ Ti−1, add to Li all new candidates where
x′Bi + yi ∈ Eni/l.

Li ← {x′ ∈ Ti−1|x′Bi + yi ∈ Eni/l} (3.9)

3. If i < w build Ti from Li using the formula

Ti ← {x′||(y0[i+ 1] + e)|x′ ∈ Li, e ∈ Eki+1/l} (3.10)

4. Return Lw.

the difference being in the construction of the keys and the error vectors. The error vector
e is randomly from the error set Eml = El × El × · · · × El

3.5.5 The Digital Signatures Scheme
The staircase generator codes encryption scheme holds the advantage of being directly
translatable to a digital signature scheme, unlike the McEliece encryption scheme. It also
does not require the counter and repeated decoding modifications to the Niederreiter, as
required by the CFS digital.

The St-Gen codes signature scheme introduces a new decoding algorithm. While al-
gorithm 8 is valid for signing messages, it generates all decodings of a syndrome, while a
signature scheme only needs to generate one.

The reader is referred to Gligoroski et al. (2014) for a formal proof that algorithm 12
will find a signature with probability > 1/2. Algorithms 13 and 14 show the full signature
and verification procedure.

3.5.6 Analysis Of St-Gen Codes Cryptosystem
The St-Gen codes cryptosystem offers new encryption and digital signature schemes. The
encryption scheme is directly translatable to a digital signature scheme without the need

28

3.5 The Staircase Generator Codes Cryptosystem

Algorithm 9: St-Gen Key Generation Procedure

1. Generate a random generator matrix G of dimension k × n with the form given in
figure 3.8, capable of generating an (n, k) linear binary code.

2. Select a random n× n permutation matrix P over F2. P should only permute the
m substrings of input vector y and is selected as follows:
Select permutation π on {1, 2, . . . ,m} and let P be any permutation matrix induced
by π such that:

y = y1||y2|| . . . ||ym
yP = yπ(1)||yπ(2)|| . . . ||yπ(m)

(3.11)

3. Select a random invertible k × k matrix S over F2.

4. Compute Gpub = SGP .

Algorithm 10: St-Gen Encryption Procedure
Input : message m, public key Gpub, error vector e ∈ Eml
Output: cipher text c

1. Calculate c = mGpub + e.

for added counters, unlike the CFS scheme, or any similar modifications. The step wise
block structure of the generator matrix allows defining a very efficient list decoding algo-
rithm that can correct the errors with overwhelming probability. It follows the principles
of code based cryptosystems which are one of the main candidates for post quantum cryp-
tosystems.

The cryptosystem relies for its security on the same principles relied on by the McEliece
and the Niederreiter cryptosystems. However the specific structure of the generator matrix
of St-Gen codes makes it more vulnerable to ISD attacks and distinguisher attacks.

In Moody and Perlner (2016), a practical ISD attack is outlined that allows for full
recovery of the private key. The attack shows that using the suggested parameters for 80
bits of security, the system can be broken on average in less than two hours. An ISD attack
essentially translates to the following:

Find an information set I that is an invertible sub-matrix of the generator matrix G.
This gives an error vector eI with a specific pattern with respect to I. This allows partial
decryption of cipher text using the formula:

m = (cI + eI)G
−1
I (3.13)

A practical example of an ISD attack against this cryptosystem would go as follows. Let
x ∈ Fk2 , y′ = xSG where G is the generator matrix of an St-Gen code. This means both
y′ and y′P are codewords generated by G, and since P is a permutation matrix, both y′

29

Chapter 3. Basic Theory

Algorithm 11: St-Gen Decryption Procedure
Input : cipher text c, private key (S,G, P)
Output: original plain text m

1. Compute cP−1 according to the following equation.

cP−1 = (mG′ + e)P−1

= mSG+ eP−1
(3.12)

2. Use the decoding algorithm 8 to decode cP−1, getting y = mS.

3. Compute m = yS−1

Algorithm 12: Signature List Decoding
Input : vector y ∈ Fn2 , generator matrix G
Output : valid decoding s ∈ Fk2
Preliminaries: Using same notation from algorithm 8 and adding variables

ExpLimiti ≤ rni .

1. While 1 ≥ i < w, find x′ ∈ Fki2 such that x′Bi + yi ∈ Eni/l trying at most
ExpLimiti.

2. Expand x’ into at most ExpLimiti+1 by appending random errors from Eni+1/l

with the sum of y0[i+ 1].

3. Increment i and go back to step 1.

4. If i = w − 1 switch to the list decoding alogrithm 8.

5. Return s← Lw.

and y′P have the same hamming weight.

Due to the structure of the generator matrix, there exists a supspace of dimension kw
with support of size (kw + nw). Finding enough codewords with hamming weight (kw +
nw)/2 allows the attacker to find this support, partially revealing the permutation matrix
P , which in turn reveals part of the structure ofG. This attack can be done repeatedly until
the entirety of generator matrix G has been found.(Samardjiska and Gligoroski, 2016)

Moody and Pelner’s analysis in Moody and Perlner (2016) shows that this cryptosys-
tem is vulnerable to an efficient and practical attack that can be used to recover the private
keys. In particular it points out that an attacker can opt to use the parity check matrixH in-
stead of the generator matrixG which makes the attack even more efficient. The following
section outlines an improvement to this cryptosystem to secure it against such attacks.

30

3.6 Random Split of Staircase Generator Codes Cryptosystem

Algorithm 13: St-Gen Signature Procedure
Input : message m ∈ Fn2 , private key S,G and P
Output: A valid signature σ ∈ Fk2

1. Compute y = zP−1.

2. Decode y using algorithm 12 to get s.

3. Compute σ = sS−1.

4. Return σ.

Algorithm 14: St-Gen Verification Procedure

Input : pair (m,σ) ∈ Fn2 × Fk2 , public key Gpub
Output: True if signature is valid, false otherwise

1. Calculate e = σGpub +m.

2. Return true if e ∈ Eml , false otherwise.

3.6 Random Split of Staircase Generator Codes Cryptosys-
tem

Random split of St-Gen codes is a variation of the cryptosystem given in the previous
section. It aims at hiding the structure of the generator matrix exposed in the public key,
thus securing it against ISD attacks and distinguisher attacks. The proposed modification
is random splitting of the public key matrix. By introducing a new parameter s to the
system, which defines the number of splits, we guarantee that the probability of mounting a
successful ISD attack against the system becomes negligible.(Samardjiska and Gligoroski,
2016; Gligoroski and Samardjiska, 2016a)

3.6.1 Valid Error Splits
Taking the same notion of an error set introduced in section 3.5.1, the proposal introduces
the concept of a valid error split. Let El be an error set of granulation l, density ρ and s
being the number of summands in which the generator matrix will be split. An error split
is defined as any s−element set {e1, . . . , es}, where ei ∈ Fl2, for 1 ≤ i ≥ s, if and only
if the sum of all its elements permuted by any permutation σi ∈ Sl is an element in El
according to the following equation:

e =

s∑
i=1

σi(ei) ∈ El (3.14)

As a concrete example of valid error splits, we take l = 4, s = 4and El to be the error
set {{0,0,0,0}, {0,0,1,1}, {0,1,0,1}, {0,1,1,0}, {1,0,1,1}, {1,1,0,0}, {1,1,1,0}, {1,1,1,1}}.

