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ABSTRACT 

DNA lesions are introduced in all living organisms every day, both via endogenous processes 

and by exposure to an array of DNA damaging agents. DNA lesions require repair for the 

sustenance of life. Base excision repair (BER) and nucleotide excision repair (NER) are DNA 

repair pathways involved in removal of oxidative DNA lesions and helix-distorting DNA 

lesions, respectively. Several studies suggest interactions or crosstalk between these 

pathways, involving overlapping activities for removal of the same types of DNA lesions but 

also interference between repair pathways. 

Non-repaired DNA lesions are regarded as an important risk factor in the pathogenesis of 

certain conditions and diseases. It is important to gain insight in the interplay between DNA 

damaging agents, DNA lesions and their DNA repair pathways, since this may be related to 

the overall sensitivity of cells to combined exposure to endogenous or exogenous agents. 

In the present study, we aimed at studying combined exposures to environmental 

genotoxicants at low doses, and potential interactions between DNA repair pathways. The two 

genotoxicants lead to DNA lesions that are processed via two different DNA repair pathways. 

We studied the impact of low levels of oxidative stress on the repair of low levels of helix-

distorting DNA lesions; and – vice versa - the impact of low levels of helix-distorting DNA 

lesions, on the repair of low levels of oxidative DNA lesions. We induced the different types 

of lesions in cells of different genetic background, to study whether a lack of repair of 

oxidative DNA lesions could also affect the repair of helix-distorting lesions. For this 

purpose, we utilised wild type mouse embryonic fibroblasts (Ogg1
+/+

 MEFs), and a MEF cell 

line deficient in the repair protein 8-oxoguanine DNA glycosylase (Ogg1) (Ogg1
-/-

 MEFs). 

The Ogg1 gene is involved in the removal of certain oxidized DNA lesions via BER. Ogg1
+/+

 

MEFs exposed to a DNA helix-distorting agent did not show perturbed repair of induced 

oxidative DNA lesions, suggesting that low levels of NER-sensitive DNA damage do not 

influence BER. Furthermore, the repair of helix-distorting DNA lesions in wild type MEFs 

(Ogg1
+/+

) or Ogg1
-/-

 MEFs was not perturbed by a (single) low level exposure to oxidative 

stress, suggesting that reactive oxygen species (ROS) or BER-sensitive DNA damage do not 

influence the repair of low levels of helix-distorting DNA lesions. However, Ogg1
+/+

 MEFs 

showed more efficient repair of helix-distorting DNA lesions compared to Ogg1
-/-

 MEFs, 

regardless of the level of oxidative lesions present in the DNA. This finding suggests that the  
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BER-related repair protein Ogg1 may play a role also in the repair of NER-sensitive helix-

distorting DNA lesions. 

In conclusion, low levels of oxidative stress or helix-distorting DNA lesions did not seem to 

perturb cellular repair of low levels of helix-distorting DNA lesions or oxidized DNA lesions, 

respectively, in wild type or Ogg1-deficient MEFs. A crosstalk between Ogg1 and repair of 

helix-distorting DNA lesions was however observed, suggesting an interplay between BER 

and NER with respect to the repair of NER-sensitive DNA damage. 
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SAMMENDRAG 

Levende organismer er kontinuerlig utsatt for angrep mot DNA, både via endogene prosesser 

og ved eksponering for en rekke gentoksiske agens via miljøet. Slike angrep kan forårsake 

DNA-skader som må repareres for at organismen skal kunne opprettholde sine livsfunksjoner. 

To av systemene som er involvert i reparasjonen av slike skader er baseeksisjonsreparasjon 

(BER) og nukleotideksisjonsreparasjon (NER), som reparerer henholdsvis oksidative DNA-

lesjoner og heliks-forstyrrende DNA-lesjoner. Flere studier har antydet interaksjoner mellom 

disse reparasjonssystemene, som f.eks. ved at de overlapper hverandre og reparerer samme 

type DNA-skade, eller ved at forsinkelse av reparasjonen kan oppstå. Ureparerte skader på 

DNA er en risikofaktor i utviklingen av visse sykdommer og lidelser.  

Det er viktig å øke kunnskapen om samspillet mellom gentoksiske agens, DNA-skader og 

DNA-reparasjonssystemer, siden slike mekanismer kan ha betydning for cellers totale 

følsomhet overfor kombinert eksponering for endogene eller eksogene stoffer. 

Hensikten med denne studien var å undersøke samspillet mellom lave nivåer av oksidativt 

stress og reparasjon av lave nivåer av heliksforstyrrende DNA-lesjoner, og motsatt; samspillet 

mellom lave nivåer av heliksforstyrrende DNA-lesjoner og reparasjon av lave nivåer av 

oksidert DNA. Dette ble utført ved hjelp av embryonale fibroblaster fra villtypemus 

(Ogg1
+/+

 MEFer) og MEFer fra mus som mangler reparasjonsproteinet 8-oksoguanin DNA 

glykosylase (Ogg1) (Ogg1
-/-

 MEFer). Dette proteinet er involvert i reparasjon av visse 

oksidative DNA-lesjoner via BER. Ogg1
+/+

 MEFer eksponert for DNA-heliksforstyrrende 

agens viste ingen forsinket reparasjon av oksidative DNA-lesjoner i vårt testsystem, noe som 

tyder på at lave nivåer av NER-sensitive DNA-skader ikke påvirker BER. Videre ble det vist 

at reparasjonen av heliksforstyrrende DNA-lesjoner ikke ble forsinket etter en enkelt 

eksponering for oksidativt stress, verken i villtype-MEFer (Ogg1
+/+

) eller i Ogg1
-/-

 MEFer. 

Dette tyder på at verken frie radikaler eller BER-sensitive DNA-skader påvirker reparasjon av 

lave nivåer av heliksforstyrrende DNA-skader. Det ble imidlertid påvist mer effektiv 

reparasjon av heliksforstyrrende DNA-lesjoner i Ogg1
+/+

 MEFer sammenlignet med 

Ogg1
-/- 

MEFer, uavhengig av mengden oksidative lesjoner til stede i DNA. Dette funnet kan 

tyde på at proteinet Ogg1, som vanligvis er assosiert med BER, også har en rolle i 

reparasjonen av NER-sensitive heliksforstyrrende DNA-lesjoner. 
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Kort oppsummert; lave nivåer av oksidativt stress eller heliksforstyrrende DNA-lesjoner 

forsinket ikke reparasjonen av henholdsvis heliksforstyrrende DNA-lesjoner eller oksidative 

DNA-lesjoner, verken i villtype- eller Ogg1-fattige MEFer. Det ble imidlertid observert en 

sammenheng mellom Ogg1 og reparasjon av heliks-forvridende DNA-lesjoner. Denne 

sammenhengen tyder på et samspill mellom BER og NER med hensyn til reparasjon av NER-

sensitive DNA-skader. 
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ABBREVIATIONS 

 

6-4PP  6-4 photoproduct 

8-oxodG 8-oxo-7,8-dihydro-2’-deoxyguanosine 

8-oxo-dGTP 8-oxo-2’-deoxyguanosine-5’-triphosphate 

8-oxoG 8-oxo-7,8-dihydroguanine 

ANOVA Analysis of variance 

AP lyase Apurinic/apyrimidinic lyase 

AP site Abasic (apurinic/apyrimidinic) site 

B[a]P Benzo[a]pyrene 

BER Base excision repair 

BPDE Benzo[a]pyrene-7,8-dihydrodiol-9,10-

epoxide 

BSA Bovine serum albumin 

CPD Cyclobutane pyrimidine dimer 

CSA  Cockayne syndrome factor A 

CSB Cockayne syndrome factor B 

dH2O Distilled water 

DMEM Dulbecco’s Modified Eagle's Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DSB Double strand break 



VII 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic acid 

ERCC1 Excision repair cross complementing group 1 

protein 

ESCODD European Standards Committee on Oxidative 

DNA Damage 

FapyG 2,6-diamino-4-hydroxy-5-

formamidopyrimidine 

FCS Foetal calf serum 

FEN1 Flap endonuclease 

Fpg Formamidopyrimidine DNA glycosylase 

GGR Global genomic repair 

GPx Glutathione peroxidase 

GSH Glutathione 

HAP1 Human AP-endonuclease 1 

hHR23B Human homologue of yeast RAD23B 

HPBL Human peripheral blood lymphocytes 

Lig1 DNA ligase 1 

LigIII DNA ligase III 

LPR Long-patch repair 

MEF Mouse embryonic fibroblasts 

MPO Myeloperoxidase 

MutM Formamidopyrimidine DNA glycosylase 



VIII 

MutT 8-oxodGTPase 

MutY Adenine DNA glycosylase 

Myh MutY homologue 

NER Nucleotide excision repair 

Nth1 Thymine glycol DNA glycosylase 1 

Ogg1 8-oxoguanine DNA glycosylase 

P/S Penicillin/streptomycin 

PAH Polycyclic aromatic hydrocarbon 

PBS Dulbecco’s phosphate buffered saline 

PCNA Proliferating cell nuclear antigen 

Polβ DNA polymerase β 

Polδ/ε DNA polymerase delta/epsilon 

RFC Replication factor C 

RNA Pol II RNA polymerase II 

Ro 12-9786 Ethyl-7-oxo-7h-thieno[2,3-A]-quinolizine-8-

carboxylate 

ROS Reactive oxygen species 

RPA Replication protein A 

SD Standard deviation 

SOD Superoxide dismutase 

SPR Short-patch repair 

SSB Single strand break 

T4endoV T4 endonuclease V 



IX 

TCR Transcription-coupled repair 

TFIIH General transcription factor IIH 

UV Ultraviolet radiation 

UVA-C Ultraviolet radiation, subtype A-C 

XPA-G  Xeroderma pigmentosum, complementation 

group A-G 

XPC-hHR23B Xeroderma pigmentosum C-human 

homologue of yeast RAD23B 

XRCC1 X-ray cross complementing protein 1 

 

Note: The names of proteins are denoted as indicated; humans, e.g. OGG1; rodents, e.g. Ogg1; 

bacteria, e.g. Fpg. The same rules apply for human and rodent genes in italic, whereas E. coli genes 

have a first letter in lower-case (e.g. fpg). 
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1 INTRODUCTION 

1.1 General background 

A cell is constantly subjected to attack from environmental and endogenous agents that may 

cause damage to a variety of molecular targets, including deoxyribonucleic acid (DNA). If 

these DNA lesions are not removed prior to replication, they can become self-perpetuating 

mutations that contribute to ageing and degenerative diseases such as cancer (Ames, 1989; 

Cooke et al., 2003; Floyd, 1990).  

A number of DNA repair processes are responsible for removing the variety of DNA lesions 

caused by genotoxic agents. One of these processes is the nucleotide excision repair (NER) 

pathway, which is involved in the removal of helix-distorting DNA lesions caused by 

exposure to e.g. ultraviolet (UV) radiation or chemical carcinogens like polycyclic aromatic 

hydrocarbons (PAHs). Another pathway is base excision repair (BER), which is responsible 

for removal of small, non-helix-distorting base lesions resulting from e.g. oxidative stress 

(Houtgraaf et al., 2006). 

Several studies suggest interactions or crosstalk between these pathways, involving 

overlapping activities for removal of the same types of DNA lesions but also inhibition of 

repair. A previous study on mice conducted in our lab by Olsen and co-workers indicates such 

a relationship between BER and NER; hepatocytes of mice deficient of the BER-related repair 

protein 8-oxoguanine DNA glycosylase (Ogg1) showed a delayed removal of lesions induced 

by the PAH benzo[a]pyrene (B[a]P) (Olsen, A. K., pers. comm., April 2012). Two recent 

studies by Langie and co-workers indicate a relationship between oxidative stress and reduced 

NER capacity, in vitro as well as in vivo (Langie et al., 2007; Langie et al., 2010).  

Impairment of DNA-repair is an important risk factor in the pathogenesis of certain diseases. 

Therefore, it is important to gain insight in the interplay between DNA damaging agents, 

DNA lesions and their DNA repair pathways. 
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1.2 Aims  

The overall purpose of this project was to address the following question:  

 Can a cell deal with different types of DNA lesions when occurring in its DNA at the 

same time, and is this important for the cell’s overall sensitivity to combinations of 

environmental and endogenous agents? 

