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Abstract  

A coupled elastoplastic constitutive model is presented for describing the hydraulic and mechanical 

behavior of unsaturated soils. The model is capable of considering the influence of irreversible changes in 

water saturation on the mechanical behavior and plastic deformation on hydraulic behavior. The mechanical 

and hydraulic behaviors are captured using the subloading surface and bounding surface plasticity 

frameworks, respectively. The coupling between hydraulic and mechanical behaviors is established using 

intergranular stress concept in addition to appropriate coupled hardening rules. Attention is also given to 

the movement of soil water characteristic curve due to the plastic deformation. Model predictions for some 

unsaturated soil samples are compared with experimental data, and reasonable agreement is achieved. 
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1. Introduction 

Constitutive modeling of hydraulic and mechanical behavior of unsaturated soils is a subject of great 

interest in geotechnical engineering practice. The influence of degree of saturation on mechanical behavior 

and the influence of volumetric strain on hydraulic behavior are now demonstrated with experiments (e.g. 

[1]). The description of the hydro-mechanical behavior of unsaturated soils with the identification of the 
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coupled influences of hydraulic and mechanical behaviors has been a key area of research in modern 

geomechanics. 

Although several constitutive models for unsaturated soils have been proposed over the last two decades 

(e.g. [2-16]), many fundamental issues such as the selection of stress-strain variables and the framework of 

hydro-mechanical coupling are still under debate. After the pioneering work of Alonso et al. [2], two stress-

state variables concept with net stress and matric suction have been widely used to describe the hydro-

mechanical behavior of unsaturated soils [8, 17-20]. However, Wheeler [21], Sharma [1] and Sun et al. [22] 

demonstrated that some fundamental coupling effects of hydraulic and mechanical behaviors cannot be 

captured by the use of net stress and matric suction. 

Wheeler and his colleagues [7] employed Bishop’s effective stress and modified suction as the stress-

state variables to simulate the coupled influences of degree of saturation and volumetric deformation on 

mechanical and hydraulic behavior of unsaturated soils, respectively. The model proposed by Wheeler et 

al. [7] is restricted to isotropic loading conditions. Sheng et al. [9] and Sun et al. [10] extended Wheeler et 

al.’s model to deviatoric loading condition. However, it seems that they placed more emphasis on the 

influence of hydraulic behavior on the stress-strain relation, and paid less attention on the influence of 

deformation on hydraulic behavior. 

Recently, Muraleetharan et al. [23] proceeded to use intergranular stress tensor and matric suction as the 

stress-state variables to improve Wheeler et al.’s [7] framework. Although this model could properly 

simulate problems with multiple cycles of wetting and drying, its capability for simulating problems those 

involve multiple cycles of mechanical loading and unloading is under debate. Ghasemzadeh and 

Ghoreishian Amiri [24] extended Muraleetharan et al.’s framework to represent a more realistic model for 

simulating the coupled hydro-mechanical behavior of unsaturated soils. The model is capable of 

considering the influence of the water volume fraction on mechanical behavior, such as irreversible 

compression during the drying path that do not exceed the maximum value of suction previously 



experienced by the soil, and the coupling effects on the reverse direction, as well as the variation of the 

water volume fraction due to mechanical loading or unloading. However, these two models are restricted 

to isotropic stress states. 

Liu and Muraleetharan [25, 26] extended Muraleetharan et al.’s model [23] for general stress states. The 

model could successfully capture the mechanical behavior of unsaturated soil under complex mechanical 

loading conditions. However, assuming fixed wetting and drying bounding curves in suction-volumetric 

water content space, the model can’t successfully simulate the effects of plastic deformation on the 

hydraulic behavior of the samples involving a reduction of suction as a result of plastic compression. 

Moreover, the model is restricted to unsaturated silts and sands. 

