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Preface

This is a master thesis in statistics at NTNU carried out in the spring semester of 2017 as a part of

the study in Industrial Mathematics. It is a contribution to a project named Electrical Conditions

and their Process Interactions in High Temperature Metallurgical Reactors (ElMet) initialized in

2015 and ending in 2019. ElMet is a collaboration between universities and the industry. The

full list of partners is given in the introduction.

This work describes methods of analyzing data from metallurgical reactors. The reader is as-

sumed to have some experience with data analysis.

Trondheim, June 27, 2017

Andreas Strand
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Abstract

Electric smelting furnaces are complex systems that are not easily explained by a physical or

chemical model. However, a statistical model based on observed quantities may be just as good.

Among many attemps of modelling metal processes, few are statistical. A smelting furnace runs

without stop and the process varibles are changed on the fly if necessary. There is a lag from a

change is made until the process adjusts accordingly. Hence, the statistical model used should

incorporate the possibility of lagged relationships.

This thesis describes systems with one ouput variable and several input variables. Two main

approaches for describing a metal process are suggested. Both models are based on correlation

between observed variables. The dependence structure in the input variables and the lag in

the model decides which model is preferred. The prediction accuracy is assessed for different

numbers of variables, number of observations and levels of noise. A real life example is also

included. Both methods explains more than half of the variation in the output variable.





iv

Sammendrag

Elektriske smelteovner er sammensatte systemer som ikke enkelt lar seg beskrive av en fysisk

eller kjemisk modell. Det er derfor nærliggende å undersøke om en statistisk modell basert på

målinger vil fungere. Det er gjort mange forsøk på å beskrive metallprosesser, men få av disse

bruker statistikk. En smelteovn drives uten stopp og endringer i prosessvariabler gjøres mens

prosessen går. Det er en forsinkelse fra en endring blir gjort til prosessen er forandret. Derfor

må modellen vi bruker tillate muligheten for forsinkelse mellom variabler.

Denne oppgaven beskriver systemer men én responsvariabel og flere forklaringsvariabler. To

hovedmetoder for å beskrive metallprosesser blir lagt frem. Begge baserer seg på korrelasjonen

mellom variablene. Avhengighetsstrukturen i forklaringsvariablene og forsinkelsen i modellen

avgjør hvilken metode som er foretrukket. Treffsikkerheten i prediksjonen av responsvariabelen

er beregnet for foskjellige verdier for antall variabler, antall målinger og mengde støy. En an-

vendelse med faktiske målinger fra en smelteovn er også inkludert i oppgava. Begge metodene

forklarer mer enn halvparten av variasjonen i responsvariabelen.
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Chapter 1

Introduction

This work is asscociated with a project on Electrical Conditions and their Process Interactions

in High Temperature Metallurgical Reactors (ElMet), running from 2015 to 2019. The goal of

the project is to understand how the conditions in electric furnaces behave with three phase

alternating currents. The project owner is Teknova, a Norwegian non-profit research institute.

Collaborators are University of Oxford, NTNU and Universidade de Santiago de Compostela,

as well as the companies Eramet, Alcoa and Elkem. The Research Council of Norway provides

funding equal to eighty percent of the ElMet budget.

Eramet Norway Sauda (ENS) runs two 40 MW furnaces and a refinery for production of ferro-

manganese, FeMn. The facility is located in the southwest of Norway and is the largest FeMn

production site in Northern Europe. ENS has collected data from the furnace operation at their

facility. This study of ferromanganese production is based on daily measurements in periods

from 2012 to 2016.

Eramet has previously pointed at key figures in their production, which we can treat as ouput in

the analysis. Furthermore, Eramet has pointed at variables that are thought to affect each ouput

variable. The main motivation for this paper is to develop methods for testing these hypotheses.

There are many approaches for explaining the furnace process, such as simulations and physical

or chemical models. However, the approach discussed here is purely statistical. The resulting

models were presented at a workshop in Kristiansand on May 11. Various industry partners and

researchers presented their work on metallurgical reactors as a part of the ElMet project. This
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CHAPTER 1. INTRODUCTION 3

statistical approach was encouraged and we might see extensions of it in the future.

Due to confidensiality of measured data, no variables are named. Furthermore, physical inter-

pretations of relationships between variables are left out. Focus will be on explaining mathe-

matical relationships. Chapter 2 presents the data and methods for data cleansing. Theoretical

background is provided in chapter 3, and the statistical methods are given in chapter 4. Results

are presented in chapter 5 and includes general performance of the methods and applications

to real data.



Chapter 2

Data

There are 852 observations of 75 variables, of which about 0.4% are missing. Only a selection

of variables are used in the analysis. The presented data will be normalized in order to provide

anonymity to the variables and to make them easier to compare. A sketch of an electric furnace

used in ferromanganese production is provided in figure 2.1. The variables used for analysis in

this paper describe important features of the production.

Before using observations in statistical methods, we should assess their quality. That is con-

sidering whether the reported measurements appear reasonable, and potentially remove those

that do not. A data cleansing approach involves removing certain entries or rows to obtain high-

quality data for statistical inference. We want to remove entries that are considered out of range

or do not fulfill other requirements. The acceptance range of each variable is determined by

physical limitations or standard production levels. Values outside the range are called missing

values.

Ideally, we want to detect all erronous observations, also those inside the acceptance range.

Doing so is not straightforward. Errors may be caused by malfunction of instruments or poor

calibration. Other reasons are inconsistent measurement procedures, typographical errors or

other entry errors. Some of these sources of errors may corrupt data across variables and time.

If systematic errors are detected frequently in a period of time, we remove all observations in

order to increase validity.

4
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Figure 2.1: A standard electric furnace used for production of ferromanganese. The metal is
extracted from ore at high temperatures inside the furnace. Three electrodes provide the nec-
cessary energy. A mixture of several substances is provided through the tubes entering the roof
of furnace, and the products are retrieved through taps in the bottom part. The products are
then guided down the chutes and fill in the ladles at the lower floor.



Chapter 3

Time Series Model

I Time series

A time series is a sequence of observations. The sequence is most commonly listed in time

order, as the name suggest. However, it can be taken through any dimension. Some time series

can be recorded continously, such as outdoor temperature measured by a thermometer. We call

them continous. On the contrary, when observations are taken at intervals, they are said to be

discrete. As is the case for daily sales or stock prices. The most common type of time series are

succesive observations equally spaced in time. Henceforth, these are the time series in question.

It is convinient to define a stochastic process when discussing time series. Time series can be

regarded as a realizaion of a stochastic process.

Definition 1 - Stochastic process

Let ω belong to a sample set and t belong to a index set. The indexed random variables z(ω, t )

is a stochastic process.

There are numerous mathematical tools in the scope of time series. Including methods for un-

derstanding the process that have generated your observations. Furthermore, predictions of

future values may be computed. Forecasts are valuable in many fields, such as meteorology,

real estate and ecology to mention a few. We want the model of the time series to be flexible, yet

6
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simple. Satisfying both criteria and frequently used, are the ARIMA models. Note that formulas

derived in this chapter assume zero-mean processes. However, all results can be generalized by

reading zt −E[zt ] where is says zt .

II Introduction to ARMA and ARIMA models

An autoregressive moving average (ARMA) model is fitted to a time series for understanding

and predicting its behavior. Each observation is explained by a sum of various terms. The type

of each term is either autoregressive (AR) or moving average (MA). An AR term is the value of

an earlier observation multiplied by some coefficient. An MA term is white noise associated

with a previous observation. There is some variation in the notation used, but the following

is common. Denote the time series (z1, z2, . . . zn)T and the corresponding white noise terms

(ε1,ε2, . . .εn)T. If we include p AR coefficients, φ1,φ2, . . . ,φp , and q MA coefficients, θ1,θ2, . . . ,θq ,

we will have an ARMA(p, q) model, which we may write as

zt =φ1zt−1 +φ2zt−2 + . . .+φp zt−p +εt −θ1εt−1 −θ2εt−2 − . . .−θqεt−q ,

εt ∼N (0,σ2
ε). (3.1)

Suppose the coefficients are non-zero. Then the model suggest that an observation depends on

the p previous observations and the noise in the q previous observations. Also note that each

observation zt has noise εt , no matter the values of the AR and MA coefficients. When zt is not

white noise, the observations are correlated. However, the errors, εt , are independent from each

other.

An ARMA(p, q) model of a real life problem typically does not include many terms, i.e. the values

of p and q are small. In some cases either p or q is zero. If both are zero, the resulting model is

white noise. When q is zero, the model has no MA terms and the model is purely autoregressive.

A purely autoregressive model is denoted AR(p). For instance we write the AR(2) model

zt =φ1zt−1 +φ2zt−2 +εt . (3.2)
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Similarily, when p is zero, the model has no AR terms and the model is a pure moving average,

MA(q). For example, we write the MA(1) model as

zt = εt −θ1εt−1. (3.3)

Time series simulated from (3.2) and (3.3) are plotted in figure 3.1. Two hundred subsequent

values are computed, and the coefficients used are φ1 = 0.8, φ2 = −0.8 and θ1 = 0.8. There are

no repeating patterns in the time series, as we would expect due to noise. Still, there are clear

differences betweeen the two. The variance of the AR(2) is about 3.1, while the variance of the

MA(1) is about 1.7. Hence the variance of the AR sequence is much higher. At the same time,

the corners of the AR series appear to be more rounded off and has some periodicities. Both

sequences remains close to zero. The ARMA model can capture quite different behaviours, but

there are some drawbacks.

The model (3.1) is only good for stationary time series. Roughly speaking a time series is station-

ary if it seem to fluctuate around some equilibrium in the same fashion for any time interval.

Stationarity referes in this case to covariance stationarity.

Definition 2 - Covariance stationarity

A stochastic process {zt } is covariance stationary if and only if

1. E[zt ] = E[zs] ∀ t , s and

2. Cov(zt , zs) = Cov(zt+τ, zs+τ) ∀ t , s,τ.

Stationarity of a time series can be determined by inspection of the ARMA representation of the

series. This will be covered later. When a time series is not stationary in the mean, we may

still use the framework above, if we first do differencing. When differencing, we first compute

the difference, wt = zt − zt−1, between subsequent terms of the time series. Next we should

investigate whether wt is stationary. If this is the case, we may fit an ARMA model to wt . If wt

is not stationary in the mean, differencing again one or more times may work. The enhanced

model is the ARIMA(p,d , q) model. The parameter d is the number of differentiations, p is the

number of AR coefficients and q is the number of MA coefficients.
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Figure 3.1: The top frame shows an AR(2) process with coefficients φ1 = 0.8 and φ2 = −0.8. In
the lower frame is an MA(2) process with θ1 = 0.8.

ARIMA models are often written using the backshift operator B , defined B zt = zt−1. Conse-

quently B 2zt = B zt−1 = zt−2. Now, we can write the differencing in a more compact manner.

The difference between subsequent terms is wt = zt − zt−1 = (1−B)zt . Hence, differencing zt

once is the same as applying the operator (1−B) to zt . Differencing d times is the same as using

the operator (1−B)d on zt . The difference operator, (1−B)d , is a polynomial in B of order d .

The "I" in ARIMA stands for integrated. In order to understand why the model is called inte-

grated, we can look at the case where d = 1. Then the process

wt = (1−B)zt
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is stationary. The observed series can then be expressed as

zt = 1

1−B
wt .

Taylor expansion (Rottmann, 2011) of f (B) = (1−B)−1 at B = 0 gives

zt =
(

f (0)+ f ′(0)

1!
B + f ′′(0)

2!
B 2 + . . .

)
wt

= (1+B +B 2 + . . .)wt

= wt +wt−1 +wt−2 + . . . .

Hence the observed series, zt , can be interpreted as a cumulative sum "integrating" the station-

ary series, wt . In general, this "integration" takes place d times.

We previously saw that the operation of differencing in an ARIMA model can be represented as

a polynomial in B . Also the AR part and the MA part of the ARIMA model can be expressed using

polynomials in B . The model (3.1) can be expressed as

zt −φ1zt−1 −φ2zt−2 − . . .−φp zt−p = εt −θ1εt−1 −θ2εt−2 − . . .−θqεt−q

=⇒ zt −φ1B zt −φ2B 2zt − . . .−φp B p zt = εt −θ1Bεt −θ2B 2εt − . . .−θq B qεt

=⇒ (1−φ1B −φ2B 2 − . . .−φp B p )zt = (1−θ1B −θ2B 2 − . . .−θq B q )εt

Denote the AR polynomial φ(B) = (1−φ1B −φ2B 2 − . . .−φp B p ). Similarily, denote the MA poly-

nomial θ(B) = (1−θ1B −θ2B 2 − . . .−θq B q ). The AR polynomial accesses previous values of the

time series, and thus operates on zt . The MA polynomial operates on the i.i.d. noise terms εt .

We may now obtain the common form of the ARIMA(p,d , q) model by combining the AR, MA
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and difference part, i.e.

φ(B)(1−B)d zt = θ(B)εt

or

(1−φ1B −φ2B 2 − . . .−φp B p )(1−B)d zt = (1−θ1B −θ2B 2 − . . .−θp B p )εt .

A more general model includes a deterministic trend, θ0. The resulting model is

φ(B)(1−B)d zt = θ0 +θ(B)εt

The deterministic trend is a constant, but is not to be confused with the average of zt . When

d = 0, we have θ0 = (1−φ1 − . . .−φp )E[zt ]. However, when d = 1, we should rather interpret θ0

as a proportionality constant of the time series.

III Alternative representation

In this section we will go further with ARIMA models. We will see alternative models that are

useful when we later will talk about forecasting of a time series. Recall that the integration "I"

part of an ARIMA model simply is a transformation of the observed time series for obtaining

stationarity. Hence, for most purposes it is sufficient to study the ARMA model, i.e.

φ(B)zt = θ(B)εt . (3.4)

Here, an AR part and an MA part is combined for describing the process. Actually, AR and MA

terms are really two sides of the same coin. For certain processes there exist multiple equivalent

representations, either with only AR terms, only MA terms or a combination. We will now dig

into which processes that is. It is natural to proceed with an essential theorem.

Theorem 1 - Wold representation theorem
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Let zt be any zero mean stationary process. We may then write it as

zt =
∞∑

j=0
ψ j εt− j , (3.5)

where εt is an uncorrelated sequence of white noise. The weights ψ j are possibly infinite in num-

ber, but but restricted by
∑∞

j=0ψ
2
j <∞.

For proof and details about this brilliant result, (Wold, 1939) can be consulted. Note that the

random variables εt do not need to be independent of each other, only uncorrelated. The format

(3.5) is called the moving average representation of a process. Furthermore, it is convenient to

introduce the infinite MA polynomial ψ(B) =∑∞
j=0ψ j B j . Recall that B is the backshift operator.

It is conventional to define ψ0 = 1. The variance of a stationary process is finite, and can easily

be expressed using the infinite MA coefficients. Now we may write

zt =ψ(B)εt ,

Var(zt ) =σ2
ε

∞∑
j=0

ψ2
j <∞. (3.6)

Similarily, for certain processes there exist a representation with only AR terms. For this repre-

sentation we will use the infinite AR polynomial π(B) = ∑∞
j=0π j B j , with π0 = 1. Such that the

process becomes

π(B)zt = εt ,
∞∑

j=0
π2

j <∞. (3.7)

In (Box and Jenkins, 1976), a process is called invertible if it can be written like this, i.e. a pure

autoregression. The process (3.4) is invertible if θ(B) can be inverted to an AR polynomial, such

that we can write π(B) =φ(B)/θ(B). In the same fashion, a process is stationary if we can write

ψ(B) = θ(B)/φ(B). Furthermore, the inverse of the polynomial exist if its roots lie outside the

unit circle in the complex plane. We can express this by introducing new notation. Let | · | be the

standard euclidian metric. Let the roots of θ(B) be denoted Bi , and the roots ofφ(B) be denoted
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B j . Finally,

φ(B)zt = θ(B)εt invertible ⇐⇒ |Bi | > 1 ∀i s.t. θ(Bi ) = 0,

φ(B)zt = θ(B)εt stationary ⇐⇒ |B j | > 1 ∀i s.t. φ(B j ) = 0.

A stationary process does not have to be invertible, and an invertible process is not necessarily

stationary.

IV Modelling

There are a variety of powerful tools for modelling time series. We are here concered with ARIMA

modelling. First, we will see some key quantities describing the structure of a time series. From

section II we know that a covariance between two terms in stationary stochastic process only

depends on the time difference between them. This covariance measure is commonly called

the autocovariance.

Definition 3 - Autocovariance

Consider a stationary stochastic process zt . The autocovariance is defined as the covariance be-

tween zt and zt+k ,

γk = Cov(zt , zt+k ).

The lag k can be both positive, zero and negative. Since the covariance is symmetric in its argu-

ments, it follows immediately that γk = γ−k . When the lag is zero, the autocovariance coincides

with the variance of the process, i.e. γ0 = Cov(zt , zt ) = Var(zt ). Since γ0 is a constant and not

a function of t , the variance of the process is constant. Note that for a zero-mean process, the

autocovariance simplifies to

γk = E(zt−k zt ). (3.8)
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Furthermore, it is useful to define the autocorrelation function (ACF) and the partial autocorre-

lation function (PACF).

Definition 4 - ACF and PACF

The autocorrelation is the autocovariance scaled by the variance γ0 of the stochastic process, i.e.

ρk = Cov(zt , zt+k )p
Var(zt )

√
Var(zt+k )

= γk

γ0
.

The partial autocorrelation is the correlation of zt and zt+k after removing their dependence on

intermediate variables, i.e.

φkk = Cov(zt , zt+k |zt+1, zt+2, . . . zt+k−1)√
Var(zt |zt+1, . . . zt+k−1)

√
Var(zt+k |zt+1, , . . . zt+k−1)

.

