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Abstract 

Contaminants in the Arctic environment are mainly transported from lower latitude 

areas by atmospheric transport. However, the Russian settlements (Barentsburg and 

Pyramiden) in Svalbard have shown to be heavily influenced by local pollution of 

polychlorinated biphenyls (PCB), as high concentrations have been found in vegetation, 

soil and sediments. The Norwegian settlements (Longyearbyen and Ny-Ålesund) are to a 

lesser extent influenced by local pollution of PCB. Birds have been utilized as sentinels 

for environmental pollution in several studies, as the use of bird-eggs is considered as a 

non-invasive method. The aim of this study was to investigate whether the snow bunting 

(Plectrophenax nivalis) is influenced by local pollution of PCB in the Russian settlements.  

 

During the 2010 field season and the 2011 field season, 32 eggs of snow buntings were 

collected in Longyearbyen (n=8), Ny-Ålesund (n=8), Barentsburg (n=9) and Pyramiden 

(n=7). The analysis was conducted at the Norwegian Institute of Air Research (NILU) in 

Tromsø. The eggs were analyzed for PCBs, organochlorinated pesticides (OCPs), 

brominated diphenyl ethers (PBDE) and perfluoroalkylated compounds (PFASs).  

 

The results showed that PCBs were the most abundant contaminant group in the 

Russian settlements, while PFASs was the most abundant contaminant group in the 

Norwegian settlements. Significant higher concentrations (ng/g wet weigth) of ∑7PCB 

(sum of the seven most common PCBs) were found in the eggs from the Russian 

settlements (Barentsburg and Pyramiden) than in the eggs from the Norwegian 

(Longyearbyen and Ny-Ålesund). Further on, the PCB congener composition in the eggs 

was comparable with the technical PCB-mixtures previous used in the Russian 

settlements. The results thus indicate influence of local pollution of PCB in eggs of snow 

buntings in the Russian settlements. Further on, local influence of 

dichlorodiphenyldichloroethylene (p,p’-DDE) and PFASs cannot be excluded. However, 

the contaminant burden of hexachlorobenzen (HCB), trans-nonachlor, p,p’-DDE and 

PFASs in the eggs of snow buntings in Svalbard are mainly explained by;  I: atmospheric 

transport of contaminants to the Arctic environment, II: transport of contaminants by 

sea birds, III: exposure during migration, IV: exposure in overwintering areas.   
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The concentration of organohalogenated compounds (OHCs) in eggs of snow buntings in 

this study is considerable lower than concentrations in previously studies that have 

reported to cause adverse effect in other bird species. Further are the concentrations of 

OHCs in this study in general lower when compared with other studies on Svalbard 

seabirds. However, it should be noted that the concentration of ∑PCB in eggs of snow 

buntings is comparable with previous studies on Svalbard seabirds. The results in this 

study indicate that the snow bunting may be utilized as a sentinel of local pollution in 

Svalbard in the future. 
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Sammendrag 
 

Selv om atmosfærisk langtransport er hovedkilden til antropogen forurensing i Arktis, 

er det også lokale kilder til forurensning på Svalbard. Tidligere studier av vegetasjon, 

jord og sedimenter har vist at de russiske bosetningene (Barentsburg og Pyramiden) er 

påvirket av lokal forurensing av polyklorerte bifenyler (PCB). De norske bosetningene 

(Longyearbyen og Ny-Ålesund) er ikke påvirket i like stor grad, selv om små mengder 

lokale kilder til PCB er funnet i Longyearbyen. Flere fuglearter fra både det marine og 

det terrestriske miljø har tidligere blitt brukt som miljøovervåkende arter. Spesielt har 

fugleegg vist seg å være en skånsom måte å overvåke miljøgiftnivået i miljøet. Hensikten 

med denne studien var å kartlegge hvorvidt egg fra snøspurv (Plectrophenax nivalis) fra 

de russiske bosetningene på Svalbard inneholder mer PCB enn egg fra de norske 

bosetningene. 

 

I løpet av feltsesongene i 2010 og 2011, ble til sammen 32 snøspurv egg samlet in i 

Longyearbyen (n=8), Ny-Ålesund (n=8), Barentsburg (n=9) og Pyramiden (n=7). 

Miljøgiftanalysene ble utført ved Norsk Institutt for Luftforskning (NILU) i Tromsø. 

Eggene ble analysert for PCBer, organoklorerte pesticider, bromerte flammehemmere 

og perfluorerte stoffer (PFAS).  

 

Resultantene viste at PCB utgjorde den største gruppen av miljøgifter i de Russiske 

bosetningene, mens PFAS utgjorde den største gruppen av miljøgifter i de norske 

bosetningene. Konsentrasjonen (ng/g våt vekt) av ∑7PCB (sum av de syv mest vanlige 

PCB-kongenere) var signifikant høyere i snøspurv egg i de russiske bosetningene 

(Barentsburg og Pyramiden) enn i de norske bosetningene (Longyearbyen og Ny-

Ålesund). Videre var PCB-kongener sammensetningen i eggene sammenlignbar med 

tekniske PCB-blandinger tidligere brukt i de russiske bosetningene. Dette indikerer 

dermed påvirkning av lokal forurensning av PCB. Heller ikke lokal forurensning av 

diklorodifenyldikloroetylen (p,p’-DDE) og PFAS kan utelukkes. Til tross for dette kan 

hovedvekten av heksaklorobensen (HCB), trans-nonachlor, p,p’-DDE og PFASs i 

snøspurvegg forklares med; I: atmosfærisk langtransport av miljøgiftene, II: transport av 

miljøgiftene via sjøfugler, III: eksponering under migrasjon, IV: eksponering på 

overvintringsområdet. 
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Konsentrasjonen av miljøgifter i snøspurvegg på Svalbard viste seg å være lavere enn 

tidligere studier, der uønskede effekter er påvist. Videre er konsentrasjonene av 

miljøgifter i denne studien generelt lavere sammenlignet med andre studier på sjøfugl 

på Svalbard. Til tross for dette var konsentrasjonen av ∑PCB i snøspurvegg 

sammenlignbar med tidligere studier på sjøfugl fra Svalbard. Resultantene utledet i 

denne studien viser at snøspurv kan brukes som miljøovervåkningsart på Svalbard i 

framtiden. 
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1. Introduction 

The Arctic is a vulnerable area and is characterized by low temperature, large seasonal 

fluctuations and short growing seasons (AMAP, 1998; Burkow and Kallenborn, 2000). 

These areas are regarded among the least polluted areas in the world, even though it 

receives anthropogenic contaminants from more temperate areas. Because of few local 

sources in the Arctic environment, contaminants are transported to the Arctic by four 

main routes; the atmosphere, ocean currents, large arctic rivers and transpolar ice pack 

(AMAP, 1998). However, long range atmospheric transport is regarded as the most 

important source of contaminants to the Arctic environment (Oehme et al., 1996). Semi-

volatile compounds are transported to remote high latitude regions by global distillation 

and fractionation, also known as “the grasshopper effect”, that is a repeated vaporization 

and condensation of the compounds from lower latitude to higher latitude areas 

(Mackay and Wania, 1995). Oceans, lakes and the terrestrial environment, which are in 

constant exchange with the atmosphere, are important storages for the contaminants. 

This results in only a small fraction present in the atmosphere (Burkow and Kallenborn, 

2000). Furthermore, organisms such as crustaceans, fish and marine mammals are 

contributing to the transport of contaminants to the Arctic environment by their 

seasonal migration (AMAP, 2002). In addition, seabirds may transport 

organochlorinated compounds (OCs) from the ocean to the terrestrial environment in 

their guano (Evenset et al., 2007; Choy et al., 2010). Wania, (1998) estimated that 

seabird transport of persistent organic pollutants (POPs) in and out of the northwest 

Atlantic water in Canada to be in range of grams to kilograms per year due to the high 

number of migrating birds. This may have consequences for both the terrestrial and 

freshwater environment. 

 

1.1 Persistent organic pollutants in the Arctic environment 

Persistent organic pollutants are released into the environment as pesticides, industrial 

produced compounds and industrial byproducts such as polychlorinated biphenyls 

(PCB) and hexachlorobenzene (HCB). Further more, pesticides such as 

dichlorodiphenyltrichloroethane (DDT), mirex, endosulfan, dieldrin, chlordanes and 

hexachlorocyclohexane (HCH) are manufactured to be toxic and not easily 

biodegradable. This results in compounds that are not only toxic against its targets such 

as fungi and insects, but also towards humans and animals. Many of the mentioned 
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compounds are either banned or restricted in use (AMAP, 1998). These compounds are 

well known contaminants in the Arctic environment, and were listed in 2001 under the 

Stockholm Convention. Initially, 12 persistent compounds were listed, and additionally 9 

were listed in 2009 (Stockholm Convention, 2001). By using a precautionary approach, 

new chemicals could potentially be listed here in the future (Godduhn and Duffy, 2003). 

Restriction and banning of many industrially produced chemicals have contributed to 

the decline in the Arctic regions (AMAP, 2002; Riget et al., 2010). Research has shown an 

increase in the emerging “new chemicals”, such as brominated flame retardants (BFR) 

(Knudsen et al., 2005; Sagerup et al., 2010; de Wit et al., 2010) and poly-and 

perfluoroalkylated substances (PFASs) (reviewed by Butt et al., (2010)). Because of their 

special physical and chemical properties such as high thermal stability and low surface 

energy, PFASs have been useful in several applications, such as lubricants, textiles, 

leathers and fire-fighting foams (Hekster and Voogt, 2002). As a result of their low 

volatility, they are not expected to be found in the Arctic environment. However, their 

presence implies an occurrence of long range transportation (Verreault et al., 2005; Butt 

et al., 2010). Perfluorooctanesulfonic acid (PFOS), tetrabromodiphenyl ether and 

pentabromodiphenyl ether (commercial pentabromodiphenyl ether) are all very 

persistent compounds that potentially may bioaccumulate and biomagnify. Further on, 

they are transported to the Arctic environment. In 2009, these chemicals were proposed 

to be listed as “new POPs” in the Stockholm Convention (Stockholm Convention, 2009). 

 

1.2 Local pollution 

Even though atmospheric transport is the main route to contaminants in the Arctic, 

there is also contribution from local settlements which could pose a risk to both the 

terrestrial and the marine environment. The locations investigated in this study were 

the Norwegian settlements, Longyearbyen and Ny-Ålesund, and the Russian settlements, 

Barentsburg and Pyramiden. 

 

In 2008, the governor of Svalbard, in cooperation with several institutions, conducted a 

survey on PCB contamination on Svalbard (Lundkvist, 2008). It was concluded that 

active sources of PCB were present in the settlements, all though PCB was banned 

during the 1980s. Sources to PCB were capacitors, paint, hydraulic oil and building 

materials that could possibly leak into the environment. Even though the main sources 
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of PCB are phased out materials and equipment, PCB could possibly be produced 

through combustion processes (Lee et al., 2005; Ishikawa et al., 2007; Lundkvist, 2008). 

The amount PCB found in surface soil in Barentsburg and Pyramiden was elevated 

compared to Longyearbyen. The amount PCB found in Barentsburg was elevated when 

compared to locations on the mainland, such as Bergen. These findings were also 

supported by surveys done by NGU (Jartun et al., 2007; Jartun et al., 2009a; Jartun et al., 

2010), where soil, paint, concrete and oils were sampled and analyzed for PCBs. Further 

on, Typhoon investigated the vegetation (vascular plants and mosses) in and around 

Barentsburg. The authors reported that PCB-52, PCB-99, PCB-101, PCB-105, PCB-118, 

PCB-138 and PCB-153 were found in every vegetation sample (Typhoon, 2010). Ny-

Ålesund contains secondary sources for PCB, but the concentrations were low. As a 

result of this, the settlement is considered as “PCB clean” (Eggen et al., 2008).  

 

Monitoring of sediments outside the settlements has revealed a steadily increase in 

levels of PCB from 1998-2009 in Billefjorden (Pyramiden) (Evenset, 2010). The highest 

levels of PCB in the sediments were found close to the settlement. This is probably 

related to PCB leaking from the settlement during rainfall and snowmelt (Evenset et al., 

2006). However, in 2006 there was a flood in the settlement, probably contributing to a 

high amount of PCB leaking into Billefjorden. The same pattern was indicated in 

Grønfjorden (Barentsburg), but the levels in the sediments have declined after 2005. On 

the other hand, a high proportion of dichlorodiphenyldichloroethane (DDD) and DDT 

were found in Grønfjorden, indicating a fresh source of DDT. The source of DDT in 

Barentsburg is not known. However, it is suggested that DDT was used for combating 

lice. This means that it may still be containers containing DDT in the settlement 

(Evenset, 2010). There are also indications that “new pollutants”, such as 

polybrominated diphenyl ethers (PBDEs) and PFASs, are present in Adventfjorden 

(Longyearbyen), Billefjorden and Grønfjorden. However, it is not known whether this is 

caused by long range transport or local sources (Evenset et al., 2006). An additional 

potential pollution caused by local activity is tourism that contributes with both cruise 

ships and airplane activity (Evenset et al., 2009b).  

 

PCB is now mainly found as a secondary source, which is temporary dissolved in soil, 

snow, sediments, air, vegetation and animals (Lundkvist et al., In press). Thus, it is a 
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possibility that climate change could contribute to redistribution of PCB bound to 

glaciers and freshwater. This could lead to an increased amount of PCB deposited in 

both marine and terrestrial environment (Macdonald et al., 2005; Lamon et al., 2009). 

Jartun et al., (2009c) reported a large amount of electrical installations, building 

materials and scrap metal in close nearby to Barentsburg and Pyramiden. Weathering 

processes may contribute to disperse pollutants such as PCB to soil, and eventually to 

the marine environment (Jartun et al., 2008; Jartun et al., 2009b; Jartun et al., 2010). It is 

calculated that as much as 430 kg/km2 PCB is in the surface soil in Pyramiden, 300 

kg/km2 PCB in surface soil in Barentsburg, and 3,3 kg/km2 PCB in surface soil in 

Longyearbyen (Jartun et al., 2009a; Jartun et al., 2010). The PCB load in surface soil in 

pristine areas on Svalbard are calculated to be 0.4 to 1.0 kg/km2 (Jartun et al., 2010; 

Lundkvist et al., In press). Even though these settlements only constitute a minor part of 

Svalbard, there is a possibility of dispersion of these pollutants to other areas and fiords 

(Evenset et al., 2006; Jartun et al., 2009c). Since 2008, initiative to remove PCB sources 

has been taken on Svalbard. Local sources of PCB in all the settlements have been either 

mapped and marked as containing PCB, or removed (Lundkvist et al., In press). Despite 

this, the secondary sources will continue to pose a risk to the Arctic environment in the 

future.  

 

1.3 Potential effects of environmental pollution  

Different organohalogenated compounds (OHCs) have different structures and 

properties. Common are the physical chemical properties such as low water solubility, 

high lipophilicity (hydrophobicity) and resistance to biological and chemical 

biodegradation (Oehme et al., 1996; AMAP, 1998; Borga et al., 2004). However, as PFASs 

have different properties than traditional POPs (Houde et al., 2006), they bind to blood 

proteins and accumulate in the liver, kidneys and bile secretions (Jones et al., 2003). The 

carbon-fluorine bonds are extremely strong, and as a result these compounds are very 

persistent and difficult to biodegrade. Potential adverse effects as a consequence of 

exposure of PFASs, is activation of peroxisome proliferator receptor (PPAR) and tumor 

promoting pathways (reviewed by Lau et al., (2007)).   

 

A number of factors may affect the accumulation of pollutants, such as age, gender, 

seasonality, body size, lifecycle, biotransformation, migration, habitat use and feeding 
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ecology (Borga et al., 2004). The marine ecosystem have been extensively studied, and 

lipids are an important part of the marine food web (AMAP, 1998; Borga et al., 2004). 

The contaminants biomagnify to high levels in top predators, such as the glaucous gull 

(Larus hyperboreus) and the polar bear (Ursus maritimus) (Letcher et al., 2010). Once 

accumulated, the contaminants acts as stressors and effect the endocrine system, and 

pose adverse long term effects (Skaare et al., 2000; Gabrielsen, 2007; Bustnes et al., 

2008; Letcher et al., 2010). Potential effects in seabird that are correlating with 

contaminants are reduced egg size, reduced nesting success, wing feather asymmetry, 

reduced reproductive success, immune system suppression and effect on the thyroid 

hormones (Bustnes et al., 2002; Verreault et al., 2004b; Letcher et al., 2010; Verreault et 

al., 2010).  