The main objective of this paper is to present a comprehensive, fully coupled hydro-mechanical 

elastoplastic constitutive model for a wide range of unsaturated soils from silts to collapsible and highly 

expansive clays. The work is an extension of the model proposed by Ghasemzadeh and Ghoreishian Amiri 

[24], covering anisotropic loading conditions. The method of calibration is also described and the capability 

of the model for capturing the coupled hydro-mechanical behavior of unsaturated soils are verified using 

many laboratory test results. 

Note that throughout this paper, compressive stress and strain are assumed to be positive. 

2. Hydro-mechanical elastoplastic framework 

It is assumed that the water volume fraction and strain increments ( wdn  and dε ) are additively 

decomposed into elastic and plastic parts: 

e pd d d ε ε ε  (1)

e p
w w wdn dn dn   (2)

where the water volume fraction is defined as the ratio of the volume of water ( wv ) over the total volume 



of soil ( v ): 

w
wn

v
v

  
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The selection of appropriate stress and strain variables is an essential step for developing constitutive 

models for unsaturated soils. As thermodynamically demonstrated by Wei [27] and successfully used by 

other researchers [23-26], the intergranular stress tensor *( )σ , the matric suction ( )s , the plastic strain 

( )pd  and the irrecoverable part of the water volume fraction ( )p
wdn  can be selected as the conjugated 

stress-strain variables. The intergranular stress tensor is defined as: 
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where I  is the unit tensor, and netσ  is the net stress tensor. In equation (4), the intergranular stress tensor 

should cover the Terzaghi’s effective stress in fully saturated condition. It means that a switch is required 

between the saturated and unsaturated states. However, since the value of suction at the moment of 

transition between saturated and unsaturated conditions is equal to zero, the effective stress and 

intergranular stress will not be affected by the value of  , and thus, the transition between saturated and 

unsaturated states can be performed without any problem [23]. 

Based on the work presented by Ghasemzadeh and Ghoreishian Amiri [24], the process of slippage, 

widening and closing between granular medium particles is simulated by introducing a Loading Collapse 

(LC) normal yield surface (as later defined) within the framework of subloading surface plasticity [28, 29]. 

However, the bounding surface plasticity framework [30, 31] is employed to capturing the Soil Water 

Characteristic Curves (SWCCs) which is associated with Suction Decreased (SD) and Suction Increased 

(SI) bounding surfaces (as later defined). The superiority of employing the subloading and bounding surface 

frameworks in contrast with the traditional plasticity frameworks is completely discussed by Ghasemzadeh 



and Ghoreishian Amiri [24]. Figure 1 shows the forms and evolutions of SI, SD bounding and LC normal 

yield curves in isotropic stress space. It is worth noting that according to the argument discussed by Wheeler 

et al. [7], the shapes of SI and SD bounding and LC normal yield curves, in the isotropic stress space, are 

assumed straight lines. 

Figure 2 shows the LC normal yield and subloading surfaces in *p q  plane. The complete view of SI 

and SD bounding and LC normal yield surfaces for a triaxial stress state are shown in figure 3. 

 

3. Model formulation 

As mentioned earlier, the subloading surface and bounding surface plasticity frameworks are employed 

to describe the mechanical and hydraulic behaviors, respectively. Full coupling of the hydraulic and 

mechanical behaviors is achieved by introducing appropriate coupled hardening rules. 

3.1. Bounding surfaces 

The normal yield surface and bounding surfaces are described by the following functions: 

2
*

2

2
( ) ( )

3
y

y y
y

q
f p F H

m p


  σ  (5) 

0Is s  (6) 

0Ds s  (7) 

where 0Is  and 0Ds  introduce the position of the SI and SD bounding surfaces, respectively. *
yσ  (

T

y yp q    ) introduces the stress states on the LC normal yield surface, m  is the slope of the critical 

state line in q p  plane ( :q  deviatoric stress), and F  introduces the position/size of the surface and is a 

function of the isotropic hardening variable ( H ) [29]: 



0 exp( )
S

H
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


 (8)

where 0F  is the initial value of F , S  and K  are the slopes of the normal consolidation and swelling 

lines in ln ln p   space ( v  is the specific volume), respectively. The initial value of F  depends on the 

maximum value of pressure previously experienced by the soil and must be introduced as a calibration 

parameter. The isotropic hardening variable ( H ) will be defined later in section 3.2. 