The double subscript kk is introduced because φkk is the kth element of the vector φk defined

later. The autocorrelation describes the similarity between lagged elements of a process. This

measure disregard any dependence structure, but simply tells how similar the elements are.

The partial autocorrelation, on the other hand, describes the direct relationship between the

elements. The autocorrelation and partial autocorrelation may also be regarded as linear re-

gressions on the population. The ACF at lag k is the coefficient in a regression with zt and zt−k .

The PACF is the coeffiecient of zt−k in a regression with zt , zt−1, . . . , zt−k−1, zt−k . In other words,

the PACF controls for the effects of zt−1, . . . , zt−k−1. There are several properties of the ACF and

the PACF worth noticing. For a stationary process,

ρ0 =φ00 = 1,

ρ1 =φ11,

|ρk | ≤ 1,

|φkk | ≤ 1.

The ACF and the PACF of a stationary process are useful for determining the orders of the

ARMA(p, q) model of that process. When fitting an ARMA(p, q) model to a time series we will

estimate these correlations. For a finite time series with n elements, unbiased estimators for the
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autocovariance and the autocorrelation are

γ̂k = 1

n

n−|k|∑
t=1

(zt+|k|− z̄)(zt − z̄), −n < k < n, (3.9)

ρ̂k = γ̂k

γ̂0
, −n < k < n.

Obtaining a good estimate for the PACF is less straightforward. We may express the PACF using

the Durbin-Levinson algorithm (Durbin, 1960). The algorithm computes the PACF iteratively

using the autocovariances γ0, . . .γk . Set the intial values in the recursion to φ1 =φ11 = γ(1)/γ(0).

Define the vectors

φk = (φk1, . . . ,φkk )T, φ̃k = (φkk , . . . ,φk1)T,

γk = (γ(1), . . . ,γ(k))T, γ̃k = (γ(k), . . . ,γ(1))T. (3.10)

Then, the iteration scheme is given by

φkk = γ(k)−φT
k−1γ̃k−1

γ(0)−φT
k−1γk−1

, φk =
φk−1 −φkkφ̃k−1

φkk

 .

A sample estimate, φ̂kk , for the PACF is obtained by the above recursions with the autocovari-

ance vectors γk and γ̃k replaced by estimates from (3.9). The total time of computing the PACF

for k = 1, . . . ,n is O(n2). The Durbin-Levinson appears to be fastest alternative, but it is not the

most intuitive. As mentioned previously, the PACF can be expressed as a population regression.

For a sample of n, the regression model is

zt =φk1zt−1 + . . .+φkk zt−k +et , (3.11)

where the et is a zero-mean Gaussian error with a variance of 1
n (Kendall et al., 1968). The re-

gression will have k dependent variables and n −k statistical units. We can write the reponse
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vector z and design matrix X as

z =



zn

zn−1

...

zk+1

 , X =



zn−1 · · · zn−k

zn−2 · · · zn−k−1

...
. . .

...

zk · · · z1

 .

Using the definition of φk from (3.10), we can write the ordinary least squares (OLS) estimate of

φk as

φ̂k = (XTX )−1XTz.

The last element of φ̂k is an estimate φ̂kk . The estimates for the coefficients in the regression

are exactly the same as those in the Durbin-Levinson iterations. However, the least squares

approach is much slower. Computing (XTX ) takes O(k2n) time and the complexity of (XTz) is

O(nk). Factorizing and computing the final product is O(k3). Note that n > k, otherwise (XTX )

is singular. Hence, the complexicity of a single OLS is O(k2n). If we want to compute the PACF

for multiple lags, we need to compute the OLS for each. Hence, the complexity of computing

φ̂kk for k = 1, . . . ,n is O(n4).

For the confidence limits of the correlation functions, we may utilize that the estimates for

the ACF and the PACF are asymptotically normally distributed with mean zero and variance

Var(ρ̂k ) ≈ Var(φ̂kk ) ≈ 1
n (Kendall et al., 1968). The variance is asymtotically the same for all esti-

mators mentioned above. Let zp be the p-quantile of the standard normal distribution. The true

variance is lag dependent, but roughly, values outside
[
− zα/2p

n
, zα/2p

n

]
are considered significant on

an α-level.

When identifying an ARMA(p, q) model, the standard approach is plotting ρ̂k and φ̂kk by the lag

k, and then determine which entries are significantly different from zero. This will help identify

both which zt−1, zt−2, . . . and εt−1,εt−2, . . ., that zt depends on. The relevant feature of each plot,

is not the value of each correlation but the qualitative shape of the ACF and the PACF. The shape

helps identify the dynamics of the time series.
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In an AR(p) process, an observation depends on prior observations, which in turn depends on

prior observations, and so on. The contributions decays exponentially with increasing lag due

to a weight less than unit with each step. Thus, the ACF decays exponentially. The PACF shows

which terms an observation depends on directly. Hence, the PACF of an AR(p) will be truncated

at lag p.

For a pure MA(q) process, observations depend only on the random errors, back to lag q . Hence,

the ACF will shut off after lag q . The PACF exhibits a smooth decay. The explanation for this

is less straightforward, but an MA(1) example may provide intuition. We can write the MA(1)

process as

zt = εt +θ1εt−1.

Rewriting and shifting the lag by various amounts gives,

εt−1 = zt−1 −θ1εt−2,

εt−2 = zt−2 −θ1εt−3,

... .

Combining the above equations provides the infinite AR representation

zt = εt +θ1zt−1 −θ2
1 zt−2 +θ3

1 zt−3 − . . . .

This model is similar to (3.11), but with an infinite number of terms. In the finite AR(k) process,

the PACF for lag k is just the kth AR coefficient. In the infinite representation it turns out that

PACF is the kth AR coefficient reduced by a factor
(∑k

j=0θ
2 j
1

)−1
according to (Wei, 1994). Hence,

the PACF of an MA(1) process is

φkk = θk
1 (−1)k+1∑k

j=0θ
2 j
1

.

For an invertible MA(1) process, |θ1| < 1. Thus the PACF of an MA(1) decays gradually for in-
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creasing lags. Similar arguments can be made to show that the PACF is decaying gradually for

the general MA(q).

For an ARMA(p, q) process, both the ACF and the PACF are described by trigonometric funtions

and/or exponential decay. Hence, identification of the parameters p and q , when both are at

least one, is somewhat complex. One approach is trying multiple combinations of parameter

values, fitting a model for each and then choose the one with the best fit in some sense.

In practice software is used to fit a model. The approach in this work is using the program-

ming software RStudio.1 The tools used are auto.arima() from the forecast package and var-

ious types of correlation functions from the stats package. The function auto.arima() fits an

ARIMA model to a time series by first performing Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

tests for d , then using the corrected Akaike information criterion (AICc) and maximum likeli-

hood estimation (MLE) for determining p, q and the coefficients φ1, φ2, . . . ,φp , θ1, θ2, . . .θq

(Hyndman and Khandakar, 2007). The AICc is minimized and the likelihood maximized when

finding a model.

We have discussed the general method for fitting a model to time series. Next we will look more

into a couple of examples.

The AR(1) process

The first-order autoregressive process is

(1−φ1B)zt = εt .

Each value of the time series is expected to be the previous value times a factor. The only root

of (1 −φ1B) is 1/φ1. The model is stationary if and only if all roots of the AR polynomial is

outside the unit circle, i.e. when |φ1| < 1. The model is invertible since it is purely autoregressive.

Figure 3.2 displays realizations of two AR(1) processes. The left column displays the process

zt = 0.8zt−1 + εt , with εt standard normal. The coefficient is less than one in absolute value,

implying stationary. This is consistent with the fact that a stationary time series always returns

1R version 3.4.0 (2017-04-21) on the platform x86_64-pc-linux-gnu (64-bit).
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to its mean. The deterministic trend is an exponential decay, but the random shock creates

oscillations. The time series in right column is a realization of a different AR(1) process. The

process is identical to the first one with exception of the sign of the coefficient. The deterministic

trend is an alternating decay. The sample ACFs of both processes are decaying and the sample

PACFs cut off at k = 1. When φ1 is negative the signs of the correlations are alternating.

zt = 0.8zt−1 + εt

t
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−
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zt = − 0.8zt−1 + εt
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Figure 3.2: Two realization of an AR(1) process. Each column includes a time series along with
its sample ACF and sample PACF.



CHAPTER 3. TIME SERIES MODEL 20

The theoretical ACF is easily derived by substituting for zt =φ1zt−1 +εt in (3.8), i.e.

γk = E(zt−k zt )

= E(φ1zt−k zt−1)+E(zt−kεt )

=φ1E(zt−k zt−1)+0

=φ1γk−1

=φk
1γ0.

Dividing both sides by γ0 gives ρk =φk
1 for k ≥ 0. Hence, the ACF experience exponential decays

as suggested from the sample estimates in figure 3.2. Recall that the PACF is one at lag zero and

always equal the ACF for k = 1. Furthermore, the PACF is zero after lag p in an AR(p) process.

These results also correspond with the sample estimates.

The AR(2) process

The second order autoregressive process is

(1−φ1B −φ2B 2)zt = εt .

As the AR(2) process is close to an AR(1) process when φ2 is close to zero, their behaviours are

similar. The process is always invertible. It is stationary if all the roots of φ(B) are outside the

unit circle. This requirement is equivalent to


φ2 +φ1 < 1,

φ2 −φ1 < 1,

−1 <φ2 < 1.

(3.12)

For proof see (Wei, 1994). In other words, in order for an AR(2) process to be stationary, the

coefficients (φ1,φ2) have to lie in the triangular region defined by 3.12. The roots are real if

φ2 >−φ2
1/4, otherwise complex. These regions are depicted in figure 3.3.
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Figure 3.3: The AR(2) process is stationary if the pair of coefficients are located inside the trian-
gle. The roots of φ(B) are real above the curve, i.e. φ2 >−φ2

1/4.

As for the AR(1), we can compute the autocovoraiance of an AR(2) process using 3.8, i.e.

γk = E(zt−k zt )

=φ1E(zt−k zt−1)+φ1E(zt−k zt−1)+E(zt−kεt )

=φ1γk−1 +φ2γk−2.

Dividing by γ0 gives ρk = φ1ρk−1 +φ2ρk−2. This is a recurrence relation giving the value for

subsequent lags as initial values are found. We allready know ρ0 = 1. Inserting for k = 1 gives
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ρ1 =φ1/(1−φ2). Hence, a recursive equation for the ACF is

ρk =


1, k = 0,

φ1
1−φ2

, k = 1,

φ1ρk−1 +φ2ρk−2, k ≥ 2.

(3.13)

As φ1 +φ2 < 1, we can see that the ACF is decaying. Furthermore, recall that the PACF at lag

k is the correlation with zt−k when controlling for smaller lags. For an AR(p), φpp = φp , as we

control for all other terms. When k is zero or unit there are no terms to control for, implying that

the ACF and PACF are equal. For an AR(2), i.e.

φkk =



1, k = 0,

φ1
1−φ2

, k = 1,

φ2, k = 2,

0, k ≥ 3.

The correlation expressions above tell us a lot about the dynamics of the AR(2) process. For an

observed time series, we can plot ρ̂k and φ̂kk and see if they resemble the theoretical functions

derived. However, there is more to be said about the dynamics of the AR(2) process. The recur-

rence relation in (3.13) does not say much about in what way the ACF is decaying. We will look at

the representation of the ACF in trigonometric form and focus on the case with complex roots.

The roots of φ(B) = (1−φ1B −φ2B 2) are

R1,2 =1

2
φ1 ± i

1

2

√
−φ2

1 −4φ2

or

R1,2 =r (cosθ± i sinθ),
r =√−φ2,

θ = arccos

(
φ1

2
p−φ2

)
.

(3.14)
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The expression for the argument, θ is derived by comparing the real part of the cartesian rep-

resentation and triginometric representation. We can use these roots to express the ACF. The

general solution of (3.13) is

ρk = A1Rk
1 + A2Rk

2

= r k (A1[coskθ+ i sinkθ]+ A2[coskθ+ i sinkθ])

We can rewrite this to a simpler form by letting A1,2 = k1 ± i k2. Furthermore, we may use the

identity for sine of a sum, sin(kθ+α) = coskθ sinα+ sinkθcosα. Then, we may express the

autocorrelation function

ρk =r k (2k1 coskθ−2k2 sinkθ)

or

ρk =Ar k sin(kθ+α), (3.15)

k1 = 1
2 A sinα,

k2 = 1
2 A cosα,

A = 1
2

√
k2

1 +k2
2 ,

α = arctan k1
k2

.

Hence, when the roots of (1−φ1B−φ2B 2) are complex, the ACF of that AR(2) process is a damped

sine wave. The amplitude of the wave is reduced by a factor r =√−φ2 for each lag. Henceforth,

r is referred to as the decay constant. The ACF is pseudo-periodic with period

T = 2π

θ
= 2π

(
arccos

(
φ1

2
√−φ2

))−1

.

The period and the decay constant combined gives a good picture of the behavior of the ACF of

a complex AR(2). Figure 3.4 shows T and r as a function of φ1 and φ2 when the roots of φ(B)

are complex. We can see that the period increases with φ1 and φ2, and that the decay constant

increases with φ2.
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Figure 3.4: The period and decay constant of the ACF of an AR(2) process. The legend on the
right of each plot maps color to value.

It is clear that the shape of the ACF varies on a wide spectrum based on φ1 and φ2. Recall that

we have focused purely on the cases with complex roots. Some examples of AR(2) processes

are provided in figure 3.5. The top panel gives the values of the coefficients. The small plots

display the corresponding ACFs. The period and decay constant of the ACF is given in the top-

right corner. Six examples are provided. Example A has coefficients (φ1,φ2) = (0,0.05). The

corresponding ACF is provided in the first sub-plot. The period of this ACF is 4.00 and the decay

constant is r = 0.22.
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Figure 3.5: Six examples of AR(2) processes, named a, b, c, d , e and f . The coefficients of each
process is provided in the top panel. The six small panels display the ACFs for each example.
The period and decay constant of each ACF is provided in the top-right corner of the plot.
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V Forecasting

As a model is established for a time series, it may be of interest to make a guess of future values

of that sequence. The ARIMA framework provides an intuitive and accurate way of doing so.

Say, we have observed a time series z1, . . . , zn . A forecast is the expectation of the next value of

the time series given what we have observed, i.e. E[zn+1|zn , . . . , z1]. Thus, we can only forecast

processes where the next value can be represented by previous values, i.e. invertible processes.

The approach in this section assumes stationary and invertible processes.

Recall that we can express the latest value of a time series as a regression with previous entries,

as in (3.11). Shifting indices and taking expectation results in the forecast

E[zn+1|zn , . . . , z1] = E[φn1zn +φn2zn−1 + . . .+φnn z1 +e20|zn , . . . , z1]

= φ̂n1zn + φ̂n2zn−1 + . . .+ φ̂nn z1. (3.16)

The weights φ̂n1, φ̂n2, . . . , φ̂nn can be obtained by the Durbin-Levinson recursions in (3.10), with

estimates from (3.9). From (Brockwell and Davis, 2013) we know that the forecast error variance

vn can be computed iteratively. The forecast error is distributed as

en ∼N (0, vn),
v0 = γ0,

v j+1 = v j (1−φ2
j+1, j+1).

Imputing missing values

The method of imputing missing values suggested in this section requires a time series centered

at zero. For a series not centered at zero, subtract the mean before commencing, and later add

the same value to the resulting time series.

For some zero-mean time series zt values can be missing for certain indices. Denote the num-

ber of missing indices by k and the array of such indices M = m1,m2, . . . ,mk . In order to easily

make inference on the data set, we may substitute missing values by an imputed value. This
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process does not neccessarily provide more information, but may be done due to practical re-

gards. Assume the first missing value is not at t = 1, that is m1 > 1. A way of imputing missing

values is to do it from the beginning to the end. First impute zm1 , then zm2 , for every value

until zmk . An imputed value is immediately substituted for the missing value and used for im-

puting the remaining missing values. We can use the forecast in (3.16) for imputation. Let z̃t =

(zt , zt−1, . . . , z1). Then we may write a forecast as

ẑ∗
mi

= zmi−1φ̂mi−1,1 + zmi−2φ̂mi−1,2 + . . . z1φ̂mi−1,mi−1

= z̃mi−1φ̂mi−1. (3.17)

However, the last elements ofφmi−1 will typically be small for large mi . An option is only looking

at terms with recent values of the time series.

The forecasted value ẑ∗
t in (3.17) depends exclusively on previous observations of the time series.

A better description of the time series may be to consider the above imputation as the expected

value of the forecast, and also include noise. The idea is to simulate the process generating the

time series. The noise, εt , of the time series is normally distributed. I suggest estimating the

noise variance σ2
ε by a mean square error,

εt ∼N (0,σ2
ε), (3.18)

σ̂2
ε =

∑
t∉M

(zt − ẑ∗
t )2

t −k
,

where t −k is the number of non-missing values. Now, we can write the forecast as

ẑmi = ẑ∗
mi

+εt , (3.19)

where εt are drawn from the distribution in (3.18). This way of imputing missing values will only

work when z1 is not misssing. In the case where it is missing, other methods will be neccessary

to first impute this value.



Chapter 4

Regression Model

I Model

This chapter presents a model for ferromanganese production. The main process of creating the

alloy takes place within a furnace like the one sketched in figure 2.1. Measurements of process

variables are the basis for stating a model. The suggested approach is general and may be used

in other fields of study.

From the pool of variables we choose one output variable, also called a response variable. This

is a key variable, typically related to the profit of the process. Next, we state variables that we

think might affect the output. These are called input variables or explanatory variables. If we

have all the relevant data and the statistical method is reasonable, the resulting model will give

the real picture of the process.

However, there are complications. The measurements will always be inaccurate to some degree.

