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Abstract

In this thesis, spatio-temporal temperature trends are estimated based on monthly
average temperatures from 503 observation locations in the southern half of Nor-
way. The time period studied is 1960 to 2016. A latent Gaussian model is pro-
posed, where spatial Gaussian random fields and temporal polynomials of second
degree are used to model the temperature trends. A Bayesian approach is taken
for the inference, and the integrated nested Laplace approximations methodology
is used to carry out the inference. The model is easy to interpret, has interpretable
results, is able to predict missing observations, and successfully estimates tem-
perature trends that correspond to other research results. Five sets of different
prior distributions are used on the model components, each month of the year is
modelled individually, and all months have the same prior distributions for each
set of priors.

In general, the temperature trend is increasing over the entire southern half
of Norway according to the model, and the five sets of prior distributions give
similar results. Twelve different spatio-temporal temperature trends, one for each
month of the year, are obtained, and all months of the year have experienced an
increase in temperature from 1960 to 2016. In some areas and some months,
the temperature has decreased as well. The increase is largest during the winter
months, and smallest during the summer months. The model is computationally
fast; the inference is carried out in approximately 20 minutes for each month. The
range parameters of the Gaussian random fields are given extra attention, and
a minor prior sensitivity analysis on the range parameters is carried out. The
sensitivity analysis reveals that to achieve the interpretable results, the range
parameters, especially for the warmest months of the year, must to a large extent
be controlled by the prior distribution.
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Sammendrag

I denne oppgaven er rom-tid-temperaturtrender beregnet fra 1960 til 2016 i den
sørlige halvdelen av Norge. Månedlige gjennomsnittstemperaturer fra 503 ob-
servasjonslokasjoner er brukt. En latent Gaussisk modell brukes, der temper-
aturtrendene estimeres ved bruk av romlige Gaussiske stokastiske felter og tem-
porale andregradspolynomer. En Bayesiansk tilnærming og inferens brukes, og
inferensen utføres med metodikken "integrated nested Laplace approximations".
Modellen er tolkbar, gir tolkbare resultater, er i stand til å predikere manglende
observasjoner, og estimerer temperaturtrender som stemmer overens med andre
forskningsresultater. Fem ulike sett med apriorifordelinger brukes på model-
lkomponentene, hver måned i året modelleres individuelt, og alle måneder har de
samme apriorifordelingene for hvert sett av fordelinger.

I henhold til modellen er temperaturtrenden økende i den sørlige halvdelen av
Norge. De fem settene med apriorifordelinger gir like resultater. Resultatene
består av blant annet tolv forskjellige rom-tid-temperaturtrender, en for hver
måned, og alle månedene i året har hatt områder med temperaturøkning i peri-
oden 1960 til 2016. I tillegg har noen områder i noen måneder hatt en nedgang i
månedlig gjennomsnittstemperatur. Temperaturøkningen er størst i vintermåne-
dene, og minst i sommermånedene. Beregningsmessig er modellen rask, da in-
ferensen utføres på omtrent 20 minutter for hver måned. Det gis ekstra opp-
merksomhet til rekkeviddeparameterne til de Gaussiske stokastiske feltene, og
en sensitivitetsanalyse utføres på apriorifordelingene til rekkeviddeparameterne.
Sensitivitetsanalysen avdekker at for å oppnå tolkbare resultater må rekkevid-
deparameterne i stor grad være kontrollert av apriorifordelingen. Dette gjelder
spesielt for de varmeste månedene i året.
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Chapter 1

Introduction

The objective of this thesis is to estimate spatio-temporal temperature trends
using monthly average temperatures from the southern part of Norway. Mea-
surements from 503 weather stations from 1960 to 2016 are used. The model
and the model results should be interpretable, all available data should be used,
and the inference should be computationally fast. Spatio-temporal temperature
trends can give an idea on how the climate is changing, where the changes occur,
and to some degree what we might expect in the future (Houghton, 2015). As
humanity is facing rapid changes in the climate with the highest global average
temperature for several hundred years (Hartmann et al., 2013), to model the past
and to predict the future is important.

Hem (2016) has investigated temperature trends in time only, using a random
walk of second order and time series from 27 observation locations in Norway.
Even though spatial relationships is not the focus, clear spatial patterns can be
seen. Trend estimation in time only is in other words already investigated, and the
objective of this thesis is to utilize the spatial dependencies in the temperature
data when estimating and modelling the temperature trends. When utilizing
spatial dependencies, the temperature data can contain missing observations and
thus more data can be included in the analysis.

There are several ways to model a temporal temperature trend over space. The
ideal way is one of the most complex alternatives: climate models. In climate
models, differential equations are used to model physical relationships in the at-
mosphere, and require enormous amounts of processing power. Super computers
are usually used to do the modelling (Houghton, 2015). Simpler alternatives
include non-separable statistical models with spatio-temporal covariance func-
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2 CHAPTER 1. INTRODUCTION

tions on random fields, separable statistical models with temporal processes with
spatial innovations, and the approach used in this thesis: separable statistical
models with simplified spatio-temporal interactions (Blangiardo and Cameletti,
2015). A Bayesian hierarchical model is used, as the Bayesian approach can model
uncertainty in all parameters in the model. The Bayesian approach also includes
possibilities to estimate parameters based on prior knowledge, and not only based
on the data as in frequentistic statistics. The Bayesian hierarchical models are
both intuitive and practical when carrying out inference. They yield numerous
possibilities when doing inference due to their flexible nature (Rue et al., 2009),
and since Bayesian statistics is frequently used, multiple computational tools are
developed to do fast inference on Bayesian hierarchical models. Thus, a Bayesian
analysis is desired. In this thesis, latent Gaussian models which have structured
additive predictors have been chosen, due to their intuitive interpretation and
the possibilities to do fast inference on such models.

To model a spatio-temporal temperature trend using latent Gaussian models
means that Gaussian random fields can be used for the spatial modelling. The
Gaussian random fields (GRFs) take care of the spatial dependencies, while other
model components can be added to model the trend in time. These can also be
combined as spatio-temporal interactions. GRFs are used in the model in this
thesis. Two problems arise with this model approach; the first is the amount
of data. It is an advantage to have large data sets, but only if the data can be
processed in reasonable time. Large data sets imply large matrices that must
be factorized when doing inference, which often is time-consuming (Lindgren
et al., 2011). The other problem is that a Bayesian analysis is desired, and
not a frequentistic one, which means more complex models. There is a need
for a computational tool, preferably an existing one, that can carry out the
inference.

The integrated nested Laplace approximations (INLA) methodology, proposed by
Rue et al. (2009), is used to carry out the inference. The common approach when
doing inference for latent Gaussian models is Markov chain Monte Carlo (MCMC)
(Blangiardo and Cameletti, 2015). INLA can do fast inference on latent Gaussian
models with Markov structure, which is suitable for the modelling of this thesis.
INLA utilizes that discretized random fields, Gaussian Markov random fields
to be more exact, with sparse matrices can be factorized in mush less time than
dense matrices, which solves the problem with large datasets. The GRFs included
in the model are approximated using an approach proposed by Lindgren et al.
(2011): the stochastic partial differential equation (SPDE) approach, which is
implemented in INLA. INLA and the SPDE approach can carry out the inference
in reasonable time, even though such models are computational intensive to work
with.
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In Bayesian inference, the unknown parameters are given prior distributions, to
include prior information about the parameters in the model (Cressie and Wikle,
2011). Ideally, experts in the fields relevant for the model have extensive knowl-
edge about the prior uncertainty in the model, but since prior distributions are
not easily elicited from experts for all models and approaches, statisticians must
choose the prior distributions in more ad-hoc ways. Some knowledge about the
model is still required, but as the unknown parameters can be assigned prior
distributions, the parameters get some, but not too much freedom. The prior
knowledge available for the model in this thesis is used to choose prior distribu-
tions and requirements for these priors.

The aim of this thesis is to estimate spatio-temporal temperature trends based on
Norwegian monthly average temperature series. All available data should be used,
also time series with missing data, and temperature trends for spatial locations
where no data is collected are desired. The approach is to use latent Gaussian
models in a Bayesian setting. If and how interpretable results can be obtained
from the model is studied. The model will not be used for forecasting, but shall fit
polynomial temperature curves with spatially varying coefficients to the observed
data. The inference should preferably be fast to carry out. A detailed explanation
of the model is given in later chapters, and for now, all the information about
the model given is that it consists of several components, as fixed effects and
spatial fields, where different variations of this model are created by changing the
prior distributions. As several different prior distributions are used, minor prior
sensitivity analyzes of some parameters, such as range parameters of the GRFs,
are carried out. More on this in later chapters.

Note that the approach, the model, and the tools used in this thesis could be
replaced with other alternatives. This is discussed towards the end. However, this
thesis is written during one single semester, and as the focus is on the estimated
temperature trends, other models and approaches is outside the scope of this
thesis.

The monthly average temperature data used in the inference and a preliminary
analysis of the data are presented in Chapter 2. Chapter 3 contains all necessary
background theory for creating the model and to carry out the inference. In
Chapter 4 a presentation of the model itself is then given, the results are presented
in Chapter 5, and a discussion and a conclusion are given in Chapters 6 and 7,
respectively.





Chapter 2

Data and initial explanatory
analysis

The temperature data set is now presented and briefly discussed, and is followed
by a preliminary explanatory analysis of the data.

2.1 Monthly average temperature data

The data used are monthly average temperature observations from 503 obser-
vation locations in the southern part of Norway over 57 years. The data were
downloaded from Meteorologisk Institutt, see http://eklima.met.no1, and con-
sists of time series from 1960 to 2016. Figure 2.1 shows the 503 observation
locations. UTM32 coordinates are used, and the unit 100 kilometers is used to
accommodate a computational constructive and intuitive unit. The altitude for
each location is also provided, and varies from at sea level to 2000 meters above
sea level.

The time series are not complete, there are missing observations. Only time series
with at least one measurement for all the twelve months in a year are included
in the analysis, but the series have no other restrictions. 503 locations and 57
years results in more than 340,000 possible measurements, and about 100,000 of
these are observed. Figure 2.2 is a plot of the number of observations for each

1Data downloaded February 2nd and 3rd 2017.
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6 CHAPTER 2. DATA AND INITIAL EXPLANATORY ANALYSIS

Figure 2.1: The 503 observation locations of the monthly average temperatures.
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Figure 2.2: Number of (non-missing) temperature observations, plotted against
time. The total number of observation locations is 503.

month from 1960 to 2016, and shows that since around year 2000, the number of
observation locations has increased rapidly.

Figure 2.3 has plots describing the monthly average temperatures for January.
A selection of January monthly mean temperature time series can be seen in
Figure 2.3a, and a histogram of all observed measurements is included in Figure
2.3b. They show that the January temperature varies much between years, and
that it spans a large interval over the 57 years. Figures 2.3c and 2.3d use, for
each observation location, the average January temperature from 1960 to 2016.
Missing data are removed from the calculation of the average. The first shows
these 57-year-averages as a function of altitude; the relationship looks linear. The
second figure is a spatial plot of the 57-year-averages with a prominent spatial
pattern. The coastal areas are warmer than the inland in January.

Figure 2.4 shows a boxplot for each of the twelve months of the year, based on
the observed monthly average temperatures. The boxes are defined by the 25 %
and 75 % quantiles, and the whiskers of the boxes are 1.5 times the interquartile
range (the 75 % quantile minus the 25 % quantile) or the minimum or maximum
values if there are no outliers. All months have cold outliers, while only the sum-
mer months have warm outliers. In addition, the summer months have smaller
interquartile ranges and whiskers, which means less variability in the data for
those months. The winter months have the most variability in the data. Due
to the difference in variability in average monthly temperature between months,
each month are treated individually.
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(a) Observed monthly temperature in Jan-
uary for 20 locations from 1960 to 2016.
All the displayed time series are complete.

(b) A histogram of the observed tempera-
ture measurements for January.

(c) The 57-year-average January temper-
ature from 1960 to 2016 for each loca-
tion plotted against the corresponding al-
titude.

(d) The 57-year-average January tempera-
ture (in degrees Celsius) from 1960 to 2016
for each location plotted spatially.

Figure 2.3: January monthly average temperatures diagnostics. When the aver-
age is calculated, missing data are removed from the calculation.
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Figure 2.4: Boxplot of monthly average temperatures for all locations and all
years.

2.2 Initial data exploration

The natural starting point for modelling the temperature trend in the monthly
average temperatures is a simple model. January monthly temperature observa-
tions are modelled using the linear regression model

yj,i = β0,i + aitj + bit
2
j + εj,i, i = 1, . . . , n, j = 1, . . . , T, (2.1)

where yj,i is the value observed in location si in year j. β0,i is an intercept,
ai is a linear trend coefficient and bi is a quadratic trend coefficient. ai and bi
are multiplied with a time vector t = (tj) and t2, respectively. t goes from 0
to 1 with T equally spaced time point values, which means that the trend curve
ait+ bit

2 begins at zero degrees Celsius in 1960 and ends at ai+ bi after 57 years
in 2016, with T = 57. This results in one β0,i, one ai and one bi for observation
location.

Some restrictions are put on the data used to perform the linear regression in
Equation (2.1). First, January measurements only are used. This is done to
avoid problems with seasonal changes between months. This results in up to 57
measurements in each time series. In addition, each time series must have at
least one observation the first ten years, and at least one observation the last
ten years of the time period. At last, each time series need to have more than 5
observations. This is done to avoid trend curves with a good fit only at a time
observations are made. 51 of the 503 time series fulfill these requirements, which
is about 10 % of the total number of time series.
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Figure 2.5: The trend curves ait + bit
2, using the coefficients from the linear

regression in Equation (2.1). The data is January mean temperature from 1960
to 2016.

Figure 2.5 shows the temperature trend curves ait + bit
2 for the time series

fulfilling the requirements listed above. The intercept is not included to make the
comparison of the trend curves simpler. Most of the lines agree on the shape, only
a few stands out, but none are equal. This indicates that the temperature trend
differs between locations, and that there might be spatial dependence in the data.
Figure 2.6 shows the sum of ai and bi in each location i, which corresponds to
the temperature change from 1960 to 2016. Note that this does not tell anything
about the temperature evolution. A pattern can be seen; the temperature along
the west coast has had a smaller increase than the temperature in the eastern part
of Norway. The pattern indicates that this linear model might not be sufficient;
a spatio-temporal component is needed.

A spatial model where spatial correlation can be included has the benefit that all
time series, also those with few measurements, can be provided to the model since
missing observations can be predicated using time series from nearby observation
locations. The linear model can only use 10 % of the available temperature time
series. It is a pity to declare so much data useless, and in a spatial model, all
time series are useful. A spatial model is also able to predict the temperature
trend at locations where there are made no observations at all, which gives more
complete results. The linear model is too simple and should be extended with
spatial components, with one spatial field for each coefficient (β0,i, ai and bi) in
addition to the constant coefficients.