In a defined in vitro system, our specific aims were: 

i) Investigating whether oxidative DNA lesions perturbs the repair of helix-distorting 

DNA lesions. 

ii) Investigating whether helix-distorting DNA lesions perturb the repair of oxidative 

DNA lesions. 

iii) Studying the specific role of the DNA repair protein Ogg1 on the repair of helix-

distorting DNA lesions. 

1.3 DNA damage 

DNA is a complex molecule of limited chemical stability (Watson et al., 2008). It is 

constantly subject to spontaneous damage by hydrolysis, oxidation, and nonenzymatic 

methylation, as well as attack by environmental and endogenous agents. Environmental 

agents include genotoxic chemicals, UV radiation, and ionizing radiation, whereas 

endogenous threats to the DNA include by-products from cellular metabolism such as reactive 

oxygen species (ROS) and products of lipid peroxidation (Houtgraaf et al., 2006). 

There are several different types of DNA lesions occurring as a result of this constant stress, 

including altered DNA bases and abasic (apurinic/apyrimidinic) sites (AP sites), single and 

double strand breaks (SSBs and DSBs, respectively) and helix-distorting lesions such as inter- 

and intrastrand crosslinks and bulky chemical adducts (Watson et al., 2008). 

In this thesis, we will study oxidized DNA bases and helix-distorting lesions and see whether 

(or how) these two types of lesions in combination may influence the repair of each other. 

1.3.1 Oxidative DNA lesions 

Oxidative damage to the DNA and other cellular macromolecules is formed as a consequence 

of attack by ROS, which include hydroxyl radicals (
•
OH), oxygen radicals (O2

•-
), singlet 
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oxygen (
1
O2), and hydrogen peroxide (H2O2) (De Bont and van Larebeke, 2004). The most 

common source of ROS is from normal cellular metabolism, which accounts for the 

background level of oxidative DNA lesions that is constantly present in normal cells. In 

addition, phagocytic cells release ROS during inflammation in order to kill infected cells 

(Cooke et al., 2003; Evans et al., 2004). ROS may also be formed after exposure to 

extracellular sources, such as exogenous chemicals (Cooke et al., 2003; Evans et al., 2004), 

ionizing radiation or UV radiation, subtype A (UVA) (Sinha and Häder, 2002). 

As a consequence of the constant exposure to ROS, cells have developed a number of 

defences to protect DNA against oxidative stress. These defences include low molecular 

weight compounds such as vitamin C and vitamin E, and more complex enzymes, such as 

superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) (Evans et al., 2004).  

In spite of antioxidant defences, ROS can induce strand breaks, AP sites and oxidative base 

lesions. A large number of oxidative base lesions are known, and all four DNA bases can be 

oxidized. However, guanine is the most prone to oxidation because of its low oxygen 

potential. One of the most frequently occurring oxidative guanine lesions is 

8-oxo-7,8-dihydroguanine (8-oxoG) (Figure 1.1), which is highly mutagenic because of its 

capability to base-pair both with adenine and cytosine. Base-pairing of 8-oxoG with adenine 

during replication causes a guanine:cytosine to thymine:adenine transversion, which is one of 

the most common mutations associated with human cancers (Cooke et al., 2003; Watson et 

al., 2008). Although 8-oxoG and its deoxyribonucleoside (8-oxodG) are commonly used 

markers of oxidative DNA lesions, there have been controversies regarding measurement of 

background levels of 8-oxoG in normal human cells; the background levels are complicated to 

estimate, as certain methods have been shown to generate additional 8-oxoG in the DNA. 

However, the European Standards Committee on Oxidative DNA Damage (ESCODD) has 

estimated the background level of 8-oxoG in normal human cells to be between 0.3 and 4 

residues per 10
6
 guanines (Collins et al., 2004).  
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ROS

Guanine 8-oxo-7,8-dihydroguanine
(8-oxoG) 

 

Figure 1.1: ROS-mediated conversion of guanine to 8-oxo-7,8-dihydroguanine (8-oxoG). 

 

Furthermore, when ROS production is greater than the cellular antioxidant capacity, ROS 

may cause oxidative damage to lipids, proteins, carbohydrates, as well as nucleic acids, 

thereby compromising their normal functions (Figure 1.2) (Ferguson, 2010). Thus, ROS may 

directly or indirectly inhibit repair proteins and thus impair DNA repair pathways as 

suggested in several studies (Güngör et al., 2007; Güngör et al., 2010a; Güngör et al., 2010b; 

Langie et al., 2007; Langie et al., 2010). 

 

 

Figure 1.2: A schematic presentation of the relationship between inflammation and ROS-production, 

DNA damage induction and mutagenesis. Modified from Ferguson (Ferguson, 2010). 
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1.3.2 Helix-distorting DNA lesions 

Distortion of the DNA double helix is known to be caused by sources such as UV radiation 

and a vast variety of chemicals. 

Helix-distorting chemicals include exogenous agents or unfortunate products from their 

metabolic activation. They often possess electrophilic properties enabling them to bind 

double-stranded DNA. When such chemicals bind to DNA, bulky DNA adducts are formed 

(Gillet and Schärer, 2005). An example of such bulky adduct formation takes place after 

exposure to the environmental pollutant B[a]P. After metabolic activation, the B[a]P 

metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) binds to DNA, forming 

BPDE-DNA adducts. These adducts are strongly associated with mutations and subsequent 

tumours (Klaassen, 2001). 

Ultraviolet radiation induces another type of helix-distorting DNA lesions, and different UV-

induced lesions are formed with different wavelengths of UV. The electromagnetic spectrum 

of UV is often subdivided dependent on the wavelength; subtype A (UVA, 400 – 315 nm), 

B (UVB, 315 – 280 nm), or C (UVC, 280 – 100 nm) (Sinha and Häder, 2002).  

Wavelengths within the UVA spectrum are not absorbed by DNA; hence they are less 

efficient in inducing DNA damage. However, they are still capable of causing DNA damage 

via indirect photosensitizing reactions, such as the generation of 
1
O2 through type II 

photosensitisation reactions, or via secondary photoreactions of existing DNA photoproducts 

(Sinha and Häder, 2002). 

During UVB and UVC irradiation, photo excited thymine and/or cytosine in DNA react with 

adjacent pyrimidine bases, leading to formation of photoproducts (Figure 1.3) (Sinha and 

Häder, 2002). Two major classes of photoproducts are produced: The cyclobutane pyrimidine 

dimers (CPDs) and the 6-4 photoproducts (6-4PPs) (Sinha and Häder, 2002; Taylor et al., 

1990). Moreover, upon exposure to wavelengths above 280 nm, 6-4PPs are further converted 

(Taylor et al., 1990), such as the photo isomerisation into Dewar isomers (Mitchell and Nairn, 

1989). 
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>280 nm

Cyclobutane
pyrimidine dimer
(CPD)

6-4 photoproduct
(6-4PP)

Dewar isomer

 

Figure 1.3: UV-induced DNA lesions (modified from http://www.cosmobio.co.jp/export_e/ 

products/antibodies/products_cac_20080404.asp?entry_id=3597). 

 

Helix-distorting lesions caused by UV can interfere with DNA transcription and replication if 

they are not repaired. This interference can lead to misreading of the genetic code, which can 

eventually cause mutations and even cell death. 

1.4 DNA repair 

Damage to DNA can have consequences such as inhibition of replication and/or transcription, 

or permanent alteration of the DNA. Ultimately these scenarios can cause mutations, cancer 

or cell death. Therefore, cells have evolved several defence mechanisms to combat induction 

and persistence of DNA damage. Firstly, formation of DNA damage can be prevented by 

agents such as antioxidants and detoxifying enzymes. Secondly, a cell with damaged DNA 

can be eliminated by apoptosis or spontaneous death. Thirdly, damaged DNA can be 

identified and removed by various DNA repair pathways, including direct reversal, mismatch 

repair, homologous recombination, non-homologous end joining and excision repair. The 

repair strategy employed in DNA damage removal is dependent on lesion characteristics 

(Watson et al., 2008). 

In this thesis, we focus on the excision repair pathways, which are responsible for removal of 

damaged nucleotides followed by a replacement with undamaged nucleotides complementary 

to the undamaged DNA strand. Two different excision repair pathways exist; base excision 

repair (BER) (Figure 1.4) and nucleotide excision repair (NER) (Figure 1.5).  
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1.4.1 Base excision repair (BER) 

Base excision repair (Figure 1.4) is the major pathway for removal of small, non-helix-

distorting base lesions in the size range of one to ten bases. These lesions can be caused by 

oxidation (such as 8-oxoG), alkylation, hydrolysis, or deamination. 

The repair pathway is initiated by a lesion-specific glycosylase. This enzyme recognises and 

removes the damaged base by hydrolytic cleavage of the glycosylic bond between the base 

and deoxyribose. The resulting AP site is removed by an apurinic/apyrimidinic lyase 

(AP lyase), creating a nick in the DNA backbone. Dependent on the number of bases incised, 

two sub-pathways are responsible for further completion of BER (Krokan et al., 2000).  

In short-patch repair (SPR), which is the predominant BER pathway, a single nucleotide is 

incorporated, whereas in long-patch repair (LPR), two to ten nucleotides are incorporated into 

DNA. Although the two pathways make use of different enzymes and enzyme complexes, 

they have similar functions; both make use of a DNA polymerase to incorporate undamaged 

nucleotides, followed by sealing of the remaining nick by a DNA ligase (Krokan et al., 2000). 
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Figure 1.4: An outline of the BER pathway. See text for description of the pathway. Abbreviations 

in chronological order: HAP1, human AP-endonuclease 1; Polβ, DNA polymerase β; XRCC1, X-ray 

cross complementing protein 1; LigIII, DNA ligase III; PCNA, proliferating cell nuclear antigen; RFC, 

replication factor C; Polδ/ε, DNA polymerase delta/epsilon; FEN1, Flap endonuclease; Lig1, DNA 

ligase 1. The figure is modified by Olsen et al. (Olsen et al., 2005) from Ide and Kotera (Ide and 

Kotera, 2004). 

 

1.4.1.1 DNA glycosylases acting upon 8-oxoG lesions and CPDs 

Several DNA glycosylases have been identified in both procaryotes and eucaryotes. There are 

two subgroups of DNA glycosylases; mono-functional glycosylases, which only removes the 

damaged base, and bi-functional glycosylases, which also function as AP lyases.  

Here, the attention will be pointed at glycosylases acting upon 8-oxoG lesions and CPDs. 



 Introduction 

9 

Escherichia coli (E. coli) bacteria have developed three important enzymes for removal of 

8-oxoG lesions; 8-oxodGTPase (MutT), adenine DNA glycosylase (MutY), and 

formamidopyrimidine DNA glycosylase (Fpg/MutM). MutT eliminates the oxidized 

nucleotide 8-oxo-2’-deoxyguanosine-5’-triphosphate (8-oxodGTP), MutY excises the adenine 

of a guanine:adenine mispair, whereas Fpg removes 8-oxoG paired with cytosine (Krokan et 

al., 1997). 

In mammalian cells, the two glycosylases thymine glycol DNA glycosylase 1 (Nth1) and 

MutY homologue (Myh) are orthologs for MutT and MutY, respectively. Ogg1 is a functional 

homologue for Fpg and it removes 8-oxoG and 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FapyG) lesions, which results in the formation of AP sites (Krokan et 

al., 1997). 

After infecting E. coli with the bacteriophage T4 (a bacterium-infecting virus) these bacteria 

starts producing an enzyme denoted as T4 endonuclease V (T4endoV) (Yasuda and 

Sekiguchi, 1970). This enzyme is a bi-functional glycosylase, and recognizes and removes 

CPDs produced by UV irradiation (Sinha and Häder, 2002). Since production and purification 

of T4endoV is relatively easy to perform (Friedberg et al., 1980), the enzyme is frequently 

used to study induction of UV-induced lesions. 

In mammals, there is no glycosylase homologue for T4endoV. The explanation for this is that 

in mammals, the NER pathway is responsible for removal of UV-induced DNA lesions such 

as CPDs (Sinha and Häder, 2002). 