31

Chapter 3. Basic Theory

A vald error split for El would be the set 1,0,0,0, 1,1,1,1, 1,1,1,1, 1,1,0,1 as the sum of its
all elements permuted by all 24 possible permutations would result into an element in El.
It is important to note that the elements in a valid error split do not have to be themselves
in EL.

Algorithm 15 outlines the procedure of defining a set of all valid error splits. While
this algorithm is quite computationally expensive, it should be noted that it is only run
once during an initialization phase of the system. Moreover this set can be precomputed
and publicly available in practice.

Algorithm 15: St-Gen Valid Error Splits Procedure
Input : granulation l, error set El, number of splits s
Output: a set of all valid error splits ValidErrorSplits
for ∀(e1, . . . , es) ∈ (Fl2)s. do

if
∑s
i=1 σi(ei) ∈ El∀(σ1, . . . , σs) ∈ (Sl)s then

Add (e1, . . . , es) to ValidErrorSet.
end

end

3.6.2 Key Generation Procedure

Algorithm 16 provides a variation of algorithm 9 with splitting of the public key, given
granulation l, (n, k) linear binary code C and m = n/l.

The public key is given by G1
pub, G

2
pub, . . . , G

s
pub and the private key is given by

S,G, P1, P2, . . . , Ps

3.6.3 The Encryption Scheme

Given the keys generated in algorithm 16, algorithm 17 outlines the procedure used to en-
crypt a messagem of length n. Algorithm 18 gives a similar description for the decryption
process. It should be noted that these algorithms are slower than their McEliece counter-
parts by a linear factor s for encryption, and a small constant overhead for decryption.

3.6.4 The Digital Signatures Scheme

Using the same keys generated using 16, we can outline two procedures for digitally sign-
ing a message and verifying the signature. Once again the use of staircase generator codes
allows for a digital signature scheme that is directly translated from the encryption scheme
without the need for any specially introduced mechanics.

Algorithm 12 is used again to only produce a single decoding needed as a signature, in
contrast to algorithm 8 that returns the list of all possible decodings needed for decryption.
Algorithm 19 outlines a procedure to find a signature using a private key and algorithm
20 outlines another procedure to verify a given signature is valid using the corresponding
public key.

32

3.6 Random Split of Staircase Generator Codes Cryptosystem

Algorithm 16: Random Split St-Gen Key Generation with Procedure

1. Generate a random generator matrix G of dimension k × n with the form given in
figure 3.8, capable of generating an (n, k) linear binary code.

2. Generate an array of permutation matrices P1, P2, . . . , Ps, selected as follows:
Select permutation π on {1, 2, . . . ,m} and let P be any permutation matrix induced
by π such that:

y = y1||y2|| . . . ||ym
yP = yπ(1)||yπ(2)|| . . . ||yπ(m)

(3.15)

For 1 ≤ i ≤ s, select m random permutations σij ∈ Sl, for 1 ≤ j ≤ m. Define each
Pi according to the following equation:

yP = σi1(yπ(1))||σi2(yπ(1))|| . . . ||σim(yπ(1)) (3.16)

where σij = σij(x1, x2, . . . , xl).

3. Select a random invertible k × k matrix S over F2.

4. Generate uniformly at random matrices G1, G2, . . . , Gs−1 of size k × n over F2.

5. Compute Gs = G+G1 +G2 + · · ·+Gs−1.

6. Compute Gipub = SGiPi, for 1 ≤ i ≤ s.

3.6.5 Analysis of St-Gen codes cryptosystem with random split

Here will give a theoretical discussion of the effectiveness of the split technique as a mea-
sure against the ISD attacks. Chapter 5 will provide analysis into the practical performance
of the cryptosystem based on the implementation carried out for this thesis.

A simple way of defending against ISD attack in the St-Gen codes cryptosystem is to
increase the parameters of the cryptosystem (mainly n and k). Unfortunately that would re-
quire parameters that are no longer practical. Instead Gligoroski and Samardjiska (2016a)
and Samardjiska and Gligoroski (2016) propose the technique of splitting as a defense
against ISD attacks. The idea is to make the conditions required for an attacker to mount
a successful attack have negligible probability of occurrence.

The following shows how the splitting technique achieves the above goal. We refer
the reader to Samardjiska and Gligoroski (2016) for a more detailed proof. First we define
every permutation matrix Pi = PP ∗i where P is a permutation matrix that permutes
whole blocks of length l and P ∗i is a permuation matrix which only permutes within a
single block. We then define Gip,j to be a submatrix of SGiP .

This would mean that applying a permutation σij(G
i
p,j) corresponding to a permutation

matrix P ∗i gives the submatrixGipub,j . It is easy to see that in order to mount an ISD attack,

33

Chapter 3. Basic Theory

Algorithm 17: Random Split of St-Gen Encryption Procedure

Input : message m, public key G1
pub, G

2
pub, . . . , G

s
pub, set of valid error splits

ValidErrorSplit
Output: cipher text ci, for 1 ≤ i ≤ s

1. Generate error vectors ei, with length n for 1 ≤ i ≤ s, where eji is taken from
Splitj = (ej1, e

j
2, . . . , e

j
s) ∈ V alidErrorSplits.

2. Compute ci = mGipub + ei.

Algorithm 18: Random Split of St-Gen Decryption Procedure
Input : cipher text ci, for 1 ≤ i ≤ s, private key S,G, P1, P2, . . . , Ps
Output: decrypted message m

1. Compute c′i = ciP
−1
i .

2. Compute c′ =
∑s
i=1 c

′
i.

