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Summary
Wind turbines mounted on floating platforms are, under a specific set of cir-
cumstances, prone to a phenomena called control-induced resonance. The phe-
nomena materializes as persistent oscillations in the platform’s surge and pitch
displacement and occurs when pitch-control algorithms without modifications
for floating operation are used.

This thesis examines the physical underpinnings of the resonance problem by a
novel modeling strategy. A systems approach is adopted where the floating wind
turbine is conceived as an interconnection of subsystems. New aerodynamic
models suitable for a systems approach are proposed, validated and examined.
Notably, a vortex theoretical approach is shown to be fruitful both in the steady
and unsteady loading regimes. A new type of dynamic inflow model based on
vortex transport and frequency domain identification is proposed and compared
favorably to existing strategies. The vortex lifting law is used to generate a
succinct model for loads that fits into the systems representation and replaces
the commonly used table-data approach. A simplified dynamic model suitable
for control analysis is derived and validated against a standard tool in wind-
turbine analysis.

The system model developed in the first part of the thesis is used for a small-
signal stability analysis invoking passivity tools in the second part. It is shown
that floating wind turbines are stable under quite general conditions as long
as no pitch control is applied. If collective blade pitch is used for the sole
purpose of setpoint control of the angular velocity, destabilization is shown to
be inevitable. An examination of the energy flow within the wind turbine system
motivates a novel "energy shaping" control strategy. Existing control strategies
are also examined in the new paradigm. A case study of a representative 5MW
wind turbine is performed. The resonance phenomena is demonstrated under
realistic conditions. A number of control strategies are tested and compared.
The "energy shaping" control strategy is shown to perform well and eliminates
the control-induced resonance. Justification for the results are given based on
the theory developed in the thesis.
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1. Introduction

Developments in the last decades have made it clear that wind turbines will
be one of the major technologies in the effort to provide clean energy. An
encouraging read is found in [1]. In 2015 wind power supplied more new power
generation than any other technology. The total installed capacity in 2015 was
433GW of which no less than 17% was added in the same year. This growth is
expected to continue in the coming years.

A host of challenges have arisen as an increasing number of turbines are
erected throughout the world. Some examples are noise from turbine parks,
visual pollution and lack of space. Offshore wind power will help alleviate many
of these problems. An offshore wind turbine’s noise will not reach the shore and
there is plenty of space in which to situate them.

In the year 2015 a total of 3.4GW of offshore generating capacity was installed
in the form of 419 new turbines. This brought the total offshore generating
capacity to 12GW. Due to the need for supports of fixed or floating type, the
purchase price of offshore wind turbines will inevitably be higher than their
onshore counterparts. The need for additional electric infrastructure also adds
to the investment. But, the greater initial investment is offset by higher average
wind speeds and lower turbulence when compared to conditions on land [2].

A new approach to offshore wind turbines has been to dispense with the
need for fixed foundations altogether; accomplished by attaching the turbines
to floating hulls anchored to the seabed. This technology will extend the area
turbines can be deployed as one will be far less constrained by the sea-depth.

Several concepts currently exist, see Figure 1.1 for a number of examples.
Few of these have made their way to the prototype stage. An exception is
the HYWIND turbine, a concept that utilizes a spar-buoy type hull to provide
buoyancy. The first prototype is at the time of writing in operational deployment
outside Karmøy. It would appear that the testing has been successful, a 30MW

park is planned for 2017 [3].

1.1. Control-induced resonance
The introduction of floating platforms represents a challenge in the design of au-
tomatic control. Some particular problems seemingly specific to floating opera-
tion have arisen, most notably a control-induced resonance phenomena. Control-
induced resonances in floating wind turbines were first described in Nielsen et al.
[4]. The resonances took the form of severe oscillations in platform surge and

1



1. Introduction

A B C

Figure 1.1.: Some concepts for floating foundations [2]. A: Barge platform, B: Tension Leg
Platform, C: Spar-Buoy.

pitch and were seen to occur when the wind turbine was operating at high wind
speeds where pitch control was active.

Above a certain wind speed, the available wind energy exceeds the maxi-
mum generating capability of the turbine and pitch control is applied to limit
the uptake of wind power. The resonances were thus seen to stem from an
unfortunate interaction between a power-limiting pitch control and a floating
foundation. Specifically, pitch control was seen to induce negative damping
in surge and pitch1 for the floating platform. The resonance phenomena was
thus linked to the naïve application of a pitch-controller designed for land-based
turbines to a floating turbine.

The authors of this first report managed to counteract the resonances using
feedforward from the platform pitch with validation from both experiment and
simulation. Following Nielsen et al. [4], several subsequent papers addressed the
resonance problem and proposed improved control strategies.

In [5] the pitch controller was intentionally made slower to limit interaction
with the floating foundation. This was done by placing the regulator bandwidth
below the resonance frequencies of the system. The rigid body resonance fre-
quencies of a floating wind turbine are placed well below the peak of the wave
spectrum2. An inevitable consequence is natural frequencies of motion with
rather long periods, a distinguishing feature of floating operation. Although
this less aggressive control was somewhat successful in ameliorating the reso-

1The wind direction falls along the surge direction.
2This is done to limit wave-excited resonances.

2



1.1. Control-induced resonance

Figure 1.2.: HYWIND is towed into place. Photo: Øyvind Hagen, Statoil.

nances, the controller was no longer able to satisfactorily govern the rotor speed,
nor was it able to provide adequate power quality.

In [6] a variety of methods were levied on the resonance problem, including
a tower acceleration feedback, pitch-to-stall operation as well as controller "de-
tuning"3. None of the applied methods provided truly satisfactory performance.

Linear multivariable control techniques have been successfully applied to the
problem of dampening the resonances and a benchmark exercise may be found in
Namik and Stol [7]. These authors subsequently derived methods for individual
pitch control in [8].

Recent work has shown that more complex controllers do not necessarily yield
the best performance. Indeed, in [9, 10] a simple algorithm referred to as variable
power collective pitch control achieved good overall performance based on simple
heuristic arguments.

The most sophisticated methodology to appear so far is perhaps the nonlinear
model predictive controller appearing in Schlipf et al. [11]. While effective, the
approach requires significant computational resources and does not seem readily
applicable in todays turbine systems.

One of the most interesting documents related to the instability phenomena
is the patent described in Skaare and Nielsen [12]. Here, a simple control system
injecting damping through an augmented angular velocity reference is described.
One may speculate that the methodology described therein has been a key factor
in the successful testing of HYWIND. This method will be examined closely in
Chapter 5.

3This notion implies a reduction of controller bandwidth.
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1. Introduction

1.2. Motivating example
A simple explanation for the control-induced resonance problem can be fur-
nished by an argument from conservation of energy. The wind turbine rotor is
equipped with a rotational kinetic energy described by

K(⌦) , J⌦2/2 (1.1)

The rate of change of this internal energy is equal to the difference between the
absorbed wind power P and the power dissipated in the generator4 E = QE⌦ ,
viz.

˙K = P � E (1.2)

Under somewhat idealized conditions, the absorbed wind power will assume the
form

P = F (w
air

� ẋ) (1.3)

Here F represents the backwards thrust and w , w
air

� ẋ the relative flux
though the rotor disk. This is a simple statement of power (P ) being equal to
effort (F ) times flow (w

air

� ẋ). An energy balance can now be used to model
the dynamics of the rotor as

J⌦ ˙⌦ + E ⇡ F (w
air

� ẋ) (1.4)

The chief utility of this equation is that it connects the force to the angular
velocity and power production whilst sidestepping most of the complexities of
the aerodynamics. Note that the force F and airflow w

air

can always be assumed
to be positive for wind engineering applications. Be aware that the energy
balance used above is only an approximation, it will be shown that dissipation
mechanisms absent from (1.4) play a small but non-negligible role.

As will now be demonstrated, (1.4) is capable of recreating the resonance
phenomena. Existing research suggests that two conditions must be met for the
control-induced resonance phenomena to materialize. The conditions and their
implications for (1.4) are itemized below.

1. The angular velocity is constant, or nearly so. This implies that the kinetic
energy satisfies ˙K ' 0.

2. The electrical power extraction is constant, or nearly so. This implies that
the electrical power satisfies E ' E0 where E0 is constant.

As mentioned above, the resonance phenomena materializes when pitch control
is utilized. Pitch control is often used for setpoint regulation of the angular
velocity ⌦ . The primary objective is to avoid overspeed and maintain steady
operation at high wind speeds. Effective setpoint regulation implies that the

4The shaft torque QE accounts for heat losses and frictional dissipation in the gearbox. This
means that E > PE where PE represents the electrical power of the generator.

4



1.2. Motivating example

F

wair ẋ

Figure 1.3.: First approximation of a floating wind turbine.

angular velocity remains in the vicinity of a constant reference for a well func-
tioning control implementation, that is ˙K ' 0. Whilst pitch is used to regulate
the angular velocity, torque control is used to regulate the power. When the
available wind power exceeds the capacity of the wind turbine generator, a typ-
ical control objective is to extract a nearly constant electrical power with little
fluctuations. Essentially, this amounts to a control-induced power saturation.
A consequence, again contingent on an effective implementation, is that the
electrical power reduces to a constant E ' E0.

It appears that the simultaneous control objectives of setpoint regulation and
power saturation are the main culprits behind control-induced resonance. If the
preceding reasoning is correct, an appropriate specialization of (1.4) capable of
reproducing control-induced destabilization should read as

E0 ⇡ F (w
air

� ẋ) (1.5)

Solving for the force yields the nonlinear model

F ⇡ E0

w
air

� ẋ
=

E0

w
air

+

F

w
air

ẋ (1.6)

Inspection of (1.4) reveals that the pitch enters through the force F being absent
elsewhere. The preceding equation therefore identifies the force generated by a
pitch controller realizing perfect setpoint regulation.

The floating platform exemplified in Figure 1.3 can be modeled notionally as
a driven harmonic oscillator

ẍ+ 2⇣!nẋ+ !2
nx = m�1F (1.7)

5



1. Introduction

Here, m represents the effective inertia of the platform, !n the undamped natural
frequency whereas ⇣ denotes the damping factor. Combining equations reveals
the core of the problem; negative damping has been introduced through ill-
designed automatic control.

ẍ+

✓
2⇣!n � F

mw
air

◆
ẋ+ !2

nx =

E0

mw
air

(1.8)

It is possible to extract more insight from the preceding equation. The steady-
state displacement of the nacelle follows from the formula

x̄ =

¯F

m!2
n

(1.9)

The bar symbol here indicates equilibrium values for the displacement and
thrust. An approximate effective damping factor follows as

⇣
eff

= ⇣ � ⇣
cid

, ⇣
cid

=

x̄!n

2w̄
(1.10)

The destabilizing effect is seen to scale linearly with the resonance frequency
and surge displacement, but inversely with the airspeed.

First res. !n [rad s�1] Nacelle disp. x̄ [m] ⇣
cid

Land 2.04 0.2 0.012

Spar 0.20 6.6 0.039

TLP 0.16 11.2 0.052

Table 1.1.: Control-induced destabilization of a representative 5MW wind turbine [13] quan-
tified by a negative damping factor. The table compares the effective negative
damping associated with a fixed foundation, a spar buoy and a tension leg plat-
form.

The damping factor due to control-induced destabilization ⇣
cid

is a dimen-
sionless number. It can therefore be used to quantify how susceptible various
platform designs are to the destabilization phenomena. Some rough estimates
are given in Table 1.1 which shows the 1st resonance frequency !n (pitch for
the spar platform, surge for the TLP) in nacelle displacement x̄ at a wind speed
of 17m s

�1 for a selection of platform designs. The numbers for the land-based
design are found in [13]. The numbers for the floating designs are based on
model tests found in Goupee et al. [14]. Floating support structures experience
significant deflections in pitch, so the nacelle deflection is based on the formula
x̄ =

¯X +

¯✓h where ¯X[m] describes surge at the free surface, ¯✓[rad] the pitch and
h = 90m the nacelle height over the still water line (SWL). The wind speed

6



1.3. A sketch solution

is used to estimate the flow rate w̄. Based on these numbers it appears that
floating wind turbines will suffer more from control-induced destabilization than
their land-based counterparts. But, fixed-base wind turbines are also destabi-
lized. The difference is that the negative damping is less likely to manifest itself
as outright instability. It is interesting that ⇣

cid

is such a small number even for
the floating designs. Control-induced destabilization is a subtle phenomena and
the system’s intrinsic damping must be low before concern is warranted.

1.3. A sketch solution
The energy-based methodology used in Section 1.2 to demonstrate the control-
induced resonance problem can also be used to identify a solution. Sufficient
conditions for destabilization were identified as a fixed kinetic energy ˙K = 0

and a constant power extraction E = E0. These conditions can be removed by
permitting suitable variations in ˙K and E. A very simple way of doing this is
to let the power vary as

E(⌦) =

⌦

⌦0
E(⌦0) (1.11)

Here, ⌦0 is the desired setpoint for angular velocity. The wind turbine system
can subsequently be forced onto a stable manifold given by

˙K + E(⌦)� E(⌦0) + F ẋ = 0 (1.12)

Returning to (1.4), one arrives at

E(⌦0) ⇡ Fw
air

(1.13)

The force can now be extracted as

F =

E(⌦0)

w
air

(1.14)

Comparison to (1.6) reveals that the destabilizing feedback from ẋ is gone and
the problem is apparently solved.

Chapter 5 will demonstrate that the preceding "solution" is correct in princi-
ple but that a higher feedforward from ẋ is warranted due to the vortical wake
discussed in Chapter 3. The idea presented here is but one way of avoiding
control-induced destabilization. However, it appears that most existing method-
ology can be boiled down to different means of achieving variations in the kinetic
energy and extracted power. Indirect methods such as controller detuning [6]
achieves this by impairing the disturbance rejection in ⌦ so that ẋ can prop-
agate through to ˙K. Direct methods such as the one found in the HYWIND
patent [12] actively regulates ⌦ to achieve a result similar to (1.12). This will
be demonstrated in Chapter 5.

7



1. Introduction

1.4. Research agenda

Primary research questions
The research described in this work aims to answer the following primary ques-
tions. All addressing control-induced resonance and how to avoid it, even reverse
it.

Question 1: What are the necessary conditions for destabilization and what is
the magnitude of the problem? Answering this question will confine the
scope of the problem and focus efforts where they are needed.

Question 2: What is the efficacy of previously described solutions and how do
they compare? Answering this question will permit recommendations to
be made about the best control strategy but also provide a benchmark for
improved methods.

Question 3: Can improved control strategies be found and described? There
is no reason to suppose that the optimal solution to control-induced res-
onance has been identified. Improved control strategies may extend the
life-span of existing installations and/or improve power delivery. On a
more speculative note, less conservative and hence less expensive platform
designs could perhaps be considered with improved stabilization meth-
ods. The possibility of reversing the control-induced resonance phenomena
through active damping injection is considered as part of this question.

Although the questions raised above are aimed primarily at floating designs,
the numbers in Table 1.1 indicate that their resolution could have application
to land-based designs as well.

Scope
In order to make headway, a number of simplifying assumptions and approxi-
mations will be made. The most central ones are itemized below.

Assumption 1: The relative flow through the rotor plane is purely axial5. This
approximation neglects a variety of effects such as (1) rotor pitch and yaw
offset with respect to the incoming wind, (2) wake swirl and (3) nonzero
rotor pitch, yaw, sway, heave and roll rates. An itemized justification for
these omissions is given below.

1. Pitch offset is small by design and can be expected to stay small
enough to be negligible even for floating platforms. The yaw off-
set is actively sought removed by automatic nacelle control, hence
negligible.

5The axis in question is given by the rotor’s angular momentum vector.

8



1.4. Research agenda

2. Wake swirl describes the fluid’s reaction to an applied torque and
gives a rather small effect in modern wind turbines.

3. The neglect of rotor pitching is justified in Figure 1.4 where it is
argued that the effects of platform pitch are well represented by an
effective rotor surge motion. The dominant forcing F will take place
normal to the rotor disk hence justifying omission of the remaining
degrees of freedom.

CoM

Figure 1.4.: Floating wind turbines can be expected to have a center of mass located well
below the nacelle. The small shaded area on the right indicates that platform
pitching is well approximated by a simple horizontal displacement of the rotor.

Assumption 2: The rotor/drivetrain are inelastic. Table 1.1 is based partially
on results given in [13]. This report also describes frequencies associated
with blade bending modes for the 5MW wind turbine in question. The
lowest frequency mode associated with blade deformation is the 1st asym-
metric flapwise yaw and pitch at ! = 4.19 rad s�1. This is more than one
order of magnitude higher than the platform modes described in Table 1.1
and suggests that blade elastics and the motion of the floating platform
can be considered time-scale separated and hence amenable to individual
treatment. The assumption of an inelastic drivetrain is more tenuous but
adopted for reasons of simplicity.

Assumption 3: The platform and tower’s deformation/displacement are well
described by linear elasticity theory and linear hydrodynamics. Linear elas-
ticity theory can be assumed to hold under the assumption of small struc-
tural motion. Linear hydrodynamics discards higher order wave loading
and viscous drag and also misrepresents the forces induced by large am-
plitude motion. Nonlinear effects are important in the horizontal motion
of moored structure and in severe sea states [15], both salient for floating
wind turbines. However, a nonlinear description is too complicated in the
present setting.

9



1. Introduction

The assumptions and simplifications detailed above are extensive. This could
lead to concern that the modeling will result in crude approximations and over-
simplified representations. However, experimental validation and general pre-
dictive power will indicate that this is not so. The reader will find that the
remaining physics are quite daunting in their own right.

The preceding list itemized simplifications used to facilitate the production
of results. The nature of the results will also have a limited scope.

Limitation: Small signal analysis. The bulk of the analysis and the atten-
dant results are based on first order perturbation analysis around steady
equilibrium points.

1.5. Solution approach
The general approach used to resolve the primary research questions is briefly
recounted below. It will be necessary to introduce novel models at some stages
of the analysis. This gives rise to a set of secondary research questions. Some
context is now given to motivate these problems while introducing key facets of
the general solution strategy.

The energy balance (1.4) will serve as a cornerstone in the analysis undertaken
below. After all, it led to an immediate solution of the resonance problem in
Section 1.3, albeit in a conceptual form. But, the approximation given in (1.4)
glossed over a number of conceptual difficulties.

• What constitutes the energy transfer mechanism converting the product
P = wF into E = QE⌦?

• Are there other effects that contribute to the overall balance, such as
dissipative mechanisms?

• Where does the blade pitch control enter the scene?

• The airflow w
air

must necessarily be disturbed by the presence of the
power-extracting wind turbine; what are the appropriate physics for this
effect?

These fundamental questions must be resolved if the energy balance (1.4) is to
be used. This is possible, and another cornerstone can be laid; flipping (1.4) on
its head produces the formulae

F =

J⌦ ˙⌦ + E

w
) �F = �

¯F

w̄
�w +

J ¯⌦� ˙⌦ + �E

w̄
(1.15)

The first order perturbation shown on the right hand demonstrates that the
energy balance can be construed as a dynamic system taking flow perturbations
�w, changes in the angular velocity �⌦ and generator power �E into a force
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⌃

i

⌃⌦

⌃

x

�F�w�w0

�w

i

�ẋ

�

�

Inflow

Rotor

Structure

Figure 1.5.: The floating wind turbine as a feedback structure. Here ⌃⌦ corresponds to the
equations given in (1.15). The wind-speed w0 serves as an exogenous input.

perturbation �F . The flow perturbation will be considered as the input while
�⌦ and �E are construed as the effect of internal dynamics. Interpreting �F as
an output gives rise to the rotor subsystem illustrated in Figure 1.5. One can
assume that the major contributor to platform motion is the thrust force. A
hydroelastic module taking �F as input and generating a nacelle motion �ẋ as
output can thus be used to represent the platform mechanics. As will be shown,
the disturbance in the airflow is well modeled by a dynamic system taking force
perturbations into inflow perturbations �wi. The emerging picture is shown in
Figure 1.5.

The chief benefit of a modular model is that it permits abstraction from the
underlying details. One can therefore redirect one’s focus to properties of a
more general nature. In stability analysis two such properties have acquired
special significance, namely Lp-gain and passivity. Interconnected plants, such
as the one depicted in Figure 1.5, permits the use of these properties through
the famous small-gain theorem and/or a suitable passivity theorem.

The motivating example in Section 1.2 suggests that the control-induced reso-
nance phenomena arises due to unintended energy transfer (negative damping)
into the platform system. In control theoretical parlance this implies a net
positive supply rate over the terminals (�ẋ, �F ). Combining this insight with
the feedback structure shown in Figure 1.5 suggests that a natural theoretical
framework for studying the control-induced resonance problem is furnished by
passive systems and its frequency domain counterpart of positive real systems
[16]. Passivity theory can be used to make very general statements about in-
terconnected systems subject to the properties of the constituent subsystems.
While it is possible to conduct the analysis on a case-by-case basis using stan-
dard tools from linear control theory, the generality afforded by the passive
interconnection theorems is very attractive.

Passivity based analysis of wind turbines is previously described in the liter-
ature. Monroy et al. [17] utilizes passivity tools to regulate the generator of a
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1. Introduction

wind turbine. Another example of a work focusing on the electrical subsystem
is Fernández et al. [18]. In Valenciaga et al. [19] a passivity based algorithm was
used to regulate wind power in a hybrid wind/solar generating system. A com-
mon denominator in these and other works is a reliance on coefficient models
(see Chapter 2) for the aerodynamics and a focus on the electrical components
of the wind turbine system.

Models with properties salient for passivity based analysis will be sought for
each of the subsystems in Figure 1.5. This includes the aerodynamic theory
which has not been treated in this manner before. Previously described theory
can be used to describe the floating structure. It is well known that floating
platforms may be modeled as passive systems, see e.g. Fossen [20]. In order
to limit the scope of the thesis, the electrical subsystem will be described only
notionally. However, the cited works indicate that this model component is
compatible with the present approach.

With a suitable model at hand, passivity tools can be employed to propose
control strategies for the floating wind turbine. A well developed theory facil-
itates this task, see e.g. Brogliato et al. [16], Khalil [21] and Van der Schaft
[22].

Secondary research questions
Additional physics must be introduced in order to facilitate a passivity based
analysis of the wind turbine system. The main questions that must be addressed
are itemized below.

Question 4: Can the platform subsystem taking force into nacelle motion be
represented as a passive system? Note that this question includes the
impact of hydrodynamic forces.

Question 5: How can the inflow wi be modeled dynamically6 and what are the
passivity properties of the resulting system? Answering this question will
permit a passivity based examination of the full wind turbine system. New
science will also result since the passivity properties of the inflow system
does not seem to have been addressed in the literature. It should be noted
that simplified wind turbine analysis usually relies on the quasistatic as-
sumption, stipulating that the inflow wi will arrive at its equilibrium value
instantaneously, see e.g. Bianchi et al. [23]. A successful resolution of
Question 5 will therefore allow an assessment of this ubiquitous assump-
tion.

Question 6: How can the energy balance be realized with an explicit parametric
model? Answering this question will permit quantitative analysis, includ-
ing the positing of various physical bounds and equalities. This problem
will turn out to be closely related to Question 5.

6A solution to the static modeling problem is well known.
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1.6. Outline with key results

Note that Question 5 has been addressed quite extensively in the literature where
a broad variety of models can be found. However, existing methods do not seem
suitable in the present setting. Simple model such as the acceleration potential
methods in Van Bussel [24] or Peters and HaQuang [25] seem to under-predict
the time-constants associated with the wind turbine inflow. On the other hand,
more accurate models such as Øye’s vortex model makes excellent predictions
but is ill suited for analysis purposes. The new model presented here combines
the benefits of the cited works whilst exhibiting clear passivity properties. It
also dovetails nicely with other aspects of the new theory. Justification for these
statements can be found in Chapter 3 and Chapter 4.

1.6. Outline with key results
An outline of the thesis is given by chapter below.

1 - Introduction
The introduction provides background on the problem of control-induced reso-
nance in floating wind turbines. It is shown that the underlying physics are well
captured by a simple energy balance. A tentative control strategy is proposed.
The scene is set for the main thrust of the thesis; passivity based analysis of a
turbine model in the guise of an interconnected structure.

Novel results

1. The energy balance ˙K + E = Fw is used to (1): identify conditions for
the control-induced resonance phenomena and (2): demonstrate a new
approach to the stabilization of floating wind turbines.

2 - Rudiments of Wind Engineering
This chapter introduces some basic concepts used in the modeling of wind tur-
bines. The control task is described and some basic solutions are presented.
Necessary background for Chapter 3 is also given. Limitations inherent in stan-
dard engineering models used for control design are discussed.