 

The terrestrial environment, on the other hand, has not been as extensively studied. The 

level of OCs have shown to be lower in the Arctic terrestrial ecosystem compared to the 

marine ecosystem (AMAP, 2002). The terrestrial food webs are often short and 

consisting of plants and lichens as primary producers, herbivores and main predators 

(AMAP, 1998). A thoroughly investigated terrestrial food chain is the lichen-caribou-

wolf chain, which indicates biomagnifications of both organochlorines and 

perfluorinated compounds in the terrestrial food webs (Kelly and Gobas, 2001; Mueller 

et al., 2011). The peregrine falcons (Falco peregrinus tundrius) have been an important 

long term indicator of exposure of anthropogenic pollutants in the terrestrial 

environment, with eggshell thinning and reduced breeding success as a result 

(Johnstone et al., 1996). Further on, previous studies on passerine birds have shown 

accumulation and trophic transfer of OCs by aquatic and terrestrial insects (Dauwe et al., 

2006; Maul et al., 2006), demonstrating the accumulation potential of OCs in terrestrial 

insectivorous food web.  

 

Accumulation of OCs in the terrestrial environment is not only related to the chemicals 

Kow, but additionally the Koa. This is explained by chemicals that have a high Koa (Koa≥6) 

have a low rate of elimination through respiration. This means that chemicals that are 

not expected to bioaccumulate as a result of low Kow (Kow<5) could potentially 

accumulate in the terrestrial environment (Kelly et al., 2007). Effect studies on birds in 
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both marine and terrestrial environment are important for gaining more knowledge 

about possibly consequences and action that needs to be made.  

 

1.4 The snow bunting  

The snow bunting (Plectrophenax nivalis) is a well studied bird regarding its ecology in 

Svalbard. However, there is no information regarding contaminants in snow buntings in 

Svalbard. The snow bunting reaches a length of approximately 16-17 cm, and is easy 

recognizable by its white patterns on its wings (Jonsson, 1994). It has a circumpolar 

distribution north of the tree boarder in Alaska, Northern Canada, Greenland and the 

arctic parts of Russia. In Norway, the snow bunting breeds in high mountains and in the 

northern part of Norway. On Jan-Mayen and on Svalbard it also breeds close to the coast. 

This is the sole passerine bird that breeds on Svalbard, and it is distributed over the 

whole island. The breeding locations varies between bird cliffs, tundra, crevices, cracks 

in house walls, nesting boxes and other human made constructions (Gjershaug et al., 

1994; Hoset et al., 2009). The snow bunting is a migratory bird, and is assumed to 

migrate trough the northern part of Russia to the North side of the Caspian Sea, Russia 

and Kazakhstan. This is based on the fact that birds from the North-East parts of 

Greenland have been relocated in these areas (Gjershaug et al., 1994). However, the 

exact migratory route for Svalbard snow buntings remains unknown.  

 

The male arrives at Svalbard from the end of March, to the beginning of April, while the 

female arrives two-three weeks later. It leaves the breeding grounds on Svalbard during 

September-October. The female lays 5-7 eggs that are incubated in approximately 12-13 

days. If good conditions, some snow buntings breed twice during one season. The snow 

bunting is predated upon by the Arctic fox (Vulpes lagopus), glaucous gulls and skuas. 

Unlike the seabirds who feed on lipid rich food from the marine environment, the snow 

buntings diet consists mainly of seeds. However, it also feeds and feed the chick on 

insects, such as dipterans and spiders (Jonsson, 1994; Skjøstad, 2008). It can build fat 

reserves, but it most likely need to consume nourishment every day. It is assumed to be 

10 000-50 000 pairs of breeding snow buntings in Svalbard (Svorkmo-Lundberg et al., 

2006). 
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1.5 Birds as sentinels of environmental pollution 

Birds have been used as bioindicators and monitoring species regarding OCs, 

brominated flame retardants (BFR) and PFASs in several studies. These studies have 

been conducted both in the terrestrial (Dauwe et al., 2007; Van den Steen et al., 2009b; 

Van den Steen et al., 2010), as well as the marine environment (Verreault et al., 2010; 

Helgason et al., 2011). Using eggs for biomonitoring purposes is regarded as a non-

invasive method, and is well suited for long-term monitoring. Since egg tissue is directly 

indicative of the levels in the tissue of the mother bird (Drouillard and Norstrom, 2001), 

it is a useful tool for monitoring levels of pollution in various bird species. Passerine 

birds are useful for monitoring local pollution, in contrast to predatory species, because 

of their small home ranges, territories and foraging areas (Dauwe et al., 2003). The snow 

bunting, on the other hand, is a migratory bird. Thus the eggs may reflect levels of 

pollutants both from its overwintering areas, as well as its breeding locations.  

 

1.6 Aim of the study 

The main objective of this study was to investigate OHCs in eggs of snow buntings in 

Svalbard. Further, elevated levels of environmental contaminants, especially PCB, have 

been reported in soil, vegetation and paint in the two Russian settlements, Barentsburg 

and Pyramiden (Jartun et al., 2010; Typhoon, 2010). Therefore, the aim was to assess 

whether there was a difference in contaminant concentrations in eggs of snow buntings 

breeding in the Russian settlements compared with snow buntings breeding in the 

Norwegian settlements.   

 

Based on the fact that more PCB is found in and around Barentsburg and Pyramiden, it is 

hypothesized that eggs from Barentsburg and Pyramiden will have a higher 

concentration of PCBs, compared with eggs from Longyearbyen and Ny-Ålesund.  
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2. Method and materials 

2.1 Study area and sampling 

The fieldwork was conducted during June 2010 and June 2011 at four different locations 

on Spitsbergen, Svalbard (74-81° N, 10-35° E). The four different sample locations were 

Longyearbyen, Ny-Ålesund (Kongsfjorden), Barentsburg and Pyramiden (Figure 1). 

 

Figure 1. Sampling locations in Spitsbergen, Svalbard. The eggs of snow bunting (Plectrophenax 

nivalis) were collected in Longyearbyen, Ny-Åleusund, Barentsburg and Pyramiden. Map: 

Oddveig Øien Ørvoll (NPI). 

 

The nests were located by observation, and 1-2 eggs from each clutch were collected. 

The results include only one egg from each clutch. The eggs were measured (length and 

width), wrapped in aluminum foil, and placed in ziplcok plastic bags marked with its 

respectively egg number, nest location in addition to GPS-position, clutch size and date. 

The egg volume was calculated by using Hoyt’s equation: (with2*length*0.51) (Hoyt, 

1979). Where possible in the field, the eggs were stored in a refrigerator, before they 

were frozen at -20°C. The transport of the eggs to NILU in Tromsø from Longyearbyen 

was conducted in a frozen condition, and stored at -20 until analysis. In this study, 32 

eggs are included in the results. From the 2011 field season, 29 eggs are included, and 

from the 2010 field season, 3 eggs are included. The sample size from each location is 8 
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eggs from Longyearbyen, 9 eggs from Barentsburg, 7 eggs from Pyramiden and 8 eggs 

from Ny-Ålesund. The sample locations in the different settlements are illustrated in 

Figure 2. 

 

                                       

 

          
 
Figure 2. The different settlements were the eggs of snow bunting (Plectrophenax nivalis) were 
collected. A-Pyramiden n=7, B-Longyearbyen n=8, C-Ny-Ålesund and Kongsjorden n=8, D-
Barentsburg n=9). Each egg collected in the respective location is marked. Map: Oddveig Øien 
Ørvoll (NPI) 
 
 
 
Approval for conducting the fieldwork was given by the Governor on Svalbard 

(reference number: 2011/00488-14). In addition, the project is registered in the 

Research in Svalbard (RiS) database, with RiS-ID: 3755. 

C

A B

D 
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2.2 Chemical analysis of contaminants in eggs of snow bunting 

The analyses were conducted at the Norwegian Institute of Air Research (NILU), section 

Tromsø. The egg samples were analyzed for several different environmental 

contaminants; PCBs, organochlorinated pesticides (OCPs), PBDEs and PFASs. In 

addition, the extracted organic matter (%) in the eggs was determined. The extracted 

organic matter will hereafter be referred to as lipid content (%). 

 

2.3 Preparation 

The eggs were thaw in room temperature prior preparation. The eggshell was removed, 

and the egg content was homogenized. Approximately 0.5 grams of the sample was 

prepared for analysis of the PFASs. The remaining sample was weighed and added 

Na2SO4 (burned at 600 °C for 8 hours) in relation 1:20. The sample was thoroughly 

mixed with the Na2SO4, and left in the freezing compartment (-18°C) over night.  

 

2.4 Chemical analysis of PCBs, chlorinated pesticides and brominated compounds 

Table 1 describes the different groups and individual compounds of chlorinated 

industrial products and by-products, chlorinated pesticides and brominated compounds 

that were analyzed. 

 

Cold column extraction  

For the extraction of the samples, cold column extraction was used. Each sample was 

spiked with 20 μl internal standard solution containing mass labeled OHC (Appendix A, 

Table A.1). The samples were extracted three times with 50 ml cyclohexane:acetone 

(3:1) with an extraction time of 1 hour used for each extraction step. The columns were 

at any time covered with aluminum foil to prevent any potential contamination that may 

occur from the laboratory environment. After sample extraction was complete, extracts 

were concentrated to 0.5 ml using a Turbovap (Turbovap 500, Zymark) evaporator, and 

quantitatively transferred to a 4 ml vial using approximately 1 ml portions of 

dichloromethane (DCM) and hexane and stored for further sample matrix clean-up. 
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Table 1. Different chlorinated industrial and by-products, chlorinated pesticides and brominated 

compounds analyzed in eggs of snow bunting (Plectrophenax nivalis). 

 

Organochlorinated and brominated compounds 

Group Acronym Chlorinated industrial products and by-products 

 
 
 
PCBs 

PCB-28/31 2,4,4’-Trichlorobiphenyl/ 2,4’,5-Trichlorobiphenyl 
PCB-52 2,2’,5,5’-Tetrachlorobiphenyl 
PCB-101 2,2’,4,5,5’-Pentachlorobiphenyl 
PCB-118 2,3’,4,4’,5-Pentachlorobiphenyl 
PCB-138 2,2’3,4,4’,5’-Hexachlorobiphenyl 
PCB-152 2,2’,3,5,6,6’-Hexachlorobiphenyl 
PCB-180 2,2’,3’,4,4’,5,5’-Heptachlorobiphenyl 

HCB HCB Hexachlorobenzene 
  Chlorinated pesticides 

 
 
CHLs 

trans-Chlordane trans-Chlordane 
cis-Chlordane cis-Chlordane 
oxy-Chlordane oxy-Chlordane 
trans-Nonachlor trans-Nonachlor 
cis-Nonachlor cis-Nonachlor 

Mirex Mirex 1,1a,2,2,3,3a,4,5,5,5a,5b,6-dodecachlorooctahydro-1,3,4-
metheno-1H-cyclobuta(cd)pentalene 

 
HCHs 

α-HCH 1α,2α,3β,4α,5β,6β-Hexachlorocyclohexane 
β-HCH 1α,2β,3α,4β,5α,6β-Hexachlorocyclohexane 
γ-HCH 1α,2α,3β,4α,5α,6β-Hexachlorocyclohexane 

 
 
 
DDTs 

p,p’-DDT 4,4’-Dichlorodiphenyltrichloroethane 

o,p’-DDT 2,4’-Dichlorodiphenyltrichloroethane 
p,p’-DDE 4,4’-Dichlorodiphenyldichloroethylene 
o,p’-DDE 2,4’-Dichlorodiphenyldichloroethylene 
p,p’-DDD 4,4’-Dichlorodiphenyldichloroethane 
o,p’-DDD 2,4’-Dichlorodiphenyldichloroethane 

  Brominated compounds 
 
PBDEs 

PBDE-47 2,2’,4,4’-Tetrabromodiphenyl ether 
PBDE-99 2,2’,4,4’,5-Pentabromodiphenyl ether 
PBDE-153 2,2’,4,4’,5,5’-Hexabromodiphenyl ether 

 

Lipid-removal using GPC- Gel Permeation Cromatography 

Lipid removal from the sample extracts was performed using gel permeation 

chromatography (GPC). The sample extract (~1.5 ml) was injected onto a Waters 515 

HPLC pump equipped with Waters Envirogel GPC columns. Using DCM as a mobile 

phased at a flow rate of. 5 ml/min, lipid material was separated from the analytes of 

interest and discharged to the waste. The lipid-free analyte fraction was collected and 

concentrated down to 0.5 ml, followed by quantitative transfer to a 2 ml vial using 

hexane.  
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Clean-up using fluorisil 

To remove remaining matrix interferences, sample extracts were further cleaned up by 

solid phase extraction (SPE). Florisil (magnsesium silica) was activated (burned 450°C 

for 8 hours) and packed in solid phase extraction (SPE) cartridges (0.15 – 0.25 mm, 

Merck, Darmstadt, Germany). Each cartridge was individually packed with florosil (1g 

(+/- 0.02 g)) between two glass fiber frits (rinsed with DCM) in each end of the column. 

Sample extracts were concentrated to 0.5 mL on a RapidVap (Vacuum Evaporation 

System Model 7900001, Kansas city, MO, US) evaporator. Sample extract was then 

added to the pre-made Florisil columns using the RapidTrace SPE Work Station (Caliper 

Life Science, Hopkinton, USA). Analytes of interest were eluted using a mobile phase of 

10 % DCM in n-hexane. Collected analyte fraction was then evaporated down to 0.2 mL 

and quantitatively transferred to a gas chromatography sample vial. Sample extract was 

further concentrated to approximately 200 μl using nitrogen gas (N2, 99 % purity, AGA, 

Oslo, Norway). Prior to quantification, 20 μl recovery standard (octachloronaphtalene, 

OCN, 200 pg/μl) was added to each sample.  

 

Instrument analysis 

Gas chromatography mass spectrometry was used for separation and detection of the 

investigated analytes. Separation of analytes is based on differences in boiling points 

and chemical interactions with the column stationary phase between the various 

analytes. The mass spectrometer ionizes the gaseous analyte which are separated 

through an electric field according to their mass to charge ratio, m/z. The ratio is 

detected and visualized in a mass spectrum (Harris, 2010). 

 

Instrumental setting 

Pesticide analysis 

Analysis of α-, β-, γ- hexahclorocyclohexane (HCH), hexachlorobenzene (HCB), 

heptachlor and heptachlor epoxide, oxy-chlordane, trans- and cis- chlordane, trans- and 

cis- nonachlor, and Mirex was carried out using an Agilent 7890A gas chromatograph 

equipped with a 5975c mass spectrometer (Agilent Technologies, Böblingen, Germany). 

A 30 m DB5-MS column (0.25 mm id and 0.25 μm film thickness; J&W, Folsom, USA) was 

used for separation with helium (6.0 quality, Hydrogas, Porsgrunn, Norway) as carrier 

gas at a flow rate of 1 mL/min. A sample volume of 1 µL was injected in a split/splitless 
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injector held at a temperature of 250°C. The GC temperature program incorporated an 

initial temperature of 70°C with a hold time of 2 min, increased by 15°C/min to 180°C, 

followed by a ramp of 5°C/min to 280°C and held for 10 min.  Electron capture negative 

ionization mode using methane as a reagent gas was used for analyte detection. Source 

temperature was held at 160°C.  

 

PCB analysis 

Polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs) and 

respective metabolites were analyzed using an Agilent 7890A gas chromatograph 

(Agilent Technologies, Böblingen, Germany) equipped with a 5975c mass spectrometer 

(Agilent Technologies, Böblingen, Germany). PCBs and DDT group were analyzed 

separately with two separate injections. Separation was performed on a 30 m DB5-MS 

column (0.25 mm id and 0.25 μm film thickness; J&W, Folsom, USA) with a split/splitless 

injector heated at 250 °C (220°C for DDT analysis). An injection volume of 1 µL was 

injected using splitless mode with He as a carrier gas at 1 ml/min under constant flow 

conditions. Oven temperature program for separation was as follows: initial oven 

temperature was held at 70°C (3 min hold), ramped at 15°C/min to 180°C, followed by a 

second temperature ramp of 5°C/min until a final temperature of 280°C (6 min hold).  