3. Compute m′ as output of decoding algorithm 8.

4. Compute m = m′S−1

5. Return m.

the attacker must find permutations µij such that the equation:∑
i

µij(G
i
pub,j) =

∑
i

µijσ
i
j(G

i
p,j) (3.17)

holds for 1 ≤ i ≤ s and 1 ≤ j ≤ n
l . In fact, the case in which this happens the key

structure degrades into the case of the cryptosystem without splitting. In Samardjiska and
Gligoroski (2016), it is shown that the probability of µijσ

i
j agreeing on t coordinates is:

(

(
n
k

)
b (l−t)!e + 1

2c
l!

(̇
(l − t)!
l!

)s−2)
k
t (3.18)

where l is the granulation. This is a negligible probability of being able to reveal the
structure of a submatrix of G, making it even harder to reveal the structure of the entire
generator matrix.

34

3.6 Random Split of Staircase Generator Codes Cryptosystem

Algorithm 19: Random split of St-Gen codes Signature Procedure
Input : message z1, z2, . . . , zs ∈ Fn2 , private key S,G and P1, P2, . . . , Ps
Output: A valid signature σ ∈ Fk2

1. Compute yi = ziP
−1
i .

2. Compute y =
∑s
i=1 yi.

3. Decode y using algorithm 12 to get s.

4. Compute σ = sS−1.

5. Return σ.

Algorithm 20: Random split of St-Gen codes Verification Procedure

Input : pair (z, σ) ∈ Fn2 × Fk2 , public key G1
pub, G

2
pub, . . . , G

s
pub

Output: True if signature is valid, false otherwise

1. Calculate ei = σGipub + zi.

2. Return true if e ∈ Eml , false otherwise.

3. If (ej,1, ej,2, . . . , ej,s) ∈ V alidErrorSplits, where 1 ≤ j ≤ s, return true.

4. Otherwise return false.

35

Chapter 3. Basic Theory

36

Chapter 4
Experiment

This chapter will highlight some aspects of the St-Gen cryptosystem implementation that
was done for this thesis. It will also cover the setup for the experiments carried out to
establish the performance of the system.

4.1 Design Choices

4.1.1 Programming Language

The implementation for the cryptosystem was done using the C programming language.
This decision was based on prioritizing efficiency over implementation elegance. The C
programming language is a very low level language which allows execution speed to come
very close to the maximum capabilities of the hardware.

The C programming language also offers other advantages such as full control over
memory management and access to low level instructions that can be used for highly
optimized code snippets. Finally it offers maximum portability for different platforms.
For these reasons most commonly used cryptographic libraries have implementation in C
or would be implemented in C before mass adoption.

4.1.2 Data Structures and Interface

Most of the data bulk that go into the cryptosystem take the form of matrices. A decision
was made not to use any specialized C libraries for handling matrices or matrix operations.
This reduces that chances for any hidden operations that may be affecting the running time
of different procedures. This also allows clearly identifying optimization vectors that are
implemented or need to be implemented.

For the above reasons all matrices are represented by simple multidimensional arrays.
The implementations also defines basic matrix operations such as matrix addition, multi-
plication, the transpose operation and the inverse matrix calculation procedure.

37

Chapter 4. Experiment

The cryptosystem provides a simple interface with a common key generation proce-
dure, an encryption and decryption procedure for the encryption scheme and a signature
and verification procedures for the digital signature scheme. Both schemes share the use
of many underlying helper functions such decoding functions.

4.2 Setup
Once the correctness of the cryptosystem is established by carrying out successful encryp-
tion and decryption for the encryption scheme and a signing followed by verification for
the signature scheme, two experiments were setup to compare the performance of this
cryptosystem to commonly used cryptosystems.

The experiments were run on a personal laptop running Arch Linux system. The pro-
cessor specification as returned by the lscpu command line tool is an Intel Core I7-6600U
model with two cores and two threads per core. The base clocking speed is 2.6 GHz and
it has 4 MB SmartCache.

Taking advantage of cache hits in this case is considered a clear vector of optimization
for improving matrix multiplication efficiency. The system also has 16 GB of memory
which is was considered noteworthy due to the heavy memory requirements mandated by
the size of the keys and the list decoding algorithm.

The standard implementation of the clock function in the time t.h C header file was
used to time the different procedures of the implementation, mainly the encryption, de-
cryption, singing, verification and key generation procedures. Two experiments were run,
one for each scheme of the cryptosystem, each five times. The times reported by each
experiment were recorded and the average over the five runs was calculated to avoid any
sharp variations due to execution anomalies.

For both experiments we used the concrete set of parameters given in Samardjiska and
Gligoroski (2016) for the encryption scheme and Gligoroski and Samardjiska (2016a) for
the digital signature scheme. These parameters are reported to offer 128bits of the security.
For a discussion of how these parameters are established the reader is referred to the above
literature.

To showcase the efficiency of the implementation we compare the results against the
RSA cryptosystem running time. To acquire benchmarks for RSA, we use the OpenSSL
command line tool speed command with cipher RSA4096 with -elapsed option to measure
the total time consumed by the encryption/verification and decryption/sign procedures.
Chapter 5 reports the recorded results and discusses their implications.

38

Chapter 5
Analysis

This chapter will outline the results recorded from the experiments described in the previ-
ous chapter. It will also provide a brief discussion on the implications of these results.

5.0.1 Correctness

The correctness of the implementation of the two schemes was verified. For the encryption
scheme, correctness is established if a binary vector can be encrypted and decrypted with
the decryption outcome being identical to the original. The correctness of the signature
scheme is based on the signing of a binary vector followed by successful verification of
that signature.

It should be noted that for the signature scheme verification can occasionally fail. This
is attributed to the probablistic nature of the algorithm. Since other probabilistic digital
signature schemes exhibit the same behavior, this was not considered incorrect.

5.0.2 Efficiency

Table 5.1 lists the running times recorded for our implementation of the cryptosystem. It
can be seen that the times for the signing procedure exhibit some sharp variations and is
considerably higher than the running time of the decryption procedure.

Despite both procedures using the same steps, the main difference lies in the decoding
algorithm. The signing procedure uses algorithm 12 while the decryption procedure uses
8. Algorithm 8 does list decoding until the correct decoding is found. With the assumption
that the size of the list is reduced with each iteration, the complexity of the algorithm is
dominated by the size of the initial list.

In algorithm 12, however, the algorithm has to start over if the signature found is
not decodable. This can mean many extra iterations while looking for a signature due
to the probabilistic nature of the algorithm. This would also explain the wide variations
in the recorded running times. We hypothesis that this running time can be improved by

39

Chapter 5. Analysis

increasing the threshold used to limit the sizes of the lists in the list decoding algorithm
for signatures.