Using experiments, Liu and Muraleetharan [32] reported that all scanning curves of SWCCs are bounded 

by primary wetting and secondary drying curves (figure 4). These curves describe the initial values and 

evolution rules of 0Ds  and 0Is . If the soil starts from an oven dried state and is then subjected to wetting, 

it will follow the primary wetting curve. If wetting is continued until the saturated state, and is then 

subjected to drying, the soil will follow the secondary drying curve. Feng and Fredlund [33] proposed two 

mathematical equations to describe these two curves in ws n  space: 
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where 
satwn  and 

reswn  are the values of the water volume fraction at zero and very high suction, respectively. 

1b , 1d , 2b  and 2d  are four material parameters that describe the primary wetting and secondary drying 

curves in the ws n  space. It should be noted that the saturation state of the soil, in equations (9) and (10), 

will be reached only when the value of suction equals zero. It means that the saturation state of the soil 

corresponding to the values of suction lower than air entry value is not considered in these equations. 



 

3.2. Coupled hardening rules 

As mentioned in the previous section, the position of the LC normal yield surface is controlled by the 

function F . Therefore, the movement of this surface can be formulated by differentiating equation (8): 

0 exp( )
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dF dH F dH

K K 
 

 
 (11)

where, the coupled evolution rule of the isotropic hardening variable, H , could be introduced as: 

p p
v wdH d dn   (12)

Following the argument discussed by Ghasemzadeh and Ghoreishian Amiri [24], the plastic part of 

compression and expansion causes the primary wetting and secondary drying curves to move right and left 

in the ws n  plane. The possible movement of these curves due to plastic compression is schematically 

shown in Figure 5. This could be captured by the following hardening rules [24]: 

1res

p
w w vdn n d   (13)

2sat

p
w w vdn n d   (14)

where 1  and 2  are two material parameters which control the movement of primary wetting and 

secondary drying curves due to plastic volumetric strain [24]. It is worth noting that the initial values of 

satwn  and 
reswn  should also be considered as material parameters. 

The last hardening rules should control the movement of the SD and SI bounding curves with respect to 

the fact that the values of 0Ds  and 0Is  must always lie on the primary wetting and secondary drying curves. 



Therefore, the new position of 0Ds  and 0Is  (at the end of load step n ) can be found by replacing the new 

values of 
wn , 

satwn  and 
reswn  in equations (9) and (10): 
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Note that variation of 0Ds  and 0Is  due to elastic deformation is neglected. 

3.3. Elastoplastic calculations 

The elastic evolution of the mechanical strain and the water volume fraction are described as follows: 
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where e
v  and e

q  are the elastic volumetric and deviatoric strains, respectively, ij  denotes the engineering 

shear strain, k  is the slope of the elastic swelling line in ln p   plane, G  is the shear elastic modulus 

and e  is the elastic capillary modulus. The specific volume,  , and shear modulus, G , are defined as: 
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where n  is the porosity,   is the Poisson’s ratio and K  has been previously defined in equation (8). 

As mentioned earlier, in this model the plastic deformation is calculated within the subloading surface 

elastoplasticity framework. It should be mentioned that the LC normal yield surface is the renamed form of 

the conventional LC yield surface, while its interior is not regarded as a purely elastic domain. Indeed, in 

this framework, in addition to the LC normal yield surface, we need to introduce the subloading surface. 