The spatial model is in this thesis taken to be a latent Gaussian model, which
in addition to including spatial Gaussian random fields, can contain independent
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Figure 2.6: Sum of the coefficient estimates ai+bi for the linear regression model
in Equation (2.1), plotted spatially. The locations are independent. The unit is
degrees Celsius.

and identically distributed (iid) components in time, space, or both. An iid-effect
in time might be used to correct for unusually cold or unusually warm years. The
spatial model is much more complex than the linear regression model, and to use
a more complex model means that a more complex tool is needed to do fit the
models.





Chapter 3

Background

This chapter is dedicated to all background theory needed to carry out the infer-
ence of a model with spatio-temporal components. It is divided into four main
topics; Bayesian inference, spatial statistics, prior distributions, and computa-
tional tools.

3.1 Bayesian inference

The first main topic is Bayesian inference, what it is, and how it can be used.

3.1.1 Bayesian hierarchical models

Statistical inference is what statisticians call to draw conclusions in the presence
of uncertainty (Cressie and Wikle, 2011), and means among others to estimate
unknown parameters, and to do predictions of unknown random quantities. This
can be done using a statistical model, and in this thesis the focus is on hierarchical
models.

Hierarchical statistical models, also called latent models, are used to form com-
plex dependence structures through simple components split in multiple levels or
layers. Cressie and Wikle (2011) give the following description of a hierarchical
model: A data model is at the top, then a process model and at last a parameter
model at the bottom. The data model expresses the distribution of the data
given an unknown, hidden process. The process model models the uncertainty of

13
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this hidden process. The hidden process can itself consist of several submodels,
with uncertainties expressed through conditional probabilities at sublevels. The
last layer, the parameter model, consists of probability distributions of all the
unknown parameters in the model. These three layers make a Bayesian hierar-
chical model. See e.g. Cressie and Wikle (2011) for a more thorough explanation
of Bayesian hierarchical models.

Let π(a) be the probability distribution of the random variable A, and let π(·|·) be
a conditional probability density. Then the Bayesian hierarchical models (BHMs)
can be specified by

Data model: π(y|x,θ)

Process model: π(x|θ)

Parameter model: π(θ)

where y represents the data, x the underlying process and θ all unknown param-
eters. The parameter model corresponds to the prior distribution. This gives a
joint distribution

π(y,x, θ) = π(y|x,θ)π(x|θ)π(θ),

and perhaps the most interesting result for this thesis, the conditional distribution
of x and θ given the data y, also called the joint posterior distribution

π(x, θ|y) = π(y|x,θ)π(x|θ)π(θ)
π(y)

from Bayes’ theorem, see e.g. Casella and Berger (2002). π(y) is the marginal
distribution of the data model. When doing inference using a Bayesian hierarchi-
cal model, the inference is called Bayesian inference. In Bayesian inference, the
inference is carried out in a Bayesian setting using prior knowledge and observed
data to estimate posterior information (Cressie and Wikle, 2011).

3.1.2 Latent Gaussian models

Structured additive regression models is a class of models where the observation
variables yi are assumed to be from an exponential family. The Gaussian distri-
bution is one of the members of this family, and then the mean µi is modelled
using a structured additive predictor ηi = µi ∀i, i.e., π(y|x,θ) is Gaussian with
mean η. For other, non-Gaussian distributions this relationship is not linear, but
this will not be discussed.
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The predictor ηi is a sum of functions of covariates

ηi = β0 +
nβ∑
j=1

βjzji +
nf∑
k=1

fk(vki) + εi (3.1)

where β0 is the intercept, {βj} are coefficients of the fixed effects z, {fj(·)} are
unknown functions of the covariates v, and ε represents unstructured terms.
Thanks to the variety of different forms the functions {fj(·)} can take, as a
random walk, a spatial field, or an autoregressive process, this yields flexible
models with many applications (Rue et al., 2009).

The class of latent Gaussian models is a subset of the Bayesian hierarchical models
with a structured additive predictor (Rue et al., 2009) (see Equation (3.1)), where
all elements of the predictor ηi are assumed to be Gaussian (Rue et al., 2009).
These models have parameters, denoted θ, belonging to the elements of a latent
Gaussian field consisting of β0, {βj}, {fj(·)} and ε, denoted x. Note that since
ηi is a sum of Gaussian variables, it is itself Gaussian.

3.2 Spatial statistics

As the functions {fj(·)} can be spatial effects, the latent Gaussian processes can
be spatial. The second main topic is spatial statistics, and Gaussian random
fields and their properties are introduced.

3.2.1 Gaussian random fields

Gaussian random fields (GRFs) have an important role in the statistical society,
and are commonly used to model continuous spatial phenomena (Ingebrigtsen,
2014). Stein (1999) describes a Gaussian random field as a real-valued random
field {Xs : s ∈ Rd} where all finite-dimensional distributions are Gaussian. Gaus-
sian probability distributions are fully specified by their expectation and variance,
and thus it is sufficient to specify the mean function µ(si) and the covariance
function C(si, sj) for all locations si and sj in the domain D ∈ Rd of the field.
The expectation has no restrictions, but the covariance function must be positive
definite in order to ensure the existence of all the finite-dimensional distributions
(Stein, 1999).

A GRF can have several properties, which can be seen easily through the co-
variance function. A stationary GRF has a covariance function dependent on
the difference in position of two locations only, and not the absolute positions
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of each locations. In addition, the mean is a constant function for stationary
GRF. An isotropic GRF has a covariance function dependent on only the Eu-
clidean distance between the two locations (Lindgren et al., 2011; Abrahamsen,
1997).

For more information on Gaussian random fields, and random fields in general,
see e.g. Stein (1999) or Abrahamsen (1997).

3.2.2 Matérn covariance function

Usually the covariance function is chosen from a parameterized family of covari-
ance functions. The most important family of covariance functions is according
to Stein (1999) the Matérn family. He proposes the Matérn family as a bet-
ter alternative than common covariance function families as the exponential or
Gaussian, due to a flexibility that allows for any degree of differentiability for
the random field. Based on this and a thorough analysis, Stein (1999, page 14)
concludes with "Use the Matérn model".

A family of covariance functions is usually defined by a marginal variance σ2 > 0
and a range ρ > 0. The Matérn family is in addition defined by a parameter ν > 0
which controls the degree of differentiability of the field. Thus, the smoothness
of the field can be varied without changing the covariance function family, which
is an advantage.

Let |si − sj | denote the Euclidean distance between the locations si and sj in
Rd. The Matérn covariance function is then given by

C(si, sj) = σ2

2ν−1Γ(ν)

(√
8ν
ρ
|si − sj |

)ν
Kν

(√
8ν
ρ
|si − sj |

)
, si, sj ∈ Rd, (3.2)

where Kν(·) is the modified Bessel function of second kind and order ν, σ2 is the
marginal variance, and ρ > 0 is the range parameter (Lindgren et al., 2011). The
range is by Lindgren et al. (2011) defined to be the distance where correlations
are close to 0.1, and the same definition used here. It can be shown that the
Matérn covariance function has the exponential as a special case (ν = 1

2 ), and
the Gaussian as a limiting case (ν →∞).

The covariance function C(si, sj) can for a given set of locations {s1, . . . , sn} be
used to compute a covariance matrix Σ of size n × n. This covariance matrix
has a corresponding precision matrix Q, which is the inverse of Σ. The precision
matrix always possible to compute for a GRF; since the covariance function is
positive definite (Rue and Held, 2005), the covariance matrix is also positive
definite, and hence invertible.
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3.2.3 Gaussian Markov random fields

Continuous Gaussian random fields are popular and can be used to model many
natural phenomena. When using GRFs with observations in a given set of lo-
cations, the precision matrix Q of the field must be factorized to solve linear
systems of equations and calculating the determinant det|Q|. The cost of fac-
torizing a dense covariance matrix of size n × n is O(n3), and the computation
time needed is often unreasonable (Lindgren et al., 2011). To avoid this high
cost, the spatial GRF can be replaced by a spatial Gaussian Markov random
field (GMRF), where the factorization of the covariance matrix has a cost of
O(n3/2) for two-dimensional spatial GMRFs due to the sparse precision matrix
of a spatial GMRF. This makes calculations feasible even for millions of observa-
tion locations.

Let xi and xj be random variables. xi and xj are independent if and only if
π(xi, xj) = π(xi)π(xj), and this is denoted xi⊥xj . They are conditionally inde-
pendent if and only if π(xi, xj |x−ij) = π(xi|x−ij)π(xj |x−ij), which is denoted
xi⊥xj |x−ij , where x−ij denotes all of x except xi and xj .

An important result when working with GMRFs is the Markov property (Rue
and Held, 2005). The Markov property comes in three forms; the pairwise, the
local, and the global. Let x be a set of random variables, and G a labelled graph
with vertices (nodes) V and edges E between the node i and j if and only if xi
and xj are conditionally dependent, i.e., no edge when they are conditionally
independent. An edge between node i and node j is denoted {i, j}.

The pairwise Markov property says that for i 6= j, xi and xj are independent
conditioned on x−ij if {i, j} /∈ E , i.e., if there is no edge between node i and node

Figure 3.1: An illustration of the local Markov property. The black node and
the white nodes are independent given the grey nodes in the neighborhood of the
black node.
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j. Hence, the pairwise Markov property automatically holds for the graph G.
Given the nodes in the neighborhood of node i, the local Markov property says
that node i is independent of any node not in this neighborhood, for all i ∈ V.
The graph in Figure 3.1 illustrates the local Markov property: The grey nodes
are in the neighborhood of the black node, which makes the black node and the
white nodes independent given the grey nodes. The global Markov property says
that two non-empty sets xA and xB are independent conditioned on a third set
xC separating xA and xB , where xA, xB and xC are disjoint. It can be shown
that if x is a GMRF, the three Markov properties are equivalent (Rue and Held,
2005).

Rue and Held (2005) give in Chapter 2.2, Definition 2.1, the following definition
of a GMRF:

Definition 1 (Gaussian Markov random field). A random vector x =
(x1, . . . , xd)T is called a GMRF with respect to a labelled graph G = (V, E)
with mean µ and precision matrix Q > 0, if and only if its density has the
form

π(x) = (2π)−d/2|Q|1/2 exp
(
−1

2(x− µ)TQ(x− µ)
)
, x ∈ Rd

and
Qij 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= i.

In a GMRF, conditional independence xi⊥xj |x−ij is equivalent with Qij = 0.
Note that this does not mean that xi and xj are marginally independent as well.
See e.g. Rue and Held (2005) for more on conditional independence.

The labelled, undirected graph G can be used to find the structure of the precision
matrix Q. Note that since the graph is undirected, the covariance matrix and
hence the precision matrix will be symmetric (Rue and Held, 2005), which it will
be in a Gaussian distribution. If a graph G is fully connected, the corresponding
precision matrix Q is completely dense. To factorize dense matrices has a high
cost, but to factorize sparse matrices, where most of the non-diagonal elements
are zero, is much cheaper (Rue and Held, 2005).

3.2.4 Stochastic partial differential equations

As a dense precision matrix of a Gaussian random field has a factorizing cost of
O(n3) they are not computationally practical to use, and cannot be used directly
for a high number of observation locations. A computationally efficient way to
approximate a GRF with the Matérn covariance function is by using stochastic
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partial differential equations (Lindgren et al., 2011). A stochastic partial differ-
ential equation (SPDE) is a partial differential equation with stochastic terms.
The stochastic terms are Gaussian white noise.

An SPDE must be solved numerically and needs to be discretized. The finite ele-
ment method (FEM) is a good alternative, with an irregular triangulation instead
of a regular grid. The irregular triangulation has two benefits worth mention-
ing: Avoiding interpolation of observation locations to the nearest grid point,
and allowing for irregular boundaries and finer resolution where needed (Lind-
gren et al., 2011). The triangulation consists of a set of non-intersecting triangles
where at most a common corner (vertex) or edge of any two triangles meet, if
they meet at all (Lindgren et al., 2011). The SPDE is solved in these vertices,
and the solution can be interpolated on the triangles. A given triangulation is
defined by piecewise linear basis functions φg, being 1 in vertex g, and zero in all
other vertices. Several conditions can be used to define the triangulation, such
as maximum length of each triangle edge or the minimum triangle angle. It is
common to choose the triangulation so the smallest triangle angle is maximized,
which gives a Delaunay triangulation (Lindgren et al., 2011).

In Bayesian modelling of spatial fields, one particularly useful SPDE is the linear
fractional SPDE(

8
ρ2 −∆

)(
ρ

4
√

2πσ
u(s)

)
=W(s), s = (s1, s2) ∈ R2, ρ, σ > 0, (3.3)

where W is spatial Gaussian white noise with unit variance (Lindgren et al.,
2011). Note that the dimension is set to d = 2. The solution to this particular
SPDE is a Gaussian random field u(s) with the Matérn covariance function. The
parameters can be directly related to the parameters of the Matérn covariance
function in Equation (3.2); σ2 is the marginal variance and ρ is the range pa-
rameter. ν has been set equal to 1. ∆ is the Laplacian ∆ =

∑2
i=1

∂2

∂s2
i
. Lindgren

et al. (2011) have used this to propose a new method for doing calculations with
GRFs in Bayesian modelling. More on this in Section 3.4.2.

3.3 Prior distributions

Any probability distribution can be used as prior distributions, but some will
be more appropriate for given parameters than others. For some problems and
models there exist guidelines for what priors that are the most suitable. However,
this does not exist for the model used in this thesis. When using computational
tools for Bayesian inference, such as R-INLA, default prior distributions are im-
plemented. These are seldom appropriate (Simpson et al., 2017), and thus the



20 CHAPTER 3. BACKGROUND

prior distributions used in the model in this thesis are investigated and justified
before chosen.

In this section, the relatively new concept of penalized complexity priors are in-
troduced and discussed, first in general and then for spatial fields. Then other
possible prior distributions that can be used for spatial fields are presented. At
last a short presentation of prior distributions required for other model compo-
nents is included.

3.3.1 Penalized complexity priors

The penalized complexity (PC) prior is a proper prior which penalizes increased
complexity in the model (Simpson et al., 2017). The PC prior aims to reduce
overfitting, i.e., not include a model component that should not be present. An
overfitting prior will create a more flexible model than perhaps necessary, and
the base model will not have support in the posterior (Simpson et al., 2017).
Simpson et al. (2017, p. 5), defines a base model as the "simplest" model for a
given model component. The base model usually corresponds to the component
not being present in the model at all. Further they state that a prior that overfits,
in this setting, is a prior with zero mass at the base model. If this is the case,
the parameter will be forced to be in the model even though it should not be
present.