1.4.2 Nucleotide Excision Repair (NER) 

Nucleotide excision repair (Figure 1.5) is the most important pathway for recognition and 

removal of helix-distorting lesions, such as CPDs and 6-4PPs (Gillet and Schärer, 2005). 

Products of around 30 genes are employed by NER, and defects in one or more of these repair 

proteins are associated with elevated risk of cancer (Cleaver, 1989; Sinha and Häder, 2002). 

There are two modes of activation of the NER pathway; global genomic repair (GGR) and 

transcription-coupled repair (TCR). 

The GGR pathway detects lesions in non-transcribed parts of the entire genome, including 

non-transcribed strands of transcribed genes. Initiation of GGR takes place by binding of an 
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enzyme complex (xeroderma pigmentosum C-human homologue of yeast RAD23B (XPC-

hHR23B)) to a damage-containing oligonucleotide (Gillet and Schärer, 2005). 

The TCR pathway, on the other hand, is responsible for recognising DNA damage that is 

blocking RNA polymerase in transcribed strands of active genes. This is carried out by 

displacement of the lesion-blocked polymerase, making the DNA lesion accessible for repair. 

The initiation of TCR requires at least two TCR-specific factors; the cockayne syndrome 

factors A and B (CSA and CSB, respectively). This is followed by unwinding of about 30 

base pairs surrounding the DNA by means of a lesion multi-protein complex. This complex 

includes the two helicases xeroderma pigmentosum complementation group B and D (XPB 

and XPD, respectively). 

The subsequent steps of GGR and TCR are believed to be identical (Missura et al., 2001). 
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Figure 1.5: An outline of the NER pathway. See text for description of the pathway. Abbreviations 

in chronological order: XPA–G, xeroderma pigmentosum complementation group A–G; hHR23B, 

human homologue of yeast RAD23B; RNA Pol II, RNA polymerase II; CSA and CSB, Cockayne 

syndrome factors A and B; TFIIH, general transcription factor IIH; ERCC1, excision repair cross 

complementing group 1 protein; RPA, replication protein A; PCNA, proliferating cell nuclear antigen; 

RFC, replication factor C; Polδ/ε, DNA polymerase delta/epsilon; Lig1, DNA ligase 1. Figure from 

Olsen et al. (Olsen et al., 2005). 

 

1.5 Technical issues 

1.5.1 Mouse embryonic fibroblasts (MEFs) 

Mouse embryonic fibroblasts (MEFs) are isolated from mid-gestation mouse embryos. 

Isolation of MEFs is relatively easy to perform, and since these cells can be derived from 

mice carrying various genetic alterations, MEFs are ideal for studying aspects of functional 
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genetics (Kamijo et al., 1997; Lowe et al., 1994; Steinman et al., 2004). In this study, we used 

embryonic fibroblasts from wild type (Ogg1
+/+

) and Ogg1 deficient (Ogg1
-/-

) mice (Ogg1
+/+

 

and Ogg1
-/-

 MEFs). 

1.5.1.1 Ogg1 knock-out mouse model 

For the purpose of learning more about the relevance of the DNA glycosylase Ogg1 in 

mammals,  Klungland et al. (Klungland et al., 1999) generated homozygous Ogg1
-/-

 null 

mice. This mouse model was developed by targeted disruption of the Ogg1 gene in murine 

embryonic stem cells (from 129SV mice) followed by injection of these cells into blastocysts 

(from C57BL/6J mice), resulting in heterozygous mice. Furthermore, the mice were interbred, 

yielding homozygous Ogg1
-/-

 mutants, which  accumulate abnormal levels of 8-oxoG and 

Fpg-sensitive sites in their genome (Klungland et al., 1999).  

1.5.2 The alkaline single cell gel electrophoresis (comet) assay 

The comet assay is a method used for DNA damage measurements and repair assessments, 

and measures DNA strand breaks in individual cells (Ostling and Johanson, 1984; Singh et 

al., 1988). Cells exposed to a genotoxic agent are embedded in agarose and moulded onto a 

plastic support as described in Hansen et al. (Hansen et al., 2010). Cells are put in lysis 

solution to remove non-DNA components such as membranes and organelles, followed by 

unwinding and electrophoresis of DNA. During electrophoresis, structures resembling comets 

are formed; relaxed loops will extend from the nucleoid core toward the anode, forming a tail 

(Figure 1.6). Comets are stained with a fluorescent dye and observed by fluorescence 

microscopy, and the intensity of the comet tail relative to the head DNA intensity represents 

the quantity of DNA strand breaks. Furthermore, as described in Olsen et al. (Olsen et al., 

2003), Hansen et al. (Hansen et al., 2010), and Duale et al. (Duale et al., 2010), the use of 

lesion-specific endonuclease-extracts provides the opportunity to reveal specific DNA lesions 

in the comet assay.  
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Figure 1.6: Image of comets. Comet DNA stained with a fluorescent dye and observed by 

fluorescence microscopy. The intensity of the comet tail represents the quantity of DNA strand breaks 

in a single cell. Undamaged DNA to the left, damaged DNA to the right. 
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2 MATERIALS AND METHODS 

All media and solutions used are described in Appendix B. 

2.1 Cell cultures  

Mouse embryonic fibroblasts (MEFs) from WT (Ogg1
+/+

) mice or genetically modified mice, 

where the repair gene Ogg1 has been deleted (Ogg1
-/-

), were used for all experiments (except 

for titration of the endonuclease T4endoV-extract, where human peripheral blood 

lymphocytes (HPBL) were used). The MEF cell cultures were kindly given to us by Professor 

Lars Eide at the Department of Medical Biochemistry, Oslo University Hospital. 

2.1.1 Culturing conditions 

The cell cultures were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 

foetal calf serum (FCS), L-glutamine and penicillin/streptomycin (P/S) (growth medium) at 

37 °C with 5 % CO2 in air under saturated humidity in cell cultivator. 

2.1.2 Passaging 

The growth of cells in culture follows a visually recognisable pattern. After seeding, the cells 

enter a lag period, followed by a phase of exponential growth. With a split ratio of 

1:5 (Ogg1
+/+

) or 1:10 (Ogg1
-/-

), the MEF cultures reached confluence approximately four 

days after seeding. Since confluent MEFs in culture stop proliferation and initiate 

differentiation, the cultures required passaging every fourth day.  

Procedure: 

All steps from b) were performed under sterile conditions under laminar flow using sterile 

equipment. All the equipment was sprayed with 70 % ethanol before entering the laminar 

flow bench. 

a) Trypsin (0.05 % trypsin, 0.1 mmol/l ethylenediaminetetraacetic acid (EDTA)), phosphate 

buffered saline (PBS) and growth medium were preheated to 37 °C.  

b) The growth medium in the culture flasks was removed and the cells were washed twice 

with 10 ml PBS (162 cm² flask) to remove the growth medium, as FCS from the growth 

medium inhibits the trypsin. 
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c)  To detach the adherent cells from the bottom of the culture flask (162 cm
2
), 1 ml trypsin 

was applied to the cells, followed by incubation for approximately 1-2 min at 37 °C in the cell 

incubator. The cells were released from the flask by tapping the sides and the bottom. 

d) The trypsin was inactivated by applying 9 ml of growth medium. The cells were 

homogenised and separated by pipetting. 

e) A 1 ml portion of the cell suspension was transferred to a new cell culture flask (162 cm
2
), 

containing 29 ml of fresh growth medium (1:10 split ratio), and resuspended to homogeneity. 

Date, cell line, passage number and dilution ratio was noted, and the cells were cultivated at 

37 °C in the cell incubator. 

f) Cells intended for experiments were plated using a 1:2 (Ogg1
+/+

) or 1:4 (Ogg1
-/-

) split ratio 

in 2 ml portions in 35 mm cell culture dishes and incubated for 24 h before exposure. 

2.1.3 Cell counting 

Cell concentration (cells/ml) was calculated by placing 10 µl of cell suspension on to a 

hemocytometer (Bürker chamber), counting the cells observed in five squares, and 

multiplying the average number of cells from the squares with 10
4
. 

2.1.4 Freezing and thawing of cells 

Freezing: 

a) Growth medium was changed 24 h before freezing. 

b) The cells (~80 % confluent) were trypsinated according to procedure described in section 

2.1.2 a) – d), followed by adding of 14 ml growth medium. 

c) Cells were counted according to procedure described in section 2.1.3, followed by 

centrifugation at 8 °C and 200 × g for 5 min. 

d) Cells were placed on ice, supernatant was removed and the pellet was resuspended in 6 ml 

growth medium containing 10 % dimethyl sulfoxide (DMSO). 

e) The cell suspension was transferred to cryotubes (1.8 ml) and kept at 4 °C for 5 min. 

f) Cryotubes were placed in the lower row of a freezing unit in a nitrogen tank for 3-4 h, and 

were then transferred to liquid nitrogen.  
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Thawing: 

a) The cells were defrosted in a preheated water bath at 37 °C for 2-3 min, after which cell 

line and passage number were noted before spraying the tube with 70 % ethanol. 

b) The cells were then transferred into a 15 ml centrifuge tube containing 13 ml preheated 

growth medium, followed by centrifugation at 8 °C and 200 × g for 5 min. 

c) Supernatant was removed and the pellet was resuspended in 15 ml medium. 

d) The cell suspension was transferred to a 75 cm² cell culture flask and incubated at 37 ºC. 

The cells were allowed to grow for three to five days before passaging, as initial growth after 

defrosting is slow. To make sure the cells were attached to the bottom of the flask, control 

checks under a microscope were performed every day. 

2.1.5 Mycoplasma testing 

Immunofluorescence test for the detection of Mycoplasma species in our cell cultures was 

conducted according to the protocol enclosed in the RIDA
®

FLUOR Mycoplasma IFA 

immunofluorescence assay kit from R-Biopharm AG. 

2.2 Induction of DNA damage 

Several considerations were taken into account with respect to induction of DNA damage. 

First, two kinds of DNA damage were to be induced; oxidative DNA base damage, by means 

of exposing the cells to the photosensitiser ethyl 7-oxo-7h-thieno[2,3-A]-quinolizine-8-

carboxylate (Ro 12-9786) in the presence of light (Ro 12-9786 plus light), and helix-distorting 

DNA lesions induced by exposing cells to UVC radiation. The reduction of these levels of 

DNA damage was to be measured in the comet assay, to assess DNA repair. Secondly, both 

types of DNA damage were to be present simultaneously in the cells, to understand the impact 

of one type of DNA damage on the repair of the other. The level of interfering DNA damage 

should be in the upper part of the dynamic range of the comet assay, to be present during a 

significant time of the following repair period. Dose-response curves were hence established. 

2.2.1 Experimental design 

Two separate experiments were designed (Figure 2.1). One of these experiments was 

designed to help us understand the impact of oxidative DNA lesions on the repair of helix-
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distorting DNA lesions. Another purpose of this experiment was to investigate the role of the 

DNA repair protein Ogg1 on the repair of the mentioned helix-distorting DNA lesions. We 

denote this experiment “Study 1”. Contrary, the other experiment was designed to investigate 

the impact of helix-distorting DNA lesions on the repair of oxidative DNA lesions. This 

experiment is denoted “Study 2”. 

 

Figure 2.1: Experimental design giving an outline of Study 1 and Study 2. 

 

2.2.1.1 Study 1 

The cells (Ogg1
+/+

 and Ogg1
-/-

 MEFs) were exposed to Ro 12-9786 plus light and UVC. Two 

biological replicas were included for each treatment; one of which was harvested immediately 

after exposure, whereas the other one was harvested after 16 h of incubation (37 °C) (Figure 

2.1). Three controls were included; an unexposed (negative) control, a control exposed to 

UVC and light and a control exposed to UVC and Ro 12-9786. 
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2.2.1.2 Study 2 

The cells (Ogg1
+/+

 MEFs only) were exposed to Ro 12-9786 plus light and UVC. Two 

biological replicas were included for each treatment, one of which was harvested immediately 

after exposure, whereas the other one was harvested after 6 h of incubation (37 °C) (Figure 

2.1). Three controls were included; an unexposed (negative) control, a control exposed to 

Ro 12-9786 alone and a control exposed to Ro 12-9786 plus light. 