This is discussed in chapter 2. Furthermore, there may be variables not measured affecting the

output. If so, some variation in the output remains unexplained. We will perceive this as noise.

Still, we can define measures of the performance of the model. If the performance is satisfactory,

we need not worry about excluded variables or poor measurements.

The process of creating ferromanganese from other materials is not instant. It can be days from

a unit enter the furnace until it leaves. Hence, observations from subsequent days can all help

28
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describe the same unit. Furthermore, the measurements do in general describre the process at

difference stages of the process. Thus, when describing the output one day, we should look at

input from multiple days. This is a key factor in the modelling approach.

The model immediately becomes complex as we allow one variable to affect another variable on

a different day. A realization of a variable will in general also affect future realizations of the same

variable. We will use time series in this approach as these includes framework for describing a

dependence structure with time lag. Before describing the model, it is convenient to introduce

some notation. Denote the days t = 1,2, . . . ,n. We can write the observed output sequence as

y , where yt refers to a specific entry. Let p be the number of input variables, each consisting

of n observations. Denote the input sequences x1, x2, . . . , xp and let X be the vector of input

sequences. We can write

y =



y1

y2

...

yn

 , X ∗ = (x1, x2, . . . , xp ) =



x11 x21 · · · xp1

x12 x22 · · · xp2

...
...

. . .
...

x1n x2n · · · xpn

 .

We want to express the output precisely as a function f of input values. If we evaluate the func-

tion with our observed input, the result should be close to the observed output. Let εt be the

deviation from yt . Then we may write

yt = f (X ∗)+εt .

In order to determine f , we need to formally state a criteria for a good model. I suggest minimiz-

ing the error sum of squares, i.e. minimizing
∑n

t=1 ε
2
t . Furthermore, let E[εt ] = 0. It is necessary

to put further restrictions on f in order to make inference. A linear regression model is a res-

onable proposal. The linear regression explains output yt as a linear combination of regressors

x1t , . . . , xr t and noise εt . Let the coefficients on the regressors be denoted β1, . . . ,βr and let β0 be
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an intercept. Then we may express the regression model as

yt =β0 +
r∑

i=1
βi xi t +εt .

We assume no serial correlation in the output or the noise. Moreover, we assume the error terms

to be of mean zero and with constant variance. The regressors can either be assumed to be ran-

dom variables or constants. If they are constants, then E[yt ] = β0 +∑r
i=1βi xi t . If the regressors

are stochastic we instead write E[yt |x1t , . . . , xr t ] = β0 +∑r
i=1βi xi t . Henceforth, we will treat the

regressors as constants.

We assume that the model will only have the input variables at various lags as regressors. This

excludes cross-terms, powers or other non-trivial terms. Including to many terms will result in

overfitting. Specifically, we should make sure that the number of regressors is lower than the

number of observations. A possible model is

yt =β1,0x1,t +β1,1x1,t−1 +β1,2x1,t−2 + . . .

+β2,0x2,t +β2,1x2,t−1 +β2,2x2,t−2 + . . .

...

+βp,0xp,t +βp,1xp,t−1 +βp,2xp,t−2 + . . .+εt , (4.1)

where β j ,k is a coefficient corresponding to x j ,t−k . Henceforth, the term regressor refers to

x j ,t−k . The subscript j = 1, . . . , p refers to the input variable x j . The subscript k denote the

lag between input and output. Assume that the coefficients β j ,k are constant in t , such that the

dynamic relationship between input and output is time-invariant. Then, (4.1) explains output

as a linear combination of the input and an error.

The lags in (4.1) are non-negative, i.e. k ≥ 0. Obviously, the output one day does not depend on

future input. We also need to set an upper limit, K , for k. The limit would be the greatest lag at

which an input affect the output. Furthermore, as we explain the output yt using input at time

t −K and later, we restrict the time variable in the model to t = K + 1, . . . ,n. We can write the
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model as

yt =
p∑

j=1

K∑
k=0

β j ,k x j ,t−k +εt , t = K +1, . . . ,n. (4.2)

The coefficient β j ,k can be any real number. Next, we will look at ways of fitting this model. This

is determining the coefficients such that the MCE is minimized.

II Reducing the model

The approach used for fitting the regression model in (4.1) is ordinary least squares (OLS) esti-

mation. However, there is potentially a large number of coefficients to estimate, such that OLS

estimation is computationally expensive. Recall that the complexity is O(r 2n), where r is the

number of regressors and n is the number of observations. Reducing the number of regressors

beforehand, can speed up the algorithm drastically.

We can remove x j ,t−k from the regression if it is independent of y . Removing it is equivalent

of putting β j ,k = 0. However, we should not remove a regressor just because it is uncorrelated

with the output. The regressor can still have a significant contribution to the output through

other regressors. Still, when choosing which regressors to keep, a reasonable guess are those

which are highly correlated with the output. The correlation between y and x j ,t−k is called the

cross-correlation for lag k.

Definition 5 - Cross-correlation function (CCF)

Let x j and y be stochastic processes with standard deviations σx j and σy respectively. The cross-

correlation for lag k is defined as

ρx j y (k) = 1

σx jσy
E[(x j ,t−k −E [x j ])(yt −E [y])].

The CCF gives the correlation between two processes shifted by k steps. For a time series y , we

can estimate the mean as ȳ = 1
n

∑n
t=1 yt and the standard deviation as σ̂y =

√
1

n−1

∑n
t=1(yt − ȳ)2.
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The natural estimator for the cross-correlation between the time series x j and y is

rx j y (k) = 1

nσ̂x j σ̂y

n∑
t=k+1

(x j ,t−k − x̄ j )(yt − ȳ), k ≥ 0. (4.3)

The sample CCF between an input sequence and the output sequence indicate the lags at which

they are correlated. Specifically, there is a direct connection between the rx j y (k) and β j ,k . When

the regressor is correlated with output, we suspect the correponding coefficient to be signifi-

cant. However, we cannot simply put β j ,k equal to rx j y (k). One reason for this is that rx j y (k) is

influenced by the autocorrelation in x j . This will be explained in detail later in this chapter.

The first step in the suggested estimation algorithm is to compute the sample CCF. For each

variable x j , we compute rx j y (k). It seems unnecessary to compute all cross-correlations up to

the highest possible lag, n −1. Our knowledge about the process may allow us to set an upper

limit K ∗ < n−1 for the lag of the most lagged relationship. Then, it will suffice to compute rx j y (k)

for k = 1, . . . ,K ∗. A rough estimate for the standard error of the cross-correlation estimate is

1/
p

n (Bisgaard and Kulahci, 2011). Comparing the sample CCF with ±1.96/
p

n will help us to

see which cross-correlations are significantly different from zero.

As the maximum lag K in (4.2), we may use k of the most lagged sample CCF significantly dif-

ferent from zero. Furthermore, for each input variable we define a vector of lags at which the

correlation to output is signicant, i.e.

ω j =
{

k ∈N :
∣∣rx j y (k)

∣∣> 1.96p
n

}
.

Next, we will discuss an example. Say we have observed input time series x1 and x2 and an

output time series y . We have a hundred observations of each variable, i.e. n = 100. The sample

CCFs are given in figure 4.1. The significance limits are included as dotted lines. For the input

x1, the sample cross-correlation to y is significant at lags ω1 = {3,4,5,7}. From the right panel,

we can see that ω2 = {0,1}.

We have reason to believe that y is dependent of x1 on lags ω1, and dependent of x2 on lags ω2.

That is, the coefficients β j ,k 6= 0 for k ∈ω j . Furthermore, note that the max lag is K = 7 and that
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Figure 4.1: Sample cross-correlations based on observed input x1 and x2 and output y . On the
left is the sample CCF between x1 and y . On the right is the same for x2 and y . The blue dotted
lines are significance limits with the significance level set to 0.05.

the number of observations is n = 100. In this example, the model in (4.2) reduces to

yt =
2∑

j=1

∑
k∈ω j

β j ,k x j ,t−k +εt

=β1,3x1,t−3 +β1,4x1,t−4 +β1,5x1,t−5 +β1,7x1,t−7

+β2,0x2,t +β2,1x2,t−1 +εt , t = 8, . . . ,100. (4.4)

It is straightforward to fit this model with ordinary least squares. The OLS will provide estimates

for β1,3, β1,4, β1,5, β1,7, β2,0, β2,1. Based on the sample CCF, the remaining β j ,k are deemed equal

to zero. However, it might not be this simple. The sample CCF should be used with care. In fact
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we have no guarantee that a regressor can be dropped even if it is weakly correlated with output.

The approach in the next section deals with this problem.

III Cross-correlation Selection Estimation (CSE)

This section presents a teqnique for modelling output in a lagged process. We will call it Cross-

correlation Selection Estimation (CSE). The sample CCF is used to pick a pool of regressors to

explain the output with. Then the best subset of regressors are chosen, and finally OLS is used

to estimate the regression coefficients. First, we will discuss how the sample CCF can be used

for selection of regressors.

For a large process like a furnace, we expect any change in the dynamics of the process to be

slow and continuous. This is due to complexity and size. We have seen that the output depends

on each input variable on potentially multiple lags. In the previous section, relevant lags were

extracted using the sample CCF. However, the model may be improved if we use our a priori

knowledge about the process. As the overall process exhibits continuity in some sense, we ex-

pect the same for the dynamic relationship between y and each x j . Specifically, it is reasonable

that x j affect y through all lags in some interval, rather than every other lag for example.

In the example introduced in the previous section we saw that the sample cross-correlation

between x1 and y were significant at lagsω1 = {3,4,5,7}. Furthermore, the proposed model sug-

gested that the coefficients on all other lags were zero, that is β1,k = 0 for k ∉ω1. However, based

on the discussion in this section, we should reconsider whether β1,6 = 0. When all neighbour-

ing coefficients are non-zero, it could easily be the same for k = 6 based on our asssumption of

continuity. Let m j = minω j and M j = minω j . Then we can construct a continous extension of

ω j defined as

Ω j =
{
k ∈N : m j ≤ k ≤ M j

}
. (4.5)

In words, this is all lags from the smallest lag to the greatest lag at which the sample CCF is

significant. From figure 4.1, we can see that Ω1 = {3,4,5,6,7} and Ω2 = {0,1}. Furthermore, we
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can do a regression withΩ j instead of ω j . In general, that is

yt =
p∑

j=1

∑
k∈Ω j

β j ,k x j ,t−k +εt , t = K +1, . . . ,n. (4.6)

In our example, the model in (4.4) will have an extra term β1,6x1,t−6 added to it. Whether this

term is important, will be apparent when comparing the model fit. Maybe it turns out that x1,t−6

is not important, such that we should consider dropping it after all.

Including larger sets of regressors Ω j is an attempt at making the method robust. We do not

want to drop terms that are significant in the regression. The idea is to initially rather include

too many terms than too few. Then we will fit the regression model in (4.6) and see whether

we should reduce the number of regressors. It will be clear why we will need to drop regressors

from (4.6) for certain cases. We can use figure 4.1 for an example. Imagine that rx1 y (19), by

chance were slightly larger, such that ω1 included 19. Then, Ω1 would be all lags from 3 to 19.

The resulting model could be an overfit as we have 19 regressors with only 100 observations.

It is practical to write the regression model in (4.6) in matrix form when later discussion estima-

tors. Including an interceptβ0 makes these estimators unbiased. There are r =∑p
j=1

(
M j −m j +1

)
regressors excluding the intercept. Let the vector of regression coefficients beβ= (

β0,β1, . . . ,βr
)T.

The first column of the design matrix is all ones since we have an intercept. This is a column vec-

tor of n −K ones denoted 1. Then, the model can be written as

y =βX +ε, (4.7)

where

y = (
yn , yn−1, · · · , yK+1

)T,
ε= (εn ,εn−1 . . . ,εK+1)T

X = (
1 X1 X2 · · · Xp

)
,
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X j =



x j ,n−m j x j ,n−m j−1 · · · x j ,n−M j

x j ,n−m j−1 x j ,n−m j−2 · · · x j ,n−M j−1

...
...

. . .
...

x j ,K−m j x j ,K−m j−1 · · · x j ,K−M j

 .

There are a total of r + 1 regressors and n −K statistical units. Thus the design matrix, X , is

(n −k)× (r + 1). The coefficient vector, β, has dimensions (r + 1)× 1 and y is (n −K )× 1. The

ordinary least squares estimator is

β̂= (XTX )−1XTy. (4.8)

This estimator is unbiased (Hayashi, 2000), i.e. E[β̂] = β. Hence, the modeled value of output

is ŷ = β̂X and the residuals are ε̂ = y − ŷ . The stated model is only useful if it explains how the

output changes with input. However, there is a limit to how well we can predict a variable based

on data. There will always be some variability in the output that is unexplainable. Still, we can

measure the amount of variation in the output that is explained by the model. This is a number

between zero and one called R-squared. Unfortunately, the R-squared will typically be close to

one both for correct models and overcomplicated models. If we keep adding regressors to a

model, increasingly more of the variation in the observed output will be explained. Eventually,

we begin modeling the random noise in the data. This is overfitting, and it is not penalized by

R-squared. For this reason (Theil, 1961) introduced the adjusted R-squared, defined as

R̄2 = 1− ε̂Tε̂

(y − ȳ)T(y − ȳ)
· n −1

n − r −1
.

Here, the nominator ε̂Tε̂ is an estimator of the population variance of εt with n − r −1 degrees

of freedom. The denominator (y − ȳ)T(y − ȳ) is an estimator of the population variance of yt

with n − 1 degrees of freedom. The R-squared is defined similarly, but without the fraction of

the degrees of freedom. The adjusted R-squared does well in comparing models with different

numbers of regressors.

We can use R̄2 to see whether regressors should be dropped from the model in (4.7). Each re-

gressor is represented as a column in the design matrix, that is X = (1, x2, . . . , xr+1). Let a sub-
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set of the column indices be I = {i1, i2, . . . , iN } ⊂ {1,2, . . . ,r + 1}. Then, the design matrix with

regressors I retained is X I = (xi1 , xi2 , . . . xiN ), where the order of the columns is preserved, i.e.

2 ≤ i1 < i2 < ·· · < iN ≤ r +1. Note that the intercept is not dropped. We express the correspond-

ing coefficients as βI = (β0,βi1 ,βi2 , . . . ,βiN )T. The reduced model and its OLS estimator are

y =βI X I +εI , (4.9)

β̂I = (XT
I X I )−1XT

I y.

There are N +1 estimated coefficients. Furthermore, the residuals of this model is ε̂I = y − β̂I X I .

Then, the adjusted R-squared for the subset I can be expressed as

R̄2
I = 1− ε̂TI ε̂I

(y − ȳ)T(y − ȳ)
· n −1

n −N −1
. (4.10)

The computed R̄2 is not a measure of model fit. Thus, we need to be careful using it. However,

R̄2 may work well for variable selection. Consequently, we will use R̄2 in variable selection and

then look at diagnostics to see whether the resulting model is adequate. A candidate model is

y =βÎ X Î +εÎ , Î = argmax
I

R̄2
I . (4.11)

This is the model that maximizes R̄2 among all submodels of (4.7). An approach for finding the

best subset, is simply computing R̄2 for all. Implementing such a method is straightforward,

but it can be computationally expensive as the number of observations and variables increase.

For each subset I , we have to compute least squares estimates, which is approximately nN 2

operations. When summing over all subsets there is a total of n ·∑r+1
N=1

(r+1
N

)
N 2 operations. By

the binomial theorem we obtain

r+1∑
N=1

(r+1
N

)
xN = (1+x)r+1.

Taking the derivative in x on both sides, multiplying by x and differentiating again results in an
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expression that when inserting for x = 1 results in

r+1∑
N=1

(r+1
N

)
N 2 = (r +1)

( r
2 +1

)
2r

=O(r 22r ).

Thus, the asymptotic complexity of the exhaustive subset selection is O(r 22r n). Consequently,

this is extremely computationally expensive already as r approaches one hundred. An alterna-

tive implementation for large r should be considered. Adding a ceiling for the size of the subset

is one option.

Recall that we wish to find the model (4.11). It might not be necessary to compute every subset,

but rather do some iterative optimization. An idea is to start with the full set of regressors, I =
{1,2, . . . ,r +1}. Then we drop a regressor and see how R̄2

I changes. Regressors are dropped one

at a time as long as R̄2
I increases or remains about the same. Which variable to drop is decided

by the p-values of the coefficients in the regression.

Formally, a two-sided t-tests for zero effect is performed for each regressor xi in the current

regression model. Let the coefficient estimate be denoted β̂i . The t-distributed test statistic is

ti = β̂i

√
(n −K −2)

(xi − x̄i )T(xi − x̄i )

ε̂Tε̂
.

Let T be t-distributed on n −K −2 degrees of freedom. The p-value of the two-sided t-test is

pi = 2Pr(T ≥ |ti |).

The updated set of regressors is then

I∗ = I \
{

xi∗
}

, i∗ = argmax
i

pi .

This method is an iterative search for the optimal regression model. It is an alternative to the ex-

haustive subset selection when r is large. The iterative search will not allways find the preferred

model defined by (4.11), while the exhaustive search always do. When implementing CSE, a
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combination of exhaustive selecetion and iterative selection is suggested.

IV Maximum correlation estimation (MCE)

Section II explains how we can use the sample cross-correlation function rx j y (k) to decide which

lags to include in the regression model. The sample CCF is computed pairwise between output

and each input x j , which results in a set of lags to include for each x j . These setsΩ j are defined

in (4.5). However, we previously stated that rx j y (k) is influenced by ρx j . Consequently, Ω j may

be a suboptimal choice depending on ρx j . In this section we will look more into this concept

and a possible solution is provided.

Consider the AR(2) processes in figure 3.5. Let these be the basis for six examples of model iden-

tification. For each process i ∈ {a,b,c,d ,e, f }, let xi be a realization of one thousand elements.