The subloading surface is defined as a surface which always passes through the current stress point, while 

keeping a similar shape to the LC normal yield surface with respect to the origin of the stress space: 
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where R  is the similarity ratio of the subloading surface to the LC normal yield surface. This ratio is called 

the normal yield ratio. Differentiating equation (22) results in: 
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The evolution of the normal yield ratio could be described as [29]: 

  for  0p pdR U d d    (24)

where U is a monotonically decreasing function of R that should satisfy the following conditions: 
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These conditions are required to guarantee that the subloading surface approaches the normal yield surface 

during a loading process. The equation satisfying conditions (25) is described by Hashigushi et al. [29]: 

lnU u R   (26)

where u is a material parameter. Substituting equations (12) and (24) into equation (23), one obtains: 
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Assuming the associated flow rule: 

pd ε N  (28)

where   is the positive proportionality factor, and the vector N  is the unit normal vector of the subloading 

surface at the current stress point: 

( ) ( )f f 

 

 


 
σ σ

N
σ σ

 
(29)

Substituting equation (28) into equation (27) leads to: 
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where 
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The plastic strain increment can now be calculated from equations (28) and (30): 
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Equation (36) reveals that the plastic strain increment consists of two parts: the mechanical part (

*( )
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P
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N
σ N ), which is the result of the integranular stress increment, and the hydraulic part (

p
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P
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L
N ), 

which comes from the variation of the irrecoverable part of water volume fraction. Consequently, the plastic 

strain components can be decomposed as: 
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where p
vmd  and p

vhd  are the mechanical and hydraulic parts of the plastic volumetric strain increment, 

respectively; p
qmd  and p

qhd  are the mechanical and hydraulic parts of the plastic deviatoric strain 

increment, respectively. 

Based on the loading criterion proposed by Hashiguchi et al. [29], the loading criterion in the proposed 

model is given by: 
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According to Ghasemzadeh and Ghoreishian Amiri [24], the plastic part of the water volume fraction 

can be calculated as: 
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where p  is the plastic capillary modulus which can be calculated in the bounding surface plasticity 

framework [30, 31]: 
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where h  and g  are material parameters,   are Macaulay brackets,   is the vertical distance of the current 

stress state point to the SD or SI bounding curves in the wetting or drying process (figure 6), in  is the 

value of  at the beginning of each wetting/drying path and 0
p  is the value of p  at 0   which is 

calculated as: 
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It is worth noting, in   in equation (41) means elastic behavior dominates ( )p   which occurs 

at the beginning of each wetting or drying path. In the other case, when 0   the plastic capillary modulus 

is equal to zero ( 0p  ) which means that the stress state lies on the corresponding bounding curve. 

4. Comparison with experiments 

The ability of the model in simulating the hydro-mechanical behavior of unsaturated Pearl clay and a 

bentonite-kaolin mixture under isotropic loading conditions was presented in [24]. In this paper, to examine 

the ability of the extended version of the model against anisotropic loading conditions, experimental results 

using Pearl clay [34], compacted speswhite kaolin [35, 36] and Bourke silt [37] are compared with model 

predictions. 

Pearl clay behaves like collapsible soils which consist of weak materials. This kind of soil compacts and 

collapses under the excessive loading or addition of water. On the other hand, compacted speswhite kaolin 

and bentonite–kaolin mixtures behave as moderately and highly expansive soils, respectively.  

4.1. Determination of material parameters 

In the proposed model, seven stress-strain parameters ( 0F , u , k , m , s , K  and  ), nine hydraulic 

parameters ( 1b , 1d , 2b , 2d , e , h , g , 
satwn  and 

reswn ) and two coupling parameters ( 1 , 2 ) are 

required. A common drained shear stress test at the saturated state of the soil can be used for determining 

the Poisson’s ratio ( ) and the slope of the critical state line ( m ). The parameters 0F , s , K  and   

which respectively indicate the pre-consolidation pressure, the slope of the normal consolidation line in 



ln ln p   plane and the slopes of swelling lines in ln ln p   and ln p   planes, can be determined 

using an isotropic drained compression test at the saturated state of the soil. The parameter u  does not have 

a clear physical meaning and mathematically stands to adjust the curvature of the stress–strain diagram. 