Table 5.2 gives the same recordings of running times for RSA, as retrieved from the
OpenSSL benchmarking tool. It should be noted that the tool only reports times for the
sign and verify procedures so the decryption and encryption procedures are assumed to be
the same. The averages of both systems are compared in table 5.3.

It is assumed that the running procedures of RST-GEN cryptosystem would be lower
than the RSA system. This is based on the fact that the RST-GEN cryptosystem procedures
mostly rely on matrix multiplication while RSA system procedures rely on exponentiation
and modulus division, both of which are very expensive operations. It can be seen that
table 5.3 does not support this assumption.

We hypothesis that this is a flaw in the implementation and not in the design of the cryp-
tosystem. Our implementation has minimal optimization while being compared against the
OpenSSL highly optimized mass adopted implementation. This largely due to prioritizing
a proof of concept rather than efficiency during implementation.

However, we do outline several clear optimization that were not implemented due time
constraints. The current implementation of matrix multiplication is quite inefficient due
to the use of column major order in matrix representation, which leads to cache thrashing.
Also the permutations matrices are treated as normal matrices and are applied through
matrix multiplication. It would be much more efficient to store the permutations as a
sequence of indices and apply them as such.

Table 5.1: Running times for RST-GEN

Sign Verify Encryption Decryption
3.347577 0.002889 0.000721 2.166893
15.62105 0.003694 0.000681 1.801135

15.268985 0.002673 0.000719 1.692233
104.251773 0.003141 0.000713 1.494761
24.042725 0.003259 0.000697 1.503881

Average
32.506422 0.0031312 0.0007062 1.7317806

Table 5.2: Running times for RSA

Sign Verify Encryption Decryption
0.00565 0.000084 0.000084 0.00565
0.005727 0.000085 0.000085 0.005727
0.004941 0.000072 0.000072 0.004941
0.005308 0.000084 0.000084 0.005308
0.005297 0.000082 0.000082 0.005297

Average
0.0053846 0.0000814 0.0000814 0.0053846

40

Table 5.3: Comparing average running times for RSA and RST-GEN

Alogrithm Sign Verify Encryption Decryption
RSA4096 0.0053846 0.0000814 0.0000814 0.0053846
RST-GEN 32.506422 0.0031312 0.0007062 1.7317806

41

Chapter 5. Analysis

42

Chapter 6
Conclusion

Cryptography provides the corner stone of securing digital information. It guarantees con-
fidentiality, integrity and authenticity of data stored and passed around on the internet.
Cryptosystems such as RSA and Deffie-Hellman key exchange are the most commonly
used systems for that purpose. These systems have made use of the same hard mathemati-
cal problems that have been believed to be beyond the capability of classical computers to
guarantee their security.

However, quantum computers stand to threaten this established infrastructure by promis-
ing to allow attackers to solve those problems in polynomial times. Cryptography research
efforts must provide new families of cryptosystems that rely on different paradigms of
problems for their security, to be able to remain secure in the post quantum era.

Many existing cryptography paradigms are believed to be resistant to quantum attacks.
Among these are hash based cryptography, multivariate cryptography, lattice based cryp-
tography and code based cryptography. While these paradigms have historically lacked
popularity, they offer cryptosystems that stand as candidates for mass adoption as post
quantum cryptographic systems.

This thesis is mainly concerned with one such system that comes out of code based
cryptography. This system follows the same structure of the McEliece system, one of
the earliest examples of code based cryptographic systems. The McEliece system has
stood the test of cryptoanalysts for over thirty years, and offers efficient encryption and
decryption algorithms that rival the currently used RSA.

Based on its scheme, a new system was developed and named staircase generator codes
cryptosystem. This system makes use of a newly proposed subfamily of Goppa codes
named staircase generator codes which imposes new restrictions on the generator matrix
structure. It also innovates a new approach to error vectors and a new list decoding al-
gorithm. The new system holds the advantage, over the McEliece system, by providing a
digital signature scheme directly adaptable from the encryption scheme using the decryp-
tion procedure.

Having been shown to be susceptible to structure attacks, due to the specific structure
of the generator matrix, the new system is modified with a splitting technique for the

43

Chapter 6. Conclusion

public key. This modified system, referred to in this thesis as randomly split ST-Gen codes
cryptosystem, is inoculated against structural attacks such as ISD.

In this thesis, we provide and discuss a C implementation of the RST-Gen code cryp-
tosystem. The implementation showcases the correctness of the system and its underlying
concepts. The efficiency of the implementation is benchmarked and compared against
benchmarks from the RSA cryptosystem. For future work, we recommend addressing the
missing optimizations mentioned in chapter 5 as well as those that have been overlooked.
We also postulate the following research question. How, if possible, can the size of the
keys of code based cryptographic systems be reduced.

44

Bibliography

Au, S., Eubanks-Turner, C., Everson, J., 2003. The mceliece cryptosystem. Unpublished
manuscript 5.

Bernstein, D. J., Buchmann, J., Dahmen, E., 2009. Post-quantum cryptography. Springer
Science & Business Media.

Buchmann, J., Ding, J., 2008. Post-quantum cryptography. In: second international work-
shop, PQCrypto. pp. 17–19.

Cayrel, P.-L., Meziani, M., 2010. Post-quantum cryptography: Code-based signatures. In:
Advances in Computer Science and Information Technology. Springer, pp. 82–99.

Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D., 2016.
Report on post-quantum cryptography. National Institute of Standards and Technology
Internal Report 8105.

Courtois, N. T., Finiasz, M., Sendrier, N., 2001. How to achieve a mceliece-based dig-
ital signature scheme. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer, pp. 157–174.

Ding, J., Yang, B., 2009. Post-quantum cryptography.

Gligoroski, D., Samardjiska, S., 2016a. A digital signature scheme based on random split
of st-gen codes. IACR Cryptology ePrint Archive 2016, 391.

Gligoroski, D., Samardjiska, S., 2016b. Semantic security and key-privacy with random
split of st-gen codes. In: Conference on Computability in Europe. Springer, pp. 105–
114.

Gligoroski, D., Samardjiska, S., Jacobsen, H., Bezzateev, S., 2014. Mceliece in the world
of escher. IACR Cryptology ePrint Archive 2014, 360.

Kabatianskii, G., Krouk, E., Smeets, B., 1997. A digital signature scheme based on random
error-correcting codes. Crytography and Coding, 161–167.

45

Menezes, A. J., Van Oorschot, P. C., Vanstone, S. A., 1996. Handbook of applied cryptog-
raphy. CRC press.