Source temperature was set at 250°C in EI mode with ionization energy of 70 eV. 

 

Quantification 

Quantification of the samples was done by running a quantification standard (qstd) with 

a known concentration of 13C and 12C together with the samples. A relative response 

factor (RRF) was calculated from the ratio between 13C and 12C in the quantification 

standard. 

              

qstdc12

qstdc12

qstdc13

qstdc13

Area

Amount

Area

Amount
RRF

−

−

−

−

==                                           Equation 1      

 

The RRF was used to calculate the amount of 12C in the samples (spl), based on the 

amount of 13C added.     
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spl13c

spl13cspl12c
splc12

AreaRRF

AmountArea
Amount

−

−−

−

×

×
=                                    Equation 2 

 

The recovery was calculated by the difference in the calculated amount of 13C (cal) and 

the added amount of 13C (added). 

 

%100
Amount

Amount
(%)erycovRe

added13c

cal13c
×=

−

−

                       Equation 3 

 

Quality assurance of the method 

Prior to the extraction and clean-up procedures, all the glassware was rinsed with 

acetone and cyclohexane, and burned at 450°C for 8 hours. For every tenth sample, one 

blank and one standard reference material (SRM 1945, Whale Blubber, National 

Institute of Standards and Technology, NIST, MD, USA) was extracted. Limit of detection 

(LOD) was defined as three times blank or background signal (Appendix B, Table B.1).  

 
2.5 Chemical analysis of perfluorinated compounds 

Table 2 describes the different groups and individual compounds of PFASs that were 

analyzed. The volume based method for the extraction and clean-up procedures is 

previously described by (Powley et al., 2005). 

 

Extraction 

The samples were weighed into a PP-centrifuge tube and spiked with 20 μl internal 

standard (13C labeled internal standard (allPFC) 0.5 ng/μl) (Appendix C, Table C.1). 

Exactly 8 ml acetonitrile was added and mixed by using vortex. The samples were put 

three times for 10 minutes into ultrasonic bath and vortexed in between. For 

sedimentation, the samples were centrifuged (2000 rpm, 5min).  
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Table 2. Different PFASs analyzed in eggs of snow bunting (Plectrophenax nivalis) that are 

members of three different groups. 

 
Perfluoro- and polyfluoroalkyl substances (PFASs) 
Group Acronym Perfluoroalkyl carboxylic acids Chemical formula 

 
 
 
 
 
PFCA 

PFBA Perfluorobutanoic acid C3F7COOH 
PFPA Perfluoropentanoic acid C4F9COOH 
PFHxA Perfluorohexanoic acid C5F11COOH 
PFHpA Perluoroheptanoic acid  C6F13COOH 
PFOA Perfluorooctanoic acid C7F15COOH 
PFNA Perfluorononaoic acid C8F17COOH 
PFDcA Perfluorodecanoic acid C9F19COOH 
PFUnA Perfluoroundecanoic acid C10F21COOH 
PFDoA Perfluorododecanoic acid C11F23COOH 
PFTriA Perfluorotridecanoic acid C12F25COOH 
PFTeA Perfluorotetradecanoic acid C13F27COOH 

  Perfluoroalkane sulfonic acid  
 
PFSA 

PFBS Perfluorobutane sulfonic acid C4F9SO3H 
PFHxS Perfluorohexane sulfonic acid C6F13SO3H 
PFOS Perfluorooctane sulfonic acid C8F17SO3H 
PFDcS Perfluorodecane sulfonic acid C10F21SO3H 

  Perfluoroalkane sulfonamide  
PASF PFOSA Perfluorooctane sulfonamide C8F17SO2NH2 
 

Clean up 

The supernatant was transferred to PP-centrifuge tubes and concentrated down to 

exactly 1 ml in RapidVap. The supernatant extract was transferred to Eppendorf 

centrifuge tubes (1.7 ml) with 25 mg ENVI-Carb (Superclean ENVI-Carb 120/400, 

Superlco 57210-U) and 50 μl glacial acetic acid, followed by vortexing. Next, the samples 

were centrifuged (10 000 rpm, 10 min), 500 μl of the supernatant solution was 

transferred to an auto injector vial, and 20 μl recovery standard (0.1 ng/μl, 3.7 brPFDcA, 

in methanol) was added. Prior the LC-MS analysis, 100 μl extract and 100 μl 2 mM 

NH4OAc in HLB-water were transferred to a LC-vial.  

 

Instrumental analysis 

Liquid chromatography is preferred when the compounds is not sufficient volatile for 

gas chromatography. High performance liquid chromatography utilizes pressure to 

move solvents through closed columns, where they are separated based on their affinity 

to the stationary phase. The column contains fine particles, which contributes to a high-

resolution separation (Harris, 2010).  
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Instrumental setting 

100 μl extract was transferred to an autosampler vial with insert and diluted with the 

100 μl 2mM aqueous NH4OAc. The different PFASs were analysed by ultrahigh pressure 

liquid chromatography with triple-quadrapole mass spectrometry (UHPLCMS/MS). The 

analysis was performed on a Thermo Scientific quaternary Accela 1250 pump with a 

PAL Sample Manager coupled to a Thermo Scientific Vantage MS/MS (Vantage TSQ). An 

injection volume of 10 μl was used for sample separation on a Waters Acquity UPLC HSS 

3T column (2.1 X 100 mm, 1.8 μm) equipped with a Waters Van guard HSS T3 guard 

column (2.1 X 5 mm, 1.8 μm). A Waters XBrigde C18 column (2.1 X 50 mm, 5 μm) was 

installed after the pump and before the injector in order to separate PFCA 

contamination leaching out from the pump and the degasser. Separation was achieved 

using 2 mM NH4OAc in 90:10 water:metanol and 2 mM methanolic NH4OAc as the 

mobile phases. 

 

Quantification 

Quantification on the PFASs was performed by the same internal standard procedure as 

for the organochlorinated and brominated compounds. 

 

Quality assurance of the method  

Prior to the extraction and clean-up procedures, all the equipment was rinsed with 

methanol. For every tenth sample, one blank and one standard reference material (SRM 

1957, Human Serum, National Institute of Standards and Technology, NIST, MD, USA) 

was extracted. Limit of detection (LOD) was defined as three times blank or background 

signal (Appendix D, Table D.1).  

 

2.6 Statistical analysis  

The statistical analysis was performed using SPSS Statistical Software (Version 19.0 for 

Windows, IBM, SPSS Inc., Chicago, IL).  

 

To test for normal distribution when n < 50, Shapiro-Wilk test were applied and 

Lavene’s test was applied to test for homogeneity of variance in the dataset. The 

significant test for the different means of contaminants between the locations were 

performed with one way analysis of variance (ANOVA) on ranked values. Welch 
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correction were used for unequal variances and Games-Howell were performed for 

unequal sample size and unequal variance to investigate the difference between the 

groups. The significant tests were performed on ranked values because it was not 

possibly to achieve normal distribution for all the variables (Conover and L.I., 1981).  

 

To test the difference of the biological variables between the different locations, 

Kruskal-Wallis test and Mann-Whitney test (2-tailed) was performed on untransformed 

data. Mann-Whitney test was additionally used to investigate differences between the 

Russian settlements as one group, and the Norwegian settlements as one group. 

Correlation between the different variables was investigated by using Spearman’s 

correlation coefficient test (2-tailed) on log10 transformed data. The significant level was 

set to p < 0.05 for all the tests.  

 

Contaminants detected in less than 60 % of the samples were excluded from the results. 

This includes p,p’-DDT, o,p’-DDT, o,p’-DDE, o,p’-DDD, p,p’-DDD, α-HCH, β-HCH, γ-HCH, 

trans-chlordane, cis-chlrodane, oxy-chlordane, cis-nonachlor, mirex, PBDE-47, PBDE-

153, PFOSA, PFBS, PFHxS, PFDcS, PFBA, PFPA, PFHxA, PFHpA, PFOA and PFTeA. As a 

result of instrumental errors, PBDE-99 was not included in the statistics. Concentrations 

below the limit of detection (LOD) in the samples included in the results were given a 

value of 0.5*LOD to avoid missing values. The results include biometric parameters 

(lipid content (%), egg volume (cm3), clutch size) and contaminant concentrations (wet 

weight [w.w.]). Figures are based on mean concentration, and additionally standard 

deviation when error bars are presented.  

 

2.7 Principal component analysis 

Multivariate analysis was conducted using Simca-P+ 12.0 (Umetrics, Umeå, Sweeden). A 

principal component analysis (PCA) utilizes orthogonal transformation of possibly 

correlated variables into a dataset uncorrelated variables called principal components 

(Eriksson et al., 2006). These principle components (PCs) explain as much as possible of 

the variance in the dataset, and the first principal component explains the main load of 

the variance. Prior to PCA, the variables were mean centered (the mean of the variables 

are subtracted) and scaled by using unit variance (UV) to obtain equal unit variance of 

the variables, independent of their absolute value (Eriksson et al., 2006). In addition, all 
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the variables were log10 transformed in order to improve the model. Further on, the 

model was interpreted with respect to the goodness of fit (R2X) and goodness of 

prediction (Q2X). 

 

The PCA analysis was applied to visualize the relationship of the contaminants with 

concentrations given in wet weight, biological variables and the individual eggs between 

the respective locations. To avoid strong correlations, ∑7PCB (i.e. the sum of the 

concentration of PCB-28/31, PCB-52, PCB-118, PCB-153, PCB-138, PCB-180) and 

∑6PFAS (i.e. the sum of the concentration of PFOS, PFNA, PFDcA, PFUnA, PFDoA, PFTriA 

) were excluded from the model. The number of principal components in this model 

were four, explaining 75.5 % of the variation.  
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3. Results 

3.1 Biological variables 

Biological measurements in eggs of snow buntings (volume (cm3), lipid content (%) and 

clutch size) are presented in Table 3. The individual biological measurements are 

presented in Appendix E, Table E.1. 

 
Table 3. Egg volume (cm3), clutch size and lipids (%) in eggs of snow bunting (Plectrophenax 

nivalis) from Longyearbyen (LYB), Ny-Ålesund (NÅ), Barentsburg (BAR) and Pyramiden (PYR). 
 
 Egg volume (cm3) Clutch size Lipids (%) 

 Mean SD Median Range Mean SD Median Range Mean SD Median Range 
LYB 3.11 0.05 3.06 2.34-

4.15 
5.67 1.05 5.67 4.00-

7.00 
7.08 1.99 6.40 4.13-

9.75 
NÅ 3.01 0.31 2.97 2.62-

3.52 
4.50a 0.38 4.50 4.00-

5.00 
6.60 1.37 6.90 4.36-

8.38 
BAR 2.97 0.24 2.79 2.48-

3.27 
5.40 0.39 5.40 5.00-

6.00 
7.53 2.42 7.52 4.56-

12.62 
PYR 3.02 0.22 2.99 2.70-

3.31 
5.57 0.53 6.00 5.00-

6.00 
4,79b 0.72 4.59 0.72-

5.90 

a: Significant lower clutch size compared to the other locations. 
b: Significant lower lipid content compared to the other locations.  
 

No significant difference was found between the locations regarding egg volume 

(Kruskal-Wallis, H = 3, p > 0.199). Significant differences were found between the 

locations regarding the lipid content in the eggs (Kruskal-Wallis, H = 3, p < 0.026) and 

the clutch size (Kruskal-Wallis, H = 3, p < 0.004). The clutch size in Ny-Ålesund was 

significant lower than in Longyearbyen (Mann-Whitney U test; U = 9, p = 0.013), 

Barentsburg (Mann-Whitney U test; U = 3, p < 0,001) and Pyramiden (Mann-Whitney U 

test; U = 3, p < 0,002). Some eggs were collected before the egg laying sequence of the 

clutch was finished. As a consequence, the clutch size mean from the respectively 

location was used as replacement for missing values.  This means that the clutch size 

mean is an inaccurate variable, and must be interpreted with regard to this uncertainty. 

There was no difference in clutch size from Pyramiden, Barentsburg and Longyearbyen. 

Furthermore, lipid content in eggs from Pyramiden was significant lower than the lipid 

content in eggs from Longyearbyen (Mann-Whitney U test; U = 7, p = 0.014), from 

Barentsburg (Mann-Whitney U test; U = 7, p = 0,008) and from Ny-Ålesund (Mann-

Whitney U test; U = 9, p = 0,029). No difference in the lipid content was found between 

Longyearbyen, Barentsburg and Ny-Ålesund.  
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3.2 Concentrations  

The concentration of ∑7PCB, p,p’-DDE, HCB, trans-nonachlor and ∑6PFAS at the four 

locations are presented in Figure 3 and Appendix F, Table F.1 and F.2. The individual 

concentrations of OHCs are presented in Appendix I, Table I.1 and I.2.  
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Figure 3. Concentration level (mean and standard deviation, ng/g w.w.) of ∑7PCB, p,p’-DDE, HCB, 
trans-nonachlor and ∑6PFAS in eggs of snow bunting (Plectrophenax nivalis) from Longyearbyen 
(n=8), Ny-Ålesund (n=8), Barentsburg (n=9) and Pyramiden (n=7). ∑7PCB includes PCB-28/31, 
PCB-53, PCB-118, PCB-153, PCB-138 and PCB-180. ∑6PFASs includes PFOS, PFNA, PFDcA, 
PFUnA, PFDoA and PFTriA. 
 

The concentration of ∑POP in eggs of snow buntings in Longyearbyen was 32.06 ± 27.98 

ng/g w.w. (mean ± SD), Ny-Ålesund 64.80 ± 114.28 ng/g w.w., Barentsburg 370.27 ± 

341.06 ng/g w.w. and Pyramiden 624.33 ± 843.12 ng/g w.w. The concentration of ∑POP 

in eggs of snow buntings in the Russian settlements was 5-20 times higher than in the 

Norwegian settlements. In two samples from Pyramiden, PYR9 and PYR10, the 

concentrations for all the PCB congeners were below detection limit. Further on, sample 

PYR7 had twice the concentration of PCB compared with the sample with second highest 

concentration. This contributes to a great standard deviation for the Pyramiden samples 

regarding ∑7PCB. The group of compounds that were most abundant in Longyearbyen 

and Ny-Ålesund were ∑6PFAS, with 16.43 ng/g w.w. and 37.80 ng/g w.w., respectively. 

The concentration of sample NÅ15 was 100 times higher for PFOS compared with the 

sample with the second highest concentration. This contributes to a wide range and 
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elevated mean of ∑6PFAS in the Ny-Ålesund samples. As a consequence, this may 

contribute to a misleading interpretation of the contaminant pattern. Thus, the mean 

concentration levels must be assessed with caution.  

 

∑7PCB, as well as the individual congeners PCB-28/31, PCB-52, PCB-118, PCB-153, PCB-

138, PCB-180, HCB, trans-nonachlor and the individual PFAS compounds PFOS, PFNA, 

PFDcA, PFUnA, PFDoA, PFTriA differed significantly between the locations (Welch’s F(3, 

[13.997-15.516], all p < 0.040). Neither p,p’-DDE (Welch’s F(3, 14.991) = 2,492, p = 

0.100) nor ∑6PFAS (Welch’s F(3, 15.349) = 2.391, p = 0.108), differed between any of the 

locations.  

 

When comparing the concentration in eggs of snow buntings from Longyearbyen with 

the two Russian settlements, Barentsburg depicted a significant higher concentration of 

all the different PCB congeners (Games-Howell, all p < 0.008), including ∑7PCB (Games-

Howell, p < 0.001). On the other hand, when comparing Longyearbyen with Pyramiden, 

significant higher concentration in Pyramiden was found only for PCB-28/31 (Games-

Howell, p = 0.045). No significant differences were found for any of the other PCB 

congeners, including ∑7PCB (Games-Howell, all p > 0.152). When comparing Ny-Ålesund 

with Barentsburg, significant higher concentration in Barentsburg was found for all the 

different PCB congeners (Games-Howell, all p < 0.044), including ∑7PCB (Games-Howell, 

p = 0.001). When comparing Ny-Ålesund and Pyramiden, significant higher 

concentration of PCB-52 (Games-Howell, p = 0.049) was found in Pyramiden, but no 

significant concentration was found for any of the other PCB congeners, including ∑7PCB 

(Games-Howell, all p > 0.115). There were no significant differences between the two 

Russian settlements or between the two Norwegian settlements for any of the PCB 

congeners, nor ∑7PCB (Games-Howell, all p > 0.215).  

