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ABSTRACT:  

Autonomous Marine Systems, such as autonomous ships and autonomous underwater 

vehicles (AUVs), gain increased interest in industry and academia. Expected benefits of 

AMS in comparison to conventional marine systems are reduced cost, reduced risk to 

operators, and increased efficiency of such systems. AUVs are applied in scientific, 

commercial and military applications for surveys and inspections of the sea floor, the water 

column, marine structures, and objects of interest. AUVs are costly vehicles and may carry 

expensive payloads. Hence, risk models are needed to assess the mission success before a 

mission and adapt the mission plan if necessary. The operators prepare and interact with 

AUVs, in order to carry out a mission successfully. Risk models need to reflect these 

interactions. This article presents a Bayesian Belief Network (BBN) to assess the Human 

Autonomy Collaboration Performance (HAC), as part of a risk model for AUV operation. 

HAC represents the joint performance of the human operators in conjunction with an 

autonomous system to achieve a mission aim. A case study shows that the HAC can be 

improved in two ways; (i) through better training and inclusion of experienced operators, 

and (ii) through improved reliability of autonomous functions and situation awareness of 

vehicles. It is believed that the HAC BBN can improve AUV design and AUV operations 

by clarifying relationships between technical, human and organizational factors and their 

influence on mission risk. The article focuses on AUV, but the results should be applicable 

to other types of AMS. 

Keywords 

Risk modelling, autonomous underwater vehicles, human autonomy collaboration, BBN, 
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1 Introduction 
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Autonomous Marine Systems (AMS), including autonomous ships, are the focus 

of ongoing industrial and academic research and innovation.1-8 Recently, the 

Trondheimsfjord in Norway was opened as a test site for autonomous ships.9 One 

requirement for AMS to operate in this area, is that the risk has been assessed and it is 

demonstrated that the risk level is sufficiently low. Research projects, such as MUNIN10 

and AAWA11 aim to establish concepts for autonomous cargo ships. Several small 

autonomous boats and vessels are already in use.6, 12-14 Autonomous underwater vehicles 

(AUVs) are an examples of AMS, which have been applied for more than two decades. 

They operate below the water surface and represent an important tool for scientific, 

commercial and military purposes. They are able to map the sea floor, locate objects of 

interest, monitor and inspect undersea structures, and measure properties of the 

seawater.15 Direct control below the water surface is difficult, due to the impediment of 

radio signals underwater and the low communication bandwidth of underwater 

acoustics.15 AUVs are able to adapt their mission paths to some extent to the 

environmental conditions to operate in the subsea environment and achieve the 

previously defined mission aim. Several shapes and types of AUVs exist. Yuh et al.15 

provide an overview of different AUVs and their purposes. In the future, AUV will be 

increasingly operated together with other autonomous systems, e.g., autonomous aerial 

vehicles and surface vessels, e.g., for joint monitoring of the environemnt16, 17. In order to 

carry out such operations satisfactorily, AUVs need to be highly reliable. AUVs are 

expensive assets, often purpose built with a specific payload. A lost or misguided AUV 

might lead to failure of a mission, if no spare systems are available.18 Therefore, risk 
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models related to mission success (or correspondingly mission failure) are needed for 

decision support to the human operator.19  

“Autonomous” does not mean that no personnel will operate them. Autonomy is a 

system’s ability to change its pre-programmed plan of action to achieve its goal.20 The 

degree of autonomy designed in a system is described by the level of autonomy (LOA). 

Several scales of LOA exist, see, for example, 20-22. Human operators monitor the AMS 

during a mission. They can change the mission plan, or abort a mission if necessary, e.g., 

due to unforeseen changes in the operational conditions, or bad vehicle performance.23 

For example, the operators prepare the AUVs and make an overall mission plan, which 

might be erroneous.24 Hence, informed risk models need to reflect these interactions. 

Utne and Schjølberg25 identify relevant hazards related to human and organizational 

factors (HOF) for AUV operation that should be considered in risk assessments. Ho et 

al.26 discuss AUV operation and associated HOF that are relevant for a successful 

mission. Existing risk analyses of autonomous marine systems mainly focus on the 

technical aspects and faults of AUV systems. Expert teams predict mission risk for the 

AUTOSUB AUVs based on the AUVs’ fault logs.27-30 A Markov model approach 

assesses the critical phases of operation.24 Brito and Griffiths31 present a Bayesian Belief 

Network (BBN) approach for AUV risk management. Griffiths and Brito32 apply an 

expert elicitation process to the fault logs of two REMUS 100 AUVs to predict mission 

risk for different scenarios.  

A few publications focus on autonomous surface vessels. Rødseth and Tjora 33 

present a risk based design process for autonomous ships. Based on this approach, 

Rødseth and Burmeister34 present a hazard analysis for autonomous ships through a 
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scenario approach.34 They identify risk control options based on these scenarios. These 

risk control options aim at avoiding hazardous situations, but the interaction with the 

operators are not a concern. Kretschmann et al.35, 36 present the qualitative and the coarse 

quantitative risk assessment for the conceptualized ship of the MUNIN project. 

Regarding the qualitative risk assessment, they identify human error in remote operation 

and maintenance, foundering in heavy weather, and security issues as the main hazards. 

They focus areas of further development. Some risk models for autonomous vessels 

address heavy weather conditions, such as Ono et al.37, and Li et al.38. Harris et al.19 

review models for risk assessment of AUV and similar systems. They assess the 

applicability of these models to multi-vehicle operations and conclude that a bottom-up 

approach to risk assessment is most suitable. 

Only a few risk models, however, actually include HOF. Thieme et al.39 present a 

risk management framework for AUV, including HOF in a coarse risk assessment of 

AUV. Thieme et al.40 also present a qualitative BBN for AUV operation with focus on 

operator performance. None of the above-mentioned works, however, takes into account 

the important interaction between human operators and the technical system as a source 

for potential mission failure, which is addressed in this article. 

Risk models considering HOF in AUV operation should treat the human operators 

and the autonomous system as collaborators, and not as individual or independent 

systems. Human Autonomy Collaboration (HAC) can be defined as the cooperative and 

collaborative performance of the human operators and the autonomous system to achieve 

a goal jointly.41 Hollnagel42 argues that a model assessing human-machine systems 

requires a sound underlying model of the processes that happen during the interaction. 
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This should reflect how the joint performance of human and machine is affected by the 

context and circumstances.42  

 The objective of this article is to present a BBN risk model focusing on HAC for 

AUV operation. The risk model should benefit users and manufacturers of AUVs and 

other AMS, to improve the design of these systems and support operator decisions during 

operation.43 Since AMS may have similar requirements and demands as AUVs with 

respect to HAC, the risk model could be adapted to other AMS, as well. The BBN in this 

article extends the scope of 40, since quantification of the BBN and a case study are 

included. The case study gives insight into the usefulness and validity of the HAC BBN. 

The result of the research presented in the article shows that the two most efficient ways 

of improving HAC are through better training and inclusion of experienced operators, 

and through improved reliability of autonomous functions and situation awareness of 

vehicles. The HAC BBN is part of a larger future risk model for AUV operation, which 

considers environmental interactions, technical system performance, regulatory and 

customer requirements, and enables assessment of mission success and the effect of risk 

control.  

The next Section describes the development process of the BBN. Then the HAC 

BBN is presented, including a case study with quantification and validation. The 

discussion follows, before the last Section concludes the article and states further work.  