Moody, D., Perlner, R., 2016. Vulnerabilities of mceliece in the world of escher. In: Inter-
national Workshop on Post-Quantum Cryptography. Springer, pp. 104–117.

Mosca, M., 2013. Post-quantum cryptography. Lecture Notes in Computer Science 8772.

Mosca, M., 2014. Post-Quantum Cryptography: 6th International Workshop, PQCrypto
2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings. Vol. 8772. Springer.

Perlner, R. A., Cooper, D. A., 2009. Quantum resistant public key cryptography: a survey.
In: Proceedings of the 8th Symposium on Identity and Trust on the Internet. ACM, pp.
85–93.

Prange, E., 1962. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8 (5), 5–9.

Samardjiska, S., Gligoroski, D., 2016. An encryption scheme based on random split of
st-gen codes. In: Information Theory (ISIT), 2016 IEEE International Symposium on.
IEEE, pp. 800–804.

Sendrier, N., 2010. Post-quantum cryptography. In: third international workshop,
PQCrypto, Darmstadt, Germany. Springer.

Sendrier, N., Tillich, J.-P., 2014. Private communication, october 2014. Cited on, 2.

Takagi, T., 2016. Post-quantum cryptography. Lecture Notes in Computer Science 9606.

Umana, V. G., 2011. Post-quantum cryptography. Post-Quantum Cryptography.

Yang, B.-Y., 2008. Post-quantum cryptography.

Yang, B.-Y., 2011. Post-Quantum Cryptography: 4th International Workshop, PQCrypto
2011, Taipei, Taiwan, November 29-December 2, 2011, Proceedings. Vol. 7071.
Springer.

46

Appendix

Listing 6.1: RST-Gen Codes cryptosystem Interface

i n c l u d e ” r e f e r e n c e s . h ”
i n c l u d e ” params . h ”
i n c l u d e ” u t i l . h ”
i n c l u d e ” p r i n t u t i l s . h ”

i n c l u d e < i n t t y p e s . h>
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <s t d b o o l . h>
i n c l u d e < s t r i n g . h>

/∗ −−−−−−−−−−−−−−−−−− Key g e n e r a t i o n f u n c t i o n s −−−−−−−−−−−−
∗ /

s t a t i c vo id c r e a t e S (s i z e t k , u i n t 8 t S [k] [BYTES(k)]) ;
s t a t i c vo id c r e a t e G (s i z e t k , s i z e t n , u i n t 8 t G[n] [BYTES

(k)]) ;
s t a t i c vo id c r e a t e P (s i z e t n , u i n t 8 t P [n] [BYTES(n)]) ;
s t a t i c vo id c r e a t e P i f r o m P (s i z e t n , u i n t 8 t P [n] [BYTES(n

)] , u i n t 8 t P i [n] [BYTES(n)]) ;

void key gen (s i z e t k ,
s i z e t n ,
s i z e t s ,
u i n t 8 t S i n v [k] [BYTES(k)] ,
u i n t 8 t G[n] [BYTES(k)] ,
u i n t 8 t P i n v [s] [n] [BYTES(n)] ,
u i n t 8 t G pub [s] [n] [BYTES(k)])

{

u i n t 8 t S [k] [BYTES(k)] ;
u i n t 8 t p [s] [n] [BYTES(n)] ; p r i n t f (” h e r e . . . \ n ”) ;
u i n t 8 t P [n] [BYTES(n)] ;
u i n t 8 t SG[s] [n] [BYTES(k)] ;
u i n t 8 t g [s] [n] [BYTES(k)] ;

47

c r e a t e S (k , S) ;
i n v e r t (k , S , S i n v) ;

c r e a t e P (n , P) ;
c r e a t e G (k , n , G) ;

/ / Compute G 1 . . . G s−1
memset (g , 0 , s ∗ n ∗ BYTES(k)) ;
f o r (s i z e t i = 0 ; i < s−1; i ++)

r a n d o m m a t r i x (k , n , g [i]) ;

/ / Compute G s
m a t r i x a d d (k , n , G, g [s−1] , g [s−1]) ;
f o r (s i z e t i = 0 ; i < s − 1 ; i ++)

m a t r i x a d d (k , n , g [i] , g [s−1] , g [s−1]) ;

/ / Compute p u b l i c key Gi
memset (G pub , 0 , s ∗ n ∗ BYTES(k)) ;
memset (SG , 0 , s ∗ n ∗ BYTES(k)) ;
f o r (s i z e t i = 0 ; i < s ; i ++) {

m a t r i x m u l t i p l y (k , k , n , S , g [i] , SG[i]) ;
c r e a t e P i f r o m P (n , P , p [i]) ;
m a t r i x m u l t i p l y (k , n , n , SG[i] , p [i] , G pub [i]) ;

}

/ / Compute t h e i n v e r s e p e r m u t a t i o n
f o r (s i z e t i = 0 ; i < s ; i ++)

i n v e r t p e r m u t a t i o n m a t r i x (n , p [i] , P i n v [i]) ;
}

s t a t i c vo id c r e a t e S (s i z e t k , u i n t 8 t S [k] [BYTES(k)])
{

memset (S , 0 , k ∗ BYTES(k)) ;
do {

r a n d o m m a t r i x (k , k , S) ;
} whi le (r ank (k , k , S) != k) ;

}

s t a t i c vo id c r e a t e G (s i z e t k , s i z e t n , u i n t 8 t G[n] [BYTES
(k)])

{

48

memset (G, 0 , n ∗ BYTES(k)) ;
i d e n t i t y m a t r i x (k , n , G) ;

s i z e t Ki = 0 ;
s i z e t n i = k ;

f o r (s i z e t i = 0 ; i < NUMBER OF BLOCKS; i ++) {
Ki += B k [i] ;

f o r (s i z e t column = n i ; column < n i + B n [
i] ; column ++) {

u i n t 8 t random column [BYTES(k)] ;
f o r (s i z e t j = 0 ; j <= Ki / 8 ; j

++) {
random column [j] = r a n d r

(0 , 2 5 5) ;
}
B y t e w i s e O p e r a t i o n (xor , k , 0 , Ki , G[

column] , random column , G[column
]) ;

}
n i += B n [i] ;
}

}

s t a t i c vo id c r e a t e P (s i z e t n , u i n t 8 t P [n] [BYTES(n)])
{

unsigned i n t perm [n / L] ;
memset (P , 0 , n ∗ BYTES(n)) ;
r a n d o m p e r m u t a t i o n (n / L , perm) ;

f o r (s i z e t i = 0 ; i < n / L ; i ++) {
f o r (s i z e t j = 0 ; j < L ; j ++)