Contributions

Merz and Pedersen [26] provides an in-depth look at practical implementation
of wind turbine control systems with a special emphasis on structural dynamics.

13



1. Introduction

3 - Dynamic Vortex Theory
This chapter utilizes Joukowsky’s rotor and the vectorial vortex lifting law to
reduce the wind turbine’s aerodynamic loading equations to a lossless circulatory
interconnection structure shown below.
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The inflow generated by the wake is treated in a dynamic setting by combining
concepts from classical hydrodynamics (vortex rings) and signals analysis (im-
pulse response). It is shown that the theory reduces exactly to Rankine-Froude
momentum theory at steady state. Analogues are also struck with other rotor
theories. A reduced time is introduced to permit a frequency domain analysis
of the inflow dynamics. The underlying physics in Øye’s vortex model are given
a firm theoretical basis. Frequency domain identification is utilized to derive a
state space representation of the vortical wake. A first order model is derived
as a low frequency limit of the general theory and compared to existing models
of similar structure. Secondary research question 5 is resolved in this chapter.

Novel results

1. The feedback structure inherent in vortex based rotor models is uncovered.

2. A new analytical dynamic inflow model is derived based on conservation
of momentum and vortex ring considerations.

3. A central, but hitherto unknown object referred to as the wake admittance
Q is uncovered and interpreted.

4. The passivity properties of the inflow model are established.

5. A high fidelity lumped nonlinear state-space realization is proposed and
validated against the exact model.

6. An exact low frequency limit of the general theory is derived and given
the form of a first order nonlinear ODE.

Contributions

Pedersen [27] describes the theoretical basis and key results in this chapter.

4 - Engineering model
This chapter serves to connect the idealized DVT model of Chapter 3 with
practical applications. Drag and tip loss corrections are introduced to represent
dissipative effects. The ��-parametrization of the wind turbine loading equa-
tions is presented. This method permits existing table data to be converted for
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1.6. Outline with key results

use in the vortex-theoretical paradigm. An equivalent airfoil method is used to
compress two-dimensional table data into one-dimensional curves with a clear
physical interpretation. Interestingly, wind turbines are shown to be equipped
with a region of linear lift as well as global stall limits. The results in Chap-
ter 3 and Chapter 4 are validated against experimental data from the Tjæreborg
wind turbine. Finally, simplifications are made that result in a nonlinear para-
metric rotor model with only two tuning parameters. This model is validated
against results from a BEMT7 engineering code. Secondary research question 6
is resolved in this chapter.

Novel results

1. A new ��-parametrization is proposed that can condense two dimensional
coefficient data into equivalent one dimensional lift and drag curves.

2. A nonlinear parametric rotor model is derived. The model is shown to
be capable of representing VPVS8 wind turbines over the full operational
envelope.

Contributions

Pedersen and Fossen [28] describes many of the key ideas presented in this chap-
ter. However, the paper also illustrates how the methodology can be extended
to six degrees of platform motion.

5 - System Analysis
The models developed in the thesis are gathered in the form of a feedback
structure and a passivity based stability analysis is conducted. The stability of
wind turbines in open-loop9 is given a general characterization using properties
of the parametric model of Chapter 4. An indirect analysis utilizing concepts
from classical control theory is used to examine closed-loop dynamics. The
inevitable destabilization associated with feedback control using pitch actuation
is demonstrated and discussed. A simulation case study is furnished to illustrate
predictions of the theory. By virtue of the model, a simple fix for existing control
algorithms can be proposed in the form of an energy shaping reference signal.
This control law reverses control-induced destabilization for any wind turbine
satisfying the underlying approximations and simplifications in the feedback
model. The soundness of the new method is demonstrated through a case study
of a large wind turbine mounted on a floating platform. Comparisons are made
to other methods appearing in the literature. Research questions 1-3 find their
resolution in this chapter.

7Blade element momentum theory.
8Variable speed, variable pitch
9Implying the absence of collective blade pitch control.
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Novel results

1. A wind turbine is analyzed as a feedback structure using passive systems
theory.

2. Open loop stability is demonstrated for VPVS wind turbines mounted on
elastic support structures.

3. The control-induced resonance problem is identified as an inevitable con-
sequence of setpoint regulation using collective pitch actuation.

4. An energy shaping control algorithm is proposed that reverses the control-
induced resonance phenomena.

6 - Conclusions

A - Hydroelastic model
This chapter employs the hydrodynamic analysis in Damaren [29] along with a
structural model based on classical mechanics to show that a linear hydroelastic
model of the floating platform can be expected to obey passivity. Secondary
research question 4 is resolved in this chapter.
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1.7. Symbols and Conventions

1.7. Symbols and Conventions

Symbol Units Description
x m Nacelle (tower top) horizontal displacement
F N Aerodynamic thrust force
Q Nm Aerodynamic torque
P W Aerodynamic shaft power (⌦Q = P )

⌦ rad s

�1 Angular velocity of the rotor
K J Kinetic energy of the rotor
QE Nm Generator shaft torque (⌦QE = E)

E W Generator shaft power
w0 ms

�1 Wind speed
wi ms

�1 Inflow
w ms

�1 Relative axial flux (w = w0 � wi � ẋ)
w

air

ms

�1 Airflow (w = w0 � wi)

J kgm

2 Rotor moment of inertia
� m

2
s

�1 Circulation
� ms

�1 Dissipation factor
⇢ kgm

�3 Air density
N Number of blades
R m Rotor radius
` m Length scale (2BR/3)
A m

2 Swept area (A = ⇡R2)
p kgm

�1
s

�2 pressure
L N Airfoil lift
D D Airfoil drag
a Inflow factor (wi/w0)
� Tip speed ratio (⌦R/w0)
CT Thrust coefficient
CQ Torque coefficient
CP Power coefficient
B Tip loss factor
Jn Bessel function of the first kind
Q Wake admittance
s Laplace variable
� Reduced Laplace variable
µ Inertia coefficient
� rad Collective pitch angle
u rad Bias corrected pitch input (� � �⇤)
V ms

�1 Onset flow
↵ rad Angle of incidence
� rad Inflow angle
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1. Introduction

Some frequently used monikers are given below.

()⇤ Point of optimal power extraction
()

+ Upper limit
()

� Lower limit
()p Tip loss corrected
¯

() Equilibrium point
�() Perturbation

For matrices, the following symbols will be utilized

M � 0 Positive definite
M ⌫ 0 Positive semidefinite

Averaging convention The relative flow w is used in an averaged sense.
Nominally, the aerodynamic flux through the rotor is spatially nonuniform. Let
the underlying axial flux through the rotor be decomposed as

ŵ(r, ✓, t) = w(t) + w̃(r, ✓, t) (1.16)

Here, the term w̃(r, ✓, t) absorbs variations across the blade radius r and az-
imuthal angle ✓. The averaged flow used in the model is defined as a weighed
integral taken over the blade radii of the turbine blades. Let the i’th blade
be located at the azimuthal angle ✓(t) = ✓i(t). For N blades, the following
convention applies.

Definition 1.1 (Averaged flux).

w(t) , 1

AN

NX

i

Z R

0

ŵ(r, ✓i, t) 2⇡rdr (1.17)

An immediate corollary is that the perturbation term satisfies

0 =

1

AN

NX

i

Z R

0

w̃(r, ✓i, t) 2⇡rdr (1.18)

This notational convention will also be used for other distributed quantities such
as pressure and the axial blade/platform deformation.

18



1.7. Symbols and Conventions

(r, ✓)
er
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z

w

Figure 1.6.: Cylindrical coordinate system. The notion of "axial" is a shorthand for parallel

to ez.
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2. Rudiments of Wind Engineering

This chapter serves the dual purpose of introducing the basic theory
of wind turbine aerodynamics whilst furnishing some important re-
lations to be used in the following chapters. Analysis tools such as
Rankine-Froude Momentum theory are recounted with an eye to de-
velopments in Chapter 3. Modeling practice in wind engineering is
discussed. A brief exposition of wind turbine control systems is also
given.

2.1. Introduction
Wind turbines are devices designed to convert the linear momentum of the
wind into a shaft torque so that power may be extracted via a generator. The
aerodynamic theory of wind turbines is customarily divided into two problems.

The inner problem details the aerodynamic force production over the blades
subject to the relative flow impinging on the foil sections.

The outer problem examines how the ambient flow reacts to the applied
loading in the form of a modification to the relative flow.

In keeping with wind engineering conventions, let the inflow enter the airflow
as a negative feedback, viz.

ŵ
air

(r, ✓, t) = ŵ0(r, ✓, t)� ŵi(r, ✓, t) (2.1)

Here, ŵi denotes the inflow whereas ŵ0 denotes the wind speed. The hat signifies
that distributed fields are considered, see Section 1.7 for details on the notational
convention.

The inner problem is usually treated using Prandtl’s lifting line approxima-
tion, permitting each section along the span to be treated in isolation with a
two-dimensional foil model. The outer problem is typically solved with momen-
tum theory or vortex theory, even CFD sees application.

2.2. The wind resource
The wind field exhibits significant spatial and temporal variability. An idea
of the temporal variability can be gleaned from Figure 2.1 which shows the
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2. Rudiments of Wind Engineering

Figure 2.1.: A power spectrum of the horizontal wind speed measured at Brookhaven Na-
tional Laboratory at about 100m. Facsimile from Van der Hoven [30].

power spectrum of the wind speed garnered from measurements at Brookhaven
National Laboratory.

The peak at low frequencies is the so-called synoptic peak associated with
long-term variations in the weather systems. (This peak is located at a period
of about 4 days). Diurnal variations give rise to the second peak in the curve.
A band-gap is evident at variations with hourly periods and is followed by the
last turbulent peak. The gap separating the diurnal and turbulent peaks means
that one can construe the wind speed as the superposition of a slowly varying
component wmean

0 and an additive turbulent component wturb

0 . On time-scales
salient for automatic control and simulation it is permissible to write

w0(t) = wmean

0 + wturb

0 (t)

Note that the preceding equation describes an averaged flux defined in accor-
dance with (1.17).

There are a multitude of models aimed at describing the turbulent power
spectrum, see e.g. Burton et al. [31]. Assuming a point measurement, the von
Karman Spectrum is often recommended [32]. This spectrum may be repre-
sented by shaped white noise v(t), as done in Welfonder et al. [33]. Spectral
factorization gives the representation shown below.

SK(!) = G(|!)G(�|!)Sv(!), G(|!) =
�
q

0.475L
wmean

0

⇣
1 +

|!L
wmean

0

⌘5/6 (2.2)

Here, � is the turbulence intensity and L is the length scale. Realization of the
fractional filter G(s) allows realistic time-domain simulations of the turbulent
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2.3. Rankine-Froude theory

S0

S2
A

w0 w w2

F

p+ p�

Figure 2.2.: The wind turbine’s slipstream.

wind speed given appropriate constants.

w0(t) = wmean

0 +

Z t

0

g(t� ⌧)v(⌧) d⌧, g(t) = L�1{G(s)} (2.3)

The von Karman model provides reasonable accuracy at frequencies well below
the rotational frequency of the turbine when construed as a description of the
effective wind speed [32]. At higher frequencies, the blades sample the spatially
nonuniform wind field which gives rise to periodic peaks [34]. Rotational sam-
pling requires a significantly more elaborate model and falls beyond the scope of
this thesis. One must however be cognizant of this phenomena when designing
control algorithms.

2.3. Rankine-Froude theory
Figure 2.2 shows the modeling setup used to derive Rankine-Froude momentum
theory [35], a ubiquitous tool in the analysis of the outer problem. Rankine-
Froude theory is based on two important ideas. The first is that of the actuator
disk which abstracts the details of the rotor’s blade loading into a pressure jump
�p over a permeable disk. This pressure jump is often modeled as constant
at a given radial station, implying that the azimuthally discontinuous loading
imparted by a finite number of blades is to be treated in an averaged sense. The
second key idea is the streamtube which permits a control volume analysis to be
undertaken. The streamtube divides the flow field into an outer ambient part
and an inner slipstream which is perturbed when a loading is imparted at the
actuator disk.

A simple variety of momentum theory is now derived using elementary tools.
In keeping with the assumptions of momentum theory, the distributed flow-field
assumes the following form

ŵ(r) = w + w̃(r) (2.4)

That is, the problem assumes azimuthal symmetry and steadiness. Furthermore,
nonuniformities in the wind speed are neglected so that ŵ0(r) = w0. Finally,
rotor motion is neglected implying that ŵ(r) = ŵ

air

(r). The aim is to identify
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2. Rudiments of Wind Engineering

the averaged inflow wi at the disk given a uniformly applied thrust F . It turns
out that an assumption of optimal loading is useful in this quest.

The control volume admits a flux over three distinct surfaces. The first is
located far upstream and is denoted by the subscript 0. Subscript 2 indicates a
second control surface located far downstream. The rotor disk is placed between
these two stations and is indicated by the subscript 1. This subscript will be
suppressed to avoid clutter.

Some key relations are used to establish the theory. Bernoulli’s theorem can
be used to relate pressures between stations 0 and 1 and stations 1 and 2.
Assuming that the pressure perturbation induced by the rotor decays quickly
one has

1

2

⇢w2
0 =

1

2

⇢ŵ(r)2 + q(r) + p̂+(r) (2.5)

1

2

⇢ŵ(r)2 + q̂(r) + p̂�(r) =
1

2

⇢ŵ2(r)
2 (2.6)

Here p̂+(r) and p̂�(r) denote the pressures at the front and back faces of the
rotor, respectively. The dynamic pressure associated with non-axial flow at the
rotor is denoted by q̂(r). Solving for the nonuniform pressure jump yields

�p̂ , p̂+ � p̂� =

1

2

⇢(w0 � ŵ2)(w0 + ŵ2) (2.7)

Invoking conservation of mass furnishes the relation

⇢S0w0 = ⇢Aw = ⇢S2w2 (2.8)

Furthermore, conservation of momentum can be used to yield the equality

⇢

Z

S0

w2
0 dS � ⇢

Z

S2

ŵ2
2 dS =

Z

A

�p̂ dS = F (2.9)

Combining the two conservation laws gives rise to the following relation.

F =

Z

S2

w2w0 � ŵ2
2 dS = ⇢Aw(w0 � w2)� ⇢

Z

S2

w̃2
2 dS (2.10)

Optimality now enters the picture and an argument from Johnson [36] is invoked.
The energy balance in the control volume reads as

P =

1

2

⇢

Z

S0

w3
0 dS � 1

2

⇢

Z

S2

ŵ3
2 dS =

1

2

⇢

Z

S2

w2w
2
0 � ŵ3

2 dS

=

1

2

⇢S2(w0 � ŵ2)(w0 + ŵ2)w2 � 1

2

⇢

Z

S2

(3w2 � w̃2)w̃
2
2 dS (2.11)

It is seen that the aerodynamic power P is maximized when the far wake flow
perturbation is uniform, i.e. w̃2 = 0. Proceeding with an assumption of opti-
mality implies a uniform far wake flow perturbation ŵ2 = w2. From (2.7) it is
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2.3. Rankine-Froude theory

seen that this also implies a uniform pressure jump so that �p̂ = �p. The net
force F = A�p follows from (2.7) or (2.10) as either

F =

1

2

⇢A(w0 � w2)(w0 + w2) = ⇢Aw(w0 � w2) (2.12)

The last equality identifies the averaged flow at the rotor w as an average of the
flow at the upstream and downstream stations.

w =

1

2

(w0 + w2) (2.13)

Gathering results and recalling that w = w0 � wi produces a solution to the
outer problem in the form of the static inflow model

F = 2⇢Awwi (2.14)

The aerodynamic power follows from

P = F (w0 � wi) (2.15)

It is possible to elaborate on the preceding analysis by considering pressures
acting on the sides of the slip-stream but this does not affect the result [37].
While it is tempting to assume that the inflow at the disk is constant with
ŵi(r) = wi this is not the case [38]. Distributed momentum theory, a key
ingredient in BEMT1, replicates the preceding analysis but now over concentric
annular streamtubes permitting a distributed inflow to be obtained. However,
as shown in [38] this approach fails to accurately describe the inflow distribution
under heavy load whereas the simple model developed above holds true subject
to the assumption of optimality.

High loading

It is important to note that Rankine-Froude momentum theory has a limited
region of validity. This is most readily seen by computing the far wake radius
which follows from conservation of mass.

R2 = R

r
w0 � wi

w0 � 2wi

(2.16)

The model clearly ceases to be valid for inflows wi � w0/2 where the streamtube
acquires a radius R2 which is no longer meaningful. This situation occurs at
very high thrust loadings satisfying2

F >
1

2

⇢Aw2
0 (2.17)

When this bound is exceeded the flow through the rotor will reverse sign and
the system will enter a so-called propeller brake state [41]. This situation is
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Figure 2.3.: The wind turbine’s slipstream for over-unity thrust loadings.

depicted in Figure 2.3. The propeller brake state evidently requires a different
control volume. Wilson and Lissaman [41] furnishes an appropriate extension
of (2.14) as

Model 2.1 (Rankine-Froude inflow relation).

F = 2⇢A|w|wi (2.18)

A pair of dimensionless numbers known respectively as the thrust coefficient
and inflow factor are defined below.

CT , F
1
2⇢Aw

2
0

, a , wi

w0
(2.19)

Note that (2.17) corresponds to over-unity thrust coefficients. Using the dimen-
sionless numbers (2.18) reduces to the simple form

CT = 4|1� a|a (2.20)

Experiment indicates that Rankine-Froude momentum theory fails for high
thrust loadings as evidenced by Figure 2.4. The failure of the theory at high
loadings is due to the ambiguity imposed by the flow directions in the near
and far wake when 1/2 < a < 1. In this interval the near and far wake air-
flows have opposing directions rendering a control volume analysis tenuous.
Practice reveals that over-unity thrust loadings also result in potentially unsta-
ble flows through the disk, not readily gleaned from the static inflow relations
[36]. Fortunately, these problems are usually not relevant for the variable-speed
variable-pitch wind turbines considered herein.

1Blade element momentum theory [39].
2With equality, this corresponds to the drag of an impermeable circular disk of radius A

[40].
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0 8/9 1

0

1/3

1/2

1

Figure 2.4.: Static inflow relation. Note the failure of the theory at high thrust coefficients.
The point of optimal power extraction is located at a

⇤ = 1/3 and C

⇤
T = 8/9

which is within the region of validity. Experimental data from Burton et al.
[31].

0 1/3 1/2 1

0

16/27

1

Figure 2.5.: The power coefficient. An optimum is found at a

⇤ = 1/3 where the Betz-limit
is realized as CP = 16/27. Negative values of CP corresponds to propellering
where power is transferred to the fluid.

The section on Rankine-Froude theory is concluded with the definition of a
power coefficient

CP , P
1
2⇢Aw

3
0

= 4|1� a|(1� a)a (2.21)

The optimal power for a given wind speed is found at the inflow a⇤ = 1/3 where
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Figure 2.6.: Cross-section of the lifting line showing an airfoil section located at the radial
station r producing lift L and drag D. A collective pitch � may be used to mod-
ify the blade’s angle, in turn modifying the angle of incidence at the sectional
foils.

CP = 16/27. This is known as the Betz-limit. A well designed turbine will
produce a thrust so that the inflow stabilizes around this value, i.e. CT = 8/9.
This also implies that a wind turbine can be assumed to remain in the well-
defined region defined by a < 1/2 and CT < 1. However, care must be exercised
at the low wind speeds and high thrust coefficients associated with turbine
startup, see Figure 5.6.

2.4. Blade element theory
The inner problem detailing the aerodynamic force production over the blades
is often solved with blade element theory (BET). The N blades are modeled as
lifting lines where it is assumed that each blade section along the span acts as a
two dimensional airfoil. The three dimensional finite wing effects are captured
by the inflow wi. Figure 2.6 shows a diagram of a foil section at the radial
station r. The inflow angle � and onset velocity V are given by

� = tan

�1
⇣ w

⌦r

⌘
, V =

p
w2

+ (⌦r)2 (2.22)

Note that axial swirl is neglected here. This effect requires additional physics
and gives rise to a small flow perturbation in the azimuthal direction.

Airfoil theory predicts the blade loads

L =

1

2

⇢cCl(↵)V
2, D =

1

2

⇢cCd(↵)V
2 (2.23)

where Cl and Cd are the foil section’s lift and drag coefficients. The angle of
incidence is found from

↵ = �� � � ✓ (2.24)
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Figure 2.7.: Experimental and simulated thrust and power coefficients from a blind study
performed by Krogstad and Eriksen [42]. The shaded region indicates the range
of predictions, discarding outliers.

Here ✓ describes the blade twist and � denotes the collective pitch deflection.
The differential thrust and torque on a blade can then be given by

dT = (L cos(�) +D sin(�)) dr (2.25a)
dQ = (L sin(�)�D cos(�)) rdr (2.25b)

Solving (2.25) subject to (2.23) in combination with a distributed form of mo-
mentum theory (2.14) allows the loads on the turbine to be identified for a given
wind speed w0, angular velocity ⌦ and pitch angle �. This procedure consti-
tutes blade element momentum theory (BEMT) and gives rise to models on the
form shown below in (2.26). Note that the distributed inflow ŵi must be found
in the process of determining the loads, all other variables being given. Being a
dependent variable, the inflow is absorbed into the final loading expression. The
model developed in Chapter 3 will extricate the inflow from the load, necessary
in the transient setting.

2.5. Modeling practice
The dynamics of a wind turbine are highly complex and involves aerodynamics,
structural mechanics, electromechanics as well as other disciplines. If floating
designs are considered, one must also contend with hydrodynamics. It is im-
portant to note that there is not one "correct" way of modeling a wind turbine.
Blind test studies have on several occasions revealed the shortcomings of a va-
riety of distinct aerodynamic models [42, 43]. Wind turbine aerodynamics are
very complex and the best one can hope for is a good approximation to the true
physics. Figure 2.7 gives a good idea of the achievable performance.

Detailed analysis is customarily done with numerical engineering tools such
as FAST [44] or HAWC2 [45]. Such models usually apply the blade element
momentum theory (BEMT) to obtain aerodynamic forces and moments. The
BEMT used in these codes is in essence similar to the theory described above.
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2. Rudiments of Wind Engineering

The forces may subsequently be coupled to a structural and electromechanical
model. Numerical engineering models often have tens or hundreds of states and
employ complex numerical routines. As such, these tools are essentially "black
boxes" which are difficult to utilize for model based control or in cases where
an analytical model is desired. Some of these tools may output a linearized
dynamic model. But, wind turbine dynamics are nonlinear and several locally
linear models may be required to cover the operational envelope.

A pragmatic and very prevalent approach in control development is to express
the steady power, thrust and torque in coefficient form

P =

1

2

⇢ACP (�, �)w
3
0 (2.26a)

F =

1

2

⇢ACT (�, �)w
2
0 (2.26b)

Q =

1

2

⇢ARCQ(�, �)w
2
0 (2.26c)

These expressions all consist of a dimensional scaling given in terms of the air
density ⇢[kgm�3

], swept area A[m2
] and averaged wind speed w0[m/s] multi-

plied by a dimensionless coefficient. The power, thrust and torque coefficients
(CP , CT , CQ) depend on the collective pitch deflection � and the dimensionless
tip speed ratio (TSR) defined below.

Definition 2.1 (Tip speed ratio).

� , ⌦R

w0
(2.27)

Even though the coefficient models strictly speaking only apply to steady
operation, they are often used as quasistatic approximations in dynamic models.
The dimensionless coefficients can be obtained as table-data from a BEMT-
based wind turbine performance tool such as Aerodyn [46] or WT-perf [47].
Coefficient models may be used in the form of a numerical lookup table or one
may derive a curve-fit to the tables for easier analysis. See Figure 2.8 for a
graphical representation of such table-data.

The coefficient form of turbine forces given in (2.26) is quite convenient. Due
to their prevalence it appears prudent to justify why this format is not used
in the thesis. Coefficient models are encumbered by certain drawbacks when
applying control theory and some of these are itemized below.

1. The aerodynamics of a wind turbine are not steady and exhibit significant
dynamics on timescales relevant for automatic control.

2. The tables treat thrust and torque separately while they are in fact highly
coupled.
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Figure 2.8.: Power and thrust coefficients for a pitch controlled wind turbine. The specific
turbine shown in the plot is a 5MW variable-speed variable-pitch type repre-
sentative of modern machines [13]. The power coefficient CP is tacitly assumed
to have a unique optimum, verified in this example.

3. Coefficient data obscure the physics and uncertainties inherent in the aero-
dynamic model used to produce them. As such, they inherit the black-box
nature of their origin.

4. Additional arguments to the coefficients are not practical as this would
require tables of dimension larger than two. Advanced actuator systems
such as individual pitch are difficult to model in terms of coefficient tables.