For each input xi , we generate output as a sum of xi on lags 3, 4, and 5. Independent standard

normal noise εi is also added to the model. This results in

yi t = xi ,t−3 +xi ,t−4 +xi ,t−5 +εi t , t = 1,2, . . . ,1000, i ∈ {a,b,c,d ,e, f }. (4.12)

This is a regression model where the coefficients are all one. These six examples all consist of

one input xi and one output yi . The first step of model identification is computing rxi yi (k).

Based on the sample CCF, we choose the lags to include in the regression model, as the data

generating process in (4.12) is unknown.

Figure 4.2 includes the true regression coefficients, the ACF of xi and the sample CCF between

xi and yi for each example. Each column correspond to an example. Consider example a, which

is described by the first column. The true regression coefficients in (4.12) are one for lags 3, 4

and 5 and zero otherwise. These are plotted in the top-left panel. In the panel below, we can see

the theoretical ACF of the process generating xa . No lags except zero are significant. The lower

panel shows a plot of rxa ya (k). The realtionship suggested by the sample CCF is accurate. This

is due to a small autocorrelation in input. However, this is not the case for the other examples.

By comparison of the ACF and the sample CCF in the examples, we can see a strong connection.
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The sample CCF inherit the behavior of the input ACF. Recall that the ACF is a damped sine

wave. The sample CCF is approximately the same wave shifted by 4, which is the average lag

between input and output. Recall that Ωi is the set of all lags between the smallest and largest

lag such that the sample CCF is significant. We can see thatΩa includes excatly the relevant lags,

while Ω f includes many more. Having too many lags in the model is suboptimal, even though

these sets are later subsetted. With a large pool of lags to chose from, we are not guaranteed to

retrieve the optimal subset. This is the reason why we should consider an alternative approach,

especially when the autocorrelation in input is dominant.

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

A

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

B

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

C

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

D

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

E

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

F

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Effect of autocorrelation on crosscorrelation

cc
f(

x,
y)

ac
f(

x)
C

oe
ffi

ci
en

ts

lag

Figure 4.2: A summary of six regression models. Each column represent an example where the
top panel is the regression weight, the center panel is the input ACF and the lower panel is the
sample CCF between input and output.

Instead of performing CSE, we can build a solution by using the maximum of the sample CCF.

Note that the lag where the sample CCF takes its maximum coincides well with the lag between

input and output. Let the lag of the maximum sample CCF be µi = argmaxk rxi yi (k). The idea

is to include all lags in some neighborhood of µ. This neighborhood should be wide enough to
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cover the important lags, but not wider. Consider the set of all lags closer than ∆ from µ, i.e.

Θi =
{
k ∈N : µ−∆≤ k ≤µ+∆}

.

This set suggest which input lags to include when modeling output. Instead of building the

model in (4.7) based on Ωi , we may use Θi . Furthermore, the final model is the optimal subset

defined in (4.11). This approach will be referred to as Maximum Correlation Estimation (MCE).

Let us compare Ωi and Θi for the AR(2) processes in figure 4.2. The result when ∆= 2 is shown

in table 4.1. Each row correspond to an example. The last column in the table shows the lags

included for CSE. The regressor set Θa is perfect. However, as ρxi decays more slowly, Θi even-

tually includes all lags in the specified range. In comparison, MCE will allways include 2∆+1 = 5

lags. We can also see thatΘi consistently includes the true set of lags. MCE clearly performs well

for these examples. However, the result would be less optimal with a ∆ specified differently.

Table 4.1: Comparison of the regressors sets Θi and Ωi of MCE and CSE respectively. Six ex-
amples are included, with the name of each example in the first column. The second column
includes the lags in the true model. The third and fourth column includes the lags in the MCE
and the CSE.

i True Θi Ωi

a {3,4,5} {1, . . . ,5} {3, . . . ,5}
b {3,4,5} {3, . . . ,7} {1, . . . ,12}
c {3,4,5} {2, . . . ,6} {0, . . . ,15}
d {3,4,5} {2, . . . ,6} {0, . . . ,20}
e {3,4,5} {2, . . . ,6} {0, . . . ,20}
f {3,4,5} {2, . . . ,6} {0, . . . ,20}

We have seen that MCE outperforms CSE for complex AR(2) processes. This result can be gener-

alized to processes where the input variables have a slowly decaying autocorrrelation function.

However, there are some challenges with MCE, including specification of ∆. Regardless of cho-

sen estimation tecnique, it is necessary to perform analysis on the reliability of the resulting

model. The next section includes tests for accuracy of the model.
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V Diagnostics

Performing diagnostics of a regression model is first of all an assessment of the statistical as-

sumptions. Consider a regression model y = βX + ε. The least squares estimator β̂ is only valid

under certain assumptions (Hayashi, 2000). These are

1. Homoscedasticity Same varianceσ2
ε in the error term of every observation, i.e. E[ε2

t ] =σ2
ε .

2. Strict exogeneity The regression errors have mean zero, E[εt ] = 0.

3. No serial correlation Errors are uncorrelated, which involves no repeating patterns. For-

mally, E[εiε j ] = 0, for all (i , j ) with i 6= j .

There exist numerous methods for assessing these assumptions. A natural first step is plotting

the error sequence. The plot will give us an idea of whether the error variance is constant in t .

This is a necessary condition for homoscedasticity. Additionally, we can perform a formal test

such as the Breush-Pagan test (Breusch and Pagan, 1979).

As for the third assumption, we can simply use the sample ACF and sample PACF defined in

chapter 3. Recall that both these are derived from estimates of the autocovariance, γi− j =
E[εiε j ]. Hence, the third assumption may not hold if either the ACF or PACF is significant for

some lag. Autocorrelation in input may also violate strict exogeneity. Especially if not all appro-

priate lags for the input is included in the regression.

Let us continue with the example introduced in section II. The output y is explained by input

variables x1 and x2. The sample cross-correlations between input and output are shown in fig-

ure 4.1. When modeling the data by (4.11) and estimating the coefficients by OLS, we obtain the

fitted model

yt =−0.04+2.59x1,t−3 +2.69x1,t−4 +2.13x1,t−5 +2.29x1,t−7 +1.79x2,t +2.80x2,t−1 + ε̂Î ,t . (4.13)

The coefficients on the regressors are in the same proportions to each other as for the sample

CCFs in 4.1. Apparently, there are no decisive complications in the identification of the dynamic

relationship between input and output. The residuals ε̂Î ,t are plotted in figure 4.3 along with
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the sample ACF and sample PACF of the residuals. The plot in the top frame suggests that the

variance in the residuals is not changing much with time. Thus, there is no clear violation of

homoscedasticity. The middle panel shows that there are a few borderline significant estimates

of the autocorrelation among non-zero lags. From the lower plot, we can see that it is the same

for the sample PACF. There are no clear correlation patterns in the residuals. This is promising

for the validity of assumptions two and three of the least squares estimates.
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Figure 4.3: The top panel displays the residuals in a model fitted by ordinary least squares. The
middle panel includes the sample ACF of these, and the bottom panel shows the sample PACF.
The blue dotted lines are 95 percent significance limits for the estimates.

Imagine that the sample PACF and the sample ACF in figure 4.3 were significant for some lags.

This would suggest that there are dynamics in the output not explained by our regression model.

Let us continue with the same example as before. The prediction in (4.13) is based on the model

in (4.11), where Î = {
x1,t−3, x1,t−4, x1,t−5, x1,t−7, x2,t , x2,t−1

}
. Consider instead a subset where
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some regressors are dropped, say I∗ = {
x1,t−7, x2,t , x2,t−1

}
. The resulting model fitted by OLS

is

yt = 0.21+1.83x1,t−7 +1.99x2,t +2.74x2,t−1 + ε̂I∗,t . (4.14)

The residuals ε̂I∗,t are shown in the top-left plot in figure 4.4. There is a clear oscillating trend in

the residuals. From the sample ACF and sample PACF plotted below the residual sequence, we

can see that there is a correlation pattern in the residuals. Specifically, ρ̂k experience damped

oscillations while φ̂kk cuts off after k = 2. Thus, the residuals follow an AR(2) process. It seems

reasonable to model the errors by the same model, i.e.

εI∗,t −φ1εI∗,t−1 −φ2εI∗,t−2 = at

or φ(B)εI∗,t = at , (4.15)

where at is white noise. The knowlegde about the structure of the residuals should be incor-

porated into the regression model. Let the coefficients in the model with y and I∗ be denoted

βI∗ = (β∗
0 ,β∗

1 ,β∗
2 ,β∗

3 )T. Then, we can write the model as

y =βI∗ X I∗ +εI∗

or yt =β∗
0 +β∗

1 x1,t−7 +β∗
2 x2,t +β∗

3 x2,t−1 +εI∗,t .

The problem with this model is the autocorrelation in εI∗,t . We can use the result from (4.15) to

fix this problem. If the operator φ(B) is applied to the errors, the result is independent white

noise. Thus, applying this operator to each term in the original model results in

φ(B)yt =φ(B)β∗
0 +β∗

1φ(B)x1,t−7 +β∗
2φ(B)x2,t +β∗

3φ(B)x2,t−1 +φ(B)εI∗,t

=φ(B)β∗
0 +β∗

1 x1,t−7 −β∗
1φ1x1,t−8 −β∗

1φ2x1,t−9 +β∗
2 x2,t −β∗

2φ1x2,t−1

−β∗
2φ2x2,t−2 +β∗

3 x2,t−1 −β∗
3φ1x2,t−2 −β∗

3φ2x2,t−3 +at

=⇒ yt =φ(B)β∗
0 +φ1 yt−1 +φ2 yt−2 +β∗

1 x1,t−7 + (−β∗
1φ1)x1,t−8 + (−β∗

1φ2)x1,t−9

+β∗
2 x2,t + (−β∗

2φ1 +β∗
3 )x2,t−1 + (−β∗

2φ2 −β∗
3φ1)x2,t−2 + (−β∗

3φ2)x2,t−3 +at .
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Renaming the intercept and coefficients of each regressor results in the expanded regression

model

yt =β0 +β1 yt−1 +β2 yt−2 +β3x1,t−7 +β4x1,t−8 +β5x1,t−9

+β6x2,t +β7x2,t−1 +β8x2,t−2 +β9x2,t−3 +at . (4.16)

We will call this the AR expanded model. Note that there are lagged versions of the output on

the right hand side of the equation. The purpose of the expanded regression is fixing the prob-

lem of autocorrelation in the residuals of the original model. The idea of new model is to have

uncorrelated errors at .
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Figure 4.4: Comparison of residuals of two models fitted by least squares. The left column shows
the residuals of a suboptimal model and the sample ACF and sample PACF of these residuals.
The right column displays the resulting residuals after expanding the original model by an AR
polynomial.
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Fitting the model in (4.16) by ordinary least squares results in

yt = 0.15+1.02yt−1 −0.53yt−2 +3.00x1,t−7 −2.38x1,t−8 +1.36x1,t−9

+2.38x2,t +0.76x2,t−1 −1.72x2,t−2 +1.33x2,t−3 + ât . (4.17)

The residuals ât are plotted in the top-right panel of figure 4.4. The sample ACF and sample

PACF of the residuals are also included in the right column of the figure. All three indicate that

the coefficient estimates in (4.17) are valid. There is a vague pattern in the residual plot, but as

long as the correlation plots are fine, this is of little concern. It is clear that the AR expanded

model do better than the original.

The AR expansion worked well in the above example. However, a small modification of this

method will be necessary in some cases. Consider the fitted model in (4.14). Since the residuals

are autocorrelated, we might have biased coefficient estimates β̂∗
i . These estimates are used for

modelling of the errors as described in (4.15), and consequently the error model can be biased.

This means that the coefficients β̂i in the resulting AR expanded model might also be biased.

If the original estimates β̂∗
i are unbiased, they will be similar to the updated estimates corre-

sponding to the same regressors. Hence, we should repeat the AR expansion procedure until

the coefficient estimates remains unchanged. If the coefficient estimates does not stabilize af-

ter a couple of iterations, more drastic changes are required.

Recall the OLS assumptions in the beginning of this section. In general, fitting the residuals by

an AR(p) model is recommended if these assumptions are violated. Furthermore, the resulting

AR polynomial operator is applied to both sides of the regression model as demonstrated in the

example above. The number of regressors will increase by doing this. More terms will be added

when the order of the AR polynomial is large. Since we want to be conservative in adding terms,

p should not be too large.

I suggest the folllowing approach. For each value of p from one to some upper bound P , fit

the residuals by an AR(p) model. This is done by standard computer approaches discussed in

chapter 3. Then we compare the model fit for the various orders p. The Bayesian informasion

criterion (BIC) (Schwarz et al., 1978) is suitable for this purpose. BIC is a criterion for model
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selection that heavily penalizes the number of parameters in the model. It is defined as

BIC = (p +1)logn +2log L̂,

where L̂ is the maximized value of the likelihood of the model. The AR expansion will be of the

order p̂ that resulted in the lowest BIC. Consider a model with an input variable y and output

variables x1, x2, . . . , xp . Let λ j be the lags included for each variable. Then, the lags included for

variable x j in the AR expanded model are

Λ j =
{
k ∈N : l ≤ k ≤ l + p̂, ∀ l ∈λ j

}
.

The resulting AR expanded regression model is

yt =β0 +
p̂∑

k=1

βk yt−k +
p∑

j=1

∑
k∈Λ j

β j ,k x j ,t−k , t = K + p̂ +1, . . . ,n.

Recall that the expansion should be repeated if the coefficient estimates were changed a lot by

the current expansion.



Chapter 5

Results

Chapter 4 express the relationship between variables by a regression model. The model is fit-

ted by observations and can be used for prediction of future output. Say we want to apply this

method to a a full scale industry process like a furnace, where there is an output variable that we

wish to minimize or maximize. This may be done by adjusting the process input variables ac-

cording to the prediction model. However, the precision in the model must be very high before

we can rely on it to make changes in production.

In this chapter we will discuss approaches for assessing the accuracy of the model. Furthermore,

we will consider cases where the methods will fail. The methods will fail when applied to sys-

tems where the assumptions do not hold. First of all, recall that the suggested regression model

only includes first-order terms. When the system exhibits higher-order relationships or more

complex functions, the model fit is not satisfactory. However, it will be clear when important

regressors are left out. The diagnostics of the final model should always be considered.

I Data simulation

One way of assessing the method is to simulate a process with a known relationship between

input and output and see whether the fitted model is similar. In order for the simluation to be

relevant, it must mimic the actual process. In the ElMet project we are interested in how well

48
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the model describes a furnace. Hence, the simulated data should be similar to furnace vaiables.

First we will need to decide the distribution of the input variables. Let the input sequence x j be

a realization of a multivariate random variable X j = (X j ,1, . . . , X j ,n)T governed by either of three

mechanisms, the normal distribution, the uniform distribution or an ARMA process. These data

generating processes are chosen because they frequently arise in nature. The idea is to test the

performance of the method for standard distributions with a wide range of shape and scale

variations. The parameters in each mechanism are chosen at random for each X j , but constant

in time. The input sequence X j is generated as either V , W or Z with equal probability, where

Vt ∼N (µ,σ2
v ),

Wt ∼U (−1,1),

Zt = pφ1xt−1 +qθ1εt−1 +εt ,

εt ∼N (0,1)

µ,σ2
v ,φ1,θ1 ∼U (−1,1).

The value of (p, q) is either (1,0), (0,1) or (1,1) with equal probability. This corresponds to

AR(1), MA(1) and ARMA(1,1) processes. The simluation approach above is used to draw input

sequences x1, x2, . . . , xp . The input sequences are then standardized.

Next, we must decide the lags between input and output. We assume that y depend on x j on

consequtive lags m j ,m j +1, . . . , M j . The minimum and maximum lags are integers drawn ran-

domly from discrete uniform distributions. Specifically,

m j ∼U {0,7},

M j ∼U {m j ,m j +3}.

The distribution of the lag interval is chosen by consideration of a real furnace process. The

maximum lag is K = max j M j . Furthermore, the coefficients β j ,k corresponding to the regres-

sors are drawn uniformly from the interval [−3,−1]∪ [1,3]. Note that coefficients close to zero

are excluded. The smallest coefficients are not of of interest with standardized variables. Fur-

thermore, standardization means that only the relative sizes of the coefficients are of interest.
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Finally, we express the output by the linear combination of the regressors and added i.i.d. nor-

mal noise εt ∼N (0,σ2), i.e.

yt =
p∑

j=1

M j∑
k=m j

β j ,k x j ,t−k +εt , t = K +1, . . . ,n. (5.1)

The output variable is standardized the same way as the input. The generated data now consists

of input variables x1, x2, . . . , xp and the output variable y . Next, we will discuss how well the

methods described in chapter 4 identifies the relationship between the simulated variables.

II Performance

In this section we will describe the performance of CSE as defined in section III of chapter 4.

We will fit the simulated data by the model in 4.11, where the coefficients are estimated by least

squares. Recall that the algorithm first choose a large set of regressors which is then subsetted.

The number of regressors in the large set is denoted r . Recall that we discussed two approaches

for finding the optimal subset Î . An exhaustive search is used for r ≤ 25 and an iterative search

otherwise. The final estimates for the regression coefficients are the OLS estimates of the opti-

mal subset.

If we want to know the accuracy of CSE, we must first define a measure. It is reasonable to

compare the true coefficients in (5.1) with the least squares estimates of (4.11). Let β̂ j ,k denote

the estimates. The two models does not necessarily include the same terms. However, we can

simply consider regressors not included to have a coefficient equal to zero. Let b be the number

of pairs ( j ,k) such that etiher β̂ j ,k orβ j ,k is non-zero. The distance between the true coefficients

and the estimated ones may be defined as the mean square difference, i.e.