Simpson et al. (2017) give four principles which outline the approach of construct-
ing PC priors for a univariate parameter. A summary of them follows:

1. Occam’s razor. Simpler models, i.e., the base models, are preferred until
there is enough support for a more complex model, and to deviate from the
base model should be penalized. Based on the prior alone, the base model
is the preferred model.

2. Measure of complexity. The Kullback-Leibler divergence (KLD) (Kull-
back and Leibler, 1951) is used as a measure of increased complexity. For
the base model g and the more flexible model f , the KLD is defined as

KLD(f ||g) =
∫
f(x) log

(
f(x)
g(x)

)
dx,

and is the information lost when the base model is used to approximate
the more flexible model. When used in practice, the distance measure
t(f ||g) =

√
2KLD(f ||g) is used to measure the distance between models g

and f .
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3. Constant rate penalization. For a given t = t(f ||g), the penalty for
changing the flexible model an additional distance δ from the base model
should be independent of t, with a constant decay-rate r. The prior πt(·)
of t then satisfies

πt(t+ δ)
πt(t)

= rδ, δ, t ≥ 0, 0 < r < 1.

This constant rate penalty assumption implies using an exponential prior
on the distance t, such that πt(t) = λ exp(−λt) for r = exp(−λ). Then the
prior, on the original space, becomes

π(ξ) = πt(t(ξ))
∣∣∣∣∂t(ξ)∂ξ

∣∣∣∣
for a connection t(ξ) between the distance and the parameter ξ. The mode
of the prior πt is at t = 0, i.e., at the base model.

4. User-defined scaling. The user needs to have some idea on either the size
of the parameter ξ, or a property of the corresponding model component.
λ from above can be found by choosing some U and α so

P(Q(ξ) > U) = α.

U is a user-defined bound that specifies a tail event, and α is the probability
of this event. Q(ξ) is some transformation of the parameter ξ.

These principles can be extended to the multivariate ξ ∈M for a subsetM of a
smooth n-dimensional manifold, with base model ξ = 0 ∈ M. For more details
on this, see Simpson et al. (2017).

3.3.2 Penalized complexity priors on Gaussian random fields

The PC prior can be used on Gaussian random fields (GRF). Fuglstad et al.
(2017) have derived the PC prior for a GRF with the Matérn covariance function,
and their work is used as the foundation for this section. They have derived the
PC prior for dimension d and smoothness parameter ν. For d = 2 and ν = 1, the
Matérn covariance function is given as

C(si, sj) = σ2
(√

8
ρ
|si − sj |

)
K1

(√
8
ρ
|si − sj |

)
, si, sj ∈ R2,

where si and sj are locations as before, σ2 is the marginal variance, and ρ is the
range. The base model corresponding to the PC prior for GRFs is ρ = ∞ and
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σ = 0, which (in the limit) gives a field with the same value in all locations and
no uncertainty. The results of Fuglstad et al. (2017) necessary for this thesis is
the joint PC prior for the standard deviation and range, given by

π(σ, ρ) = λσλρρ
−2 exp(−λσσ − λρρ−1). (3.4)

The prior is specified by P(σ > σ0) = ασ and P(ρ < ρ0) = αρ which gives

λσ = − log(ασ)
σ0

and λρ = − log(αρ)ρ0.

Note that the marginal prior distributions easily can be extracted from the joint
prior distribution in Equation (3.4). The range is inverse exponential distributed
with parameter λρ, and the standard deviation is exponential distributed with
parameter λσ. See Fuglstad et al. (2017) for full derivations of the prior for
general d and ν.

3.3.3 log-Gaussian priors on Gaussian random fields

An alternative prior to use on the random field parameters is the two-tailed log-
Gaussian distribution family. Both the range ρ and the standard deviation σ
of the Matérn covariance function of a GRF are then given log-Gaussian priors,
which can be rewritten to a multivariate prior. This also allows for prior correla-
tion between the two parameters, but this will not be given any attention.

For a log-Gaussian variableX, the marginal distribution is denoted logGaussian(µ,
σ2) and given by

fX(x) = 1√
2πσx

exp
(
− 1

2σ2 (log(x)− µ)2
)
,

with mean eµ+σ2/2 and variance e2(µ+σ2) − e2µ+σ2 . The corresponding distribu-
tion of log(X) is the Gaussian with mean µ and variance σ2,

flog(X)(log(x)) = 1√
2πσ

exp
(
− 1

2σ2 (log(x)− µ)2
)
.

3.3.4 Other prior distributions

In the parameter model, variances of model components are included, and they
need prior distributions. One common choice is to use a gamma prior on the
inverse variances, i.e., the precisions, due to the relationship to the Gaussian
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likelihood; in Bayesian inference the gamma prior is the conjugate prior (see e.g.
Givens and Hoeting (2013)) for a Gaussian likelihood with known mean, but
unknown precision. Denote the precision τ , then the gamma distribution of τ is
given by

π(τ) = ba

Γ(a)τ
a−1 exp(−bτ), τ > 0

where the hyperparameters a > 0 and b > 0 are the shape parameter and the
rate parameter, respectively. The gamma distribution has mean a/b and variance
a/b2. The precision can be given a large prior variance compared to the mean, by
letting b < 1, and a small prior variance by letting b > 1. For a = 1 the gamma
distribution becomes the exponential distribution. A distribution on the precision
may be difficult to interpret, and can be transformed into the distribution of the
more interpretable standard deviation using the transformation formula (see e.g.
Casella and Berger (2002)). For the precision τ ∼ Gamma(a, b), the standard
deviation σ = 1/

√
τ has the distribution

π(σ) = 2ba

Γ(a)σ
−2a−1 exp(− b

σ2 ).

Another possible choice for the prior precision is the PC prior. For the precision
of a Gaussian component, the density is

π(τ) = λ

2 τ
−3/2 exp

(
−λτ−1/2

)
, τ > 0

for λ = − log(α)/U > 0 (Simpson et al., 2017). U and α are determined by
choosing values P(σ > U) = α, U > 0 and 0 < α < 1, for σ = 1/

√
τ being the

corresponding standard deviation. This leads to σ being exponential distributed
with rate λ, π(σ) = λ exp(−λσ).

Since latent Gaussian models require all elements of the latent field x to be
Gaussian, any fixed effects in such a model have a Gaussian prior distribution,
where the prior mean and variance of the fixed effects are chosen.

3.4 Fast inference for Bayesian models

To carry out the inference, the Integrated nested Laplace approximations (INLA)
methodology is used. The INLA methodology is implemented in the statistical
computing program R, where it is called R-INLA. The GRFs in the model are
approximated using the solution of the SPDE in Equation (3.3), and this approach
is integrated in R-INLA. In this section, the INLA methodology and the SPDE
approach are explained, and for more information see www.r-inla.org.

www.r-inla.org
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3.4.1 Integrated nested Laplace approximations methodol-
ogy

The integrated nested Laplace approximations (INLA) methodology proposed by
Rue et al. (2009) is a non-sampling based method for doing fast Bayesian infer-
ence on latent Gaussian models. INLA utilizes that GMRFs with sparse precision
matrices give computational benefits due to the Markov property (see Section
3.2.3). The models that INLA can do inference on are latent Gaussian models
where the latent field x, see Section 3.1.2, is a GMRF (Rue et al., 2009).

For a distribution π(·), the Laplace approximation∫ b

a

π(x)dx ≈ π(x∗)
√

2πσ2∗(Φ(b)− Φ(a))

gives an accurate result, especially away from the tails of π(x). The mode of π(x)
and thus also of log π(x) is x∗ = argmaxx(log π(x)), σ2∗ = −1/∂

2 logπ(x)
∂x2

∣∣∣
x=x∗

,
and Φ(a) is the cumulative density function of Gaussian(x∗, σ2∗) evaluated in
a. This result is used in the INLA methodology to compute approximate non-
standard posterior marginal distributions deterministically.

The notation used here is the same as in Section 3.1.2, but a short recap is
nevertheless included here. Let y = (y1, . . . , yn) be a vector of observations, where
yi, i = 1, . . . , n is assigned a likelihood from the exponential distribution family.
Since the observations are assumed to be Gaussian in this thesis, the explanation
of INLA is for Gaussian likelihoods only. Several steps are then simplified, see
e.g. Rue et al. (2009) for a full explanation of the INLA methodology. The
distribution assigned to y is specified by the linear predictor η = µ with µi =
ηi ∀i. The linear predictor ηi is as given in Equation (3.1) and in INLA, it is
required that ηi is Gaussian conditioned on the parameters θ.

The components of ηi in Equation (3.1) are called latent components, and are
gathered in the latent field x = (η, β0,β,f). The parameters describing the
latent components and the likelihood are denoted θ = (θ1, . . . , θK).

The observations y are assumed to be conditionally independent, as in a GMRF,
which gives a likelihood π(y|x,θ) that can be written as

π(y|x,θ) =
n∏
i=1

π(yi|ηi,θ).

This means that each observation yi depends on one linear predictor ηi of the
latent field only. INLA requires that x is a GMRF, and hence the multivariate
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density function of x is

π(x) = Gaussian(µx,Q−1
x )

where µx is the mean of x. The precision matrix Qx is specified by the param-
eters θ, and must be sparse. INLA also requires that the number of parameters
θ is small, Rue et al. (2017) propose 2 to 5, and not more than 20.

The joint posterior distribution of x and θ, π(x, θ|y), is proportional to the
product of the likelihood and the joint prior distribution of x and θ (from Bayes’
theorem, see Section 3.1.1 and 3.1.2), where the product can be calculated di-
rectly. The results of interest are the marginal posterior distributions of the
latent field and of the parameters: π(xi|y) and π(θk|y). π(θ|y) can be obtained
by

π(θ|y) = π(x,θ|y)
π(x|θ,y) ∝

π(y|x,θ)π(x|θ)π(θ)
π(x|θ,y)

∣∣∣∣
x=E(x|y,θ)

=: π̃(θ|y) (3.5)

and can be used to find the marginals π(θk|y). When π̃(θ|y) is obtained, the
marginal posterior distributions of the latent field, π(xi|y), can be approximated
with the integral

π̃(xi|y) =
∫
π̃(θ|y)π̃(xi|θ,y)dθ∫

π̃(θ|y)dθ
.

This is done using numerical integration with a set of relevant integration points
{θ(j)} and corresponding weights {∆j},

π̃(xi|y) ≈
∑
j π̃(θ(j),y)π̃(xi|θ(j),y)∆j∑

j π̃(θ(j)|y)∆j
. (3.6)

The formulas in Equations (3.5) and (3.6) are the basis for the INLAmethodology.
The procedure in INLA is as follows:

1. Explore π̃(θ|y) to obtain a good set of integration points {θ(j)} for the
numerical integration. This grid exploration can be done in several ways;
Rue et al. (2009) proposes the central composite design (CCD) strategy
when the number of parameters θ is more than four, but the CCD strategy
gives good results in short time which makes this strategy good also for
fewer parameters. In the CCD strategy, the θ-space is reparametrized to
find different values of θ, which is then used to find the optimal values.
This is done by:

(a) The mode θ∗ of π̃(θ|y) is found by optimizing log(π̃(θ|y)). For a
Gaussian likelihood, this mode is the mode of the true posterior π(θ|y).
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(b) The negative Hessian H of log(π̃(θ|y)) at the modal configuration is
calculated.

(c) Then the eigen-decomposition H−1 = Σ = V Λ1/2V T is computed.

(d) The new variable ζ is defined such that θ(ζ) = θ∗+V Λ1/2ζ is fulfilled.

The negative Hessian and the mode are used to select some relevant points
in the θ-space for performing a second-order approximation to a response
variable. When the grid has been explored, the posterior marginals π̃(θk|y)
for all k = 1, . . . ,K are found using an interpolation algorithm based on
π̃(θ|y) and {θ(j)

k } (Blangiardo and Cameletti, 2015).

2. Then for each value in {θ(j)
k }, the conditional posteriors π̃(xi|θ(j),y) are

evaluated on a grid of values for xi, and the marginal posteriors π̃(xi|y)
can be obtained using numerical integration as in Equation (3.6).

When all the marginal distributions are computed, all results are found. As this
methodology does not involve sampling or any other stochastic operations, the
results will be the same every time the inference is carried out, unlike e.g. MCMC
algorithms.

To summarize, the INLA methodology consists of three steps; first the posterior
marginals of the parameters are approximated, second the conditional posteriors
of the latent components are approximated, and at last the two first steps are
combined using numerical integration to approximate the posterior marginals of
the latent components.

3.4.2 SPDE approach in R-INLA

The stochastic partial differential equation (SPDE) approach by Lindgren et al.
(2011) utilizes that the solution to the SPDE in Equation (3.3) is a Gaussian
random field with the Matérn covariance function, which can be approximated
by a discretely indexed Gaussian Markov random field. As GMRFs are impor-
tant and heavily utilized in INLA, the SPDE approach fits the INLA framework
well. The SPDE approach exploits the best properties of a GRF and the best
of a GMRF; the flexible and interpretable structure of the former with few and
meaningful parameters, and the computational benefits of the latter.

The SPDE is in R-INLA solved using the finite element method (FEM) on a
Delaunay triangulation (Lindgren et al., 2011). The observation locations are
used as vertices where appropriate, and additional vertices are added to satisfy
the chosen constraints on the triangulation. The triangulation gives a mesh where
the SPDE is solved, and the mesh is the domain of the resulting GRF.



3.4. FAST INFERENCE FOR BAYESIAN MODELS 27

The GRF is a part of the model through the predictor η. Since the predictor
consists of measurements from the observation locations, each ηi must be linked
to the vertices in the mesh. A projector matrix A is used to transform η, and
the SPDE model can then be treated as an indexed random effect (Lindgren and
Rue, 2015). A is created using the basis functions φg defining the mesh. The
new predictor η∗ = Aη replaces the old η, and the likelihood is then linked to
the latent field through η∗ instead of η. This must be done for each GRF in the
model.

Since the SPDE is solved using the FEM, boundary conditions are needed, and
they are in R-INLA set to be Neumann boundary conditions (Lindgren et al.,
2011). These boundary conditions might not be the appropriate one in all cases,
and then the solution at and near the boundary is not necessary is correct. Near
the boundary, the estimated variance will be larger than the rest of the domain.
Lindgren and Rue (2015) give a "rule of thumb": at a distance corresponding
to the range ρ from the boundary the boundary effects will be negligible. This
means that the boundary should preferably be at a certain distance from the
observation locations and the domain of interest, and this can be fulfilled by
using a mesh extending outside the domain of interest. Another solution to avoid
problems around the boundary is to use other boundary conditions. This is not
implemented in R-INLA and hence not studied.