 

With respect to the PFASs in eggs of snow buntings, the results indicated a minor 

contribution of these compounds in Pyramiden compared with Longyearbyen, Ny-

Ålesund and Barentsburg. Even though ∑6PFAS did not differ between the locations, 

there were some differences in single compounds between the locations. The details in 

the statistics show that Pyramiden had significant lower concentration of PFNA, PFDoA, 

PFDcA and PFUnA (Games-Howell, all p < 0.034), than Barentsburg. Further on, 
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Pyramiden had significant lower concentrations of PFNA, PFDoA, PFDcA and PFOS 

(Games-Howell, all p < 0.041) than Longyearbyen. Finally, Pyramiden had significant 

lower concentration of PFNA, PFDoA and PFTriA (Games-Howell, all p < 0.039) than Ny-

Ålesund. 

 

With respect to HCB and trans-nonachlor in eggs of snow buntings, Ny-Ålesund showed 

significant higher concentration when compared to Pyramiden (Games-Howell, all p < 

0.028), while none of the other locations were significant different regarding 

concentrations of these contaminants (Games-Howell, all p > 0.132). The compound that 

contributed least in all the locations was trans-nonachlor, with a concentration mean 

range of 0.04-0.11 ng/g w.w. 

 

3.3 Contaminant pattern 

Figure 4 shows the relative distribution of the different contaminants in eggs of snow 

buntings among the four different locations. The contaminant pattern indicates a 

different distribution of the compounds between the Russian and the Norwegian 

settlements. The contaminants that were most abundant in eggs from Longyearbyen and 

Ny-Ålesund were ∑6PFAS followed by ∑7PCB, p,p’-DDE, HCB and trans-nonachlor.  The 

contribution of ∑6PFAS to Ny-Ålesund is influenced by an extreme outlier regarding 

PFOS, thus, the results must be interpreted with regards to the outlier. In Barentsburg 

and Pyramiden on the other hand, the contaminants that mainly contributed to the total 

contaminant load was ∑7PCB.  ∑6PFAS, p,p’-DDE, HCB and trans-nonachlor are only 

minor contributors to the total contamination load in the Russian settlements, with 

trans-nonachlor contributing with less than 0.03 % in Barentsburg and Pyramiden. 
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Figure 4. Relative distribution (%) of ∑7PCB, p.p’-DDE, HCB, trans-nonachlor and ∑6PFAS derived 

from wet weight mean concentration in eggs of snow bunting (Plectrophenax nivalis) from 

Longyearbyen (n=8), Ny-Ålesund (n=8), Barentsburg (n=9) and Pyramiden (n=7). 

 
Figure 5 shows the relative distribution of the different PFASs in eggs of snow buntings 

among the different locations. ∑6PFASs includes both perfluorinated sulfonates (PFSA) 

and perfluorinated carboxylates (PFCA). The perfluorinated sulfonate, PFOS, constituted 

approximately 60 % of the PFASs, while the perfluorinated carboxylates, PFNA, PFDcA, 

PFUnA, PFDoA and PFTriA, made up the remaining amount of the contaminant burden 

in the eggs. The PFASs that were most abundant in eggs from Longyearbyen were PFNA, 

PFUnA and PFOS, which were all similar distributed. The PFASs that were most 

abundant in eggs from Ny-Ålesund were PFOS constituted 84 % of the PFAS burden. The 

high PFOS contribution in Ny-Ålesund is possibly caused by an outlier. Moreover, the 

total PFOS contribution to the PFAS burden in Ny-Ålesund is also influenced by this 

outlier. As a result of the outlier, PFNA, PFDcA, PFUnA, PFDoA and PFTriA constituted a 

minor part of the total PFAS burden in Ny-Ålesund. Finally, the PFASs that were most 

abundant in eggs from Barentsburg and Pyramiden were PFOS, PFUnA and PFTriA. 

PFCAs with a carbon chain shorter than 8C were only detected in less than 60 % of the 

samples. 
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Figure 5. The relative distribution (%) of individual PFASs derived from wet weight mean 

concentrations in eggs of snow bunting (Plectrophenax nivalis) from Longyearbyen (n=8), Ny-

Ålesund (n=8), Barentsburg (n=9) and Pyramiden (n=7). 

 

The PCB congener pattern in eggs of snow buntings indicates different distribution of 

the less and more chlorinated PCBs between the Russian and the Norwegian 

settlements. The PCB congeners that contributed mainly in eggs from Barentsburg and 

Pyramiden were PCB-118, PCB-138, and PCB-153 (Figure 6). In Longyearbyen and Ny-

Ålesund on the other hand, the more heavy PCB congeners contribute more to the total 

PCB distribution in the eggs; PCB -138, PCB-153 and PCB-180. 
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Figure 6. Relative distribution (%) of PCB congeners derived from wet weight mean 
concentrations in eggs of snow bunting (Plectrophenax nivalis) from Longyearbyen (n=8), Ny-
Ålesund (n=8), Barentsburg (n=9) and Pyramiden (n=7). 
 
3.4 Principal component analysis 

The score plot and the loading plot are presented in Figure 7 and Figure 8. The analysis 

of the compounds resulted in four different principal components (PC) (eigenvalues > 

1), which explained 75.5 % of the variation. The main load was explained by PC1 (30.6 

%) and PC2 (25.7 %). The score represents the different individuals form the different 

locations, LYB=Longyearbyen, NÅ=Ny-Ålesund, BAR=Barentsburg and PYR=Pyramiden. 

The contaminant burden in each individual represents the diversity and the spread of 

the contaminant pattern in the different locations. Hence outliers have not been 

removed. Appendix J, Table J.1 and Table J.2 presents the values of the Spearman’s 

correlation coefficient test.  

 

The score plot indicates how the observations from the respectively location are related 

to each other based on the different variables. The pattern indicates a separation of the 

Norwegian settlements (Longyearbyen and Ny-Ålesund), and the Russian settlements 

(Barentsburg and Pyramiden) along PC1. Longyearbyen and Ny-Ålesund are located on 

the left side along, whereas Barentsburg and Pyramiden are located on the right side 
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(Figure 7). Further on, the score plot indicates a separation between the two Russian 

settlements, where Barentsburg eggs and Pyramiden eggs are divided into two separate 

groups. The two Norwegian settlements, on the other hand, are not different from each 

other in a manner that can be explained by neither PC1 nor PC2. 
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Figure 7. PCA score plot for 32 eggs of snow bunting (Plectrophenax nivalis) from Longyearbyen 
(n=8), Ny-Ålesund (n=8), Barentsburg (n=9) and Pyramiden (n=7). The score plot includes the 
variables PCB-28/31, PCB-53, PCB-118, PCB-153, PCB-138, PCB-180, PFOS, PFNA, PFDcA, 
PFUnA, PFDoA, PFTriA, p,p’-DDE, trans-nonachlor, HCB, lipid content (%), volume (cm3) and 
clutch size. The samples from Lonyearbyen are green and labeled LYB, the samples from Ny-
Ålesund are black and labeled NÅ, the samples from Barentsburg are blue and labeled BAR, and 
the samples from Pyramiden are red and labeled PYR. In addition the samples are labeled with 
an individual number from 1 to 10, 11, 13 and 15. 
 
The loading plot indicates how the different variables are related to each other (Figure 

8). This is visualized in a two dimensional plot that constitute PC1 (range 0.0-0.35) and 

PC2 (range 0.0-0.20). The individual PCA loadings are presented in Appendix G, Table 

G.1. The same pattern that was indicated in the score plot (Figure 7) is also evident in 

the loading plot. The two Russian settlements appear on the right side of the plot, 

though separated by PC1, and the Norwegian settlements appear on the left side along 

PC1 (Figure 8). The PCBs (PCB-28/31, PCB-53, PCB-118, PCB-153, PCB-138, PCB-180) 

were all positively correlated with PC1 (all rs   > 0.521, p < 0.002). Furthermore, as 

observed in the loading plot, there was a high positive inter-correlation between the 

different PCBs (all rs   > 0.461, p < 0.008), In addition, PCB-28/31 and p,p’-DDE were 
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positively correlated (rs  = 0.477, p = 0.006). Despite the positive correlation with PC1, 

PCB-28/31 also correlated negatively with PC2 (rs  = -0.351, p = 0.049). 
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Figure 8. PCA loading plot for 32 eggs of snow bunting (Plectrophenax nivalis) from 
Longyearbyen (n=8), Ny-Ålesund (n=8), Barentsburg (n=9) and Pyramiden (n=7). The loading 
plot includes the variables PCB-28/31, PCB-53, PCB-118, PCB-153, PCB-138, PCB-180, PFOS, 
PFNA, PFDcA, PFUnA, PFDoA, PFTriA, p,p’-DDE, trans-nonachlor, HCB, lipid content (%), volume 
(cm3) and clutch size. The four locations, Longyearbyen (LYB), Ny-Ålesund (NÅ), Barentsburg 
(BAR) and Pyramiden (PYR) are quantifying x- variables. 
 

The PFASs (PFOS, PFNA, PFDcA, PFUnA, PFDoA, PFTriA) all correlated positively with 

PC2 (all rs  > 0.650, p < 0.001), in addition to positively inter-correlate with each other 

(all rs  > 0.461, p < 0.008), as visualized in Figure 8. Further on, trans-nonachlor 

correlated positively with all the PFASs (all rs  > 0.491, p < 0.004), in addition to HCB (rs  

= 0.777, p < 0,001). HCB indicated the same pattern and correlated positively with PFOS, 

PFNA, PFUnA, PFDoA and PFTriA (all rs  > 0.360, p < 0.043).  Finally, the lipid content did 

also correlate positively with trans-nonachlor, HCB, PFOS, PFNA, PFUnA, PFDoA and 

PFTriA (all rs  > 0.353, p < 0.048). These correlations are indicated by the loading plot 

(Figure 8), where the different PFASs, lipid content, HCB and trans-nonachlor appear 

together.   

 

The two Norwegian settlements are located to the left together with the PFASs, trans-

nonachlor, HCB, while the Russian settlements are located to the right together with the 

PCBs and p,p’-DDE, indicating a separation of settlements based on the contaminant load 
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(Figure 8). This further confirms the separation of the settlements in the score plot 

(Figure 7). The egg volume did not correlate with any of the variables, and could not be 

explained by the model. Clutch size correlated positively with PCB-52 (rs  = 0.504, p = 

0.003), but with no other variables. Hence, clutch size could not be explained by the 

model. 

 
3.5 Comparison of the Russian and the Norwegian settlements 

The score plot (Figure 7) and the loading plot (Figure 8) indicated a separation of the 

Norwegian and Russian settlements. Consequently, Figure 9 represents a comparison of 

the contaminant concentrations in eggs of snow buntings in the Russian settlements as 

one group and the eggs in the Norwegian settlements as one group. The concentration of 

∑7PCB, p,p’-DDE, HCB, trans-nonachlor and ∑6PFAS at the four locations are presented 

in Appendix H, Table H.1.  
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Figure 9. Concentration level (mean and standard deviation, ng/g w.w.) of ∑7PCB, p,p’-DDE, HCB, 
trans-nonachlor and ∑6PFAS in the Norwegian settlements (n=16) and the Russian settlements 
(n=16). ∑7PCB includes PCB-28/31, PCB-53, PCB-118, PCB-153, PCB-138 and PCB-180. ∑6PFASs 
includes PFOS, PFNA, PFDcA, PFUnA, PFDoA and PFTriA. 
 

The concentration of ∑POP in eggs of snow buntings in the Russian settlements was 

481.42 ± 609.88 ng/g w.w. (mean ± SD), while in the Norwegian settlements the 

concentration was 48.43 ± 92.63 ng/g w.w. When compared with the Norwegian 

settlements, the concentration of ∑POP the Russian settlements are approximately 10 
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times higher. This further confirms the distinct separation of the two settlements based 

on contaminant load. Nevertheless, large standard deviations indicate large variations 

within the locations, with low and extreme values, and the concentration means must be 

interpreted with regard to the variations.   

 

The details in the statistics show that egg of snow buntings from the Russian settlements 

have significant higher concentration of ∑7PCB (Mann-Whitney U = 32, all p < 0.001), as 

well as the individual congeners, PCB-28/31, PCB-52, PCB-118, PCB-153, PCB-138, PCB-

180 (Mann-Whitney U = 20.5-38, all p < 0.001) than the Norwegian settlements.  

 

With respect to the PFASs, the results did not show any significant difference between 

∑6PFAS (Mann Whitney U = 89, p = 149) in the Russian and the Norwegian settlements. 

Further on, the results did not show any significant difference between any of the 

individual PFAS compounds PFOS, PFNA, PFDcA, PFUnA, PFDoA, PFTriA (Mann-Whitney 

U = 76-192, all p > 0.051), when comparing the Russian and the Norwegian settlements.  

 

With respect to HCB and trans-nonachlor, the results showed significant higher 

concentration of both compounds in the Norwegian settlements (Mann-Whitney U = 70-

75.5, all p < 0.047) compared with the Russian settlements. On the other hand, the 

Russian settlements had significant higher concentration of p,p’-DDE (Mann-Whitney U 

= 73, p = 0.039) than the Norwegian settlements. 

 

With respect to egg volume and egg lipid content, there were no significant difference 

between the Russian and the Norwegian settlements (Mann-Whitney U = 92-103, all p > 

0.184). The clutch size are borderline higher in the Russian settlements (Mann-Whitney 

U = 77, p = 0.05). As a consequence of several replaced values with location clutch size 

mean, clutch size mean is an inaccurate variable, and must be interpreted with regard to 

this uncertainty. 
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4. Discussion 

There are few reports that have reported contaminant levels in snow buntings (Choy et 

al., 2010), and to my knowledge, this is the first study to report environmental 

contaminants in snow buntings from Svalbard. This studys main objective was to 

investigate if the snow buntings breeding in the Russian settlements had higher 

concentrations of PCB in their eggs than snow buntings breeding in the Norwegian 

settlements. By utilizing the snow bunting as a sentinel species, distinct differences 

regarding both the contaminants concentration and contaminant pattern were found in 

the eggs from the respectively locations. The eggs in Barentsburg and Pyramiden were 

found to have 25-87 times higher mean concentration of ∑7PCBs than the eggs in 

Longyearbyen and Ny-Ålesund. This indicates influence of local pollution. This local 

influence by contaminants was further confirmed by the PCB congener pattern in the 

eggs. Local influence of contaminants cannot be excluded in the Norwegian settlement. 

The PCB concentration in this study was found to be lower or comparable with other 

birds investigated in Svalbard. 

 

4.1 Biological variables 

The clutch size was determined by counting the eggs in the nest in the best possible way. 

Reaching the eggs in the nest was very challenging; sometimes only a few eggs were 

possible to reach. This resulted in a uncertain estimation of clutch size. Moreover, some 

eggs were collected before the female had finished her egg laying, resulting in an 

unknown number of eggs in the clutch. The unknown values were replaced by the clutch 

size mean from the respectively locations, thus making the clutch size an unreliable 

variable. The egg lipid content (%) was determined by evaporating an aliquot of the 

extracted egg content. Thus, other organic materials, such as proteins dissolved in the 

extract, were not taken in to consideration. Therefore, the lipid content should be 

referred to as extracted organic material (EOM), and not pure lipids. Since EOM most 

frequently are referred as lipids, I have chosen to call it lipids in this text. The statistical 

analysis showed that the egg volume was not significant different between any of the 

locations (Table 3). Lipid content (%) and clutch size were significantly different 

between the locations. As a consequence of the uncertainties regarding determination of 

the variables, clutch size and lipid content will not be further discussed. Verboven et al., 

(2009) suggested that a high sum of chlordanes (∑CHL) and high sum of DDT (∑DDT) 
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concentration in relation to low ∑PCB concentration caused smaller eggs in glaucous 

gulls from Bjørnøya. However, the egg volume was not different between the locations 

in this study. This indicates that the egg volume of snow buntings in Svalbard is not 

affected by OHCs.   