2.2.2 Induction of oxidative DNA lesions 

To induce oxidative DNA lesions, the photosensitiser Ro 12-9786 was used. This compound 

was originally developed by Roche as an antipsychotic drug, but was discarded during 

genotoxicity screening due to its photomutagenic activity (Gocke et al., 1998). When 

irradiated with visible light in presence of oxygen, photosensitisers such as Ro 12-9786 

produces high quantities of ROS (Gocke et al., 1998), which in turn induces oxidative purine 

modifications such as 8-oxoG (Schneider et al., 1990) without introducing high levels of 

SSBs. 

Procedure: 

The samples (cells in culture dishes) were kept on a cool metal plate in dim light. 

a) Samples were treated with 2 µM Ro 12-9786 by adding 3.3 μl of 1.2 mM Ro 12-9786 stock 

solution directly into the cell culture dishes (containing cells and 2 ml of growth medium). 

Ro 12-9786 was mixed into the growth medium by swirling the cell culture dishes. 

b) The samples were allowed to rest for 1 min to allow Ro 12-9786 to enter the cells, followed 

by irradiation of the cells for 6 or 12 min with visible light (halogen light, 500 W) at a 15 cm 

distance. Lids were removed from the cell culture dishes prior to visible light exposure. 

c) The exposure was stopped by removing the medium from the dish and washing three times 

with PBS (2 ml) followed by adding fresh growth medium (2 ml). 

2.2.3 Induction of helix-distorting DNA lesions 

During UVC exposure, photoexcited thymine and/or cytosine react with adjacent pyrimidine 

bases (as seen in Figure 1.3), leading to formation of two major classes of photoproducts 

detectable by NER: The CPDs and the 6-4PPs (Sinha and Häder, 2002; Taylor et al., 1990). 

Moreover, upon exposure to wavelengths above 280 nm, 6-4PPs are further converted (Taylor 
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et al., 1990), such as the photoisomerisation into Dewar isomers (Mitchell and Nairn, 1989). 

Tungsten-halogen lamps, like the one used to induce oxidative lesions in our experiments, 

produce a broad spectrum of wavelengths, and can thus lead to such photoisomerisation. The 

Dewar isomers are alkali-sensitive (Mitchell and Nairn, 1989), and may consequently appear 

as SSBs in the comet assay, due to the alkaline conditions during lysis, unwinding and 

electrophoresis. Therefore, the order of exposure of cells exposed to both Ro 12-9786 plus 

light and UVC is important: To limit the presence of Dewar isomers that would appear in the 

comet assay as SSBs, the samples should be exposed to Ro 12-9786 plus light before UVC 

exposure. 

Procedure: 

The samples were kept on a cold metal plate in dim light. 

a) The UVC lamp was preheated for 15 min prior to exposure to ensure continuous 

irradiation. 

b) Cell samples in 35 mm cell culture dishes with growth medium (2 ml) were exposed to 

UVC. Lids were removed prior to irradiation. 

c) Some samples were incubated to allow repair, whereas others were used to assess initial 

DNA damage levels in the comet assay. 

2.3 DNA repair analyses 

The cells incubated for DNA repair were harvested 16 h (Study 1) or 6 h (Study 2) after 

exposure, and the reduction of DNA damage levels was to be measured in the comet assay, to 

assess DNA repair. The repair capacity was calculated by subtracting the damage level in 

repaired cells from the damage level in unrepaired cells, yielding a difference representing the 

total amount of DNA repaired after 16 h of incubation. Furthermore, this difference was 

converted into a percentage relative to the initial damage level. 
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2.4 Cell harvest and isolation 

2.4.1 Isolation of human peripheral blood lymphocytes (HPBL) from whole 

blood 

Blood samples were obtained by venipuncture from healthy volunteers. Lymphocytes were 

isolated by Ficoll-Hypaque density gradient as follows: 

a) Whole blood was diluted 1:1 with PBS and transferred to a ready-made lymphoprep
TM

 

tube. The tube was centrifuged for 20 min and 500 × g at room temperature. 

b) The layer of mononuclear cells was transferred to a centrifuge tube, washed with PBS and 

centrifuged at 800 × g at room temperature for 5 min. 

c) The pellet was resuspended in PBS, cells were counted and diluted in PBS to the desired 

cell concentration, preferably 1 × 10
6
 cells/ml. 

2.4.2 Harvest of MEFs 

PBS, growth medium and samples were kept on ice. 

a) The growth medium was removed from the cell culture dishes, followed by washing twice 

with PBS (2 ml). 

b)  Two drops of trypsin was applied to each dish, followed by incubation for approximately 

1-2 min at 37 °C. The cells were released from the surface by tapping the sides of the dish. 

c) Trypsination was stopped by applying 1.5 ml of growth medium to each dish. 

d) Cells were transferred to 1.5 ml Eppendorf tubes and centrifuged at 300 × g at 4 °C for 

6 min. 

e) The supernatant was removed and the pellet was resuspended in 400-600 µl of growth 

medium to obtain a concentration of approximately 1 × 10
6
 cells/ml, which is suitable for the 

comet assay. 
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2.5 Cytotoxicity assessment 

To make sure that the doses given during Ro 12-9786 plus light and UVC exposure did not 

exert cytotoxic effects, cytotoxicity assessment was conducted by means of the trypan blue 

exclusion test. 

When stained with trypan blue, live cells with intact membranes will exclude the dye, 

whereas dead or damaged cells will absorb the dye and appear blue under the microscope. 

Thus, the number of blue cells gives an indication of cytotoxicity. 

Procedure: 

a) A 10 µl portion of cell suspension was stained with 10 µl trypan blue. The cells were 

allowed to rest for 5 min, to allow the trypan blue dye to enter the dead and damaged cells. 

b) The dyed cell suspension (10 µl) was placed on to a hemocytometer (Bürker chamber), and 

the number of blue stained cells as well as the number of intact cells was noted. 

c) The viability percentage was calculated by dividing the number of living cells by the 

number of total cells and multiplying by 100. 

2.6 The alkaline single cell gel electrophoresis (comet) assay 

The comet assay is a simple and sensitive method for measuring DNA strand breaks in 

individual eukaryotic cells (Ostling and Johanson, 1984; Singh et al., 1988): Cells exposed to 

a genotoxic agent are embedded in agarose and moulded onto the hydrophilic side of a plastic 

support such as the GelBond
®
 film, as described by Hansen et al. (Hansen et al., 2010). 

Embedded cells are immediately put in lysis solution to remove membranes, cytoplasm and 

nucleoplasm and the high salt concentration solubilises most of the histones, consequently the 

nucleosomes are disrupted. Prior to electrophoresis the embedded cells are put in high alkali 

solution (pH >13.2) resulting in unwinding of the supercoiled DNA, and loops containing one 

or more strand breaks will be relaxed. During electrophoresis, structures resembling comets 

are formed; relaxed loops will extend from the nucleoid core toward the anode, forming a tail. 

Comets stained with a fluorescent dye are observed by fluorescence microscopy, and the 

intensity of the comet tail relative to the head DNA intensity represents the quantity of DNA 

strand breaks.  
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In addition to DNA strand breaks, the comet assay also detects alkali-labile sites, i.e. lesions 

capable of being transformed into SSBs under alkaline conditions, such as AP sites. However, 

strand breaks and alkali-labile sites are not the only kind of damage present in DNA; other 

types of DNA damage include lesions such as oxidised bases and UV-induced DNA lesions. 

The use of lesion-specific endonucleases provides the opportunity to reveal specific DNA 

lesions in the comet assay: The different enzymes recognise a specific kind of damage and 

convert the damage into strand breaks detectable by the comet assay.  

Simultaneously with enzyme incubation, it is recommended to incubate a replicate film in 

enzyme buffer alone revealing SSBs and alkali-labile sites. The comet score from each 

sample in the controls can then be subtracted from the comet score obtained in the enzyme 

treated film, giving a net amount of enzyme-sensitive sites (Collins et al., 2008). 

As described by Olsen et al. (Olsen et al., 2003), Hansen et al. (Hansen et al., 2010) and 

Duale et al. (Duale et al., 2010), respectively, protein-extracts from an over-producing 

plasmid in E. coli expressing the DNA glycosylases Fpg or T4endoV were utilised in our 

experiments. 

Fpg detects oxidised purines such as 8-oxoG, as well as ring-opened purines, or 

formamidopyrimidines, and AP sites. However, since AP sites are alkali-labile, they are 

detected as SSBs in the controls and thus not included as enzyme-sensitive sites (Collins et 

al., 2008). 

T4endoV recognises UV-induced CPDs.  

The Fpg- and T4endoV-extracts used in our experiments tend to exert unspecific 

endonuclease activity at high concentrations. Therefore, the enzyme activities had to be 

titrated against well-known damage levels in order to obtain the optimal enzyme 

concentration for each experimental set up. In addition, as the comet assay is a sensitive 

method, it easily saturates the system in cases where nearly all DNA is in the tail (highly 

damaged DNA). Due to the dynamic range of the comet assay, it was necessary to find the 

optimal dose for the different genotoxic exposures using Ro 12-9786 and light irradiation, as 

well as UVC exposure. Dose response curves were conducted, using different concentrations 

of Fpg- and T4endoV-extracts.  
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The comet assay procedure: 

All steps were performed in dim light. 

a) Low melting point agarose (0.75%), lysis solution and electrophoresis buffer was prepared 

(as described in Appendix B). The agarose was kept at 37 °C, whereas the lysis solution and 

the electrophoresis buffer were kept at 4 °C. 

b) The films were placed on a cold metal plate and the cells were mixed with agarose in a 

1:10 dilution. For each sample, cell-agarose gel suspension (5 µl) was moulded onto the films 

by means of an 8-multichannel pipette.  

Each sample was moulded in triplicates onto three separate GelBond
®
 films; two films were 

prepared for enzyme treatment (Fpg and T4endoV-extract), while one was prepared for 

enzyme reaction buffer treatment (without enzyme). 

c) The films were placed in lysis solution over night at 4 °C. The next day, films were briefly 

rinsed in distilled water (dH2O) prior to pre-treatment with enzyme reaction buffer for 10 min 

followed by another 50 min in a new round of fresh buffer. 

d) For enzyme treatment, enzyme reaction buffer containing 0.2 mg/ml bovine serum albumin 

(BSA) was pre-warmed to 37 °C before adding crude Fpg- or T4endoV-extract to attain the 

final concentrations of 0.05 µg/ml and 15 µg/ml, respectively. The films were subsequently 

incubated in enzyme reaction buffer with or without enzyme at 37 °C for 1 h. 

e) Unwinding of DNA was performed by placing the films in electrophoresis buffer (pH 13.2) 

at 4 °C for 5 min and then 35 min in a new round of fresh buffer. 

f) The films were placed in fresh electrophoresis buffer, and gel electrophoresis was carried 

out at 8 °C, 25 V and ~700 mA, for 25 min. The voltage drop across the platform was 

approximately 0.9 V/cm. 

g) The films were neutralised by placing them twice in fresh neutralising buffer for 5 min at 

room temperature.  

h) Films were then rinsed in dH2O prior to fixation in absolute ethanol for 5 min, followed by 

1.5 h fixation in fresh absolute ethanol. 
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i) The films were allowed to dry before storage in a dark place at room temperature until 

DNA staining with SYBR
®
 Gold. 

j) The comets were stained by placing each film in 40 ml TE-buffer mixed with 40 µl of 

SYBR
®
 Gold (1000× diluted stock in DMSO). The comets were dyed for 20 min after which 

they were rinsed in dH2O and covered with a glass cover slip. Prior to microscopic analysis 

(scoring of comets), the films were stored moist, dark and cold (8 °C). The films were 

analysed within three days.  

2.6.1 Microscopic analysis of comets (scoring of comets) 

Scoring of the comets was conducted using an Olympus BX51 microscope with an Olympus 

Burner with a Mercury Short-Arc HBO
®
 100 W/2 lamp and an A312f camera. The camera 

was linked to a computer with the image analysis software "Comet assay IV". 

When illuminated, the fluorescent SYBR
®
 Gold stain bound to the comet DNA emits visible 

light. This feature makes it possible for the image analysis software to calculate the light 

intensity of the comet head and tail. The per cent tail DNA intensity relative to the head DNA 

intensity is used as a measure of damage, as it increases linearly with break frequency (Lovell 

and Omori, 2008). The comets were selected by the operator, and a total of 100 comets were 

scored for each group of three technical replicates. As the software is not capable of 

discriminating regular comets from overlapping comets and artefacts, the latter were 

deliberately avoided by the operator. 

