
ABSTRACT: The longitudinal profile of a railway track excites a dynamic response in a train which 
can potentially be used to determine that profile. A method is proposed in this paper for the 
determination of the longitudinal profile through an analysis of vehicle accelerations resulting from 
the train/track dynamic interaction. 

The Cross Entropy optimisation technique is applied to determine the railway track profile elevations 
that best fit the measured accelerations of a railway carriage bogie. Numerical validation of the 
concept is achieved by using a 2-dimensional quarter-car dynamic model, representing a railway 
carriage and bogie, traversing an infinitely stiff profile. The concept is further tested by the 
introduction of a 2-dimensional car dynamic vehicle model and a 3 layer track model to infer the track 
profiles in the longitudinal direction. Both interaction models are implemented in Matlab. Various 
grades of rail irregularity are generated which excite the vehicle inducing a dynamic response. Ten 
vertical elevations are found at a time which give a least squares fit of theoretical to measured 
accelerations. In each time step, half of these elevations are retained and a new optimisation is used to 
determine the next ten elevations along the length of the track. The optimised elevations are collated 
to determine the overall rail longitudinal profile over a finite length of railway track. 

KEY WORDS: Railway Track; Longitudinal Profile; Drive-by; Vehicle Track Interaction; Cross 
Entropy, Optimisation. 

INTRODUCTION  

Increased demand on railway networks is reducing the time available to carry out the inspections 
necessary to determine track condition. As a result, the collection of acceleration and other dynamic 
parameters from sensors mounted on in-service vehicles is becoming more desirable as a tool for 
monitoring the condition of railway track. Dynamic measurements have economic and performance 
advantages over optical measurements which have a tendency to perform poorly in dirty railway 
environments. The drive-by nature of this Continuous Track Monitoring (CTM) system has the 
potential to provide 'real time' feedback to railway infrastructure managers on the condition of their 
network. This makes possible the forecast of track defect development, verification of quality of 
repairs and the improvement of maintenance management.1  

Traditionally, railway infrastructure managers assess the condition of their network using a Track 
Recording Vehicle (TRV): a specialised, instrumented train which periodically collects geometric 
data of the railway track including track gauge, longitudinal profile, alignment, superelevation 
irregularity (cross level or cant) and twist. European Standard EN138482 defines the method of 
measurement of railway track using TRVs in Europe. The standard also defines the approach for 
evaluating track condition by means of various safety related limits associated with each of the 
parameters measured so that maintenance interventions can be planned. TRVs are the current 
preferred method of measurement for these parameters. However these vehicles are expensive to run 
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and may disrupt regular services during their operation. Using in-service vehicles to determine these 
parameters presents a potential saving for railway infrastructure managers. 

Track longitudinal profile can be considered as a representation of the vertical profile of a track 
made up of consecutive measurements of longitudinal level as defined in EN13848.2 Rails are 
represented individually, i.e. a separate longitudinal profile exists for each rail. Rail longitudinal 
profile is comprised of a combination of macro changes in track elevation in the longitudinal direction 
(e.g. track grades, vertical curves, etc.) and local rail irregularities. Rail irregularities are geometrical 
deviations from the ideal rail longitudinal profile.  

Railway track longitudinal profile is an important indicator of serviceability condition. It is 
desirable to have perfectly smooth rail profiles so that dynamic responses of the vehicle are 
minimised, thereby increasing passenger comfort, reducing wear on vehicle components and reducing 
power consumption. A reduction in vehicle dynamics also reduces the vehicle load on the track. 
Therefore keeping a good vertical longitudinal profile helps maintain overall track condition through a 
reduction in vehicle dynamic effects.3 However, it is inevitable that rail irregularities will occur for a 
number of reasons including rail head manufacturing defects, wear, impact from wheel flats, track 
settlement and poor maintenance.4 It is the passage of the vehicle across the irregularities on the rail 
profile that excites it and invokes a dynamic response. 

Track irregularities can be generated using stationary random processes described by Power 
Spectral Density (PSD) functions. PSD is used in several countries (including the US, Germany, 
China and France) to classify track quality according to its irregularity spectrum.5 Definitions of PSD 
functions vary significantly due to their empirical nature and differences in measuring instruments and 
evaluation methods used in their formulation.6 Perrin et al.

7 propose an alternative method for 
generating more realistic rail geometry irregularities based on statistical properties of measured data. 