2 Development of the Bayesian Belief Network 

BBNs have been developed for risk assessments in various industries. In the 

marine domain, BBNs are applied for, e.g., ship collisions44, ship groundings45, 46, 

maintenance work on offshore installations47, 48, and maritime transport systems49. BBNs 

Page 5 of 47

http://mc.manuscriptcentral.com/site abbrev

Journal name will be used here

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6 

are acyclic directed graphs and consists of nodes and arcs. Nodes have a set of variables, 

representing the state of the node. Arcs connect parent nodes with child nodes, 

representing the influence. Arcs are associated with conditional probability tables (CPTs) 

that determine the child nodes’ states based on the parent nodes’ states. Input nodes have 

no parent nodes, they are associated with a default probability to reflect their state. The 

Bayesian reasoning laws are used to update BBNs.50 For more specific details on BBN, 

see, e.g., Jensen and Nielsen50, or Kjærulff and Madsen43. 

The development of a BBN also includes some challenges. It is important to 

identify and include all relevant factors that influence risk in a BBN, as well as their 

relationship. A meaningful BBN model includes well defined nodes, and the problem 

addressed in the model must lie within a structured domain with causal relationships.43 

The development of the BBN in this article follows a five-step process:  

1. Describe aim and context of the BBN. 

2. Gather and group information relevant for the context into nodes.  

3. Connect the nodes with directional arcs.  

4. Determine the conditional probability tables (CPT) and quantify the model. 

5. Test and validate the model. 

Steps 1-3 are mainly based on the guidance on construction of BBNs by Jensen and 

Nielsen50. Steps 4 and 5 are adjusted to the purpose of the development of the HAC BBN. 

The BBN in this article was created with the computer program GeNIe 2.0 by the 

Decision systems laboratory, University of Pittsburgh, USA51. The following sub-

sections explain the development process in detail. 

2.1 Step 1 - Define aim and context of the risk model 
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The aim of the model in the article is to show the relationship between human 

operator performance and the technical performance of the autonomous system. The aim 

of the model determines the definition of the top node, which is Human autonomy 

collaboration performance (HAC). HAC represents the joint performance of the human 

operator and the autonomous system during a mission of an AUV, its deployment or its 

retrieval. The presented model shall aid during the planning of an AUV mission to 

identify potential problems that might arise. The model in this article can also be used as 

an aid during the design of a system, since it highlights important relationships between 

the human operators and the technical system. The model shall be seen in the context of 

the operation of AUV described in the introduction. 

Figure 1 shows that an overall risk model for AUV operation should include 

aspects related to the technical system, environmental conditions, and human and 

organizational factors, i.e., HAC. Regulations from the authorities, stakeholder 

requirements, and societal expectations are also issues that need to be considered. The 

HAC model is the scope of this article, since several works have already focused on the 

technical system performance and environmental conditions, as mentioned in the 

introduction. Future work remains to integrate all these aspects into one model. 
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Figure 1 The main aspects to include in an overall risk model for AUV operation. The 

human autonomy collaboration (HAC) model focuses on the human and organizational 

part.  

 

2.2 Step 2 - Gather and group relevant information 

Literature on human autonomy interaction provides relevant information for the 

model in this article and determines the basis for the development of the nodes. Based on 

the definition of HAC, we may group the literature used to develop the model into two 

overall categories: (i) autonomy and automation, and (ii) human and organizational 

factors in risk modeling. Table 1 summarizes the details of the literature and the 

references related to the nodes in the HAC BBN model. Qualitative influence models for 

use of automated functions were developed by Riley52 and Parasuraman and Mouloua 

(cited in 53). Donmez et al.54 present a discrete simulation to determine operators’ 
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performance of supervisory control over multiple unmanned aerial vehicles and AUVs. 

These models are rather coarse and the former two do not contain recent findings. 

Therefore, it is necessary to aggregate recent findings in this domain and incorporate the 

considerations for autonomous marine systems, i.e., specifically for AUV operation in 

this article. 

HOFs do not interact linearly.55 Most methods used in probabilistic safety 

assessment are not suitable for assessing the HAC performance and a systemic approach 

is suggested.42 BBNs are a useful tool for risk modelling, respecting the aforementioned 

considerations. They are traceable43, represent dependencies visually, can be used for 

prognosis and diagnosis.44 Not only causal but also uncertain dependencies in complex 

systems can be included.56. Existing data and expert judgment can be combined and used 

to quantify BBN.43, 44 Furthermore, existing methods, such as fault trees and event trees, 

can be transformed into BBN, which means that modelling approaches can be 

combined.44  

BBNs are also used for human reliability assessment (HRA), for examples, see 

Mkrtchyan et al.57 BBN versions of established methods, such as the SPAR-H method58, 

59, are more flexible and can be extended to model performance shaping factors (PSF) 

with more details, including task specific knowledge. In HRA, the advantages of using 

BBN are causal and evidential reasoning, incorporation of information from different 

sources, graphical representation of causal relationships, and the possibility to include 

probabilistic modelling methods.57 The existing literature gives confidence that BBN are 

a suitable tool to model risk of AUV operation, including HOF.  

2.3 Step 3 – Connect the nodes  
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The arcs in the BBN model are developed based on the findings in the literature 

and the relationships identified between factors. These findings were merged, in order to 

determine the network. Some factors have a mutual influence on each other. This makes 

it difficult to define clearly these arcs. Since BBN are acyclic it is not possible to model 

mutual influences. In order to resolve mutual influences, the most frequently mentioned 

direction of influence define these otherwise ambiguous arcs.  

2.4 Step 4 - Conditional probability tables and case study  

Several ways of CPT elicitation exist, e.g., through theory, observed frequencies 

or expert estimates.50 A data driven approach to deriving the CPTs is challenging for the 

model, since there is lack of data regarding HOF and AUV operation. Only a few 

investigation reports of loss of AUVs are available, e.g., Strutt 60. Direct elicitation of 

CPTs is resource intensive, but methods for reduced effort have been developed.61 

Vinnem et al.47 use an approach based on building functions to assess CPTs. This process 

is modified and applied in this article because it reduces the amount of elicitation needed. 

The process focuses on assessing the strength of influence from parent nodes on their 

child nodes and on building templates. It is assumed that the parent nodes are 

independent. The adapted steps from Vinnem et al.’s 47 are: (i) define templates for the 

CPT assessment based on triangular distributions, (ii) determine the strength of influence 

of each parent node on the child node, and (iii) combine the templates with the respective 

weights in the CPT of the parent node. For some nodes, the CPT assessment need to be 

adapted for the HAC model; more details are given in Section 3.3. 
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The data for the input nodes in the model in this article was derived in a case 

study, with basis in AUV operation in the Autonomous Underwater Robotics (AUR) lab 

at the Norwegian University of Science and Technology (NTNU). 

2.4 Step 5 - Validation  

Validation provides assurance that the BBN reflects the system it shall represent 

and that outputs and mechanisms that produce these outputs reflect the real processes. 

Validation of BBN is challenging, simply applying a comparison to data or using experts 

to determine validity might overlook important aspects of model uncertainty.62 Pitchforth 

and Mengersen62, 63 propose a framework to validate BBNs structurally and 

quantitatively. This framework was chosen for this BBN, since data-driven validation is 

not possible. The suggested model in this article is compared to existing models, with 

respect to certain modelling aspects. The framework applies five tests in two categories: 

expert based validation and databased validation.  