δ= 1

b

p∑
j=1

∑
k≥0

(
β j ,k − β̂ j ,k

)2
. (5.2)

When a simulation has a small δ, the estimation was successful. Consider the simulation proce-

dure in section I. There are a few parameters to be decided for each simulation. We must choose
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the number p of input variables, the length n of the sequences and the varianceσ2 in the output

defined in (5.1). The values of these parameters may affect the error δ. This will be clear if we

run multiple simulations with various parameter values. We will discuss an example where we

have a few values to choose from for each parameter. Then, for every combination of parameter

values we compute δ. However, as the simulations are stochastic, one thousand replications of

each experiment is performed, and the average δ̄ is computed. The levels of n is 500, 1000 and

5000. For p the levels are 2, 5, 10 and 30. The levels of the noise variance σ2 are 0.1, 0.5, 1, 1.5

and 2. We can number the sixty different combinations by s = 1,2, . . . ,60. The total number of

experiments is 60000.

Furthermore, we can do regressions with δ̄ as output to see which parameters are important for

the performance of CSE. Intially, the included regressors are p, n and σ2, pairwise interactions,

squares and square roots. Then, backward elimination is performed with Akaike information

criterion (AIC) as the model fit criterion (Venables and Ripley, 2002). For each model, let L̂ be

the maximized value of the likelihood function. Then the model fit criterion is defined as AIC

= 2(p− L̂). The backward elimination remove regressors that are not important for explaining δ̄.

The resulting model for a specific parameter combination s is

δ̄s =β0 +β1ns +β2ps +β3σ
2
s +β4ns ps +β5n2

s +β6
p

p s +es ,

where βi are regression coefficients and es is a zero-mean normally distributed regression error.

The OLS estimates of the regression coefficients are given in table 5.1. The right column states

the p-values of a two-sided t-test with a null hypotheses that the coefficient is equal to zero. All

regressors are significant on a 95 percent significance level.
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Table 5.1: The effect of a parameter on the performance of CSE. The table is a summary of a
regression with the estimation error δ̄ as the output. The left column names the regressors. The
center column displays the OLS coefficient estimates, and the right column states the p-values
of a two-sided t-test for the coefficient being zero.

Param. β̂ p -value

1 6.1×10−1 <2.0×10−16

n −6.0×10−5 7.0×10−5

p 1.1×10−2 1.0×10−11

σ2 6.6×10−3 3.7×10−2

np −8.5×10−7 4.6×10−12

n2 1.1×10−8 1.8×10−5

p
p −5.6×10−2 3.7×10−8

Table 5.1 provide useful information about when CSE is reliable. The results concur with ex-

pectations. The error δ̄ is low for high n as we have more information. When the number of

variables increases, the error increases because the model is more complex. Noise also reduce

the accuracy of the estimation. The error is at the highest when p is close to n. This is the gen-

eral case for any regression model. The significance of n2 and
p

p suggest that the error is not

linear in n and p.

It is clear that the performance of CSE is heavily incluenced by the parameters in the observed

data set. We should keep this in mind in applications. Next, we will consider CSE and MCE

applied to an example.

III Example

Two estimation methods were introduced in chapter 4, Cross-correlation Selection Estimation

(CSE) and Maximum Correlation Estimation (MCE). In this section we will see these methods

applied to observed data. The two resulting models will be compared and we will discuss the

diagnostics of both. One output variable y will be explained by three input variables x1, x2 and

x3. There are n = 852 observations of each variable. The variables describe a furnace process.

Missing values are imputed before doing estimation. Specifically, there are four missing values

in x2 that is imputed by the method described in section V of chapter 3. The resulting time
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series are plotted in figure 5.1. The imputed values x2,549, x2,597, x2,598 and x2,599 are joined by

red dotted lines. As these values appear reasonable, we continue with estimation.
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Figure 5.1: Plots of an observed output variable y and observed input variables x1, x2 and x3.
Some entries of x2 were missing and has been replaced by inputed values. These are connected
by red dotted lines.

The sets of regerssors to be included in the model is determined by the sample cross-correlation

between input and output. The sample CCFs are plotted in figure 5.2. Recall that CSE create sets

Ω j of lags based on the significance of the sample CCF. On the other hand, MCE creates sets Θ j

based on the most extreme lag of the sample CCF. For this example we estimate all correlations

with a lag of a week or less. The radius of the MCE interval is set to ∆ = 2. The resulting sets

are displayed in table 5.2. Recall that both methods find the subset of the highest adjusted R-

squared. These sets are included in the rightmost columns of the table.

The pools of regressors Ω j and Θi are overlapping. Note that the sample CCF takes it most
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Figure 5.2: The sample CCF computed pairwise between an output variable and three input
variables.

extreme value at lag zero for each input variable. The number of regressors in the final model of

CSE is nine, while it is five for MCE. The coefficients on the regressors are estimated by ordinary

least squares. We can write the final model from CSE as

yt = −5.4×10−5 +0.60x1t +0.22x2t +0.23x3t −0.056x3,t−1 +0.043x3,t−2

−0.078x3,t−3 −0.031x3,t−4 +0.037x3,t−5 +0.033x3,t−6 + ât , t = 7,8, . . . ,852,

where ât are the regression residuals. The R-squared of this model is 0.52. Similarily, we may

write the MCE model as

yt = 1.1×10−3 +0.60x1t +0.22x2t −0.046x2,t−2 +0.22x3t −0.058x3,t−1 + b̂t , t = 3,4, . . . ,852,
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Table 5.2: Comparison of the regressors sets of CSE and MCE respectively. The index j represent
the input x j . The second and third column shows the pools of regressors for the two methods.
The last two columns displays the best subset of lags for each method.

j Ω j Θi ÎCSE ÎMCE

1 {0, . . . ,7} {0,1,2} {0} {0}

2 {0} {0,1,2} {0} {0,2}

3 {0, . . . ,6} {0,1,2} {0, . . . ,6} {0,1}

where b̂t are the residuals. The R-squared of this model is 0.51. Note that the intercept in both

models is small. Some rergessors are common for the two models. The estimated coefficients on

these regressors are similar. The residuals of the two models are compared in figure 5.3. The left

column displays the results from CSE and the right column shows the same for MCE. The resid-

ual plots exhibits no clear trends which would violate the regression assumptions. The sample

ACF and sample PACF of the residuals for both models have several borderline significant en-

tries, but no large ones. If the correlations were larger we should have considered AR expansion

as defined in section V of chapter 4. Overall, both sets of residuals are promising. For this ex-

ample there are no big difference between CSE and MCE. Still, the model from MCE is probably

prefered as it is simpler.
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Figure 5.3: Residuals from a model fitted to observed data. The residuals of CSE is compared to
those of MCE. The top row displays the residuals by day. The second row shows the sample ACF
and the third row includes plots of the sample PACF of the residuals.



Chapter 6

Discussion and Conclusion

The methods presented in chapter 4 is a step towards an accurate model for the process of pro-

ducing ferromanganese in electrical furnaces. However, the utility of these methods is not re-

stricted to metall processes. In fact, we may apply them to many situations where we have

observed input variables and a lagged output variable. Certain assumptions are made. The

variables are equally spaced discrete time sequences. The output is a linear combination of si-

multaneous or lagged input. Furthermore, we allow for noise in the observations. The furnace

data is measured daily, but this is not a general requirement. The interval between observations

might as well be seconds or years.

Two main models are presented, Cross-correlation Selection Estimation (CSE) and Maximum

Correlation Estimation (MCE). They are identcal with exception of the initial variable selection.

Which model that is preferred depends partially on the dynamics of the input variables. We have

seen examples of how the autocorrelation in input affects the cross-correlation between input

and ouput. Specifically, when the input is heavily correlated with itself, the output will also be

correlated with the input on multiple lags. Thus, the cross-correlation does not reveal the direct

causal relationships. Still, MCE appears to do well even with a large autocorrelation in input on

multiple lags. Autocorrelation is a bigger problem for CSE. However, in some other cases, CSE

is the preferred model. For example when the output depend on the input on every other lag in

some interval.

To perform diagnostics of the methods is essential. Tests include assessing the regression as-
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sumtions. If these are violated, the estimates are of little worth. Autocorrelation in the residuals

is a possible violation. However, section V in chapter 4 presents a solution to this problem,

through a method called AR expansion. The idea is that the structure in the residuals of the cur-

rent model will suggest a new model. AR expansion is a recommended extension to CSE and

MSE.

The main result of chapter 5 is presented in table 5.1. The performance of CSE is explained as a

function of three parameters, the dimensions n and p of the data set, and the variance σ2 of the

noise in the output. As we would expect, the performance is poor when n is small, p is large or

σ2 is large. The performance of CSE is especially poor when p is close to n. When applying CSE

to an industry process, n and p is known, but not σ2. Still, we can make a guess of σ2 based on

the complexity of the process. In a specific example, the values of these three parameters can be

used to estimate the uncertainty of the model from CSE.

A viable extension of this work is a more compound algorithm, possibly based on machine

learning. Multiple methods have been presented in this thesis and they have the potential to

work well together. Say we have n observations of one output variable and p input variables.

Assume the noise variance σ2 is known. A potential algorithm can be outlined as following.

First, we compute the sample ACF and sample PACF of each input sequence. Then we choose

the optimal regressor selection method based on the parameters n, p andσ2 as well as the sam-

ple correlation functions. The regressor selection method can be CSE, MSE or other already

existing methods. Next, we estimate the coeffients by OLS. Based on the residuals we can do AR

expansion once or repeatedly. The optimal choices in this algorithm can be trained by machine

learning. There are many challenges in building this algorithm, but it is definitely achievable.

In the end of the previous chapter CSE and MSE were applied to a ferromanganese furnace.

First, missing values were imputed by the forecasting approach presented in chapter 3. The

fitted models for CSE and MSE are similar, but the MSE model is simpler. The R-squared values

are just above one half, which is decent for an industry process. The regression residuals are

close to being i.i.d normal as we have assumed. In conclusion, both CSE and MSE can be feasible

in ferromanganese production and similar processes.



Bibliography

Barker, I. (2011). Some considerations on future developments in ferroalloy furnaces. Journal of

the Southern African Institute of Mining and Metallurgy, 111:691 – 696.

Bisgaard, S. and Kulahci, M. (2011). Time series analysis and forecasting by example. John Wiley

& Sons.

Box, G. and Jenkins, G. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San

Francisco, 2nd edition.

Breusch, T. S. and Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient

variation. Econometrica: Journal of the Econometric Society, pages 1287–1294.

Brockwell, P. J. and Davis, R. A. (2013). Time series: theory and methods. Springer Science &

Business Media.

Devlin, Susan J., R. G. and Kettenring, J. R. (1975). Robust Estimation and Outlier Detection with

Correlation Coefficients. Biometrika, 62:531 – 545.

Diebold, F. X. (1998). Elements of forecasting. Citeseer.

Durbin, J. (1960). The fitting of time-series models. Revue de l’Institut International de Statis-

tique, pages 233–244.

Eksteen, J., Frank, S., and Reuter, M. (2004). Towards predictive control of ferroalloy furnaces:

combining thermochemistry, inventory modelling and systems engineering. In Proceedings

International Ferroalloy Congress, pages 1–4.

Hayashi, F. (2000). Econometrics. Princeton University Press.

59



BIBLIOGRAPHY 60

Hyndman, R. and Khandakar, Y. (2007). Automatic time series forecasting: The forecast pack-

age for r 7. 2008. URL: https://www. jstatsoft. org/article/view/v027i03 [accessed 2016-02-

24][WebCite Cache].

Kendall, M. G., Stuart, A., and Ord, J. (1968). The advanced theory of statistics, volume 3. London.

Rottmann, K. (2011). Matematisk Formelsamling. Spektrum Forlag, 11th edition.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized

studies. Journal of educational Psychology, 66(5):688.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461–

464.

Theil, H. (1961). Economic forecasts and policy.

Venables, W. N. and Ripley, B. D. (2002). Random and mixed effects. In Modern applied statistics

with S, pages 271–300. Springer.

Wei, W. W.-S. (1994). Time series analysis. Addison-Wesley publ Reading.

Wold, H. (1939). A study in the analysis of stationary time series.



Chapter 7

R code

1 ########### Script information ###########

2 # Author : Andreas Strand

3 # R version 3 . 4 . 0 (2017−04−21)

4 # Platform : x86_ 64 , linux−gnu

5 #

6 # Latest edit : June 19 , 2017 by Andreas Strand

7 #####

8

9 ########### Minor functions ###########

10 ## Expand index vector by neighbouring elements

11 makeSeg= function ( miss , tmax ) {

12 vec = unique ( c ( miss−1,miss , miss+1) )

13 vec = sort ( vec [ vec<=tmax ] )

14 len = length ( vec )

15 t f = sapply (X = 1 : ( len−1) , function (X) vec [X]+1 == vec [X+1])

16 breaks = which ( ! t f )

17 dbreaks = sort ( c ( breaks , breaks +1) )

18 return ( matrix ( c ( vec [ 1 ] , vec [ dbreaks ] , vec [ len ] ) , ncol = 2 , byrow=T) )

19 }

20

21 ## Computes aicc or bic

22 i c = function (model , type = " aicc " ) {

23 npar = length (model$coef ) + 1
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24 nstar = length (model$ residuals ) − model$arma [ 6 ] − model$arma [ 7 ] * model$arma [ 5 ]

25 i f ( type == " aicc " ) { out = model$ aic + 2 * npar * ( nstar / ( nstar − npar − 1) − 1)

26 } e lse i f ( type == " bic " ) { out = model$ aic + npar * ( log ( nstar ) − 2)

27 } e lse { out = NA}

28 return ( out )

29 }

30

31 ## GG colors

32 ggCol <− function (n) {

33 hues = seq (15 , 375 , length = n + 1)

34 hcl (h = hues , l = 65 , c = 100) [ 1 : n]

35 }

36

37 ## Add i n t e r v a l containing s i g n i f i c a n t e n t r i e s

38 i n t e r v a l = function ( vec , l i m i t ) {

39 s i g n i f = which ( vec> l i m i t )

40 i f ( length ( s i g n i f ) ) { out = c (min( s i g n i f ) ,max( s i g n i f ) )

41 } e lse { out = c (NA,NA) }

42 return ( out )

43 }

44

45 ## Make l i s t with lead zero from vector / l i s t

46 addZero = function ( var ) {

47 i f ( ! i s . l i s t ( var ) ) var = l i s t ( var )

48 return (append( var , 0 , 0 ) )

49 }

50

51 ## Make sequence from s t a r t−and−stop−vector

52 Seq = function ( vec ) {

53 return ( vec [ 1 ] : vec [ 2 ] )

54 }

55

56 ## Append l i s t

57 lappend = function ( l s t , index , value = rep (NA, length ( index ) ) ) {

58 i f ( ! i s . l i s t ( l s t ) ) l s t = l i s t ( l s t )

59 for ( i in 1 : length ( index ) ) { l s t = append( l s t , value [ i ] , index [ i ]−1) }
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60 return ( l s t )

61 }

62

63 ## Distances to next entry of a sorted vector

64 maxOrder = function ( l s t , order ) {

65 u n l i s t ( sapply ( l s t , function ( x ) {

66 i f ( length ( x ) ==1) {

67 out = order

68 } e lse {

69 t = 2 : length ( x )

70 out = c (pmin( x [ t ]−x [ t −1]−1,order ) , order )

71 }

72 return ( out )

73 } ) )

74 }

75

76 ########### Missing values ###########

77 ## Change extreme values to NA

78 clean = function ( data , bounds ) {

79 xtreme = apply ( as . matrix ( 1 : ncol ( data ) ) ,1 , function ( x ) {

80 data [ x ] < bounds [ x , 1 ] | data [ x ] > bounds [ x , 2 ]

81 } )

82 data [ xtreme ] = NA

83 return ( data )

84 }

85

86 ## P a r t i a l autocorrelation using D−L algorithm

87 durbin = function (gamma, forecast = FALSE , error = FALSE) {

88 pp = gamma[ 2 ] /gamma[ 1 ]

89 p = pp

90 v = gamma[ 1 ]

91 for ( i in c ( 2 : ( length (gamma)−1) ) ) {

92 new = (gamma[ i +1]−p%*%gamma[ i : 2 ] ) / (gamma[1]−p%*%gamma[ 2 : i ] )

93 p = c (p−new* rev (p) ,new)

94 pp = c (pp , new)

95 v = v *(1−new^2)
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96 }

97 i f ( forecast ) {

98 return ( i f ( error ) c ( v , p) else p)

99 } e lse {

100 return (pp)

101 }

102 }

103

104 ## Estimating variance of random deviations of a time s e r i e s

105 sigma2 = function ( t s ) {

106 A = which ( ! i s . na ( t s ) )

107 A = A[ which (A>2) ]

108 tsF = f i l l T s ( ts , se =F , normalize = F)

109 se = rep ( 0 , length (A) )

110 for ( i in 1 : length (A) ) {

111 g = acf ( tsF , lag .max = A[ i ]−1 , type = " covariance " , na . action = na . pass , plot = F) $

acf

112 phi = durbin (gamma = g , forecast = T)

113 se [ i ] = ( t s [A[ i ]]−sum( phi * tsF [ ( A[ i ]−1) : 1 ] ) ) ^2

114 }

115 return (mean( se ) )

116 }

117

118 ## Impute missing values in a time s e r i e s by forecast ing

119 f i l l T s = function ( ts , se = T , plot = F , l i n e = 5 , plot . col = " red " , name = " " ,

120 normalize = F , hyp = NULL, j = NULL, compact = T) {

121 ## Note : Wil l give error i f the f i r s t value i s NA or out of bounds

122 i f ( se ) sa2 = sigma2 ( t s )

123 t s . old = t s

124 tmax = length ( t s )

125 M = which ( i s . na ( t s ) )

126 maxNotNA = max( which ( table ( c (M, 1 : tmax ) ) ==1) )