To extend the domain to a larger area leads to a larger number of triangles and
vertices, which makes the computation more time-consuming. Since the solution
of the SPDE outside the domain of interest is not important for other reasons
than to avoid boundary effects, the mesh can be divided into an inner part (the
domain of interest) and an outer part. Then the resolution in the outer part of
the mesh can be lower than the resolution of the inner part, which reduces the
computation time. Keep in mind that the shape of the triangles near the inner
boundary should not be too narrow, so the difference in resolution cannot be
too large. The Delaunay triangulation will to some extent aim to have smooth
transitions between small and large triangles (Lindgren et al., 2011), but caution
must be taken by the user.

The process of choosing a mesh might be difficult. When aware of the bound-
ary effects, the user can create one inner and one outer mesh, with appropriate
resolutions. Even though the observation locations are used as vertices, some
triangles might get a high density of observation locations. As long as the num-
ber of observation locations in one triangle is small, this will not be a problem,
but it is necessary to use a resolution avoiding many observation locations inside
one single triangle. In R-INLA, the mesh must be specified using either a set of
locations or a domain, and for both the inner and outer mesh, either the largest
allowed triangle edge length, or the maximum number of vertices allowed in the
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mesh must be provided. These conditions are not necessarily absolute, but will
be adhered to best possible. Several additional choices can be made, for more on
this see www.r-inla.org.

This explanation of the SPDE approach in R-INLA is only concerning the main
aspects, for the complete picture the reader is referred to Lindgren et al. (2011)
and Lindgren and Rue (2015).

www.r-inla.org


Chapter 4

Method

4.1 Comments on R-INLA

The INLA methodology implemented in R (R-INLA) is used to carry out the
inference in this thesis. This is a complex library, but naturally restrictions exist
which affects the possibilities of the model. The amount of prior distributions
implemented is as of 2017 limited, and to simplify the implementation of the
model only built-in priors are used in this thesis. Both the PC prior and the
log-Gaussian prior for SPDE models are implemented in R-INLA, as well as the
PC prior and the gamma prior for precisions of Gaussian variables. For fixed
effects, the Gaussian prior is implemented. Other alternatives exist, but are not
considered.

Looking at the way the PC prior for the range ρ of a GRF is constructed, at least
one possible problem arises. The range can be restricted with either an upper
bound or a lower bound, and the latter is preferred, but not both. If one wishes
to use a prior that restricts the range from both sides, the PC prior might not
be a good choice. The right tail of the inverse exponential distribution, which is
the marginal prior for ρ in two dimensions and ν = 1, is heavy. The base model
for the range is at ρ = ∞, which favors large range values, and is not a good
alternative for all data. The PC prior on the standard deviation of a GRF is for
d = 2 and ν = 1 the exponential distribution, which has lighter tails than the
inverse exponential, but also here the prior has only one tail. The base model is
σ = 0, which may give problems if a field with large variations over short distances
is preferred. For a large range, the boundary effects will affect the model, which
is not desired. Thus, an alternative to the PC prior is considered; a log-Gaussian

29
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prior which can be restricted from both sides. Both prior distribution families
are investigated.

The model studied is now presented. First, the model and its components are
introduced, and then prior distributions on the parameters are discussed and
justified. In the end, three different combinations of prior distributions are pre-
sented.

4.2 The model

Let j = 1, . . . , T denote year, m = 1, . . . , 12 denote month of the year, where
m = 1 is January, m = 2 is February and so on, and si denote observation
location. The observed temperature measurement for year j and month m, and
in observation location si is denoted yj,m,i. i = 1, . . . , n, where n = 503, but only
some are observed in each month and year.

The likelihood of the temperatures is assumed to be Gaussian. There are several
reasons for this: The interpretation of the parametrization in the Gaussian dis-
tribution family is straight forward; the mean and variance are used directly as
parameters. The Gaussian distribution is computationally fast to work with, and
for complex models this is an advantage. The monthly average temperature data
is the average of daily observations, which will at least be close to Gaussian. At
last, the posterior distribution of the likelihood is not as interesting as the poste-
rior distribution of the underlying process, which includes the temperature trend,
and then there are no strong arguments against the Gaussian distribution.

The observations are monthly average temperatures, denoted yj,m,i for year j,
month m and location si, and are assumed to be Gaussian conditionally on the
mean, with precision τy,

yj,m,i ∼ Gaussian(µj,m,i, τ−1
y ), i = 1, . . . , n, m = 1, . . . , 12, j = 1, . . . , T.

The mean µj,m,i is modelled using the predictor ηj,m,i = µj,m,i. The predictor η
is now used instead of the mean µ. The linear regression model from Section 2.2,
Equation (2.1), is used as a starting point when selecting the model components.
An intercept and a spatial field to capture spatial variations for each month are
included to make a present temperature trend more prominent. This field has
constraints integrating it to zero, and can be thought of as a spatial intercept
for the temporal process. The altitude of each location is included as a linear
effect as the temperature decreases almost linearly with height (Andrews, 2010),
which makes this a suitable assumption. Figure 2.3c from Section 2.1 shows a
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linear relationship between the altitude and the observed temperature, and a
fixed effect is the simplest way of including altitude in the model.

To model the temperature trend in time, linear and quadratic basis functions are
used. This is done using scalars as fixed effects common in all locations, one for
the linear and one for the quadratic basis function. In addition, two spatial fields
capturing the linear and quadratic spatial variation in time are included. Both
these fields have integrate-to-zero-constraints. The scalars can then be thought
of as the "intercepts" of these fields, or as the average linear and quadratic change
in the whole domain during the time period. At last, a temporal independent
and identically distributed (iid) component is included as an effect in time to
account for an unusually temperate month in the whole domain.

For a given year j, month m and location si, let β0,m and um(si) denote scalar
and spatial intercepts, respectively, hi denote altitude with coefficient β1, am and
bm denote scalars and uA,m(si) and uB,m(si) denote spatial fields used to model
the temperature trend, and εj,m denote the temporal iid-effect. The predictor of
the model is given as

ηj,m,i = β0,m + β1hi + um(si) + amtj,m + bmt
2
j,m + uA,m(si)tj,m

+ uB,m(si)t2j,m + εj,m, j = 1, . . . , T, m = 1, . . . , 12, i = 1, . . . , n

where t = (tj,m) is a vector of time points. For easy interpretation of the results,
t has equal spaced elements from 0 to 1, and is of the same length as the time
series with monthly average temperatures. t then has no unit. The field um is
the random field included to account for spatial variations in the monthly average
temperature each year, i.e., areas that are always colder or warmer in a given
month m are taken into account, giving a temperature trend not depending too
much on spatial variation occurring every year. uA,m and uB,m are the random
fields estimating the spatio-temporal trend. uA,m is the deviation in each location
from the linear change modelled by am, and uB,m is the deviation in each location
from the quadratic change modelled by bm.

All fixed effects (β0,m, β1, am and bm) are assumed Gaussian with zero mean.
εj,m is the temporal iid-effect, included to capture unstructured variation not
relevant for the trend itself. εj,m is equal in all locations si for a given point
in time, and is assumed Gaussian with mean 0 and precision τε. The temporal
iid-effect is constrained with∑

εj,m = 0,
∑

εj,mtj,m = 0 and
∑

εj,mt
2
j,m = 0

to prevent it from capturing the linear and quadratic effects amt and bmt
2 are

included to account for. The spatial fields um, uA,m and uB,m are all assumed to
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be Gaussian random fields, with zero mean and the Matérn covariance function
presented in Section 3.2.2.

Each month is treated individually, i.e., the indexm is held constant. This means
that the vector t has length T = 57. The intercept β0,m and the field um would
take care of the seasonality if all months were included in the same model, but
due to the difference in temperature variability between months there is reason
to believe that the temperature trend differs as well (see Figure 2.4). Thus am
and bm, and uA,m and uB,m, are assumed unique for each month, and only τy,
β1 and εj,m are common for all months. The fixed effect β1 is assumed to be
mostly driven by the data, so is the precision of the observations τy, and εj,m
is the temporal iid-effect and has no correlation between the time points. A
common model for all months and years would with these assumptions contain
36 Gaussian random fields, which leads to a number of parameters well over the
recommended limit of 20 (Rue et al., 2017). To have the observation precision,
one fixed effect and one iid-effect as the only common components for the whole
model is unnecessary and would likely lead to a higher total runtime than when
each month is treated individually.

um is measured in degrees Celsius. uA,m(si) and uB,m(si) are representing change
in both space and time, but as t is scaled to have no unit, these fields have unit
degrees Celsius as well. Keep in mind that all three fields are constrained to
integrate to zero.

The GRFs uA,m and uB,m are spatio-temporal interactions. They are simple to
add to the model using R-INLA, but an option for this exact approach does not
exist. To include these spatio-temporal interactions, the projector matrix A from
η∗ = Aη (see Section 3.4.2) must be linked to the time-weights t for each spatial
field. For a given month, a given field is equal for all years (as there is only
one GRF for each basis function), but the connection to η and thus y changes
with time. To get the model in R-INLA link the GRFs to η and y correctly, A
is simply multiplied with the vector t with the time weights, where each weight
is repeated n times; one time for each observation location, regardless of the
number of missing observations.

To investigate different prior distributions, varying priors on the model compo-
nents are used. Before presenting the specific choices, the prior distributions used
are justified. To simplify the notation, the month index m is excluded when not
discussing a specific month, with one exception: um keeps the index to clearly
distinguish it from uA and uB. In the model, all twelve months are treated
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individually, and the predictor in the simplified notation is

ηj,i = β0 + β1hi + um(si) + atj + bt2j

+ uA(si)tj + uB(si)t2j + εj , j = 1, . . . , T, i = 1, . . . , n (4.1)

for each month m = 1, . . . , 12, where yj,i ∼ Gaussian(ηj,i, τ−1
y ).

4.3 Prior choices

It is a difficult task to give prior distributions to the parameters of a statistical
model. A prior is the distribution of a given parameter before any data are
observed, and a guide for what priors to use when does not always exist. In some
cases there is common practice to use certain priors, but this is not the situation
here. However, some prior information usually exists, and can be used to choose
suitable priors on at least some model components. For other components the
priors must be chosen based on what the parameter or component should do in
the model. For instance, Norwegian monthly average temperatures are analyzed
in this thesis, and monthly averages lower than -25 or higher than 25 degrees
Celsius has not occurred in the time period from 1960 to 2016 as can be seen in
Figure 2.4 in Section 2.1. This is information that can be used to put priors on
the parameters. Note that even though each month is treated individually, all
are given the same prior distributions on all model parameters.

Both prior distribution families and the hyperparameters used for the distribu-
tions must be decided. In this thesis, three groups of prior distribution families
are studied, yielding three model variations, where the prior sensitivity is investi-
gated to some degree. All variations of the model contain the same components.
All priors are justified, but none are elicited from experts. A pragmatic, engi-
neering approach is used in addition to the prior knowledge, due to numerical
problems occurring when fitting models with certain prior distribution. The prior
distributions found using an engineering approach still meet the chosen require-
ments of the priors.

4.3.1 Priors on the fixed effects and precision

The fixed effects β0, a and b are given Gaussian priors with mean 0 and variance
100. The coefficients are without any restrictions, but all have the unit degrees
Celsius and none of them should become smaller than about -30 or larger than
+30 for Norwegian temperature data. β0 is the intercept and values outside [-
30,30] is not likely, while a temperature trend modelled using linear or quadratic
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coefficients outside this interval is not desired. More specific information about
β0, a and b is not known prior to data collection, and since most of the mass of a
Gaussian distribution (more than 99 %) lies within three standard deviations of
the mean, this prior seem appropriate. The altitude coefficient β1 is also given a
Gaussian prior with mean 0, but has variance 1000. The unit of this coefficient
is degrees Celsius per meter, and intuitively it is small and mostly driven by the
data, which makes a strong prior unnecessary.

The precision of the Gaussian observations, τy, is given a gamma prior. For the
Gaussian observations, the precision accounts for the measurement error made
for all observations, and is given a prior with parameters a = b = 0.5. This
corresponds to a mean of 1 and a variance of 2. This parameter is assumed to
depend mostly on the data, but will not become especially large (this is equivalent
to a small variance) since there will always be measurement error, and a prior
with a larger mean does is not considered necessary.

The precision of the temporal iid-effect τε is given two different priors. One of
them is the gamma distribution. The hyperparameters for this prior are more
difficult to choose than for τy; they depend on how the temperature changes
"randomly" from one year to the next for a given month. The hyperparameter
values for the gamma prior for τε are a = 1 and b = 0.9. The corresponding prior
for the standard deviation of the temporal iid-effect has most of the distribution
mass between 0 and 4, which is reasonable for monthly average temperature for
any month of the year when measurement error is accounted for (see the boxplot
in Figure 2.4 in Section 2.1).

The other prior used on τε is the PC prior. The PC prior for precision of a
Gaussian random variable is presented in Section 3.3.4, and the parameter λ
is decided by giving an upper tail probability to the corresponding standard
deviation, P(σ > U) = α. Since the PC prior penalizes the model for including
the component it is used on, the base model is σε = 0, i.e., not have a temporal
iid-effect in the model. What prior the standard deviation of the temporal iid-
effect should have is difficult to decide, and the tail probability is set to be
P(σ > 5) = 0.01, to avoid that the temporal iid-effect component becomes too
big, but at the same time give it the possibility to be significantly bigger than
zero.

4.3.2 Priors on the Gaussian random fields

How the results change with different priors on the parameters of the Gaus-
sian random fields uA and uB, and especially the ranges, is investigated. All
three GRFs are assumed to have zero mean, which means the covariance function
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parameters (standard deviation σ and range ρ) are the ones that require prior
distributions. What priors the standard deviation and range for each field should
get depends on the random field and what it is supposed to do in the model; in
this model the field um, and uA and uB have different purposes and should prob-
ably have different priors. But deducing which priors are the most appropriate
is not straight forward.

The range and standard deviations of the random fields um, uA and uB are
given different priors between models; both different families of distributions and
different hyperparameters. The PC prior and the log-Gaussian prior are tested,
and possibilities for both are discussed. The joint PC prior for the range and
standard deviation of a GRF with Matérn covariance function for ν = 1 and
d = 2 is presented in Section 3.3.2, and the joint prior can be split into marginal
priors; ρ and σ are not correlated. With a log-Gaussian prior, both ρ and σ are
log-Gaussian, and can be dependent in the prior. In this thesis, they are assumed
independent in the prior.