Expert based validation consists of the following three tests:62 (i) face validity 

assess the BBN’s structure in comparison to what the literature or experts predict; (ii) 

content validity tests, if all relevant factors are included in the model; (iii) convergent and 

discriminant validity assess if the model is similar to and different enough from other 

models with a similar aim for a different system. Databased validation considers two 

aspects62: (i) concurrent validity, i.e., the BBN’s behavior in comparison to the behavior 

of (parts of) similar models; and (ii) predictive validity, i.e., the BBN’s estimations in 

comparison to available real world data. As mentioned no comprehensive data is 

available and therefore databased validation is only limited possible. Details are stated in 

Section 3.6. 
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3 The HAC risk model 

3.1 The BBN and description of the nodes 

HAC depends on the autonomous functionality designed into the technical 

system, the human operators, the interaction between the technical system and the human 

operator, and the organization in which the operators act.41 An adequate HAC is 

associated with a high probability for a successful mission. Figure 2 shows the HAC 

BBN. Table 1 describes the nodes in the BBN, including references to the associated 

literature. The next paragraphs describe the network in more detail. The literature 

provides the basis for the arcs and the relations between the nodes. 

Human Operator Performance in cooperation with an autonomous system is 

widely researched. It is influenced by Trust, Reaction Time of the operators, Procedures, 

Fatigue, Situation Awareness (SA) of Human Operators, Workload, Operators’ Training, 

and Operators’ Experience.26, 52, 53, 55, 64-77 Experience and training refer to all operational 

aspects of AUV operation. This includes AUV programming, AUV maintenance, AUV 

deployment and recovery, assessment of the marine environment, and working in the 

marine environment. 

Research of human autonomy collaboration focuses on SA. Low SA of Human 

Operators is a symptom of low levels of other HOFs.65 SA of Human Operators is 

influenced by Trust, Workload, Feedback from the System, Time Delay of Transmission, 

Communication, and Operators’ Training.26, 53, 65, 73, 76, 78, 79  
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Figure 2 BBN for Human Autonomy Collaboration Performance. 

Node color-coding: Light grey – Input nodes, White – Intermediate nodes, Dark grey – 

HAC node. 
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Table 1 Definition and description of the nodes included in the Human Autonomy 

Collaboration (HAC) BBN.  

Node Description 
Factor 

mentioned in 

Autonomous 

Function 

Performance 

Node summarizing the performance of autonomous functions of the 

system. 
N/A 

Communication 
Information exchange between operators to fulfil the assigned 

mission.  
73, 78, 79 

Etiquette 
“Set of prescribed and proscribed behaviours that permits meaning 

and intent to be ascribed to actions”69 of the system. 
26, 53, 69, 70 

False Alarm Rate Rate of status messages that contain erroneous information.  53, 64, 71, 78 

Fatigue 

“Inability [of the operator] to function at the desired level due to 

incomplete recovery from the demands of prior work and other 

waking activities.”80 

45, 53, 74, 80 

Feedback from 

the System 

Node summarizing the way a system gives feedback, to the 

operators, on status, intentions and actions. 

53, 55, 64, 65, 67, 

70, 71, 73, 81 

Human 

Autonomy 

Collaboration 

Performance 

Node summarizing the overall performance of operators in 

conjunction with the autonomous functions of the system to achieve 

the mission goal. 

N/A 

Human Operator 

Performance 

Node summarizing the nodes that influence the human operators’ 

performance.  

55, 65-67, 69-71, 

73, 76, 79 

Interface Design 
Design principles applied to the physical and virtual interfaces of 

the system.  

53, 59, 70, 78, 81, 

82 

Level of 

Autonomy 

The degree of the systems’ ability to make independent decisions. 

This depends on the type of operation to be carried out and the type 

of AUV. This relationship is not further included in the model.  

26, 54, 67, 71, 72, 

74, 76 

Mission Duration 

The duration of use and operation of AUVs for a mission. It also 

depends on the type of mission, type of vehicle and the 

environmental condition. These interactions are not modelled, since 

they would require that environmental and technical aspects are 

fully included in the model. 

68 

Number of 

Vehicles per 

Operator 

Number of AUVs and AUV types, one operator operates 

concurrently. 

26, 54, 55, 67, 71, 

72, 74, 79, 83 

Operators’ 

Experience 

Level of experience of the operators with operation of the AUVs. 

This includes experience with AUV programming, AUV 

maintenance, AUV deployment and recovery, assessment of the 

marine environment, and working in the marine environment. 

53, 59, 65, 69, 77 

Operators’ 

Training  

The amount of relevant training operators received for operation of 

AUVs. Relevant training includes training with respect to AUV 

programming, AUV deployment and recovery, AUV maintenance, 

the marine operation environment and working in the marine 

environment.  

53, 59, 64, 65 

Procedures 
Provided documentation that prescribes operation and provides 

guidance to operator. 
59, 75 

Reaction Time 
Time the operators need to react to a situation that needs their 

attention. 
64, 71, 72, 78 

Reliability of 

Autonomous 

Functions 

The system’s ability to perform its functions as required during the 

time of use. This includes mission relevant and diagnostic 

functions. 

53, 64, 67, 69-71, 

78, 81 

Shift Scheme Pattern, which determines the operators’ working and resting time. 45, 68, 80 
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Node Description 
Factor 

mentioned in 

SA of Human 

Operators 

Perception and comprehension of the AUVs’ state and situation 

during operation by the operator, and projection of the future state. 

26, 53, 65, 71, 72, 

76, 78, 84 

SA of Vehicles 

The vehicles’ ability to perceive information, interpret, integrate 

and assess relevance of that information, and predict the future with 

this information and prior background knowledge. 

85 

Task Load 

Number of tasks that have to be executed concurrently by one 

operator. This evaluation should include the consideration of 

complexity of tasks. 

53, 55, 59, 64, 70, 

72, 73, 78 

Time Delay of 

Transmission 

Time that a message needs from the AUV to the operators or vice 

versa.  
26 

Trust 
“Users’ willingness to believe information from a system or make 

use of it” 69 

26, 53, 64, 67, 69, 

70, 77, 78, 81 

Workload 
The work demand encountered by the operators during AUV 

operation.  

26, 53-55, 64, 65, 

67, 69, 72, 74, 76-

79, 81, 83 

 

Trust in the system is built with time through the Operators’ Experience with the 

system.81 Trust also depends on the operators’ Workload, Feedback of the System, and 

Reliability of Autonomous Functions.26, 53, 67, 69, 70, 78, 81 Workload and Time Delay of 

Transmission influences the Reaction Time of operators.26, 64, 71, 72, 78 Operators’ 

Experience and Training determine familiarity with the systems and influence the 

Reaction Time. The Operators’ Workload depends on the amount and kind of tasks they 

have to carry out.54 In the model, Workload is determined through the LOA, Task Load, 

and Number of Vehicles per Operator.26, 53-55, 66, 67, 71-73, 78, 79  

Gander et al.80 highlight the necessity to consider fatigue in risk management. 