127 for (m in M) {

128 mlag = i f e l s e (m > maxNotNA, maxNotNA−1, m−1)

129 g = acf ( ts , lag .max = mlag , type = " covariance " , na . action = na . pass , plot = F) $ acf

130 phi = durbin (gamma = g , forecast = T)
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131 t s [m] = sum( phi * t s [ mlag : 1 ] ) + i f e l s e ( se , rnorm(n = 1 , mean = 0 , sd = sqrt ( sa2 ) ) , 0)

132 }

133 i f ( normalize ) {

134 t s . old = scale ( t s . old )

135 t s = scale ( t s )

136 }

137 i f ( plot ) {

138 i f ( length (hyp) ) {

139 par (mar = c ( 0 , 4 . 5 , 0 , 1 ) + . 1 )

140 plot ( t s . old , type = " l " , l t y =1 , main = " " , xlab = " t " ,

141 ylab = bquote ( paste ( . ( hyp) [ . ( j ) ] ) ) , cex . lab = 1 . 5 )

142 } e lse i f ( compact ) {

143 par (mar = c ( 3 , 5 , 0 , 1 ) + . 1 )

144 plot ( t s . old , type = " l " , l t y =1 , main = " " , xlab = " " , ylab = " " )

145 i f ( nchar (name) ==2) name = bquote ( . ( substr (name, 1 , 1 ) ) [ . ( substr (name, 2 , 2 ) ) ] )

146 mtext ( bquote ( . ( name) ) , side = 2 , l i n e = 3 , l a s = 2 , cex= 1 . 3 )

147 i f (name ! = "y" ) axis ( 3 , at = seq (0 ,800 ,200) , l a b e l s = F)

148 } e lse {

149 plot ( t s . old , type = " l " , l t y =1 , main = " " , xlab = " " , ylab = " " )

150 }

151 i f ( length (M) ) {

152 apply (X=makeSeg(M, tmax ) , 1 , function (X) {

153 l i n e s (X [ 1 ] : X [ 2 ] , t s [X [ 1 ] : X [ 2 ] ] , type = " l " , l t y =line , col=plot . col ) } )

154 }

155 }

156 return ( t s )

157 }

158

159 ## Impute missing values in a data frame by forecast ing

160 f i l l D f = function ( df , se = T , plot = F , l i n e = 5 , plot . col = " red " , normalize = F ,

161 hyp = NULL, format = c (min( ncol ( df ) , 4 ) , 1 ) , compact = T) {

162 i f ( plot ) {

163 i f ( compact ) par (oma = c ( 3 , 0 , 3 . 5 , 0 ) + . 1 )

164 par (mfrow = format )

165 return ( sapply (X=colnames ( df ) , function (X) {

166 f i l l T s ( df [ , X ] , se = se , plot = T , l i n e = line , plot . col = plot . col , name =X ,
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167 normalize = normalize , hyp = hyp , j = which ( colnames ( df ) ==X)−1) } ) )

168 } e lse {

169 return ( sapply (X=colnames ( df ) , function (X) {

170 f i l l T s ( df [ , X ] , se = se , plot = F , normalize = normalize ) } ) )

171 }

172 }

173

174 ## Impute missing values in certain columns of a data frame

175 f i l l C o l = function ( df , cols = 1 : ncol ( df ) , se = T , clean = F , bounds = NULL, plot = F ,

176 format = c (min( ncol ( df ) , 4 ) , 1 ) , l i n e = 5 , compact = T ,

177 plot . col = " red " , normalize = F , hyp =NULL, save = F) {

178 i f ( clean ) df [ , cols ] = clean ( df [ , cols ] , bounds )

179 center = rep ( colMeans ( df [ , cols ] , na .rm = T) , rep . i n t (nrow( df ) , length ( cols ) ) )

180 df [ , cols ] = df [ , cols ]−center

181 i f ( save ) pdf ( "~/Elmet/Master/PDF/ f i g /ex . pdf" , width = 11 , height = 8)

182 df [ , cols ] = f i l l D f ( df [ , cols ] , se = se , plot = plot , l i n e = line ,

183 plot . col = plot . col , normalize = normalize , hyp = hyp ,

184 format = format )

185 i f ( compact ) {

186 t i t l e (main = "Observed time s e r i e s " , outer = T , l i n e = 1 . 5 , cex . main = 2 . 5 )

187 t i t l e ( xlab = " t " , outer = T , l i n e = 1 , cex . lab = 2)

188 }

189 i f ( save ) i n v i s i b l e ( dev . o f f ( ) )

190 return ( df )

191 }

192

193

194 ########### Regression ###########

195 ## Lagged regression

196 lagReg = function ( df , type = " cse " , lags = NULL, w = NULL, drop = "none" ,

197 ar = FALSE , max. ar = 4 , best . sub = 1 , conv . names = FALSE ,

198 neg . lags = FALSE , plot . sub = FALSE , delta = 1) {

199 ## Variables

200 # df : Data frame with output in f i r s t column

201 # type : simple = Zero lag from input to output ,

202 # max = Lag decided by l a r g e s t abs ccf ,
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203 # mce = Lag decided by a neighborhood delta of l a r g e s t abs ccf ,

204 # cse = Lags are a l l those between f i r s t and l a s t s i g n i f i c a n t ccf ,

205 # big = Lags are a l l s i g n i f i c a n t ccf ,

206 # lags : Overwrites " type " and may contain a l i s t of custom lags for input

207 # w: Vector of optional weighting of each column

208 # drop : Vector of optional columns to drop

209 # ar : Boolean of whether to expand each variable by autoregressive terms

210 # max. ar : Max order of automatic ar−f i t t i n g

211 # best . sub : Number of best regression subsets to display for each subset s i z e

212 # conv . names : Use mathematical notation for var iables in plot of best subsets

213 # neg . lags : Allow for negative lags

214 # plot . sub : Plot best subsets

215 # delta : See type−>mce

216

217 ## L i s t of lags

218 i f ( ! length ( lags ) ) {

219 i f ( type == " simple " ) {

220 lags = as . l i s t ( rep ( 0 , ncol ( df ) ) )

221 } e lse { lags = ccLags ( df , type , neg . lags = neg . lags , delta = delta ) }

222 }

223

224 ## Weights

225 i f ( ! length (w) ) w = lapply (X = lags , function (X) rep ( 1 , length (X) ) )

226

227 ## Drop columns

228 i f ( drop == "none" ) drop = which ( i s . na ( lags ) )

229 i f ( length ( drop )&length ( drop ) < ( ncol ( df )−1) ) {

230 df = df [ ,−drop ]

231 lags = lags [−drop ]

232 }

233

234 ## Make data frame

235 P = lagExpand ( df , lags )

236 i f ( ! conv . names) colnames (P) = sub ( " \ \ . 0 " , " " , colnames (P) )

237

238 ## Regression
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239 form = as . formula ( paste0 ( colnames (P) [ 1 ] , "~" ,

240 paste ( colnames (P) [−1] , collapse = "+" ) ) )

241 reg = lm( form , data=P)

242 out = l i s t ( "ORIGINAL" = summary( reg ) )

243

244 ## AR expansion

245 i f ( ar ) {

246 # AR c o e f f i c i e n t s

247 bic = sapply ( 1 :max. ar , function (X) {

248 i c ( arima ( reg$ residuals , order = c (X, 0 , 0 ) , include .mean = F) , type = " bic " ) } )

249 ar . order = which . min( bic )

250 ar . coeff = c ( 1 , arima ( reg$ residuals , order = c ( ar . order , 0 , 0 ) , include .mean = F) $coef )

251

252 ## Data frame

253 Q. idx = t ( matrix ( rep ((1+ ar . order ) : nrow(P) ,1+ ar . order ) ,

254 nrow = 1+ar . order , byrow = T) −0: ar . order )

255 Q = as . data . frame ( matrix ( apply (P , 2 , function ( x ) { sapply ( 1 : ( ar . order +1) ,

256 function ( y ) x [Q. idx [ , y ] ] ) } ) ,nrow = nrow(Q. idx ) ) )

257 subscript = c ( " " , sapply ( 1 : ar . order , function ( x ) paste0 ( " .AR" , x ) ) )

258 colnames (Q) = c ( sapply ( colnames (P) , function ( x ) paste0 ( x , subscript ) ) )

259 P = rmDependence(Q, lags , ar . order )

260

261 ## Regression

262 form = as . formula ( paste0 ( colnames (P) [ 1 ] , "~" ,

263 paste ( colnames (P) [−1] , collapse = "+" ) ) )

264 ar . reg = lm( form , data=P)

265 regComp( reg , ar . reg , names = c ( " Original " , "AR expansion" ) )

266 out = c ( out , l i s t ( "AR EXPANSION" = summary( ar . reg ) ) )

267 }

268

269 ## Best subset

270 i f ( best . sub ) {

271 i f ( ncol (P) <3) {

272 i f ( ar ) { best . reg = summary( ar . reg ) } e lse { best . reg = summary( reg ) }

273 }

274 else i f ( ncol (P) <=25) {
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275 sub . reg = regsubsets ( form , data = P , nbest = best . sub , nvmax = 20)

276 summ = summary( sub . reg )

277

278 ## Plot the optimal subsets

279 par (mfrow = c ( 1 , 1 ) , cex . main = 1 . 5 )

280 i f ( conv . names) { lab = tfColnames ( colnames (P) ) } e lse { lab = sub . reg$xnames}

281 i f ( plot . sub ) {

282 subPlot ( sub . reg , scale= " adjr2 " , l a b e l s = lab ,

283 main = expression ( bar (R) ^2 ~ " of regression subsets " ) )

284 len = sapply ( lags , length )

285 i f ( ar ) { copies = c ( ar . order , maxOrder ( lags , ar . order ) ) +1

286 } e lse { copies = rep ( 1 , sum( len ) ) }

287 abline ( v= cumsum( copies ) [cumsum( len ) [− length ( len ) ] ] + . 5 , col = ggCol ( 1 ) , lwd = 3)

288 }

289 ## Best regression

290 vars = summ$which [ which .max(summ$ adjr2 ) , ]

291 form = as . formula ( paste0 ( colnames (P) [ 1 ] , "~" , i f e l s e ( vars [ 1 ] , " " , "0 +" ) ,

292 paste ( colnames (P) [ c (FALSE , vars [−1]) ] , collapse = "+" ) ) )

293 best . reg = summary(lm( form , data = P) )

294 } e lse {

295 best . reg = bigSub (P)

296 }

297 out = c ( out , l i s t ( "BEST SUBSET" = best . reg ) )

298 }

299

300 return ( out )

301 }

302

303 ## For each column return a l i s t of lags with high correlat ion to f i r s t column

304 ccLags = function ( df , type = "max" , c i = 0.95 , max. lag = 7 , neg . lags =F ,

305 plot = F , delta = 1) {

306 par (mfrow=c ( ncol ( df ) −1 ,1) , mar = c ( 5 . 1 , 4 . 1 , 4 . 1 , 2 . 1 ) )

307 l i m i t = qnorm( ( 1 + c i ) / 2) / sqrt (nrow( df ) )

308 cross = sapply (X = 2 : ncol ( df ) , function (X) {

309 ccf ( df [ , 1 ] , df [ , X ] , lag .max = max. lag , plot = plot ,

310 main = paste0 ( " ccf ( y , x" , X−1," ) " ) , ylab = " " ) $ acf } )
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311 i f ( type == "max" ) {

312 lags = apply ( abs ( cross ) , 2 , which .max)−max. lag−1

313 } e lse i f ( type == "mce" ) {

314 mu = apply ( abs ( cross ) [−c ( 1 :max. lag ) , ] , 2 , which .max)−1

315 lags = lapply (mu, function (X) max(X−delta , 0) : ( X+delta ) )

316 } e lse i f ( type == " cse " ) {

317 big . cross = apply (X = abs ( cross ) , 2 , i nte r v a l , l i m i t ) − max. lag − 1

318 drop . col = which ( colSums ( i s . na ( big . cross ) ) >0)

319 i f ( ! length ( drop . col ) ) {

320 lags = al pl y ( big . cross , 2 , Seq )

321 } e lse i f ( length ( drop . col ) < ncol ( big . cross ) ) {

322 lags = lappend ( apply ( as . matrix ( big . cross [ ,−drop . col ] ) , 2 , Seq ) , drop . col )

323 }

324 } e lse i f ( type == " big " ) {

325 lags = apply (X = abs ( cross ) , 2 , function (X) which (X> l i m i t )− max. lag − 1)

326 lags [ sapply ( lags , function ( x ) length ( x ) ) ==0]=NA

327 } e lse {

328 stop ( "No type cal led " , type )

329 }

330 lags = addZero ( lags )

331 i f ( ! neg . lags ) lags = lapply ( lags , function (X) i f (sum(X>=0 , na .rm=T) ) {X[X>=0]

332 } e lse {NA} )

333 return ( lags )

334 }

335

336 ## Compare two regressions by t h e i r residuals

337 regComp = function ( reg1 , reg2 , names = c ( "A" , "B" ) ) {

338 par (mar = c ( 4 . 1 , 4 , 4 , 1 ) )

339 par (mfrow = c ( 2 , 2 ) )

340 acf ( reg1$ residuals , main = paste ( " Regression : " , names [ 1 ] ) )

341 acf ( reg2$ residuals , main = paste ( " Regression : " , names [ 2 ] ) )

342 par (mar = c ( 4 . 1 , 4 , 1 , 1 ) )

343 pacf ( reg1$ residuals , main = " " )

344 pacf ( reg2$ residuals , main = " " )

345 }

346
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347 ## Remove l i n e a r l y dependent columns from df

348 rmDependence = function ( df , l s t , order ) {

349 mo = maxOrder ( l s t , order )

350 vec = c ( rbind (mo+1 , order−mo) )

351 t f = u n l i s t ( sapply ( 1 : length ( vec ) , function ( x ) {

352 i f ( x%%2) {

353 out = rep ( 1 , vec [ x ] )

354 } e lse {

355 out = rep ( 0 , vec [ x ] )

356 }

357 return ( out )

358 } ) )

359 return ( df [ , t f ==1])

360 }

361

362 ## Modified leaps : : plot . regsubsets

363 subPlot = function ( x , l a b e l s = obj$xnames , col = gray ( seq ( 0 , 0 . 9 , length = 10) ) ,

364 main = NULL, scale = c ( " bic " , "Cp" , " adjr2 " , " r2 " ) ) {

365 obj <− x

366 lsum <− summary( obj )

367 par (mar = c ( 7 , 5 , 6 , 3) + 0 . 1 )

368 nmodels <− length ( lsum$rsq )

369 np <− obj$np

370 propscale <− FALSE

371 sscale <− pmatch( scale [ 1 ] , c ( " bic " , "Cp" , " adjr2 " , " r2 " ) ,

372 nomatch = 0)

373 i f ( sscale == 0)

374 stop ( paste ( "Unrecognised scale=" , scale ) )

375 i f ( propscale )

376 stop ( paste ( " Proportional scal ing only for p r o b a b i l i t i e s " ) )

377 yscale <− switch ( sscale , lsum$bic , lsum$cp , lsum$adjr2 ,

378 lsum$rsq )

379 up <− switch ( sscale , −1, −1, 1 , 1)

380 index <− order ( yscale * up)

381 colorscale <− switch ( sscale , yscale , yscale , −log (pmax( yscale ,

382 1e−04) ) , −log (pmax( yscale , 1e−04) ) )
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383 image ( z = t ( i f e l s e ( lsum$which [ index , ] , colorscale [ index ] ,

384 NA + max( colorscale ) * 1 . 5 ) ) , xaxt = "n" , yaxt = "n" ,

385 x = ( 1 : np) , y = 1 : nmodels , xlab = " " , ylab = " " ,

386 col = col )

387 laspar <− par ( " l a s " )

388 on . e x i t ( par ( l a s = laspar ) )

389 par ( l a s = 2)

390 axis ( 1 , at = 1 :np , l a b e l s = l a b e l s )

391 axis ( 2 , at = 1 : nmodels , l a b e l s = s i g n i f ( yscale [ index ] , 2) )

392 i f ( ! i s . nul l (main) )

393 t i t l e (main = main)

394 box ( )

395 i n v i s i b l e (NULL)

396 }

397

398 ## Choosing a good subset when there are many variables

399 bigSub = function ( df ) {

400 prev = −1

401 current = 0

402 vars = colnames ( df ) [−1]

403 form = as . formula ( paste0 ( colnames ( df ) [ 1 ] , "~" , paste ( vars , collapse = "+" ) ) )

404 reg = summary(lm( form , data=df ) )

405 i f ( reg$df [2]==0) vars = reduce ( vars , reg$df [3]−nrow( df ) +1)

406

407 t o l = 0.001

408 while ( current−prev > −t o l | length ( vars ) >=0.75 * ( ncol ( df )−1)&length ( vars ) >0) {

409 prev = current

410 prev . reg = reg

411 form = as . formula ( paste ( colnames ( df ) [ 1 ] , "~" , paste ( vars , collapse = "+" ) ) )

412 reg = summary(lm( form , data=df ) )

413

414 current = reg$adj . r . squared

415 low . p = which .max( reg$ c o e f f i c i e n t s [ −1 ,4])

416 vars = vars [−low . p]

417 }

418 return ( prev . reg )
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419 }

420

421 ## Remove the most lagged variables using names

422 reduce = function ( vars , amount =1) {

423 cat ( "Removing" , amount , " var iables . \ n" )

424 s t r = sub ( "m" , " " , regmatches ( vars , gregexpr ( "m.+ $" , vars ) ) )

425 s t r [ nchar ( s t r ) >2] = "0"

426 m = as . numeric ( s t r )

427 return ( vars [−order (m, decreasing = T) [ 1 : amount ] ] )