P [L ∗ i + j] [(L ∗ perm [i] + j) / 8] = 1 << (7 − (L ∗
perm [i] + j) % 8) ;

}

}

s t a t i c vo id c r e a t e P i f r o m P (s i z e t n , u i n t 8 t P [n] [BYTES(n
)] , u i n t 8 t P i [n] [BYTES(n)])

{
unsigned i n t perm [L] ;
memcpy (Pi , P , n∗BYTES(n)) ;
f o r (s i z e t i = 0 ; i < n / L ; i ++) {

memset (perm , 0 , L) ;
r a n d o m p e r m u t a t i o n (L , perm) ;

49

pe rmute co lumns (n , n , Pi , L , perm , i ∗ L) ;
}

}

/∗ −−−−−−−−−−−−−−−− E n c r y p t i o n / d e c r y p t i o n f u n c t i o n s
−−−−−−−−−− ∗ /

/ / TODO: Fix e r r o r v e c t o r i n p u t
void e n c r y p t (s i z e t k , s i z e t n , s i z e t s , u i n t 8 t G pub [s

] [n] [BYTES(k)] , u i n t 8 t m[BYTES(k)] , u i n t 8 t e [s] [BYTES(
n)] , u i n t 8 t c [s] [BYTES(n)])

{
memset (c , 0 , s ∗BYTES(n)) ;
f o r (s i z e t i = 0 ; i < s ; i ++) {

v e c t o r m a t r i x m u l t (k , n , m, G pub [i] , c [i]) ;
B y t e w i s e O p e r a t i o n (xor , n , 0 , n , c [i] , e [i] , c [i]) ;

/ / TODO: f i x e r r o r v e c t o r a p p l i c a t i o n
}

}

void d e c r y p t (s i z e t k , s i z e t n , s i z e t s , u i n t 8 t S i n v [k
] [BYTES(k)] , u i n t 8 t G[n] [BYTES(k)] , u i n t 8 t P i n v [s] [n
] [BYTES(n)] , u i n t 8 t z [s] [BYTES(n)] , L i s t ∗ d e c r y p t e d)

{
u i n t 8 t m[BYTES(k)] ;
u i n t 8 t y [BYTES(n)] ;
u i n t 8 t c p r i m e [s] [BYTES(n)] ;
L i s t L ;
l i s t i n i t (&L , k) ;

memset (c p r ime , 0 , s ∗BYTES(n)) ;
memset (y , 0 , BYTES(n)) ;

f o r (s i z e t i = 0 ; i < s ; i ++) {
v e c t o r m a t r i x m u l t (n , n , z [i] , P i n v [i] , c p r i m e [i]) ;
B y t e w i s e O p e r a t i o n (xor , n , 0 , n , c p r i m e [i] , y , y) ;

}

decode (k , n , G, y , &L) ;

f o r (s i z e t i = 0 ; i < L . s i z e ; i ++) {
v e c t o r m a t r i x m u l t (k , k , l i s t g e t (&L , i) , S inv , m) ;
l i s t a p p e n d (d e c r y p t e d , k , m) ;

}

50

l i s t f r e e (&L) ;
}

/∗ −−−−−−−−−−− Decoding f u n c t i o n s −−−−−−−−−−− ∗ /

s t a t i c vo id c r e a t e f i r s t b l o c k c a n d i d a t e s (L i s t ∗T0 , s i z e t
k , s i z e t n ,

u i n t 8 t G[n] [BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t y0
[BYTES(k)]) ;

s t a t i c boo l v a l i d c a n d i d a t e (s i z e t k , s i z e t n , u i n t 8 t G[n
] [BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t cand [BYTES(k)
] , s i z e t b l o c k) ;

s t a t i c vo id e x t e n d (L i s t ∗ next , s i z e t k , u i n t 8 t y0 [BYTES(k
)] , u i n t 8 t cand [BYTES(k)] , s i z e t b lock , s i z e t s t e p) ;

s t a t i c unsigned i n t l i s t d e c o d e (s i z e t k , s i z e t n , u i n t 8 t
G[n] [BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t y0 [BYTES(k)

] , L i s t ∗Lp , s i z e t s t a r t r o u n d) ;

void decode (s i z e t k , s i z e t n , u i n t 8 t G[n] [BYTES(k)] ,
u i n t 8 t y [BYTES(n)] , L i s t ∗Lp)

{
u i n t 8 t y0 [BYTES(k)] ;
memcpy (y0 , y , s i z e o f (y0)) ;
c r e a t e f i r s t b l o c k c a n d i d a t e s (Lp , k , n , G, y , y0) ;
l i s t d e c o d e (k , n , G, y , y0 , Lp , 1) ;

}

s t a t i c unsigned i n t l i s t d e c o d e (s i z e t k , s i z e t n ,
u i n t 8 t G[n] [BYTES(k)] ,
u i n t 8 t y [BYTES(n)] ,
u i n t 8 t y0 [BYTES(k)] ,
L i s t ∗Lp ,
s i z e t s t a r t b l o c k)

{
L i s t T ;
l i s t i n i t (&T , k) ;

p r i n t f (”L%zd = %zd\n ” , s t a r t b l o c k , Lp−>s i z e) ;

51

f o r (s i z e t b l o c k = s t a r t b l o c k ; b l o c k < NUMBER OF BLOCKS
; b l o c k ++) {

T . s i z e = 0 ;
f o r (s i z e t i = 0 ; i < Lp−>s i z e ; i ++) {

e x t e n d (&T , k , y0 , l i s t g e t (Lp , i) , b lock , 0) ;
}

Lp−>s i z e = 0 ;
f o r (s i z e t i = 0 ; i < T . s i z e ; i ++) {

i f (v a l i d c a n d i d a t e (k , n , G, y , l i s t g e t (&T , i) ,
b l o c k)) {

l i s t a p p e n d (Lp , k , l i s t g e t (&T , i)) ;

i f (SIGNATURE) {
l i s t f r e e (&T) ;
re turn 1 ;

}
}

}

p r i n t f (”L%zd = %zd\n ” , b l o c k + 1 , Lp−>s i z e) ;
}
l i s t f r e e (&T) ;

re turn Lp−>s i z e ;
}

s t a t i c vo id c r e a t e f i r s t b l o c k c a n d i d a t e s (L i s t ∗T0 , s i z e t
k , s i z e t n ,

u i n t 8 t G[n] [BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t y0
[BYTES(k)])