Recall that um is a GRF included to capture spatial variations occurring every
year for a given month. Thus the field um should have a short range, relative to
the observation domain, so small areas with lower or higher average temperature
than the surroundings, are detected by the field. The standard deviation is
assumed to be small since variations between years and decades are accounted for
in other components of the model. The range should however give all locations at
least one neighbor, and the prior must be set accordingly. Due to this, the range
and standard deviation for um are ideally given priors with small probabilities
of being large, and the range should have a small probability of being small as
well.

uA is a linear and uB is a quadratic spatio-temporal interaction. To give the
standard deviation and especially the range of the GRFs specific prior distribu-
tions is not straight forward due to minimal amount of prior knowledge on the
parameters. Thus the parameters of these two fields are given the same prior
distributions in all models. It is reasonable to have a range smaller than the
domain size, and large enough to give all locations at least one neighbor, just as
for um. More specific values than this is difficult to find, due to a lack of prior
knowledge on the parameters. The standard deviation gets a prior similar to the
standard deviation prior for um.

The domain of observation locations can be seen in Figure 2.1 in Section 2.1.
The largest distance from one observation location to the closest neighbor is
around 50 kilometers, and the largest distance between two observation locations
is approximately 700 kilometers. Having posterior mean range values smaller
than 50 kilometers or larger than 700 kilometers is not desirable; hence the prior
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distributions to be studied are those for which most of the mass is in this interval.
A smaller range than 50 kilometers is almost equivalent to white noise in space,
a larger range than 700 kilometers leads to a slowly varying field compared to
the domain size, and in both cases, the need for the random field is reduced.
In addition, the boundary effects may affect the results when the range is too
large (Lindgren and Rue, 2015). The standard deviations of all three GRFs are
assumed to be around or less than 3 degrees Celsius. Since observation noise and
temporal iid-effects are accounted for by other model components, it is assumed
that no larger standard deviation is needed.

For ρA and ρB, a more specific interval for the prior distributions than [50, 700]
kilometers of the prior distribution is difficult to find. For ρm, however, the
interval can be more specific based on the desired properties of this GRF. This
field is included in the model to capture spatial variation occurring every year in
a given month m, and for the field to be able to include small areas with different
temperature, only prior distributions of ρm with most of the mass between 50
and 300 kilometers are considered.

4.4 Model summary

Different prior distributions are used to create five variations of the model with
predictor in Equation (4.1). The observations are assumed to be Gaussian, and
the priors on τy, β0, β1, a and b are kept equal in all model variations. That leaves
the priors on the range and standard deviation of the three random fields, and
the precision of the temporal iid-effect to vary between models. The following
list is a summary of the prior distribution families and hyperparameters that are
equal in all models:

• τy ∼ Gamma(0.5, 0.5),

• β0, a, b ∼ Gaussian(0, 100), and

• β1 ∼ Gaussian(0, 1000).

Three main model variations are studied with the following priors:

Model 1 PC prior on the field parameters and gamma prior for the pre-
cision of the temporal iid-effect,

Model 2 log-Gaussian priors on the field parameters and gamma prior
for the precision of the temporal iid-effect, and

Model 3 log-Gaussian priors on the field parameters and PC prior for
the precision of the temporal iid-effect.
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To simplify the notation when using PC prior distributions, the notation PC(U,α)
is used to denote the PC prior with tail event U with corresponding probability
α, see Sections 3.3.2 and 3.3.4. Keep in mind that interpretation of U and α
differs for different parameters. Note that even though the model variations are
usually referred to as different models, only the prior distributions differ between
them, all variations consist of the same model components.

The hyperparameters used for each distribution family is based on Section 4.3
together with a pragmatic engineering approach, and are found in Table 4.1. ρm
and σm are the parameters of um, ρA and σA are the parameters of uA, and the
same for uB. The unit of the range is given in 100 kilometers, which is used to get
an easy interpretable distance scale, and the unit of the standard deviations are
degrees Celsius, for all three Gaussian random fields. The distribution families
named model 3 (log-Gaussian priors on ρ and σ for all three GRFs, and PC prior
on τε) has three different sets of hyperparameters, which is used to among others
a minor prior sensitivity analysis. The three variations of model 3 are referred to
as submodels 3a, 3b and 3c. This yield five model variations.

As Table 4.1 shows, the parameters of the Gaussian random fields uA and uB are
always given the same prior distributions on both range and standard deviation.
Keep in mind that the PC prior is specified by a lower bound for range, and an
upper bound for standard deviations. The log-Gaussian distribution has mean
and variance eµ+σ2/2 and e2(µ+σ2)−e2µ+σ2 , respectively. A posterior distribution

Param. Model 1 Model 2
ρm PC(2, 0.1) logG(0.4, 0.08)
σm PC(3, 0.1) logG(0.3, 0.2)
ρA, ρB PC(2, 0.1) logG(1.2, 0.02)
σA, σB PC(3, 0.1) logG(0.3, 0.2)
τε Gamma(1, 0.9) Gamma(1, 0.9)

Model 3
Param. Submodel 3a Submodel 3b Submodel 3c
ρm logG(0.4, 0.08) logG(0.4, 0.08) logG(0.4, 0.08)
σm logG(0.3, 0.2) logG(0.3, 0.2) logG(0.3, 0.2)
ρA, ρB logG(1.2, 0.18) logG(1.2, 0.08) logG(1.2, 0.02)
σA, σB logG(0.3, 0.3) logG(0.3, 0.3) logG(0.3, 0.3)
τε PC(5, 0.01) PC(5, 0.01) PC(5, 0.01)

Table 4.1: Prior distribution families and hyperparameters in the different model
variations. PC(·, ·) denotes the PC prior, which has different interpretations
between parameters, logG(·, ·) is the log-Gaussian prior.
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does not only depend on the prior, but the data and other model components
as well. Prior distributions provide some knowledge about a given parameter to
the model, and ideally, for the model used in this thesis, the posterior has some
common features with the prior, but a lower standard deviation.



Chapter 5

Results

In this chapter, all results from the inference are presented. Some discussion
on details for the different models is included, while a more thorough discussion
is given in the next chapter. As many of the results are similar for all models
and submodels, only the results that stand out are presented for each individual
model. The results that are unique for each model are mainly the range param-
eters and only those are displayed for each model and submodel. Supplementary
figures can be found in Appendix A, and the individual graphs are referred to
when needed.

The Gaussian random fields represented using the SPDE method require meshes.
The same mesh is used in all model variations, and can be seen in Figure 5.1. See
Figure 2.1 in Section 2.1 for the specific observation locations. The observation
locations are located inside the inner part of the mesh, and the outer part is
included to avoid unwanted boundary effects. The total number of nodes in the
mesh is 2480.

Note that even though the priors are put on the precisions, when the results
are presented the standard deviations are plotted and discussed, due to easier
interpretation of the latter. To clarify which months specific results come from,
the subscript m is re-introduced on parameters and components when needed.
If month m is not specified, the parameter or model component in general is
referred to. Note that um denotes the GRF in general, while u1 denote the
field for January. In addition, a superscript is introduced to separate the five
model variations, i.e., ρ[2]

A,3 is the range belonging to the GRF u
[2]
A,3 for model

2 and March (third month of the year). When the superscript is absent, it is
the parameter in general that is discussed, and not for a particular model. The

39
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Figure 5.1: The mesh used when solving the SPDEs in all model variations and
for all GRFs. The shape of the southern half of Norway is added to the mesh.

superscripts used are 1, 2, 3, 3a, 3b and 3c, where 3 refers to model 3 in general,
with no specific hyperparameters.

One of the desired properties of the model is a low computation time. The
inference is for a given month carried out in between 15 and 40 minutes. The
runtime will naturally depend on the computer, and on other processes occurring
at the same time as the inference is carried out. The runtime also differs between
models; model 1 and 2 are slower than model 3. About 20 minutes is the average
computation time required for submodels 3a, 3b and 3c.

5.1 Numerical problems

Numerical problems during the inference have sometimes occurred when INLA
is calculating the negative Hessian H of the log-likelihood, see steps 1a, 1b and
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1c from the explanation of INLA in Section 3.4.1. The algorithm in R is not able
to successfully find the mode of the log-likelihood, which means the mode found
does not correspond to a maximum. This leads to an incorrect calculation of the
negative Hessian which leads to wrong estimates of posterior marginals. There
can be several reasons for why such problems occur. As an example, consider a
two-dimensional log-likelihood which is very steep on one side of the true mode,
and has a slow decline on the other side. Then the numerical optimization al-
gorithm might find the wrong mode due to the odd shape of the log-likelihood.
Other shapes of the likelihood leading to difficulties finding the mode also exists.
Whether it is a problem with the shape of the log-likelihood or something else
that goes wrong is not investigated further; when the INLA algorithm is not able
to find the correct mode, the model with those specific hyperparameters for a
given prior distribution family has been discarded.

That numerical problems occur for certain prior distributions has become a part
of choosing prior distributions. Some of the parameters in the model require
stronger priors than others because there is not enough information about them
in the data, and it this lack of information that leads to numerical problems. As
weak priors are not usable on all model components, the prior choices are limited
to stronger priors, and some of these strong priors are chosen using an engineering
approach given the guidelines from Section 4.3. This is not the optimal way of
doing Bayesian inference, but the resulting prior distributions used follows the
guidelines, and the stronger prior distributions give interpretable model results.
None of the five model variations with prior distributions presented in Table 4.1
in Section 4.4 have experienced numerical problems.

The range parameters of the GRFs, and especially ρA and ρB, are given more
attention than the other parameters of the model. Recall that a posterior range
much smaller than 0.5 or much larger than 7 is not acceptable in the model
in this thesis. Thus, a model having posterior mean of any range parameter
outside [0.5, 7] is not considered a good model. For the field um, the range
should preferably be smaller than 3. A model with range values far outside these
limits is regarded as insufficient.

Note that the problems with calculation of the Hessian could have been solved
by e.g. letting some of the unknown parameters θ be fixed, but the focus is
on finding working prior distributions instead. Problems concerning locating
the mode and/or calculating the Hessian will be referred to merely as numerical
problems from now on. No further attention will be given.

The results from all model variations are now presented. The posterior range
distributions are presented for each model individually, and in Section 5.3 the
rest of the results are included, using submodel 3b as a representative for all five
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models. The models are presented and described in Section 4.4, but a short recap
is nevertheless included here. All models consist of the components in Equation
(4.1). Common for all models is Gaussian priors on fixed effects and a gamma
prior on the observation precision. Model 1 is given PC priors on all ranges
and standard variations, and a gamma prior on the precision of the temporal iid-
effect. Model 2 is given log-Gaussian priors on all ranges and standard deviations,
and a gamma prior on the precision of the temporal iid-effect. Model 3 is given
log-Gaussian priors on all ranges and standard deviations, and a PC prior on the
precision of the temporal iid-effect. The specific hyperparameter values can be
found in Table 4.1.

5.2 Results differing between models

The results differing between the five model variations are now presented. The
model variations deemed as insufficient (models 1 and 2) are presented first, while
the satisfying model 3 with submodels follows.

5.2.1 Insufficient models

Model 1 has the PC prior on the Gaussian random field parameters. Since the
PC priors are restricted from one side only and the model without the parameter
is the most probable, these priors lead to too large posterior mean values of ρA
and ρB. Model 2 is to a large extent limited due to numerical problems, which
makes a prior sensitivity analysis difficult, and the prior distributions need to be
stronger than what is necessary for model 3. Hence neither model 1 nor model 2
fulfill all desired properties of the model. Even though some are fulfilled, they are
both regarded as insufficient. When the results of these two models are presented,
only the most interesting results are displayed. Several of the parameters have
similar posteriors in all five models and submodels, and those not included here
will be later.

Model 1

Model 1 has the following prior distributions on the GRF parameters and the
precision of the temporal iid-effect:

ρ[1]
m , ρ

[1]
A , ρ

[1]
B ∼ PC(2, 0.1), σ[1]

m , σ
[1]
A , σ

[1]
B ∼ PC(3, 0.1), τ [1]

ε ∼ Gamma(1, 0.9),
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i.e., all ranges and all standard deviations of the GRFs have the same prior
distribution. Note that the PC prior is not using the lower limit of 0.5 on the
range, but a larger number. This is to get a slightly stronger prior to avoid
numerical problems, and is not violating the chosen guidelines.

The PC prior of the range is preferably restricted with a lower bound. The range
of any GRF is for this model not intended to be much larger than 700 kilome-
ters (corresponding to 7 in the chosen unit), and an upper bound is especially
important for the range prior for this model. However, an upper bound does not
fit into the PC prior framework, where a large range is favored. It is expected
before doing any inference that this model does not fit the temperature data
particularly well, and this is confirmed by the results.

(a) Prior and posterior distributions of the
range parameter ρ[1]

m .

(b) Prior and posterior distributions of the
range parameter ρ[1]

A .
(c) Prior and posterior distributions of the
range parameter ρ[1]

B .

Figure 5.2: Prior and posterior marginal distributions of the range parameters
of the three GRFs for model 1. Posteriors of all twelve months of the year are
plotted, but which is which is not indicated.
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Figure 5.2 shows the posterior marginal distributions of ρ[1]
m , ρ[1]

A and ρ[1]
B for model

1, along with the prior distribution. The most interesting result from these graphs
is how much the posterior distributions for a given parameter differs between
months. This justifies the choice of treating each model individually.

All the ranges ρ[1]
m in Figure 5.2a have a prior where the probability of being

smaller than 2 is 0.1. Despite of that, the majority of the ranges u1
m have modes

at smaller range values than 2, and several are at smaller values than 1. None
are smaller than 0.5, and only June has a posterior range with mode larger than
3. Thus, this parameter has a satisfying posterior for almost all months.

ρ
[1]
A and ρ[1]

B in Figures 5.2b and 5.2c, however, have posteriors with much larger
modes than intended. The mode of ρ[1]

A,7 (July) is almost 20, corresponding to
2000 kilometers and three times the largest distance between two observation
locations. Then the boundary effects affect the results, which is not ideal, and
the resulting GRF varies slowly in space with a large variance. For some months,
the posterior ranges ρ[1]

A have modes smaller than 7, which are acceptable, but this
is not true for all months. The posterior marginals ρ[1]

B do not have as extreme
modes values as ρ[1]

A , but the posteriors are not satisfying for all months. For
both ranges, the summer months do in general have larger posterior ranges than
the winter months.

The rest of the posterior marginals are not displayed here, some are included in
Appendix A and are discussed later. They look similar to the posterior marginals
of the other model variations. Even though model 1 is sufficient for some months
of the year, it is not sufficient for all months, and will not be used to anything
else than comparison with other models from now on.