Recently, the possibility of using inertial methods to estimate rail profiles using acceleration data 
measured on a vehicle has gained considerable interest. Weston el al.

8 provide a review of the state of 
the art of track monitoring using in-service vehicles. Most Unattended Geometry Measurement 
Systems (UGMS) fixed to in-service trains require both inertial and optical sensors to return the 
parameters required for full assessment of track geometry. A drawback of using UGMS is that the in-
service vehicles hosting the systems are required to stop at stations more regularly than dedicated 
measuring trains. This has the effect of reducing the speed of the UGMS vehicles in certain areas, 
compromising accuracy of measurement. The use of accelerometers and rate gyroscopes on the bogie 
level of a railway vehicle to estimate a pseudo-track geometry has been investigated by Weston et al.

9 
Real et al.

10 use frequency domain techniques to estimate track profile. A mixed acceleration data 
filtering approach is used by Lee et al.

11 in the measured acceleration for stable displacement 
estimation and waveband classification of the irregularities.  

In this paper the Cross Entropy (CE) combinatorial optimisation method, as described by de Boer 
et al.12, is adapted to determine rail longitudinal profiles. Harris et al.

13 use the CE combinatorial 
optimisation technique to characterise vehicle model parameters and road surface profiles using 
measured vehicle acceleration responses. However, to the authors' knowledge, the CE method has not 
previously been used to determine longitudinal profiles for railway track. In this paper dynamic 
interaction models are used in favour of moving load models so that dynamic effects are not 
overestimated and more realistic acceleration histories can be generated.14 

This paper reports the results of the numerical simulations carried out to test the concept of using 
CE optimisation to determine rail longitudinal profile. The next section explains the numerical models 
used for the simulations. Following this, the CE method is described and the optimisation processes 
are discussed. This is followed by the results of the optimisation that validates the methodology for a 
range of profiles.  



MODEL DESCRIPTION 

Numerical simulation of the Vehicle-Track Interaction (VTI) is used in assessing the application of 
CE optimisation to the estimation of rail longitudinal profile for given vehicle accelerations. VTI 
calculations are carried out in Matlab15 to generate the dynamic response of a vehicle travelling 
longitudinally along a track. The vehicle models, track model and PSD method for generating rail 
profile irregularities are described in this section along with a brief description of the vehicle and 
track model coupling.  

Two levels of model complexity are used. The method is initially tested using Model A, a simple 
quarter-car vehicle model crossing a series of rigid rail profiles (i.e. deflection in the track is not 
permitted). A perfectly smooth profile featuring an inverted bell-shaped 'pothole' is first used to 
demonstrate the capabilities of the algorithm. Three rail profiles featuring randomly generated 
irregularities with varying degrees of roughness are also generated and used in the numerical tests.  

Following this, Model B, a relatively complex vehicle and 3-layer track model, is used to test the 
method. When coupled together, these models return more realistic vehicle accelerations, partly as a 
result of the deflection of the track under load. Numerical validation of the method using Model B is 
carried out using three rail profiles each featuring a different magnitude of rail irregularity and one 
rail profile featuring both rail irregularity and track settlement. 

Model A: Quarter-Car  

The quarter-car vehicle model used in this study, shown in Figure 1, is referred to as Model A. It 
consists of two masses; ��	representing the quarter carriage mass and ��	representing the suspension 
(bogie and wheelset) half mass. Each mass has a single degree of freedom (DOF), �� , and they are 
connected by an elastic spring ��	 and damper ��	representing the secondary suspension of the 
vehicle. The stiffness and damping of the bogie system are represented by ��	and ��	respectively that 
characterise the primary suspension of the vehicle. The sprung vehicle model is connected to the rail 
profile through its primary suspension system. This model is similar to vehicle descriptions used in 
other studies.6 

Vehicle properties are listed in Table 1 and are taken from a paper using a similar model.16 The 
authors acknowledge that the quarter-car vehicle model used does not take into account the wheel-rail 
interaction, and therefore only approximates the effect of the train wheels which exhibit high stiffness 
and negligible damping effects. This simplified vehicle is chosen to demonstrate the capabilities of the 
algorithm. 