Akhtar and Utne45 analyse the influence of fatigue on risk in maritime transport. Fatigue 

depends on the Workload, Mission Duration, and the Shift Scheme.45  

Feedback of the System summarizes the system’s way of presenting information 

to the operators, through Etiquette, False Alarm Rate, and Interface Design, c.f. 26, 53, 70, 78, 

81. SA of Vehicles and Reliability of Autonomous Functions constitute the Autonomous 

Function Performance. Autonomous functions are those functions that the AUV carries 
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out to finish a mission successfully. This includes mission relevant functions, e.g., 

sensing of the environment, data recording, and diagnostic functions, which are necessary 

for the AUV to follow and adapt its mission plan to achieve the most satisfactory mission 

outcome. SA of Vehicles influences the Autonomous Function Performance, since it is 

the AUVs’ ability to perceive and analyze their own situation and predict their future 

situation.85 A low Reliability of Autonomous Functions implies that the system does not 

execute its functions when needed and in the right way. 

3.2 States of the nodes 

Table 2 presents the proposed states for the nodes described in Table 1. Proposals 

of evaluation criteria are given for the input nodes. The states are arranged from “worst” 

to “best” states, except for LOA, and Trust. States that need clarification are described 

below.  

Table 2 Proposed states for the nodes in the Human Autonomy Collaboration 

Performance BBN 

Node Proposed states 

Autonomous Function 

Performance 
Low; Medium; High 

Communication 

Low; Adequate; High (e.g., no communication of relevant information; 

communication of relevant information; clear and unambiguous 

communication of all relevant information) 

Etiquette 

Disruptive; Mediocre; Good (e.g., intrusive messages with abstract 

information; messages partly fulfil design criteria from 70 p. 102; messages 

fulfil design criteria from 70 p. 102)  

False Alarm Rate 

High; Medium; Low (e.g., more than one of 1000 status updates is erroneous; 

one status update of between 1000 and 10000 is erroneous; less than one of 

10000 status updates is erroneous) 

Fatigue High; Medium; Low 

Feedback from the 

System 
Poor; Mediocre; Good 

Human Autonomy 

Collaboration 

Performance 

Inadequate; Adequate  

Human Operator 

Performance 
Low; Medium; High 
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Node Proposed states 

Interface Design 

Poor; Mediocre; Good (e.g., no interface design principles applied; ecological 

interface design principles partly applied; ecological interface design principles 

fully applied, c.f. 70) 

Level of Autonomy 

LOA 1 – Manual Control; LOA 2 – Action Support; LOA 3 – Batch 

Processing; LOA 4 – Shared Control; LOA 5 – Decision Support; LOA 6 – 

Blended Decision Making; LOA 7 – Rigid System; LOA 8 – Automated 

Decision Making; LOA 9 – Supervisory Control; LOA 10 – Full autonomy 

(based on 66) 

Mission Duration 
Long; Medium; Short (e.g., more than eight hours; between four and eight 

hours; less than four hours) 

Number of Vehicles 

per Operator 

High; Medium; Low (e.g., more than three vehicles or vehicle types; between 

two and three vehicles or two vehicle types; less than two vehicles) 

Operators’ Experience 
Low; Medium; High (e.g., less than half a year, between half a year and one 

year; more than one year) 

Operator’ Training 

Low; Adequate; High (e.g., operators have not attended required trainings; 

operators have gone through required training; additional to required trainings, 

additional training was attended) 

Procedures 

Poor; Adequate, Good (e.g., procedures are incomplete; procedures are 

covering all expectable situations; procedures are well written covering all 

expectable situations and give guidance in case of unforeseen events) 

Reaction Time Long; Medium; Short  

Reliability of 

Autonomous 

Functions 

Low; Mediocre; High (e.g., ≤ 95%, > 95% and ≤ 99%, > 99%) 

Shift Scheme 
Variable working hours; 8-4-4-8; 12-12 or 6-6 (hours on and off duty, based on 
45) 

SA of Human 

Operators 
Low; Medium; High 

SA of Vehicles 

Low; Medium; High (e.g., basic perception of the environment; interpretation, 

integration and ranking of perceived information; prediction of future 

situations, with available knowledge and perceptions, based on 84) 

Task Load 

High; Medium; Low (e.g., more than three nominal tasks, or more than one 

moderately complex tasks, or one or more highly complex tasks; between two 

and three nominal tasks, or one moderately complex task; two or less nominal 

tasks) 

Time Delay of 

Transmission 

Long; Medium; Short (e.g., more than 40 seconds, between 40 and 20 seconds, 

shorter than 20 seconds) 

Trust Distrust; Adequate; Overreliance 

Workload High; Medium; Low 

 

The HAC node has the states “Inadequate” and “Adequate”. This represents the 

combined expected performance of the operators and the AUV system. An “Adequate” 

HAC can be expected to contribute to a higher probability of mission success. An 

“Inadequate” HAC is associated with a lower expected performance, e.g., errors by the 

operators or inadequate decisions by the autonomous system. It has a negative influence 
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on mission success, and the probability for negative mission outcomes increases, e.g., 

loss of an AUV. 

The “Low” states of Reliability of Autonomy Functions is based on the 

assumption that a reliability below 95 % is not acceptable and performance decreases 

strongly below 95 %.67 No manual control or correction is possible. Therefore, this 

threshold was selected. The states “Medium” and “High” are exemplarily given.  

The states of Shift Scheme in Table 2 need explanation: Akhtar and Utne45 show 

that in the presence of other fatigue related factors, the “8-4-4-8” scheme contributes 

more to fatigue than the shift schemes “12-12 or 6-6”. Variable working hours, however, 

may lead to more fatigue.  

3.3 Quantification of the Bayesian Belief Network 

The process for CPT assessment was adapted from Vinnem et al.47 The first step 

(i) is to define the templates used for CPT elicitation, which are based on a triangular 

distribution. Table 3 shows the CPT templates for assessment of the child nodes. The 

strength of influence defines the spread in the template for a given parent state. In this 

article, two strengths (low and high) are used. The templates are based on discretized 

triangular functions, which is a simplification from the original process in Vinnem et 

al.47, due to limited data available. A high influence template has a lower spread over the 

range of states. The range of states is referred to as Worst, Intermediate, and Best. These 

states correspond to the states presented in Table 2. 
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Table 3 Discretized CPT templates for low and high strength of influence. Worst, 

intermediate, and best represent the states generically. 

Parent’s state Child’s states Low strength template High strength template 

Worst 

Worst 0.60 0.90 

Intermediate 0.30 0.09 

Best 0.10 0.01 

Intermediate 

Worst 0.20 0.05 

Intermediate 0.60 0.90 

Best 0.20 0.05 

Best 

Worst 0.10 0.01 

Intermediate 0.30 0.09 

Best 0.60 0.90 

 

In the second step (ii), the strength of influence of each parent node is assessed for 

the child node. For example, the Autonomous Function Performance has the parents 

Reliability of Autonomous Functions and SA of Vehicles, with corresponding states in 

Table 2. The strength of influence from Reliability of Autonomous Functions is rated 

high, since AUVs are highly dependent on the correct performance of their functions to 

execute a mission. SA of Vehicles is also rated as highly influential, since the operational 

picture is highly relevant for the AUVs to carry out their assigned functions 

appropriately. 