2.7 Statistical methods 

Currently, there is no consensus on a standard statistical method for the analysis of comet data 

(Lovell and Omori, 2008). A reason for this may be the tendency of comet data to have a 

complex distribution dependent on damage levels: Generally, data from lesser damaged cells 

tend to skew to the right, whereas data from cells with high damage levels tend to skew to the 

left compared to a normal distribution. Unfortunately, log-transformation of the data is of 

little use, as only the right skewed data would be normalised.  

Another important consideration in the statistical analysis of comet experiments is the concept 

of the experimental unit. According to a review by Lovell and Omori (Lovell and Omori, 

2008), an experimental unit is defined as “the smallest amount of experimental material that 



 Materials and methods 

26 

can be randomly assigned to a treatment”. In our experiments, this equals the subculture of 

differently exposed cells originating from a mutual cell culture. 

Significant but artifactual differences between differently exposed subcultures may be 

obtained if each cell within a cell subculture is treated as the experimental unit. Instead, 

Lovell and Omori (Lovell and Omori, 2008) recommend including replicate subcultures 

(biological replicas) in the experiment. This solution provides a valid estimate of subculture 

variability and a valid, if low power, test of the treatments for that specific subculture. 

However, this solution would have been logistically impossible to carry out in our 

experiments, as it would involve a number of subcultures too high to handle without 

compromising the results. Instead, we aimed at running several identical experiments. 

However, the first of the experiments had to be discarded due to unacceptably high 

background DNA damage levels in the exposed samples. 

The restricted number of experiments resulted in a low statistical power and thus no statistical 

significance was obtained, even though an obvious difference was observed. The standard 

deviation of the two separate experiments in each of the studies (Study 1 and Study 2) gives a 

better visual presentation regarding the variability between them. However, if the number of 

experiments in each study were to be increased, we would test the data according to the 

following argumentation:  

Parametric tests rely on assumptions of independence, homogenous variances and normality. 

Accordingly, the parametric t-test strictly requires the data to be normally distributed. Since 

comet data tend to deviate from normality, we prefer the non-parametric Mann-Whitney U 

test to compare the damage levels before and after repair, and the levels of repair in the 

differently exposed subcultures. 

On the other hand, when comparing the repair capacity between the two MEF genotypes, 

Ogg1
+/+

 and Ogg1
-/- 

(each of the two groups containing three different exposure scenarios), 

analysis of variance (ANOVA) is preferred. The reason for this is that ANOVA, although 

being a parametric test, is sufficiently robust to be used with data exhibiting differences in 

variance (with a factor of 2-5) and with small violations of the normality. 

The statistical program used was SigmaPlot version 11.0 for Windows. Results were regarded 

significantly different from each other at a significance level below 0.05. Otherwise, 
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Microsoft Office Excel 2010 for Windows was used to prepare figures and to calculate mean 

and standard deviation of each sample.  
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3 RESULTS 

Two separate series of experiments (Study 1 and 2, Figure 2.1) were carried out. The purpose 

of the first study (Study 1) was to investigate the impact of oxidative DNA lesions on the 

repair of helix-distorting DNA lesions. A second purpose of Study 1 was to investigate 

whether the DNA repair protein Ogg1 is involved in the repair of helix-distorting DNA 

lesions. The second study (Study 2) was designed in order to investigate the impact of helix-

distorting DNA lesions on the repair of oxidative DNA lesions. 

Before carrying out these studies, parameters important for the study design were established. 

The establishment of these parameters will be explained first, followed by a description of the 

results from Studies 1 and 2. 

3.1 Establishment of parameters 

In order to study a possible interference between DNA damage and the two DNA-repair 

pathways, NER and BER, careful establishment of appropriate genotoxic exposure levels and 

titration of associated DNA repair enzymes in the comet assay were essential to conduct.  

First, optimal concentrations of the lesion-specific endonuclease-extracts (Fpg and T4endoV) 

used in our comet experiments were established, since the use of unnecessarily high 

concentrations of the extracts will give rise to unspecific DNA damage due to endonuclease 

activity. 

Secondly, it was important to ensure that the induced lesion levels were within the dynamic 

detection range of the comet assay. It was therefore necessary to find the optimal dose of the 

different genotoxic exposures. In addition, the time-line of repair of each type of DNA 

damage had to be established to determine the optimal duration of repair incubations for each 

study.  

Finally, both types of DNA damage (oxidative DNA lesions and helix-distorting DNA 

lesions) were to be present simultaneously in the cells during a significant time of the 

following repair period (see Figure 2.1). The level of interfering DNA damage should be in 

the upper part of the dynamic detection range of the comet assay to allow significant 

interfering DNA damage to be present during the time period repair was assessed. 
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3.1.1 Parameters for oxidative DNA lesions 

3.1.1.1 Titration of Fpg-extract concentration  

To determine the optimal concentration of Fpg-extract, a dose-response curve was established 

(Figure 3.1). Appropriately exposed samples of Ogg1
+/+

 MEFs were treated with three 

different concentrations of the Fpg-extract or enzyme buffer alone. Oxidative lesions were 

introduced by treating the MEFs with the phototoxic compound Ro 12-9786 together with 

increasing doses of visible light. The level of DNA damage in unexposed cells without 

enzyme treatment (in majority revealing SSBs and alkali-labile sites and referred to as 

background damage level), were modest (close to 20 % DNA in the tail). The tail DNA 

intensity did not increase in the Ro 12-9786 plus light-exposed samples without enzyme 

treatment. An increasing Fpg-concentration resulted in three dose-response curves with 

increasing DNA damage levels from 20 % to about 80 % DNA in the tail. No induced 

oxidative lesions were apparent in the unexposed samples revealing low unspecific activity in 

this concentration range. The three dose response curves obtained were close to linear. In the 

dose response curve with Fpg-extract concentration of 0.01 µg/ml, generally lower damage 

levels were observed in all samples, indicating a sub-optimal Fpg-extract concentration and 

thus underestimating the Fpg-sensitive lesions. However, the 10 fold higher concentration of 

0.1 µg/ml gave a non-linear curve, as this enzyme concentration revealed a damage level 

higher than expected at the light exposure dose of 3 min. Thus, the Fpg-extract concentration 

of 0.05 µg/ml was chosen for further experiments, as this concentration gave a dose response 

curve with an acceptable linearity. 



 Results 

31 

0

20

40

60

80

100

0 2 4 6 8 10

%
 t

a
il

 D
N

A

Light exposure (min)

0.00 µg/ml

0.01 µg/ml

0.05 µg/ml

0.10 µg/ml

 

Figure 3.1: Titration of the Fpg-extract. A dose response curve of Ogg1
+/+

 MEFs treated with the 

photosensitizer Ro 12-9786 (2 µM) and increasing doses of visible light (0, 1.5, 3, 6 and 10 min) was 

prepared. The DNA damage was analysed in the comet assay with increasing concentrations of Fpg-

extract (0, 0.01, 0.05 and 0.1 µg/ml). DNA damage level is presented as % tail DNA. Mean of three 

technical replicates is shown. 

 

3.1.1.2 Establishment of DNA damage levels and repair duration related to oxidative 

DNA lesions  

For the induction of oxidative DNA lesions, two exposure scenarios were to be chosen; one 

scenario for the repair assessment in Study 2 and one scenario to induce interfering oxidative 

DNA lesions for the repair assessment of helix-distorting DNA lesions in Study 1 (Figure 

2.1). In both studies, MEFs were pre-treated with Ro 12-9786 (2 µM) prior to light exposure. 

In Study 2, the 6 min visible light exposure was chosen for further experiments, as this dose 

induced a damage level below saturation (Figure 3.1) and the repair rate could thus be 

estimated. In the case of Study 1, it was decided to double the light exposure dose (i.e. 12 min 

light exposure instead of 6 min), as it was important to choose a sufficiently high dose of 

oxidative stress in order to sustain a relatively high level of interfering oxidative DNA lesions 

throughout the entire repair period for helix-distorting DNA lesions without introducing any 

cytotoxicity. It should be noted that the 12 min light exposure dose saturated the assay. 

However, this saturation is irrelevant, as only the detection of helix-distorting DNA lesions 

was critical.  

In order to establish the optimal DNA repair time of oxidative DNA lesions in MEFs, cells 

were exposed to Ro 12-9786 and irradiated with light for 6 min before the cells were allowed 
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to repair the damage for 3 or 6 h. The induced damage should not be completely repaired; 

however the DNA damage level reduction should be considerable. An optimal reduction was 

observed after 3 h in the case of Ogg1
+/+ 

MEFs. However, the reduction was not as prominent 

in the Ogg1
-/-

 MEFs, and hence a repair period of 6 h was chosen for the repair of oxidative 

DNA lesions in Study 2 (Figure 3.2.B and D). Background levels were generally low in the 

repair assessment studies (Figure 3.2.A and C). 
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Figure 3.2: Establishment of repair duration of oxidative DNA lesions. MEFs exposed to light (0 

or 6 min) in the presence of the photosensitizing agent Ro 12-9786 (2 µM) were allowed to repair for 

0, 3 or 6 h (dark green, light green and blue bars, respectively, in the case of Ogg1
+/+

 and red, orange 

and yellow bars, respectively, in the case of Ogg1
-/-

). DNA damage was measured in the comet assay, 

with (B and D) or without (A and C) Fpg-extract treatment (0.05 µg/ml). DNA damage is presented as 

% tail DNA. Mean of three technical replicates is shown. 

 

3.1.2 Parameters for helix-distorting DNA lesions 

3.1.2.1 Titration of T4endoV-extract concentration  

To determine the optimal concentration of T4endoV enzyme-extract, a dose response curve 

was established by irradiating HPBL with increasing doses of UVC. Irradiated cells were 
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treated with four different concentrations of the enzyme-extract (Figure 3.3). An untreated 

control was also included to detect any unspecific activity. HPBL was used as a substitute for 

MEFs in the case of the T4endoV-extract titration as these cells were easily available at the 

time when MEFs were infected with Mycoplasma. 

The results clearly show that the damage level in cells without enzyme treatment was close to 

0 % (a typical background damage for HPBL), regardless of UVC dose given. This was also 

the case for the level of background damage in the three dose response curves. Although 

being close to linear, the damage levels in the dose response curves from the two T4endoV-

extract concentrations of 1.0 and 5.0 µg/ml were generally lower than the level for the other 

doses given. On the contrary, the higher concentrations (8.7 and 15 µg/ml) both revealed 

higher levels of damage. Since the extract concentration of 15.0 µg/ml revealed high levels of 

lesions at 0.5 and 1.0 J/m
2
 without introducing any unspecific cleavage at 0 J/m

2
, this 

concentration was chosen for further experiments.  
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Figure 3.3: Titration of T4endoV-extract. A dose response curve of HPBL treated with increasing 

doses of UVC (0, 0.2, 0.5, 1.0 and 3.0 J/m
2
) was prepared. The DNA damage was measured in the 

comet assay with increasing concentration of T4endoV-extract (0, 1.0, 5.0, 8.7 and 15 µg/ml). DNA 

damage level is presented as % tail DNA.  Mean of three technical replicates is shown. 

 

3.1.2.2 Establishment of DNA damage levels and repair duration related to UVC  

UVC exposure was used for induction of the NER pathway. Experiments were conducted in 

order to establish an appropriate dose of UVC and further, to find the optimal duration for the 
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repair of these lesions. Two different doses of UVC radiation (0.5 and 1.0 J/m
2
) were used, in 

addition to an unexposed control. The Ogg1
+/+

 and Ogg1
-/-

 MEFs were allowed to repair for 

0, 8 and 16 h.  