This parameter can be found by a trial-and-error procedure to fit the curvature of the soil behavior in its 

transitional state in stress- strain space. 

The initial values of 
satwn  and 

reswn  can be determined from the maximum and minimum value of wn  at 

the primary wetting and secondary drying curves, respectively. The values of 1b , 1d  and 2b , 2d  can be 

determined by conducting a curve-fitting procedure on primary wetting and secondary drying curves using 

equations (9) and (10), respectively. The values of e , h  and g  may be found by a trial-and-error 

procedure using the scanning curve data from laboratory tests. It is worth noting that since the specific 

volume varies during the experimental measurement of SWCCs, the initial values of 
satwn  and 

reswn , which 

has been determined by the maximum and minimum value of wn  at the primary wetting and secondary 

drying curves, do not correspond to the initial specific volume. Therefore, in order to accurately reproduce 

the primary wetting and secondary drying curves, some modifications on the initial values of 
satwn  and 

reswn  

are required to fit the computed curves with those obtained by laboratory. 

The coupling parameters 1  and 2  can be found using the variation of the primary wetting and 

secondary drying curves of the soil after a cycle of isotropic loading-unloading. After this cycle, some 

plastic deformation will remain in the sample. Considering the value of the remained plastic strain and the 

variation of 
satwn  and 

reswn  after this loading-unloading cycle, 1  and 2  can be found using equations 

(13) and (14). It is worth noting that since equations (13) and (14) describe nonlinear relations between 

hydraulic behavior and plastic strain variation, a trial-and-error procedure by simulating the above-

mentioned test is highly recommended. 



4.2. Pearl clay 

Sun et al. [34] reported the results of some triaxial and isotropic loading tests on samples of Pearl clay 

with 50% silt and 50% clay. The samples, which was prepared and used for the tests, had a liquid limit of 

49, a plasticity index of 22 and a specific gravity of 2.71. The samples were prepared by compaction in a 

mould at a water content of about 26 %. The material parameters that are used to predict the soil behavior 

are listed in table 1. 

The comparison of test data and model results for a triaxial extension test with a constant mean net stress 

of 196 kPa and an imposed wetting path at a stress ratio ( /r a  ) of about 2.2, is presented in figure 7. 

The initial values of wn  and n  at the beginning of the test are 0.347and 0.57, respectively. The stress path 

for this test involved three following phases: 

Phase 1:: constant matric suction: 147 kPa ; deviatoric stress: 0 166 kPa  

Phase 2:: matric suction 147 kPa 0 ; constant deviatoric stress: 166 kPa  

Phase 3:: constant matric suction: 0 ; deviatoric stress: 166 kPa 300 kPa  

Figure 8 shows the sensitivity of the stress-strain curves to different values of coupling parameters ( 1  

and 2 ). As shown in the figure, the initial part of the results is not highly affected by the coupling 

parameters, but imposing the wetting path activates the effects of these parameters, since the hydraulic part 

of the plastic strains are highly affected by the positions of 
satwn  and 

reswn . 

Figure 9 shows the comparisons of the predicted and measured results of a triaxial compression test 

with constant mean net stress ( 196 kPap  ) and constant suction ( 147 kPas  ). The values of wn  and 

n  at the beginning of the test are 0.312 and 0.57, respectively. 



Figure 10 shows the test results and model predictions for a one-dimensional collapse test. The initial 

values of wn  and n  at the beginning of the test are 0.308 and 0.57, respectively. The stress path in this test 

involved three different phases: 

Phase 1:: Suction: 140 kPa 147 kPa  , Constant mean net stress: 20 kPa  

Phase 2:: Constant suction: 147 kPa , Mean net stress: 20 kPa 196 kPa  

Phase 3:: Suction: 147 kPa 0 , Constant mean net stress: 196 kPa  

Figure 11 shows the comparison of measured results and model predictions for another collapse test on 