 
Figure 1. Model A: quarter-car vehicle model on rail profile 

 



Table 1. Properties of Model A 

Property Unit Symbol Value 
 

Mass of main body kg 
1m  7 900 

Mass of bogie and wheelset kg 
2m  512.5 

Damping of secondary suspension Ns/m 
1c  15 000 

Damping of primary suspension Ns/m 
2c  5 000 

Stiffness of secondary suspension N/m 
1k  7.3×105 

Stiffness of primary suspension N/m 
2k  5×105 

 

Model A is excited by irregularities on the track longitudinal profile while it travels at a constant 
speed, 	. The vehicle response is used to calculate the irregularities of the rail profile. The equations 
of motion of the vehicle model, expressed in the time domain, are as follows: 
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where � is the rail profile and �
  is its first time derivative. These equations can be represented in 
matrix form as follows: 
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i.e., ���
 � + ���
 � + ���� =	 � (4) 

where ��, �� and �� are the mass, damping and stiffness matrices of the vehicle respectively. The 
vectors, �
�,	�
� and �� are the vehicle accelerations, velocities and displacements respectively. 

The dynamic equations of motion of the system are solved using the Wilson-θ integration 
method17,18 implemented in Matlab. The value of the parameter, θ = 1.420815 is used for 
unconditional stability in the integration scheme.19 

 

Model B: 2D Car Vehicle Model on 3-layer Track  

Model B is a more elaborate vehicle-track model which is used in the second part of this paper. 
This model is developed from the train-track-bridge model described by Cantero et al.

20 In this 
section, the vehicle and track models are described separately before model coupling is briefly 
outlined. 

2D Car Vehicle Model 

The 2-dimensional car vehicle model used as part of Model B is shown in Figure 2. It consists of 
10 DOFs including 4 wheels (vertical translation only), 2 bogies (vertical translation and rotation 
about each centre of gravity) and the main body (vertical translation and rotation). The wheels are 
represented as masses (�!�, �!�, �!", �!#). The bogies are modelled as rigid bars with mass 
(�$�, �$�) and moment of inertia (%$�, %$�), and the main body of the vehicle is modelled as a rigid 
bar with mass (��) and moment of inertia (%�). The wheels are connected to the bogies by means of 
primary suspension systems consisting of springs (�&) and viscous dampers (�&) in parallel. Similarly, 
the bogies are connected to the main body by means of a secondary suspension system consisting of a 
spring (�') and a viscous damper (�') in parallel. Assuming small rotations, a linearised system of 
equations of motion, as per Model A, is adopted (equation (4)).21 This vehicle configuration is used in 
many other studies.22–24 Vehicle properties are gathered from the literature25 and are listed in Table 2. 



 

 

Figure 2. Model B: 2D car vehicle 

Table 2. Mechanical properties of the 2D car vehicle 

Property Unit Symbol Value 

Mass of wheel kg 
4321 ,,, wwww mmmm  1 843.5 

Mass of bogie kg 
21 , bb mm  5 630.8 

Mass of main body kg 
vm  59 364.2 

Moment of inertia of bogie kg.m2 
21 , bb II  9 487 

Moment of inertia of main body kg.m2 
vI  1.723×106 

Stiffness of primary suspension N/m 
4321 ,,, pppp kkkk  4.7992×106 

Stiffness of secondary suspension N/m 
21 , ss kk  1.7716×106 

Damping of primary suspension Ns/m 
4321 ,,, pppp cccc  60×103 

Damping of secondary suspension Ns/m 
21 , ss cc  90×103 

Distance between bogies m 
vL  11.46 

Additional distance (front and back) m ,b fL L  3 

Distance between axles m 
1 2,b bL L  3 

Track Model 

The track is modelled as a beam supported on a 3-layer sprung mass system representing a sleeper, 
pad and ballast support system as shown in Figure 3. This 3-layer track model is also used in the 
literature.21,26–29 Track supports are spaced at a regular interval (', representing the spacing between 
the sleepers. The UIC60 rail is modelled as a finite element Euler-Bernoulli beam with one beam 
element per sleeper spacing. Each track element has 2 nodes with 2 DOFs at each node. Properties of 
track structures vary significantly throughout the literature. Values used in this study are taken from 
Zhai et al.27 and are shown in Table 3. 