 

4.2 Factors influencing contaminant concentration in eggs 

Collecting representative wildlife data from the Arctic is challenging. The sample size in 

this study represents only a minor part of the population of snow buntings in Svalbard. 

Great variation in contaminant concentrations in the eggs within the locations indicates 

high individual differences within the snow bunting population. These individual 

differences may be explained by factors such as the physical condition of the female at 

the time of egg laying, age of the female, the quality of food at the feeding ground and 

time of arrival at the breeding area. Furthermore, contaminant exposure during 

migration and in the overwintering areas may contribute to the contaminant burden in 

snow buntings. Thus, the contaminant burden in the eggs may reflect not only local 

influence of contaminants in Svalbard, but also exposure from more urban areas. As only 

one egg was collected from each nest, inter-clutch variation may be a contributing factor 

to individual differences in contaminant burden. Furthermore, the contaminant burden 

in the eggs of snow buntings is a reflection of the exposure of contaminants via diet and 

further distribution to the eggs. As maternal transfer and exposure through diet are two 

important factors impacting the contaminant concentration in the eggs (Verreault et al., 

2006), these factors will be further discussed (see below). It is important to note that 

this study can only report a status on levels of contaminants in eggs of snow buntings in 

Svalbard. Potential effects as a consequence of contamination have not been 

investigated. Thus, the contaminant concentration can only be discussed with respect to 

previous studies.   

 

Maternal transfer 

In this study, one egg of snow buntings was collected from each of the nests. It was not 

possible to decide the egg laying sequence when collecting the eggs. As snow buntings 

only incubate for 12-13 days, the developmental stages of the eggs in this study ranged 

from undeveloped egg yolk to developed chicks. However, the snow bunting does not 

start incubating until the last egg have been laid (Hussell, 1972). Thus, all of the eggs in 
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the clutch are equally developed. Verreault et al., (2006) concluded that the third and 

last egg laid by the glaucous gull is smaller and contains more lipids than the other eggs 

in the clutch. Thus, preferably the same egg from each clutch should be collected from 

the nest. Further would a non-incubated egg be optimal.  

 

Several studies have been conducted on both sea- and passerine birds regarding 

maternal transfer. Van den Steen et al., (2009a) suggested that maternal transfer to the 

eggs was related to the investment in the eggs (i.e. number of eggs), as the authors found 

a decline in concentration from the first to the last laid egg by blue tits (Cyanistes 

caeruleus). However, as the among-clutch variation was greater than the intra-clutch 

variation in eggs of blue tits, the authors concluded that one randomly collected egg was 

useful as a biomonitoring tool for PCBs and PBDEs. Organochlorine pesticides, such as 

DDE, was found to vary within the clutch of warblers (Protonotaria citrea) and Eurpoean 

starlings (Sturnus vulgaris) in Alabama and Colorado (Reynolds et al., 2004). The 

authors suggested that one random egg from the clutch should not be utilized as a 

biomonitoring tool, as one egg did not reflect the DDE concentration in the remaining 

eggs in the clutch. Results contradicting Van den Steen et al., (2009a) and Reynolds et al., 

(2004) were found by Verreault et al., (2006) and Van den Steen et al., (2006). The 

authors concluded that there were no laying order effects in eggs of glaucous gull and 

great tits (Parus major). The absence of intra-clutch differences could possibly be 

explained by the constantly remobilization of the maternal lipids, protein and 

contaminants during egg formation. Further on, continuously exposure of contaminants 

through food during the egg production could potentially get transferred to the eggs 

(Verreault et al., 2006). Small territories could also contribute to an explanation of the 

absence of intra-clutch variation (Van den Steen et al., 2006). However, as sea birds do 

not have small territories, whereas great tits do, this may be an explanation of minor 

importance. When considering that the great tit and blue tit lay twice as many eggs as 

the snow bunting, and consequently invests more in the eggs, comparison should be 

done with caution. Nevertheless, when taking species differences into consideration, 

using a single egg from each snow bunting nest to illustrate contaminant burden in the 

adult bird is appropriate. 
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Maternal investment in eggs 

Maternal transfer of contaminants is still poorly understood, but different factors 

influence maternal transfer of contaminants to the eggs. In the present study, the OHC 

concentration in eggs was investigated. The concentration in the adult bird can only be 

estimated on the knowledge from previous studies. However, it is challenging to 

extrapolate egg contaminant burden to maternal exposure. As a consequence of 

different physical and chemical properties of the contaminants, the distribution will 

depend on the tissue and contaminant investigated (Van den Steen et al., 2009a). Thus, 

the egg:maternal tissue ratio varies among different species, depending on contaminant 

properties and lipid recourses used during egg formation. Drouillard and Norstrom, 

(2001) suggested that altricial species investing low quantity of maternal lipids in the 

eggs may exhibit a egg:maternal tissue ratio of 0.3-0.7. As the snow bunting is an altricial 

species, this indicates that the maternal contaminant burden may be higher than the 

concentration revealed in the eggs. There are different strategies regarding the use of 

energy during reproduction, ranging from pure income breeders, where resources are 

derived from recently ingested resources, to pure capital breeders that uses endogenous 

reserves (Drent and Daan, 1980). Several passerine birds are known to be income 

breeders (Meijer and Drent, 1999). The snow bunting females feed on seeds and insects 

from the respectively locations, and it is assumed that it needs to consume 

nourishments every day. As a migratory bird, it needs to replenish the energy storage 

after migration, and is therefore constantly exposed to contaminants during egg 

formation. Thus, it is highly likely to assume that the snow bunting is an income breeder 

and transfers its most resent diet to the eggs (Moksnes, (2012), personal comments). 

Nevertheless, it is important to take into consideration that maternal transfer of 

contaminants is species specific, depending on several factors such as maternal 

exposure, diet and lipid investment (Verreault et al., 2006).  

 

With respect to PFASs, there is little knowledge regarding maternal transfer. As PFASs 

have an affinity to proteins, in contrast to OCs, they are assumed to correlate with yolk 

proteins (Gebbink et al., 2011). There is inconsistency regarding concentration in egg in 

relation to plasma, as well as preferential accumulation of long chained PFCAs in the egg 

relative to the liver (Verreault et al., 2005; Holmstrom et al., 2010; Gebbink et al., 2011). 

To my knowledge, intra-clutch variation of PFASs has been reported in neither seabirds 
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nor in passerine birds. As knowledge regarding maternal transfer of PFASs is 

insufficient, the concentration in the eggs must be interpreted with respect to this.  

 

Diet 

The snow bunting feeds on seeds and insects. Seeds constitute the main diet, but it 

consumes insects when it is available (Cramp and Perrins, 1994). It is not known 

whether the snow bunting consume insects prior to egg laying, but it feeds its nestlings 

with insects such as dipteras (e.g. chironomidae and nematocera) and spiders (Skjøstad, 

2008). The insects possibly accumulate contaminants through its sediment-associated 

larvae stage, and thus function as a cohesion between the aquatic environment and the 

terrestrial environment (Larsson, 1984). Bioaccumulation and trophic transfer of PCBs 

from insects to tree swallows (Tachycineta bicolor) have confirmed this relationship 

(Maul et al., 2006). In contrast to insects, plants are available for the snow bunting early 

in the spring (e.g. Cassiope tetragona, Poa alpina, Bistorta vivipara, Saxifraga 

oppositifolia). Most of the vascular plants on Svalbard are perennial with nutritious 

storage compartments. Plants accumulate contaminants by deposition on the surface by 

particles, uptake of vapors or directly from the soil through the roots by vapors or water 

phases of the soil. However, uptake via root is thought to be limited (Lovett et al., 1997; 

AMAP, 1998), and depends on several factors such as lipid composition of the root 

(Collins et al., 2006), soil composition and compound properties (Higgins and Luthy, 

2006). Since uptake via contaminated seeds and insects are the assumed most important 

route, an investigation of contaminant on the surface of the plants, in the plants and in 

invertebrates from the settlements is suggested. 

 

4.5 Concentrations and patterns 

It is important to emphasize that direct comparison of concentrations from different 

tissue or different species is not appropriate. Seabirds and terrestrial passerine birds 

have different feeding habitats that will affect the accumulation of contaminants. Age, 

gender, physical condition, season for sampling, trophic level and metabolic capability 

are factors influencing the contaminant concentration at time of sampling. Moreover, 

migration could contribute to a contaminant load that is not representative for the 

Arctic environment. Nevertheless, a comparison of previous studies on both passerine 

birds and Arctic seabirds may be informative in this study. 
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Concentration of PCB 

In this study, PCBs was the most abundant contaminant in eggs of snow buntings in both 

of the Russian settlements (Figure 4). Polychlorinated biphenyls constituted more than 

80 % of the total contaminant burden in the eggs. In Barentsburg and Pyramiden, mean 

∑7PCB concentration was more than 25 times higher than in Longyearbyen and Ny-

Ålesund (Figure 3). The ∑7PCB concentration, as well as all the individual PCB 

congeners, was significant higher in Barentsburg compared with the Norwegian 

settlements. This indicates a local contaminant source in Barentsburg. In eggs from 

Pyramiden, only two PCB congeners were significant higher compared with eggs from 

Longyearbyen and Ny-Ålesund. The absence of significant differences between eggs 

from Pyramiden and the Norwegian settlements regardless of high concentration, may 

be explained by the high concentration range between the different eggs from 

Pyramiden (Appendix I, Table I.1), and low sample size (n=7). The high concentration 

range in the Pyramiden eggs is further explained by the fact that the median is 

considerable lower than the mean concentration (Appendix F, Table F.2). For two eggs 

in Pyramiden, all the PCB congeners were below limit of detection. Moreover, in one egg 

(PYR 7), the PCB concentration was more than twice as high as the egg with the second 

highest concentration for several of the PCB congeners. Despite this, outliers were not 

excluded as they merely illustrate the individual variation occurring in nature. By testing 

the PCB concentrations in eggs of snow buntings in Barentsburg and Pyramiden against 

each other, and Longyearbyen and Ny-Ålesund against each other, no difference was 

found. When samples from the Norwegian settlements were combined in one group and 

samples from the Russian settlements in one group, (Figure 9), there were significant 

differences between the two groups. All the individual PCB congeners, as well as ∑7PCB, 

were significant higher in eggs of snow buntings in the Russian settlements when 

compared with the Norwegian settlements. These results are further supported by the 

fact that the Russian settlements are heavily contaminated by PCB (Evenset, 2010; 

Jartun et al., 2010).  

 

One sample (NÅ5) from Ny-Ålesund have approximately twice as high concentration of 

the three most chlorinated PCBs (PCB-138, PCB-153, PCB-180), than the sample with 

the second highest concentration (Appenxid I, Table I.1). This egg was collected at 

Ossian Sars, a bird cliff occupied by black-legged kittiwakes (Rissa tridactyla) and 
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Brünnich’s guillemots (Uria Lomvia). Choy et al., (2010) reported the same congeners as 

the dominant congeners in snow buntings that were possibly affected by sea bird guano 

by a bird cliff at Cape Vera, Canada. Further on, these congeners are known to 

biomagnify in food chains due to metabolic processes in the organisms (Evenset et al., 

2007). Thus, the elevated concentration of PCB in this particular egg (NÅ5) compared 

with other eggs from Kongsfjorden may be due to input of contaminants by seabird 

guano. The two eggs (PYR7 and PYR8) with the highest PCBs concentration in 

Pyramiden were collected north in the settlement, close to the buildings located near the 

mine (Figure 2A). In a survey conducted by NGU, very high levels of PCBs was found in 

surface soil at this particular location (Jartun et al., 2010). As the snow buntings are 

territorial birds (Gjershaug et al., 1994), the female may have been feeding in this 

contaminated area prior egg laying. The soil in both Pyramiden and Barentsburg are 

heavily contaminated as a result of PCB containing paint and electrical waste in several 

of the locations where the eggs of snow buntings were collected (Jartun et al., 2008; 

Jartun et al., 2009c; Jartun et al., 2010). Moreover, the snow buntings may additionally 

be exposed by feeding on the ground close to buildings with PCB containing paint during 

snow melt. However, without observing the female in the period prior egg laying, it can 

only be assumed that the females were feeding in these contaminated areas when 

developing the eggs.  

 

Both black-legged kittiwakes and glaucous gulls are nesting on buildings within 

Barentsburg and Pyramiden. However, this is not the situation in the Norwegian 

settlements. As seabirds have shown to be carriers of contaminants to pristine areas, 

(Evenset et al., 2007; Choy et al., 2010), the snow buntings in the Russian settlements 

may be influenced by seabirds breeding in the settlements. However, Miljeteig and 

Gabrielsen, (2009) showed that the black-legged kittiwakes breeding in Barentsburg 

and Pyramiden not were affected by local pollution as the more heavy PCB congeners, 

and not PCB-118, was dominant in their eggs. As a PCB-118 is the dominant congener in 

eggs from the Russian settlements (Figure 6), influence by PCB contaminated seabird 

guano in the settlements is not a likely explanation.  
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Table 4. Concentration of organochlorines and perfluorinated compounds in selected seabird eggs and liver, and whole passerine birds and eggs. Concentrations are 
presented in mean ± SD, mean ± SE or median and range in ng/g w.w.. 
Species n Matrix ∑PCB DDE ∑DDT HCB t-nonachlor ∑PFAS Reference 
Snow bunting (Plectrophenax nivalis), 
Svalbard 

- Longyearbyen 
- Ny-Ålesund 
- Barentsburg 
- Pyramiden 

 
 
8 
8 
9 
7 

 
 
Egg 
 
 

 
 
6.93 ± 4.02 
14.12 ± 16.23 
349.61 ± 326.76 
604.84 ± 822.77 

 
 
4.29 ± 2.79 
6.67 ± 4.01 
6.69 ± 3.32 
12.87 ± 11.99 

 
 

 
 
4.34 ± 3.10 
6.10 ± 2.78 
4.0 ± 2.17 
2.75 ± 2.59 

 
 
0.07 ± 0.03 
0.11 ± 0.05 
0.08 ± 0.05 
0.04 ± 0.02 

 
 
16.43 ± 18.04 
37.8 ± 91.21 
9.89 ± 8.76 
3.82 ± 5.76 

 
 
Present 
study 
2012 

Snow bunting (Plectrophenax nivalis)* 

- Canada 

 
18 

Whole 
bird 

168 
(11.7-601) 

98.4 
(4.3-380) 

105.9 ± 29.2    Choy et al., 
(2010) 

Great tit (Parus major), Belgium 
- Site 1** 
 
- Site 2** 

 

 
22 
 
22 

 
Egg 

 
298  
(209-406) 
179  
(113-331)  

 
35.6  
(30-69)  
36.9  
(21-65)  

 
 

 
1.82  
(1.3-2.09) 
1.63  
(0.8-3.5)  

 
0.99  
(0.7-2.5)  
0.68  
(0.43-2.46)  

  
Dauwe et 
al,. (2006) 

Claucous gull (Larus hyperboreus)*** 
- Bear Island 

 
 
32 

 
 
Egg 

 
 
1151 ± 72.5 

  
 
343 ± 15.7 

 
 
20.1 ± 1.12 

  Verreault et 
al., (2004a) 

Black legged kittiwake (Rissa 

tridactyla), Svalbard 
- Kongsfjorden 
- Barentsburg 
- Pyramiden 

 
 
10 
10 
10 

 
 
Egg 

 
 
423 ± 83 
918 ± 1470 
428 ± 280 

 
 
84.5 ± 56 
331 ± 852 
67.4 ± 23.9 

 
 
91.5 ± 56.8 
339 ± 855 
77.5 ± 25.2 

 
 
32.1 ± 5.5 
46.6 ± 19.4 
35.5 ± 9.9 

 
 
5.17 ± 2.32 
5.14 ± 3.9 
6.79 ± 4.00 

 
 
37.8 ± 12.5 
62.9 ± 33.6 
77.7 ± 36.3 

 
Miljeteig 
and 
Gabrielsen, 
(2009) 

Brünnich’s guillemot (Uria lomvia), 
Svalbard 

- Kongsfjorden 1993 
- Kongsfjorden 2002 
- Kongsfjorden 2007 
- Bjørnøya 2003 
- Bjørnøya 2007 

 
 
5 
5 
5 
5 
5 

 
 
Egg 

 
 
447 ± 214 
222 ± 60 
145 ± 29 
189 ± 112 
132 ± 6 

 
 
227 ± 112 
129 ± 22 
111 ± 18 
131 ± 27 
103 ± 8.50 

 
 

 
 
54.1 ± 20.4 
43.9 ± 6.3 
42.0 ± 4.0 
51.3 ± 15.4 
49.0 ± 2.01 

 
 
- 
- 
- 
- 
- 

 
 
23.2 ± 3.7 
29.6 ± 5.2 
21.9 ± 5.9 
45.8 ± 15.3 
64.8 ± 17.3 

 
 
Miljeteig 
and 
Gabrielsen, 
(2010) 

Glaucous gull (Larus hyperboreus)  
Svalbard 

- Barentsburg 

 
20 

 
Liver 

 
854 ± 401 
(female) 

 
270.8 ± 251.5 

 
205 ± 85 
(female) 

 
22.2 ± 12.8 

 
0.2 ± 0.3 

 Sagerup et 
al., (2009) 

- not detected 
* Concentrations are given in mean and range  
** Concentrations given in median and range 
*** Concentrations given in mean ± SE
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Choy et al., (2010) reported total body concentrations of OCs in snow buntings from 

Cape Vera, in the northern part of Canada (Table 4). The snow buntings were feeding on 

insects with an aquatic phase in ponds that were contaminated with organic 

contaminants transported by seabirds to the Arctic environment. The whole body ∑PCB 

concentration reported by the authors was 10-20 times higher when compared with 

eggs of snow buntings from the Norwegian settlements, and 2-3 times lower when 

compared with the Russian settlements. As the Russian settlements are heavily 

influenced by human activity, in contrary to Cape Vera, this result is not unforeseen. 