The strength of influence also determines the weight of each parent node. A low 

strength of influence is associated with a weight of 1. A high strength of influence is 

associated with a weight of 3. The weights for each parent node are normalized with the 

total sum of all weights. The templates for each parent node are multiplied with their 

normalized weights to build a child node’s CPT. For a given combination of the parent 

nodes’ states, the weighted templates are added together and inserted in the respective 

column of the child node’s CPT. This represents the third step (iii) of Vinnem et al.’s 

approach. In the above example, the high strength templates in Table 3 are used.  
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As an example of the elicitation process, consider the node Autonomous Function 

Performance. The strength of influence is considered the same for both parent nodes; i.e., 

Reliability of Autonomous Functions and SA of Vehicles, and therefore, they are equally 

weighted. Table 4 shows the resulting CPT for the node Autonomous Function 

Performance. A short example demonstrates the calculation, the combination of states 

was chosen in order to clearly distinguish the contribution from the parents. For example, 

the CPT entry for “Low” Autonomous Function Performance for the combination of 

“Mediocre” Reliability of Autonomous Functions and “Low” SA of Vehicles is 0.475. 

Both, Reliability of Autonomous Functions and SA of Vehicles have a high influence on 

Autonomous Function Performance. Therefore, they are associated with a weight of “3” 

and the high strength templates in Table 3. The entry in the CPT is the sum of the 

contribution from the “Low” Autonomous Function Performance multiplied with the 

normalized weight (0.05 ∙
3

3+3
= 0.025) and the contribution from “Mediocre” 

Reliability of Autonomous Functions multiplied with the normalized weight(0.9 ∙
3

3+3
=

0.45). This process is repeated for all possible combinations of the two parent nodes’ 

states for each state of Autonomous Function Performance. Appendix 1 contains the 

other strength of influence assessments of the parent nodes on the child nodes. 

Table 4 CPT of Autonomous Function Performance. Abbreviations: L – Low, M – 

Medium, and H – High. 

Reliability of  

Autonomous Functions 
L Mediocre H 

SA of Vehicles L M H L M H L M H 

State of Autonomous  

Function Performance 

L 0.900 0.475 0.455 0.475 0.050 0.030 0.455 0.030 0.010 

M 0.090 0.495 0.090 0.495 0.900 0.495 0.090 0.495 0.090 

H 0.010 0.030 0.455 0.030 0.050 0.475 0.455 0.475 0.900 
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A few CPTs need a separate process; i.e., the HAC node, Trust, and Workload. 

The CPT for the HAC node needs a separate process, as the templates cannot be applied 

and the LOA needs to be considered separately. Table 5 shows the CPT template used for 

the HAC node, since the templates from Table 3 are not suitable for translating directly 

the states “Low”, “Medium” and “High” to “Inadequate” and “Adequate”. In Table 5, 

“Low” Performance of the Human Operator and the Autonomous System is mainly 

associated with an “Inadequate” HAC. Similarly, a “Medium” performance is mainly 

associated with an “Adequate” HAC. A “High” performance is strongly associated with 

an “Adequate” state.  

Table 5 CPT template for determination of the CPT of the Human Autonomy 

Collaboration Performance node 

HAC state 
State of Autonomous Function Performance or Human Operator Performance 

Low Medium High 

Inadequate 0.90 0.10 0.01 

Adequate 0.10 0.90 0.99 

 

The LOA, by definition, proportions the influence from the human operator and 

the autonomous system on decision-making and performance. Hence, LOA determines 

the weight of the Human Operator Performance in relation to Autonomous Function 

Performance. Table 6 shows the LOA dependent weights. They are based on the 

assumption that the human operators have most influence on the state of HAC when the 

AUV has a low LOA. Their influence decreases with increasing LOA. However, the 

Autonomous Function Performance is not negligible at LOA 1, nor the Human Operator 

Performance at LOA 10. 
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Table 6 Proposed weights for building the CPT for Autonomy Collaboration Performance 

depending on LOA 

LOA 
Weight for 

Autonomous Function Performance Human Operator Performance 

1 0.05 0.95 

2 0.15 0.85 

3 0.25 0.75 

4 0.35 0.65 

5 0.45 0.55 

6 0.55 0.45 

7 0.65 0.35 

8 0.75 0.25 

9 0.85 0.15 

10 0.95 0.05 

 

The building of the CPT for Trust needs considerations, due to its three states. 

The literature 53, 69, 70, 81 shows how “Distrust”, “Overreliance” and “Adequate” Trust are 

formed. The states of Reliability of Autonomous Functions (“Low”, “Mediocre” and 

“High”) are directly associated with the respective formation of “Distrust”, “Adequate” 

Trust and “Overreliance”. “Poor” Feedback from the system leads to “Distrust”. A 

“Good” Feedback will lead to an “Adequate” level of Trust. Consequently, “Mediocre” 

feedback will lead to “Overreliance”, since the operator might overlook cues. “Low” 

Operators’ Experience leads to “Distrust”. “High” Operators’ Experience creates an 

“Adequate” level of Trust. “Medium” Operators’ Experience is associated with 

“Overreliance”. Similarly, “High” Operators’ Training creates “Adequate Trust”. “Low” 

Operators Training leads to “Distrust”. “Adequate” Training is associated with 

“Overreliance”, since not all situations that would require the operators’ attention are 

trained. This means that Trust has two states that have a negative influence on the 

operator53, 69, 70. These are “Distrust” and “Overreliance”. Hence, the template for the 

“worst” state is used for both “Distrust” and “Overreliance” to build the CPT for SA of 

Human Operators.  
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The CPT for Workload needs additional assumptions due to its parent LOA. A 

lower LOA implies more work for the human operators. Hence, “LOA 1” to “LOA 3” 

were associated with a “High” Workload. “LOA 4” to “LOA 7” imply cooperation in 

execution of the operation and a “Medium” Workload. “LOA 8” to “LOA 10” represent 

the best possible state, and imply a “Low” Workload, since autonomous functions carry 

out most of the work 

3.4 Case study 

NTNU operates one REMUS 100 AUV, designed and produced by Hydroid, 

through its Advanced Underwater Robotics Laboratory (AUR Lab)86. The AUV is used 

for testing scientific equipment, surveys of the seabed, biological and physical studies of 

the fjords of Norway. The data in the case study is mainly derived from earlier work, c.f. 

39, 87 and supplemented with information from the AUR Lab, the supplier88 and other 

publications32, 89, 90. The case study focuses on the operation phase of the mission to have 

sufficient data. Deployment and retrieval can be assessed by changing the states of the 

input nodes, according to the operators and mission states. However, insufficient 

information is available for these phases and a quantification in the case study is 

impossible.  

Table 7 summarizes the states for the input nodes and related references used in 

the case study. LOA, Shift Scheme and Number of Vehicles are deterministic, their state 

is known, and hence the probability is set to 1. Thieme87 presents the rating of PSF for 

the SPAR-H method by two operators of the AUR Lab. Six undesired events are related 

to operators interacting with the REMUS 100 AUV. These events are: AUV is not 

properly monitored, Unexpected behavior is not detected, Existing faults are not 
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completely solved before deployment, Faults are not recognized during planning phase or 

before deployment, Wrong use of software leads to wrongly implemented parameters, 

and Implementation of mission path or map is done wrongly. For a detailed description, 

see 87. The PSF of these events were assessed to be in either a low or poor state, an 

adequate or nominal state, or a good or helpful state. It was assumed that these ratings of 

the PSF correlate to the generic states in this article; Worst, Intermediate and Best, 

respectively. The number of ratings was normalized over these states. The PSF ratings 

were used for the nodes Communication, Etiquette, Interface Design, Operators’ 

Experience, Operators’ Training, Procedures, and Task Load.  