 
Figure 3. Model B: Track model 

Table 3. Properties of the track 

Property Unit Symbol Value 

Elastic modulus of rail N/m2 
rE  2.059×1011 

Rail cross-sectional area m2 
rA  7.69×10-3 

Rail second moment of area m4 
rI  3.217×10-5 

Rail mass per unit length kg/m 
rµ  60.64 

Rail pad stiffness N/m 
pk  6.5×107 

Rail pad damping Ns/m 
pc  7.5×104 

Sleeper mass (half) kg 
sm  125.5 

Sleeper spacing m 
sL  0.545 

Ballast stiffness N/m 
bak  137.75×106 

Ballast damping Ns/m 
bac  5.88×104 

Ballast mass kg 
bam  531.4 

Sub-ballast stiffness N/m 
sbk  77.5×106 

Sub-ballast damping Ns/m 
sbc  3.115×104 

The equation of motion for the track model can be defined by a set of second order differential 
equations: 

�)�
 * + �)�
 * +�)�* =	+) �,* (5) 

where �), �) and �) are the mass, damping and stiffness matrices of the track respectively and �
 *, �
 * 
and �* are vectors of track accelerations, velocities and displacements respectively.  �,* contains the 
total interaction forces between the vehicle and the track at their contact points. +) is a location matrix 
used to distribute the vehicle load to the DOFs of the rail and is calculated using Hermitian shape 
functions.30,31 

Coupled Model 

The vehicle and track subsystems are combined to form a coupled vehicle-track model. The 
coupling of the subsystems is expressed mathematically with additional off-diagonal block matrices 
as shown in equation (6): 
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where �6, �6 and �6 are the global mass, damping and stiffness matrices respectively and 5 is the 
coupled system force vector. Subscripts 7 and 8 in equation (6) denote vehicle and track subsystems 
respectively. 

The vehicle and track models are coupled via the wheel/rail interaction, i.e. the DOFs of the 
wheels and the DOFs of the rail are combined. At each time step, as the vehicle moves along the 
track, the coupled terms are updated. The vehicle wheels do not always act at the nodes of the rail and 
the contributions of the vehicle to the coupled terms need to be distributed to the DOFs of the rail 
using Hermitian shape functions.23 It is assumed that the vehicle remains in contact with the rail at all 
times. 

The equations of motion are solved using the Wilson- θ numerical integration scheme in Matlab. A 
static analysis is carried out before a dynamic analysis is initiated. Furthermore, the vehicle is allowed 
to travel along the track for a minimum distance of 10 m so that vehicle dynamic equilibrium can be 
achieved before the measured accelerations are recorded. A time step of 0.002 s corresponding to a 
sensor scanning frequency of 500 Hz is used for the coupled model. 

Track Profile and Irregularities 

For this paper, three track profiles with random vertical irregularity are generated using the US 
Federal Railroad Administration (FRA) PSD function S�Ω� shown in equation (8).32 The FRA 
function is chosen due to its common use in the literature.22,33  

S�Ω� = 	 ;�Ω<�
�Ω� +	Ω=���Ω� +	Ω<�� 

 

(8) 

 

where Ω is the spatial frequency, and coefficients ;�, Ω=, Ω<, relate to the grade of track and are 
given in Table 4. The three generated profiles, one of each line grade, and their associated PSDs, are 
illustrated in Figure 4. 

 
Table 4. FRA American railway standard PSD coefficients 

Line Grade Quality ;�  Ω=  [rad/s] Ω<  [rad/s] 
 

Class 4 Very Poor 2.39×10-5 2.06×10-2 0.825 
Class 5 Poor 9.35×10-6 2.06×10-2 0.825 
Class 6 Moderate 1.5×10-6 2.06×10-2 0.825 

 



 

Figure 4. a) FRA profiles; b) Power Spectral Densities (PSDs) 

CROSS-ENTROPY METHOD  

Cross-Entropy is a combinatorial optimisation technique used here to infer a series of rail 
longitudinal profiles along a track from inertial measurements of the vehicle response. The CE 
method is an iterative procedure which firstly generates a population of trial solutions (a population of 
longitudinal profiles in this case) according to a specified random mechanism. An objective function, 
using the 1st generation of trial solutions, is applied to identify an ‘elite set’, a sub-set of the most 
optimal solutions. This elite set is used to generate a new population. The process is repeated over 
many generations and converges to a global minimum (See Figure 5).12 The method has been applied 
to a variety of Civil Engineering problems.13,34–36 

 
Figure 5. Cross Entropy method – Contours of objective function for 2-dimensional optimisation problem. Points 

represent trail solutions for the 1
st

 generation 

correct answer at 
global minimum 



In this study populations of rail longitudinal profiles are generated and tested to determine which 
profiles give vehicle responses most similar to the actual measured response, referred to here as the 
reference acceleration signal. The reference acceleration signal is taken from an initial VTI analysis 
before starting the optimisation technique. 