Moreover, the concentration of PCB in snow buntings from Cape Vera indicates that 

seabird guano is a greater contributor of PCB than human influence in the Norwegian 

settlements. As passerine birds are suitable as monitoring tools (Dauwe et al., 2006), 

several studies regarding contaminants in passerines have been conducted. At the most 

contaminated sites such as by the Hudson River, New York, ∑PCB concentration up to 

24,000 ng/g w.w. have been reported in eggs of tree swallows (Tachycineta bicolor) 

(Echols et al., 2004). However, at more moderate contaminated sites such as in Belgium, 

the ∑PCB concentration in great tits from is comparable with the concentrations in the 

eggs of snow buntings in the Russian settlements in this study (Dauwe et al., 2006; Van 

den Steen et al., 2008). When comparing the ∑PCB concentrations in eggs of snow 

buntings in the Norwegian settlement with previous studies on passerines in less 

contaminated areas in Mexico and Belgium (Mora, 2008; Van den Steen et al., 2008), the 

concentration in the Norwegian settlements is in the lower range. The ∑PCB 

concentration in eggs of snow buntigs the Russian settlements in this study is 

comparable with the concentration in eggs of black-legged kittiwakes and Brünnich’s 

guillemots in Svalbard (Table 4). 

 

When comparing the concentrations in the current snow buntings with ∑PCB (μg/g 

w.w.) for avian effects (AMAP, 1998), the mean concentration in Barentsburg (0.350 

μg/g w.w.) and Pyramiden (0.605 μg/g w.w.) are near and exceeding the NOAEL of 

hatching success in white leghorn chicken (0.360 μg/g w.w.). On the other hand, the 

∑PCB concentration in eggs of snow buntings in Longyearbyen and Ny-Ålesund are 

lower than these reported NOAEL thresholds (0.007 μg/g w.w. and 0.014 μg/g w.w. 

respectively). This means that toxicological implications may occur for snow buntings 

feeding and breeding in Barentsburg and Pyramiden. It should be noted that comparison 
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of effects derived from other species must be done with caution, as there are many 

factors in that could influence the effect of contaminants on the individual. Moreover, it 

is important to take into consideration the interaction between the different 

contaminants present in the organism, and possibly synergetic or additive effects they 

could pose on each other (Bustnes, 2006). As the concentration in the eggs are 

postulated to reflect the maternal concentration (Drouillard and Norstrom, 2001), the 

developing chick is exposed to the same concentrations as adults. Thus, potentially toxic 

effects could occur at embryonic stage (Van den Steen et al., 2009a).  

 

PCB pattern 

Variation in PCB congener pattern in passerine birds as a result of different 

anthropogenic exposure, have previously been reported (Van den Steen et al., 2008; Van 

den Steen et al., 2009b). The PCB congener pattern found in the eggs in the Russian 

settlements (Figure 6) is comparable with the pattern found in surface soil in the 

settlements (Jartun et al., 2010). The technical PCB-mixtures, such as Svovol, Chlophen 

A50 or Arochlor 1254, could possibly be the source of this congener pattern, as PCB-118 

is dominant in these mixtures (Figure 10). The PCB congener pattern in the eggs from 

the Norwegian settlements (Figure 6) appear to be more influenced by the heavier 

chlorinated PCB-mixtures, such as Arochlor 1260, Arochlor 1262 or Chlophen A60 

(Figure 10). The higher contribution of PCB-118 and dominance of the lower chlorinated 

congeners in the eggs from Barentsburg and Pyramiden, are a very strong indications of 

local influence of PCB from the Russian settlements. Moreover, Hop et al., (2001) 

reported that the PCB congener profile found in macro-benthos in Grønfjorden and 

Billefjorden possibly originated from the technical mixtures Arochlor 1254, Chlophen 

A50 or Svovol as a result of PCB leaking from the settlements (Figure 11). The same PCB 

congener pattern was found in liver of glaucous gulls in Barentsburg, which were 

feeding in Grønfjorden (Sagerup et al., 2009). Miljeteig and Gabrielsen, (2009) did not 

report a higher contribution of PCB-118 in eggs of black-legged kittiwakes breeding in 

Pyramiden. The authors concluded that this could be explained by the kittiwakes feeding 

pelagic and at glacier fronts, and that these environments were not affected by the local 

pollution. The congener pattern in the eggs from the Norwegian settlements is similar to 

the pattern fund in seabirds outside the settlements. It is therefore not possible to 

conclude whether the snow buntings are influenced by the small elevation of PCB in 
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these settlements. The PCB load in these eggs might be a result of long range transport, 

contribution from sea bird guano, or from sources in its wintering area and during its 

migration route.   

 

0

10

20

30

40

50

PCB

28

PCB

52

PCB

101

PCB

118

PCB

138

PCB

153

PCB

180

%
 o

f 
s
u
m

 7
 P

C
B

Aroclor 1254

Chlophen A50

Sovol

Aroclor 1260

Aroclor 1262

Chlophen A60

 

Figure 10. The relative mean distribution of PCB congeners in the PCB-mixtures Arochlor 1254, 

Chlophen A50, Svovol, Arochlor 1260, Arochlor 1262 and Chlophen A6. Figure from Hop et al., 

(2001). 
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Figure 11. The relative mean distribution of PCB congeners found in macro benthos in 

Adventfjorden, Billefjorden, Grønfjorden, Isfjorden and Kongsfjorden, Svalbard. Figure from Hop 

et al., (2001).  

 

Concentration of HCB and pesticides 

The concentrations of HCB and trans-nonachlor (Figure 3) in eggs of snow buntings 

were significantly higher in eggs from Ny-Ålesund than Pyramiden. Furthermore, these 

compounds were significantly higher in the Norwegian settlements as one group when 
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compared with the Russian settlements as one group (Figure 9). As HCB and trans-

nonachlor are a result of industrial processes and have formerly been utilized as 

pesticides (Barrie et al., 1992; Bailey, 2001), they have no local source in the Arctic 

environment. Hence, the difference between the locations is not a result of local 

pollution of these compounds. As a result of the high volatility of HCB, it is found in 

similar or higher concentrations in the Arctic environment compared with areas closer 

to the source (Burkow and Kallenborn, 2000). This further makes it prevalent in soil and 

lower trophic terrestrial feeders (AMAP, 2002). No significant difference was found 

between the settlements regarding p,p’-DDE (Figure 3). When eggs from the Norwegian 

settlements were combined in one group and eggs from the Russian settlements in one 

group, significant higher concentration was found in the Russian settlements (Figure 9). 

It has previously been reported fresh sources of DDT in soil in Barentburg (Evenset and 

Christensen, 2009a) as well as in Billefjorden and Grønfjorden (Evenset et al., 2009b). It 

has been suggested that DDT was used as delousing agent , however, this is only 

assumptions (Evenset, 2010). As little is known about the fresh sources of DDT, it is not 

possible to conclude whether the snow buntings are influenced by these local sources of 

DDT in the Russian settlements. Therefore, the occurrence of p,p’-DDE, HCB and trans-

nonachlor in the eggs in this study may be explained by long range transport, as these 

compounds are transported to the Arctic terrestrial environment via the atmosphere 

(Barrie et al., 1992). Further more, contribution from seabird guano or exposure during 

migration and overwintering area may be additionally sources of these compounds in 

the eggs. The concentrations of DDE and HCB in this study are 5-1,000 times lower than 

concentrations shown to cause adverse affects in glaucous gulls and peregrine falcons, 

such as eggshell thinning and wing asymmetry (Johnstone et al., 1996; Bustnes et al., 

2002). The concentrations of DDE and trans-nonachlor in Svalbard seabirds and other 

passerines (Table 4) are more than twice as high as the concentration in eggs of snow 

buntings in this study. The concentration of HCB is lower than Arctic seabirds (Table 4). 

However, the concentration is comparable with previous studies conducted on great tits 

(Dauwe et al., 2006; Van den Steen et al., 2006). 
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Concentration of PFAS 

The PFASs were the most abundant compounds in the eggs of snow buntings from the 

Norwegian settlements, constituting more than 50 % of the total contaminant burden 

(Figure 4). The high standard deviation (Figure 3) of the Ny-Ålesund samples is 

explained by one egg (NÅ15). This egg has a PFOS concentration more than 100 times 

higher than the sample with the second highest concentration from Ny-Ålesund. The 

outlier was not excluded as it was assumed to represents individual variation. 

Therefore, the concentration mean in the Ny-Ålesund samples must be interpreted with 

respect of the outlier. When comparing the concentration mean of PFAS, and the 

concentration median of PFAS, the mean is 6 times higher than the median in the Ny-

Ålesund samples (Appendix F, Table F.1). In situations where the mean is affected by 

extreme outliers, the median may be a more suitable measurement. When considering 

the concentrations with respect to the median, ∑6PFAS constitutes merely 22 % of the 

total contaminant burden in the Ny-Ålesund samples. In this study, the concentration of 

∑6PFAS in eggs of snow buntings (Figure 3) was not significantly different between the 

locations. Further on, no significant difference was found when comparing the 

Norwegian settlements and the Russian settlements (Figure 9). This is explained by the 

fact that although ∑6PFAS contributes to a relative higher distribution of the 

contaminant burden in eggs of snow buntings from the Norwegian settlements, the 

concentrations are comparable with the ∑6PFAS in the Russian settlements. However, 

some individual PFASs compounds were significantly higher in Barentsburg, 

Longyearbyen and Ny-Ålesund when compared with Pyramiden, indicating a smaller 

distribution of PFASs to Pyramiden. As Pyramiden have been abandoned since 1998, a 

minor distribution of PFASs in this location cannot be excluded as PFASs are used in a 

variety of products, such as paper coatings, fire-fighting foam, in carpets and textiles 

(Hekster and Voogt, 2002; Houde et al., 2006). However, a majority of the samples from 

Ny-Ålesund were collected at several other locations in Kongsfjorden that were distant 

from the community, and are therefore not likely affected by the community. This means 

that other sources than local pollution in Svalbard was the origin of PFASs in these 

specific samples. PFOSA was only detected in two samples. A minor contribution of 

PFOSA in this study is in accordance with previous studies (Verreault et al., 2005; 

Holmstrom and Berger, 2008), indicating possibly biotransformation of PFOSA to PFOS 
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either in the organism via metabolism (Tomy et al., 2004; Xu et al., 2004) or via abiotic 

processes (D'Eon et al., 2006).  

 

The high PFOS concentration in one egg (NÅ15; 247.92 ng/g w.w.) from Ny-Ålesund may 

be explained by exposure during migration or overwintering area. However, local 

exposure can not be excluded. Formerly, waste was burned in Ny-Ålesund at several 

locations, contributing to local sources of pollution. At the major dump-site in Ny-

Ålesund, both industrial and domestic waste was burned until 1995. This dumpsite was 

located on the west side of town, in close proximity to the community (Kovacs, 1996). As 

this egg (247.92 ng/g w.w.) was sampled from a nest within the settlement, the female 

may be more influenced by human activity compared with snow buntings breeding 

distant from the settlement. It has been suggested that PFOS has a half-life of 2-3 weeks 

in some bird species (Newsted et al., 2006; Yeung et al., 2009), indicating that the snow 

buntings are exposed to PFOS in the respectively locations. However, it is important to 

emphasis that elimination may be very species specific, and thereby it is not possible to 

conclude whether the snow buntings are influenced by local pollution of PFOS. The 

concentration of PFASs found in eggs of snow buntings from Svalbard is lower than 

reported in other Svalbard seabirds (Table 4) and peregrine falcons feeding terrestrial 

(Holmstrom et al., 2010). Possible correlation of PFOS and liver weight, as well as 

cholesterol and triglyceride concentration in great tits and blue tits nestlings have been 

suggested  by Hoff et al., (2005). However, as those particular nestlings were situated in 

the proximity of a fluorochemical plant, the concentrations of PFOS reported were up to 

several thousand times higher than the concentrations of PFOS in this study.  

 

PFAS pattern 

Despite the phase-out of PFOS in 2000 (3M, 2012), PFOS is the dominant PFASs in wild-

life (Houde et al., 2011). This is in agreement with the patterns reported herein in eggs 

of snow buntings from Barentburg, Pyramiden and Ny-Ålesund (Figure 5), where PFOS 

is the dominating PFASs. In the same settlements in this study, PFUnA and PFTria was 

the dominant PFCA, while short chained PFCA was not detected in any of the samples. 

This is in agreement with previous studies on the glaucous gull (Verreault et al., 2005; 

Verreault et al., 2007b), common guillemot (Holmstrom et al., 2010) and the peregrine 

falcon (Holmstrom et al., 2010), where PFUnA and PFTriA was the dominating PFCA. 
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However, in the samples from Longyearbyen, PFNA and PFUnA were the dominating 

PFASs (Figure 5). Furthermore, PFNA and PFUnA were more abundant than PFOS. These 

results are contradicting previous studies on Arctic birds. However, when assessing the 

concentrations with respect to the median (Appendix F, Table F.1), PFOS is the 

dominating PFAS in the Longyearbyen samples. The concentration of PFNA is higher 

than PFOS in only two samples (LYB1 and LYB3), thus, it is not reasonable to conclude 

that PFNA is the dominating PFASs in the Longyearbyen samples. The two samples with 

the dominating PFNA concentration were collected in the same area. This area is located 

at the waterfront in the center of the community, and have previous been used as a 

deposition site for domestic and industrial waste. However, the landfill was covered by 

several layers of material when closed (Kovacs, 1996). Thus, it is not possible to 

conclude whether the snow buntings are influenced by this old dump site. Further more, 

when assessing the PFCA pattern in eggs of snow buntings from Longyearbyen with 

respect to the median, the PFCA pattern in Longyearbyen is similar to the other 

locations (Appendix F, Table F.1). The source of PFASs in the Arctic environment is 

suggested to be the degradation of perfluorinated sulfonamides (D'Eon et al., 2006) and  

fluorotelomer alcohols (FTOH) in the atmosphere (Ellis et al., 2004). The degradation 

8:2 FTOH is known to yield PFOA and PFNA and the degradation of 10:2 FTOH is known 

to yield PFDcA and PFUnA. Atmospheric transport of these precursors is a likely 

contributor of the PFASs burdens in eggs of snow buntings this study. However, 

influence of local contamination of PFASs cannot be excluded as PFASs are found in a 

variety of products in a modern society. Thus, the PFASs burden in this study may be 

explained by atmospheric transport and local pollution, as well as exposure during 

migration and exposure in overwintering areas. 