{
L i s t E K0 ;
l i s t i n i t (&E K0 , k) ;

u i n t 8 t s e e d e r r o r [BYTES(k)] ;
memset (s e e d e r r o r , 0 , s i z e o f (s e e d e r r o r)) ;

a l l e r r o r s (&E K0 , B k [0] , k , s e e d e r r o r) ;

f o r (s i z e t i = 0 ; i < E K0 . s i z e ; i ++) {
u i n t 8 t (∗ e) [BYTES(k)] = l i s t g e t (&E K0 , i) ;

B y t e w i s e O p e r a t i o n (xor , k , 0 , B k [0] , ∗e , y0
, ∗e) ;

i f (v a l i d c a n d i d a t e (k , n , G, y , ∗e , 0)) {
l i s t a p p e n d (T0 , k , ∗e) ;

52

}
}

l i s t f r e e (&E K0) ;
}

s t a t i c boo l v a l i d c a n d i d a t e (s i z e t k , s i z e t n , u i n t 8 t G[n
] [BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t cand [BYTES(k)
] , s i z e t b l o c k)

{
u i n t 8 t c a n d e n c o d i n g [BYTES(n)] ;

memset (c an d e n co d in g , 0 , s i z e o f (c a n d e n c o d i n g)) ;
s i z e t b l o c k s t a r t c o l u m n = k + sum (block , B n) ;

u i n t 8 t mask = 0 x f f >> (8−L) ;

f o r (s i z e t i = b l o c k s t a r t c o l u m n ; i <
b l o c k s t a r t c o l u m n + B n [b l o c k] ; i += L) {

f o r (s i z e t j = 0 ; j < L ; j ++)
c a n d e n c o d i n g [(i + j) / 8] ˆ= (s c a l a r p r o d (k , n ,

i + j , cand , G) << (7 − (i + j) % 8)) ;

u i n t 8 t s l i c e = ((c a n d e n c o d i n g [i / 8] ˆ y [
i / 8]) >> (6 − i % 8)) & mask ;

i f (s l i c e == mask) {
re turn f a l s e ;

}
}

re turn t r u e ;
}

s t a t i c vo id e x t e n d (L i s t ∗ next , s i z e t k , u i n t 8 t y0 [BYTES(k
)] , u i n t 8 t cand [BYTES(k)] , s i z e t b lock , s i z e t s t e p)

{
u i n t 8 t x [BYTES(k)] ;
memset (x , 0 , s i z e o f (x)) ;

i f (s t e p < B k [b l o c k]) {

memcpy (x , cand , s i z e o f (x)) ;
s i z e t s t e p s l i c e = sum (block , B k) + s t e p ;
u i n t 8 t y 0 k i m a s k = 0x3 << (6 − s t e p s l i c e

% 8) ;

53

/ / e = 00
x [s t e p s l i c e / 8] ˆ= (y0 [s t e p s l i c e / 8] &

y 0 k i m a s k) ;
e x t e n d (nex t , k , y0 , x , b lock , s t e p + 2) ;

/ / e = 01
x [s t e p s l i c e / 8] ˆ= (0 x55 & y 0 k i m a s k) ;
e x t e n d (nex t , k , y0 , x , b lock , s t e p + 2) ;

/ / e = 10
x [s t e p s l i c e / 8] ˆ= (0 x f f & y 0 k i m a s k) ;
e x t e n d (nex t , k , y0 , x , b lock , s t e p + 2) ;

} e l s e {
l i s t a p p e n d (nex t , k , cand) ;

}
}

/∗ −−−−−−−−−−−−−− S i g n a t u r e / v e r i f i c a t i o n f u n c t i o n s
−−−−−−−−−−−−−∗ /

s t a t i c vo id s i g n d e c o d e (s i z e t k , s i z e t n ,
u i n t 8 t G[n] [BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t x [

BYTES(k)]) ;

s t a t i c boo l s u r v i v e b l o c k (s i z e t k , s i z e t n , s i z e t Ki ,
s i z e t b lock ,
u i n t 8 t G[n] [BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t y0

[BYTES(k)] , u i n t 8 t x [BYTES(k)]) ;

s t a t i c vo id expand (s i z e t k , s i z e t Ki , s i z e t k i , s i z e t
ni ,
L i s t ∗L , u i n t 8 t y0 [BYTES(k)] , u i n t 8 t x [BYTES(k)]) ;

s t a t i c s i z e t e x p l i m i t (s i z e t n i)
{

re turn c e i l (pow (2 , n i) / pow (3 , n i / 2)) ;
}

unsigned i n t s i g n (s i z e t k , s i z e t n ,
u i n t 8 t S i n v [k] [BYTES(k)] ,
u i n t 8 t G[n] [BYTES(k)] ,
unsigned i n t i nv pe rm [n / 2] ,

54

u i n t 8 t z [BYTES(n)] ,
u i n t 8 t s i g n a t u r e [BYTES(k)])

{
u i n t 8 t x [BYTES(k)] , y [BYTES(n)] ;
memset (x , 0 , s i z e o f (x)) ;
memset (y , 0 , s i z e o f (y)) ;

u i n t 8 t ztemp [n] , ytemp [n] ;

/ / i n v e r s e permute z t o o b t a i n y
s i z e t j = 0 ;
f o r (s i z e t i = 0 ; i < BYTES(n) ; i ++) {
ztemp [j ++] = g e t b i t (z [i] , 0) ;
ztemp [j ++] = g e t b i t (z [i] , 1) ;
ztemp [j ++] = g e t b i t (z [i] , 2) ;
ztemp [j ++] = g e t b i t (z [i] , 3) ;
ztemp [j ++] = g e t b i t (z [i] , 4) ;
ztemp [j ++] = g e t b i t (z [i] , 5) ;
ztemp [j ++] = g e t b i t (z [i] , 6) ;
ztemp [j ++] = g e t b i t (z [i] , 7) ;

}

f o r (s i z e t i = 0 ; i < n / 2 ; i ++) {
ytemp [2 ∗ i] = ztemp [2 ∗ i nv pe rm [i]] ;
ytemp [2 ∗ i + 1] = ztemp [2 ∗ i nv pe rm [i] + 1] ;

}

f o r (s i z e t i = 0 ; i < BYTES(n) ; i ++) {
y [i] = (ytemp [8∗ i])<<7 | (ytemp [8∗ i + 1])<<6 \

| (ytemp [8∗ i + 2])<<5 | (ytemp [8∗ i
+ 3])<<4 \

| (ytemp [8∗ i + 4])<<3 | (ytemp [8∗ i
+ 5])<<2 \

| (ytemp [8∗ i + 6])<<1 | (ytemp [8∗ i
+ 7]) ;