31



2. Rudiments of Wind Engineering

The model developed in the following chapters finds much of its utility in extri-
cating the various physical phenomena from each other. This facilitates incor-
poration of dynamic effects and other generalizations.

2.6. Automatic control
The ultimate purpose of a wind turbine is to convert aerodynamic power into
electrical power, preferable in the most effective manner possible. Automatic
control can facilitate this objective by regulating the blade pitch and/or the
regulator torque. Not all wind-turbines use pitch control and not all wind
turbines permit variations in the angular velocity. Broadly speaking, variable
speed operation permits better power absorption at low to intermediate wind
speeds. Variable pitch is used to limit the power absorption at high wind speeds.
A brief taxonomy is given below.

FSFP (Fixed speed, fixed pitch): This type of wind turbine is usually based
around a synchronous generator turning at a speed nearly proportional
to the line frequency. A linearized generator torque characteristic can be
given as [23]

QE(⌦) = kg(⌦ � ⌦s) (2.28)

Here kg is a large constant and ⌦s denotes the synchronous speed. The
absence of pitch regulation forces the designer to rely on passive stall
regulation to avoid overload. While this design is robust and simple, the
increased loads and reduced power capture has rendered the FSFP type
unattractive for large utility grade wind turbines.

FSVP (Fixed speed, variable pitch): Here, pitch control is used to improve
upon the passive power limiting used in FSFP designs. A key benefit
is that the system can be dimensioned less conservatively due to reduced
loads. An additional benefit for pitch to feather designs is more predictable
behavior as a consequence of attached blade flow. Pitch to stall variations
are also possible, but suffer from less predictable and higher thrust loads.
Note that the power output of the FSVP type is not much higher than for
the FSFP design [31].

VSVP (Variable speed, variable pitch): Variable speed operation allows the
wind turbine to extract more power. As will be discussed below, an an-
gular velocity proportional to the wind speed optimizes power extraction.
Since the wind speed is variable, optimality requires a variable angular
velocity. Other benefits include less acoustic noise at low wind speeds and
a "flywheel" effect smoothing loads on the drivetrain [31]. Variable speed
operation can be realized by more complex generator types which often
require automatic control for their operation. Herein, it is assumed that
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2.6. Automatic control

is is possible to directly realize a torque command QE(t) given to the gen-
erator. Modern power electronics can be assumed fast enough to render
this assumption tenable [23]. VPVS is the design most likely to serve in
a floating installation and will therefore be the main focus herein.

2.6.1. Maximum power point tracking (MPPT)
The power coefficient of a well designed turbine is equipped with a unique
optimum located at � = �⇤ and � = �⇤. The maximal power is thus extracted
at C⇤

P = CP (�⇤, �⇤). See Figure 2.8.
One of the primary purposes of a control system is to facilitate optimal power

extraction by placing � and � at the optimal values. Evidently, a fixed pitch
� = �⇤ is suitable when tracking the point of maximum power. The tip-speed-
ratio is a dynamic quantity � = �(t) given by the angular velocity ⌦(t), radius R
and wind speed w0(t). While w0(t) is beyond the control of the engineer, ⌦(t)
can be manipulated in a variable-speed turbine through the use a generator
capable of exerting a torque QE(t) on the shaft. Ideally, the angular velocity
should be directly proportional to the wind speed, viz.

⌦ =

�⇤

R
w0 (2.29)

The wind speed cannot be measured reliably motivating the use of an indirect
method. Assuming steady operation so that the electrical and aerodynamic
power are balanced, the model given in (2.26) applies.

¯E =

¯P =

1

2

⇢ACP (
¯�, �⇤)w̄

3
0 (2.30)

Suppose now that the E(t) has been chosen such that an optimal angular ve-
locity is found.

¯� = �⇤
=

R⌦⇤

w̄0
(2.31)

At steady state, this implies the equality

E⇤ = b⌦3
⇤ , b , 1

2

⇢AC⇤
P

✓
R

�⇤

◆3

(2.32)

Under steady and optimal conditions the electrical power can be given as a cubic
function in ⌦ . Letting the electrical power follow from

Definition 2.2 (MPPT control law).

E(⌦) = b|⌦ |⌦2 (2.33)

furnishes an "optimal" nonlinear torque control strategy. The stability and
efficacy of this elegant control strategy is examined in Johnson et al. [48] who
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Figure 2.9.: Left : Electrical torque and power for a representative 5MW wind turbine. Note
that the mechanical power exerted by the generator exceeds the name plate rat-
ing. Inefficiencies will reduce the shaft power at 5.3MW to an electrical power
of 5MW. The figure shows both constant power and constant torque strategies.
The former yields smoother power delivery but comes with a penalty of reduced
overall stability. Right : The equilibrium angular velocity and pitch deflection
parameterized in the wind speed w0. The pitch increases with the wind speed
to limit the absorbed wind power. This is achieved indirectly through setpoint
control of ⌦ .

demonstrate local asymptotic stability around the optimal tip-speed-ratio. While
it is possible to elaborate on the cubic control law (2.33) large improvements do
not seem to materialize. See Bossanyi [49] for a discussion. The main challenge
in maximum power point tracking is in fact obtaining an accurate real-time es-
timate of the optimizing variables �⇤ and �⇤. While numerical simulation of the
wind turbine aerodynamics furnish a good initial guess, experiments or online
optimization should be used to arrive at the true values.

2.6.2. Power/torque saturation
Above a certain wind speed the rotor will produce more aerodynamic power or
torque than the electrical componentry and geartrain can safely handle. This
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Figure 2.10.: Thrust and wind power parameterized in the wind speed w0. A saturated
power gives rise to a decreasing thrust as the wind speed increases, viz. F ⇠
P/w0. This effect is realized by pitch control.

implies that the absorbed shaft power E(t) must be limited. It is also important
to limit the angular velocity ⌦ due to aeroelastic and transonic issues. While it is
possible to achieve this through direct alterations in the rotor’s angular velocity
⌦ using the generator torque QE, this forces the engineer to relinquish indepen-
dent control of the electrical power production. Pitch control provides another
avenue for speed control and is implemented on most offshore wind turbines.
Having pitch control and torque control at one’s disposal allows independent
control of ⌦ and E. Modified regulators must be used in the power/torque
limited operating regime. Let E+ denote a roof on the allowed shaft power
exerted by the generator, the so-called rated power. Power limiting is achieved
by simple saturation

E(⌦)  E+ (2.34)

The electrical torque QE = E/⌦ may in certain cases serve as a more appropri-
ate or convenient limiting variable. The following strategy can be used in these
cases

E(⌦)  Q+
E⌦ (2.35)

Figure 2.9 shows how these limits affect the schedule E(⌦). The aerodynamic
power must be limited in concert with the electrical power. This is typically
achieved by placing the angular velocity at a constant setpoint ⌦0 through the
use of pitch control. A constant rate of rotation implies that the electrical and
aerodynamic power are balanced.

Pitch control of the angular velocity can be tackled well with simple PI-
regulation. A variation appearing frequently in the literature [50, 13] involves
gain-scheduling g(�) parameterized in the pitch itself. The pitch sensitivity
varies significantly with the wind speed rendering some form of schedule an
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2. Rudiments of Wind Engineering

attractive option. This leads to a regulator on the form

�(t) =

Z t

0

g(�(t0))KP

⇣
˜⌦(t)� T�1

d
˙

˜⌦(t)
⌘

dt0, ˜⌦(t) = ⌦0(t)� ⌦(t) (2.36)

The pitch servo system is subject to dynamics on its own. Leithead and Connor
[51] suggest a simple first order filter model with time-constant T� relating the
commanded pitch to the physical one, viz.

�

�c

(s) =
1

T�s+ s
(2.37)

Sometimes, this model includes saturations on the rate reflecting physical lim-
itations in the servo mechanism. Assuming that the time constant T� is fast
permits the simplification � = �c.

The power optimizing strategy (2.33) places the turbine close to the optimal
operating point where the power coefficient’s partial derivatives w.r.t. to � and
� vanish.

@CP (�, �)

@�
(�⇤, �⇤) =

@CP (�, �)

@�
(�⇤, �⇤) ' 0 (2.38)

This entails that the pitch sensitivity will be limited when operating close to
the optimum. A transition regime aimed at increasing the pitch sensitivity in
the vicinity of a power limit sees frequent use. The transition control should
aim at reducing the tip-speed ratio to a suboptimal value � < �⇤. This can be
achieved through a variety of methods. One option is adding a simple linear
ramp with slope b1 to the optimal control (2.33).

E(⌦) =

⇢
b⌦3 ⌦ < ⌦0

b⌦3
+ b1(⌦ � ⌦0) ⌦ � ⌦0

(2.39)

See Figure 2.9 for an illustration. Other refinements to the schedule E(⌦) also
appear, such as a startup region aimed at acquiring a given angular velocity.
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3. Dynamic Vortex Theory

This chapter develops new theory for unsteady aerodynamics on a
rotor disk. Old concepts such as the Joukowsky rotor are combined
with control theoretical tools to produce a new loading/inflow model.
The model will be validated successfully against experimental data in
Chapter 4. A range of hitherto unknown properties of wind turbine
aerodynamics are uncovered. For the first time, passivity tools are
brought to bear on dynamic wake problem. The model is given a
time domain realization using frequency domain identification. A
simplified model exact in the low frequency limit is also furnished.

Dynamic vortex theory will now be used to give a unified treatment of the
most important aerodynamic effects and phenomena in the wind turbine. This
departs from the conventional introductory approach given in Chapter 2 where
momentum theory was used. It will however be shown that momentum theory
has a neat analogue in vortex theory. Vortex theory will prove ideally suited as
dynamic wake effects are examined and clarify the underlying physics in some
well known engineering approximations.

Figure 3.1.: The Joukowsky rotor. From Joukowsky [52].

The general idea of a vortex based rotor theory is shown in Figure 3.1. The
blades, equipped with constant circulation � , shed vorticity into the wake in
keeping with the Helmholtz laws of vortex motion. The shed vorticity will
in turn induce a flow at the rotor in keeping with the Biot-Savart law [53].
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3. Dynamic Vortex Theory

Figure 3.2.: Vortex shedding off a lifting line with an elliptical lift distribution. Note that the
trailing vortices quickly roll up into concentrated tip vortices. The computation
is based on Krasny [55].

It should be noted that vortex theory can be extended to allow modeling of
radially varying circulation. The simplified scheme outlined above is known as
the Joukowsky rotor. This construct provides a fair model of the blade loading
in an efficient wind turbine. Constant circulation can actually be argued to be
optimal in terms of power extraction which is of course the aim of good wind
turbine design [54]. It is well known that lifting surfaces produces wakes that
quickly rolls up into concentrated tip vortices as shown in Figure 3.2. This
serves as an additional justification for Joukowsky’s construction.

The vortex theory of wind turbines and propellers dates back to the beginning
of the 20th century with pioneers such as Joukowsky [52]. Although the theory
is very attractive in many respects, the considerable complexities associated
with helical vortex filaments have limited practical applications. It is only in
recent years that routine numerical evaluations of rotors modeled with vortices
have been made possible. See e.g. Okulov and Sørensen [54]. At present, most
engineering analysis is performed with the mathematically simpler momentum
theory. However, many refinements such as tip-loss corrections [56] ultimately
derive from vortex theory, being in some sense the more fundamental approach.
The reader is referred to Okulov et al. [57] and van Kuik et al. [58] for an
interesting historical overview of these theories.

3.1. Circulatory loading
The N blades on the rotor are modeled as lifting lines l. Lifting lines can
be used to represent high aspect ratio wings with superb accuracy, see e.g.
Phillips and Snyder [59]. The lift on the blades is computed with the Kutta-
Joukowsky theorem. Circulatory lift arises when a bound vortex filament is
forced to undergo motion relative to the fluid. The most convenient formulation
for a wind turbine is the vectorial variation furnished by Saffman [60]. An
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3.1. Circulatory loading

element of the lifting line l will contribute the force shown below.

Model 3.1 (Vectorial vortex lifting law [60]).

df = ⇢urel ⇥ �dl (3.1)

Note that the differential lift is normal to the relative flow by construction.
Lift is therefore a lossless force since df · u

rel

= 0; a property with significant
consequences, both mathematically and physically.

The straight lifting lines are described differentially by dl = erdr in a cylindri-
cal coordinate system1

(r, ✓, z) capped by the rotor disk at z = 0. See Figure 1.6
for an illustration. The relative flow at the rotor disk will be modeled by

u
rel

(r, ✓, t) = ezŵ(r, ✓, t)� e✓⌦(t)r (3.2)

In the present setting tangential inflow can be assumed negligible and is therefore
omitted. Radial inflow has no effect on the loading, being directed parallel to the
lifting lines; its omission is of no consequence. The use of a purely axial inflow
can therefore be expected to yield reasonable results. See Okulov and Sørensen
[54] for a detailed analysis including tangential inflow, albeit in a steady setting.

Using (3.1) and (3.2) the circulatory thrust and torque can be computed by
integrating the Kutta-Joukowsky force over the lifting lines and subsequently
summing over the blades. The local force is on the i’th blade is readily derived
as

df(r, ✓i, t) = ⇢� (t)(ezŵ(r, ✓i, t)� e✓⌦(t)r)⇥ erdr

= ⇢� (t)(e✓ŵ(r, ✓i, t) + ez⌦(t)r)dr (3.3)

The identities shown below were used to arrive at this result.

er ⇥ e✓ = ez, e✓ ⇥ ez = er, ez ⇥ er = e✓ (3.4)

The circulatory thrust can now be obtained by integrating the normal force over
the lifting lines, viz.

Fc(t) =
NX

i

Z R

0

ez · df(r, ✓i, t) = ⇢� (t)
NX

i

Z R

0

⌦(t)rdr =
⇢AN

2⇡
� (t)⌦(t) (3.5)

Note that the thrust is aligned with ez in keeping with wind engineering con-
ventions. Before proceeding to compute the torque, recall that the averaged
axial flux was defined by

w(t) , 1

AN

NX

i

Z R

0

ŵ(r, ✓i, t) 2⇡rdr (3.6)

1A coordinate system spinning with the rotor is utilized here.
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The circulatory torque can be obtained by integrating the tangential force
over the lifting lines, viz.

Qc(t) =
NX

i

Z R

0

re✓ · df(r, ✓i, t)

= ⇢� (t)
NX

i

Z R

0

ŵ(r, ✓i, t)rdr =
⇢AN

2⇡
� (t)w(t) (3.7)

Note well that the torque depends on the averaged flow; the nonuniform part
drops out of the integral. A summary of the preceding results is given below.

Model 3.2 (Circulatory loading).

Fc(t) =
⇢AN

2⇡
� (t)⌦(t) (Circulatory thrust) (3.8a)

Qc(t) =
⇢AN

2⇡
� (t)w(t) (Circulatory torque) (3.8b)

The loading equations can be arrayed on a special form which will be referred
to as the circulatory interconnection structure.


Fc

Qc

�
=

⇢AN

2⇡


0 ��
� 0

�✓
w0

0

�
�

wi

0

�
�


ẋ
⌦

�◆

(Circulatory interconnection structure) (3.9)

The right hand side is to be understood as being composed of an exogenous input
w0, taking away negative feedbacks from the wake wi and motion described by
ẋ and ⌦ . Circulation connects the axial subsystem (Fc, w) with the rotating
subsystem (Qc,�⌦) in a lossless manner

Fcw +Qc(�⌦) = 0 (3.10)

Circulation is central to wind turbines and propellers because it acts as the
conduit between rotational and translational motion. For wind turbines, circu-
lation takes wind power Fcw losslessly into shaft power Qc⌦ . Propellers utilize
the same principle to turn shaft power, generated by a motor of some kind, into
propulsive power.

Joukowsky rotors with fast spinning blades will, in an averaged sense, produce
a uniform pressure jump �p over the rotor plane. The normal blade force
predicted by (3.3) reads as

dfn = ez · df = ⇢�⌦rdr =
Fc

AN
2⇡rdr (3.11)

The last equality is obtained by inserting (3.8). Note here that the normal lift
force assumes the form of a triangular distribution in r. Averaging is done by
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3.2. Inflow dynamics

dividing the blade force by the annular area at r. With dA = 2⇡rdr the pressure
jump due to N blades reduces to a constant

�p = N
dfn
dA

=

Fc

A
(3.12)

An optimally loaded turbine with uniform �p can thus be realized with a fast
spinning Joukowsky rotor. The result that constant circulation leads to optimal
loading is remarkably robust. Significantly more elaborate models points to the
same fact [54].

3.2. Inflow dynamics
Helmholtz’ vortex laws dictate that vortex filaments cannot terminate in the
fluid but must form closed loops. As a consequence, vorticity will be shed at
the blade tips. Once shed into the fluid, the filaments will propagate away
from the rotor frozen into the relative flow. As the turbine spins, the filaments
will generate the helical wake structure shown in Figure 3.1. Higher angular
velocities will lead to a tighter winding whilst an increased relative speed w
will have the opposite effect. The filaments in the wake will induce a flow wi

at the rotor that depends on the helical pitch and the vortical intensity of the
filaments producing the wake. When extracting power, this effect acts to reduce
the effective flow through the rotor. This topic will be dealt with in more detail
below. For now, it suffices to say that the inflow generated by the wake can be
as a large as 50% of the wind speed w0 in normal operation; a highly significant
effect.

The averaged inflow wi(t) is now identified in the dynamic setting where
momentum theory (2.18) ceases to apply. Although momentum theory does not
apply in the unsteady problem, a close examination of its underpinnings will
provide the impetus behind a new vortex-based theory.

It is possible to connect momentum theory with vortex theory by paying close
attention to the streamtube used in the derivation of Rankine-Froude theory
(2.14). Consider Figure 2.2. The streamtube separates the retarded flow within
the slipstream from the undisturbed exterior flow. Evaluating the steady-state
axial flow velocity over a control surface coplanar with S2 one has

w2(r) =

⇢
w0 � 2wi r < R2

w0 r > R2
(3.13)

The discontinuity at the streamtube’s perimeter r = R2 arises due to the
presence of vorticity. Let n = er denote a unit vector normal to the surface of
the streamtube and pointing outwards. Saffman [60] provides a formula for the
velocity jump over a vortex sheet of intensity �, viz.

[u]12 = � ⇥ n (3.14)
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3. Dynamic Vortex Theory

The notation [·]12 is used to signify a jump over a surface. Here side 1 is exterior
to the wake whilst side 2 represents the inner face. By dotting both sides with
the unit vector in the axial direction (oriented downstream) one may recover
the wake vorticity as

ez · [u]12 = w0 � (w0 � 2wi) = 2wi = ez · (� ⇥ er) = ��✓ (3.15)

Here ✓ denotes the azimuthal variable in the polar coordinate system used to
describe the cylindrical wake. Vorticity is solenoidal, and being azimuthal it
acquires the form of a distribution of vortex rings forming the streamtube, see
Figure 3.3. The vorticity in the tube is transported downstream with a velocity
equal to the average of the two sides of the tubular sheet. This is a well known
property of vortex sheets [60].

Model 3.3 (Vortex transport velocity).

w =

w0 + (w0 � 2wi)

2

(3.16)

Physically, this implies that a smooth slipstream is generated by continuous
generation of vorticity at the disk. A key approximation is now introduced to
aid in the examination of time-varying vorticity generation.

Assumption 3.1 (Rigid wake assumption). The vortex loops are assumed to
retain their radius R as they are transported downstream. All loops in the wake
are assumed to translate at the same rate w(t).

The rigid wake assumption is a crude approximation to the true physics. The
wake must in fact expand as shown in (2.16) and the transport velocity will
undergo a transient close to the disk before arriving asymptotically at the value
given in (3.16). The two items in Assumption 3.1 are in fact both somewhat
dubious, but in combination they result in a precise vortical analogue of mo-
mentum theory. Two wrongs therefore make a right in this special case.

The dynamic inflow model will depend on the time-varying transport velocity
w(t) through (3.19). The stationary value is given in (3.16), but extending this
result to the dynamic setting requires additional reasoning. Assumption 3.1
dictates that the transport velocity should be the same for all vortex loops in
the wake. The wind speed w0(t) dominates w(t) and the vortices will indeed all
move at this rate in the absence of inflow. This means that the contribution from
wi(t) is of lesser (but still crucial) importance. Elaborations on the role of the
inflow on the transport velocity could be made. However, practice has revealed
that this leads to needless complications and no clear answers. Comparison to
experimental data will justify the modeling choice.
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3.2. Inflow dynamics

�(t)

w0(t)� ẋ(t) z

z(t, t0)

R

�✓(z, t)

⌦(t)

�✓(0, t)

w(t)

Figure 3.3.: The rotor with the trailing vortex tube. The high-aspect ratio rotor blades
idealize to lifting lines l with circulation � .

3.2.1. An argument from conservation of momentum
A circular vortex loop encircling an area A is equipped with an impulse I given
by the formula

I = ⇢A�✓ (3.17)

Here �✓ denotes the intensity of the filament bounding A [61]. The impulse I
is defined in the downstream direction. Suppose now that the thrust is applied
in an impulsive fashion at t = t0 so that F (t) = �(t � t0). The inflow due to
such an impulse, the wake’s impulse response, is now sought. Conservation of
momentum dictates that dI/dt = �F 2 so the filament’s intensity acquires the
form

��
✓(t) = �⇥(t� t0)

⇢A
(3.18)

Here, ⇥(t) denotes Heaviside’s step function. The filament will progress down-
stream after having been created at the rotor disk covering the distance3

z(t, t0) =

Z t

t0
w(t00) dt00 (3.19)

A concentrated circular vortex loop of radius R located at z will produce a
time-varying and radially nonuniform inflow at the disk which can be given by
[62]

ŵ�
i (r, t) = �R��

✓(t)

2

Z 1

0

lJ1(lR)J0(lr)e
�l|z(t,t0)| dl (3.20)

Azimuthal symmetry permits omission of ✓ argument. Here Jn denotes the
Bessel function of the first kind. There are other representations for the flow
induced by circular vortex loops, but (3.20) will turn out to be a very suitable

2The thrust F acting on the rotor is balanced by a thrust on the fluid �F , hence the sign.
3The distance is taken relative to the rotor disk, so the inclusion of ẋ captures the effect of

the rotor moving away/towards the vortex loop.
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Figure 3.4.: The axial flow induced by a propagating vortex loop. Note that the inflow
decays quickly as the vortex proceeds downstream.

formula for the present purpose. Utilizing the definition of the averaged flow
(1.17) along with (3.18) and (3.20) leads to an expression for the impulsively
generated averaged inflow

w�
i (t) =

⇥(t� t0)

⇢A

Z 1

0

J1(lR)

2e�l|z(t,t0)| dl (3.21)

This is the wake’s impulse response. A dynamic inflow model describing the
averaged inflow can now be furnished by convolution, viz.

Model 3.4 (Dynamic inflow).

wi(t) =

Z t

0

G(t, t0)F (t0) dt0 (Dynamic inflow relation)

(3.22a)

G(t, t0) , ⇥(t� t0)

⇢A

Z 1

0

J1(lR)

2e�l|z(t,t0)| dl (Vortical impulse response)

(3.22b)
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3.2. Inflow dynamics

3.2.2. Connection to momentum theory
It is important that the convolution model (3.22) corresponds to Rankine-Froude
momentum theory at steady state. Let the thrust be constant and assume that
the transport velocity has arrived at a stationary value so that

|z(t, t0)| = |w|(t� t0) (3.23)

Integrating the impulse response over time yields

lim

t!1

Z t

0

Gw(t, t
0
) dt0 =

1

2⇢A|w| (3.24)

It therefore follows that the steady inflow must be equal to

wi =
F

2⇢A|w| (3.25)

Rankine-Froude momentum theory (2.18) is thus recovered exactly as the equi-
librium of the model. One may be surprised that the simplification of vortex
tubes with constant radius and uniform transport velocity could lead to the well
known equations of momentum theory. Furthermore, it is curious that one must
use the near-field tube radius, but far-wake transport velocity. In Johnson [36]
the near field density is used which gives a result that does not correspond to
momentum theory. Miller [63] examines the case of a uniformly loaded rotor
and points out that fundamental contradictions must be tolerated if one is to
produce momentum theory from vortex theory. If the wake is transported with
the flow, the neglect of wake expansion juxtaposed with a factor two increase
in induced flow directly violates conservation of mass. Despite these concerns,
the present scheme compares well with experiment. A case study is given in
Chapter 4.