Table 7 States of the input nodes for the case study. For states without available reference 

(N.A. – not available), assumptions had to be made based on experiences in the AUR 

Lab.  

Node 

States 

Comment Ref. 
Worst 

Inter-
mediate 

Best 

Communication 0.001 0.749 0.250 Based on the PSF ratings of work processes. 87 

Etiquette 0.167 0.750 0.083 Based on the PSF ratings of Ergonomics/ HMI. 87 

False Alarm 
Rate 

0.200 0.600 0.200 
No data is available. A Medium False Alarm 
Rate is assumed, with low confidence. 

N.A. 

Interface Design 0.167 0.750 0.083 Based on the PSF ratings of Ergonomics/ HMI. 87 

Level of 
Autonomy 

LOA 7 
AUV are pre-programmed, the software for 
programming assists in planning and mission 
implementation. This corresponds to LOA7. 

N.A. 

Mission 
Duration 

0.050 0.900 0.050 
Missions were in average between four and 
five hours (assuming a speed of 1.5 m/s and 
length of 25 km). 

39, 87 

Number of 
Vehicles per 
Operator 

0.000 0.000 1.000 The AUR Lab operates one REMUS 100 AUV. 39, 87 

Operators’ 
Experience 

0.667 0.250 0.083 
Based on the PSF ratings of Experience/ 
Training. 

87 

Operators’ 
Training  

0.667 0.250 0.083 
Based on the PSF ratings of Experience/ 
Training. 

87 

Procedures 0.001 0.166 0.833 Based on the PSF ratings of Procedures. 87 

Reliability of 
Autonomous 
Functions 

0.200 0.600 0.200 

Griffiths et al.32 report that 14.8 % of mission 
were aborted preliminary by the REMUS 100. 
The exact reasons are not stated. Therefore, it 
is assumed that Reliability of Autonomous 

32 
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Functions is mainly Mediocre, with low 
certainty. 

Shift Scheme 0.000 0.000 1.000 
Normally operators work a 12–12 shift 
scheme. 

N.A. 

SA of Vehicles 0.050 0.900 0.050 

The AUV is equipped with various sensors. 
Based on measurements it assesses its own 
situation with simple reasoning. Therefore, it is 
assumed medium with high certainty. 

88, 89 

Task Load 0.001 0.916 0.083 Based on the PSF ratings of Complexity. 87 

Time Delay of 
Transmission 

0.010 0.090 0.900 

Messages can be delayed by more than ten 
seconds. It was assumed that only a low 
percentage is delayed by more than 20 
seconds. 

90 

For states of the nodes that have zero probability, since the operators in 87 did not 

use corresponding PSF ratings, a small probability was inserted in the current case study 

to reflect uncertainty. For the other states, available information from 32, 39, 87-90 was used 

to assess the most likely state. For some nodes no references were available (marked with 

N.A.). These nodes are False Alarm Rate, LOA, and Shift Scheme. For these states 

assumptions were made based on the experience with the AUR Lab. Based on the 

strength of knowledge, the strength of influence templates from Table 3 were used to 

derive the input probabilities.  

Using the probabilities from Table 7 for the input nodes and updating the network 

in GeNIe, gives a probability of 28.5 % for an “Inadequate” HAC state, and a probability 

of 71.4 % for an “Adequate” HAC state. The probability of mission success decreases 

with an increased probability of “Inadequate” HAC (cf. Figure 1). Hence, the results of 

the case study imply that there is room for improvement. The HAC should be as 

“Adequate” as possible. A sensitivity analysis in the next section gives input to how the 

state of HAC could be improved. 

3.5 Sensitivity Analysis 
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GeNIe 2.0 was used to conduct a sensitivity analysis. The built in sensitivity 

analysis function of GeNIe 2.0 varies each node over the whole range and assesses the 

impact of this change on the target node. The target node for the sensitivity analysis is in 

this case the Human Autonomy Performance Collaboration node. Figure 3 shows the 

analysis results. Intensive red areas indicate a higher influence of nodes. The most 

influential input nodes on the HAC node are Autonomous Function Performance, 

Reliability of Autonomous Functions, SA of Vehicles, Operators’ Training, and 

Operators’ Experience. The nodes LOA, Shift Scheme, and Number of Vehicles per 

Operator are deterministic and depend on the mission. Hence, their influence could not be 

assessed during the sensitivity analysis. Figure 4 shows the effect of changing the states 

of each node in the case study on the probability of “Adequate” HAC. The case study is 

shown as reference value, as well as the Best Case and the Worst Case. For the Best Case 

and Worst Case all input node that were not deterministic were set to their best and worst 

states, respectively. If all input nodes are in their best state, the probability of an 

“Adequate” HAC is 95.1 %. With the input nodes in their worst states, the probability of 

“Adequate” HAC drops to 23.4 %. The CPT of HAC limits the best and worst probability 

of HAC. This is discussed in the discussion Section.  

To assess the influence of the individual nodes, they were set individually to the 

best and worst case. Figure 4 is arranged such that the most influential nodes are on the 

top and the least influential on the bottom. Figure 3 and Figure 4 shows that Reliability of 

Autonomous Functions and SA of the Vehicles are the most influential nodes in the case 

study. In their worst state, they reduce the probability of an “Adequate” HAC by more 

than 25 %.  
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Figure 3 Sensitivity of the HAC node to input from its parent nodes. Dark red areas 

indicate a higher influence. Grey nodes are deterministic. The sensitivity from these 

nodes was not assessed. 
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Figure 4 Effect of changing the states of the nodes individually on the probability of 

“Adequate” Human Autonomy Collaboration Performance. The Worst Case and the Best 

Case refer to the nodes being set in the worst and best state combined.  

 

The best state of Reliability of Autonomous Function and SA of the Vehicles, 

improves the probability of “Adequate” HAC by 7.1 % and 4.4 % respectively. 

Operators’ Training and Operators’ Experience are the most influential human factors in 

the case study. Their worst states reduce the probability of “Adequate” HAC by 2.5 % 

and 2.2 %, respectively. The best states improve the probability of “Adequate” HAC by 

5.8 % and 5.3 %, respectively. The states with the least influence are Communication, 

Mission Duration, and False Alarm Rate. Their best states do not improve the probability 

of “Adequate” HAC. However, the worst states decrease the probability of “Adequate” 

HAC by 0.2 %, 0.1 %, and 0.1 %, respectively. 
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3.6 Validation of the model 

Six publications form the basis of the validation, i.e., 31, 46, 47, 52, 54, 59. These 

publications cover similar models and considerations as the model in this article. It is 

assumed that face validity is established by the iterative building of the BBN from the 

literature, i.e., structurally, the model is similar to Riley52. 

Each node in the model presented in this article, except LOA and HAC, has three 

states. Brito and Griffiths31 use more states for their nodes, which reflect discretized 

physical conditions and risk classes. They do not include nodes, which reflect HOFs. This 

makes a comparison difficult. Groth and Swiler59 use three and five states. Mazaheri et 

al.46 use nodes with mainly two states and few with three states. Content validity is 

assumed, since the relevant literature, which includes HOF, c.f. 46, 59, uses similar states 

and discretization as in the BBN presented in this article. 