For the induction of helix-distorting DNA lesions, the UVC exposure dose of 0.5 J/m
2
 was 

chosen for both Study 1 and Study 2. The reason for this was that helix-distorting DNA 

lesions take longer time to repair than oxidative DNA lesions, and thus the interfering helix-

distorting DNA lesions were present throughout the entire repair period of oxidative DNA 

lesions in Study 2. The highest UVC dose (1.0 J/m
2
) gave damage levels in the upper part of 

the dynamic detection range of the comet assay, both in Ogg1
+/+

 and Ogg1
-/-

 MEFs (Figure 

3.4.B and D). Exposing to 0.5 J/m
2
 gave a suitable damage level in the upper part of the 

dynamic detection range in order to follow repair.  This dose was therefore chosen as the 

optimal dose in both studies. 

For DNA repair assessment in Study 1, the reduction of the induced levels of helix-distorting 

DNA lesions were to be measured. The induced damage should not be completely repaired; 

however the DNA damage level reduction should be considerable. Such a reduction was not 

observed after 8 h, neither in Ogg1
+/+ 

(Figure 3.4.B) nor Ogg1
-/-

 MEFs (Figure 3.4.D).  After 

16 h, however, the reduction was optimal in both cell types, and was therefore chosen as the 

repair time of helix-distorting DNA lesions in Study 1. Background damage levels were 

generally acceptable in the repair assessment experiment (Figure 3.4.A and C). 
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Figure 3.4: Establishment of DNA damage levels and repair duration of helix-distorting DNA 

lesions. MEFs irradiated with UVC (0.5 J/m
2
 or 1.0 J/m

2
) were allowed to repair for 0, 8 or 16 h (dark 

green, light green and blue bars, respectively, in the case of Ogg1
+/+

 and red, orange and yellow bars, 

respectively, in the case of Ogg1
-/-

). DNA damage was measured in the comet assay, with (B and D) or 

without (A and C) T4endoV-extract treatment (15 µg/ml). DNA damage is presented as % tail DNA. 

Mean of three technical replicates is shown. 

 

3.2 Cell viability 

3.2.1 Cytotoxicity 

To make sure that the given doses during Ro 12-9786 plus light and UVC exposure in Study 1 

and 2 did not exert cytotoxic effects, cytotoxicity assessment was conducted by means of the 

trypan blue exclusion test as described in section 2.5. The results from this assessment are 

presented in Table 3.1, and show that the viability of controls as well as exposed cells was 

similar, generally above 95 %. These results showed no induced cytotoxicity after the 

combined exposure both prior to and after the repair period. 

 

UVC exposure (J/m2) 

%
 t

a
il
 D

N
A

 



 Results 

36 

Table 3.1: Cell viability*. 

 Ogg1
+/+

 MEFs Ogg1
+/+ 

MEFs Ogg1
-/-

 MEFs 

Repair time 

Negative control 

(mean % viable cells 

± SD) 

Ro 12-9786 plus light 

and UVC (mean % 

viable cells ± SD) 

Ro 12-9786 plus light 

and UVC (mean % 

viable cells ± SD) 

0 h 98.2 ± 0.6 95.8 ± 0.6 96.9 ± 0.4 

16 h 97.1 ± 0.2 97.1 ± 2.2 97.8 ± 1.8 

*Per cent cell viability (mean of two replicate experiments) ± standard deviation (SD) of Ogg1
+/+

 and Ogg1
-/-

 

MEFs assessed by trypan blue exclusion, at 0 and 16 h after exposure. The cells were exposed to Ro 12-9786 

plus light and UVC. An unexposed negative control of Ogg1
+/+

 MEFs was included. 

 

3.2.2 Mycoplasma 

The MEF cultures (Ogg1
-/-

 and Ogg1
+/+

) used for this study were tested for Mycoplasma once 

they arrived in our laboratory (from Department of Medical Biochemistry, Oslo University 

Hospital). Unfortunately, the first batch of MEFs that we received had to be discarded due to 

a positive Mycoplasma test. However, we received a new batch of both MEF cultures in early 

passages that were not infected with Mycoplasma (results not shown), and thus we were able 

to commence our study.  

3.3 Role of low level oxidative stress on repair of helix-distorting 

DNA lesions 

One of the aims of this project was to investigate whether low levels of oxidative stress 

perturbs repair of helix-distorting DNA lesions in embryonic fibroblasts from Ogg1
+/+

 or 

Ogg1
-/-

 mice (Study 1). The cells were exposed in vitro to the photosensitizing agent 

Ro 12-9786 (2 µM) plus visible light (12 min), followed by exposure to UVC (0.5 J/m
2
). Two 

biological replicates were included for each treatment, one of which was harvested 

immediately after exposure, whereas the other one was harvested after 16 h of repair at 37 °C. 

Three controls were included for each repair period (0 and 16 h); an unexposed (negative) 

control, a control exposed to UVC and light and a control exposed to UVC and Ro 12-9786. 

Cells were moulded in three technical replicates onto three films subject to various enzyme 

treatment scenarios; one film was treated with T4endoV-extract to reveal UVC-induced DNA 

lesions, a second film was treated with Fpg-extract in order to reveal oxidative DNA lesions, 
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whereas the last film was an untreated control, which reveals strand breaks and alkali-labile 

sites only. 

Unexpectedly, we observed a tendency of elevated levels of strand breaks (no enzyme 

treatment) in both Ogg1
+/+

 and Ogg1
-/- 

MEFs exposed to visible light together with UVC or 

visible light together with UVC and Ro 12-9786 prior to repair (Figure 3.5.A and D). The 

damage levels in MEFs exposed to both UVC and Ro 12-9786 in addition to visible light 

were approximately 1.5 times higher than the damage levels in cells exposed to UVC and 

light alone. The elevated levels of damage became a technical problem when calculating net 

T4endoV- or Fpg-sensitive sites. These sites are normally calculated by subtracting scores 

from non-enzyme treated cells from scores from enzyme treated cells. However, if the 

damage level in the samples without enzyme treatment is high, the reliability of the net 

sensitive site-results may be questioned. Consequently, the decision was to use total Fpg or 

T4endoV damage levels without subtracting the control level. 

Importantly, we managed to sustain high levels of interfering oxidative lesions (Fpg sensitive 

sites together with SSBs) throughout the experiment in the sample exposed to Ro 12-9786 

plus light and UVC together (Figure 3.5.C and F). Furthermore, we observed high initial 

levels of helix-distorting DNA lesions (T4endoV-specific lesions) in Ogg1
+/+

 and Ogg1
-/-

 

MEFs in all UVC exposed cells prior to repair (Figure 3.5.B and E). The damage level 

observed in unexposed controls were low in all cases, and we found no differences in this 

damage level after repair, neither in Ogg1
+/+

 nor Ogg1
-/-

 MEFs. 

Following repair, levels of helix-distorting DNA lesions were considerably lower than the 

initial levels, both in Ogg1
+/+

 and Ogg1
-/-

 MEFs (Figure 3.5.B and E). However, we did not 

observe any significant difference in the damage level in any of the exposed samples after 

repair within one cell type.  
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Figure 3.5: DNA repair of UVC-induced DNA lesions in mouse embryonic fibroblasts (MEFs) 

from Ogg1
+/+

 and Ogg1
-/-

 mice following a simultaneous single exposure to oxidative stress. DNA 

damage is measured in the comet assay in MEFs exposed to Ro 12-9786 (2 µm), light (12 min), and 

UVC (0.5 J/m
2
), as indicated, before and after 16 h of repair. Tail DNA intensities (%) are presented 

of MEFs from Ogg1
+/+

 (A-C) and Ogg1
-/-

 (D-F) mice exposed to the following: Unexposed control; 

light and UVC; Ro 12-9786 and UVC; Ro 12-9786, light and UVC, in the respective order. Gels were 

incubated without enzyme-extract (A and D), with T4endoV-extract (B and E) or with Fpg-extract (C 

and F). The MEFs were harvested immediately after exposure (dark green and red bars) or following 

16 h repair (light green and orange bars). The mean of two experiments is shown; each experiment is 

given as the mean of 100 scored comets on three replicate gels. In order to visualise differences 

between the two experiments, error bars representing the standard deviation are shown. Column charts 

of each experiment are shown in Appendix A, Figure A.1(Ogg1
+/+ 

MEFs) and Figure A.2 (Ogg1
-/- 

MEFs). 
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The observed repair capacity in the samples exposed to Ro 12-9786 and UVC was slightly 

lower than the other two exposed samples (light + UVC and Ro 12-9786 + light + UVC, 

respectively), both in Ogg1
+/+

 and Ogg1
-/-

 MEFs (Figure 3.6.A and B). However, this 

difference was not significant. 
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Figure 3.6: Relative repair of T4endoV-sensitive sites and SSBs. MEFs from Ogg1
+/+

 (A) or 

Ogg1
-/-

 (B) mice were exposed to Ro 12-9786, light (12 min) (2 µm) and UVC (0.5 J/m
2
), as indicated. 

DNA damage was measured before and after 16 h of repair and relative repair (%) was calculated. The 

error bars represent the standard deviation between two separate experiments. Column charts of each 

experiment are shown in Appendix A, Figure A.3.A (Ogg1
+/+ 

MEFs) and B (Ogg1
-/- 

MEFs). 

 

3.4 Role of Ogg1 on the repair of helix-distorting DNA lesions 

Next we wanted to study whether the DNA repair protein Ogg1 may influence the repair of 

helix-distorting DNA lesions in MEFs. This was investigated by comparing the relative repair 

of such lesions in Ogg1
+/+

 and Ogg1
-/- 

MEFs (Figure 3.6). As already mentioned before, we 

observed no significant difference in repair between the various exposed samples for each of 

the two cell types. Interestingly, when comparing the repair capacity of helix-distorting 

lesions between the two genotypes, we observed a clear difference. The repair of helix-

distorting lesions in Ogg1
+/+

 MEFs was more prone than in Ogg1
-/-

, regardless of interfering 

oxidative damage level. One more experiment is needed in order to test whether the observed 

difference is statistically significant.  
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3.5 Role of helix-distorting DNA lesions on repair of oxidative 

DNA lesions 

Another aim of this project was to investigate whether helix-distorting DNA lesions perturb 

repair of oxidative DNA lesions in embryonic fibroblasts from Ogg1
+/+

 mice (Study 2). The 

cells were exposed in vitro to the photosensitizing agent Ro 12-9786 (2 µM) plus visible light 

(6 min), followed by exposure to UVC (0.5 J/m
2
). Two biological replicas were included for 

each treatment, one of which was harvested immediately after exposure, whereas the other 

one was harvested after 6 h of repair at 37 °C. Three controls were included for each 

harvesting time; unexposed (negative) control cells to reveal any damage that may be 

introduced during cell preparation, a Ro 12-9786-exposed control to ensure no genotoxic 

stress from the Ro 12-9786 compound at 2µM and cells exposed to Ro 12-9786 plus light to 

ensure no additional T4endoV-specific damage induced by UVC in this sample. The gels 

containing DNA was treated with Fpg- or T4endoV-extracts in order to reveal oxidative 

lesions and UVC-induced lesions, respectively. Enzyme buffer controls (without 

endonuclease treatment) were also included. The samples without enzyme treatment showed 

low background damage levels (Figure 3.7.A). Thus, the “net” Fpg- and T4endoV-sensitive 

sites were calculated by subtracting the background damage level obtained after ‘no enzyme’ 

treatment from the damage level obtained after Fpg- or T4endoV-extract treatment.  

As intended, we observed high levels of interfering helix-distorting lesions (T4endoV-

sensitive sites) in the UVC exposed samples (Figure 3.7.C). The unexposed sample as well as 

the sample exposed to Ro 12-9786 only, showed low damage levels in all cases as expected. 