}

s i g n d e c o d e (k , n , G, y , x) ;
v e c t o r m a t r i x m u l t (k , k , x , S inv , s i g n a t u r e) ;

re turn 1 ;
}

s t a t i c vo id s i g n d e c o d e (s i z e t k , s i z e t n , u i n t 8 t G[n] [
BYTES(k)] , u i n t 8 t y [BYTES(n)] , u i n t 8 t x [BYTES(k)])

55

{
s i z e t l i s t d e c o d e p o i n t = NUMBER OF BLOCKS − 1 ;
u i n t 8 t e0 [BYTES(k)] , y0 [BYTES(k)] ;
memcpy (y0 , y , s i z e o f (y0)) ;

L i s t L ;
l i s t i n i t (&L , k) ;

boo l v a l i d c a n d = f a l s e ;

whi le (! v a l i d c a n d) {
s i z e t Ki = B k [0] ;

memset (x , 0 , BYTES(k)) ;
/ / random error (0 , Ki , e0) ;
B y t e w i s e O p e r a t i o n (xor , k , 0 , Ki , y0 , e0 , x) ;

i f (v a l i d c a n d i d a t e (k , n , G, y , x , 0)) {
f o r (s i z e t b l o c k = 1 ; b l o c k <

l i s t d e c o d e p o i n t ; b l o c k ++) {
i f (! s u r v i v e b l o c k (k , n ,

Ki , b lock , G, y , y0 , x)
) {

goto NEW CANDIDATE;
}
Ki += B k [b l o c k] ;

}
L . s i z e = 0 ;
l i s t a p p e n d (&L , k , x) ;
v a l i d c a n d = (l i s t d e c o d e (k , n , G, y , y0 , &L ,

l i s t d e c o d e p o i n t) > 0) ;
}

NEW CANDIDATE : ;
}

memcpy (x , l i s t g e t (&L , 0) , BYTES(k)) ;
p r i n t f (” s i g n d e c o d e : L . s i z e = %zd\n ” , L . s i z e) ;
p r i n t f (” s e l e c t e d c a n d i d a t e :\ n ”) ;
p r i n t v e c t o r (s t d o u t , k , x) ;

l i s t f r e e (&L) ;
}

s t a t i c boo l s u r v i v e b l o c k (s i z e t k , s i z e t n , s i z e t Ki ,
s i z e t b lock , u i n t 8 t G[n] [BYTES(k)] , u i n t 8 t y [BYTES(n)

56

] , u i n t 8 t y0 [BYTES(k)] , u i n t 8 t x [BYTES(k)])
{

L i s t L ;
l i s t i n i t (&L , k) ;
expand (k , Ki , B k [b l o c k] , B n [b l o c k] , &L , y0 , x) ;

f o r (s i z e t j = 0 ; j < L . s i z e ; j ++) {
i f (v a l i d c a n d i d a t e (k , n , G, y , l i s t g e t (&

L , j) , b l o c k)) {
B y t e w i s e O p e r a t i o n (xor , k , Ki , Ki +

B k [b l o c k] , x , l i s t g e t (&L , j) ,
x) ;

l i s t f r e e (&L) ;
re turn t r u e ;

}
}

l i s t f r e e (&L) ;

re turn f a l s e ;
}

s t a t i c vo id expand (s i z e t k , s i z e t Ki , s i z e t k i , s i z e t
ni , L i s t ∗L , u i n t 8 t y0 [BYTES(k)] , u i n t 8 t x [BYTES(k)])

{
u i n t 8 t e k i [BYTES(k)] , expanded [BYTES(k)] ;

f o r (s i z e t i = 0 ; i < e x p l i m i t (n i) ; i ++) {
r a n d o m e r r o r (0 , k , e k i) ;
memcpy (expanded , x , s i z e o f (expanded)) ;
B y t e w i s e O p e r a t i o n (xor , k , Ki , Ki + ki , y0 , e k i ,

expanded) ;
l i s t a p p e n d (L , k , expanded) ;

}
}

boo l v e r i f y (s i z e t k , s i z e t n , u i n t 8 t G pub [n] [BYTES(k)] ,
u i n t 8 t z [BYTES(n)] , u i n t 8 t s i g [BYTES(k)])

{
u i n t 8 t y [BYTES(n)] ;

memset (y , 0 , s i z e o f (y)) ;
v e c t o r m a t r i x m u l t (k , n , s i g , G pub , y) ;
B y t e w i s e O p e r a t i o n (xor , n , 0 , n , y , z , y) ;
f o r (s i z e t i = 0 ; i < n ; i += 2) {

u i n t 8 t s l i c e = (y [i / 8] >> (6 − i % 8)) &
0x3 ;

57

i f (s l i c e == 0x3) {
p r i n t f (” Problem a t i = %zd\n ” , i) ;
p r i n t v e c t o r (s t d o u t , i + 2 , y) ;

re turn f a l s e ;
}

}

re turn t r u e ;
}

58

	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Terminology
	Objectives
	Methodology
	Limitations
	Outline

	Literature Review
	Classical cryptography under quantum computation
	Post quantum cryptographic paradigms
	Hash-based Cryptography
	Lattice-based Cryptography
	Multivariate Cryptography
	Code-based Cryptography

	The McEliece Cryptosystem
	St-Gen Code Based Cryptography
	Information Set Decoding attack
	Random split of St-Gen Codes

	Basic Theory
	Coding Theory
	Linear Binary Code
	The Hamming Code
	The Decoding Problem
	Goppa Codes
	Hard Problems

	Code Based Cryptosystem
	The McEliece cryptosystem
	Key Generation Procedure
	The Encryption Procedure
	The Decryption Procedure
	Analysis of the McEliece Cryptosystem

	The Niederreiter Cryptosystem
	Key Generation Procedure
	The Encryption Procedure
	The Decryption Procedure
	Analysis of the Niederreiter Cryptosystem
	The CFS Digital Signature Scheme

	The Staircase Generator Codes Cryptosystem
	Error Sets
	Staircase Generator Codes
	Key Generation Procedure
	The Encryption Scheme
	The Digital Signatures Scheme
	Analysis Of St-Gen Codes Cryptosystem

	Random Split of Staircase Generator Codes Cryptosystem
	Valid Error Splits
	Key Generation Procedure
	The Encryption Scheme
	The Digital Signatures Scheme
	Analysis of St-Gen codes cryptosystem with random split

	Experiment
	Design Choices
	Programming Language
	Data Structures and Interface

	Setup

	Analysis
	Correctness
	Efficiency

	Conclusion
	Bibliography
	Appendix