3.2.3. Connection to Joukowsky theory
The theory derived above can also be related to Joukowsky’s rotor model where
vorticity is shed into the wake. A lifting line with constant circulation exhibits a
discontinuity at the blade tips (and roots) and here gives rise to a concentrated
vortex filament of intensity � . All vorticity is therefore shed at the extremities
of the lifting line. In the present model the root filament is neglected, implicitly
assuming that tangential inflow is slight. If the vorticity is shed in a sufficiently
smooth manner at the root and a high tip speed ratio � = ⌦R/w0 is assumed,
this simplification is justifiable. The tip vortex sheds into a helical filament,
a situation treated in mathematical detail by Okulov and Sørensen [54]. The
present model differs from their more elaborate variety by approximating the he-
lical vortex filaments, with the associated computational complexities, as closed
loops of vorticity smeared onto a vortex tube where they form a continuum. In
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3. Dynamic Vortex Theory

a certain sense, this is equivalent to examining a rotor of infinitely many blades
[56]. Once shed, the vortex loops proceed downstream at the velocity w.

During a time interval �t each lifting line on the rotor sheds a tip vortex
of length �` = ⌦R�t. The collective strength of these vortices is N� . Each
segment of vorticity is distributed onto a cylindrical surface �S = 2⇡Rw�t
where w(t) represents the speed by which vorticity is emitted into the wake at
the disk’s edge. The relative flux is considered positive in this section.

The density of azimuthal vorticity immediately downstream of the rotor at
z = 0 is at time t

�✓(0, t) = ��`

�SN� (t) = �N� (t)⌦(t)

2⇡w(t)
= � Fc(t)

⇢Aw(t)
(3.26)

where (3.8) has been used. As time passes, the circular vortex elements will
propagate downstream covering a distance given in (3.19). Relating distance
traveled to elapsed time yields the time-varying azimuthal vorticity distribution
along the tube in terms of a time-delay

�(z, t) = �(0, t0) (3.27)

This expression captures the fact that the vortex element at z retains the in-
tensity it had when it was shed at time t = t0. Utilizing (3.20) yet again, now
as an integral over the entire wake, yields the inflow

ŵi(r, t) = �R

2

Z 1

0

Z 1

0

�✓(z, t)lJ1(lR)J0(lr)e
�l|z| dl dz (3.28)

The averaged inflow follows as

wi(t) = �
Z 1

0

Z 1

0

�✓(z, t)J1(Rl)2e�l|z| dl dz (3.29)

Changing variables from space to time is accomplished by noting that (3.19)
differentiates as

dz

dt0
= �w(t0) (3.30)

The integration limits change as z ! 1 ) t0 ! �1 and z = 0 ) t0 = t.
Applying the change of variables theorem noting (3.27) and (3.26) leads to

wi(t) = �
Z t

�1

Z 1

0

w(t0)�✓(0, t
0
)J1(Rl)2e�l|z(t,t0)| dl dt0

=

Z t

�1


1

⇢A

Z 1

0

J1(Rl)2e�l|z(t,t0)| dl

�
Fc(t

0
) dt0 (3.31)

This reproduces the previous result given in (3.22a)-(3.22b). The lower integra-
tion limit in the convolution integral can be set to zero by assuming that no
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3.3. The wake admittance

thrust is produced before t = 0. Note that this procedure indicates that one
should only use the circulatory loading when computing the inflow, a contention
also espoused in Wilson and Lissaman [41]. Momentum theory suggests that the
full thrust is to be used. The practical difference between these two approaches
is slight and since use of the full thrust will lead to a simpler model, momentum
theory is followed.

3.3. The wake admittance
Having derived the basic model (3.22a)-(3.22b), the discussion now turns to its
physical implications along with an examination of some salient properties. The
wake admittance Q will be a central quantity in this pursuit. The relative flux
w(t) is assumed positive in this section.

The impulse response (3.22b) is time-varying which complicates analysis. It
will be convenient to introduce a reduced time to get around this difficulty, viz.

Definition 3.1 (Reduced time).

⌧(t) , 1

R

Z t

0

w(t0) dt0 (3.32)

The differential relationship to physical time is here given by

d⌧

dt
(t) =

w(t)

R
> 0 (3.33)

The transport velocity is assumed positive, so the inverse function theorem
guarantees that an inverse map t(⌧) exists. It will however not be necessary
to furnish this function explicitly. Another consequence is that an increase in
physical time implies an increase in reduced time and vice-versa.

The distance traveled in physical time is given by (3.19) as

z(t, t0) =

Z t

t0
w(t00) dt00 (3.34)

In reduced time, this transport distance simplifies to

z(⌧, ⌧ 0) = R(⌧ � ⌧ 0) (3.35)

The vortices will be carried away with one rotor radius R per reduced time
unit. Changing variables from t to ⌧ in the convolution model (3.22a)-(3.22b)
simplifies matters greatly. Let l0 , Rl be used to simplify the improper integral
and define the wake admittance function as

Definition 3.2 (Wake admittance function).

Q(⌧) , 2⇥(⌧)

Z 1

0

J1(l
0
)

2e�l0⌧ dl0 (3.36)
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Figure 3.5.: Plot of the reduced impulse response (3.36).

The notion of admittance is borrowed from electrical engineering. Here, Q
describes how a force (voltage) is turned into a flow (current). One may proceed
to verify that the dynamic inflow model (3.22) now reduces to

wi(⌧) =

Z ⌧

0

Q(⌧ � ⌧ 0)
F (⌧ 0)

2⇢Aw(⌧ 0)
d⌧ 0 (3.37)

A comparison to (3.26) reveals that the underlying dynamics can be understood
in terms of vortex shedding, as for the stationary Joukowsky rotor. The Laplace
transform of Q(⌧) will be of interest but cannot be computed explicitly. It is
however possible to obtain a semi-analytical result on the form

Q(�) = 2

Z 1

0

J1(l
0
)

2

� + l0
dl0 (3.38)

Here � is a reduced Laplace variable. The complex expansion of � will be
denoted

� = %+ j$ (3.39)

A frequency-domain model follows as

wi(�) = Q(�)

Z 1

0

F (⌧)

2⇢Aw(⌧)
e��⌧ d⌧ (3.40)

See Figure 3.8 for a graphical illustration of the frequency response. The mean-
ing of the reduced Laplace variable can be elucidated by noting that the imag-
inary term corresponds to the dimensionless period ⇤ , 2⇡/$. This period is
measured in reduced time. Assuming a constant transport velocity, the corre-
sponding period in physical time T is seen to be

⇤ =

w

R
T (3.41)

48
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Figure 3.6.: The effect of sinusoidal load variations occurring at the reduced frequency $ = 2
superimposed with a steady mean flow. The flow field shown in the figure is
complex, only the real part is shown. As time proceeds, the flow field pertur-
bations will travel downstream in a wave-like manner with propagation velocity
w. The frequency response of the averaged inflow is obtained by extracting
the complex flow at the disk. (The black line signifies the rotor plane and the
dashed line outlines the tubular wake).

A reduced unit period therefore corresponds to the time it takes for a vortex
to cover one rotor radius; frequencies $/2⇡ assume the meaning of inverse
wavelengths ⇤ for the wake perturbations. A visual explanation can be found
in Figure 3.6.

A cursory examination of Figure 3.8 and Figure 3.7 reveals that the wake acts
as a low-pass filter on the thrust. The wake is seen to be equipped with infinitely
many stable poles, quite expected being a distributed parameter system. An
immediate implication is that one cannot find a realization given in terms of
a finite number of states. It should be noted that distributed parameter sys-
tems are quite common in aerodynamics, a salient example being Theodorsen’s
function [64].

3.3.1. Technical Properties
The wake admittance function (3.36) is equipped with a number of useful prop-
erties germane to simulation and control. An examination of Lp-gain establishes
input-output stability. Passivity will be used for stability analysis in Chapter 5.

Lp-stability.

It is now be shown that the Q-filter is finite-gain Lp-stable. Define the following
reduced-time input and output for notational brevity

y(⌧) , wi(⌧), u(⌧) , F (⌧)

2⇢Aw(⌧)
(3.42)
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Figure 3.7.: Bode diagram of the wake admittance function Q(�). A first order low frequency
approximation (3.71) and the Øye model (3.81) are also shown.

Note that the output appears in w(⌧) = w0(⌧) � y(⌧) � ẋ(⌧). This implies a
nonlinear relationship between the input and output. The simplified notation
gives rise to the following integral equation obtained from (3.37).

y(⌧) =

Z ⌧

0

Q(⌧ � ⌧ 0)u(⌧ 0) d⌧ 0 (3.43)

The impulse response satisfies the important property

kQkL1 =

Z 1

0

|Q(⌧)| d⌧ = 2

Z 1

0

J1(l
0
)

2

l0
dl0 = 1 (3.44)
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Figure 3.8.: A Nyquist diagram of the wake admittance function (3.38), the modified varia-
tion (3.48) and the associated scattering function (3.50). The DC-gain is found
at Q(0) = 1.

Following Khalil [21, Example 5.2] this implies finite-gain stability so that

kykLp  �kukLp , � = 1 (3.45)

The Lp-gain is therefore unity. Since Q(⌧) � 0 the DC-gain is seen to be unity
also. Input-output stability is thus established.

Passivity

A Laplace domain representation with (3.38) reads as

y(�) = Q(�)u(�) (3.46)

The OSP4 property for a SISO system is defined by the following inequality [16,
Definition 2.1] valid for ⌧ � 0.

Z ⌧

0

y(⌧ 0)u(⌧ 0) d⌧ 0 � %

Z ⌧

0

y2(⌧ 0) d⌧ 0 � � (3.47)

Here, % > 0 is a positive constant whilst � � 0 is nonnegative [65]. The Q-filter
is equipped with a significant excess of output passivity (quantified by %) which

4Output Strict Passivity
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Q̃(�)y(�) u(�)�
ũ(�)

Q(�)y(�) u(�)

Figure 3.9.: Modification of the input recovers the wake dynamics on a modified form.

can be extracted through a redefined output, viz.

ũ(�) , u(�)� y(�), y(�) = ˜Q(�)ũ(�), ˜Q(�) , Q(�)

1�Q(�)
(3.48)

See Figure 3.9 for an illustration. Physically, ũ corresponds to the imbalance in
the applied force and the momentum flux, as seen from

2⇢Aw(⌧)ũ(⌧) = F (⌧)� 2⇢Aw(⌧)wi(⌧) (3.49)

The modified wake filter ˜Q(�) is passive, equivalently positive real (PR). An
argument from Brogliato et al. [16] is invoked to show this. The scattering
function associated with the modified filter is given by

S(�) ,
˜Q(�)� 1

1 +

˜Q(�)
= 2Q(�)� 1 = 2

Z 1

0

J1(l
0
)

2

� + l0
dl0 � 1 (3.50)

The following identity is now put to use

2

Z 1

0

J1(l
0
)

2

l0
dl0 = 1 ) S(�) = �2

Z 1

0

�J1(l
0
)

2

l0(� + l0)
dl0 (3.51)

Note well that S(% + |$) is analytic for % > 0. The scattering function is also
real for $ = 0. The amplitude of the scattering function can be computed and
bounded in the following manner

|S(%+ |$)| = 2

Z 1

0

s
%2 +$2

(%+ l0)2 +$2

J1(l
0
)

2

l0
dl0  2

Z 1

0

J1(l
0
)

2

l0
dl0 = 1 (3.52)

Gathering facts proves that the scattering function is bounded real [16, Definition
2.24]. It can now be concluded that the modified filter ˜Q(�) is passive (positive
real) using the result in Brogliato et al. [16, Theorem 2.26]. Visual inspection
of Figure 3.8 corroborates this finding. It has thus been shown that

Z ⌧

0

y(⌧ 0)ũ(⌧ 0) d⌧ 0 =

Z ⌧

0

y(⌧ 0)(u(⌧ 0)� y(⌧ 0)) d⌧ 0 � 0 (3.53)
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3.3. The wake admittance

With ˜Q passive, an immediate implication is that Q is output strictly passive
(OSP). The preceding inequality is equivalent to the definition of OSP given
in (3.47) setting % = 1 and � = 0. The results of the preceding discussion are
itemized below.

Proposition 3.1 (Properties of the wake system).
The wake system can be described by the equivalent representations shown be-
low.

y(⌧) =

Z ⌧

0

Q(⌧ � ⌧ 0)u(⌧ 0) d⌧ 0, Q(⌧) = 2⇥(⌧)

Z 1

0

J1(l
0
)

2e�l0⌧ dl0 (3.54)

y(�) = Q(�)u(�), Q(�) = 2

Z 1

0

J1(l
0
)

2

� + l0
dl0 (3.55)

It is equipped with the following properties:

Lp-stability
kykLp � �kukLp , � = 1 (3.56)

Output strict passivity
Z ⌧

0

y(⌧ 0)u(⌧ 0) d⌧ 0 � %

Z ⌧

0

y2(⌧ 0) d⌧ 0 � �, % = 1, � = 0 (3.57)

Unit DC-gain
lim

�!0
Q(�) = 1 (3.58)

Strict properness
lim

�!1
Q(�) = 0 (3.59)

These results will be important when finding a time domain realization of the
inflow dynamics. Also, the possibility of finding analytical evidence of passivity
is very encouraging since this work is preoccupied with that particular property.

The preceding results are set in reduced time. Changing variables with (3.33)
in (3.53) permits the following inequality.

1

R

Z t

0

y(t0)ũ(t0)w(t0) dt0 =
1

R

Z t

0

y(t0)(u(t0)� y(t0))w(t0) dt0 � 0 (3.60)

Inserting the definitions in (3.42) shows that
1

2⇢AR

Z t

0

wi(t
0
) (F (t0)� 2⇢Aw(t0)wi(t

0
)) dt0 � 0 (3.61)

Concluding, the wake system is output strictly passive from input F (t) to output
wi(t) and passive if the following modified input is used

˜F (t) , F (t)� 2⇢Aw(t)wi(t) (3.62)
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3. Dynamic Vortex Theory

The unit DC-gain of the wake system implies the steady state relationship ȳ = ū.
This indicates that ˜F = 0 describes the equilibrium in accordance with Rankine-
Froude momentum theory (2.18).

3.4. Realization
The properties demonstrated in Proposition 3.1 suggests that the wake admit-
tance filter Q(�) can be equipped with a finite-dimensional strictly proper and
output strictly passive approximation on the form

Q(�) ' c(�I�A)

�1b (3.63)

This approximation corresponds to the reduced-time-invariant state dynamics
described by

dx

d⌧
(⌧) = Ax(⌧) + bu(⌧), y(⌧) = cx(⌧) (3.64)

The input and output are defined by u = F/2⇢Aw and y = wi.
The system matrices A, b and c are identified through frequency domain

fitting of Q(j$) using the methodology described in Gustavsen and Semlyen
[66]. The Matrix Fitting Toolbox [67] is capable of forcing properties such as
passivity and strict properness on the fit making it ideal for the present purpose.
Figure 3.10 shows that it is possible to obtain approximations of a quality that
is, to all intents and purposes, perfect.

The linear system can be pulled back to physical time by using (3.33) and the
inverse function theorem in the following manner

dx

d⌧
(⌧) =

✓
dx

dt
(t) � t(⌧)

◆
dt

d⌧
(⌧) =

✓
dx

dt
(t) � t(⌧)

◆✓
d⌧

dt
(t) � t(⌧)

◆�1

=

✓
R

w(t)

dx

dt
(t)

◆
� t(⌧) (3.65)

The result is an LTV wake admittance filter that is readily implemented in a
digital simulation

R ˙x(t) = w(t)Ax(t) + w(t)bu(t), y(t) = cx(t) (3.66)

The nonlinear dynamics in (3.22a)-(3.22b) can now be given on a lumped form.
Having used (3.37) as an intermediate step, the inflow dynamics can be given
on the practical form shown below.

Model 3.5 (Passive realization).

2⇢AR
dx

dt
(t) = 2⇢A|w(t)|Ax(t) + bF (t), wi(t) = cx(t) (3.67)
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Figure 3.10.: The wake admittance function compared to a 10th order rational fit.

Here, the absolute value of w is used in accordance with (2.18). Repeating the
preceding developments assuming w(t) < 0 will show that this is correct. Note
that the model is nonlinear and not only time-varying since the output appears
in the state dynamics through |w(t)| = |w0(t)� wi(t)� ẋ(t)|.

3.4.1. Low frequency approximation
It turns out that the modified wake filter (3.48) can be represented well by a
simple integrator at low frequencies

˜Q(�) ' 1

µ�
, � ⌧ 1 (3.68)

The appropriate time constant µ is identified through the following limiting
procedure

µ , lim

�!0

1

� ˜Q(�)
= lim

�!0

1� 2

R1
0 J1 (l

0
)

2/l0 dl0 + 2�
R1
0 J1 (l

0
)

2/l02 dl0

2

R1
0 J1 (l0) 2/l0 dl0

=

8

3⇡
(3.69)

The parameter µ plays the role of a dimensionless "virtual inertia".

Definition 3.3 (DVT inertia coefficient).

µDVT , 8

3⇡
(3.70)

Since Q =

˜Q(1 +

˜Q)

�1 a low frequency approximation for Q is given by the
low-pass filter

Q
lf

(�) =
1

µ� + 1

(3.71)

A graphical illustration of this approximation is given in Figure 3.7. Realizing
the filter (3.71) on the form (3.64) gives the following scalar system matrices

A = � 1

µ
, b =

1

µ
, c = 1 (3.72)

55



3. Dynamic Vortex Theory

10-2 100 102
10-2

100

102

10-2 100 102

-150

-100

-50

0

Figure 3.11.: The balance filter Q̃(�) acts, in essence, as an integrator.

At low frequencies (3.67) is therefore well approximated by the scalar model

Model 3.6 (Low frequency approximation).

2⇢ARµẇi(t) + 2⇢A|w(t)|wi(t) = F (t) (3.73)

This low frequency approximation will be useful when making comparisons to
existing work in the field and for simplified stability analysis. A Bode-diagram
comparing the low-frequency model to the distributed plant is shown in Fig-
ure 3.7 and a comparison of the step responses is shown in Figure 3.12.

Remark 3.1. The balance function ˜Q(�) serves as the loop transfer function in
the feedback diagram Figure 3.9. Comparing the low-frequency approximation to
the true dynamics in Figure 3.11 shows that ˜Q(�) injects additional damping at
high-frequencies. This implies that (3.73) under-predicts the stabilizing effects
of vortex shedding.

3.5. Comparison to existing work on wake
dynamics

It seems prudent to compare the present model (3.22a)-(3.22b), fully realized
in (3.67) and approximated in (3.73), to existing work in the field. Two main
approaches seem to dominate the science, methods based on an acceleration
potential and vortex methods.

3.5.1. Øye’s vortex model
The dynamic inflow model developed in this chapter is not unique in being
informed by analysis of a vortical wake. Other vortex based inflow models do
indeed exist. A notable example is the pragmatic time-domain model proposed
in Øye [68]. See also [39]. Here a second order nonlinear filter was employed
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Figure 3.12.: The reduced-time step response of the high order model (3.67) compared to the
Øye model (3.74), the low frequency approximation (3.73) and an acceleration
potential model using the virtual mass given in (3.84).

to generate a transient response which correlated well to experimental data,
whilst being rooted in vortex-based considerations. In Chapter 4 the present
model is validated on the very data used to inform the Øye model. It should be
noted that little theoretical justification is provided for the filter design. The
present analysis, even with its various simplifications, derives from fundamental
principles of aerodynamics.

Øye’s model can be supplied on the form of a nonlinear filter cascade

⌧1(t)ẇ1(t) + w1(t) = k⌧1(t)ẇ
qs

i (t) + wqs

i (t) (3.74a)
⌧2(r, t) ˙ŵi(r, t) + ŵi(r, t) = w1(t) (3.74b)

The time-varying coefficients are given by

⌧1(t) =
1.1

1� 1.3a(t)

R

w0(t)
, ⌧2(r, t) = (0.39� 0.26(r/R)

2
)⌧1(t), k = 0.6

(3.75)
In order to allow comparison to the present model, the form of Øye’s filter
will be altered slightly. The quasi-static inflow w

qs

can be computed by using
momentum theory

wqs

i (t) =
F (t)

2⇢Aw(t)
(3.76)

Assuming moderate inflow a < 1/3 permits the approximation

⌧1(t) ⇡ R

w(t)
(3.77)
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3. Dynamic Vortex Theory

This allows the system to be represented in reduced time, now as a linear
reduced-time-invariant filter cascade

dw1

d⌧
(⌧) + w1(⌧) = k

dwqs

i

d⌧
(⌧) + wqs

i (⌧) (3.78a)

(0.39� 0.26(r/R)

2
)

dŵi

d⌧
(r, ⌧) + ŵi(r, ⌧) = w1(⌧) (3.78b)

The Laplace transform of this system can be used to extract the frequency
domain relation

ŵi(r, �) =
1

(0.39� 0.26(r/R)

2
)� + 1

k� + 1

� + 1

ŵqs

i (�) (3.79)

The averaging convention (1.17) is now used to compute the averaged inflow

wi(�) =


1

A

Z R

0

1

(0.39� 0.26(r/R)

2
)� + 1

2⇡rdr

�
k� + 1

� + 1

wqs

i (�) (3.80)

Comparison to (3.40) whilst noting (3.76) furnishes Øye’s wake admittance func-
tion

Q
Øye

(�) =
(0.6� + 1)(3.85 log(� + 2.56)� 3.85 log(� + 7.69) + 4.23)

�(� + 1)

(3.81)

The frequency response of this function is shown in (3.7) where it can be com-
pared to the wake admittance function derived herein. The two transfer func-
tions are indeed very similar. The Øye model is heavily informed by empirical
data, indicating that the theory developed in this chapter is sound. Experimen-
tal validation undertaken in Chapter 4 will bolster this contention.

3.5.2. Acceleration potential models
Inflow models exemplified by a mass-damper system seems to have originated
with the work of Carpenter and Fridovich [69] where the effects of rapid blade
pitching on a helicopter was examined. Their model is given below.

maẇi + 2⇢Awwi = F (3.82)

The damping term is simply that furnished by Rankine-Froude momentum the-
ory [35]. The novelty in [69] was the addition of an apparent mass term ma

which represents the lag in inflow following a change in thrust. This "mass"
was suggested to be 63.7% of a sphere of fluid with radius equal to the rotor.

ma = 0.637 · 4
3

⇢AR (3.83)

The basic mass-damper model was refined by Pitt and Peters [70], who in addi-
tion to modeling the effects of forward flight, arrived at the same value for the
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3.5. Comparison to existing work on wake dynamics

apparent mass. The mass was however corrected in later works to the following
value [25]

ma =
128

75⇡
⇢AR (3.84)

This family of models are similar to the acceleration-potential method of van
Bussel [24] in that they both employ a methodology originating with Kinner [71].
This approach solves a Laplace equation for the pressure in an oblate spheroidal
coordinate system permitting separation of variables. The resulting solution
(given as a harmonic expansion) is related to the flow field under an assumption
of small perturbation flow. Methods of this general class [31, 24] all seem to
suggest the added mass (3.84). The mathematics underlying the acceleration-
potential method are rather involved, consult [72, 24] for details. It should be
noted that later works recommend the added mass from an impermeable disk
translating in heave ma = ⇢(8/3)R3 [73].

The methods cited above all derive from variations on the acceleration po-
tential method which is fundamentally different from the present approach. For
comparison purposes, the case of light loading and constant wind speed is as-
sumed. A general form of the dynamic inflow equations is then

µ

✓
R

w0

◆
ẇi + wi =

F

2⇢Aw0
(3.85)

Here, µ represents a dimensionless time-constant. A comparison of the various
models in terms of µ is given below

µDVT =

8

3⇡
' 0.85, µAP =

64

75⇡
' 0.27, µdisk =

4

3⇡
' 0.42 (3.86)

It is a matter of some concern that the time constants vary so much; the quan-
titative behavior of the models differ significantly. See Figure 3.12.

Acceleration potential methods have been extended to permit computation of
disk-varying inflow generated by a pressure distribution that is also permitted to
vary over the actuator disk. Peters et al. [72] underscores that these generalized
variations contain the simple scalar model exemplified by (3.82) and (3.84) as a
special case. This implies that the disagreement uncovered above should persist
even if more advanced versions of the acceleration-potential method is used.

The theories giving rise to the time constants differ greatly and identifying
a single point of disagreement is therefore difficult. The acceleration potential
method predicts something akin to an added-mass effect. It is not immediately
obvious how a rotor relates to this concept. On the other hand, the present
development relies on a very idealized vortex system which fails to satisfy basic
laws of vortex motion. However, comparison to experiment in the next chapter
will reveal that the present method is superior. As demonstrated, the Øye model
also agrees better with the new theory.
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3. Dynamic Vortex Theory

3.6. Chapter summary
This chapter can be summarized as follows:

• In Section 3.1 the circulatory thrust Fc(t) and torque Qc(t) were derived
using Joukowsky’s rotor construction. The circulatory interconnection
structure inherent in Joukowsky’s model was identified.