Due to the use of the PC prior on all GRF parameters, model 1 is included in
this thesis even though it does not fulfill all the requirements a sufficient model
is decided to fulfill. Before giving any restrictions on the posterior distributions
of the parameters, the idea of the PC prior fits the model well due to the lack of
prior knowledge on the random fields. The problem is that the PC prior favors
the simplest model without the fields, which is one of the advantages of the PC
prior, while it is desired to have all three fields in the model. The PC prior
framework is not suitable for all the random fields of this model, as it contradicts
the decision of having all of um, uA and uB present in the model.
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Model 2

Model 2 has the following prior distributions on the GRF parameters and the
precision of the temporal iid-effect:

ρ[2]
m ∼ logGaussian(0.4, 0.08), ρ[2]

A , ρ
[2]
B ∼ logGaussian(1.2, 0.02),

σ[2]
m , σ

[2]
A , σ

[2]
B ∼ logGaussian(0.3, 0.2), τ [2]

ε ∼ Gamma(1, 0.9).

The prior distribution for the range parameter of u[2]
m is different from the priors

on u[2]
A and u[2]

B . The priors for the range parameters of the two latter fields are
strong, which is required to avoid numerical problems. The numerical problems
indicate that the model may be overparameterized, it is then difficult to identify
the parameters, and to make the model work it is necessary to use a strong
prior.

Figure 5.3 shows the prior and posterior marginal distributions of the ranges ρ[2]
m ,

ρ
[2]
A and ρ[2]

B for model 2. The posterior ranges of ρ[2]
m in Figure 5.3a vary more than

the posteriors of ρ[1]
m in Figure 5.2a, but also here all posterior modes lie above 0.5,

and no now posterior modes are larger than 3. With the log-Gaussian prior, it
is possible to use stronger prior distributions than with the PC prior, which here
leads to more satisfying posterior distributions on the range parameters of u[2]

A
and u[2]

B . All posteriors ρ[2]
m have a lower standard deviation than the prior, which

means that the data y has removed some uncertainty from the parameter.

The posterior marginals for ρ[2]
A and ρ[2]

B are found in Figures 5.3b and 5.3c. Both
parameters are given the same prior, which is strong with 99 % of the mass
between 2.3 and 4.8. Therefore, it is not a surprise that these posterior ranges
have modes well within the interval [0.5,7]. The posterior distributions are similar
to each other, which is a result of the strong prior. Only one posterior stands
out from Figures 5.3b and 5.3c; August, which in both plots has the largest
mode.

As for model 1, the posterior distributions of the other parameters do not have any
features out of the ordinary and are discussed later, with some graphs included
in Appendix A. Even though this model gives desired results, the procedure of
setting priors was difficult due to the occurrence of numerical problems when
doing inference with R-INLA. This limits the prior distribution choices and makes
a prior sensitivity analysis problematic. Therefore model 2 is as model 1 deemed
insufficient and the investigation of this model ends here.
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(a) Prior and posterior distributions of the
range parameter ρ[2]

m .

(b) Prior and posterior distributions of the
range parameter ρ[2]

A .
(c) Prior and posterior distributions of the
range parameter ρ[2]

B .

Figure 5.3: Prior and posterior marginal distributions of the range parameters
of the three GRFs for model 2. Posteriors of all twelve months of the year are
plotted, but which is which is not indicated.

5.2.2 The preferred model

Model 3 has log-Gaussian priors on the range and standard deviation of the
Gaussian random fields and the PC prior on the precision of the temporal iid-
effect, with three different sets of hyperparameters denoted submodel 3a, 3b
and 3c. The GRFs uA and uB have parameters that are difficult to estimate,
and model 3 is chosen above the other models because the prior distributions
for model 3 are strong enough to avoid parameter values leading to numerical
problems during the inference.

The prior on the temporal iid-effect precision τ
[3]
ε is kept constant through the

three submodels 3a, 3b and 3c, so are the priors on both range and standard
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deviation of u[3]
m and the priors on the standard deviations σ[3]

A and σ
[3]
B . The

prior distributions on the fixed effects and the observation precision τ [3]
y are kept

constant here as in models 1 and 2. This leaves the ranges on u[3]
A and u[3]

B , which
are the only prior distributions changing between the submodels 3a, 3b and 3c.
The priors on ρ[3]

A and ρ[3]
B are changed simultaneously, and for a given submodel

they have the same prior. Note that only the hyperparameters differs between
the submodels, the prior distribution family is the same. The prior distributions
on ρ

[3]
A and ρ

[3]
B in the submodels are, compared to each other, weak, medium,

and strong for submodels 3a, 3b and 3c, respectively. u[3]
m denotes the GRF um

in model 3 in general, not relating it to one of the specific submodels 3a, 3b or 3c.
The three submodels are now presented separately with the unique results first,
and then some results common for all five models and submodels are presented,
using submodel 3b as a representative for the others.

Submodel 3a

Submodel 3a has the following prior distributions on the GRF parameters and
the precision of the temporal iid-effect:

ρ[3a]
m ∼ logGaussian(0.4, 0.08), ρ[3a]

A , ρ
[3a]
B ∼ logGaussian(1.2, 0.18),

σ[3a]
m ∼ logGaussian(0.3, 0.2), σ[3a]

A , σ
[3a]
B ∼ logGaussian(0.3, 0.3),

τ [3a]
ε ∼ PC(5, 0.01)

The posterior marginal distributions of ρ[3a]
m , ρ[3a]

A and ρ[3a]
B can be seen in Figures

5.4a, 5.4b and 5.4c, respectively. The first mentionable detail is that even though
the range of u[3a]

m is slightly weaker than in model 2, the posterior distributions
of ρ[3a]

m in Figure 5.4a are almost indistinguishable from ρ
[2]
m in Figure 5.3a. This

indicates that ρm is, at least to some extent, driven by the data.

This submodel has weak priors for ρ[3]
A and ρ[3]

B relative to submodels 3b and 3c,
with 99 % of the mass between 1.1 and 9.9. It is worth noting that all posterior
distributions ρ[3]

A have larger modes than the prior, and also have larger standard
deviations. The only month that does not fulfill the wanted properties of the
range parameters ρA and ρB is August, which has a mode above 7 for both
parameters. Even though that makes this submodel unsatisfying, it is not far
away from being acceptable, and a slightly stronger prior on ρA and ρB will give
a satisfying model.
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(a) Prior and posterior distributions of the
range parameter ρ[3a]

m .

(b) Prior and posterior distributions of the
range parameter ρ[3a]

A .
(c) Prior and posterior distributions of the
range parameter ρ[3a]

B .

Figure 5.4: Prior and posterior marginal distributions of the range parameters of
the three GRFs for submodel 3a. Posteriors of all twelve months of the year are
plotted, but which is which is not indicated.

Submodel 3b

Submodel 3b has the following prior distributions on the GRF parameters and
the precision of the temporal iid-effect:

ρ[3b]
m ∼ logGaussian(0.4, 0.08), ρ[3b]

A , ρ
[3b]
B ∼ logGaussian(1.2, 0.08),

σ[3b]
m ∼ logGaussian(0.3, 0.2), σ[3b]

A , σ
[3b]
B ∼ logGaussian(0.3, 0.3),

τ [3b]
ε ∼ PC(5, 0.01).

Figure 5.5 shows the posterior marginal distributions of ρ[3b]
A and ρ

[3b]
B for sub-

model 3b. Here the priors for ρA and ρB are slightly stronger than in submodel
3a, with 99 % of the mass between 1.9 and 5.7, and Figures 5.5a and 5.5b show
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(a) Prior and posterior distributions of the
range parameter ρ[3b]

A .
(b) Prior and posterior distributions of the
range parameter ρ[3b]

B .

Figure 5.5: Prior and posterior marginal distributions of the range parameters of
u

[3b]
A and u[3b]

B for submodel 3b. Posteriors of all twelve months of the year are
plotted, but which is which is not indicated.

that the both parameters and all months have posterior range modes less than
7. Note that the posterior of ρ[3b

A ] with the largest mode (which is August) is
skewed and has more mass in the right tail than the left, which gives a mean
slightly above 7, but as the mean is so close to 7, and the mode is below, it is
accepted. As for submodel 3a, the posterior distributions of the range ρ[3b]

A have
both larger modes and standard deviations than the prior. Again, August is the
month with the highest posterior range for both uA and uB.

The posterior marginals of ρ[3b]
m are not included here, as they are so similar to

the posterior marginals of ρ[3a]
m that they are barely distinguishable. They are

however included in Figure A.1 in Appendix A.

Submodel 3c

Submodel 3c has the following prior distributions on the GRF parameters and
the precision of the temporal iid-effect:

ρ[3c]
m ∼ logGaussian(0.4, 0.08), ρ[3c]

A , ρ
[3c]
B ∼ logGaussian(1.2, 0.02),

σ[3c]
m ∼ logGaussian(0.3, 0.2), σ[3c]

A , σ
[3c]
B ∼ logGaussian(0.3, 0.3),

τ [3c]
ε ∼ PC(5, 0.01)

The last submodel studied in this thesis has the strongest priors on ρA and ρB
of the submodels 3a, 3b and 3c, which are the same priors used on ρ[2]

A and ρ[2]
B



50 CHAPTER 5. RESULTS

(a) Prior and posterior distributions of the
range parameter ρ[3c]

A .
(b) Prior and posterior distributions of the
range parameter ρ[3c]

B .

Figure 5.6: Prior and posterior marginal distributions of the range parameters
of u[3c]

A and u[3c]
B for submodel 3c. Posteriors of all twelve months of the year are

plotted, but which is which is not indicated.

in model 2. The posterior distributions of ρ[3c]
A and ρ

[3c]
B can be seen in Figure

5.6. That this is a strong prior is clear; the majority posterior distributions are
barely distinguishable from the prior distribution for both range parameters, and
the posteriors have almost no mass in the distribution at range 7. Figure 5.6a
displays the posteriors of ρ[3c]

A , which are deviating more from the prior than
the posteriors of ρ[3c]

B seen in Figure 5.6b. The other model components affect
the posteriors of ρA and ρB; the posteriors for these parameters for model 2 in
Figures 5.3b and 5.3c differ from those for submodel 3c, even though the prior is
the same. For completeness, it is mentioned that as in submodels 3a and 3b, also
here August is the month with the largest ranges, both ρA and ρB. The posterior
distributions of ρ[3c]

m are omitted from this chapter due to the strong resemblance
to ρ[3a]

m , and can be seen in Figure A.1.

Since a posterior range less than 700 kilometers has been such an important
requirement, one could here be wondering about why model 1 and submodel 3a
are included in this thesis at all. The reason is simple: To show that a range
of 700 kilometers or less is not guaranteed for all months. Most months have
posterior ranges (for all GRFs) less than 700 kilometers, but the summer months
with relatively little variation in the data have posterior ranges of uA and uB
that are too large. In Bayesian inference, a prior distribution should not control
a parameter too much, but the decided restrictions state that the posterior means
of ρA and ρB should be less than 700 kilometers. A discussion should thus not
be about whether a model is unfairly discarded, but if the demand of a posterior
range less than 700 kilometers should be removed. As this has been thoroughly
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justified, the decision about discarding models with too large posterior range
stands.

5.3 Results similar in all models

Until now, only the posterior marginal distributions of the range parameters
have been discussed. Now the rest of the parameter posteriors are presented
and discussed, but due to the many similarities between the models, only the
results from one of the models are shown in most cases. Submodel 3b is chosen
to represent the posteriors.

Due to posterior range values of u[3b]
A and u

[3b]
B that fulfill the desired require-

ments, without a too strong prior, submodel 3b is considered to be the best model.
A strong prior is not necessarily negative, and is in certain cases needed, but the
difference in the posteriors between the months of the year becomes smaller for
stronger priors (see e.g. Figures 5.4b, 5.5a and 5.6a), and these differences be-
tween months are an important part of the result.

The posterior standard deviations of the observations, σy, and of the temporal
iid-effect, σε, for submodel 3b are presented first. They can be seen in Figure
5.7. Both are heavily dependent on the data, and especially for σy, there are
almost no differences between the models. See Figure A.2 for the posterior of σy
for the other four models. Figure 5.7a shows the posterior marginals of σ[3b]

y for
all months in submodel 3b. To visualize the difference between the colder and
warmer months of the year, the months are divided into two groups; the cold
and warm months. The cold months are defined as October to March, and the
warm months as April to September. The difference is clear: The cold months
have higher observation standard deviations than the warm months. This is as
expected, as the cold months have more variation in measurements than the warm
months, see the boxplot in Figure 2.4 in Section 2.1. The only exception is σ[3b]

y,10
for October, which has a mean of about 0.6 degrees Celsius.

Figure 5.7b displays the posterior marginals of σε. Also here the warm months
have lower standard deviations than the cold. This parameter has different prior
distribution through the models. This naturally affects the posterior some, but
the differences between models 1 and 2, and model 3, are small. The posterior
distributions of σε for model and submodels 1, 2, 3a and 3c can be seen in Figure
A.3. The standard deviation of the temporal iid-effect is mostly driven by the
data.
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(a) Prior and posterior distributions of the
standard deviation σ

[3b]
y of the observa-

tions. The months are divided into two
groups.

(b) Prior and posterior distributions of the
standard deviation σ

[3b]
ε of the temporal

iid-effect. The months are divided into
two groups.

Figure 5.7: Prior and posterior marginal distributions of the standard deviations
of the observations and the temporal iid-effect for all twelve months of the year
for submodel 3b. The warm months are taken to be April to September, while
the cold are October to March.

Figure 5.8 displays the posterior standard deviations of the three Gaussian ran-
dom fields for submodel 3b, and A.4 display the same posteriors for models 1, 2
and submodels 3a and 3c. These posterior distributions vary between the models,
the resemblance between all but model 1 is prominent, but model 1 clearly differs
from the others. Model 1 has the PC prior on the standard deviation of all fields,
while models 2 and 3 have the log-Gaussian, and a difference in posterior distri-
butions is not surprising. In general, the posterior distributions for model 1 have
larger modes of σm, σA and σB for a given month, than the other models.

The posterior distributions of σ[3b]
m are found in Figure 5.8a. As for σy and σε, the

cold (October to March) and warm (April to September) months have the largest
and smallest posterior means of σ[3b]

m , respectively, and this is also the case for
the other models (see Figure A.4). For the posterior standard deviations of uA
and uB, however, no such pattern is apparent, and the months are not divided
into groups, neither here nor in the appendix. The posteriors of σ[3b]

A and σ[3b]
B

can be seen in Figures 5.8b and 5.8c, respectively. The standard deviations are in
general higher for σm than the two others, and this is true for all models. Recall
that August often had the highest range value for both ρA and ρB in most models.
Here, August has one of the highest, if not the highest, standard deviation of uA
and uB in all models.



5.3. RESULTS SIMILAR IN ALL MODELS 53

(a) Prior and posterior distributions of the
standard deviation σ[3b]

m of the GRF u
[3b]
m .

The months are divided into two groups.

(b) Prior and posterior distributions of the
standard deviation σ[3b]

A of the GRF u
[3b]
A .