At the beginning of the algorithm, Monte Carlo simulation is used to generate the population of 
profiles assuming a normal distribution defined by an initial mean and standard deviation for each 
elevation in the profile. VTI is simulated for each profile in the population, returning an acceleration 
signal for the DOF being analysed. 

Objective Function 

Two objective functions are tested in this paper. Both functions use a least squares fitting 
approach. The first objective function considers the entire signal while the alternative evaluates 
objective sub-functions for each value in the signal. The first objective function is used with Model A 
and tested for suitability with Model B, while the second objective function is used with Model B.  

The first objective function, >, (equation (9)) is defined as the sum of the squared differences 
between vehicle accelerations calculated for a trial profile, �
 *=�?@,*, and the reference acceleration 
signal, �
AB?',*: 

> =	CD�
 *=�?@,* − �
AB?',*E�
0

*F�
 

 

(9) 

where t is the scan number, and T is the total number of scans in the acceleration signal. The values of 
>	for each trial profile in the population are ranked and an elite set of profiles identified. In this study 
the elite set represents the best 10% of trial profiles. The procedure is illustrated in Figure 6.  

 

Figure 6. Cross Entropy method using a population of G	profiles, each consisting of H	elevations, I. The J lowest 

objective function values, KLMJ, represent an elite set of J profiles.  

The elite set is used to calculate the mean, N and standard deviation, O for each elevation in the 
profile. These means and standard deviations are used to generate an improved population of profile 
estimates for the next generation. This process is repeated until convergence is achieved (see section 
on convergence below). 

Using objective function > with Model B results in poor performance (see section on convergence 
below). An alternative approach to the calculation of the objective function consisting of objective 
sub-functions, >*, is also tested to resolve this issue. In the VTI, as a result of the time-space 
discretisation used, there exists an acceleration value for each elevation in the rail profile. In this 
method the tth objective sub-function >*, is calculated for each acceleration value in the signal: 



>* =	D�
 *=�?@,* − �
AB?',*E� 
 

(10) 

The m objective sub-functions of each profile elevation in the population of	P profiles are illustrated 
in Figure 7. In this version of CE objective sub-functions are ranked and use to find the elite set of 
elevations for each position in the profile. The elite set is used as before to calculate the mean, N and 
standard deviation, O for each elevation QA, and used to generate an improved population of profile 
estimates for the next iteration. This approach is similar to that used by Dowling et al.

35 

 

Figure 7. Alternative Cross Entropy method using a population of G	profiles consisting of H	elevations, I. The J lowest 

objective sub-function values KR are used to gather an elite set of J estimates for each elevation in the profile 

represented here by the circled values.  

Stepping through the profile 

Depending on the sampling interval and length of the profile being inferred, there may be a large 
number of unknowns in the problem. This means that a very large population size would be required 
and there is a risk that the algorithm may not converge. To overcome this problem the optimisation is 
split into a number of phases. In this method, the phase location is represented by a 'window' of the 
profile. A number of unknowns, �, are determined within the window before moving to the next 
phase. At the end of each phase, the first �/2 best estimates of the profile heights are saved as the 
estimated profile, and the remaining �/2 profile heights are used as the first �/2 means for the next 
phase of �	unknowns. To increase the efficiency of the algorithm, the remaining �/2 mean values for 
the next phase are taken as the �th mean from the previous phase. Standard deviation is also reset to 
account for the relative uncertainty in profile heights further along the phase window being analysed. 
This is achieved by increasing the standard deviation in an array from 0.1 in increments of 1/� to 1. 
A schematic of the phasing procedure used to determine long profiles is shown in Figure 8. The track 
distance covered by the phase window is a function of the number of profile elevations being inferred 
in each phase, vehicle speed and sensor scan rate. Stepping through the model in phases also reduces 
the size of the track model required in the interaction and therefore minimises the computational effort 
required. 