Pearl clay. The initial conditions for this test are the same as for the previous test. This test was conducted 

under the following loading phases: 

Phase 1:: Suction: 140 kPa 245 kPa , Constant mean net stress: 16.11 kPa  

Phase 2:: Constant suction: 245 kPa , Mean net stress: 16.11 kPa 45 kPa  

Phase 3:: Suction: 245 kPa 0 , Constant mean net stress: 45 kPa  

Phase 4:: Constant suction: 0 , Mean net stress: 45 kPa 597 kPa  

Phase 5:: Constant suction: 0 , Mean net stress: 597 kPa 210 kPa  

4.3. Compacted speswhite kaolin 

The experimental results on compacted speswhite kaolin under triaxial loading states are reported by 

Wheeler and Sivakumar [35, 36]. The samples were prepared by compacting the mix of dry speswhite 

kaolin powder and water in a mould. Prior to compacting, the larger clods of soil in the wet mix were broken 

up with a pestle and mortar, and the material then sieved through a 1.12 mm aperture sieve. The model 

parameters for simulating the behavior of speswhite kaolin by the proposed model are listed in table 2. 



Figure 12 shows the test results and model predictions for a drained triaxial compression test on a 

saturated speswhite kaolin sample. The initial values of mean net stress and n  are 150 kPa and 0.5, 

respectively. 

Figures13 and 14 show the comparison of the model results and experimental data for two unsaturated 

states of the soil with the constant suction of 100 and 300 kPa, respectively. The initial conditions of these 

tests are the same as for the previous one. 

The ability of the model to simulate the behavior of a soil in saturated and unsaturated conditions with 

a single set of material parameters is validated in this section. 

4.4. Bourke silt 

Uchaipichat [37] reported a set of triaxial tests on unsaturated Bourke silt with a liquid limit of 20.5, a 

plasticity index of 14.5 and a specific gravity of 2.65. The samples were statically compacted to a dry unit 

weight of about 15.3 kN/m3, at a moisture content of 10.5%. The samples were prepared dry of optimum 

to obtain a soil matrix amenable to stiffening with the increasing matric suction. The material parameters 

for this soil are listed in table 3. 

Figures 15-17 show three sets of drained triaxial tests with the constant cell pressure of 150 kPa. The 

first test is done on a saturated sample, whereas, the value of suction for the others are kept constant at 100 

and 300 kPa. The initial values of wn  and n for the sample in saturated condition are 0.511, for the test with 

the suction value of 100 kPa are considered to be 0.3 and 0.514, respectively, and for the test with the 

suction value of 300 kPa are set to 0.2 and 0.516. 

The results show the ability of the proposed model in the simulation of the hydro-mechanical behavior 

of saturated and unsaturated silts as well as clays. Modeling this range of soils in unified constitutive 

equations could be mentioned as the superiority of the proposed model in contrast with previous ones. 

Concluding remarks 



In this paper an elastoplastic constitutive model based on the two stress state variables approach is 

presented to describe the coupled hydro-mechanical behavior of unsaturated soils. The employed stress 

variables are intergranular stress and matric suction, which are conjugated with the conventional strain 

increment and the increment of the water volume fraction, respectively. 

In the proposed model, subloading surface and bounding surface plasticity frameworks are employed to 

describe the mechanical and hydraulic behavior, respectively. Since there are no purely elastic domains in 

the selected frameworks, the proposed model fulfills the smoothness condition, and thus, the smooth elastic-

plastic transition is described. 

The proposed model provides a realistic representation of hydraulic and mechanical behavior, which is 

an essential requirement for numerical modeling of coupled hydro-mechanical problems. It is applied to 

predict the hydro-mechanical behavior of Pearl clay, speswhite kaolin and Bourke silt and thus, the ability 

of model has been verified. 