The CPT assessment process was modified from Vinnem et al.47, with simplified 

weights and CPT templates. The parametrization process seems valid, since it was 

adopted from the literature and leads to the expected model behavior. The presented 

model is a sub-model to find the mission success of AUV operation and it models 

considerations that are not included in 31. Hence, there is no convergence. Since this 

article focuses on AUV operation, it can be compared to the model of 46 with respect to 

discriminant validity. Their article focuses on ship groundings and includes specific 

nodes, which are not present in the HAC BBN. Discriminant validity is assumed. 

Donmez et al.54 present results for the performance of operators operating 

different types of autonomous vehicles. A comparison is not possible, since the case 

study is based on operation of one AUV and the presented model in this article does not 
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assess HAC as a percentage of Score, as54. Concurrent validity cannot be established, 

since there are no suitable reference models.  

The model produces expected outputs regarding the overall model behavior in the 

case study. Setting the input nodes to their best states resulted in a high probability of 

“Adequate” HAC of 95.1 %. Setting the variable input nodes to the worst case in the case 

study results in 23.4 % probability of “Adequate” HAC. The presented HAC BBN model 

is sensitive to the input (Section 3.5). The model reflects, e.g., that the Reliability of 

Autonomous Functions and the Operators’ Experience and Training are very influential, 

as was found in the literature 53, 70, 91. AUV have a high LOA, this is reflected by the fact 

that the Reliability of Autonomous Functions and SA of the Vehicles modify the 

probability of “Adequate” HAC most strongly. In addition, human and organizational 

factors, such as, mission duration, communication, and procedures, influence the 

probability of “Adequate” HAC only marginal. This is an expected behavior of the model 

for a high LOA. This gives confidence that the model reflects the real world.  

Thieme and Utne 92 analyze, among others, mission and fault logs of nine mission 

of the REMUS 100 of the AUR Lab. One of these missions had to be aborted due to 

thruster failure. Unfortunately, no documentation or investigation of the aborted mission 

and its circumstances exist, which means that it is difficult to use for validation. Incidents 

and operations need to be better documented in order to derive a sound basis for network 

validation. Data is missing to establish predictive validity with respect to numerical 

verification of the outputs.  

4 Discussion 
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The HAC BBN in this article is developed specifically for AUV operation and 

merges the findings from the human autonomy interaction literature. The case study 

shows that the HAC BBN is able to produce meaningful results. The sensitivity analysis 

shows that HAC in the case study can be improved most significant in two ways; (i) 

through better training and inclusion of experienced operators, and (ii) through improved 

Reliability of Autonomous Functions and SA of Vehicles. However, the HAC BBN is 

only a sub-model of the overall risk model (Figure 1) and its influence on mission 

success remains to be modelled.  

 Although the model is sensitive to changes in most of the input nodes, some of 

them only have a minor influence on the state of HAC. These input nodes are 

Communication, Etiquette, False Alarm Rate, Interface Design, Mission Duration, Task 

Load, and Time Delay of Transmission. These nodes are associated with Human 

Operator Performance. Their low influence can be attributed to the LOA of the AUV, 

which is high and limits the influence of Human Operator Performance on the HAC 

node.  

Regarding the case study, the input data was adapted from the literature and 

complemented with information gathered from the AUR Lab. Especially, Operators’ 

Experience and Training are rated low. The data used was gathered after only 12 

missions in the Lab. A separate assessment from the data used for training and experience 

was not possible. Hence, data from more recent operations may give a better estimate of 

the state of HAC. The presented results need to be considered with care. 

The CPT templates were derived based on approximated and discretized 

triangular distributions. This is a simplification from the original method, in Vinnem et 
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al.47 This adaptation was necessary, since the original method uses six states. This article 

only uses three states, due to the lack of data. The influence of the strength the template 

on the result could not be assessed. More investigation is necessary in order to verify the 

applicability of the chosen weights and templates. One node for which a refined 

elicitation process is necessary is Trust, due to the opposing states Distrust and 

Overreliance. In this case, specially adapted templates might overcome this issue. The 

weighing between Human Operator Performance and Autonomous Function Performance 

is assumed linearly dependent on the LOA. Research focuses only on few LOA. No 

comprehensive data is available to derive these weights. Simulator studies similar to 

Donmez et al.’s 54 should be carried out in order to validate the quantification of the 

model and gain an improved model parametrization. 

Fatigue related considerations are transferred from Akhtar and Utne45, who 

investigate crews of cargo vessels. However, this article adapts their findings. More 

investigation is necessary in order to validate the applicability of their findings.  

Workload is a complex research topic. Each operator will perceive Workload 

differently.93 Hence, the Workload node in the HAC BBN depends only on the tasks to 

be executed. Workload influences Trust, a higher Workload creates “Overreliance”.53, 81 

Contrary, if an operator shows “Distrust” towards the autonomous system, the workload 

is increased due to more frequent and detailed checks.26 This shows that there is a mutual 

influence, which is not possible to model with BBN.  

Some HOFs mentioned in the literature were excluded, since they were 

considered not applicable: the operators’ fitness for duty and individual personalities59, 80, 

94 are only partially included, e.g., through Fatigue, since little research on this topic in 
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relation to human automation interaction and AUV is available. The operators’ 

confidence in their own abilities in relation to the autonomous capabilities53, 69, 70, 81, 91 are 

not included explicitly, this is assumed part of Operators’ Experience as an adequate 

confidence develops with experience. The operators’ perceived risk associated with the 

task to execute53, 69, 70, 81 is excluded, since it is associated with high-risk industries, such 

as nuclear power plant operation or aviation. It is also connected with the possibility of 

not using automated functions, which is not possible for AUVs.  

Direct influences from the environment have been neglected in the model. 

Nevertheless, these will inevitable influence the operator if they operate the AUV from a 

ship. If AUV operation is shore based, the direct influence of weather and sea state is 

minor to the operator, but may impact the technical system (AUV). The HAC BBN does 

not address these issues. Firstly, the examined literature does not cover these relations 

completely. Secondly, the environment, i.e., weather and se state, affects not only the 

operators and the autonomous function performance, but also the technical performance, 

and technical factors influencing HAC. Assessment of these factors and interactions 

requires a holistic system view. This would overextend the scope of this paper.  

5 Conclusion and Further Work 

This article presents a detailed BBN for human autonomy collaboration 

performance (HAC) for Autonomous Marine Systems (AMS). The case study and 

development focus on Autonomous Underwater Vehicle (AUV) operation. The BBN can 

be used for assessment of mission success of AMS operation, during the planning and 

preparation phases. The relevant nodes were identified in the literature and their 

relationships modelled, accordingly. A case study on AUV operation, based on 
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information from NTNU’s AUR Lab, was used to assess the BBN’s applicability. It 

shows that the HAC BBN is sensitive to input and produces reasonable results. Validity 

is assumed for the structure, discretization and parametrization. Databased validation is 

difficult to establish due to limited data, but is assumed, since the models behaves as 

expected. 

The case study shows that the probability of an “Inadequate” HAC is 28.5 % and 

consequently, 71.5 % for an “Adequate” HAC. A sensitivity analysis shows that Situation 

Awareness of the Autonomous Vehicles and the Reliability of Autonomous Functions are 

among the most influential input nodes, which gives confidence that the model reflects 

the real world. This has implications for the design of autonomous vehicles, which need 

to ensure efficient cooperation between the operators and potentially other autonomous 

vehicles. A reliable and self-aware system will promote improved mission performance. 