 
Figure 8. Stepping through rail profile in phases 

As stated in the section describing the coupled model, it is generally required to allow the vehicle 
to cross a minimum length of track so that vehicle dynamic equilibrium can be attained. To avoid this 
necessity during the stepping procedure and to ensure the acceleration signals generated can be 
compared to the reference acceleration signal, model vectors are transferred from an equivalent 
vehicle position in the previous phase. This ensures that the vehicle remains in dynamic equilibrium at 
the start of the phase. This method is also used by Quirke et al.36  

Figure 9 shows the transfer of displacement, velocity and acceleration vectors required to maintain 
dynamic equilibrium in Model A. Since there is no track model in this interaction it is only necessary 
to transfer vehicle model vectors from the equivalent vehicle track position between the two phases: 
i.e. scan number S = T in Phase U, to scan number S = 1 in Phase U + 1, where T = 8/2. 

 

Figure 9. Transfer of model vectors for Model A 
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Figure 10. Transfer of state vectors for Model B. Shaded areas: Vehicle DOFs - grey; Rail DOFs - blue; sleeper DOFs - 

green, ballast DOFs - orange 

Figure 10 shows the transfer of the displacement, velocity and acceleration vectors required to 
maintain vehicle dynamic equilibrium in Model B. In this model there are a total of 	 vehicle DOFs 
denoted with subscript 7, � rail DOFs (subscript Y), Z sleeper DOFs (subscript [), and \ ballast DOFs 
(subscript ]). All vectors associated with the vehicle DOFs are transferred between phases. Due to 
high bending stiffness in the rail, the effect of the vehicle loads are distributed along the track.37 
Therefore the vectors defining translations and rotations in the rail, sleeper and ballast nodes for the 
track model section that is significantly affected by the vehicle loads must be transferred. The vector 
groups are identified (from DOFs denoted by the subscript ^ to the DOF at end of the track layer) and 
transferred from the time S = T in Phase U, to time S = 1 in Phase U + 1, the equivalent vehicle track 
position between the two phases. This method maintains vehicle and track equilibrium and minimises 
the size of the track model for computational efficiency.  

Convergence 

The CE optimisation requires a convergence criterion so that the iterative process is terminated 
once a solution has been found within a phase. Further to this, the solution is checked by restarting the 
optimisation until two similar solutions are found consecutively. Convergence of the optimisation 
within a phase is said to be achieved once the sum of the squared differences between the means of 
the elevation values, known as a convergence value, falls below a convergence threshold chosen 
according to the accuracy desired. The process is restarted using elevations of the profile inferred in 
the previous optimisation as the mean values for the first generation of profiles in the next 
optimisation for the phase. This process continues until the elevation values of the inferred profiles 
between consecutive optimisations are within a certain percentage of each other. A percentage of 5% 
is used for this paper. 



Figure 11a shows the variation of objective function > using Model A for a phase with a 
population of 100 and an elite set size of 10. In the initial optimisation the method converges to a 
solution below the convergence threshold after 25 generations. The optimisation is restarted and 
converges to a similar solution in 23 generations. Only one restart is necessary for this example. The 
path of the convergence value is shown in Figure 11b. It can be seen that the algorithm restarts of 
terminates once the convergence value falls below the convergence threshold value. The total time 
take for this phase is 2.98 s, an average of 0.062 s/generation. 

The performance of optimisation function > with Model B is shown in Figure 12. A lower 
threshold value is required to allow the optimisation to converge to a solution. The initial optimisation 
converges to a solution below the convergence threshold after 31 generations. The optimisation is 
restarted and converges to a similar solution in 20 generations. The total time taken for this phase is 
127 s, an average of 2.49 s/generation. 

The performance of the alternative optimisation sub-function >* with Model B is shown in Figure 
13. It can be seen that performance is greatly improved with the initial optimisation converging to a 
solution after 13 generations. The restarted optimisation also converges to a solution in 13 
generations. The total time taken for this phase is 65 s, an average of 2.51 s/generation. Convergence 
of the optimisation sub-function method occurs in approximately half the time. This can be attributed 
to the lower dimensionality of the method, i.e. the number of variables contributing to the sub-
function value. 