 

Principal component analysis 

The score plot (Figure 7) and loading plot (Figure 8) illustrates a distinct separation of 

the settlements based on the contaminant burden in the settlements. The Norwegian 

and the Russian settlements are clearly separated from each other, illustrated in Figure 

7, and Figure 8 further confirms this separation based on the contaminant burden. 

These results are clearly illustrating the dominating PCB burden in the two Russian 

settlements, as both Barentsburg and Pyramiden appear together with the PCB 

congeners (Figure 8). Further on, Longyearbyen and Ny-Ålesund appear together with 
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the PFASs, illustrating that these compounds are constituting a major part of the 

contaminant burden in the Norwegian settlements (Figure 8). The concentration of 

∑7PCB concentration in the Russian settlements as one group was significant higher 

than the Norwegian settlements as one group (Figure 9). Thus, Figure 7 and Figure 8 are 

supporting the strong indication of local influence of PCB in the two Russian settlements. 

The individual PFASs were positively correlating with HCB and trans-nonachlor (Figure 

8). In contrast to legacy POPs, PFASs are known to partition into blood where they bind 

to blood proteins, as well as partitioning into the liver and kidney (Butt et al., 2010). As 

HCB and trans-nonachlor have lipophilic properties, they were expected to correlate 

with PCBs and p,p’-DDE that exert the same lipophilic properties (Haukas et al., 2007). 

This means that positively correlation between HCB, trans-nonachlor and PFASs were 

not expected. These correlations are challenging to explain, and may be a result of 

several factors such as tissue investigated, composition of the egg regarding lipids and 

proteins, maternal transfer, species differences and low sample size.  
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5. Conclusion 

The present study is the first to investigate contaminants in snow buntings in Svalbard. 

Significant higher concentrations of PCB were found in the eggs from the Russian 

settlements (Barentsburg and Pyramiden) than in eggs from the Norwegian settlements 

(Longyearbyen and Ny-Ålesund). Further on, the PCB congener composition in the eggs 

from Barentsburg and Pyramiden was comparable with the technical PCB-mixtures 

previous used in the Russian settlements. These findings are strong indications of local 

anthropogenic pollution influencing the concentrations of PCB in the eggs from the 

Russian settlements. Further on, local influence of p,p’-DDE and PFASs cannot be 

excluded. However, the contaminant burden of HCB, trans-nonachlor, p,p’-DDE and 

PFASs in the eggs of snow buntings in Svalbard are mainly explained by; I: atmospheric 

transport of contaminants to the Arctic environment, II: transport of contaminants by 

sea birds, III: exposure during migration, IV: exposure in overwintering areas.   

 

As toxicological implications was not the aim of the present study, the results can only 

report a status regarding contaminates in snow buntings in Svalbard. Despite the fact 

that direct comparison between different species is not appropriate, the results show 

that the concentration OHCs in general are low in eggs of snow bunting in Svalbard. 

However, the ∑PCB concentration in eggs of snow buntings in the Russian settlements 

was comparable with eggs of black-legged kittiwakes and Brünnich’s guillemot from 

Svalbard. Further was the mean ∑PCB concentration in the Russian settlements near 

and exceeding NOAEL for hatching success in leghorn chicken. 

 

As the concentrations of OHCs in the eggs are dependent of several factors, such as 

maternal transfer and diet, this study show that more research of OHCs in the snow 

bunting are needed. However, the results in this study indicate that the snow bunting 

may be utilized as a sentinel of local pollution on Svalbard. As the Governor in Svalbard 

has requested the removal of sources of PCB in the Russian settlements, the snow 

bunting is suggested as a future bioindicator for local pollution. 
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Appendix A- Internal standard POP 

 

Table A.1. Internal standard (POP I (34.10)) for analysis of PCB, DDT/HCH – and pesticides in 
eggs of snow bunting (Plectrophenax nivalis). 
 

 
Compound group 

 

Individual 
13C compounds 

 
 
 
 
 
 
PCBs 

13C PCB-28 
13C PCB-52 
13C PCB-101 
13C PCB-105 
13C PCB-114 
13C PCB-118 
13C PCB-123 
13C PCB-138 
13C PCB-153 
13C PCB-156 
13C PCB-157 
13C PCB-167 
13C PCB-180 
13C PCB-189 
13C PCB-209 

 
 
 
 
 
 
 
 
 
OCP 

13C trans-Chlordane 
13C cis-Chlordane 
13C oxy-Chlordane 
13C trans-Nonachlor 
13C cis-Nonachlor 
13C Mirex 
13C α-HCH 
13C β-HCH 
13C γ-HCH 
13C p,p’-DDT 
13C p,p’-DDE 
13C Endosulfan α 
13C Endosulfan β 
13C Endosulfan sulfate 
13C Trifluralin 
13C Aldrin 
13C Eldrin 
13C Isodrin 
13C Dieldrin 
13C Heptachlor epoxide 
13C Heptachlor 
13C Delta-BHC 

Industrial chlorinated 
by-products 

13C HCB 
13C Pentachlorobenzene 
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Appendix B- Limit of detection POP 

 

Table B.1.  Limit of detection (LOD) for OCs in eggs of snow bunting (Plectrophenax nivalis). LOD 
are calculated as 3*blank or 3*signal/noise. 
 

Compound Detection limit range 
(ng/g w.w.) 

PCB-28/31 0.01 - 0.08 
PCB-52 0.01 - 0.7 
PCB 101 0.04 - 1.4 
PCB 118 0.02 - 0.29 
PCB 138 0.02 - 0.35 
PCB 153 0.02 - 0.37 
PCB 180 0.03 - 0.13 
HCB 0.03 - 0.36 
α-HCH 0.01 - 1.16 
β-HCH 0.06-0.52 
γ-HCH 0.01-0.09 
trans-Chlordane 0.01-0.08 
trans-Nonachlor 0.01 - 0.07 
cis-Chlordane 0.01-0.15 
oxy-Chlordane 0.14-1.08 
cis-Nonachlor 0.02 - 0.25 
Mirex 0.04-1.02 
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Appendix C- Internal standard PFAS 

 

Table C.1. Internal standard (allPFC) for analysis of PFASs in eggs of snow bunting 
(Plectrophenax nivalis). 
 

Compound group Individual 13C  
compounds 

 
 
 
PFCA 

13C PFBA 
13C PFPA 
13C PFHxA 
13C PFOA 
13C PFNA 
13C PFDcA 
13C PFUnA 
13C PFDoA 

 
PFSA 

13C PFHxA 
13C PFOS 
13C PFOSA 
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Appendix D- Limit of detection PFAS 

 

Table D.1. Limit of detection (LOD) for PFASs in eggs of snow bunting (Plectrophenax nivalis). 
LOD are calculated as 3*blank or 3*signal/noise. 
 

Compound group Compound Limit of detection 
(ng/g) 

 
 
 
 
 
PFCA 

PFBA             0.02 
PFPA 0.04 
PFHxA   0.004 
PFHpA 0.01 
PFOA 0.05 
PFNA 0.04 
PFDcA 0.05 
PFUnA 0.03 
PFDoA   0.02 
PFTriA 0.06 
PFTeA 0.08 

 
PFSA 

PFBS             0.01 
PFHxS 0.10 
LIN-PFOS 0.04 
PFDcS 0.50 

PASF PFOSA           0.50 
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Appendix E- Individual biological measurements 

 

Table E.1. Individual biological measurements of egg volume, egg lipid content (%) and clutch 
size in eggs of snow buntings (Plectrophenax nivalis). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Value derived from mean clutch size at the respectively location 
** Samples from 2010

ID Volume 
(cm3) 

Lipids 
(%) 

Clutch 
size 

LYB1 3,24 4,13 5,67* 
LYB2 3,06 8,27 4,00 
LYB3 3,05 9,75 6,00 
LYB4 3,06 6,10 7,00 
LYB5 4,15 6,23 5,00 
LYB7 2,34 6,56 7,00 
LYB8 2,88 5,86 5,00 

LYB10 3,09 9,73 5,67* 
BAR1 2,75 12,62 5,40* 
BAR2 2,48 8,46 5,00 
BAR3 2,98 6,71 6,00 
BAR4 2,79 8,73 6,00 
BAR6 2,90 4,56 5,00 
BAR7 2,59 7,77 5,00 
BAR8 2,54 7,52 5,40* 
BAR9 2,85 4,63 5,40* 

BAR10 3,27 6,77 5,40* 
PYR1 3,31 5,31 6,00 
PYR2 3,16 5,90 6,00 
PYR4 3,21 4,25 5,00 
PYR7 2,99 5,19 5,00 
PYR8 2,70 3,77 6,00 
PYR9 2,89 4,50 5,00 

PYR10 2,85 4,59 6,00 
NÅ1 3,04 4,06 5,00 
NÅ2 2,91 4,97 4,50* 
NÅ3 2,62 8,38 4,50* 
NÅ4 3,22 6,82 4,50* 
NÅ5 3,52 6,14 4,50* 

NÅ11** 2,83 6,98 4,00 
NÅ13** 3,24 7,73 4,00 
NÅ15** 2,67 7,41 5,00 



 

 

60
 

Appendix F- Concentration of individual compounds 

 

Table F.1. Concentration of compounds (ng/g w.w.), egg volume (cm3), clutch size and lipid content (%) in eggs of snow bunting (Plectrophenax 

nivalis) from Longyearbyen (n=8) and Ny-Ålesund (n=8). Concentration below the detection limit (LOD) is reported as 0.5*LOD. 
 

  Longyearbyen  Ny-Ålesund 
Analyte n Mean SD Median Range min-max n Mean SD Median Range min-max 

PCB 28/31 8 0.05 0.06 0.03 0.01 - 0.15 8 0.11 0.18 0.06 0.01 - 0.55 
PCB 52 8 0.07 0.02 0.07 0.02 - 0.10 8 0.05 0.03 0.04 0.03 - 0.11 

PCB 101 8 0.33 0.20 0.29 0.08 - 0.72 8 0.32 0.20 0.35 0.01 - 0.60 
PCB 118 8 1.23 0.77 0.94 0.43 - 2.51 8 1.28 0.69 1.41 0.11 - 2.01 
PCB 138 8 1.48 0.60 1.34 0.73 - 2.42 8 2.01 1.69 1.84 0.01 - 5.59 
PCB 153 8 2.62 1.31 2.45 1.21 - 5.54 8 6.48 7.80 4.03 0.1 - 24.66 
PCB 180 8 1.16 1.06 1.11 0.05 - 3.40 8 3.88 5.64 2.03 0.02 17.33 
∑7 PCB 8 6.93 4.02 6.22 2.53 - 14.48 8 14.12 16.23 9.74 0.28 - 50.85 

p,p’-DDE 8 4.29 2.79 3.21 2.53 - 10.50 8 6.67 4.01 5.77 2.87- 16.1 
HCB 8 4.34 3.10 3.11 1.82 - 11.50 8 6.10 2.78 5.60 2.54- 9.81 

trans-nonachlor 8 0.07 0.03 0.07 0.02 - 0.12 8 0.11 0.05 0.12 0.05- 0.18 
PFOS 8 3.75 1.93 4.14 1.21 - 5.82 8 31.81 87.32 0.96 0.44 - 247.92 
PFNA 8 4.78 6.45 0.98 0.28 - 15.45 8 0.85 0.66 0.57 0.20 - 2.17 
PFDcA 8 1.76 2.79 0.65 0.34  - 8.47 8 0.43 0.33 0.31 0.08 - 1.00 
PFUnA 8 3.93 5.00 1.55 0.41 - 13.55 8 1.97 1.16 1.73 0.83 - 4.27 
PFDoA 8 0.93 0.86 0.66 0.19 - 2.91 8 0.75 0.49 0.59 0.30 - 1.54 
PFTriA 8 1.28 1.02 0.99 0.34 - 3.03 8 1.99 1.24 1.82 0.57 - 4.36 

∑6 PFAS 8 16.43 18.04 8.97 2.77 - 49.23 8 37.80 91.21 5.98 2.42 - 261.26 
∑POP 8 32.06 27.98 21.57 9.67 - 85.83 8 64.80 114.28 27.21 8.16-338.20 

 



 

 

61
 

Table F.2. Concentration of compounds (ng/g w.w.), egg volume (cm3), clutch size and lipid content (%) in eggs of snow bunting (Plectrophenax 

nivalis) from Barentsburg (n=9) and Pyramiden (n=7). Concentration below the detection limit (LOD) is reported as 0.5*LOD. 
 

  Barentsburg  Pyramiden 
Analyte n Mean SD Median Range min-max n Mean SD Median Range min-max 

PCB 28/31 9 0.61 0.56 0.48 0.01 - 1.69 7 1.43 2.55 0.55 0.01 - 7.17 
PCB 52 9 14.03 19.12 8.39 1.93 - 63.39 7 19.04 30.60 2.18 0.04 - 82.03 

PCB 101 9 50.72 63.02 32.64 11.22 -215.00 7 94.77 138.84 17.79 0.02- 370.00 
PCB 118 9 92.67 74.78 70.05 25.97 - 275.88 7 167.24 227.91 42.02 0.1 - 639.24 
PCB 138 9 93.64 83.11 69.18 22.90 - 302.26 7 160.93 216.60 43.02 0.02 - 593. 68 
PCB 153 9 80.25 65.07 63.78 20.12 - 238.28 7 142.79 183.53 55.74 0.08 - 507. 62 
PCB 180 9 17.69 21.09 12.32 3.04 - 72.41 7 18.64 22.75 9.79 0.51 - 64.21 
∑7 PCB 9 349.61 326.76 256.84 85.19 - 1168.91 7 604.84 822.77 171.09 0.77 - 2263.95 

p,p’-DDE 9 6.69 3.32 6.23 2.88 - 12.32 7 12.87 11.99 8.16 2.47 - 38.56 
HCB 9 4.00 2.17 3.51 1.66 - 7.29 7 2.75 2.59 1.68 1.40 - 8.55 

trans-nonachlor 9 0.08 0.05 0.08 0.03 - 0.20 7 0.04 0.02 0.04 0.02 -0.07 
PFOS 9 3.53 3.66 2.20 0.58 - 11.99 7 2.13 4.32 0.55 0.25 - 11.90 
PFNA 9 0.92 0.74 0.75 0.14 - 2.25 7 0.23 0.20 0.17 0.02 - 0.62 
PFDcA 9 0.65 0.48 0.55 0.03 - 1.43 7 0.14 0.20 0.03 0.03 - 0.53 
PFUnA 9 2.08 1.62 1.64 0.32 - 5.26 7 0.56 0.49 0.39 0.02 - 1.33 
PFDoA 9 0.94 0.70 0.65 0.16 - 2.10 7 0.21 0.19 0.24 0.01 - 0.51 
PFTriA 9 1.76 1.56 1.30 0.03 - 4.50 7 0.54 0.37 0.71 0.06 - 1.05 

∑6 PFAS 9 9.89 8.76 7.09 1.26 - 27.54 7 3.82 5.76 2.08 0.39 - 15.94 
∑POP 9 370.27 341.06 273.75 91.02-1216.26 7 624.33 843.12 183.05 5.05 -2327.07 
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Appendix G- PCA loadings 

Table G.1. PCA loadings for the individual variables, yielding 4 Principal Components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Component 
1 2 3 4 

Volume (cm3) -0.097 -0.250 -0.528 -0.274 
 Lipids (%) -0.193 0.497 0.405 -0.304 
Clutch size 0.275 0.068 0.113 0.788 
PCB 28/31 0.647 -0.066 0.117 0.167 
PCB 52 0.882 0.392 0.010 0.109 
PCB 101 0.837 0.524 -0.056 0.000 
PCB 118 0.845 0.511 -0.070 -0.009 
PCB 138 0.763 0.582 -0.122 -0.082 
PCB 153 0.766 0.570 -0.102 -0.177 
PCB 180 0.700 0.479 0.084 -0.228 
p,p’-DDE 0.290 -0.087 0.829 0.126 
HCB -0.416 0.498 0.394 -0.458 
trans-nonachlor -0.463 0.545 0.453 -0.289 
PFOS -0.379 0.361 0.470 0.489 
PFNA -0.483 0.744 -0.230 0.214 
PFDcA -0.506 0.698 -0.232 0.285 
PFUnA -0.423 0.815 -0.288 0.094 
PFDoA -0.456 0.775 -0.191 0.116 
PFTriA -0.406 0.744 -0.009 -0.060 
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Appendix H- Concentration of individual compounds in Russian and Norwegian settlements 

 

Table H.1 Concentration of compounds (ng/g w.w.), volume (cm3), lipid content (%) and clutch size in eggs of snow bunting (Plectrophenax nivalis) 
from the Norwegian settlements (n=16) and the Russian settlements (n=16). Concentration below the detection limit (LOD) is reported as 0.5*LOD.