In addition, the sensitivity analysis shows that Operators’ Experience and Training are 

highly influential on the state of HAC. The human operator cannot be neglected and is a 

decisive factor in AUV operation.  

Nodes included in this model, which were not mentioned previously in the 

literature in connection with operation of AUV and human autonomy interaction, are 

Human Fatigue, Shift Scheme, and SA of Vehicles. The BBN was developed based on an 

extensive literature study. Work similar to Donmez et al.54, which assess the influence of 

certain factors on the mission outcome, can aid in validating and improving the model. 

AUV simulators are a useful tool for these kind of assessments, which should be carried 

out in the future. In addition, investigation of incidents and their documentation can help 

in this validation process. 
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The BBN is adaptable to other autonomous marine systems, such as underwater 

gliders or autonomous surface vehicles. The tasks and modes associated with operation of 

these type of autonomous marine systems is similar to the operation of AUV. They are 

remotely supervised and intervention is necessary only in few cases. Some of the nodes’ 

states might need adaption to the specific cases of these other systems. Necessary 

adaptions to other systems need to be further investigated in the future. 

The HAC BBN presented in this article could be part of a larger overall risk 

model for the assessment of the probability of mission success. Further work is necessary 

to integrate it completely with the other model considerations: environmental 

interactions, technical system performance, societal expectations, and regulatory and 

customer requirements. The BBN modelling technique and the chosen quantification 

method are useful tools for implementation of these aspects. 
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Appendix 1: Assessment of influence of strength for CPT 

building 

This Section summarizes the considerations underlying the CPT assessment. For 

each child node, except for Autonomous Function Performance and HAC, which are in 

the main body of this article, the parent nodes, their influence and associated 

considerations are presented in the following tables. The assessment was conducted by 
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the authors and supported with input from the literature, as indicated. The assessment was 

conducted for AUV specific operation.  

Table 8 Strength rating and associated reasoning for the CPT Fatigue, these 

considerations are supported by results of Akhtar and Utne45 

Parent state Strength Reasoning 

Mission 
Duration 

Low 
The mission duration has a low influence on fatigue, since the operators will 
still have to fulfil their shift lengths. Shorter missions will give more room for 
short breaks and hence, only have little effect.  

Shift 
Scheme 

High Insufficient length of rest and sleep can lead to strong effects of fatigue. 

Workload High 
Workload influences fatigue strongly, since it represents the cognitive work 
and the exhaustion of these capabilities.  

 

Table 9 Strength rating and associated reasoning for the CPT Feedback from the System 

Parent state Strength Reasoning 

Etiquette High 
Research shows that the way information is presented has a significant 
influence on the operator.69 

False Alarm 
Rate 

Low 
In comparison to Etiquette and information presentation, the False Alarm 
Rate, has only a marginal influence on the operator.69  

Interface 
Design 

High 
The quality of interfaces, both physical and virtual, highly influences the 
way information is perceived.70  

 

Table 10 Strength rating and associated reasoning for the CPT Human Operator 

Performance 

Parent state Strength Reasoning 

Fatigue Low 

Fatigues is seen as a contributing factor to the performance of operators, 
not as a decisive factor. A fatigued operator can still perform adequately. 
Additionally, the role of fatigue in AUV operation and human autonomy 
collaboration is not well analysed, and the role of fatigue shall not be 
overemphasized.  

Operators’ 
Experience 

High 
Operators’ Experience is highly important, in order to perform their tasks. It 
enables them to operate the system efficiently.  

Operators’ 
Training 

High 
Operators’ Training is highly important, in order to perform their tasks. It 
enables them to take the right actions. 

Procedures Low 
It is believed that they have a low influence, in order to reflect that for 
normal operation they are important, but have limited influence in critical 
situations. 

Reaction 
Time 

Low 
The Reaction Time is of low influence. AUVs are rather slow and most 
situations leave a sufficient long time to react.  

SA of Human 
Operators 

High 
SA of Human Operators is highly influential, since it determines the 
operators’ operational picture of the AUV mission. This is a decisive factor, 
for the operators to know what to do.  
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Table 11 Strength rating and associated reasoning for the CPT Reaction Time  

Parent state Strength Reasoning 

Operators’ 
Experience 

High Experience improves reaction time.  

Operators’ 
Training 

Low 
The influence of training was assumed low, since it implies to implement 
the right actions timely. However, training, in the sense of course and 
workshops only addresses this issue in a limited way. 

Time Delay of 
Transmission 

High 
Status messages and commands travel relative slowly through water. 
Hence, the Reaction Time is highly dependent on the delay of important 
commands send to the AUVs or messages received from the AUVs. 

Workload High 
Occupation with other tasks, especially complex ones, has proven to 
increase the operators time to switch to another task that needs 
attention, c.f., 72.  

 

Table 12 Strength rating and associated reasoning for the CPT SA of Human Operators 

Parent state Strength Reasoning 

Communication Low 
Information is mainly communicated through interface of the system. 
Hence, the influence is assumed low.  

Feedback from 
the System 

High Feedback from the System is highly important for the operators69.  

Operators’ 
Training 

High 
Training of the operators is highly important for the operators to create 
an operational picture of the current operation.  

Time Delay of 
Transmission 

Low 
The delay of information updating, reduces the knowledge about the 
current state of a mission. Since, no video streams or direct control are 
possible in current AUV operation26, it was assumed low. 

Trust High Inadequate Trust in a system is decisive for SA of Human Operators.53 

Workload High 
A high Workload of the operators has been shown to reduce SA of 
Human Operators significantly, e.g., 67. 

 

Table 13 Strength rating and associated reasoning for the CPT Trust 

Parent state Strength Reasoning 

Feedback from 
the System 

High 
The way a system presents information is highly important for building 
an adequate level of trust.69, 70  

Operators’ 
Experience 

High 
Experience with a system builds Trust.81 Hence, a high influence is 
assumed. 

Operators’ 
Training 

Low 
Training can give understanding for the system, guidance in usage and 
handling of systems. However, training will only make a system more 
trustable.81 Hence, it is assumed to have a low influence. 

Reliability of 
Autonomous 
Functions 

High 
The influence of Reliability of Autonomous Functions is high. People tend 
to project emotions on systems. Reliable systems are easily trusted.81  
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Table 14 Strength rating and associated reasoning for the CPT Workload 

Parent state Strength Reasoning 

LOA Low 
The LOA has only a marginal influence on the operator 
Workload.66it is believed that the same is true for AUV operation. 

Task Load High Carrying out tasks concurrently will increase the workload highly. 

Number of Vehicles 
per Operator 

High 
The number of vehicles effectively increases the number of tasks, 
c.f., e.g., 55. 
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Figure 1 The main aspects to include in an overall risk model for AUV operation. The human autonomy 
collaboration (HAC) model focuses on the human and organizational part.  

Figure 1  
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Figure 2 BBN for Human Autonomy Collaboration Performance.  
Node color-coding: Light grey – Input nodes, White – Intermediate nodes, Dark grey – HAC node.  

Figure 2  
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Figure 3 Sensitivity of the HAC node to input from its parent nodes. Dark red areas indicate a higher 
influence. Grey nodes are deterministic. The sensitivity from these nodes was not assessed.  

Figure 3  
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Figure 4 Effect of changing the states of the nodes individually on the probability of “Adequate” Human 
Autonomy Collaboration Performance. The Worst Case and the Best Case refer to the nodes being set in the 

worst and best state combined.  
Figure 4  
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