High initial levels of oxidative DNA lesions (Fpg-sensitive sites) (Figure 3.7.B) were found in 

both samples exposed to Ro 12-9786 plus light, regardless of additional UVC exposure. After 

6 h of repair, there were still no differences in the level of oxidative DNA lesions between the 

Ro 12-9786 plus light exposed samples or the Ro 12-9786 plus light and UVC exposed 

samples, although the damage levels were considerably reduced (Figure 3.7.B).  
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Figure 3.7: DNA repair of oxidative DNA lesions in mouse embryonic fibroblasts (MEFs) from 

Ogg1
+/+

 mice following a simultaneous single exposure to UVC. DNA damage is measured in the 

comet assay in MEFs exposed to Ro 12-9786 (2 µm), light (6 min), and UVC (0.5 J/m
2
), as indicated, 

before and after 6 h of repair. Tail DNA intensities (%) are presented of Ogg1
+/+

MEFs exposed to the 

following: Unexposed control; Ro 12-9786; Ro 12-9786 and light; Ro 12-9786, light and UVC, in the 

respective order. Gels were incubated without enzyme-extract (A), with Fpg-extract (B) or with 

T4endoV-extract (C). The MEFs were harvested immediately after exposure (dark blue bars) or 

following 6 h repair (light blue bars). The mean of two experiments is shown; each experiment is 

given as the mean of 100 scored comets on three replicate gels. In order to visualise differences 

between experiments, error bars representing the standard deviation are shown. A column chart of 

each experiment is shown in Appendix A, Figure A.4. 
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Thus, no obvious difference in relative repair of oxidative lesions was observed even in the 

presence of helix-distorting DNA lesions, as seen in Figure 3.8. 
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Figure 3.8: Relative repair of Fpg-sensitive sites. MEFs from Ogg1
+/+

 mice were exposed to 

Ro 12-9786 (2 µm), light (6 min), and UVC (0.5 J/m
2
), as indicated. DNA damage was measured 

before and after 6 h of repair and relative repair (%) was calculated. The error bars represent the 

standard deviation between two separate experiments. A column chart of each experiment is shown in 

Appendix A, Figure A.5. 
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4 DISCUSSION 

The present study is divided into two parts; Study 1 and Study 2 (Figure 2.1). 

In summary, the results from Study 1 suggest that a single low exposure to oxidative stress 

has no apparent effect on cellular repair of low levels of helix-distorting DNA lesions in MEF 

cells. On the other hand, the DNA repair protein Ogg1 appears to play a role on the repair of 

helix-distorting DNA lesions. 

The results from Study 2 indicate that the presence of low levels of helix-distorting DNA 

lesions does not influence the repair of oxidative DNA lesions. 

Before discussing these findings, some technical considerations will be addressed. 

4.1 Technical considerations 

In Study 1, we unexpectedly observed increased comet tail DNA intensities (SSBs and alkali-

labile lesions), both in Ogg1
+/+

 and Ogg1
-/-

 MEFs, following an initial 12 min exposure to 

visible light followed by 0.5 J/m
2
 of UVC, independent of the presence of Ro 12-9786 (Figure 

3.5.A and D). If this observation was to follow a linear relationship, one would expect 

increased, however lower, tail DNA intensities after 6 min of visible light exposure. However, 

this is not the case. There may be several possible explanations to this observation. 

A tungsten-halogen lamp enabling simultaneous exposure of multiple samples was used for 

visible light exposure in the present study. Unfortunately, this lamp produces heat. Increased 

temperature is known to increase enzyme reaction rates, which may thereby increase the 

enzyme activities of cellular endonucleases (Daniel et al., 2003). Such enzymes can convert 

already existing DNA lesions into SSBs; a problem that could be circumvented by exposing 

samples to cold visible light sources. However, the cold visible light lamp in our lab had 

restricted suitability for this study since it can only be used for exposing very few samples 

simultaneously. Instead, the cell samples were kept on a precooled metal plate during the 

exposure to visible light in order to avoid increased temperatures. It is therefore likely that the 

temperature did not increase sufficiently for a significant increase in endonuclease activities 

to take place during the first six min of exposure. However, such an increase in temperature 

may have occurred between six and 12 min of visible light exposure.  
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Since the increases in comet tail DNA intensities were limited to cells exposed to visible light 

followed by UVC, it can be speculated that there is a relationship between the increased 

damage levels and the order and combination of exposure to visible light and UVC. This 

exact order of exposure was chosen to avoid formation of alkali-sensitive Dewar isomers, 

which would appear as SSBs in the comet assay (as described in section 2.2.3). The 

speculation of a relationship between the exposure scenario and induced DNA damage levels 

is supported by findings in preliminary experiments, where no increases in tail DNA 

intensities were observed after separate exposures of MEFs to 10 min of visible light or to 0.5 

J/m
2
 of UVC alone (Figure 3.1 and Figure 3.4.A and C, respectively).  

However, as the cells were exposed to visible light and UVC in growth medium, there is a 

possibility that components of the growth medium may participate in the formation of DNA 

damage detectable in the comet assay. This may have occurred by photoconversion of 

medium components by visible light and further photoactivation by UVC. For instance, 

benzylpenicillin, an antibiotic present in our growth medium, generate ROS upon exposure to 

sunlight and all three subtypes of UV (Ray et al., 1996). Other possible components that 

could be photoconverted are the proteins originating from FCS present in the medium. 

The increased comet tail DNA intensities in cells exposed to visible light and UVC did not 

seem to influence the repair rates observed with respect to T4endoV-sensitive DNA lesions, 

since the decline in T4endoV-sensitive DNA lesions was similar in MEF cells exposed to Ro 

12-9786 plus UVC (Figure 3.5.B and E, 3
rd

 group of columns, light green and orange column, 

respectively) compared with MEFs exposed to visible light plus UVC or Ro12-9786, visible 

light plus UVC (Figure 3.5.B and E, 2
nd

 and 4
th

 groups of columns, light green and orange 

column, respectively). 

4.2 Effect of oxidative stress on NER 

Based upon studies by Langie and co-workers (Langie et al., 2007; Langie et al., 2010), 

which showed a clear relationship between oxidative stress and reduced NER capacity in 

cellular extracts, in vitro as well as in vivo, we aimed to investigate whether oxidative stress 

can perturb the cellular repair of helix-distorting DNA lesions in MEFs in a defined in vitro 

system. 
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The present study suggests that a single low-dose exposure of oxidative stress does not 

perturb the repair of low-dose levels of helix-distorting DNA lesions, neither in Ogg1
+/+

 

MEFs nor Ogg1
-/-

 MEFs (Figure 3.6). Several explanations can be envisioned:  

Low levels of oxidative stress and ROS-generated oxidative DNA lesions were induced. 

These levels may be below a certain threshold level for inhibition of DNA repair. The dose 

levels were chosen in relation to the maximal detection level of the comet assay. However, it 

is still possible, and also likely, that chronic exposures causing a continuous attack of 

proteins, membranes and DNA, or merely higher doses of ROS do perturb the repair of helix-

distorting DNA lesions, as suggested by Langie and co-workers when assessing repair 

activities in cellular extracts (Langie et al., 2007; Langie et al., 2010).  

In our study, oxidative DNA lesions were induced by a single dose of oxidative stress. 

However, if we would have exposed cells repeatedly, i.e. generating chronic oxidative stress, 

we would gain sustained levels of oxidative DNA lesions. Such increased oxidative stress has 

previously been demonstrated to inhibit NER, both in vitro and in vivo (Langie et al., 2007; 

Langie et al., 2010). In the in vitro study, acute inhibition of NER capacities in cellular 

extracts were observed after exposure of A549 human pulmonary epithelial cells to high doses 

of oxidative stress (100 µM of the oxidizing agent hydrogen peroxide (H2O2) for 1 h). 

Although this exposure was not chronic, the oxidative stress in the cells was sustained by 

depletion of the endogenous antioxidant glutathione (GSH) prior to H2O2 exposure (Langie et 

al., 2007). This result was later followed up in vivo, where an intramuscular injection of iron 

(200 mg) given at day three after birth caused chronic oxidative stress and inhibition of NER 

capacity in cell extracts from the colon of new-born piglets. This inhibition was reversible by 

antioxidant supplementation, confirming that oxidative stress was involved in the inhibition 

(Langie et al., 2010). However, it should be noted that the in vitro study by Langie et al. 

(2007) differs from our study with respect to the induction of oxidative stress, which in their 

case was done by means of H2O2. Unlike Ro 12-9786 and visible light, H2O2 induces SSBs in 

addition to oxidative DNA lesions, and H2O2 will attack membrane lipids more aggressively 

than the other two agents. It can be speculated that the SSBs may contribute to the inhibition 

of NER, or that lipid peroxidation products inhibit NER (Güngör et al., 2010b). Moreover, 

measurements of NER capacity in the studies by Langie and Güngör and co-workers (Güngör 

et al., 2007; Güngör et al., 2010a; Güngör et al., 2010b; Langie et al., 2006; Langie et al., 

2007; Langie et al., 2010) were based on the capacity of cell/tissue extracts to incise DNA 

with helix-distorting lesions in a modified version of the comet assay (Langie et al., 2006), as 
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opposed to our measurements of cellular repair capacities. In cell/tissue extracts, repair 

enzymes are evenly distributed and withdrawn from their natural location in the cell, as 

opposed to cells in culture, where the repair enzymes may be confined to certain 

compartments of the cell, which is likely to influence their local availability for repair of 

damaged DNA. 

Furthermore, neither of the studies by Langie and co-workers revealed a clear mode-of-action 

for the observed inhibition of NER. However, the effect of GSH-depletion (in vitro) and 

antioxidant supplementation (in vivo) on NER capacity supports the suspicion of a direct 

ROS-mediated inactivation of NER proteins being responsible for the inhibition rather than 

the existence of oxidative DNA lesions themselves. This suspicion is strengthened by the 

present findings of no inhibition of NER after simultaneously exposure to oxidative lesions, 

neither in Ogg1
+/+

 nor Ogg1
-/-

 MEFs. In Ogg1
-/-

 MEFs, we expected higher spontaneous 

levels of 8-oxoG compared to Ogg1
+/+

 MEFs. However, only small differences between the 

genotypes were observed with respect to Fpg-sensitive DNA lesion levels.  

Due to the study design in the present study it was not possible to conclude on the discrepant 

results on possible inhibition of NER after oxidative stress. In further studies, it would be 

useful to investigate the importance of antioxidant status by GSH-depletion of MEFs prior to 

exposure to oxidative stress. Another interesting approach to obtain continuous oxidative 

stress is to utilize activated neutrophils. When activated by exposure to invading 

microorganisms, neutrophils generate ROS (for the purpose of killing the pathogen) (Babior 

et al., 1973). Güngör et al. (Güngör et al., 2007) observed a significant reduction of NER-

activity in extracts from human alveolar epithelial cells (A549) in vitro following co-culturing 

with activated neutrophils. This finding was later confirmed in vivo (Güngör et al., 2010a), 

where a relationship between lung inflammation and reduced pulmonary NER-activity was 

revealed. The basis of this NER reduction, and also the basis of neutrophil-induced 

genotoxicity, was later suggested to be formation of hypochlorous acid (HOCl) giving rise to 

various DNA lesions, including helix-distorting DNA lesions, via lipid peroxidation (Güngör 

et al., 2010b). The formation of HOCl is catalysed by myeloperoxidase (MPO), a protein 

released by neutrophils upon activation (Güngör et al., 2010b). 
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4.3 Role of Ogg1 in repair of helix-distorting DNA lesions 

In order to study whether accumulated levels of 8-oxoG inhibit NER capacity, we compared 

repair capacities of Ogg1
-/-

 and Ogg1
+/+

 MEFs (Figure 3.6.A and B, respectively). 

Interestingly, the present study revealed more efficient repair of helix-distorting DNA lesions 

in Ogg1
+/+

 MEFs compared to Ogg1
-/-

 MEFs, regardless of level of accumulated oxidative 

DNA lesions. The differences are probably underestimated since the proliferative rate is 2:1 

between Ogg1
-/-

 and Ogg1
+/+

 cells, respectively, leading to a more extensive dilution of the 

DNA damage in Ogg1
-/-

 cells due to cell division alone. This finding suggests that the repair 

protein Ogg1 may play a role in the repair of helix-distorting DNA lesions. 

This finding is substantiated by a previous finding in our lab of liver cells from Big Blue
®
 

Ogg1
-/-

 mice displaying a considerable delayed removal of BPDE DNA-adducts following in 

vivo exposure to B[a]P (Olsen, A. K., pers. comm., April 2012). However, it should be noted 

that B[a]P, when metabolized, may induce oxidative stress, with potential to influence NER 

repair efficiency (Langie et al., 2007; Langie et al., 2010).  

Moreover, crosstalk between repair mechanisms do exist; xeroderma pigmentosum, 

complementation group C (XPC), a protein involved in NER, has been showed to play an 

unexpected role in the removal of oxidative DNA lesions, most likely by acting as a co-factor 

in Ogg1-initiated BER (D'Errico et al., 2006). The crosstalk between NER and BER may act 

in both directions in such a way that NER is perturbed in the absence of Ogg1. 