• In Section 3.2 the averaged dynamic inflow wi(t) was modeled in the vortex
paradigm. Adopting a rigid-wake assumption (Ass. 3.1) and employing
conservation of momentum, a dynamic wake model (3.22a)-(3.22b) was
derived in the form of a convolution integral. Comparison to Rankine-
Froude momentum theory was used to identify the correct vortex transport
velocity; an important constituent in the model. It was also shown that
the new model extends the Joukowsky rotor to the dynamic setting, albeit
at the assumption of negligible tangential inflow and using a smeared
approximation of the helical filaments.

• The theory derived in Section 3.3 defined and explored the wake admit-
tance function Q, a central but hitherto unexplored quantity in wake dy-
namics. By expressing the dynamics in reduced time it was possible to
bring a frequency domain analysis to bear on the problem, see (3.40,3.38).
A range of important properties for Q were identified in proposition 3.1.

• In Section 3.4 the dynamic wake model was realized as a nonlinear ODE
(3.67) using frequency domain identification. A model valid for low-
frequency excitations was furnished by (3.73).

• In Section 3.5 comparisons were made to existing models. It was shown in
Figure 3.7 and Figure 3.12 that the new model compares well to the Øye
model but gives significantly slower transients than models derived using
the acceleration potential method.
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4. Engineering Model

This chapter describes how dynamic vortex theory can be used in
practical applications. Drag and tip-loss corrections are introduced.
Explicit forms for the circulation and a drag factor are found with
an equivalent airfoil analogy. A method converting existing table
data for use in the new scheme is presented. Simplifications are
employed to yield a model with only two tuning parameters. The
models are validated successfully against experimental data as well
as blade element momentum theory.

The preceding chapter developed a dynamic vortex theory central to the thesis.
However, the theory was derived in an idealized manner where the circulation
� could be left undetermined. It will be necessary to provide an explicit rep-
resentation for the circulation. Furthermore, the model (3.9) was identified as
lossless. Added realism will be made possible by the introduction of energy loss
mechanisms.

Two important deleterious effects are now introduced into the model, namely
drag and tip-losses. Both effects reduce the efficiency of the idealized and opti-
mal rotor described in Chapter 3. The aim is to bring the model closer to true
systems. Effective simulation is made possible by the introduction of an equiv-
alent airfoil which provides an explicit form for � . After these developments,
the model is compared to experimental data and conclusions are made.

4.1. Tip-losses
As discussed in Prandtl [56], the actuator disk rotor model implicitly assumes
an infinite number of blades. The main purpose of a tip-loss correction is to
bring the model closer to the true situation with a finite blade count. Note
that root-losses could also be included. But, this effect is far less significant
and hence omitted. There are several ways of including tip-losses; a simple but
effective approach is used presently.

The constant circulation of the Joukowsky rotor is retained, but it is now
assumed that the circulation acts over a reduced span R

eff

= BR where the
tip-loss factor lies in the interval 0 < B < 1. This is a standard approach in
rotorcraft analysis, see Johnson [36]. Recomputing the results in Section 3.1
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4. Engineering Model

using a tip-loss factor yields the circulatory loadings

Fc(t) =
⇢AB2N

2⇡
� (t)⌦(t) (4.1a)

Qc(t) =
⇢AB2N

2⇡
� (t)w(t) (4.1b)

The averaged flow (1.17) must also be re-interpreted as tip-losses are introduced.

w(r) =
1

AB2N

NX

i

Z RB

0

ŵ(r, ✓i, t) 2⇡rdr (4.2)

All things being equal, the chief effect of the tip-loss is to increase the inflow for
a given thrust. Re-deriving momentum theory over the reduced effective swept
area AB2 modifies (2.18) in the following manner

F = 2⇢AB2|w|wi (4.3)

The increase in inflow for a given thrust is apparent. As noted in the intro-
duction, tip-losses have the effect of lowering the theoretically optimal power
coefficient. A tip-loss corrected power coefficient is readily obtained as

CP =

F (w0 � wi)

1
2⇢Aw

3
0

= B2
4|1� a|(1� a)a (4.4)

Comparison to (2.21) indicates a new lowered power optimum C⇤
P = B2

(16/27).
The optimal inflow remains unchanged at a⇤ = 1/3. Johnson [36] suggest values
in the range 0.96 � 0.98 for rotorcraft applications. Similar values appears to
hold for wind turbines, but skewed towards the lower end of this range. For
brevity’s sake the tip-loss corrected radius and area will be denoted1 by

Model 4.1 (Tip-loss correction).

Rp , BR, Ap , ⇡R2
p (4.5)

4.2. The ��-parametrization
Sectional drag forces give a significant contribution to the aerodynamic torque.
Also, but to a much smaller degree, the thrust. When these non-circulatory
force components are included in the model one has

F = Fc + Fd, Q = Qc +Qd (4.6)

1The p stands for Ludvig Prandtl (1875-1953); the originator of the theory describing tip
losses.
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4.2. The ��-parametrization

Rather than attempting to directly integrate the drag over the blades, as is
customary in blade element theory, an indirect method is used here. A drag
factor � is introduced into the circulatory loading model (3.9) to yield the total
force F and torque Q, viz.

Model 4.2 (Drag augmented interconnection structure).

F
Q

�
=

⇢ApN

2⇡


� ��
� �`2

� 
w
�⌦

�
(4.7)

Here, `[m] represents a length scale introduced for dimensional compatibility.
Note that a tip-loss corrected area is used above. Dotting both sides with the
generalized velocity vector col[w, �⌦ ] shows that dissipative effects have been
introduced 

w
�⌦

�T 
F
Q

�
=

⇢ApN

2⇡
�(w2

+ (⌦`)2) (4.8)

An opportune choice for ` is furnished by minimizing the difference between ⌦`
and ⌦r over the reduced radius according to the formula

min

`2[0,Rp]

Z Rp

0

(⌦r � ⌦`)2 2⇡rdr ) ` =
2

3

Rp (4.9)

This choice places ` at the center of mass of the triangular normal lift distribu-
tion associated with constant circulation.

Solving (4.7) for the variables � and � extracts the relationships

� =

2⇡

⇢ApN

`2⌦F + wQ

w2
+ (⌦`)2

(4.10a)

� =

2⇡

⇢ApN

wF � ⌦Q

w2
+ (⌦`)2

(4.10b)

The drag factor � extracts the lossy forces (since wFc � ⌦Qc = 0) whereas �
extracts the lossless component (since `2⌦Fd + wQd = 0).

The circulation and drag factor have been left undetermined until now. The
thrust and torque arise from blade forces which are assumed to react instanta-
neously to the local flow environment at the rotor disk; the circulation and drag
factor should inherit this property. A simplified but credible static relationship
on the following form is therefore sought

� = � (⌦ , w, �), � = �(⌦ , w, �) (4.11)

Since the functions are static they must also hold at steady-state, permitting
the use of precomputed table-data in their identification. BEMT as introduced
in Chapter 2 can be relied on to produce high quality estimates for F and Q
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Figure 4.1.: Separation of variables for the circulation and dissipation coefficients. Here, the
dots represent table-data transformed by (4.12). The point of optimal power
extraction is indicated by a cross. Fits of similar quality can be obtained for
other turbine variants. A tip-loss factor of B = 0.95 is used for the 5MW variety
modeled in the figure.

at steady state. The following discussion assumes that such data are available.
The dimensionless forms of (4.10) are given by

� , �

w0R
=

⇡

B2N

`2nd�CT + (1� a)CQ

(1� a)2 + (�`nd)2
(4.12a)

� , �

w0
=

⇡

B2N

(1� a)CT � �CQ

(1� a)2 + (�`nd)2
(4.12b)

Here `nd = `/R = 2B/3. The inflow a can be computed by inverting the
dimensionless tip-loss corrected inflow relation 4B2|1 � a|a = CT . The right
hand sides in (4.12) are therefore fully known subject to available table data.

The following variables respectively describe the inflow angle and onset flow
at the radial station at r = `, viz.

�` , tan

�1
⇣ w

⌦`

⌘
, V` ,

p
w2

+ (⌦`)2 (4.13)

The incidence angle of a hypothetical airfoil at ` is obtained by subtracting the
collective pitch angle.

↵` = �` � � (4.14)
Let a dimensionless form of the onset flow be denoted

v` , V`/w0 (4.15)
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4.2. The ��-parametrization

An approximate separation of variables will be used to furnish explicit forms for
the dimensionless coefficients � and �. The following relationship is assumed

� ⇡ c�(↵`)v`, � ⇡ c�(↵`)v` (4.16)

There is no rigorous justification for these formulae but practice reveals that
they work very well. The notion of an equivalent airfoil arises from comparison
to the formulae describing the lift and drag on a sectional airfoil of chord c
located at `.

L =

1

2

⇢ccl(↵`)V
2
` , D =

1

2

⇢ccd(↵`)V
2
` (4.17)

Employing the Kutta-Joukowsky theorem [53] for the lift whilst furnishing an
analogous expression for the drag yields the equalities

⇢�V` =
1

2

⇢ccl(↵`)V
2
` , ⇢�V` =

1

2

⇢ccd(↵`)V
2
` (4.18)

Ignoring constants gives rise to expression similar to (4.16).

� / cl(↵`)v`, � / cd(↵`)v` (4.19)

Having separated variables, the circulation and drag factor can be obtained from
the formulae shown below.

Model 4.3 (Equivalent airfoil approximation).

� = Rc�(↵`)V`, � = c�(↵`)V` (4.20)

While this "derivation" is quite unconvincing, the results shown in Figure 4.1
do in fact indicate the wind turbine rotor is well represented by an equivalent
airfoil.

The discussion now turns to the question of how to best identify the coeffi-
cients c�(↵`), c�(↵`) as well as the tip-loss factor B.

The tip-loss factor B : The tip-loss factor is set so as to maximize the lower
bound on �. This turns out to give values that correspond well to those
found in the literature and ensures that � remains as unpolluted as pos-
sible by non-ideal effects. An additional benefit of this approach is that
it ensures the important bound � > 0. The optimization should be done
discarding2 data points where a > 1/3.

The circulation coefficient c�(↵`) : The coefficient c� can be computed as a
simple piecewise least-squares curve through the data cloud generated by
the right hand side of (4.12a).

2Numerical tools agree well when a  1/3 but give different results above this value due to
the empirical Glauert correction.
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Figure 4.2.: The Tjæreborg research turbine. Image from [74].

The dissipation coefficient c�(↵`) : An opportune choice for c�(↵`) has turned
out to be a lower bound of the right hand side of (4.12b). This scheme
work wells around the optimum and represents the dissipation at high an-
gles of incidence ↵` in a qualitatively acceptable manner, see Figure 4.1.
The drag factor’s approximation is less satisfactory than the one obtained
for c�. The present scheme does however seem to work well in practice.

The results obtained from this approach can be seen in Figure 4.1.

4.3. Experimental validation
The true test of dynamic vortex theory, augmented with drag and tip-losses
through (4.7,4.20), will be in the dynamic setting using the vortex-theoretical
inflow model (3.67).

Gathering results implies that the following model should hold for the forces

F
Q

�
=

⇢ApN

2⇡


� ��
� �`2

� 
w
�⌦

�
, � = Rc�(↵`)V`, � = c�(↵`)V`

(4.21)
The forces depend in turn on the dynamic inflow generated by a tip-loss cor-
rected form of the wake system given in (3.67).

Rp
dx

dt
(t) = |w(t)|Ax(t) + b

F (t)

2⇢Ap

, wi(t) = cx(t) (4.22)
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Table 4.1.: The Tjæreborg wind turbine in brief.

Contractor I/S Elsam

Connected to grid (year) 1988

Hub height 60m

Rotor diameter 2R = 61.1m

Synchronous speed ⌦s = 2.3415 rad/s

Power control Automatic variable pitch

Blade number N = 3

Rated power E+
= 2.2MW

Pitch envelope �2

�  �  35

�

Generator type Synchronous induction

The model is compared to experimental data3 gathered from the instrumented
Tjæreborg wind-turbine shown in Figure 4.2. Exhaustive documentation can be
found in [74]. Some key characteristics are gathered in Table 4.1.

Time-series data described in [75] is used for comparison. The data describes
the mean flap moment M

flap

(t), low-speed shaft torque Q(t) and generator shaft
power E(t) as the pitch �(t) undergoes step changes. Averaging was used to
remove noise from 1P and 3P variations as well as variations in the wind speed.
The data used herein therefore represents the mean over n = 58 identical ex-
periments. The present model does not predict the mean-flap moment directly,
so an indirect measure based on the thrust F is used. The experimental mean
flap moment is extracted by averaging over strain-gauges located on each blade.
Constant circulation over the reduced span Rp predicts the normal spanwise
load distribution

fn(r, t) =
2F (t)

NR2
p

r (4.23)

Integrating the normal load from the strain-gauge located at r = Rs = 2.75m
to the effective tip at Rp permits the following estimate

M
flap

(t) ⇡
Z Rp

Rs

fn(r, t)(r �Rs) dr =
1

N

"
`�Rs +

1

3

✓
Rs

Rp

◆2

Rs

#
F (t) (4.24)

The low-speed shaft torque Q(t) is taken directly from the model. For the
present purposes the generator shaft power E(t) will not be of interest. Including
this quantity would require additional modeling of the generator but bring little
additional insight to the table.

3The author wishes to thank M.O.L. Hansen of DTU for providing data.
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Figure 4.3.: Equivalent coefficients for the Tjæreborg wind turbine at B = 0.965.

The model has been tuned by setting the wind speed to w0 = 8.8m s

�1 rather
than the mean wind speed of w0 = 8.7m s

�1 indicated in [75]. The pitch was
also given a bias of �0 = 0.5� and gain increase of 10%. Other than these
minor calibrations, no adjustments were made. The equivalent foil coefficients
used for validation, along with the tip-loss factor, are shown in Figure 4.3. A
standard variation of BEMT has been used to compute the necessary coefficient
tables CQ and CT used in the identification of the circulation and dissipation
coefficients. A 10th order fit was used to obtain the matrices in (3.67). This
provides a near-perfect approximation to the underlying distributed dynamics,
see Figure 3.10.

The model is compared to experimental data in Figure 4.4. Considering
the simple nature of the theory, this is an encouraging result. The blind test
data shown in Figure 2.7 indicate that these results are well within standard
engineering accuracy for wind turbine load predictions.

The transients in the forces, ultimately arising from wake dynamics, are cap-
tured nearly perfectly. The Øye model discussed in Section 3.5.1 was developed
in a semi-empirical manner based on data from the Tjæreborg turbine. Since
the present model acquits itself very well, an explanation for the similarities
shown in Figure 3.7 presents itself. It seems fair to conclude that the dynamic
vortex theory developed in the Chapter 3 is physically sound.

A comparison of various inflow models was undertaken in Section 3.5. Here,
it was noted that schemes based on the acceleration potential gave very different
results than the new theory and also Øye’s inflow model. It seems reasonable to
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Figure 4.4.: Pitch step experiment performed at the Tjæreborg instrumented wind turbine.
The experimental data is obtained by averaging over a number of identical
experiments. Note that the transient behavior indicates a LHP zero; this is a
dynamic wake effect.

conclude that the new theory provides a better representation of the unsteady
aerodynamics. It must be noted that methods based on the acceleration poten-
tial have their genesis in helicopter analysis. One may suspect that this type of
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theory is better suited for rotorcraft applications.
An indirect validation of the model at steady state is furnished by Figure 4.3

and Figure 4.1. One may argue that if BEMT theory can describe a real wind
turbine accurately, so can the present model. An objection would be the devia-
tions in the dissipation coefficient. However, this problem is minor and the drag
at optimum loading is indeed well captured.

4.4. Simplification
This section undertakes a series of simplifications aimed at obtaining a para-
metric model for control studies.

4.4.1. The circulation function
An exceptionally useful approximation for � will now be discussed. Comparing
the circulation formula in (4.20) to the Kutta-Joukowsky theorem whilst noting
the excellent fit, suggests that the entire turbine rotor can be construed as a
single airfoil located at the radial station `. Since a well-designed airfoil will
approximate an idealized flat-plate at small incidence angles [53], one can infer
the small-angle approximation

c�(↵`) ⇡ k� sin(↵` � ↵0), ↵` ⌧ 1 (4.25)

Astonishingly, a similar approximation also holds for wind turbines. See Fig-
ure 4.1 for an illustration of (4.25) and the small-angle flat-plate approximation.
Simple trigonometry shows that the circulation reduces to a relation affine in w
and ⌦ but nonlinear in the control �.

� = Rk� sin(↵` � ↵0)V` = Rk�(cos(↵0 + �)w � sin(↵0 + �)⌦`) (4.26)

The parameters in the circulation model can be determined with an optimality
argument. It was established in Chapter 2 that the wind turbine extracted a
maximum amount of wind power at C⇤

P = CP (�⇤, �⇤). The power coefficient
CP (�, �) absorbed the effects of the inflow wi making it possible to eliminate
this variable in the specification of the optimum. However, the present model
makes it explicit. It is now assumed that the optimal power coefficient is realized
at the optimal inflow a⇤ = 1/3. That is, the maximum amount of shaft power
Q⌦ coincides with optimal extraction of power from the atmosphere F (w0�wi).
In terms of the tip speed ratio, this implies the steady state equalities

w0 =
⌦R

�⇤
, wi =

⌦R

3�⇤
(4.27)

The tip-loss corrected inflow relation (4.3) can be combined with (4.1) to produce
the equality

wwi =
N

4⇡
�⌦ (4.28)
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It is here assumed that thrust due to drag is negligible around the optimum and
that w > 0. The optimal inflow is realized when the circulation assumes the
form

�⇤ =
4⇡R

3N�⇤
w (4.29)

This implies the parameters shown below when using the simplified circulation
model (4.26).

↵0 = ��⇤, k� =

4⇡

3N�⇤
(4.30)

For notational convenience, let a bias corrected input be defined by

Definition 4.1 (Bias corrected blade pitch).

u , � + ↵0 = � � �⇤ (4.31)

Now, let a function proportional to the circulation be defined by

Definition 4.2 (Circulation function).

g(⌦ , w, u) , k(cos(u)w � sin(u)⌦`), k =

2⇢ApR

3�⇤
(4.32)

This abbreviated format permits a compact representation of the circulatory
force and torque, viz.

Fc = g(⌦ , w, u)⌦ , Qc = g(⌦ , w, u)w (4.33)

The point of optimal power extraction is realized at u = 0.

4.4.2. Dissipation
The drag factor is well approximated by a simple constant

c�(↵`) ⇡ c0 (4.34)

Assuming a high tip speed ratio so that ⌦`/w � 1 permits the following affine
approximation of the dissipation factor

� = c0V` ⇡ c0|⌦ |` (4.35)

One may proceed to give an estimate of the drag coefficient c0. Here, a parametriza-
tion similar to the optimal control law (2.33) will be more convenient. Recall
the control law

E(⌦) = b⌦3, b , 1

2

⇢AC⇤
P

✓
R

�⇤

◆3

(4.36)
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The aerodynamic shaft power predicted by the simplified model reads as

P = ⌦Q = ⌦(Qc +Qd) = Fcw +Qd⌦ =

⇢AB2N

2⇡
(w�⌦ ��(⌦`)2)

⇡ ⇢AB2N

2⇡
(w�⌦ � c0(⌦`)3) (4.37)

Introduce the drag coefficient CD via the equality

bd ,
⇢AB2N

2⇡
c0`

3
=

1

2

⇢ACD

✓
R

�⇤

◆3

(4.38)

Evaluating the power with (4.29) and assuming � = �⇤, wi = w0/3 produces
the formula

C⇤
P = B216

27

� CD (4.39)

The drag coefficient in (4.38) thus quantifies the difference in the realized power
coefficient C⇤

P and the one predicted by tip loss corrected momentum theory.
Typical wind turbines will see C⇤

P ⇡ 0.45 � 0.5. With a tip loss factor of 95%
one has the estimate

CD

C⇤
P

⇡ 10� 20% (4.40)

The approximate dissipation model in torque thus reads as

Model 4.4 (Dissipative torque model).

Qd ⇡ �bd⌦
2, bd =

1

2

⇢ACD

✓
R

�⇤

◆3

(4.41)

The thrust due to drag is not well modeled by the resulting simplification given
by Fd / c0`|⌦ |w which under-predicts the force at high wind speeds. A simple
drag model will be used to address this shortcoming

Model 4.5 (Drag force model).

Fd = d|w|w, d , 1

2

⇢ACF (4.42)

Here, CF will be found in the range 0.01 � 0.02. This is an exceedingly small
effect compared to CT which will lie in the interval 0� 1. However, predictions
at high wind speeds and small incidence angles see a moderate improvement.

4.4.3. Parametric model
The preceding simplifications are aimed at control theoretical developments.
However, by fine tuning the estimates a low fidelity wind turbine model suit-
able for fast simulation is obtained. Gathering results implies that the drag
augmented interconnection structure (4.7) can be given the approximate form
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Figure 4.5.: The approximate model (4.43) compared to BEMT data. Here, the steady state
thrust, power and collective pitch angle are shown as a function of wind speed.
The control structure is similar to the one discussed in Chapter 2. Pitch control
is active when w0 > 11.5m s�1. The lower right figure shows the AoA at `.

Model 4.6 (Parametric load model).

F
Q

�
=


d|w| �g(⌦ , w, u)

g(⌦ , w, u) bd|⌦ |
� 

w
�⌦

�

g(⌦ , w, u) = k(cos(u)w � sin(u)⌦`), ` =
2Rp

3

(4.43)

The model constants are given by

k =

2⇢ApR

3�⇤
, bd =

1

2

⇢A

✓
B216

27

� C⇤
P

◆✓
R

�⇤

◆3

, d =

1

2

⇢ACF (4.44)

Finally recall that the bias corrected blade pitch was defined by the difference
u = � � �⇤. These equations represent an extremely compact model of a wind
turbine rotor when used together with the tip-loss corrected low frequency DVT
model (3.73) shown below.

µRpẇi + |w|wi =
F

2⇢AP

(4.45)
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Figure 4.6.: The approximate model (4.43) compared to BEMT data. Gradients of the
power and thrust coefficients with respect to the collective pitch angle and tip
speed ratio are shown. Pitch control is active when w0 > 11.5m s�1.

The model only contains two tuning parameters; the tip-loss factor B and drag
coefficient CF . The optimal point given by C⇤

P = CP (�⇤, �⇤) is assumed to be
supplied for the specific wind turbine.

With so many assumptions and simplifications questions may be raised as
to the accuracy. Figure 4.5 shows the simple model compared to steady state
BEMT calculations for the 5MW wind turbine examined in Chapter 2. Given
the simplicity of the model, superb performance is obtained. The parametric
model assumes operation in the linear lift regime. To examine the validity
of this assumption, the angle of incidence at the radial station ` = 2Rp/3 is
also shown in Figure 4.5. Note that the blades remain well within the linear
regime throughout; stall limits based on Figure 4.1 are indicated. Accurate
pitch gradients are essential above rated wind speed. Figure 4.6 compares the
DC gain w.r.t. to variations in the pitch. The pitch sensitivity is captured very
well. A somewhat less ideal result is obtained for the gradients with respect to
the tip speed ratio. This is of lesser significance since the generator will typically
dominate the total torque gradient.

Note that the model will give significantly less satisfactory results for FSVP
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4.5. Chapter summary

wind turbines. This is due to the crude dissipation model in torque; FSVP wind
turbines will turn at a nearly fixed rate of rotation implying that a constant
torque �bd⌦2

s is applied to the shaft. Here, the full equivalent airfoil model
will perform better. The model (4.43) can therefore only be recommended for
VSVP wind turbines.

4.5. Chapter summary
This chapter can be summarized as follows:

• A method of representing dissipative forces was proposed in Section 4.2.
An orthogonality argument was used to arrive at the ��-parametrization
which represents the thrust and torque on a vectorial format. Importantly,
this parametrization makes the difference between lossless and lossy force
contributions explicit.

• In Section 4.2 a simplified equivalent airfoil scheme was used to furnish
explicit models for the circulation and dissipation factor discussed in Sec-
tion 4.2. Whilst being approximate in nature, the scheme is capable of
representing BEMT data quite well, see Figure 4.1.

• Experimental validation was undertaken Section 4.3 using data obtained
from the Tjæreborg research turbine. The excellent match with the model
provides strong support for the underlying theoretical framework. The
equivalent airfoil model and simplified tip-loss model from Section 4.2
also seemed to acquit themselves well.