428 }

429

430 ## Transform colnames from code to formula

431 tfColnames = function ( colnam ) {

432 ## Break apart s t r i n g

433 n = length ( colnam )

434 core = regmatches ( colnam , regexpr ( " ^(y ) | ( [ x ] \ \d+) " , colnam ) )

435 s h i f t = as . numeric ( chartr ( " .pm" , " −" ,

436 regmatches ( colnam , regexpr ( " \ \ . . ? \ \ d+" , colnam ) ) ) )

437 ap = regexpr ( "AR\\d+" , colnam ) [ 1 : n]+2

438 an = rep ( 0 , n)

439 an [ which ( ap ! =1) ] = as . numeric ( sapply ( which ( ap ! =1) , function ( x ) {

440 substr ( colnam [ x ] , ap [ x ] , ap [ x ] ) } ) )

441 ss = s h i f t−an

442 ss = sub ( "^0" , " " , ss )

443 pos = grep ( " ^\\d" , ss )

444 ss [ pos ] = paste0 ( "+" , ss [ pos ] )

445 ss = paste0 ( " t " , ss )

446

447 ## Put s t r i n g together in new format

448 out = sapply ( 1 : n , function ( x ) {

449 s = i f e l s e ( grepl ( " \\d" , core [ x ] ) , " , " , " " )

450 name = bquote ( . ( substring ( core [ x ] , 1 , 1 ) ) [

451 . ( paste ( substring ( core [ x ] , 2 ) , ss [ x ] , sep = s ) ) ] )

452 i f ( an [ x ] ) {

453 name = bquote ( . ( name)%.%phi1 [ . ( an [ x ] ) ] )

454 }



CHAPTER 7. R CODE 74

455 return ( as . expression (name) )

456 } )

457 out [ 1 ] = " ( Intercept ) "

458 return ( out )

459 }

460

461

462 ########## Simulation ##########

463 ## Make data frame with lagged variables

464 lagExpand = function ( df , lags ) {

465 ## Index matrix

466 y . s t a r t = 1 + max( sapply ( lags ,max) , 0 )

467 y . end = nrow( df ) + min( sapply ( lags , min) , 0 )

468 i f (sum( i s . na ( c ( y . s t a r t , y . end) ) ) ) print ( lags )

469

470 P . idx = lapply (X = lags , function (X) {

471 t ( matrix ( rep ( y . s t a r t : y . end , length (X) ) , nrow = length (X) , byrow = T)−X) } )

472

473 # ERROR TEST

474 i f ( length (P . idx ) ! = ncol ( df ) ) {

475 print ( colnames ( df ) )

476 print ( lags )

477 lapply (P . idx , function (X) print ( head (X) ) )

478 }

479

480 ## Data frame from indices

481 P = sapply (X = 1 : ncol ( df ) , function (X) {

482 sapply ( 1 : ncol (P . idx [ [ X ] ] ) , function ( y ) df [P . idx [ [ X ] ] [ , y ] , X ] ) } )

483 P = as . data . frame ( matrix ( u n l i s t (P) , ncol = length ( u n l i s t ( lags ) ) ) )

484 add = sapply ( lags , function ( x ) {

485 i f e l s e ( x==0 , " " , paste0 ( i f e l s e ( x <0 , " . p" , " .m" ) , abs ( x ) ) ) } , s impli fy = FALSE)

486 colnames (P) = u n l i s t ( sapply ( 1 : length ( lags ) , function ( x ) {

487 paste0 ( colnames ( df ) [ x ] , add [ [ x ] ] ) } ) )

488 return (P)

489 }

490
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491 ## Construct a random df

492 makeX = function (n , k=length ( type ) , type = sample ( 1 : 3 , k , replace = T) , print = TRUE) {

493 ## Produce data

494 out = lapply ( 1 : k , function (X) {

495 scale = 1 # runif ( 1 , 1 , 1000)

496 i f ( type [X] == 1) {

497 SD = runif ( 1 , . 1 , 1 . 5 )

498 MU = runif ( 1 , −1, 1)

499 v = rnorm(n , sd = SD, mean = MU) * scale

500 v . s t r = s p r i n t f ( "%−9s −−− mean = %* . 2 f , sd = %* . 2 f " ,

501 "Normal" , 7 , mean( v ) , 7 , sd ( v ) )

502 } e lse i f ( type [X] == 2) {

503 v = ( runif (n , −1, 1) ) * scale

504 v . s t r = s p r i n t f ( "%−9s −−− mean = %* . 2 f , sd = %* . 2 f " ,

505 "Uniform" , 7 , mean( v ) , 7 , sd ( v ) )

506 } e lse {

507 AR = runif ( sample ( 0 : 1 , 1 ) ,−1 ,1)

508 MA = runif ( i f e l s e ( length (AR) , sample ( 0 : 1 , 1 ) , 1 ) ,−1 ,1)

509 v = as . numeric ( arima . sim ( l i s t ( ar = AR, ma =MA) , sd = scale , n = n) )

510 v . s t r = paste0 ( "ARMA( " , i f e l s e ( length (AR) , 1 , 0) , " , " ,

511 i f e l s e ( length (MA) , 1 , 0) , " ) −−− " ,

512 i f e l s e ( length (AR) , s p r i n t f ( " AR = %* . 2 f , " , 7 , AR) , " " ) ,

513 i f e l s e ( length (MA) , s p r i n t f ( "MA = %* . 2 f , " , 7 , MA) , " " ) ,

514 s p r i n t f ( "sd = %* . 2 f " , 7 , scale ) )

515 }

516 names( v ) = v . s t r

517 return ( v )

518 } )

519 ## Format output

520 nam = paste0 ( "x" , 1 : k )

521 i f ( print ) cat ( paste (nam, sapply ( out , function (X) names(X) [ 1 ] ) , sep=" ~ " ) , sep=" \n" )

522 out = as . data . frame ( out )

523 colnames ( out ) = nam

524 return ( out )

525 }

526
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527 ## Simulate df with response

528 makeDF = function (n = 100 , k = 1 , max. lag = 7 , df = scale (makeX(n , k , print = FALSE) ) ,

529 lags = NULL, beta = NULL, max. expand = 3 , sd . noise = 1) {

530 ## Produce input

531 i f ( ! length ( lags ) ) {

532 lags = r e p l i c a t e ( ncol ( df ) , seq ( from = sample ( 0 :max. lag , 1 ) ,

533 length . out=sample ( 1 :max. expand , 1 ) ) , s impli fy = FALSE)

534 }

535 i f ( ! i s . l i s t ( lags ) ) lags = l i s t ( lags )

536 i f ( ! length ( colnames ( df ) ) ) colnames ( df ) = paste0 ( "x" , 1 : ncol ( df ) )

537 P = lagExpand ( df , lags )

538

539 ## Compute output

540 i f ( ! length ( beta ) ) beta = runif ( ncol (P) , 1 ,3) *sample ( c (−1 ,1) , 1 )

541 names( beta ) = colnames (P)

542 y = scale ( as . matrix (P)%*%beta + rnorm(nrow(P) , 0 , sd . noise ) )

543 sdy = sd ( y )

544 y = scale ( y )

545 y . s t a r t = 1 + max( sapply ( lags ,max) , 0 )

546 y . end = nrow( df ) + min( sapply ( lags , min) , 0 )

547 out = as . data . frame ( cbind ( y , df [ y . s t a r t : y . end , ] ) )

548 colnames ( out ) = c ( "y" , paste0 ( "x" , 1 : ncol ( df ) ) )

549 return ( l i s t ( data = out , coeff = beta /sdy ) )

550 }

551

552 ## Test performance of lagged regression

553 t e s t = function (n , k , sd . noise = 1 , print = FALSE) {

554 a = makeDF(n , k , sd . noise = sd . noise )

555 b = lagReg ( a$data , type = " cse " , best . sub = 1)$ ’BEST SUBSET ’

556

557 r e a l = a$ coeff

558 est = b$ coeff [−1 , " Estimate " ]

559

560 nam = sort ( unique ( c (names( est ) ,names( r e a l ) ) ) )

561 S = cbind ( r e a l [nam] , est [nam] )

562 S [ i s . na ( S ) ] = 0
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563 rownames( S ) = nam

564 S = cbind ( S , ( S[ ,1]−S [ , 2 ] ) )

565 colnames ( S ) = c ( "True" , " Estimate " , " Rel . error " )

566

567 out = mean( S [ , 3 ] ^ 2 )

568 i f ( out >1) {

569 print ( "Bad performance : " )

570 cat ( "n =" , n , " \nk =" , k , " \ nst . dev noise =" , sd . noise , " \n\n" )

571 }

572

573 i f ( print ) {

574 print ( S , d i g i t s = 4 , na . print = " " , print . gap = 3)

575 cat ( paste ( " \nAdj . R squared : " ,b$adj . r . squared , " \n" ) )

576 }

577 return ( out )

578 }

579

580 ## Multiple t e s t s

581 performance = function ( reps = 100) {

582 ## Variables

583 # reps : Number of r e p e t i t i o n s for each s e t t i n g

584

585 n = c (500 , 1000 , 5000)

586 k = c ( 2 , 5 , 10 , 30)

587 s = c ( . 1 , . 5 , 1 , 1 . 5 , 2)

588 l v l = expand . grid (n , k , s )

589 y = apply (X = l v l , 1 , function (X) {

590 print (unname(X) )

591 return (mean( r e p l i c a t e ( reps , t e s t (X [ 1 ] , X [ 2 ] , sqrt (X [ 3 ] ) ) ) ) ) } )

592 R = cbind ( y , l v l )

593 colnames (R) = c ( "y" , "n" , "k" , " s " )

594 f i t = lm( y ~ (n + k + s ) ^2 + I (n^ ( . 5 ) ) + I ( k^2) + I ( s ^2) , data = R)

595 #+ I (n^ ( . 5 ) )

596 return ( l i s t (R, summary( f i t ) ) )

597 }

598
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599

600 ########## AR ##########

601 ## Sampling stat ionary coef fs of an AR( 2 )

602 complexRoots = function (n = 1) {

603 out = r e p l i c a t e (n , expr = {

604 repeat {

605 x = runif ( 1 , −2, 2)

606 y = runif (1 ,−1 ,0)

607 i f ( y < −x^2/ 4) {

608 break

609 }

610 }

611 return ( c ( x , y ) )

612 } )

613 return ( out )

614 }

615

616 ## Add AR( 2 )−t r i a n g l e

617 addAR = function ( l i n e = 2 . 5 , cex = 1 . 3 ) {

618 t i t l e ( " " )

619 mtext ( expression ( phi [ 1 ] ) , side = 1 , l i n e = l i n e +.3 , l a s = 1 , cex = cex )

620 mtext ( expression ( phi [ 2 ] ) , side = 2 , l i n e = line , l a s = 2 , cex = cex )

621 segments ( x0 = −2, y0 = −1, x1 = 0 , y1 = 1)

622 segments ( x0 = 0 , y0 = 1 , x1 = 2 , y1 = −1)

623 segments ( x0 = −2, y0 = −1, x1 = 2)

624 curve(−x^2/ 4 , −2, 2 , add = T)

625 }

626

627 ## P l o t t i n g coef fs of an AR( 2 )

628 plotCoeff = function ( coeff , pch = 1 , bg = F , cex = 1 . 2 ) {

629 plot (NA, ylab = " " , xlab = " " , ylim = c (−1 ,1) , xlim = c (−2 ,2) )

630 addAR ( )

631 x = coeff [ 1 , ]

632 y = coeff [ 2 , ]

633 i f ( bg ) {

634 ex = 0.2
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635 lsw = strwidth ( pch ) ; w <− lsw /2* (1+ ex ) * cex

636 lsh = strheight ( pch ) ; h <− lsh /2* (1+ ex ) * cex

637 rect ( x−w, y−h , x+w, y+h , col= ’ white ’ , border=NA)

638 t e x t ( x , y , pch , cex = cex )

639 } e lse {

640 points ( x = x , y = y , pch = pch , cex = cex )

641 }

642 }

643

644 ## Compare ACFs of AR( 2 ) processes

645 compARe = function ( s i z e = 5 , bg = T , coeff = NULL, cpdim = c ( 2 , 2 ) , cex = 1 . 5 ,

646 save . s i z e = NULL, filename = "~/Elmet/Master/PDF/ f i g / acf . pdf" ) {

647 ## Draw random c o e f f i c i e n t s i f not supplied

648 i f ( length ( coeff ) ) {

649 s i z e = ncol ( coeff )

650 } e lse {

651 coeff = complexRoots ( s i z e )

652 }

653

654 ## Plot layout

655 i f ( length ( save . s i z e ) ) pdf ( filename , width = save . s i z e [ 1 ] , height = save . s i z e [ 2 ] )

656 i f ( s i z e > 25) stop ( " Size cannot exceed 25. " )

657 i f ( s i z e > 5) {

658 dim = nbym( s i z e +prod (cpdim) , square = F)

659 c d i f f = dim[2]−cpdim [ 2 ]

660 r d i f f = dim[1]−cpdim [ 1 ]

661 L = matrix ( 1 ,dim [ 1 ] , dim [ 2 ] )

662 i f ( c d i f f >0) L [ 1 : cpdim [ 1 ] , −(1:cpdim [ 2 ] ) ] = seq ( 2 , length . out = cpdim [ 1 ] * c d i f f )

663 i f ( r d i f f >0) { L [ ( cpdim[ 1 ] + 1 ) : dim [ 1 ] , ] =

664 matrix ( seq (cpdim [ 1 ] * c d i f f +2 , length . out = r d i f f *dim [ 2 ] ) , byrow=T , nrow= r d i f f )

665 }

666 layout ( L )

667 } e lse { par (mfrow = nbym( s i z e +1 , square = F) ) }

668

669 nam = LETTERS [ 1 : s i z e ]

670 colnames ( coeff ) = nam
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671 par (mar = c ( 5 , 4 , 2 , 1 ) ,oma=c ( 0 , 0 , 3 , 0 ) )

672

673 ## Plot

674 plotCoeff ( coeff , pch = nam, bg = bg , cex = cex )

675 par (mar = c ( 3 . 5 , 4 , 2 , 1 ) )

676 l _ ply ( colnames ( coeff ) , function (X) {

677 plot ( 0 : 2 0 , ARMAacf( ar = coeff [ , X ] , lag .max = 20) , type = "h" , ylim = c (−1 ,1) ,

678 ylab = " " , xlab = " " )

679 mtext ( s p r i n t f ( "T = %.2 f \nr = %.2 f " , period ( coeff [ , X ] ) , sqrt (−coeff [ 2 ,X ] ) ) , 3 ,

680 adj =0.99 , l i n e =−1, cex = 0 . 7 , bg = " white " )

681 t i t l e ( ylab = "ACF" , l i n e = 2 . 2 , adj = 0 . 5 )

682 t i t l e ( xlab = " lag " , l i n e = 2 . 2 , adj = 0 . 5 )

683 t i t l e (X , l i n e = 0 . 5 , adj = 0 . 5 , cex . main = 1 . 5 )

684 abline (h=0)

685 } )

686 t i t l e ( " Autocorrelation of AR( 2 ) models" , cex . main = 2 , outer=TRUE)

687 i f ( length ( save . s i z e ) ) i n v i s i b l e ( dev . o f f ( ) )

688 }

689

690 ## Returning optimal grid dimensions for number of e n t r i e s

691 nbym = function ( size , square = TRUE) {

692 dim = rep ( c e i l i n g ( sqrt ( s i z e ) ) , 2 )

693 i f ( ! square && dim[ 1 ] * (dim[1]−1)>= s i z e ) dim = c (dim [ 1 ] , dim[1]−1)

694 return (dim)

695 }

696

697 ## Period of the acf of an AR( 2 )

698 period = function ( phi ) {

699 i f e l s e ( phi [ 2 ] >= −phi [1]^2 /4 | phi [ 2 ] <= −1,

700 −1, 2* pi /acos ( phi [ 1 ] / (2 * sqrt (−phi [ 2 ] ) ) ) )

701 }

702

703 ## Damping f a c t o r of the afc of an AR( 2 )

704 amp = function ( phi ) {

705 i f e l s e ( phi [ 2 ] >= −phi [1]^2 /4 | phi [ 2 ] <= −1,

706 −1, sqrt (−phi [ 2 ] ) )
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707 }

708

709 ## P l o t t i n g the period and damping f a c t o r of an AR( 2 )

710 plotAR = function ( re sol = 1000 , ncolor = 64 , maxT = 30 , maxR = 1.05 ,

711 i n t e n s i t y = 0 . 7 , save . s i z e = NULL,

712 filename = "~/Elmet/Master/PDF/ f i g / t r . pdf" ) {

713 re so l = r eso l + 1

714 xvals = seq (−2 ,2 , length . out = r eso l )

715 yvals = seq (−1 ,0 , length . out = r eso l )

716 per = matrix ( apply ( expand . grid ( xvals , yvals ) , 1 , period ) , ncol = r eso l )

717 amp = matrix ( apply ( expand . grid ( xvals , yvals ) , 1 , amp) , ncol = r eso l )

718

719 i f ( length ( save . s i z e ) ) pdf ( filename , width = save . s i z e [ 1 ] , height = save . s i z e [ 2 ] )

720 par (mfrow = c ( 2 , 1 ) , mar = c ( 4 . 1 , 4 . 1 , 3 . 1 , 4 . 1 ) , oma = c ( 0 , 0 , 0 , 0 ) , cex . main = 1 . 3 )

721 image . plot ( x = xvals , y = yvals , z=per , zlim = c ( 0 ,maxT) ,

722 col = heat . colors ( ncolor , alpha = i n t e n s i t y ) , ylab = " " , xlab = " " ,

723 ylim = c (−1 ,1) , xlim = c (−2 ,2) , main = " Period (T) of the ACF" )

724 addAR ( )