4.4 Effect of helix-distorting DNA lesions on BER 

In this part of the study, we investigated whether helix-distorting DNA lesions play a role for 

repair of oxidative DNA lesions. The study showed that in our experimental design, 

sustaining low levels of helix-distorting DNA lesions do not perturb repair of low-dose 

oxidative DNA lesions in Ogg1
+/+

 MEFs (Figure 3.8).  

Many environmental compounds are known to induce bulky helix-distorting DNA lesions as 

well as leading directly or indirectly to increased ROS production. Furthermore, in real-life 

we are often exposed to several agents simultaneously and conditions such as autoimmune 

diseases and chronic inflammations lead to increased ROS production. Moreover, UVC-

radiation induces damage (such as CPDs) to pyrimidines (cytosine and thymine), whereas 

ROS attack mainly purines (adenine and guanine) but also to a lower degree pyrimidines. 

Induction of DNA lesions via several sources may lead to DNA lesions that are in proximity 



 Discussion 

48 

to each other which is a challenge to the DNA repair systems without generating errors or 

strand breaks. Inhibition of repair is a logic outcome due to increased time requirements to 

resolve these challenges. Bergeron et al. (Bergeron et al., 2010) showed that one of the major 

products of DNA oxidation, 8-oxoG, is refractory to excision by DNA glycosylases when it is 

involved in tandem DNA lesions (two lesions formed on adjacent nucleotides). In addition, 

helix-distorting DNA lesions may lead to steric interference in the removal of oxidative DNA 

lesions by BER. The induction of DNA damage is a largely stochastic event. Nonetheless, 

induction of DNA lesions often de-stabilises the DNA helix, making the DNA more 

susceptible to other DNA damaging agents.   

4.5 Conclusions 

The experimental results strongly suggest, that, in our experimental design:  

 Sustaining low levels of helix-distorting DNA lesions do not perturb the repair of low-

dose oxidative DNA lesions in wild type MEFs (Ogg1
+/+

).  

 Sustained oxidative DNA lesions, induced by a single initial exposure to oxidative stress, 

do not perturb the repair of low doses of helix-distorting DNA lesions, neither in wild 

type MEFs (Ogg1
+/+

) nor in Ogg1
-/-

 MEFs.  

 The absence of the Ogg1 repair function seems to decrease the efficiency of repair of 

helix-distorting DNA lesions, regardless of the level of oxidative DNA lesions, 

suggesting that the BER-related repair protein Ogg1 plays a role in NER.  

 The data therefore suggest that specific repair deficiencies rather than the presence of 

different types of lesions contribute to increased sensitivities of cells to combinations of 

exogenous and endogenous agents.  

 Considering the significant role of DNA damage and its repair in health and disease, 

further studies should be carried out to clarify the link between oxidative stress and DNA 

lesions. Their influence on different DNA repair pathways as well as identification of 

crosstalks between DNA repair proteins/pathways should be characterised. 
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Figure A.1: DNA repair of UVC-induced DNA lesions in mouse embryonic fibroblasts (MEFs) 

from Ogg1
+/+

 mice following a simultaneous single exposure to oxidative stress. DNA damage is 

measured in the comet assay in MEFs exposed to Ro 12-9786 (2 µm), light (12 min), and UVC (0.5 

J/m
2
), as indicated, before and after 16 h of repair. Tail DNA intensities (%) are presented of 

Ogg1
+/+

MEFs exposed to the following: Unexposed control; light and UVC; Ro and UVC; Ro, light 

and UVC, in the respective order. Gels were incubated without enzyme-extract (A), with T4endoV-

extract (B) or with Fpg-extract (C). The MEFs were harvested immediately after exposure (dark green 

bars) or following 16 h repair (light green bars). Two experiments are shown (Exp. A; full bars, Exp 

B; striped bars) each experiment is given as the mean of 100 scored comets on three replicate gels. 
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Figure A.2: DNA repair of UVC-induced DNA lesions in mouse embryonic fibroblasts (MEFs) 

from Ogg1
-/-

 mice following a simultaneous single exposure to oxidative stress. DNA damage is 

measured in the comet assay in MEFs exposed to Ro 12-9786 (2 µm), light (12 min), and UVC (0.5 

J/m
2
), as indicated, before and after 16 h of repair. Tail DNA intensities (%) are presented of Ogg1

-/-

MEFs exposed to the following: Unexposed control; light and UVC; Ro and UVC; Ro, light and UVC, 

in the respective order. Gels were incubated without enzyme-extract (A), with T4endoV-extract (B) or 

with Fpg-extract (C). The MEFs were harvested immediately after exposure (red bars) or following 16 

h repair (orange bars). Two experiments are shown (Exp. A; full bars, Exp B; striped bars), each 

experiment is given as the mean of 100 scored comets on three replicate gels. 
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Figure A.3: Relative repair of T4endoV-sensitive sites and single strand breaks. MEFs from 

Ogg1
+/+

 (A) or Ogg1
-/-

 (B) mice were exposed to UVC (0.5 J/m
2
), light (12 min) and Ro 12-9786 (2 

µm), as indicated. DNA damage was measured before and after 16 h of repair and relative repair (%) 

was calculated. Two experiments are shown (Exp. A; full bars, Exp. B; striped bars). 
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Figure A.4: DNA repair of oxidative DNA lesions in mouse embryonic fibroblasts (MEFs) from 

Ogg1
+/+

 mice following a simultaneous single exposure to UVC. DNA damage is measured in the 

comet assay in MEFs exposed to Ro 12-9786 (2 µm), light (6 min), and UVC (0.5 J/m
2
), as indicated, 

before and after 6 h of repair. Tail DNA intensities (%) are presented of Ogg1
+/+

MEFs exposed to the 

following: Unexposed control; Ro; Ro and light; Ro, light and UVC, in the respective order. Gels were 

incubated without enzyme-extract (A), with Fpg-extract (B) or with T4endoV-extract (C). The MEFs 

were harvested immediately after exposure (dark blue bars) or following 6 h repair (light blue bars). 

Two experiments are shown (Exp. A; full bars, Exp B; striped bars), each experiment is given as the 

mean of 100 scored comets on three replicate gels. 
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Figure A.5: Relative repair of Fpg-sensitive sites. MEFs from Ogg1
+/+

 mice were exposed to Ro 12-

9786 (2 µm), light (6 min), and UVC (0.5 J/m
2
), as indicated. DNA damage was measured before and 

after 6 h of repair and relative repair (%) was calculated. Two experiments are shown (Exp. A; full 

bars, Exp. B; striped bars). 
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APPENDIX B 

Solutions and media 

 

0.75% Agarose solution (low melting point) for the comet assay 

Added 0.075 g NuSieve GTG Low melting agarose to 10 ml of 10 mM EDTA-solution, 

warmed up to boiling point until the agarose was dissolved, and kept at 37 °C in a warming 

block. 

 

10 mM EDTA-solution (for 0.75% Agarose solution) for the comet assay 

1.86 g disodium EDTA (Na2EDTA) was dissolved in 500 ml PBS without calcium and 

magnesium and pH was adjusted to 7.4 with sodium hydroxide (NaOH). 

 

Lysis solution for the comet assay (stock) 

2.5 M* sodium chloride (NaCl) 

100 mM* EDTA 

10 mM* tris(hydroxymethyl)aminomethane (tris-base) 

1%* sodium lauryl sarcosinate (SLS) 

Dissolved in dH2O, before SLS was added pH was adjusted to 10 with NaOH pellets. When 

everything was dissolved, pH was adjusted again to 10 with concentrated HCl or 10 M NaOH. 

*) This is stock solution, final concentration was achieved after addition of DMSO and 

Triton-X 
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Lysis solution for the comet assay (for four GelBond
®
 films) 

300 ml Lysis stock solution 

10% DMSO 

1% Triton-X 

 

Neutralising buffer for the comet assay 

0.4 M Tris-base 

Dissolved in dH2O and pH adjusted to 7.5 with concentrated HCl. 

 

Electrophoresis buffer for the comet assay 

10 M NaOH 

200 mM EDTA 

Dissolved in dH2O and pH adjusted to 13.2 with concentrated HCl. 

 

Enzyme reaction buffer for the comet assay 

40 mM Hepes 

0.1 M KCl 

0.5 mM EDTA 

Dissolved in dH2O and pH adjusted to 7.6 with 7M KOH. 
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TE-buffer 

1 mM EDTA 

10 mM Tris-HCl 

Dissolved in dH2O and pH adjusted to 8.0. 

 

Growth medium 

500 ml bottle DMEM with 25 mM Hepes and 4.5 g/l Glucose 

10 % non-heat inactivated FCS (50 ml) 

2 % L-glutamine 

1 % P/S. 

 

1.2 mM Ro 12-9786 stock 

6 mM Ro 12-9786 was diluted 1:5 in DMSO 
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APPENDIX C 

Products and producers 

Product Producer Country 

A312f camera Basler Vision Technologies Germany 

Absolutt alkohol prima 

(100 % (absolute) ethanol) 

Arkus kjemi Norway 

Bio Whittaker
®
 Dulbecco’s 

Modified Eagle's Medium 

(DMEM) 

Lonza Belgium 

BioWhittaker
®
 Trypsin 

EDTA 

Lonza Belgium 

Bovine serum albumin 

(BSA) 

Sigma-Aldrich USA 

Centrifuge tube (15 ml) Thermo Fisher 

Scientific/Nunc 

USA 

Comet assay IV (image 

analysis software) 

Perceptive Instruments UK 

Costar
®
 Traditional Straight 

Neck Cell Culture Flask with 

Phenolic-Style Cap 

(75 cm
2
 and 162 cm

2
) 

Corning USA 

CryoTube™ (1.8 ml) Thermo Fisher 

Scientific/Nunc 

USA 

Dimethyl sulphoxide 

(DMSO) 

 

Merck Germany 
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Ethyl 7-oxo-7h-thieno[2,3-

A]-quinolizine-8-carboxylate 

(Ro 12-9786) 

Roche Switzerland 

Ethylenediaminetetraacetic 

acid disodium salt dihydrate 

(EDTA-Na2) 

Sigma-Aldrich USA 

Foetal calf serum (FCS) 

(non-heat inactivated) 

Gibco USA 

Formamidopyrimidine DNA 

glycosylase (Fpg)-extract 

Locally produced Norway 

GelBond
®
 Film Cambrex USA 

Halogen light (500 W) Femco USA 

Hepes Sigma-Aldrich USA 

Hydrogen chloride (HCl) Merck Germany 

L-glutamine Sigma-Aldrich USA 

Lymphoprep
TM

 tube Axis-Shield PoC Norway 

Mercury Short-Arc HBO
®
 

100 W/2 lamp 

Osram Germany 

NuSieve GTG Low Melting 

Agarose 

Cambrex USA 

Olympus Burner Olympus Japan 

Olympus BX51 microscope Olympus Japan 

Penicillin/Streptomycin PAA Laboratories GmbH Austria 

Phosphate buffered saline 

(PBS) 

Locally produced Norway 
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Potassium chloride (KCl) Merck Germany 

Potassium 

dihydrogenphosphate 

(KH2PO4) 

Merck Germany 

Potassium hydroxide (KOH) Merck Germany 

RIDA
®

FLUOR Mycoplasma 

IFA immunofluorescence 

assay 

R-Biopharm AG Germany 

Sodium chloride (NaCl) Merck Germany 

Sodium hydrogenphosphate 

(Na2HPO4) 

Merck Germany 

Sodium Hydroxide (NaOH) Merck Germany 

Sodium lauryl sarcosinate 

(SLS) 

Sigma-Aldrich USA 

Sterile water Fresenius Germany 

SYBR
®
 Gold Invitrogen USA 

T4 endonuclease V 

(T4endoV)-extract 

Locally produced Norway 

TC-Treated Culture Dish 

(35mm) 

Corning USA 

Trisma
®
 HCl Sigma-Aldrich USA 

Triton-X Sigma-Aldrich USA 

Trizma
®
 base Sigma-Aldrich USA 

Trypan Blue  Sigma-Aldrich USA 
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