• A series of simplifications were performed in Section 4.4. The simplified
model with only two tuning parameters was successfully validated against
BEMT data. A trustworthy parametric loading model of a VPVS wind
turbine was thus obtained.
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5. System analysis

This chapter "closes the loop" and examines the interplay of the sub-
systems detailed in earlier chapters. Several interesting phenomena
appear in the interconnected plant. Vortical motion amplification in-
creases the effect of platform displacements and the circulatory rever-
sal effect provokes instabilities. The couplings in the interconnected
plant are subtle and nonlinear in nature. A simplified small-signal
analysis is undertaken to examine overall stability with and without
pitch control. Several interesting lessons ensue. Floating wind tur-
bines are shown to be intrinsically stable with a static collective pitch.
On the other hand, dynamic pitch actuation leads to instabilities in
the absence of nacelle motion feedforward. These instabilities can be
eliminated through the use of energy shaping feedforward control.

The previous chapters have set the stage for a new and more incisive look
at the control-induced destabilization phenomena. It has been argued that
circulatory loading and vortex transport are central to a full understanding
of wind turbine rotors. These phenomena will also be pivotal in the design of
automatic control. A block diagram of the nonlinear plant is shown in Figure 5.1.
While simple at first glance, the system exhibits devious and subtle phenomena
hindering simple control design. The discussion begins in Section 5.1 with a
presentation of the nonlinear models governing the dynamics of the subsystems.
Some interesting qualities and phenomena are also highlighted. Small signal
representations are developed for a simplified stability analysis. Stability is
examined in Section 5.2 and the passivity-based framework used for dynamic
analysis is introduced. System stability without pitch control is examined in
Section 5.2.2 and the consequences of attempting control of the angular velocity
are discussed in Section 5.2.3. There, the pitfall of conventional strategies is
highlighted. A solution involving feedforward is presented in Section 5.2.4. The
chapter is concluded with a simulation case study found in Section 5.3.

5.1. System model

5.1.1. The rotor subsystem
The rotor subsystem ⌃⌦ is the centerpiece of the full model. Here, the para-
metric load model (4.43) is used under an assumption of rigid shaft dynamics
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Figure 5.1.: The interconnected wind turbine system.

and a generator torque parameterized in the angular velocity. The simplified
representation shown below results.

Model 5.1 (⌃⌦ : Rotor system).

J ˙⌦ +QE(⌦) + bd|⌦ |⌦ = g(⌦ , w, u)w, F = g(⌦ , w, u)⌦ (5.1)

See Chapter 4 for details on the model constants and note that the very slight
thrust due to drag is omitted for simplicity. Since the circulation function will
be used frequently it is recounted below.

g(⌦ , w, u) = k(cos(u)w � sin(u)⌦`) (5.2)

The rotor model (5.1) works well for the variable-speed variable-pitch (VPVS)
wind turbines examined in this chapter. See Figures 4.5 and 4.6 for a comparison
to BEMT data at steady state. For brevity, the following shorthand is used

C(⌦) , QE(⌦) + bd|⌦ |⌦ (5.3)

The rotor subsystem (5.1) describes how the circulation g acts on the flows
w and ⌦ to produce forces. The circulatory torque Qc = gw drives the shaft
and serves as input to the internal dynamics of the subsystem. The circulatory
force Fc = g⌦ generates an output. Note that Fc and Qc are closely related, a
fact not apparent in table-based models like (2.26). The structure of the model
is given a graphical form in Figure 5.2.

Premultiplication with ⌦ in (5.1) recovers the energy balance of ⌃⌦ .

J⌦ ˙⌦ + ⌦C(⌦) = Fw (5.4)

Several interesting observations can be made from this equation. First of all,
note that the approximate energy balance from Chapter 1 has been refined with
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Figure 5.2.: Block diagram of the nonlinear rotor model (5.1). Note the clean structure
afforded by vortex theory.

the loss mechanism bd|⌦ |⌦2 through (5.3). Secondly, note that the circulation
function g is suppressed. As discussed in Chapter 4 the circulatory forces are
lossless. The energy balance shown above captures this quality; the circulation
function g contributes to the energy budget by determining the rate by which
energy flows from the atmosphere and hydroelastic system into the shaft system
(or vice versa).

It will be convenient to represent the energetics of the rotor subsystem through
the variable defined below.

Definition 5.1 (Storage manifold).

� , 1

2

J⌦2
+

Z t

0

⌦C(⌦) dt0 (5.5)

The storage manifold represents the total energy stored in the rotating mass
and that extracted as electricity or dissipated in friction. When �̇ > 0 energy
is absorbed from the surroundings. In other words, � describes the total energy
sequestered in ⌃⌦ due to the work on the input/output terminals. Mathemati-
cally, one has

�̇ = Fw (5.6)

Operating regimes

The VPVS wind turbine type is examined herein. As discussed in Section 2.6,
two distinct operating regimes occur in nominal operation. The rotor subsystem
is the only component in the interconnected system that depends explicitly on
these regions.

Region I At low wind speeds one seeks to optimize aerodynamic power extrac-
tion. This is accomplished by setting the collective pitch � to the optimal
value �⇤ and using the MPPT control law given in (2.33). In summary

u = 0, QE(⌦) = b|⌦ |⌦ (5.7)
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5. System analysis

The optimal value for the bias corrected input u is a matter of definition,
see (4.31) and discussion for details. The aim of the torque control law is
to drive the tip-speed ratio to the optimum � = �⇤. Achieving this goal
implies that the angular velocity ⌦ tracks the wind speed proportionally
so that ⌦ = �⇤w0/R.

Region II At high wind speeds two limitations are met. The available wind
power scales in a cubic manner with w0 and can be expected to exceed
the electrical generating capacity above some threshold. This implies that
the power absorption must be limited. Saturating the generator in power
or torque gives rise to the characteristics shown below.

QE(⌦) =

⇢
E+/⌦ Power saturation
Q+

E Torque saturation (5.8)

The former equation is suitable if power quality is of utmost importance.
However, power saturation gives rise to instabilities not encountered with
torque saturation.
The angular velocity ⌦ scales linearly with the wind speed in Region
I. This property does not hold in Region II with an altered generator
schedule. On VPVS turbines collective pitch control is used to drive the
angular velocity to a setpoint ⌦0. In practice, this can be achieved with a
PI-controller taking the measurements ⌦ and ˙⌦ along with the setpoint
⌦0 into a pitch angle u. In general u will be time-varying and determined
by feedback in Region II. More details will be given in Section 5.1.1.

It will be assumed that the wind turbine is operating in either of these regimes
and no attention will be paid to the transition between them.

Circulatory reversal

The lossless nature of the circulatory forces gives rise to some quite counterintu-
itive effects that are central in the design of Region II automatic pitch control.
This example aims to show that the problems faced in the design of the controller
are intrinsic to the system and not the consequence of poor engineering.

Suppose that the input w(t) assumes the form

w(t) = b+ ✏(t) (5.9)

where b is a constant and ✏(t) some small variation. Assume that a regulator
capable of rejecting the flow disturbance effectively is implemented. This must
necessarily be achieved by suitable alterations in g.

Consider Figure 5.3. The signal to the right of the g-multiplier would approx-
imate a constant c

in

if no disturbances are allowed to affect the shaft dynamics.
The circulation necessary to achieve this reads as

g(t) =
c
in

b+ ✏(t)
(5.10)
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Figure 5.3.: The reversal problem associated with (5.1).

Let the signal entering the second g-multiplier be another constant c
out

. This
would be natural as no disturbances can pass the first multiplier. In Figure 5.3
this is represented by a gain. The force exiting the system reads as

F (t) = g(t)c
out

=

c
out

c
in

b+ ✏(t)
(5.11)

Summarizing, the circulatory loading associated with perfect disturbance rejec-
tion have resulted in the transformation

w(t) = b+ ✏(t) ! c
out

c
in

b+ ✏(t)
= F (t) (5.12)

The problem becomes apparent when linearizing the exit signal. A first order
expansion in ✏ shows that

F (t) ' c
out

c
in

b2
(b� ✏(t)) (5.13)

This example demonstrates one of the counterintuitive properties of circula-
tory loading systems. Small input perturbations will have their sign flipped
at the output if rejected by regulation. All the while, the signal between the
multipliers will remain unperturbed. This effect is central to control-induced
destabilization. Recall that w = w

air

� ẋ. Replacing b with the airflow and let-
ting ✏ represent small nacelle motions shows that a positive feedback has been
generated. This effect is not readily apparent from the nonlinear representation
(5.1). However, the small-signal model developed below will make the problem
explicit.

Small-signal model

The nonlinear nature of (5.1) is difficult to approach directly and linearization
will be used to simplify the problem. To this end, let the model variables be
perturbed according to the notational rule

⌦(t) = ¯⌦ + �⌦(t) (5.14)

Here, ¯⌦ signifies a constant operating point. Partial derivatives of g will be
given the compact notation

gw =

@g

@w
, g⌦ =

@g

@⌦
, gu =

@g

@u
(5.15)
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Furthermore, let ḡ = g( ¯⌦ , w̄, ū).
With these notational conventions, a small-signal representation of the state

equation in (5.1) follows as

J� ˙⌦ + [C 0
(

¯⌦)� w̄ḡ⌦ ]�⌦ = (ḡ + ḡww̄)�w + w̄ḡu�u (5.16)
C(

¯⌦) = ḡw̄ (5.17)

Recall here that the effective flow w reads as the sum

w = w0 � wi � ẋ (5.18)

The nacelle motion is taken as zero around the operating point so that ˙x̄ = 0.
This implies that w̄ in (5.16) represents the operating point at w̄ = w̄0 � w̄i.

The output equation in (5.1) is best represented in terms of the energy balance
(5.6). This approach is useful since it makes the circulatory reversal explicit.
Linearization leads to a meaningful representation for the output perturbation

�F = �
¯F

w̄
�w +

��̇

w̄
(5.19)

The first term clearly captures the positive force-feedback generated by ⌃⌦ . Let
��̇ = 0. Then,

�F

�ẋ
(s) = 1 (5.20)

Note also that the positive feedback can be counteracted. To do this, energy
must be absorbed by the rotor system in a coordinated manner so that ��̇ / �w.
However, these variations will force changes in the angular velocity as seen from

��̇ = J ¯⌦� ˙⌦ + [C(

¯⌦) +

¯⌦C 0
(

¯⌦)]�⌦ (5.21)

This insight is crucial to the energy shaping feedforward developed in Sec-
tion 5.2.4. One may proceed to find the force equilibrium as

¯F = ḡ ¯⌦ =

¯⌦C(

¯⌦)

w̄
(5.22)

Summarizing, a linearized representation of the rotor system (5.1) assumes the
form shown below.

J� ˙⌦ + [C 0
(

¯⌦)� w̄ḡ⌦ ]�⌦ = (ḡ + ḡww̄)�w+ w̄ḡu�u, �F = �
¯F

w̄
�w+

��̇

w̄
(5.23)

The equilibrium is given by

¯F = ḡ ¯⌦ , C(

¯⌦) = ḡw̄, ¯Fw̄ =

¯⌦C(

¯⌦) (5.24)
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Closing the loop

It remains to "close the loop" with a pitch regulator so that �u can be deter-
mined. Instead of proposing a specific design, an indirect analysis is undertaken
where the details of the control system are abstracted into a notion of what a
designer wishes to achieve. There are many works describing detail engineer-
ing on pitch control such as the excellent book Bianchi et al. [23]. Here, the
discussion is better served by remaining on a more general level.

Classical systems analysis can be used to characterize the effects of pitch
control on the system in terms of the sensitivity function S(s) and the comple-
mentary sensitivity function T (s) [76]. The rotor model (5.23) is equipped with
the following Laplace domain representation

�⌦(s) = Gw(s)�w(s) +Gu(s)�u(s)

Gw(s) ,
ḡ + ḡww̄

Js+ C 0
(

¯⌦)� w̄ḡ⌦
, Gu(s) ,

w̄ḡu
Js+ C 0

(

¯⌦)� w̄ḡ⌦
(5.25)

Assume that a controller capable of regulating the angular velocity has been
found so that the closed loop dynamics of (5.25) acquire a desirable form. A
standard feedback controller will take the form

�u(s) = K(s)(�⌦r(s)� �⌦(s)) (5.26)

The resulting loop-transfer function follows as

L(s) = K(s)Gu(s) (5.27)

Closing the loop one has

�⌦(s) = T (s)�⌦r(s) + S(s)Gw(s)�w(s) (5.28)

The sensitivity functions are here given by

T (s) =
L(s)

1 + L(s)
, S(s) =

1

1 + L(s)
(5.29)

As seen from (5.28) the complementary sensitivity function T (s) characterizes
the control system’s ability in tracking a reference signal. The sensitivity func-
tion S(s) determines how well disturbances are rejected. These functions depend
on the particulars of the plant and regulator. For the system at hand, the pitch
input could be driven by a PI-regulator producing a second order system when
accounting for the first order shaft dynamics. A robust design example is given
by

L(s) =
1

s

!b

(s/!b) + 2⇣
, T (s) =

!2
b

s2 + 2⇣!bs+ !2
b

, S(s) =
s2 + 2⇣!bs

s2 + 2⇣!b + !2
b

(5.30)
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Figure 5.4.: Central transfer functions in a control system. Respectively; the complementary
sensitivity function T , the sensitivity function S and the loop transfer function
L. The transfer functions (5.30) with !b = 1 and ⇣ = 1 are shown here.

See Figure 5.4 for an illustration. The loop shaping design shown in the fig-
ure achieves a 40 dB/dec roll-off at high frequencies whilst ensuring that the
complementary sensitivity function achieves T (s) ' 1 for frequencies below the
bandwidth denoted by !b. Since T (s) + S(s) = 1 this also implies good distur-
bance rejection with S(s) ' 0. The control system rolls off above the bandwidth
in order to mitigate high frequency control use and reduce the effects of measure-
ment noise. Above the controller bandwidth one has S(s) ' 1 and T (s) ' 0. A
well designed wind turbine system will be equipped with relations of this kind.

Having determined the dynamics of the angular velocity in closed loop one
may proceed to examine the perturbed output �F whose Laplace domain rep-
resentation reads as

�F (s) = �
¯F

w̄
�w(s) +

s

w̄
��(s) (5.31)

Linearizing (5.5) leads to the following Laplace model for perturbations in the
storage manifold

��(s) , E(s)�⌦(s), E(s) , J ¯⌦s+ ¯⌦C 0
(

¯⌦) + C(

¯⌦)

s
(5.32)

It thus holds that

��(s) = E(s)T (s)�⌦r(s) + S(s)E(s)Gw(s)�w(s) (5.33)
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The product E(s)Gw(s) deserves special attention. In open loop, variations in
the storage manifold follow from ��(s) = E(s)Gw(s)�w(s). This equation also
serves as a decent estimate past roll-off where ! � !b. Here, one may use the
approximations S ' 1 and |T | ⌧ 0 giving ��(s) ' E(s)Gw(s)�w(s).

Let three constants be defined by

k1 ,
1 + (ḡww̄)/ḡ

2

, k2 ,
C(

¯⌦) + w̄ḡ⌦ ¯⌦

J ¯⌦
, k3 ,

C 0
(

¯⌦)� w̄ḡ⌦
J

(5.34)

Using the equilibrium ¯F = ḡ ¯⌦ it is possible to rewrite the numerator in Gw(s)
in the following manner

ḡ + ḡww̄ = 2ḡ
1 + (ḡww̄)/ḡ

2

=

2

¯F
¯⌦
k1 (5.35)

A simple algebraic development involving (5.32) will reveal that the open loop
response can be given the compact form

Gw(s) =
2

¯F

sE(s)
✓
1 +

k2
s+ k3

◆
k1 (5.36)

The constants in (5.34) can be estimated using the parametric model and
invoking reasonable assumptions.

Bound 1: (k1 � 1) A standing assumption will be that pitch-to-feather is uti-
lized. This is the standard solution on utility grade VPVS wind turbines
and permits the following bound to be established.

0  u  ⇡/2 (5.37)

Recall that g = k(cos(u)w � sin(u)`⌦). Under assumption (5.37) the
following bounds hold

ḡ⌦ = �k` sin(ū)  0, ḡww̄ = k cos(ū)w̄ � ḡ (5.38)

It follows that
k1 � 1 (5.39)

Bound 2: (k2 � 0) Noting the equilibrium C(

¯⌦) = ḡw̄ recounted in (5.23)
one must ascertain the bound ḡ + ḡ⌦ ¯⌦ � 0. The relative flux is assumed
positive implying w̄ > 0. When pitch to feather is utilized so that (5.37)
holds, a criterion equivalent to ḡ + ḡ⌦ ¯⌦ � 0 based on (5.2) can be given
as

tan

�1
⇣ w

2⌦`

⌘
� u (5.40)

The explicit computation illustrated in Figure 5.5 provides anecdotal ev-
idence that the inequality g + g⌦⌦ � 0 holds robustly for many modern
three blade VPVS types (granted that the system operates close to an
equilibrium point). The bound (5.40) will be assumed to hold herein. The
following inequality has thus been justified

k2 � 0 (5.41)
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Figure 5.5.: Curves representing the inequality (5.40). The difference g + g⌦⌦ is positive
wherever the blue line upper bounds the red curve. Equilibria of a representative
wind turbine [13] are used to generate the figure.

Bound 3: (k3 � 0) Noting C 0
(

¯⌦) = Q0
E(⌦) + 2bd|⌦ | from (5.3) and ḡ⌦  0

from (5.38) one must require a non-negative slope on the generator char-
acteristic. With recourse to Section 2.6, this is satisfied by all the examples
covered in the discussion on torque schedules save for the constant power
strategy (2.34). Assuming Q0

E(⌦) � 0 one has

k3 � 0 (5.42)

Gathering results gives rise to a simple Laplace domain model capable of rep-
resenting the rotor subsystem in open and closed loop operation.

Model 5.2 (Linearized rotor model).
Dynamics:

�⌦(s) = T (s)�⌦r(s) + S(s)Gw(s)�w(s) (5.43)

�F (s) = �
¯F

w̄
�w(s) +

s

w̄
E(s)�⌦(s) (5.44)

Transfer functions:

E(s) , J ¯⌦s+ ¯⌦C 0
(

¯⌦) + C(

¯⌦)

s
, Gw(s) =

2

¯F

sE(s)
✓
1 +

k2
s+ k3

◆
k1 (5.45)
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Regime specific models

The general nature of T (s) and S(s) suggest that a simplified approach is taken.
Two cases will given special attention.

Case 1: Open loop In the absence of control K(s) = 0 one has S(s) = 1 and
T (s) = 0. It follows that

�⌦(s) =
2

¯F

sE(s)
✓
1 +

k2
s+ k3

◆
k1�w(s) (5.46)

�F (s) =
¯F

w̄

✓
2k1 � 1 +

2k1k2
s+ k3

◆
�w(s) (5.47)

Case 2: Effective control A high bandwidth !b is assumed. The response to
excitations in the frequency band ! ⌧ !b are well modeled by T (s) ' 1

and S(s) ' 0. This leads to the estimates

�⌦(s) ' �⌦r(s) (5.48)

�F (s) ' �
¯F

w̄
�w(s) +

s

w̄
E(s)�⌦r(s) (5.49)

Note well that Case 1 avoids the destabilizing feedback from ẋ indicated in
(5.20). In open loop, sufficient variations in the storage manifold � are generated
by disturbances �w. Such disturbances are suppressed in Case 2 giving rise to
a destabilizing feedback. In other words, the latter case sets up conditions for
the circulatory reversal problem described above. From (5.32) one has

��(s) =
2

¯F

s

✓
1 +

k2
s+ k3

◆
k1�w(s) (Case 1) (5.50a)

��(s) = E(s)�⌦r(s) (Case 2) (5.50b)

Note that closed loop operation with effective control renders � constant lest
one varies the reference signal. Doing this will in fact be necessary for stability
as shown in Section 5.2.4.

5.1.2. The wake subsystem
The rotor subsystem operates in closed loop with the structural model detailed
in Appendix A and the wake model from Chapter 3. For the analysis in this
chapter, the low frequency approximation of the wake dynamics (3.73) will be
used with the understanding that it under-predicts energy dissipation at high
frequency perturbations.

Model 5.3 (⌃i: Wake system).

µRpẇi + |w|wi =
F

2⇢Ap

(5.51)
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Figure 5.6.: The inflow factor as a function of wind speed on a pitch controlled wind turbine.
Pitch control is active at wind speeds exceeding w0 > 11.5m s�1. Power is
limited here and the inflow will decrease from the Betz optimum at a = 1/3.
At low wind speeds very high inflow factors may be experienced.

The model depends on the relative flux w giving rise to the vertical branch seen
in Figure 5.1. Notably, nacelle motion ẋ enters the dynamics.

The inflow model is equipped with a time constant on the order ⌧i ⇠ Rp/w0.
With a 5MW wind turbine, a rough estimate based on a linearized model can
be given as 2 s < ⌧i < 14 s. The approximate lower bound is encountered at
very high wind speeds and low thrust coefficients whereas the upper estimate
is associated with optimal power extraction. The corner frequency of the wake
will thus lie in the approximate range 0.04 rad s�1 < !i < 0.5 rad s�1.

Recalling from Chapter 2 that the inflow will acquire magnitudes on the order
⇠ w0/3 implies that an accurate inflow model is crucial for understanding the
dynamics of large wind turbines. A smaller wind turbine with radius R0 < R
will, at the same wind speed, have time constants described by ⌧ 0i = (R0/R)⌧i.
All else being equal, smaller wind turbines will see inflow dynamics with higher
corner frequencies. A quasistatic assumption taking µ = 0 may thus be suitable
for small WTG types; not the modern breed of multi MW machines. The wake
dynamics take place at time-scales comparable to platform motion and should
not be neglected through a quasi-static approximation or similar simplifications.

The inflow factor a = wi/w0 quantifies the relation between the wind speed
and the flow disturbance due to force application. Figure 5.6 illustrates how
this quantity varies over the operating envelope of a VPVS wind turbine. Below
rated wind speed the inflow may acquire large values, particularly in the start-
up region where the rotor speed is kept constant. However, the bound a < 0.8
is unlikely to be exceeded. At high wind speeds where pitch control is active
the lower bound a < 1/3 applies.
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Figure 5.7.: The wake effect.

Vortical motion amplification

It is now assumed that the relative flux is positive w > 0 as is always verified
in practice. The dynamic wake model (5.51) representing the vortical wake can
be given on an alternative form that illustrates how ẋ perturbs the inflow.

µRpẇi + (w0 � wi)wi =
F

2⇢Ap

+ wiẋ (5.52)

Let a nominal wake model unperturbed by nacelle motion read as

µRpẇ
0
i + (w0 � w0

i)w
0
i =

F

2⇢Ap

(5.53)

By decomposing the inflow into two constituents wi = w0
i + ⇠ it is possible to

perform an approximate superposition using the nominal model along with a
motion amplification system. See Figure 5.7. To first order in ẋ and ⇠ one finds
that

µRp
˙⇠ + (w0 � 2wi)⇠ = wiẋ (5.54)

At optimum loading with wi = w0/3 the DC-gain of this plant is unity. This
means that the wake will amplify the effects of low-frequency nacelle motion by
as much as 100% under nominal operation. The amplified motion ẋa can be
represented in the Laplace domain by

ẋa(s) , ẋ(s) + ⇠(s) = ⌥(s)ẋ(s), ⌥(s) , sµRp + (w̄0 � w̄i)

sµRp + (w̄0 � 2w̄i)
(5.55)

Subject to the requirement wi  w0/3 the following bounds hold

�19.5� < \⌥(|!)  0, 1  |⌥(|!)|  2 (5.56)
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It is seen that the vortical wake acts, to close approximation, as a simple gain
on the nacelle motion. Physically, the amplification arises as the vortex loops
in the wake are packed more closely when moving the rotor backwards1 and
spread out as the rotor moves forwards. The inflow depends on the density of
the downstream vortex distribution and this is captured by the model.

The crucial insight is that positive feedbacks in ẋ actually act on ẋa. Cor-
recting measures must account for this effect. In practice, this will imply higher
feedforward corrections (up to 2⇥) from ẋ than a simple analysis omitting wake
dynamics would suggest.

Small-signal model

It will be convenient to use the modified force introduced in Chapter 3. Recalling
(3.62) this input describes the imbalance in applied force and momentum flux.

˜F , F � 2⇢Ap|w|wi (5.57)

The modified force vanishes at steady state in accordance with Rankine-Froude
momentum theory, see Chapter 2. With this device, (5.51) reduces to a linear
plant thus obviating the need for linearization in the first place.

Model 5.4 (⌃0
i: Modified wake system).