Posteriors of all twelve months of the year
are plotted, but which is which is not in-
dicated.

(c) Prior and posterior distributions of the
standard deviation σ[3b]

B of the GRF u
[3b]
B .

Posteriors of all twelve months of the year
are plotted, but which is which is not in-
dicated.

Figure 5.8: Prior and posterior marginal distributions of the standard deviations
of the Gaussian random fields for all twelve months of the year for submodel 3b.
The warm months are taken to be April to September, while the cold are October
to March.

The remaining parameters not presented are the fixed effects β0, a, b and β1. The
latter is the coefficient for the altitude in the model, and has unit degrees Celsius
per meter. The prior of β1 is Gaussian(0, 1000) in all models, and despite the
weak prior, all models highly agree on the posterior distributions of β1 for each
month. Figure 5.9a shows the mean values of β[3b]

1 with 0.025 and 0.975 quantiles
for submodel 3b for each month. However, if β1 from one of the other models had
been used instead, there would not be any visible change in the plot, see Figure



54 CHAPTER 5. RESULTS

(a) Posterior altitude coefficient β[3b]
1 . (b) Posterior intercept β[3b]

0 .

Figure 5.9: Posterior mean values and 0.025 and 0.975 quantiles for the fixed
effects β[3b]

1 and β[3b]
0 for all twelve months of the year for submodel 3b.

A.5 in Appendix A. The coefficient values are small, but β1 = −0.005 implies
a difference of 0.5 degrees Celsius over 100 meters in altitude. The coefficient
clearly should be in present in the model.

The intercept β[3b]
0 for submodel 3b is displayed with 0.025 and 0.975 quantiles

in Figure 5.9b. Figure A.6 displays the intercept with quantiles for the four
remaining models (1, 2, 3a and 3c). The prior is Gaussian with zero mean and a
variance of 100. The estimates of the coldest four months are the most uncertain,
and the resemblance between this plot and the boxplot in Section 2.1, Figure 2.4,
is clear. The other models agree on the posterior mean values, and all but model
1 also agree on the quantiles. Model 1 has for most months larger quantiles than
the others, and has more uncertain estimates of β0 (see Figure A.6).

The linear and quadratic temperature trend coefficients, a and b, respectively, are
not included graphically here, but can for all five models be seen in Figures A.7
(for a) and A.8 (for b). Their values are not particular interesting alone, and thus
only some appreciable details are included. Models 2 and 3 highly agree on both
the mean values of the coefficient estimates and their 0.025 and 0.975 quantiles
measuring the estimate certainty. Model 1 agrees to some degree on the mean
values, but the quantile values are much larger than in the other models, and only
one of the twelve months have a significant estimate of a[1], unlike models 2 and
3 that has only two non-significant estimates, where both estimates are close to
zero. This again justifies the decision about discarding model 1. Non-significant
in this context means that 0 is somewhere in the interval between the 0.025 and
0.975 quantiles.
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Figure 5.10: Posterior temperature trend a[3b]t + b[3b]t2 for submodel 3b. The
posterior trend of all twelve months of the year are plotted, but which is which
is not indicated.

As all parameters in the model now have been presented, it is time for the esti-
mates of the Gaussian random fields and the temperature trends. The simplest
version of the posterior temperature trend, at + bt2, is plotted in Figure 5.10,
where as usual submodel 3b represents all models. As the mean estimates of a
and b for a given month are similar in all models, naturally the trend curves are
as well. Model 1 has values that differs from the others, which leads to slightly
different curves. The trend curves from the other models are not included in the
thesis, but the parameters a and b for all models (including submodel 3b) can
be seen in Figures A.7 and A.8, respectively, in Appendix A. The trend curves
in Figure 5.10 supports the decision about treating each month individually: the
curves have various shapes, and the estimated temperatures in 2016 spans almost
3 degrees Celsius. June ends at the lowest temperature of all months in 2016 at
0 degrees Celsius, while January has had the largest increase and ends at almost
2.4 degrees. Remember that Figure 5.10 displays the curves made from the fixed
effects only, and that spatial variations are not yet considered. This leads to an
incomplete picture of the temperature trend, which is greater in some areas in
the southern half of Norway, and smaller in others.

The need for both the linear and quadratic temperature trend coefficient could
be questioned here, as some curves are almost linear, while others would manage
with only the quadratic coefficient. However, this model should be applicable to
all months of the year, with the same components and prior distributions. To
remove one of them would clearly benefit some months, but it would affect other
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months negatively. Then it is good that the coefficients will be estimated to zero
if they are superfluous.

There are three Gaussian random fields in each model; um, uA and uB. Since each
month is treated individually, this results in 180 different random fields with both
mean and standard deviance, and naturally not all will be presented. Despite
of the varying posterior ranges in models 1, 2 and 3, the means of the fields are
almost identical, which removes the necessity of displaying the results from each
model. Again the results for submodel 3b are used to represent all models. In
addition, only the January and July fields are shown here and discussed in detail,
to represent the cold and the warm months of the year. Just as it is the sum of
the linear and quadratic temperature trend coefficients that is of interest, it is
the sum of uA and uB that gives the best impression of the temperature trend
in time. This means that in total four GRFs are displayed here, with mean and
standard deviation.

It is natural to begin with the random fields u[3b]
1 and u[3b]

7 . um has the role of
capturing spatial variations occurring every year, independent of time, to make
the temperature trend more prominent and easier to interpret. Since an intercept
β0 is included in all models, the field is constrained to integrate to zero. This
means that um accounts for the spatial variation in temperature, and not the
actual temperature. Keep in mind that the field is integrated to zero on the
domain mesh, and not only on the observed area displayed. Figure 5.11 displays
the mean and standard deviations of u[3b]

m for January and July for submodel
3b. Note that the intercept is not included in the spatial maps, and the reader
is referred to Figure 5.9b for the posterior mean and quantiles of β[3b]

0 . Figures
5.11a and 5.11b show the mean and standard deviations of u[3b]

1 , respectively.
The mean of the January field u[3b]

1 spans a large interval, from nearly -11 to 5.5
degrees Celsius. The posterior means of the GRF u1 (i.e., January) for models
1, 2 and submodels 3a and 3c are displayed in Figure A.9. As can be seen, the
differences between the models are minimal (see also Figure 5.11a) for a given
month. The posterior mean of um for the other months are almost identical in
all models as well, but due to the large number of figures required this is not
included in the thesis. For um, both the mean and standard deviation are similar
between all models.

In the winter, the spatial pattern is prominent, with warmer areas around the
coast and colder areas in the inland. The standard deviation of u[3b]

1 is mostly
lower than 1.7, and becomes larger far from observation locations. It is, not
surprisingly, smallest where the temperature observations have been made. The
posterior mean and standard deviation of the July field u[3b]

7 can be seen in Figures
5.11c and 5.11d, respectively. The posterior mean of u[3b]

7 spans a smaller tem-
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(a) Posterior mean of the GRF u
[3b]
1 .

(b) Posterior standard deviation of the
GRF u

[3b]
1 .

(c) Posterior mean of the GRF u
[3b]
7 .

(d) Posterior standard deviation of the
GRF u

[3b]
7 .

Figure 5.11: The mean and standard deviation of u[3b]
m in degrees Celsius for

January and July, for submodel 3b. The intercept β[3b]
0 is not included.
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perature interval than u[3b]
1 , with values from -2 to 2.6 degrees Celsius. The cold

areas are now the west coast, while the inland and the south coast are warmer.
As for u[3b]

1 , the standard deviation is smallest in the observation locations, but
now most areas have a standard deviation less than 0.5.

The coastal areas have the warmest January monthly average temperature and
the coldest July temperature, see Figures 5.11a and 5.11c. This pattern is to some
extent apparent in the temperature trends as well: The inland does in general
experience a more rapid and a larger temperature increase than the coastal areas.
This can have many reasons; the high heat capacity of the oceans may be one of
them (Houghton, 2015). Water have higher heat capacity than air, and the ocean
temperature changes slower than air. This might keep the land temperature more
stable through the seasons in coastal areas than the inland, and lead to a slower
temperature increase.

The perhaps most interesting results from the models are the posterior Gaussian
random fields in Figure 5.12: The mean and standard deviation of the spatio-
temporal temperature trends. The results displayed are for submodel 3b for
January and July. Figure 5.12a is the mean of a[3b]

1 + b
[3b]
1 + u

[3b]
A,1 + u

[3b]
B,1 , i.e.,

the temperature in January 2016 where the spatio-temporal trend started at zero
everywhere in 1960. The western areas (including the coast) have had a smaller
increase in temperature than the inland. The posterior means of a1 + b1 +uA,1 +
uB,1 for the other four models for January are displayed in Figure A.10. The
differences between the plots are minimal, just as the differences between u1 in
Figure A.9 are minimal. The standard deviations of uA and uB (not included
graphically in the thesis) are larger for all months for model 1 than for the other
four models, just as for the fixed effects a and b (see Figure A.7 and A.8).

The January temperature increase during the 57-year time period is for some
areas greater than 4 degrees Celsius, and even the areas with the smallest in-
crease has experienced an increase of almost 1.5 degrees Celsius. No areas have
experienced a decrease in monthly average temperature during the 57 years. The
standard deviation is less than 0.6 degrees for most of the domain, with up to 1
degree in areas far away from observations. Thus, it is extremely unlikely that
more than a few areas have not experienced a January temperature increase dur-
ing those 57 years when using a second order polynomial temperature trend as
in this model.

The posterior mean and standard deviation of a[3b]
7 + b

[3b]
7 + u

[3b]
A,7 + u

[3b]
B,7 for

July for submodel 3b can be seen in Figures 5.12c and 5.12d, respectively. The
temperature increase for July is not as large as for January. Some western areas
and the southern coast has had the smallest July temperature increase. The
majority of the domain has had an increase of 2.2 degrees Celsius or more, and
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(a) Posterior mean of a[3b]
1 + b

[3b]
1 +u

[3b]
A,1 +

u
[3b]
B,1 .

(b) Posterior standard deviation of a[3b]
1 +

b
[3b]
1 + u

[3b]
A,1 + u

[3b]
B,1 .

(c) Posterior mean of a[3b]
7 + b

[3b]
7 +u

[3b]
A,7 +

u
[3b]
B,7 .

(d) Posterior standard deviation of a[3b]
7 +

b
[3b]
7 + u

[3b]
A,7 + u

[3b]
B,7 .

Figure 5.12: The posterior means and standard deviations of a[3b] +b[3b] +u
[3b]
A +

u
[3b]
B in degrees Celsius for January and July, for submodel 3b.
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with a standard deviation of around 0.3 degrees for most of the domain, it is
unlikely that any areas have had no increase or a decrease.

The maps in Figure 5.12 strongly agrees with both the decision to include spatial
components in the model, and to treat all months of the year individually. The
spatial difference in temperature trend is prominent. Just as the temperature
trend varies between months, as seen in Figure 5.10, the spatial variations in
temperature trend varies as well. Figure 5.13 displays the mean of the spatial
temperature trend (a + b + uA + uB) for all months of the year for submodel
3b. The large variation in how much the temperature has increased between
months is remarkable, but as it requires solid knowledge on weather and climate
to investigate the reasons behind these differences further, this will not be studied
in this thesis. The only months experiencing a decrease are May, June, and
October, and only some areas in the domain have had a decrease. All other
months of the year have experienced temperature increases. February has had
the largest increase, with almost 5 degrees Celsius in the eastern part of Norway.
The eastern part of Norway has experienced an increase in the monthly average
temperature from 1960 to 2016 in all months of the year.

As the maps in Figure 5.12 represent the end in time of the temperature trends, it
seems appropriate to include how the trend evolves from 1960 to 2016. This would
require four dimensions, two spatial, the temperature and time, and animations
are needed to fully display the results. Animations of the January and July
temperature trend in time and space for submodel 3b can be found here: http://
folk.ntnu.no/ingebogh/. Note that the year 1960 is defined to be the beginning
of the trend, and is zero everywhere. Both the mean and the standard deviation
of the temperature trend are animated, and which year is the current year is
found in the animation. The temperature increase begins rapidly in the inland,
while the west coast is a bit behind; in January, the temperature increase begins
in the east, and "spreads" to the rest of the southern half of Norway. The same
is happening for July, but the increase begins more to the south and is not
as rapid as the increase for January. The end of the animation are the maps
displayed in Figure 5.12. Note that the color scale indicating temperature differs
between the animation and Figure 5.13. As the animations is not included in
the thesis directly, and are just referred to for completeness, they will not be
discussed further. It is however recommended to look at the animations to get
the complete picture of the results.

http://folk.ntnu.no/ingebogh/
http://folk.ntnu.no/ingebogh/
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January February March

April May June

July August September

October November December

Figure 5.13: The posterior means of a + b + uA + uB in degrees Celsius for all
months for submodel 3b. Which month is which is found below each map. The
maps correspond to the temperature change since 1960 in 2016 where the spatio-
temporal trend started at zero everywhere in 1960. The axes are removed from
the maps for a tidier figure, but have the same coordinate system as the maps in
e.g. Figure 5.12.
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5.4 Predicting missing observations

One of the main reasons for using a complex model with spatial components
instead of a linear regression model, is that a spatial model can use all the avail-
able data even though the time series are incomplete, since such a model can
predict the missing observations. To investigate how accurate the model can
predict, the monthly average temperatures from two observation locations with
close to complete time series in January and July are removed, one at a time,
and the differences between the true and estimated time series are studied. Only
the Drevsjø series is removed when predictions for Drevsjø are made, and same
for Blindern. The observation locations chosen are Drevsjø in Hedmark county,
and Blindern in Oslo county. The former is the observation location with the
longest distance to the closest neighbor in the whole data set, and has only two
neighbors in a 50 kilometers radius around itself. Blindern, on the other hand,
has as many as 41 neighbors in a 50 kilometers radius. The monthly average
temperature series from Drevsjø are not entirely complete, and is missing the
year 2005 in the January series, and the years 1997, 1998 and 2000 to 2002 in
the July series.

Figure 5.14 displays the original temperature series at Drevsjø and Blindern for
January and July, and the predicted time series with corresponding 0.025 and
0.975 quantiles. Figures 5.14a and 5.14b show the Drevsjø observations and pre-
dictions for January and July, respectively, and Figure 5.14c and 5.14d show the
same for Blindern for January and July, respectively. There is no surprise that
the predictions for Blindern are better than for Drevsjø, as Blindern has many
observation locations in close proximities, while Drevsjø does not. There is no
clear difference in the quality of the predictions between the January temperature
and the July temperature, but as the former spans a temperature interval three
times as large as the latter, the standard deviations of the January predictions
naturally are larger than the standard deviations of the July predictions. The ob-
served temperature lies within the 0.025 and 0.975 quantiles of all four predicted
time series.