725

726 image . plot ( x = xvals , y = yvals , z=amp, zlim = c ( 0 ,maxR) ,

727 col = heat . colors ( ncolor , alpha = i n t e n s i t y ) , ylab = " " , xlab = " " ,

728 ylim = c (−1 ,1) , xlim = c (−2 ,2) , main = "Decay constant ( r ) of the ACF" )

729 addAR ( )

730 i f ( length ( save . s i z e ) ) i n v i s i b l e ( dev . o f f ( ) )

731 }

732

733 ## Plot the ccf of a complex AR( 2 ) and a lagged response

734 ccfAR = function ( phi , subset = NULL, lags = c ( 3 , 4 , 5 ) , beta = c ( 1 , 1 , 1 ) , n = 1000 ,

735 sd = 1 , lag .max = 20 , xlim = c ( 0 , lag .max) , ylim = c (−1 ,1) ,

736 main = " ccf ( x , y ) " , ylab = " " , xlab = " lag " , cex . lab = 1 . 5 ,

737 print = F) {

738 i f ( length ( subset ) ) phi = phi [ , subset ]

739 df = makeDF( df = matrix ( arima . sim ( l i s t ( ar = phi ) , n = n , sd = sd ) ) , lags = lags ,

740 beta = beta ) $data

741 cc = ccf ( df [ , 1 ] , df [ , 2 ] , lag .max = lag . max, ylab = ylab , xlab = xlab , xlim = xlim ,

742 cex . lab = cex . lab , main = i f e l s e ( length ( subset ) , subset , main) ,
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743 ylim = ylim ) $ acf [ −(1: lag .max) ]

744 i f ( print ) {

745 print ( " S i g n i f i c a n t lags : " )

746 print ( i n t e r v a l ( abs ( cc ) , qnorm( ( 1 + 0.95) / 2) / sqrt (n) )−1)

747 cat ( "Max abs lag : " , which .max( abs ( cc ) )−1, " \n" )

748 }

749 }

750

751 ## Plot the e f f e c t of autocorrelation on crosscorrelat ion

752 ccfChange = function ( phi , subset = NULL, lags = c ( 3 , 4 , 5 ) , beta = c ( 1 , 1 , 1 ) ,

753 n = 1000 , xlim = c (0 ,20) , ylim = c (−1 ,1) , idx = 1 ,

754 s t a r t = min( 1 , idx ) , end = max( 0 , idx ) , cex . lab = 1 . 5 ,

755 main = colnames ( phi ) [ subset ] , print = F) {

756 par (mar = c ( 3 . 1 , 3 . 1 , 3 . 1 , 0) )

757 plot ( lags , beta , type = "h" , ylab = " " , xlab = " " ,

758 xlim = xlim , ylim = ylim , main = main , cex . lab = cex . lab )

759 abline (h = 0)

760 i f ( subset ! = end) axis ( 4 , at = seq ( −1 ,1 , .5) , l a b e l s = F)

761 i f ( length ( subset ) ) phi = phi [ , subset ]

762 par (mar = c ( 3 . 1 , 3 . 1 , 0 , 0) )

763 plot ( Seq ( xlim ) , ARMAacf( ar = phi , lag .max = 20) , type = "h" , ylim = c (−1 ,1) ,

764 ylab = " " , xlab = " " , main = " " , cex . lab = cex . lab )

765 lim = qnorm( ( 1 + 0.95) / 2) / sqrt (n)

766 abline (h = c(−lim , 0 , lim ) , col = c ( " blue " , " black " , " blue " ) , l t y = c ( 2 , 1 , 2 ) )

767 axis ( 3 , at = seq ( 0 , 2 0 , 5 ) , l a b e l s = F)

768 i f ( subset ! = end) axis ( 4 , at = seq ( −1 ,1 , .5) , l a b e l s = F)

769 par (mar = c ( 3 . 1 , 3 . 1 , 0 , 0) )

770 ccfAR ( phi = phi , main = " " , ylab = " " , xlab = " " , print = print )

771 axis ( 3 , at = seq ( 0 , 2 0 , 5 ) , l a b e l s = F)

772 i f ( subset ! = end) axis ( 4 , at = seq ( −1 ,1 , .5) , l a b e l s = F)

773 }

774

775 ## Multiple plots of the e f f e c t of autocorrelation on crosscorrelat ion

776 cchange = function ( phi , filename = "~/Elmet/Master/PDF/ f i g /cchange . pdf" ,

777 save . s i z e = NULL, idx = 1 : ncol ( phi ) , print = F) {

778 i f ( length ( save . s i z e ) ) pdf ( filename , width = save . s i z e [ 1 ] , height = save . s i z e [ 2 ] )
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779 mat = matrix ( 1 : ( ncol ( phi ) * 3) , nrow = 3 , ncol = ncol ( phi ) )

780 layout (mat , c ( rep ( 1 , 6 ) ) , c ( 1 . 2 , 1 , 1 ) )

781 par (oma = c ( 2 , 2 , 3 , 1 ) )

782 cc = sapply ( idx , function ( x ) ccfChange ( phi , subset = x , idx = idx , print = print ) )

783 par ( cex . main = 2 , cex . lab = 1 . 7 )

784 t i t l e (main = " E f f e c t of autocorrelation on crosscorrelat ion " , outer = T , l i n e = 1)

785 l a be l = c ( " ccf ( x , y ) " , " acf ( x ) " , " C o e f f i c i e n t s " )

786 adjv = c ( . 1 5 , .545 , . 9 2 ) * ( par ( "omd" ) [4]−par ( "omd" ) [ 3 ] ) + par ( "omd" ) [ 3 ]

787 adjh = .51 * ( par ( "omd" ) [2]−par ( "omd" ) [ 1 ] ) + par ( "omd" ) [ 1 ]

788 sapply ( 1 : length ( adjv ) , function ( x ) t i t l e ( ylab = l ab e l [ x ] , adj = adjv [ x ] , outer = T ,

l i n e = 0) )

789 t i t l e ( xlab = " lag " , adj = adjh , outer = T , l i n e = 0)

790 i f ( length ( save . s i z e ) ) i n v i s i b l e ( dev . o f f ( ) )

791 }

792

793 ## Plot a s e r i e s along with ACF and PACF

794 t s P l o t = function ( z , main = expression ( z [ t ] ) , kmax = 20 , res = 0 , cols = 1 ,

795 add = F , sub = subst i tute ( hat ( I ) ) ) {

796 i f ( ! add ) par ( mfcol = c ( 3 , cols ) )

797 par ( cex . lab = 1 . 5 , cex . main = 2 , mar = c ( 4 , 4 . 5 , 4 , 1 ) + . 1 )

798 plot ( z , ylab = " " , xlab = " t " , main = main)

799 par (mar = c ( 4 , 4 . 5 , 1 , 1 ) + . 1 )

800 i f ( res ==1) { mtext ( bquote ( hat ( epsilon ) [ s c r i p t s c r i p t s t y l e ( l i s t ( . ( sub ) , t ) ) ] ) ,

801 side = 2 , l i n e = 2 . 4 , l a s = 2)

802 } e lse i f ( res == 2) { mtext ( bquote ( hat ( epsilon ) [ l i s t ( . ( sub ) , t ) ] ) ,

803 side = 2 , l i n e = 2 . 4 , l a s = 2)

804 } e lse i f ( res == 3) { mtext ( expression ( hat ( a ) [ t ] ) , side = 2 , l i n e = 2 . 4 , l a s = 2)

805 } e lse i f ( res == 4) { mtext ( expression ( hat (b) [ t ] ) , side = 2 , l i n e = 2 . 4 , l a s = 2)

806 } e lse { mtext ( expression ( z [ t ] ) , side = 2 , l i n e = 2 . 4 , l a s = 2) }

807 acf ( z , ylim = c (−1 ,1) , ylab = " " , xlab = "k" , main = " " , lag .max = kmax)

808 mtext ( expression ( hat ( rho ) [ k ] ) , side = 2 , l i n e = 2 . 4 , l a s = 2)

809 y = pacf ( z , ylim = c (−1 ,1) , ylab = " " , main = " " , plot = F , lag .max = kmax) $ acf

810 plot ( 0 : kmax, c ( 1 , y ) , type = "h" , ylim = c (−1 ,1) , ylab = " " , xlab = "k" )

811 lim = qnorm( ( 1 + 0.95) / 2) / sqrt ( length ( z ) )

812 abline (h = c(−lim , 0 , lim ) , col = c ( " blue " , " black " , " blue " ) , l t y = c ( 2 , 1 , 2 ) )

813 mtext ( expression ( hat ( phi ) [ kk ] ) , side = 2 , l i n e = 2 . 4 , l a s = 2)
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814 }

815

816 ## Plot the sample CCF between input and output

817 cc = function ( df ) {

818 par (mfrow = c ( 3 , 1 ) , mar = c ( 3 , 5 , 0 , 1 ) +.1 , oma = c ( 3 , 0 , 3 . 5 , 0 ) + . 1 )

819 sapply ( 1 : 3 , function (X) {

820 ccf ( df [ , 1 ] , df [ , X+1] , lag .max = 7 , xlab = " " ,

821 ylab = " " ,main = bquote ( paste ( r [ paste ( x [ . ( X) ] , y , sep=" " ) ] , ( k ) ) ) ,

822 xlim = c ( 0 , 7 ) , ylim = c (−1 ,1) , cex . lab = 1 . 5 )

823 i f (X ! = 1) axi s ( 3 , at = seq ( 0 , 7 ) , l a b e l s = F)

824 mtext ( bquote ( x [ . ( X) ] ) , side = 2 , l i n e = 3 , l a s = 2 , cex= 1 . 3 )

825 } )

826 t i t l e (main = "Sample CCF between input and output" ,

827 outer = T , l i n e = 1 . 5 , cex . main = 2 , adj = 0.53)

828 t i t l e ( xlab = " lag " , outer = T , l i n e = 1 , cex . lab = 2 , adj = 0.53)

829 }

830

831 ########### Workspace ###########

832 l i b r a r y ( readxl ) # Loading data

833 l i b r a r y ( forecast ) # ARIMA models

834 l i b r a r y ( leaps ) # Subset regression

835 l i b r a r y ( car ) # Subset regression

836 l i b r a r y ( plyr ) # More apply−functions

837 l i b r a r y ( f i e l d s ) # Plot b i v a r i a t e functions

838

839 rm( l i s t = l s ( ) )

840 setwd ( "~/Elmet/Master/Data" )

841 load ( "~/Elmet/Master/Data/master28 . RData" )

842

843 ########### Model ###########

844 # M i s a data frame with output in the f i r s t column

845

846 ## Lagged regression

847 lagReg (M)

848 lagReg (M, type = " big " , ar = T , best . sub = F)

849 lagReg (M, type = "mce" , ar = T , best . sub = F)
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850 lagReg (M, type = " cse " , ar = T , best . sub = F)

851

852

853 ########## Performance ##########

854 set . seed (100)

855 t e s t (100 , 5 , sd . noise = 1 , print = T)

856

857 a = performance ( reps = 1000) # 18h

858 fm = lm( y ~ (n + k + s ) ^2 + I (n^2) + I ( k^2) + I ( s ^2)+

859 I (n^0.5) + I ( k ^0.5) + I ( s ^0.5) , data= a [ [ 1 ] ] )

860 summary( step (fm, direction = "backward" , trace=FALSE ) )

861

862 ########## ARMA ##########

863 ## P l o t t i n g example time s e r i e s

864 set . seed (100)

865 z1 = arima . sim (model = l i s t ( ar = c ( . 8 , −.8) ) , n = 200)

866 z2 = arima . sim (model = l i s t (ma = . 8 ) , n = 200)

867 var ( z1 )

868 var ( z2 )

869

870 pdf ( "~/Elmet/Master/PDF/ f i g /arma . pdf" , width = 9 , height = 7)

871 par (mfrow = c ( 2 , 1 ) , cex . lab = 1 . 5 , mar = c ( 5 , 3 , 3 , 1 ) + . 1 )

872 plot ( z1 , ylab = " " , xlab = " t " , main = "AR( 2 ) " )

873 plot ( z2 , ylab = " " , xlab = " t " , main = "MA( 1 ) " )

874 i n v i s i b l e ( dev . o f f ( ) )

875

876 ## P l o t t i n g a summary of AR( 1 )

877 set . seed (200)

878 z3 = arima . sim (model = l i s t ( ar = c ( . 8 ) ) , n = 200)

879 z4 = arima . sim (model = l i s t ( ar = c ( − .8) ) , n = 200)

880

881 pdf ( "~/Elmet/Master/PDF/ f i g / ar1 . pdf" , width = 7 , height = 7)

882 par ( mfcol = c ( 3 , 2 ) )

883 t s P l o t ( z3 , main = expression ( z [ t ] == 0.8 * z [ t −1] + epsilon [ t ] ) )

884 t s P l o t ( z4 , main = expression ( z [ t ] == −0.8 * z [ t −1] + epsilon [ t ] ) )

885 i n v i s i b l e ( dev . o f f ( ) )
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886

887 ########## AR( 1 ) ##########

888 ## E f f e c t of autocorrelation on crosscorrelat ion

889 phi1 = cbind (− .95 , −.5 , . 5 , . 9 5 )

890 colnames ( phi1 ) = LETTERS [ 1 : ncol ( phi1 ) ]

891 cchange ( phi1 , save . s i z e = c ( ncol ( phi1 ) * 2 ,7) ,

892 filename = "~/Elmet/Master/PDF/ f i g /cchange1 . pdf" )

893

894

895 ########## AR( 2 ) ##########

896 ## Plot of the period and damping f a c t o r of the acf as a function of phi

897 plotAR ( save . s i z e = c ( 7 , 7 ) )

898

899 ## Example acfs

900 phi2 = cbind ( c (0 , − .05) , c (− .95 ,− .5) , c ( . 9 5 , − . 5 ) ,

901 c (−1.90 , −.95) , c (0 , − .95) , c (1.90 , − .95) )

902 colnames ( phi2 ) = LETTERS [ 1 : ncol ( phi2 ) ]

903 compARe( coeff = phi2 , cpdim = c ( 2 , 3 ) , save . s i z e = c ( 7 , 7 ) )

904

905 ## E f f e c t of autocorrelation on crosscorrelat ion

906 set . seed (100)

907 cchange ( phi2 , save . s i z e = c ( ncol ( phi2 ) * 2 ,7) , print = T ,

908 filename = "~/Elmet/Master/PDF/ f i g /cchange2 . pdf" )

909

910 ## For presentation

911 phi3 = phi2 [ , c ( 1 , 2 , 6 ) ]

912 colnames ( phi3 ) = l e t t e r s [ 1 : ncol ( phi3 ) ]

913 cchange ( phi3 , save . s i z e = c ( ncol ( phi3 ) * 2 ,7) ,

914 filename = "~/Elmet/Master/PDF/ f i g /cchange3 . pdf" )

915 cchange ( phi3 )

916

917 ## AR t r i a n g l e

918 pdf ( "~/Elmet/Master/PDF/ f i g / t r i a n g l e . pdf" , width = 10 , height = 7)

919 plot (NULL, xlim = c ( −2.3 ,2 .3) , ylim = c ( −1.3 ,1 .3) , xlab = " " , ylab = " " ,

920 main = " Staionary regions of the AR( 2 ) process " , cex . main = 1 . 5 )

921 addAR ( )
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922 t e x t ( x = c ( 0 , 0 , 1 . 2 ) , y = c ( − . 5 , . 4 , . 7 ) , cex = 1 . 5 ,

923 l a b e l s = c ( "Complex" , " Real " , "Non−stat ionary " ) )

924 i n v i s i b l e ( dev . o f f ( ) )

925

926

927 ########## Performance ##########

928 pdf ( "~/Elmet/Master/PDF/ f i g / sampleccf . pdf" , width = 10 , height = 7)

929 set . seed (117)

930 par (mfrow = c ( 1 , 2 ) , oma = c ( 0 , 0 , 3 , 0 ) , mar = c ( 4 , 3 , 3 , 1 ) +.1 , cex . main = 1 . 5 )

931 N = makeDF( k = 2 , lags = l i s t ( c ( 3 , 4 , 5 , 7 ) , c ( 0 , 1 ) ) , sd . noise = 1)$data

932 i n v i s i b l e ( sapply ( 1 : 2 , function (X) { ccf (N[ , 1 ] , N[ , X+1] , lag .max = 20 , xlab = "k" ,

933 ylab = " " ,main = bquote ( paste ( r [ paste ( x [ . ( X) ] , y , sep=" " ) ] , ( k ) ) ) ,

934 xlim = c (0 ,20) , ylim = c (−1 ,1) , cex . lab = 1 . 5 ) } ) )

935 t i t l e (main = "Sample CCF" , outer = T , cex . main = 1 . 7 )

936 i n v i s i b l e ( dev . o f f ( ) )

937

938 r = lagReg (N, type = " cse " , best . sub = 1)

939 r2 = lagReg (N, lags = l i s t ( 0 , 7 , c ( 0 , 1 ) ) , ar = T)

940

941 pdf ( "~/Elmet/Master/PDF/ f i g / arex . pdf" , width = 10 , height = 7)

942 t s P l o t ( z = r2$ORIGINAL$ residuals , main = " Original " , res = 2 , cols = 2 ,

943 sub= subst i tute ( I * " * " ) )

944 t s P l o t ( z = r2$ ‘AR EXPANSION‘ $ residuals , main = "AR expanded" , res = 3 , add = T ,

945 sub= subst i tute ( I * " * " ) )

946 i n v i s i b l e ( dev . o f f ( ) )

947

948 pdf ( "~/Elmet/Master/PDF/ f i g / residuals . pdf" , width = 7 , height = 7)

949 t s P l o t ( z = r $ ‘BEST SUBSET‘ $ residuals , main = " Residuals " , res = 1)

950 i n v i s i b l e ( dev . o f f ( ) )
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