 

Figure 11. Performance of objective function O with Model A a) Objective function value, O vs. generation number for a 

phase with one restart; b) Convergence value (sum of squared differences between consecutive means) vs. generation 

number for the same phase 



 

Figure 12. Performance of objective function O with Model B a) Objective function value, O vs. generation number for a 

phase with one restart; b) Convergence value (sum of squared differences between consecutive means) vs. generation 

number for the same phase 

 

Figure 13. Performance of objective sub-function with Model B a) Objective function value, O (sum of Ot) vs. generation 

number for a phase with one restart; b) Convergence value (sum of squared differences between consecutive means) vs. 

generation number for the same phase 



RESULTS AND DISCUSSION 

The results of a number of numerical tests of the CE method for determining rail profiles are 
presented in this section.  

Model A: Test Profile 

A test profile is first used to demonstrate the capabilities of the method. This profile, shown in 
Figure 14a, is 20 m in length, and features an inverted ‘bell’ shaped variation along an otherwise 
perfectly smooth profile. The bell shape is defined using the equation of the normal statistical 
distribution, scaled by a factor. This ‘pothole’ irregularity, is located at 5.0 m, has a maximum depth 
of 0.002 m and a width corresponding to the standard deviation parameter of 0.5 (approximately 
3.0 m). Using Model A, the quarter-car vehicle travels longitudinally over the rail profile at a constant 
velocity, v, of 108 km/h (30 m/s) generating the reference acceleration response of Figure 14b. 
Following this, the CE method, using objective function >, is executed using the parameters presented 
in Table 5. The acceleration signal from the vehicle bogie, �� is used as the reference acceleration. 

Table 5. Cross Entropy optimisation parameters – Model A 

Property Value 
 

Length of profile inferred per phase 0.25m 
Number of elevation unknowns in each profile 10 
Initial mean 0 
Initial standard deviation 0.5 
Size of each population of estimates 150 
Size of elite set (percentage of population of estimates) 10% 
Convergence threshold 1e-9 

 

The inferred rail profile is shown in Figure 14a. An excellent estimate is found with small errors: 
in the region of ~0.018 mm. The computational time required to infer a profile 20 m in length was 
about 900 s using a 2.67 GHz processor and 6.0 GB RAM. This gives a rate of inference of 
approximately 45 s/m. 



 

Figure 14. a) Quarter-car model estimation of perfectly smooth rail profile featuring a single irregularity in the rail 

longitudinal profile; b) Bogie acceleration signal from VTI analysis 

Model A: FRA Rail Profiles 

For sections of the three FRA profiles shown in Figure 4, the quarter-car vehicle is modelled 
travelling at a constant velocity, 	, of 108 km/h (30 m/s) to generate the reference acceleration 
responses. The increase in the number of irregularities and rate of elevation changes exhibited in the 
FRA profiles excite the vehicle in a more random fashion resulting in more realistic acceleration data. 
The same optimisation parameters presented in Table 5 are used with the method inferring the profiles 
at a similar rate to the test profile. Excellent estimates for all three profiles can be seen in Figure 15.  



 

Figure 15. Model A: Inferred rail profiles and error a) FRA Class 4 Profile; b) FRA Class 5 Profile; c) FRA Class 6 Profile 

It is observed that there is a gradual drift in the estimated rail profile error, increasing with distance 
from the origin. Harris et al.13 found a similar drift when using road vehicle response to estimate road 
profiles and attributed this drift to an unavoidable accumulation of error. This error is not considered 
by the authors to be a problem as railway owners and managers are more interested in local variations 
in profile, rather than absolute deviations of the track. 

Model B: FRA Rail Profiles 

This section presents the results from using Model B at a speed of 150 km/h (41.6 m/s) to infer 
sections of the three FRA rail profiles of Figure 4. The CE method is executed using the objective 
sub-function >* and optimisation parameters presented in Table 6. The reference acceleration 
responses are measured at the bogie DOF of the 2D car. Gaussian signal noise levels of 0%, 3% and 
6% (SNR = ∞, 30.45 dB and 24.44dB) are added to the reference acceleration signal prior to initiation 
of the optimisation method to test the sensitivity of the method to measurement noise. 