The predictions of the Drevsjø observations (Figures 5.14a and 5.14b) are de-
spite of the large standard deviations fairly accurate. The most extreme values
have been underestimated or overestimated, depending on whether the year was
unusually warm or cold, respectively, but the predicted temperature curves fol-
lows the observed. The predictions of the Blindern observations (Figures 5.14c
and 5.14d) are in both January and July less uncertain than the Drevsjø, with
accurate prediction means.
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(a) Observations and predictions with
0.025 and 0.975 quantiles for January at
Drevsjø, Hedmark.

(b) Observations and predictions with
0.025 and 0.975 quantiles for July at
Drevsjø, Hedmark.

(c) Observations and predictions with
0.025 and 0.975 quantiles for January at
Blindern, Oslo.

(d) Observations and predictions with
0.025 and 0.975 quantiles for July at Blin-
dern, Oslo.

Figure 5.14: Observed and predicted monthly average temperatures for submodel
3b, for two observation locations for January and July. The predictions for each
time series are made with the observed temperature series removed from the
model. When predicting the Drevsjø temperature, the Blindern time series is
included, and vice versa. The 0.025 and 0.975 quantiles of the predicted obser-
vations are included in the graphs.

The graphs in Figure 5.14 confirm that the model is highly capable of predicting
missing observations using temperatures from nearby observation locations. The
more information in nearby locations, the more accurate the predictions are,
but even for observation locations that lie far from others the predictions are
sufficient. This illustrates one of the huge advantages with a spatial model; now
all available data can be used, and the temperature where no observations are
made can be predicted by the model. In the linear regression model in Equation
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(2.1) in Section 2.2, only a fraction of the available temperature data could be
used. This problem is solved with the spatial model.

5.5 Prior sensitivity

As the prior distributions in submodels 3a, 3b and 3c are from the same distri-
bution family, but with different hyperparameters on ρA and ρB, it is possible
to analyze the prior sensitivity to some extent. The three submodels 3a, 3b and
3c represent weak, medium, and strong priors on ρA and ρB, respectively, and
even though they have already been presented, they are now compared in the
same graphs to easier see the posterior differences. As usual, January is used to
represent the cold months, but now August represents the warm months instead
of July, as August has by far the largest mean range in almost all the GRFs in
the three submodels. Figure 5.15 consists of four graphs: the prior and posterior
of ρ[3]

A and ρ[3]
B for January and August for submodels 3a, 3b and 3c.

Common in all four plots in Figure 5.15 is that the posterior range has a larger
mode than the prior for a given model, and that the posterior has a larger stan-
dard deviation than the corresponding prior. The posteriors of ρ[3]

A for January
and August can be seen in Figures 5.15a and 5.15b, respectively. They have
slightly larger modes and standard deviations than ρ

[3]
B for a given month and

model. The posteriors of the latter can be seen in Figure 5.15c for January and
Figure 5.15d for August. Clearly, the posterior highly depends on the prior for
both parameters. The posteriors have smaller mean values when the priors are
stronger and no longer allow large posterior means. The posterior January and
August ranges both seem to have large means and modes if they can, and when
the possibilities of having large mean values are constricted by the prior, they
almost reluctantly follow the prior to a smaller mean range value. Here it be-
comes clear that the strong prior is necessary to achieve a posterior mean range
less than 7. August, and to some extent the other warmest months of the year
as well, get estimated ranges that are larger than desired when the prior is too
weak (see Section 5.2).

January has posterior ranges according to the prior, but as Figures 5.15a and
5.15c show, the posterior range has relatively equal modes in all submodels, inde-
pendent of the prior. This is also the case for most months of the year, with some
warm months as exceptions. Thus, the months with a satisfying posterior for a
weak prior are not affected much by a stronger prior other than getting smaller
standard deviation of the posterior, while the unsatisfactory posterior ranges for
the remaining months are affected and results in an acceptable model.
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The standard deviations of the GRFs u[3]
A and u[3]

B are the only other parameters
changing significantly when the priors on ρ[3]

A and ρ[3]
B are changed, which can be

seen in Figure A.4. In general, the posteriors become less uncertain and have
smaller modes with stronger priors on the ranges ρ. In addition, the posteriors
of σA and σB are similar for a given model and month.

(a) Prior and posterior distributions of
ρ

[3a]
A,1, ρ

[3b]
A,1 and ρ

[3c]
A,1. The grey lines are

the prior distributions, and the black are
the posterior distributions.

(b) Prior and posterior distributions of
ρ

[3a]
A,8, ρ

[3b]
A,8 and ρ

[3c]
A,8. The grey lines are

the prior distributions, and the black are
the posterior distributions.

(c) Prior and posterior distributions of
ρ

[3a]
B,1 , ρ

[3b]
B,1 and ρ

[3c]
B,1. The grey lines are

the prior distributions, and the black are
the posterior distributions.

(d) Prior and posterior distributions of
ρ

[3a]
B,8 , ρ

[3b]
B,8 and ρ

[3c]
B,8. The grey lines are

the prior distributions, and the black are
the posterior distributions.

Figure 5.15: Prior and posterior marginal distributions of ρ[3]
A and ρ[3]

B for January
and August for submodels 3a, 3b and 3c.
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Discussion

The proposed spatio-temporal mode is interpretable and has interpretable results,
the model successfully estimates the desired temperature trends, and clearly show
an increase in temperature that varies in space. As shown in Section 5.4, the
model is highly capable of predicting missing observations accurately, and with
prediction uncertainty. With the Bayesian approach predictions are calculated
with uncertainty, which includes the model parameter uncertainty. All available
data can be used, as the data set does not have to be complete when the inference
is carried out. This was a problem with the linear regression model from Section
2.2, which is solved by using a spatio-temporal model.

The model results are not only interpretable, they are also consistent with mea-
surements and estimates made by others. The increase is for some months greater
than yearly average measurements show, and larger than global trends (see e.g.
Houghton (2015)), but the increase is consistent with projections made by the
Intergovernmental Panel on Climate Change (IPCC, 2013), and with measure-
ments, which both show that northern latitudes experience more temperature
increase than the global average. In addition, it is discovered that from 1960 to
2016 it is the coldest months of the year (December to March) that have experi-
enced the largest temperature increase. May, June, and October have experienced
a decrease in some areas, while the eastern part of Norway has experienced an
increase in all months of the year. There are large variations in both the spatial
pattern and the magnitude of the temperature changes between the months of
the year.

The months are treated individually in the model in this thesis. The differences
in posterior distributions for most parameters supports this decision, and so does
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the different mean and standard deviations of the three Gaussian random fields.
The posterior parameter distributions differ between months, but for a given
month, the posteriors usually are similar to the month before and the following
month. This is also true for the posterior mean of the spatial temperature trend
(see Figure 5.12).

The model experiences numerical problems for certain prior distributions. This
complicates the process of choosing prior distributions to some extent, as strong
priors are required to avoid numerical problems. The numerical problems in-
dicate an overparametrized model in the sense of having too many parameters
describing the same quantity, and are mainly occurring due to the GRFs and their
parameters and hence the SPDE models. The advantage of the SPDE approach
is the discretization process with irregular grids, and other approaches will not
necessarily lead to less numerical problems, as large posterior ranges will still be
estimated from the data. The SPDE models might amplify the problems when
the range is large due to among others the boundary conditions, but a long range
is not desired in this thesis. Strong prior distributions on the range lead to inter-
pretable posterior ranges, and in those cases the SPDE approach does not cause
trouble. One of the priors that are too weak on the GRF parameters is the PC
prior, and even though there exist hyperparameters leading to a working model
with the PC prior, the base model of the PC prior contradicts the desire of having
all three GRFs in the model. The PC prior is however suitable for the temporal
iid-effect, as the base model without this model component is reasonable.

The model in this thesis is computationally fast to do inference on using INLA,
and as all months are treated individually the inference can be carried out for
all months at the same time, yielding a reasonable computation time, especially
when the amount of data is taken into account. The inference takes about 20
minutes for each month. Other model approaches than the one used in this thesis
naturally exists, and one of them is separable models with temporal processes and
spatial innovations. In such models the basis functions used in this thesis can be
replaced with e.g. a random walk of second order, which requires less parameters,
and gives a smooth and flexible trend curve that can capture yearly events, which
the polynomial of second degree cannot. This is however a more time-consuming
model to do inference on, it is more difficult to interpret, and a trend in the
data will be more difficult to detect as the trend curve has much more freedom.
The model in this thesis is on the other hand both computationally fast and
interpretable with interpretable results and a clear temperature trend.

That this spatio-temporal model is considered to be sufficient for its purposes does
not mean there is no room for improvement. The numerical problems indicate
that the model might be overparameterized with too many parameters describing
the same quantity, which can be solved in several ways. As the parameters of the
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GRFs, and especially of uA and uB, describe similar quantities, it is natural to
aim to reduce the number of field parameters. The numerical problems occurring
due to these parameters would be avoided if the parameter values were fixed, as
this approach does not include prior and posterior distributions. The parameter
values are however unknown and difficult to give fixed values to, such an approach
is not Bayesian, and is not a good solution. A better solution is to model the range
and standard deviation for the GRFs estimating the temperature trend together,
i.e., have one common range and one common standard deviation parameter for
uA and uB. This may lead to even faster inference, and also opens for possibilities
of including more basis functions than one linear and one quadratic as the number
of parameters will not increase. Each random field must still have a unique
posterior mean and standard deviation.

Another way to make the modelling less complex is to model several months
together. As the results for subsequent months are similar, the average of two or
three months could be examined together, instead of one by one. This will not
give any advantages besides having less results, which in some cases could be a
disadvantage, but less results might be easier to interpret. Further work yielding
more precise results includes using a skewed likelihood. As the temperature all
around the globe is changing, the distribution of the temperature changes as
well (Houghton, 2015). Then a distribution where the mass of the tails can be
changed individually for each tail might be more appropriate. This will however
lead to more parameters and a more time-consuming model. If the number of
parameters from other model components can be reduced, this is a step towards
more accurate results.
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Conclusion

The model in this thesis is successfully able estimate spatio-temporal tempera-
ture trends for incomplete data sets, as it accurately predicts missing observa-
tions. An interpretable model with interpretable results is achieved, partially due
to strong prior distributions. Especially the range parameters of the Gaussian
random fields require strong priors to give interpretable posterior distributions.
The estimated spatio-temporal temperature trends show large variations between
months; May, June and October have areas with a decrease in temperature from
1960 to 2016, whereas the other nine months of the year have experienced an
increase only. The biggest change is the February monthly average temperature
which in the eastern part of Norway have increased almost 5 degrees Celsius
during the 57-year time period, according to this model.

Despite of numerical problems occurring during the inference for certain prior
distributions, the model is satisfactory. The model is a computationally fast al-
ternative to using e.g. a separable model with temporal processes with spatial
innovations. It is simple to implement using R-INLA, and thus simple to replicate.
The model is easy to extend in time with more temperature data, and to other
types of data. The trend can be modelled using other basis functions than linear
and quadratic, but caution must be taken to avoid an overparameterized model.
To let all fields that are connected to the basis functions have common param-
eters may avoid overparameterization, and might also reduce the occurrence of
numerical problems.

The model can be used to do an initial analysis when wondering if a data set
has a spatio-temporal trend, and can be extended to model other trends than
polynomial of second degree as long as the number of parameters in the model is
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kept low. If some of the suggestions given in the discussion can avoid overparam-
eterization and numerical problems, the idea of using basis functions to model
data trends in space and time have potential to become useful.

In conclusion, even though the model in this thesis is somewhat difficult to use due
to numerical problems, the model is able to predict missing observations, estimate
temperature trends, and it gives interpretable results. It is thus sufficient for its
purposes. Due to the reasonable computation time of the model, it is a good
starting point when investigating the existence of a spatio-temporal trend in a
data set.

Further work includes, but is not limited to, investigating ways to reduce the
number of parameters in the model, studying if other types of data can be ana-
lyzed with this approach, and use other basis function to model spatio-temporal
data trends.
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Appendix A

Additional results

As the five model variations described and presented in this thesis yields a large
number of graphs and maps, most are not included in the result-chapter (Chapter
5). Usually, the results for submodel 3b are presented there, and here some
of the same results for models 1, 2 and submodels 3a and 3c are included for
completeness. This makes comparison of results between models possible.

Figure A.1: Prior and posterior marginal distributions of the range ρm for sub-
models 3b and 3c. Posteriors of all twelve months of the year are plotted, but
which is which is not indicated.
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Figure A.2: Prior and posterior marginal distributions of the standard deviation
σy of the observations for all twelve months of the year for models 1, 2 and
submodels 3a and 3c. The months are divided into groups of warm and cold
months. The warm months are taken to be April to September, while the cold
are October to March.
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Figure A.3: Prior and posterior marginal distributions of the standard deviation
σε of the temporal iid-effect for all twelve months of the year for model 1, 2 and
submodels 3a and 3c. The months are divided into groups of warm and cold
months. The warm months are taken to be April to September, while the cold
are October to March.
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Figure A.4: Prior and posterior marginal distributions of the standard deviations
σm, σA and σB for the Gaussian random fields um, uA and uB, respectively, for all
twelve months of the year for models 1, 2 and submodels 3a and 3c. The posteriors
of σm are divided into two groups: the warm group contains the month April to
September, while the cold group contains October to March. The posteriors of
σA and σB have no indications of which month is which.
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Figure A.5: The posterior altitude coefficient β1 for all twelve months of the year
for models 1, 2 and submodels 3a and 3c. The mean is plotted along with the
0.025 and 0.975 quantiles.
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Figure A.6: The posterior intercept β0 for all twelve months of the year for models
1, 2 and submodels 3a and 3c. The mean is plotted along with the 0.025 and
0.975 quantiles.
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Figure A.7: The posterior linear temperature trend coefficient a for all twelve
months of the year for all models (model 1 and 2, and submodels 3a, 3b and 3c).
The mean is plotted along with the 0.025 and 0.975 quantiles.
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Figure A.8: The posterior quadratic temperature trend coefficient b for all twelve
months of the year for all models (model 1 and 2, and submodels 3a, 3b and 3c).
The mean is plotted along with the 0.025 and 0.975 quantiles.
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Figure A.9: The posterior means of the Gaussian random field u1 in degrees
Celsius for January for models 1, 2 and submodels 3a and 3c. The intercepts β0
are not included, and can be seen in Figure A.6. The maps correspond to the
spatial variation in average temperature.
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Figure A.10: The posterior means of a1 + b1 + uA,1 + uB,1 in degrees Celsius for
January for models 1, 2 and submodels 3a and 3c. The maps correspond to the
temperature change since 1960 in 2016 when the temperature in 1960 is defined
to be 0 everywhere.
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