2µ⇢ApRpẇi =
˜F (5.58)

One may proceed to determine the equilibrium

¯

˜F =

¯F � 2⇢Ap|w̄|w̄i = 0 (5.59)

and the associated perturbation

� ˜F = �F �
¯F

w̄


�w0 � �ẋ�

✓
2� 1

ā

◆
�wi

�
(5.60)

Here, ā = w̄i/w̄0 describes the inflow factor at the operating point.

5.1.3. Vectorial model
The modified force ˜F can be obtained by equipping the rotor model ⌃⌦ with
an additional output. The additional force signal ˜F gives rise to a force vector
defined by

f ,

F
˜F

�
(5.61a)

1Towards the trailing wake tube.
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It will be desirable to retain a square structure for ⌃⌦ necessitating the definition
of an augmented input. To this end, a flow vector will be defined by

w ,

w0 � ẋ
�wi

�
(5.61b)

The negative signs on ẋ and wi in w reflect the negative feedback seen in Fig-
ure 5.1.

Letting the force vector perturb as f(t) =

¯f + �f(t) and recalling (5.23)
leads to an extended force model neatly incorporating the nonlinearities of the
dynamic wake model.

�f =

¯F

w̄

✓
D0�w +


1

1

�
��̇
¯F

◆
, D0 , �


1 1

2 3� ā�1

�
(5.62)

Several items are worthy of notice. The off-diagonal elements in the matrix D0

relating �w and �f represent couplings between the wake and nacelle motion.
On the first diagonal element one finds the reversal effect discussed in Sec-
tion 5.1.1 whereas the second element is associated with wake damping. This
element is negative under nominal operation at optimal and suboptimal power
extraction, i.e. ā  1/3. The rotor’s angular velocity enters the force vector
through the last term.

Specializing to the open loop Case 1 with (5.50) leads to the following Laplace-
domain force model

�f(s) =
¯F

w̄

✓
D1 +

2k1k2
s+ k3


1 1

1 1

�◆
�w(s)

D1 ,

2k1 � 1 2k1 � 1

2k1 � 2 2k1 + ā�1 � 3

�
(Case 1) (5.63)

The closed loop Case 2 gives rise to the following expression

�f(s) =
¯F

w̄

✓
D0�w(s) +

sE(s)
¯F


1

1

�
�⌦r(s)

◆
(Case 2) (5.64)

The force vector f perturbs the hydroelastic system through the first element
F and the modified wake dynamics through the second element ˜F . The hydroe-
lastic module ⌃x is described in Appendix A. There, a linear model relating the
thrust force F to nacelle motion ẋ is found.

Model 5.5 (⌃x: Hydroelastic module).

ẋ(s) = H(s)F (s) (5.65)

As discussed in Appendix A the model H(s) is output strictly passive. More
will be said on this later. For now, it suffices to note that the modified wake
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P (s)

F̄
w̄D0

�f(s)
�y(s)

+


1
0

�
�w0(s)

�

��̇(s)
w̄


1
1

�

�w(s)

Figure 5.8.: The vectorial model represented in the Laplace domain. Variations in the stor-
age manifold �� associated with cases 1 and 2 can be found in (5.50).

model (5.58) can be represented by a passive transfer function just like the the
hydroelastic system.

ẇi(s) = W (s) ˜F (s), W (s) , 1

2µ⇢ApRps
(5.66)

It is well known that integrators like W (s) may be categorized as lossless passive
systems [21]. The linear models describing hydroelastics and the modified wake
dynamics are conveniently arrayed by defining the following vector

y ,


ẋ
wi

�
(5.67)

Now, the response of the wake and support structure may be represented by

y(s) = P (s)f(s), P (s) , diag[H(s),W (s)] (5.68)

The definition of f can be found in (5.61). Combining (5.68) with the extended
force model (5.62) gives rise to the small-signal feedback structure depicted in
Figure 5.8.

5.2. Stability
This section examines stability of the interconnected wind turbine system. The
workhorse of the stability analysis will be passivity theory based on the dynamics
illustrated in Figure 5.8. The model subdivision shown in the figure is chosen
for a very specific reason. It turns out that P (s) is passive implying that

Z ⌧

0

�fT
(t)�y(t) dt � �↵ (5.69)

Physically, this equation indicates that the energy delivered over the input/output
terminals must be positive2. In other words, no net energy can be delivered to

2The ↵ accounts for nonzero initial conditions.

92



5.2. Stability

the surroundings, hence the notion of "passive". Recall that P (s) contains the
modified wake dynamics and the hydroelastic module on its diagonal accord-
ing to its definition in (5.68). The modified wake dynamics (5.58) are indeed
passive as demonstrated in Section 3.3.1. The hydroelastic system satisfies a
stronger property known as output strict passivity. This is demonstrated in
Appendix A.2.1. In light of this property note that the inequality (5.69) is
somewhat conservative since it disregards internal damping in the hydroelastic
system.

5.2.1. Input/output stability
Input-output stability theory is a very useful approach for dealing with inter-
connected systems. The theory considers systems of the type shown below.

y = Hu (5.70)

Input/output methodologies concern themselves with the relationship between
the input u and the attendant output y of some system H . It is here assumed
that H is an n⇥ n square system with an equal number of inputs and outputs.
Note that H can be nonlinear and time-varying.

It is customary to consider inputs drawn from an Lp-space defined by

kukp =
 
X

i

Z 1

0

|ui(t)|p dt

! 1
p

< 1, p � 1 (5.71)

If the integral exists then u(t) 2 Lp and the signal is informally referred to as
"well behaved". If the output belongs to the same space as the input then H
describes an Lp-stable system. In other words, the output is well behaved. It is
often necessary to consider signals that do not pass the strict criterion imposed
above. To this end, define the truncation operator

u⌧ (t) =

⇢
u(t) 0  t  ⌧
0 t > ⌧

(5.72)

The idea is that unbounded signals such as u(t) = t may imply u(t) /2 Lp

whereas a truncated signal will result in u⌧ (t) 2 Lp. I/O stability can now be
characterized by

Definition 5.2 (Finite-gain stable). A system H is finite-gain Lp-stable if
there exists nonnegative constants � (gain) and � (bias) such that

ky⌧kp  �ku⌧kp + � (5.73)

for all u⌧ 2 Lp and ⌧ � 0.
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The choice of norm is dictated by the application. In this work, special emphasis
will be placed on the L2-space defined by

kuk22 =
Z 1

0

uT
(t)u(t) dt < 1 (5.74)

It will be useful to introduce the specialized notation shown below.

hu,vi⌧ =

Z ⌧

0

uT
(t)v(t) dt (5.75)

Note that the truncation operator permits the equivalent statements

hu,vi⌧ = hu,v⌧ i = hu⌧ ,vi = hu⌧ ,v⌧ i (5.76)

The criterion for set membership u⌧ 2 L2 now acquires the compact formulation
hu,ui⌧ < 1. Note furthermore that L2 stability can be established by

ky⌧k22 = hy,yi⌧  �2hu,ui⌧ + �2  (�ku⌧k2 + �)2 (5.77)

Taking the square root on both sides establishes that

ky⌧k2  �ku⌧k2 + � (5.78)

Interconnected systems

I/O-stability theory is well-suited for the analysis of feedback systems. Let two
subsystems be represented by

y1 = H1u1, y2 = H2u2 (5.79)

Consider now the feedback interconnection shown below

u1 = d1 � y2, u2 = d2 + y1 (5.80)

The dynamics of the interconnected plant satisfies

y1 = H1(d1 � y2), y2 = H2(d2 + y1) (5.81)

Define the joint input and output respectively by

d ,

d1

d2

�
, y ,


y1

y2

�
(5.82)

It is natural to ask whether the interconnected plant is input-output stable.
There are (at least) two routes towards an answer; the small-gain approach and
the passivity approach. The former route will not be used herein and attention
will be focused on passivity theory. The property is defined below.
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Definition 5.3 (Passivity [16]).
Let y = Hu represent a system with an equal number of inputs and outputs.
Suppose that the following inequality holds with %, ⌫ and ↵ being real constants.

hy,ui⌧ � %hy,yi⌧ + ⌫hu,ui⌧ � ↵ (5.83)

Let ↵ � 0. The following passivity properties are said to hold for H.

Passive: ⌫ � 0 and % � 0.

Input strictly passive: ⌫ > 0 and % � 0.

Output strictly passive: % > 0 and ⌫ � 0.

Very strictly passive: % > 0 and ⌫ > 0.

Suppose now that the subsystems in (5.79) satisfy

hy1,u1i⌧ � %1hy1,y1i⌧ + ⌫1hu1,u1i⌧ � ↵1 (5.84)
hy2,u2i⌧ � %2hy2,y2i⌧ + ⌫2hu2,u2i⌧ � ↵2 (5.85)

If the subsystems are connected according to (5.80) finite-gain L2 stability from
the input d to the output y can be established subject to the simple criterion

⌫2 + %1 > 0, ⌫1 + %2 > 0 (5.86)

See Vidyasagar [77, Theorem 2.1] for a proof. Physically, the theorem represents
the fact that two power-dissipating subsystems in feedback interconnection bleed
off energy as time proceeds. This renders the system as a whole stable in the
process. The theorem also allows for non-passive (active) systems since the
individual constants in (5.86) need not be positive. A lack of dissipation in one
subsystem can be compensated for by the other.

5.2.2. Open-loop stability
Suppose now that no pitch control is applied so that u̇ = �u = 0. This invokes
the force model from (5.63). The results in this subsection apply to wind tur-
bines operating in the power optimizing regime. With recourse to Section 2.6,
it is assumed that the slope on the torque schedule is non-negative. It is also
assumed that the bias corrected pitch angle u satisfies the pitch-to-feather as-
sumption in (5.37). These assumptions are necessary to validate the bounds on
the constants k1, k2 and k3 found in Section 5.1.1.

The passive subsystems in P (s) are driven by the extended force vector de-
fined in (5.61) which gives rise to perturbations in the inflow and nacelle motion
described by

�y(s) = P (s)�f(s) (5.87)
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As indicated in (5.69) P represents a passive system and this is reflected in
the notation. The open loop force model (5.63) consists of two effects. Let
�f = �f1 + �f2. The first component is a direct feedthrough represented by

�f1 ,
¯F

w̄
D1�w (5.88)

The latter term represents a dynamic effect given in the Laplace domain by

�f2(s) ,
2k1k2
s+ k3

¯F

w̄


1 1

1 1

�
�w(s) (5.89)

The flow vector defined in (5.61) comes apart as

�w =


1

0

�
�w0 � �y (5.90)

The simplest way of approaching the stability problem for the overall system is
to "close the loop" with the feedthrough term �f1 first. To this end, define the
following dummy inputs and outputs

�y1 , �y (5.91a)
�y2 , �f2 (5.91b)

�u1 , �f +

¯F

w̄
D1�y (5.91c)

�u2 , �w (5.91d)

These signals corresponds to the subsystems

�y1 = H1�u1, �y2 = H2�u2 (5.92)

The exogenous signals driving the system are given by

�d1 ,
¯F

w̄
D1


1

0

�
�w0, �d2 ,


1

0

�
�w0 (5.93)

Using these definitions one recovers the following feedback interconnection

�u1 = �d1 + �y2, �u2 = �d2 � �y1 (5.94)

Consider now the inequality (5.69). Inserting the dummy signals from (5.91)
shows that

Z ⌧

0

�uT
1 (t)�y1(t) dt �

¯F

w̄

Z ⌧

0

�yT
1 (t)

✓
D1 +DT

1

2

◆
�y1(t) dt� ↵1 (5.95)

A renaming ↵ = ↵1 has been performed for notational consistency. The product
on the right hand side can be bounded from below in the following manner

�yT
1

✓
D1 +DT

1

2

◆
�y1 � �

min

⇢
D1 +DT

1

2

�
�yT

1 �y1 (5.96)
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Using the definition of D1 from (5.63) and noting the bound on k1 from (5.39)
an explicit formula can be produced

�
min

=

4(k1 � 1)ā�pā ((8k1(2k1 � 3) + 13)ā� 4) + 1 + 1

2ā

� 1�pā (5ā� 4) + 1

2ā
(5.97)

If one is willing to assume that the inflow factor remains in the well-defined
region ā  1/2 one finds the simple lower bound

�
min

� 1

2

(5.98)

One must proceed well above this inflow factor to render �
min

negative. The
limit is in fact found at ā = 4/5. Noting Figure 5.6 this is unlikely to occur
in practice. Now that one can ascertain the bound �

min

> 0 under reasonable
circumstances the details will not matter. It is justifiable to assume the following
properties for H1.

h�u1, �y1i⌧ � %1h�y1, �y1i⌧ � ↵1, %1 > 0, ↵1 > 0 (5.99)

According to Definition 5.3 H1 is an output strictly passive system.
The second subsystem H2 is described by (5.89). Using the dummy signals

(5.91) and realizing the transfer matrix gives rise a time-domain representation
of H2.

ż + k3z = 2k1k2
⇥
1 1

⇤
�u2, �y2 =

¯F

w̄


1

1

�
z (5.100)

This system can be examined by defining a suitable storage function S and
taking its derivative.

S ,
¯F

w̄

1

2k1k2

z2

2

, ˙S = �uT
2 �y2 � w̄

¯F

k3
4k2k1

�yT
2 �y2 (5.101)

Rearranging terms and integrating over time shows that
Z ⌧

0

�uT
2 (t)�y2(t) dt =

w̄
¯F

k3
4k2k1

Z ⌧

0

�yT
2 (t)�y2(t) dt+ S(⌧)� S(0) (5.102)

As demonstrated in (5.39), (5.41) and (5.42) all the constants ki can be taken
as positive. Since S(⌧) � 0 the following bound has been established for H2.

h�u2, �y2i⌧ � %2h�y2, �y2i⌧ � ↵2, %2 > 0, ↵2 > 0 (5.103)

Clearly, this is another output strictly passive subsystem. The passivity theorem
(5.86) can now be put to use. It has been demonstrated that

%1 > 0, %2 > 0 (5.104)
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The interconnected wind turbine system is therefore finite gain L2 stable.

Proposition 5.1 (Open loop stability). Assume that pitch-to-feather is used
so that 0  u  ⇡/2. Furthermore, suppose that the generator torque schedule
satisfies the criterion Q0

E(⌦) > 0. Then, the floating wind turbine system is
locally finite gain L2 stable about an equilibrium point.

This is a surprisingly general result. Examples of torque schedules satisfying
the criterion of non-negative slope are the optimal control law

QMPPT

E (⌦) = b⌦2 (5.105)

and the torque characteristic of synchronous generators QSYNC

E (⌦) = kg(⌦�⌦s).
Summarizing, wind turbines operating in open loop appear to be extremely

well behaved systems. Note also that the results hold for arbitrarily complex
hydroelastic systems, they just need to be passive. As a final note, it is verified
that the internal dynamics of the rotor subsystem are stable. Expanding the
transfer function in (5.46) using (5.32) shows that the poles are stable.

�⌦

�w
(s) =

2

¯F

J ¯⌦s+ ¯⌦C 0
(

¯⌦) + C(

¯⌦)

✓
1 +

k2
s+ k3

◆
k1 (5.106)

The eigenvalues of the system read as

�1 = �k3 < 0, �2 = �
¯⌦C 0

(

¯⌦) + C(

¯⌦)

J ¯⌦
< 0 (5.107)

The second pole must be negative since C 0
(

¯⌦) = Q0
E(⌦) + 2bd|⌦ | > 0 and the

net shaft torque arising from electrical power extraction and dissipatory effects
satisfies C(

¯⌦) > 0. This is a very pleasant conclusion. However, the use of pitch
control will reverse the situation as discussed in the next section.

5.2.3. Closed loop stability
We proceed to examine the case associated with effective control, Case 2. This
invokes the force model (5.64). Here, the situation represents Region II oper-
ation with active attempts at controlling the angular velocity of the rotor. A
power limiting or torque limiting control law is used, see (5.8).

The absence of a dynamic effect similar to (5.89) simplifies matters. Proceed-
ing in a similar manner as before, consider the dummy vector

�u , �f +

¯F

w̄
D0�y (5.108)

The exogenous signal will in this case be represented by

�d(s) , sE(s)
w̄


1

1

�
�⌦r(s) +

¯F

w̄
D0


1

0

�
�w0(s) (5.109)
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5.2. Stability

Let the closed loop system be denoted by �y = H�u where �u = �d. In this
case, the feedback from the extended force model is absorbed completely by �u.
We return to the inequality (5.69). Inserting the dummy input from (5.108)
shows that

Z ⌧

0

�uT
(t)�y(t) dt �

¯F

w̄

Z ⌧

0

�yT
(t)

✓
D0 +DT

0

2

◆
�y(t) dt� ↵ (5.110)

The matrix appearing on the right-hand side is in general indefinite. However,
bounding cases can be computed by noting that

�
min

⇢
D0 +DT

0

2

�
�yT

1 �y1  �yT
✓
D0 +DT

0

2

◆
�y  �

max

⇢
D0 +DT

0

2

�
�yT

1 �y1

(5.111)
Using the definition of D0 found in (5.62) permits the following bounds.

�
min

=

1� 4ā�p
13ā2 � 4ā+ 1

2ā
, �

max

=

1� 4ā+
p
13ā2 � 4ā+ 1

2ā
(5.112)

Consider for instance the lightly-loaded case ā = 0 which gives the highest �
min

possible with positive inflow factors and net aerodynamic power extraction.
Here, �

min

= �1 and a conservative estimate ensues as
Z ⌧

0

�uT
(t)�y(t) dt � �

¯F

w̄

Z ⌧

0

�yT
(t)�y(t) dt� ↵ (5.113)

This implies a system with significant lack of passivity since one would require
a negative feedback with a gain at least as high as �u = �(

¯F/w̄)�y to render
the plant L2-stable. For output strictly passive systems, like the ones applicable
to the open loop case in Section 5.2.2, one has by definition

%h�y, �yi⌧  h�y, �ui⌧ + ↵ (5.114)

This implies the output energy h�y, �yi⌧ will always be upper bounded by the
energy supplied to the system h�y, �ui⌧ . Let � = ��

min

> 0. For the present
system one has

�h�y, �yi⌧ � 0 � h�y,��ui⌧ � ↵ (5.115)

The output energy is now only lower bounded and can in principle acquire very
large values. What is seen is a manifestation of the control-induced destabi-
lization phenomena demonstrated in Section 1.2. It can be shown that the
eigenvalues of the closed loop system will indeed tend to wander into the right
half plane when attempting effective control. However, this involves the use of
an explicit model for P giving rise to a less general conclusion. It has been
shown that demonstrating stability through passivity arguments is impossible.
The result is interesting since it does not depend on the particulars of K(s).
All effective attempts of regulating the system will ultimately lead to the same
result.
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5. System analysis

The unfortunate situation illustrated above arises whenever effective regula-
tion of ⌦ is attempted. The key distinguishing factor from the open-loop case is
effective suppression of disturbances from �w. This will in turn hinder variations
in the storage manifold �. In the next section, disturbances are reintroduced
through feedforward and stability is reestablished.

5.2.4. Feedforward
The only signal amenable to manipulation in the closed loop model described
above is the reference signal ⌦r. At this point it will be convenient to recount
the force model associated with effective control.

�f(s) =
¯F

w̄

✓
D0�w(s) +

sE(s)
¯F


1

1

�
�⌦r(s)

◆
, D0 , �


1 1

2 3� ā�1

�

(5.116)
The chief problem in the closed-loop case was the indefinite nature of D0. So,
what if the reference signal ⌦r is used to render D0 positive definite? Consider
the following scheme with ⌦0 representing a constant setpoint.

⌦r(t) = ⌦e(t) + ⌦0 (5.117)

Let the "correction signal" ⌦e be generated by the following stable first order
ODE.

J⌦0
˙⌦e(t) + [⌦0C

0
(⌦0) + C(⌦0)]⌦e(t) = �KeF (t)ẋ(t) (5.118)

Here Ke represents a positive constant to be determined later. Note that a
constant power torque schedule QE(⌦) = E+/⌦ will not hinder the preceding
equation from use. The eigenvalue of the ODE remains in the left half plane as
seen from

⌦0C
0
(⌦0) + C(⌦0) =

@⌦C(⌦)

@⌦
(⌦0) = 3bd|⌦0|⌦2

0 > 0 (5.119)

Linearization about ¯⌦ = ⌦0 and subsequent Laplace transformation shows that
the reference signal will be equipped with feedforward dynamics given by

�⌦r(s) = �⌦e(s) = � Ke
¯F �ẋ(s)

J ¯⌦s+ ¯⌦C 0
(

¯⌦) + C(

¯⌦)

(5.120)

No feedforward from the inflow wi will be attempted since reliable measurements
cannot realistically be expected. Recalling (5.32) one may proceed to find the
compact expression

�⌦r(s) = � Ke
¯F

sE(s)�ẋ(s) (5.121)

Variations in the storage manifold are determined by �⌦r in closed loop accord-
ing to (5.50). Plugging in the preceding equation shows that the feedforward
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5.2. Stability

mechanism proposed above attempts to sequester energy when moving into the
wind with ẋ < 0. On the other hand, energy will be extracted from the spinning
mass when moving out of the wind and ẋ > 0.

��(t) = �
Z t

0

Ke
¯F �ẋ(t0) dt0 (5.122)

This relation motivates the notion of an energy shaping reference feedforward
when referring to the equation (5.118).

One may proceed to examine if the desired stabilizing effect has been realized.
Substitution in (5.116) noting that w = col[w0 � ẋ,�wi] leads to the following
expression

�f(s) =
¯F

w̄

✓
D2�w(s)�Ke


1

1

�
�w0(s)

◆
, D2 ,


Ke � 1 1

Ke � 2 ā�1 � 3

�

(5.123)
If Ke is chosen with care it is possible to render D2 positive definite over the
operating envelope in which pitch control is utilized. It is assumed that the
wind turbine is operating below the point of optimal power extraction implying
ā  1/3. This is an inevitable consequence of applying pitch control which aims
to hinder utilization of the full wind energy potential. See Figure 2.9.

Consider Figure 5.9. Here, values for Ke yielding a positive definite matrix
D2 +DT

2 � 0 are represented by the area under the black curve. Around the
optimum a = 1/3 this range is limited to Ke ⇡ 3. But, as the thrust tapers
off at higher wind speeds Ke can assume large values. The vortical motion
amplification discussed in Section 5.1.2 influences this result in a significant
manner. Had there been no inflow it would have been sufficient with Ke > 1.

The feedforward necessary to stabilize the plant in the region of effective
regulation T (s) ' 1 can be given exactly by

K�
e (a) < Ke < K+

e (a)

K�
e (a) ,

1� (3/2)a�p
3a2 � 4a+ 1

2a
� 1

K+
e (a) ,

1� (3/2)a+
p
3a2 � 4a+ 1

2a
� 3 (5.124)

It may be inconvenient to utilize a direct thrust measurement F (t) in (5.118).
The following rule can be used as an alternative

K 0
e(t) =

3F+

F (t)
(5.125)

Here, F+ corresponds to the highest thrust loading experienced by the wind
turbine over its operating envelope. This occurs at the optimal inflow a =

1/3. An illustration of the thrust as a function of wind speed can be found
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5. System analysis

Figure 5.9.: Permissible values for Ke as a function of the inflow factor. The red line illus-
trates a fixed gain given in terms of the maximal thrust.

in Figure 2.10. Since the thrust F relates to the inflow factor a through the
Rankine-Froude model given in (2.18) it can be shown that (5.125) will guarantee
that the matrix D2 is positive definite throughout Region II operation. This is
what the red line depicted in Figure 5.9 shows. As the wind speed increases,
the thrust F is lowered giving rise to a higher Ke. But, the inflow also decreases
and the higher gain is accommodated with good margin. Inserting (5.125)
into (5.118) gives rise to a simplified time-invariant filter suitable for practical
applications.

J⌦0
˙⌦e(t) + [⌦0C

0
(⌦0) + C(⌦0)]⌦e(t) = �3F+ẋ(t) (5.126)

It remains to be shown that the feedforward corrected system is stable. We
repeat the steps in Section 5.2.3, now with

�u , �f +

¯F

w̄
D2�y (5.127)

The exogenous signal is also modified and becomes

�d ,
¯F

w̄
D0


1

0

�
�w0 (5.128)

A suitably modified variation of (5.110) is readily recovered as
Z ⌧

0

�dT
(t)�y(t) dt �

¯F

w̄

Z ⌧

0

�yT
(t)

✓
D2 +DT

2

2

◆
�y(t)� ↵ (5.129)
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5.2. Stability

If the feedforward constant Ke is chosen in accordance with (5.124), most readily
accomplished by using the mechanism in (5.126), the matrix D2 will be positive
definite. This implies that there exists a positive constant % > 0 so that

¯F

w̄
�yT

✓
D2 +DT

2

2

◆
�y � %�yT�y (5.130)

Hence the result

h�d, �yi⌧ � %h�y, �yi⌧ � ↵, % > 0, ↵ > 0 (5.131)

According to Definition 5.3 the feedforward stabilized wind turbine is an output
strictly passive system. It is well known that such systems are L2-stable with
gain �  %�1. See Khalil [21, Lemma 6.5] for a mathematical proof of this fact.
The astute reader will note that the feedforward control strategy described above
is, in essence, precisely the one proposed in the Section 1.3.