Table 6. Cross Entropy optimisation parameters – Model B 

Property Value 
 

Length of profile inferred per phase 0.833m 
Number of elevation unknowns in each profile 10 
Initial mean 0 
Initial standard deviation 1 
Size of each population of estimates 100 
Size of elite set (percentage of population of estimates) 10% 
Convergence threshold 1e-13 



 

 

Figure 16. Model B: Inferred rail profiles and effect of added signal noise a) FRA Class 4 Profile; b) FRA Class 5 Profile; c) 

FRA Class 6 Profile 

The results are presented in Figure 16. As noted above, there is an observable drift in the inferred 
profile from the actual profile which is, in this case, amplified by the noise in the reference signal. The 
method appears to be resilient to added signal noise levels of up to 3% but the magnitude of the drift, 
and therefore absolute accuracy of the elevation, is poorer for noise levels of 6%. Execution times for 
the inferred profiles presented in Figure 16 are given in  

Table 7. They are more than double those for Model A using optimisation function >. This can be 
attributed to the increase in the complexity of Model B and the computational effort associated with 
running VTIs using larger model matrices. 

Table 7. Execution times for Model B using optimisation function KR 

FRA 

Class 

Noise  

Level (%) 

Time Taken  

(s/m) 

FRA 

Class 

Noise  

Level (%) 

Time Taken  

(s/m) 

FRA 

Class 

Noise  

Level (%) 

Time Taken  

(s/m) 

Class 4 

0 113 

Class 5 

0 105 

Class 6 

0 99 

3 98 3 98 3 122 

6 101 6 100 6 108 

 



Model B: Rail Profile with Elevation Change and FRA Irregularities 

This section presents the results from using Model B, again at 150 km/h, to infer a section of rail 
exhibiting a large variation in elevation and FRA Class 4 rail irregularities. This profile might be 
found along a section of track which is undergoing settlement. The profile, shown in Figure 17a, is 
90 m in length, and features an inverted ‘bell’ shaped variation in elevation with FRA Class 4 
irregularity superimposed. The inverted bell is located at 75.0 m, has a maximum depth of 0.04 m and 
a width corresponding to the standard deviation parameter of 10 (approximately 70.0 m). The 
optimisation is executed using objective sub-function >*, and the parameters presented in Table 6. 
Gaussian signal noise of 3% (SNR 30.45 dB) is added to the reference acceleration signal (Figure 
17b) prior to initiation of the optimisation. 

 

Figure 17. a) Model B: estimation of 40mm dip in rail with FRA Class 4 Irregularities; b) Bogie Acceleration signal from 

VTI analysis 

The result shown in Figure 17a confirms that the method can detect, with reasonable accuracy, larger 
changes in elevation along a track. This demonstrates that it has the potential to be used to detect track 
settlement. 

SUMMARY AND CONCLUSIONS  

A method for estimating railway longitudinal profiles using the Cross Entropy combinatorial 
optimisation method is presented in this paper. The analysis is carried out using acceleration signals 
generated from simplified railway vehicle and track models to infer the longitudinal rail profiles. It is 
found that the estimated rail profiles produced by the method provide a very good fit to the actual 



profiles and the method exhibits some resilience to added noise in the reference signal. Both rail 
irregularities and larger scale changes in rail elevation are successfully inferred. 

The optimisation method uses idealised 2-dimensional multi-body vehicle and track models to 
compare to a reference signal. In this paper, the same model is used in the generation of both the 
reference signal and in the optimisation process. For this method to be employed to determine rail 
profiles using acceleration data measured from an in-service train, accurate knowledge of vehicle and 
track properties is required. The accurate estimation of these parameters remains a challenge.38 

It is hypothesised that the variation of optimisation parameters such as population size and 
convergence criteria can be further optimised to achieve the desired balance of accuracy and 
efficiency in returning profiles at regular periods to inform maintenance planning. Reported rail 
profile return rates of over 100 s/m (~800 m/day) are currently too slow for the method to be 
considered for real-time monitoring of an entire network. It is anticipated that improvements in 
algorithm efficiency and the use of more powerful parallel processors will improve on current 
computational time. In lieu of real-time application, the method has the potential to be used to 
determine rail profiles periodically, on a more regular basis, and as compliment to, data gathered 
using dedicated track recording vehicles. The technique could be used to infer longitudinal profiles for 
localised track sections with known maintenance issues which require more regular monitoring. 

From the results shown in this paper, it can be concluded that the Cross Entropy method has the 
potential to be used as a ‘drive-by’ track monitoring tool to estimate and classify rail profiles using 
relatively low-cost accelerometers fixed to trains in regular service. Accurate estimation of railway 
track longitudinal profile using sensors mounted on in-service vehicles has the potential to provide a 
valuable tool to inform maintenance planning and, through comparisons with past profiles, 
identification of track issues such as settlement.  
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