  Norwegian  Russian 
Analyte n Mean SD Median Range min-max n Mean SD Median Range min-max 

Volume (cm3) 16 3.06 0.40 3.06 2.34-4.15 16 2.89 0.25 2.87 2.48-3.31 
Lipids (&) 16 6.82 1.70 6.69 4.06-9.75 16 6.33 2.30 5.61 3.77-12.62 
Clutch size 16 5.08 0.96 5.00 4.00-7.00 16 5.48 0.45 5.40 5.00-6.00 
PCB28/31 16 0.08 0.13 0.05 0.01-0.55 16 0.97 1.72 0.53 0.01-7.17 

PCB 52 16 0.06 0.03 0.06 0.02-0.11 16 16.22 24.00 6.90 0.04-82.3 
PCB 101 16 0.32 0.19 0.31 0.01-0.72 16 69.99 101.68 32.26 0.02-370 
PCB 118 16 1.25 0.71 1.01 0.11-2.51 16 125.29 158.81 69.33 0.10-630.24 
PCB 138 16 1.75 1.25 1.68 0.01-5.59 16 123.08 153.75 65.86 0.02-593.68 
PCB 153 16 4.55 5.76 2.73 0.10-24.66 16 107.61 129.45 60.09 0.08-507.62 
PCB 180 16 2.52 4.17 1.26 0.02-17.33 16 18.10 21.08 11.18 0.51-72.41 
∑7PCB 16 10.53 12.24 7.08 0.27-51.47 16 461.27 590.48 246.13 0.76-2263.15 

p,p’-DDE 16 5.48 3.55 4.83 2.53-16.10 16 9.40 8.57 6.91 2.47-38.56 
HCB 16 5.22 2.99 4.25 1.82-11.50 16 3.46 2.36 2.47 1.40-8.55 

trans-nonachlor 16 0.09 0.05 0.08 0.02-0.18 16 0.06 0.05 0.05 0.02-0.20 
PFOS 16 17.78 61.40 1.49 0.44-247.92 16 2.92 3.89 1.02 0.25-11.99 
PFNA 16 2.81 4.87 0.71 0.20-15.45 16 0.62 0.66 0.43 0.02-2.25 
PFDcA 16 1.09 2.04 0.41 0.08-8.47 16 0.43 0.45 0.37 0.03-1.43 
PFUnA 16 2.95 3.65 1.66 0.41-13.55 16 1.42 1.45 1.02 0.02-5.26 
PFDoA 16 0.84 0.69 0.64 0.19-2.91 16 0.62 0.64 0.44 0.01-2.10 
PFTriA 16 1.64 1.16 1.36 0.34-4.36 16 1.23 1.32 0.75 0.03-4.50 
∑6PFC 16 27.12 73.80 6.26 1.67-292.65 16 7.23 8.42 4.02 0.35-27.54 
∑POP 16 48.43 92.63 22.49 6.31-371.90 16 481.42 609.88 259.57 5.00-2338 
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Appendix I- Individual contaminant concentration 

 
Table I.1. Individual concentrations (ng/g w.w.) of PCBs and pesticides in eggs of snow bunting 
(Plectrohenax nivalis) from Longyearbyen (LYB), Barentsburg (BAR), Pyramiden (PYR) and Ny-
Ålesund (NÅ), sampled in 2010 and 2011. 
 

* Samples under the limit of detection are given the value 0.5*LOD 
** Samples from 2010 
 

ID PCB-
28/31 

PCB-
52 

PCB-
101 

PCB-
118 

PCB-
138 

PCB-
153 

PCB-
180 

∑7PCB trans- 
nonachlor 

HCB p.p’-
DDE 

LYB1 0.12 0.06 0.54 2.51 2.42 2.58 1.11 9.34 0.06 3.16 2.57 
LYB2 0.01* 0.06* 0.21 1.04 1.59 5.54 3.40 11.85 0.07 5.54 3.42 
LYB3 0.15 0.08 0.28 0.90 1.08 2.31 1.42 6.22 0.07 3.00 3.27 
LYB4 0.05 0.09 0.30 0.98 1.87 2.69 1.10 7.08 0.04 2.49 2.53 
LYB5 0.05 0.02 0.08 0.43 0.73 1.21 0.05 2.57 0.02 1.82 2.62 
LYB7 0.01* 0.08* 0.72 2.38 2.06 2.76 0.06* 8.07 0.07 3.06 10.50 
LYB8 0.01* 0.06* 0.32 0.79 1.01 1.52 0.71 4.42 0.12 11.50 3.14 

LYB10 0.01* 0.10* 0.22* 0.79 1.09 2.31 1.40 5.92 0.10 4.14 6.25 
BAR1 0.58 13.90 48.80 98.79 99.40 90.35 16.84 368.66 0.08 6.22 6.23 
BAR2 0.48 9.72 40.50 70.05 69.18 51.85 10.03 251.81 0.06 2.61 5.80 
BAR3 1.69 63.39 215.00 275.88 302.26 238.28 72.41 1168.91 0.20 4.30 11.30 
BAR4 0.01* 8.39 31.88 58.60 62.53 56.39 12.55 230.35 0.12 7.29 6.52 
BAR6 0.21 5.41 32.64 68.60 58.77 63.78 8.38 237.79 0.03 1.68 3.58 
BAR7 0.25 4.28 17.26 25.97 22.90 20.12 3.04 93.82 0.03 2.33 3.76 
BAR8 1.06 1.93 15.08 119.13 112.22 104.02 12.32 365.76 0.09 6.42 12.32 
BAR9 0.15 3.14 11.22 32.03 35.37 26.56 5.48 113.95 0.04 1.66 2.88 

BAR10 1.10 16.08 44.06 85.00 80.14 70.93 18.12 315.43 0.08 3.51 7.84 
PYR1 0.76 10.82 76.45 195.53 171.22 143.52 19.50 617.80 0.02 2.67 8.16 
PYR2 0.14 2.18 17.79 40.82 40.08 44.58 5.87 151.46 0.04 8.55 13.40 
PYR4 0.01* 2.12 11.14 42.02 43.02 55.74 9.79 163.84 0.05 1.40 2.47 
PYR7 7.17 82.03 370.00 630.24 593.68 507.62 64.21 2254.95 0.03 1.65 13.73 
PYR8 0.88 36.04 188.00 261.85 278.49 247.87 30.05 1043.18 0.04 1.59 6.51 
PYR9 0.51* 0.04* 0.03* 0.10* 0.02* 0.08* 0.51* 1.27 0.03 1.68 7.29 

PYR10 0.55* 0.05* 0.02* 0.11* 0.02* 0.09* 0.55* 1.38 0.07 1.73 38.56 
NÅ1 0.55* 0.05* 0.01* 0.11* 0.01* 0.10* 0.58* 1.40 0.05 3.15 6.83 
NÅ2 0.01* 0.03* 0.06* 0.56 0.64 1.18 0.02* 2.49 0.06 2.54 2.87 
NÅ3 0.01* 0.05* 0.39 1.47 1.91 6.34 3.26 13.43 0.18 8.96 6.35 
NÅ4 0.09 0.04* 0.49 1.79 1.76 3.19 1.02 8.38 0.15 9.81 4.37 
NÅ5 0.05 0.03* 0.33 1.98 5.59 24.66 17.33 49.97 0.08 4.35 5.29 

NÅ11** 0.01* 0.04* 0.28 1.35 2.14 8.29 4.75 16.86 0.14 5.56 6.06 
NÅ13** 0.14 0.04* 0.36 0.98 1.25 3.71 2.34 8.82 0.15 8.78 5.48 
NÅ15** 0.06 0.11 0.60 2.01 2.80 4.34 1.72 11.64 0.10 5.64 16.10 
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Table I.2. Individual concentrations (ng/g w.w.) of  PFASs in eggs of snow bunting 
(Plectrophenax nivalis) from Longyearbyen (LYB), Barentsburg (BAR), Pyramiden (PYR) and Ny-
Ålesund (NÅ), sampled in 2010 and 2011. 
 

ID PFOS PFNA PFDcA PFUnA PFDoA PFTriA ∑PFC 
LYB1 5.78 14.31 8.47 13.5 2.91 3.03 48.04 
LYB2 1.22 0.45 0.34 0.41 0.19 0.34 2.96 
LYB3 2.36 15.45 0.90 10.0 0.72 2.53 31.96 
LYB4 5.35 0.52 0.56 0.60 0.39 0.37 7.79 
LYB5 1.21 0.28 0.35 0.80 0.41 0.52 3.56 
LYB7 4.26 1.20 0.73 1.67 1.11 1.21 10.19 
LYB8 5.82 5.27 2.32 2.98 1.11 0.76 18.26 

LYB10 4.03 0.76 0.39 1.42 0.61 1.50 8.71 
BAR1 11.99 0.75 0.48 2.14 0.65 1.29 17.29 
BAR2 2.20 0.56 0.43 1.38 0.64 1.30 6.52 
BAR3 1.53 0.79 0.55 1.64 0.73 1.45 6.69 
BAR4 5.86 2.25 1.36 5.26 1.73 4.50 20.96 
BAR6 1.20 0.17 0.21 0.84 0.30 0.03* 2.75 
BAR7 0.58 0.14 0.03* 0.32 0.16 0.51 1.73 
BAR8 2.71 1.00 0.85 2.10 1.67 2.12 10.45 
BAR9 0.77 0.60 0.55 0.94 0.52 0.57 3.94 

BAR10 4.93 2.01 1.43 4.14 2.10 4.07 18.69 
PYR1 0.27 0.12 0.03* 0.17 0.01* 0.18 0.78 
PYR2 0.55 0.28 0.03* 0.67 0.24 0.71 2.48 
PYR4 0.58 0.62 0.53 1.32 0.51 0.73 4.30 
PYR7 0.25* 0.17 0.03* 0.27 0.12 0.29 1.12 
PYR8 0.84 0.29 0.32 1.09 0.37 1.05 3.97 
PYR9 0.48 0.12 0.06 0.39 0.24 0.76 2.06 

PYR10 11.90 0.02* 0.03* 0.02* 0.01* 0.03* 12.00 
NÅ1 0.81 0.66 0.25 1.32 0.46 0.94 4.45 
NÅ2 0.44 0.20 0.08 0.83 0.30 0.57 2.42 
NÅ3 1.31 0.48 0.36 1.81 0.67 1.57 6.19 
NÅ4 1.12 1.28 0.42 2.03 0.52 2.08 7.44 
NÅ5 0.55 0.31 0.19 0.86 0.34 1.17 3.43 

NÅ11** 1.67 1.20 0.89 2.98 1.49 3.09 11.31 
NÅ13** 0.69 0.48 0.24 1.65 0.70 2.13 5.88 
NÅ15** 247.92*** 2.17*** 1.00*** 4.27** 1.54*** 4.36*** 261.26*** 
* Samples under the limit of detection are given the value 0.5*LOD 
** Samples from 2010 
*** Individuals with extreme high concentration 
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Appendix J- Spearmans’s correlation coefficient 
Table J.1. Spearman’s correlation coefficient between PCB-28/31. PCB-52. PCB-101. PCB-118. PCB-138. PCB-153. PCB-180, trans-nonachlor, p.p’-DDE, 
HCB, principal component 1 (PC1), principal component 2 (PC2), egg volume, lipid content and clutch size in eggs of snow bunting (Plectrophenax 

nivalis) (n=32). 
ID PCB-

28/31 
PCB- 
52 

PCB-
101 

PCB-
118 

PCB-
138 

PCB-
153 

PCB-
180 

trans-
nonachlor 

p.p’-
DDE 

HCB Volume Lipids Clutch 
size 

PC1 PC2 

PCB-28/31 - 0.544** 0.494** 0.497** 0.482** 0.461** 0.484** - 0.477** - - -  0.521** -0.351* 
PCB-52 0.544** - 0.878** 0.852** 0.847** 0.803** 0.753** - - - - - 0.504** 0.799** - 
PCB-101 0.494** 0.878** - 0.968** 0.953** 0.915** 0.821** - - - - - - 0.923** - 
PCB-118 0.497** 0.852** 0.968** - 0.989** 0.959** 0.873** - - - - - - 0.946** - 
PCB-138 0.482** 0.847** 0.953** 0.989** - 0.972** 0.908** - - - - - - 0.956** - 
PCB-153 0.461** 0.803** 0.915** 0.959** 0.972** - 0.947** - - - - - - 0.978** - 
PCB-180 0.484** 0.753** 0.821** 0.873** 0.908** 0.947** - - - - - - - 0.945** - 
trans-
nonachlor 

- - - - - - - - - 0.777** - 0.538** - - 0.435* 

p.p’-DDE 0.477** - - - - - - - - - - 0.562** - - - 
HCB - - - - - - - 0.777** - - - - - - - 
PFOS - - - - - - - 0.491** - 0.360* - 0.396* - - 0.650** 
PFNA - - - - - - - 0.623** - 0.515** - 0.353* - - 0.922** 
PFDcA - - - - - - - 0.505** - - - - - - 0.964** 
PFUnA - - - - - - - 0.680** - 0.368** - 0.402* - - 0.854** 
PFDoA - - - - - - - 0.657** - 0.510** - 0.369* - - 0.874** 
PFTriA - - - - - - - 0.708** - 0.574** - 0.476** - - 0.688** 
Volume - - - - - - -  - - - - - - - 
Lipids - - - - - - - 0.538** - 0.562** - - - - - 
Clutch size - 0.504** - - - - -  - - - - - - - 
PC1 0.521** 0.799** 0.923** 0.946** 0.956** 0.978** 0.945**  - - - - - - - 
PC2 - - - - - - - 0.435* - - - -  - - 

* Significance at p < 0.05 (2-tailed) 
** Significance at the p < 0.001 (2-tailed) 
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Table J.2. Spearman’s correlation coefficient between PFOS, PFNA, PFDcA, PFUnA, PFDoA, PFTriA, principal component 1 (PC1), principal component 
2 (PC2), egg volume, lipid content and clutch size in eggs  of snow bunting (Plectrophenax nivalis)(n=32). 
ID PFOS PFNA PFDcA PFUnA PFDoA PFTriA Volume Lipids Clutch size PC1 PC2 
PCB-28/31 - - - - - - - -  0.521** -0.351* 
PCB-52 - - - - - - - - 0.504* 0.799** - 
PCB-101 - - - - - - - - - 0.923** - 
PCB-118 - - - - - - - - - 0.946** - 
PCB-138 - - - - - - - - - 0.956** - 
PCB-153 - - - - - - - - - 0.978** - 
PCB-180 - - - - - - - - - 0.945** - 
trans-nonachlor 0.491** 0.623** 0.505** 0.680** 0.657** 0.708** - 0.538** - - 0.435* 
HCB 0.360* 0.515** - 0.568** 0.510** 0.574** - 0.562** - - - 
p.p’-DDE - - - - - - - - - - - 
PFOS - 0.638** 0.720** 0.614** 0.646** 0.461** - 0.396* - - 0.650** 
PFNA 0.638** - 0.920** 0.924** 0.897** 0.788** - 0.353* - - 0.922** 
PFDcA 0.720** 0.920** - 0.853** 0.902** 0.686** - - - - 0.964** 
PFUnA 0.614** 0.924** 0.853** - 0.944** 0.895** - 0.402* - - 0.854** 
PFDoA 0.646** 0.897** 0.902** 0.944** - 0.873** - 0.369* - - 0.874** 
PFTriA 0.461** 0.788** 0.686** 0.895** 0.873** - - 0.476** - - 0.688** 
Volume - - - - - - - - - - - 
Lipids 0.396* 0.353* - 0.402* 0.369* 0.476** - - - - - 
Clutch size - - - - - - - - - - - 
PC1 - - - - - - - - - - - 
PC2 0.650** 0.922** 0.964** 0.854** 0.874** 0.688** - - -  - 
* Significance at p < 0.05 (2-tailed) 
** Significance at the p < 0.001 (2-tailed) 
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