Proposition 5.2 (Closed loop stability). Let a floating wind turbine be
equipped with a control system realizing the behavior ⌦(t) = ⌦e(t) + ⌦0 where
⌦e(t) is governed by (5.126). Then, the system is locally finite gain L2 stable
about an operating point ¯⌦ = ⌦0.

Remark 5.1. This is not a statement of overall closed loop stability. Rather,
that a major destabilizing effect has been removed. The frequency behavior of
the full system around the crossover point !b is difficult to analyze in a general
manner. However, noting that the system will tend towards stable open loop
behavior at ! � !b, it can be stated that motion occurring in frequency bands
at a sufficient remove from !b will indeed be stable.

Other solutions

It appears that many researchers are cognizant of the control induced desta-
bilization phenomena uncovered in Section 5.2.3 and hinted at in Section 1.2.
Several authors have described damping methods aimed at reducing platform
oscillations.

A rather simple approach is direct pitch alterations u(t) = Kẋ(t). However,
this methodology can be expected to be very ineffective below the regulator
bandwidth !b. From the perspective of the regulator, these variations will simply
count as another disturbance to be rejected. This prohibits effective variations in
� as ⌦ will be kept close to the setpoint ⌦0. Jonkman [6] describes this scheme
and finds little to no improvement in the platform damping. The preceding
reasoning shows why.

The dynamic reference method uses alterations in the reference signal to sta-
bilize the system. This is similar to the energy shaping approach detailed above.
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Figure 5.10.: Block diagram from the patent [12]. This is unmistakably a dynamic reference

approach.

Other researchers have found that this method works well. Lackner [10] uses a
reference signal given by

⌦r(t) = ⌦0 �Kẋ(t) (5.132)

Improvement in platform damping are indeed obtained. A compelling heuristic
argument can be found in the cited work. There is reason to suspect that
this mechanism is (or has been) used on the HYWIND prototype. Figure 5.10
shows an image gleaned from a recent patent (2013) clearly showing a dynamic
reference approach. Improvements are reported in the document and platform
motion is restrained.

These methods differ from the present approach in the filtering action de-
scribed by (5.126). To put it another way, the methods of [10] and [12] pass
ẋ through a high-pass filter when compared to the present approach. Using
(5.121) one finds the difference

ẋ
dr

ẋ
es

(s) =
sE(s)
¯F

K

Ke

(5.133)

This transfer function describes how the dynamic reference method compares
to the energy shaping method. Note that

sE(s) = J ¯⌦s+ ¯⌦C 0
(

¯⌦) + C(

¯⌦) (5.134)

The presence of the constant term ¯⌦C 0
(

¯⌦)+C(

¯⌦) indicates that the matrix D2

may indeed acquire the property of positive definite using the scheme in [10] or
[12]. However, high-frequency variations in the reference signal will be incurred
due to the differentiation through J ¯⌦s.
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Figure 5.11.: The simulated frequency response of the nacelle velocity ẋ subject to a thrust
force F . The slow mode corresponds to platform displacements in surge and
the fast mode captures tower bending.

5.3. Case study

5.3.1. Simulation model
The model used for technical analysis is somewhat simpler than the one show-
cased in the time domain simulations displayed below. Unless specified oth-
erwise, the full DVT wake model will be used rather than the low-frequency
approximation. Drag in thrust will also be included.

The representative 5MW wind turbine described in Jonkman et al. [13] will
supply numerical values to the simplified rotor subsystem. Simulations in Region
II are performed with a mean wind speed of wmean

0 = 17m s

�1. Turbulence is
generated with methods similar to the one described in Section 2.2. The various
model constants are computed from the relations shown below.

k =

2⇢ApR

3�⇤
, bd =

1

2

⇢A

✓
B216

27

� C⇤
P

◆✓
R

�⇤

◆3

, d =

1

2

⇢ACF (5.135)

Recall that Rp = BR and Ap = ⇡R2
p.
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J 4⇥ 10

7
kgm

2

R 63m

E+
5.3MW

⌦0 1.25 rad s�1

⇢ 1.225 kgm�3

C⇤
P 0.48

�⇤ 7.5

B 0.94

CF 0.0145

Table 5.1.: Numerical values used for simulation of the rotor subsystem.

The platform model shown in the simulations is based on the TLP platform
described in Goupee et al. [14]. A simple mass spring damper will be used to
model the nacelle motion

HTLP

(s) =
k0!

2
0s

s2 + 2⇣0!0s+ !2
0

!0 = 0.16 rad s�1, k0 = 3⇥ 10

�5
mN

�1, ⇣0 = 0.05 (5.136)

It will be interesting to test the control system’s response over a wider frequency
band. A tower bending mode is included towards this end. Based on the
numbers in [13], the following model will be used

HTWR

(s) =
k1!

2
1s

s2 + 2⇣1!1s+ !2
1

!1 = 2 rad s

�1, k1 = 5⇥ 10

�7
mN

�1, ⇣1 = 0.05 (5.137)

As a matter of notation, x0 will denote the platform displacement in surge
whereas x1 will signify the horizontal tower bending deflection at the nacelle.
Summarizing, the simulation model for the hydroelastic subsystem will reads as
the sum

H(s) = HTWR

(s) +HTLP

(s) (5.138)
A Bode diagram of this function is shown in Figure 5.11. When operating in
closed loop a PI-regulator similar to the standard variation found in Jonkman
et al. [13] is used. The bandwidth of the control system will be denoted !b.

5.3.2. Open loop operation
The MPPT control law detailed in Section 2.6 not only extracts wind power in
a quasi-optimal manner. It also facilitates stabilization of the tower and plat-
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Figure 5.12.: The MPPT algorithm under turbulent wind conditions. The platform motion
is not considered in this simulation.

form due to its non-negative slope, as discussed in Section 5.2.2. A simulation
highlighting the efficacy of the algorithm is shown in Figure 5.12. Here, the
floating platform is disconnected from the loop. The angular velocity is seen to
track the reference generated by the wind speed quite well despite turbulence.

⌦MPPT

r (t) =
�⇤

R
w0(t) (5.139)

Interestingly, this is achieved without measurements of w0(t). There are signif-
icant challenges with wind speed measurement due to the rotor’s aerodynamic
disturbance. A measurement free control law achieving tracking of a time vary-
ing optimal point is therefore highly advantageous. The figure also shows that
the inflow wi tracks the quasi-static optimum wi = a⇤w0 with a⇤ = 1/3, albeit
with a significant amount of lag; the sizable time constant associated with the
inflow dynamics is the reason behind this phenomena.

Figure 5.13 illustrates the rotor’s effect on the platform. The "open loop" case
represents the situation where the nacelle motion ẋ is not permitted to feed back
through w; the loop is broken. The "closed loop" case reintroduces the feedback.
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Figure 5.13.: A simulation of the MPPT law with a floating platform in the loop. The wind
signal is similar to the one depicted in Figure 5.12.

This permits an examination of the rotor system’s effect on platform motion.
Verify that the rotor introduces significant amounts of damping into the platform
dynamics. Both the high frequency tower bending and the low frequency TLP
surge are damped. This provides a practical illustration of Proposition 5.2. Note
that the angular velocity suffers little from closing the loop with the platform.
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5.3.3. Closed loop operation
A constant torque control strategy will be used for the simulations presented
here.

QE(⌦) = Q+
E (5.140)

Pitch regulation is used to achieve the dual objective of set-point regulation
and balancing the difference in aerodynamic and electrical torque Q(t) � Q+

E.
The PI-controller is chosen so that the crossover frequency !b is placed above
the platform’s resonance at !0 = 0.16 rad s�1 but below the tower resonance at
!1 = 2 rad s

�1.
The benign characteristics of the wind turbine system in the absence of effec-

tive control suggests that damping should occur in the frequency band ! � !b.
Figure 5.14 compares how the bending mode behaves when it is fed back in w
and the case where the loop is broken. It is observed that motion taking place
at frequencies well above !b will be damped, in line with the prediction.
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Figure 5.14.: Comparison study of the tower bending mode with and without feedback from
the tower bending rate ẋ1 in the interconnected plant.
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Figure 5.15.: Comparison study of the platform surge with and without feedback from the
surge rate ẋ0 in the interconnected plant.

The theory also makes a second prediction; namely that energy will be pumped
into the support structure if the motion takes place in the frequency band of ef-
fective regulation. Since the resonance frequency in platform surge satisfies this
criteria it should be destabilized according to the present theory. Indeed, Fig-
ure 5.15 demonstrates just such a phenomena. This is a practical demonstration
of control-induced destabilization.
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Figure 5.16.: Response of a detuned regulation system under turbulent wind conditions.

Controller detuning

An obvious solution to the resonance problem is to regulate with a lower band-
width so as to bring a wider frequency band into ! � !b. That is, one avoids
the problem of effective regulation by making the control system ineffective over
a wider frequency band. For the present problem, this implies !b ⌧ 0.16 rad s�1.
With such a low controller gain the resulting system will be vulnerable to large
overshoots and slow convergence. Figure 5.16 illustrates this approach with
!b = 0.1 rad s�1. While platform motion is restrained somewhat, the angular
velocity strays very far from the setpoint at ⌦0 = 1.25 rad s�1. This result
reflects the findings of Larsen and Hanson [5] and Jonkman [6] who both at-
tempted so-called "detuning". Since this control methodology has been proven
unreliable, both here and in the cited works, it will not be examined further.
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5.3.4. Feedforward stabilization
Figure 5.17 compares some stabilization methods from the literature, all re-
counted in Section 5.2.4. The direct pitch method is implemented as

u(t) = K
dp

ẋ(t), K
dp

= 1 rad sm

�1 (5.141)

No tuning attempts resulted in satisfactory performance. The platform motion
is not better than if pitch correction had not been applied. Extreme excursions
in collective pitch are seen to occur. This is not a viable method.

A reference injection approach based on Skaare and Nielsen [12] is also shown.
The dynamic reference used for the simulation was computed using the law

⌦d(t) = ⌦0 �K
dr

ẋ(t), K
dr

= 1 radm

�1 (5.142)

Increasing the gain beyond this point introduced significant ripple in the control
signal u. Some is still present in the figure, but the tradeoff seems fair at the
gain chosen above. The platform stabilization furnished by this method is quite
satisfactory and the setpoint reference is tracked well.

The energy shaping method attains a reference tracking of a comparable qual-
ity to the dynamic reference approach. Here, a maximum thrust of F+

=

8⇥ 10

5
N is used with the feedforward mechanism (5.126). Some additional

platform undulations are present compared to the dynamic reference method.
The discussion in Section 5.2.4 pointed out that the energy shaping approach
passes the nacelle motion through a low pass filter. A key difference between the
proposed method and the dynamic reference method is therefore lowered damp-
ing at higher frequencies. However, benefits are accrued in terms of smoother
pitch application.

A situation where the energy shaping method outperforms the dynamic ref-
erence method is when a constant power strategy is used. The filter converting
the nacelle motion into a reference signal will in this case reduce to

⌦e(s) = � 3F+

J⌦0s+ 3bd|⌦0|⌦0
�ẋ(s) (5.143)

This has the effect of generating larger reference signals ⌦e when compared to a
constant torque strategy with the denominator J⌦0s+Q+

E +3bd|⌦0|⌦0. Longer
time constants will also be incurred.

The present theory suggests that the damping properties of the method will
persist as long as an appropriate energy shaping filter is used. Figure 5.18
bolsters this contention; the energy shaping method stabilizes the system with
a smoother pitch input and less deviations in the angular velocity than the
dynamic reference method.
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Figure 5.17.: The direct pitch method (dp), dynamic reference method (dr) and the energy
shaping stabilizer (es).
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Figure 5.18.: The direct pitch method (dp) and dynamic reference method (dr) with a con-
stant power strategy.
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5.4. Chapter summary
This chapter can be summarized as follows.

• The first part of the chapter Section 5.1 detailed the model and its prop-
erties.
In Section 5.1.1 the rotor system was defined and analyzed. The energetics
associated with the module were captured by defining a storage manifold
representing the energy sequestered as motion or through power extrac-
tion and dissipation. A brief discussion of operating regions I and II was
presented along with implications for the model. The circulatory rever-
sal phenomena was described and linked to the control-induced resonance
phenomena. A small-signal model capable of representing both open and
closed loop operation was detailed and refined.
The wake dynamics were discussed in Section 5.1.2. It was demonstrated
that inflow models are important for two main reasons: (1) they give rise
to significant transient at time-scales salient for automatic control and (2)
the inflow will amplify the effects of nacelle motion through a phenomena
referred to as vortical motion amplification.

• The stability of the interconnected floating wind turbine system was exam-
ined in Section 5.2. A brief exposition of input/output stability concepts
was given in Section 5.2.1 along with the important passivity theorem. In
Section 5.2.2 a very general result pertaining to wind turbines operating
in the absence of pitch control was given; they are locally finite gain L2-
stable. As the discussion turned to closed loop operation in Section 5.2.3
less encouraging results were found. Here, it was shown that any attempt
at effective setpoint regulation of the angular velocity will lead to desta-
bilization. The section on stability was concluded in Section 5.2.4 where
an energy shaping feedforward mechanism capable of restoring L2 stabil-
ity was proposed and proved effective. Due notice was made of existing
attempts towards the same end.

• Section 5.3 presented an extensive simulation study highlighting the re-
sults of previous sections. A 5MW wind turbine on a tension-leg platform
served as a realistic model of future offshore wind power systems. The
benign open loop behavior identified in Section 5.2.2 as well as the control-
induced destabilization phenomena from Section 5.2.3 were demonstrated.
A number of stabilization schemes including direct pitch control, reference
injection and the energy-shaping methodology of Section 5.2.4 were com-
pared. The new approach acquitted itself well, providing comparable or
better performance than existing solutions.
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6. Conclusion

This thesis started with a simple idea; an energy balance model of a floating wind
turbine. However, while the concept was sound, it glossed over many important
effects. A new theory of wind turbine dynamics, combining old ideas such as
the Joukowsky rotor with new ideas such as frequency domain identification,
followed as greater insight was pursued. The title of the thesis is somewhat
misleading. While the theory did indeed result in a convincing solution of the
platform stabilization problem, it is the framework and not the application
that is most interesting. It has been shown that several distinct aerodynamical
effects, the vortex lifting law and the vortical wake, can be put on a form
relevant for control design and systems analysis. It has also been demonstrated
that control theoretical concepts have great utility in aerodynamics. Who would
have thought that the helical vortex wake could be modeled using an impulse
response and analyzed with a scattering transform? The success in addressing
the control induced resonance phenomena indicates that the the passive systems
approach to aerodynamics is a fruitful methodology.

A vast majority of control studies dealing with wind turbines utilize the coef-
ficient models described in Chapter 2 or a linearized dynamic model given as an
output from some engineering code. These approaches are not ineffective, but
they do lack elegance and hinder physical insight. It is hoped that this thesis
will give the reader a glimpse of the aesthetic pleasures associated with clas-
sical aerodynamics. A key inspiration behind the present work was the thesis
[78]. Here, a complicated hydrodynamic model was boiled down to a compact
vectorial representation with clear physical properties. An immediate conse-
quence was that simulation and control became far easier. The model is now
accepted as the standard way of representing marine vessels within the control
community. A great deal of effective control methodologies were facilitated by
the clarity and physical soundness of the representation. The models of wind
engineering are often complex and geared towards other purposes than control
theory. The field would benefit greatly from a model akin to that proposed in
[78]. This work hopes to push current research towards such a goal.

On a more practical note, the destabilization phenomena does indeed appear
to be solved. It has been demonstrated that the energy shaping stabilization
method works, both with theory and simulation. This is accomplished with
an extremely simple reference model that can be implemented directly on most
wind turbine regulators.
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6. Conclusion

Topics for Further Research
It appears possible to generalize Dynamic Vortex Theory to nonuniform load-
ing and inflow whilst retaining the underlying structure described in Chapter 3.
Since the very basic method presented herein performs well compared to ex-
periment, further improvements may be obtained through generalization. It is
hoped that the underlying ideas have been presented clearly enough that other
researchers can pick up the thread. Inflow dynamics under yawed conditions
are deviously difficult, see e.g. Snel and Schepers [73]. The impulse response
approach developed herein could furnish an improved understanding of these
phenomena.

The parametric model developed in Chapter 4 works very well with VSVP
wind turbines. However, for fixed speed types it underperforms. The reason
being that a quadratic drag model bd⌦2 is too crude. It may be possible to
find improved representations, but this must be done in manner that does not
encumber the minimalistic form of the representation.

Another suggestion for further research opportunities is the development of
true nonlinear control strategies on the parametric wind turbine model. This
author was unsuccessful in that quest; the reversal problem inherent in the
model structure appeared to prohibit the application of standard approaches
from nonlinear control theory. The fact that one cannot passivate the plant
whilst simultaneously regulating the internal states implies some sort of under-
actuation. A closer look at this problem could be quite fruitful.

Finally, and perhaps most importantly; circulatory loading models seem al-
most absent from the aerospace control field. This author did not find a single
reference describing this viewpoint. The thesis is therefore concluded with a
small example that could stimulate research efforts in this direction. Let the
position of a straight flying wing, defined in a plane normal to the lifting line,
by denoted by x = col[x, z]. Here z denotes the altitude of the wing whereas x
denotes the horizontal coordinate. The vectorial lifting law used in Chapter 3
predicts the dynamics

m


ẍ
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�
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0 ��
� 0

� 
ẋ
ż

�
�


0

mg

�
(6.1)

Assuming small perturbations about a steady rate of translation ˙x = col[U, 0]
yields the first order approximation
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1 0
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�ẋ
�ż
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This is the phugoid mode, a well known phenomena in flight stability [79].
Noting the simple analysis, circulatory loading models seems to have potential
for flight dynamics. There is much more to know.
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A. Hydroelastic model
The variable ẋ is used to describe backwards nacelle motion. Here, some prop-
erties of the relation between the force F and ẋ are deduced. The structural
model will depend on the particulars of the support structure as well as the rotor
design. It will however be possible to uncover some salient properties of a more
general nature. This section aims to show that a wide variety of support struc-
tures shares the common property of passivity, despite significant differences in
the actual physical design.

A.1. Lagrangian mechanics
It is now assumed that platform deformations may be parameterized linearly
in terms of n generalized coordinates qi. Time-invariant dynamics are also
assumed. It is well known that the dynamics of mechanical systems can be
derived from the principle of least action [80]. The Lagrangian of a linear plant
will have the general form

L(q, q̇) = 1

2

q̇TMq̇ � 1

2

qTKq

M = MT , M � 0, K = KT , K � 0 (A.1)

The mass and stiffness matrices are positive definite and symmetric. Dissipation
is incorporated through the use of a Rayleigh dissipation function, viz.

R(q̇) =
1

2

q̇TDq̇, D = DT , D � 0 (A.2)

A symmetric and positive definite damping matrix implies that all structural
modes will decay asymptotically in the absence of a perturbing force. This is a
reasonable assumption. The equations of motion follow from

d

dt
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@R
@q̇

= Q (A.3)

The generalized force Q consists of an aerodynamic term and a hydrodynamic
term

Q = QA +QH (A.4)
Here, the aerodynamic constituent is readily computed. Since the net structural
motion ẋ must relate linearly to the internal states of the plant one can write

ẋ = bT
˙q (A.5)
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A. Hydroelastic model

Here, b is a constant column vector with as many elements as q. The elements
of b are taken as non-zero. Conservation of energy can be applied to identify the
generalized forces due to the thrust force. Define the generalized aerodynamic
force by

QA , bF (A.6)

This is the correct expression since, in accordance with conservation of energy,
one must require that

QT
A ˙q = F ẋ (A.7)

The hydrodynamic forcing QH requires additional physics.

A.2. Hydrodynamic forces
The assumption of linearly parameterized motion is now extended to encompass
motion of the submerged platform. We follow Damaren [29] closely since this
work considers the hydrodynamic forces on bodies whose motion is linearly
parameterized. The problem is also discussed in e.g. Kristiansen et al. [81],
albeit for the restricted case of rigid-body motion.

Summarizing [29], the hydrodynamic force can be given in the Laplace domain
as

QH(s) = fR(s) + fD(s)�Gq(s) (A.8)

Here fR and fD represent the radiation and diffraction forces, respectively.
These contributions are presented in [29] as

fR(s) = �A¨q(s)�H(s) ˙q(s), fD(s) = X(s)A(s) (A.9)

Note here that the cited work uses the notation H(s) = sA +Hr(s). Hydro-
static restoring forces are captured by Gq(s) which incorporates both buoyancy
and gravity effects. The constant infinite-frequency added-mass matrix A and
restoring matrix G are both symmetric and positive semi-definite

A = AT , A ⌫ 0, G = GT , G ⌫ 0 (A.10)

The fluid-memory effects represented by H(s) ensure that energy is carried away
from the support structure. The transfer function H(s) is therefore positive real
and also strictly proper. These qualities are guaranteed by

H(|!) +H(�|!)T ⌫ 0, lim

s!1
H(s) = 0 (A.11)

and the requirement that all poles of Hij(s) lie in the closed LHP <{s}  0.
There are no repeated poles on the imaginary axis.

The structure of the equations suggest the definition of a hydroelastic La-
grangian

L
he

(q, q̇) =
1

2

q̇T
(M +A)q̇ � 1

2

qT
(K +G)q (A.12)
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A.2. Hydrodynamic forces

s[s2(M +A) + sD + (G+K)]�1

ẋ(s)

H(s)

�
q̇(s)

b b|

fD(s)

F (s)

Figure A.1.: Hydroelastics on block diagram form.

The resulting dynamics are driven by a force where the added-mass contribution
and restoring term have been subtracted. That is

d

dt
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Z t

0

H(t� t0)q̇(t0) dt0 (A.13)

A graphical illustration of this equation is shown in Figure A.1.

A.2.1. Model properties
The positive definite hydroelastic Hamiltonian of the plant is given by

H
he

(q, q̇) =
@L

he

@ ˙q
(q, q̇) ˙q�L

he

(q, q̇) =
1

2
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1

2

qT
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Now verify that the rate of change in internal energy follows from

˙H
he

=

˙qTfD + ẋF � ˙qTD ˙q �
Z t

0

˙q(t)TH(t� t0)q̇(t0) dt0 (A.15)

The very last term can be reduced to an inequality by utilizing the positive-real
property of H(s) [65].

Z t

0

˙q(t)TH(t� t0)q̇(t0) dt0 � 0 (A.16)

Physically, this relationship reflects dissipation due to wave radiation. The
damping matrix D is positive definite. Let %1 > 0 and %2 > 0 denote positive
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A. Hydroelastic model

constants small enough to ensure that the following matrix is positive semi-
definite

D � %1bb
T � %2In ⌫ 0 (A.17)

Then, the following bound can be established

˙qTfD + ẋF � ˙H
he

+ %2 ˙q
T
˙q + %1ẋ

2 (A.18)

Let H
he

be interpreted as a positive definite storage function. Furthermore,
let the vectors u

he

, col[F,fD] and y
he

, col[ẋ, ˙q] serve respectively as input
and output. These definitions permits the classification of (A.13) as an output
strictly passive system. See [21, Definition 6.3].

Denote the transfer function from thrust to net structural motion by

H(s) =
ẋ

F
(s) = sbT

[s2(M +A) + s(D +H(s)) + (K +G)]

�1b (A.19)

Setting fD = 0 in (A.18) allows the following useful conclusions to be struck
about the transfer function.

1. The transfer function H(s) is positive real so that

<[H(|!)] � 0, 8! (A.20)

This follows from the KYP-lemma. See Lemma 6.4 in [21] for a mathe-
matical proof. An equivalent statement on the phase is that

�⇡  \H(|!)  ⇡ (A.21)

2. The gain of H(s) is equipped with an upper bound given by

sup

!
|H(|!)|  1

%1
(A.22)

See Theorem 5.4 and Lemma 6.5 in [21].

3. The poles of H(s) have negative real parts.

Due to linearity, these properties also hold for models perturbed around an
equilibrium point, e.g. q(t) = ¯q + �q(t).
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