It should be noted that, the proposed model is able to simulate the behavior of a soil sample in saturated 

and unsaturated conditions with a single set of material parameters. Moreover, the behavior of soils with a 

wide range from silts to collapsible and highly expansive clays could be simulated with unified constitutive 

equations. 
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Table 1. Model parameters for Pearl clay 

Hydraulic parameters   

 1b  23 kPa 

 1d  1.657 

 2b  105 kPa 

 2d  5.0 

 e -9000 kPa 
 h  15 
 g 0.1 

 
satwn  0.49 

 
reswn  0.305 

Mechanical parameters   

 0F  235 kPa 

 u 240 

 s  0.01 

 K 0.002 
 k 0.05 
  0.25 
 m 0.93 
Coupling parameters   

 1  0.1 

 2  0.1 

 

 



Table 2. Model parameters for speswhite kaolin 

Hydraulic parameters   

 1b  20 kPa 

 1d  2 

 2b  1135 kPa 

 2d  0.77 

 e -20000 kPa 
 h  30 
 g 1.5 

 
satwn  0.5 

 
reswn  0.17 

Mechanical parameters   

 0F  235 kPa 

 u 120 

 s  0.11 

 K 0.007 
 k 0.025 
  0.4 
 m 0.9 
Coupling parameters   

 1  1 

 2  0.1 

 



Table 3. Model parameters for Bourke silt  

Hydraulic parameters  

 1b  20 kPa 

 1d  2 

 2b  200 kPa 

 2d  5.5 

 e -20000 kPa 
 h  30 
 g 1.4 

 
satwn  0.5 

 
reswn  0.17 

Mechanical parameters  

 0F  210 kPa 

 u 150 

 s  0.3 

 K 0.003 
 k 0.002 
  0.25 
 m 0.94 
Coupling parameters  

 1  1 

 2  0.1 

 

 



 

 

 

Figure 1. LC normal yield curve, SI and SD bounding curves and their evolution in 

*p s  space 



 

Figure 2. LC normal yield and subloading surfaces in *p q  plane 
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Figure 3. Yield surfaces in *q p s   space 



 

Figure 4. Example of measured SWCCs [23] 
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Figure 5. Movement of primary wetting and secondary drying curves due to plastic part of 

volumetric deformation [24]



 

 

 

Figure 6. Graphical determination of *P , F ,   and 
in

  



 

 

 

Figure 7. Comparison of predictions and experimental results for Pearl clay under triaxial 

extension test icluding collapse test 
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Figure 8. Sensitivity of the results to 1  and 2  

  

1

2

3

0 5 10 15 20 25 30

σ1/σ3

Radial strain (%)

α1=0.1
α1=0.6
α1=1
Test data (Sun et al. 2007)

1

2

3

0 5 10 15 20 25 30

σ1/σ3

Radial strain (%)

α2=0.1

α2=0.6

α2=1

Test data (Sun et al. 2007)



 

 

 

Figure 9. Comparison of predictions and experimental results for Pearl clay under triaxial loaidng 

test with constatnt suction and mean net stress
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Figure 10. Comparison between the measured and predicted results of collapse test for Pearl clay 

(the test with three loading phases) 
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Figure 11. Comparison between the measured and predicted results of collapse test for Pearl clay 

(the test with five loading phases) 
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Figure 12. Comparison between the measured and calculated results for saturated speswhite kaolin 

under triaxial loading 
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Figure 13. Comparison between the measured and calculated results for an unsaturated speswhite 

kaolin sample under triaxial loading ( 100 kPas  ) 
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Figure 14. Comparison between the measured and calculated results for an unsaturated speswhite 

kaolin sample under triaxial loading ( 300 kPas  ) 
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Figure 15. Comparison between the measured and calculated results for saturated Bourke silt 

under triaxial loading 
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Figure 16.Comparison between the measured and calculated results for an unsaturated Bourke silt 

sample under triaxial loading ( 100 kPas  ) 
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Figure 17. Comparison between the measured and calculated results for an unsaturated Bourke silt 

sample under triaxial loading ( 300 kPas  ) 
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