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Forord

Dette er et arbeid gjennomført v̊arsemesteret 2017 under veiledning av professor Sverre Olaf

Smalø. Den offisielle emnekoden er TMA4900 med tittel ”Matematikk, masteroppgave” og

den har et omfang p̊a 30 studiepoeng.

Motivasjonen bak oppgaven ligger i at jeg liker å trekke røde tr̊ader mellom ulike deler av

matematikken, noe jeg i aller høyeste grad har f̊att mulighet til å gjøre i løpet av denne v̊aren.

Videre er jeg interessert i hvordan homologi dukker opp i ulike problemstillinger; det har

vært meget interessant å undersøke hvordan dette utspiller seg for firefargeleggingsproblemet.

Oppgaven f̊ar ogs̊a et historisk preg som følge av at firefargeleggingsproblemet blomstret rundt

1900-tallet.

Av forkunnskaper antar jeg at eventuelle lesere er kjent med algebra opp til ringer og

moduler, punkt-sett-topologi og grunnleggende kategoriteori. Utover disse forkunnskapene

blir alt av teori motivert og/eller utledet, spesielt gjelder dette for relevante konsept innen

algebraisk topologi. Veien fra abstrakt til geometrisk har vært meget lærerik.

Referanser inkluderer relevante artikler og lærebøker jeg har benyttet og/eller blitt inspir-

ert av under skrivingen. Alle diagram er produsert med TikZ og figurer er tegnet i Inkscape.

Jeg ønsker å takke Marit Funderud for retting av spr̊ak og trivelige kaffepauser. Jeg

vil ogs̊a takke Sverre Olaf Smalø for hans engasjement, gode tilbakemeldinger og hyggelige

samtaler gjennom semesteret. Utover dette har jeg lært utrolig mye matematikk av Sverre i

løpet av det siste året, noe jeg virkelig setter pris p̊a.

Til slutt må jeg si at det har vært en fornøyelse å skrive denne oppgaven og at jeg gleder

meg til å fortsette som stipendiat til høsten.

Paul André Dillon Trygsland, juli 2017
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Sammendrag

Oppgaven starter med å gjøre rede for sammenhenger mellom grafteori, kategoriteori og

homologi. Deretter blir det veldig abstrakte oversatt til geometriske konsept, spesielt utledes

simplisiell kohomologi. Her blir opplysende teori inkludert sammen med relevante eksempler.

Å studere firefargeleggingsproblemet med simplisiell kohomologi gir en reformulering uttrykt

ved ligninger som inkluderer korand-operatoren. Ligningene gir en direkte sammenheng

mellom historiske oppdagelser av P. G. Tait og O. Veblen. Løsninger fra Hamiltonske sykluser

i tillegg til sammenhengenhet av trianguleringer diskuteres. Avslutningsvis presenteres et

kort bevis av det svakere femfargeleggingsproblemet.

Abstract

The thesis starts out by explaining connections between graph theory, category theory and

homology. Thereafter, the very abstract is translated into geometrical concepts, simplicial

cohomology is especially derived. Enlightening theory is included along with relevant exam-

ples. Studying the four colour problem with simplicial cohomology gives a reformulation in

terms of equations involving the coboundary operator. The equations give a direct connec-

tion of historical discoveries by P. G. Tait and O. Veblen. Solutions by Hamiltonian cycles as

well as connectedness of triangulations are discussed. In the end, a short proof of the weaker

five colour problem is presented.
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1 Introduction

The famous four colour problem was conjectured by Francis Guthrie in 1852: When colouring

a map in such a way that no regions separated by a single border have the same colours,

it always suffices to use four colours [Saa72]. The conjecture caught the attention of many

mathematicians, such as Arthur Cayley, who presented it to the London Mathematical Soci-

ety in 1878 [Die00, Saa72]. Nevertheless, almost a century would pass until Kenneth Appel

and Wolfgang Haken came up with an acceptable proof in 1977 [AHK77a, AHK77b]. In

short, this proof reduced the problem to 1482 special cases verified by a computer. The proof

was met with a lot of discontent, hence an approximately 700 page amended version was

published as a book in 1989 [AH89]. Several proofs were submitted before 1977, but they all

turned out to be false. In 1890, Percy John Heawood modified a false proof by A. B. Kempe

[Kem79, Saa72] to prove that five colours suffice [Hea90, Saa72].

Topology is used in the investigation of the four colour problem. Examples include reduc-

tions involving the Euler Characteristic and triangulations of the sphere [Saa72]. The early

work of Henri Poincaré in Analysis Situs and its five supplements [Die09, Veb31] dating back

to 1899-1904 marks the beginning of modern topology. Oswald Veblen uses the boundary

matrices of Poincaré to study the four colour problem in 1912 [Veb12]. More precisely, Veblen

studies boundary matrices over GF(4), the Galois field of four elements, to give an equivalent

formulation of the problem. We study the four colour problem using simplicial cohomology,

which results in an extension of Veblen’s reformulation together with clarifying implications.

Before this view on the four colour problem, we spend time to develop the modern language

needed and make the very abstract geometrical.

The second section, Categories, develop connections between graph theory, category the-

ory and homology. Graphs and edge-preserving maps make up a category, Grph, resulting

in a categorical overview as well as geometrical properties of Grph-morphism. On the other

hand, graph theory is useful in category theory, therefore the adjointness of quivers and

graphs is discussed for completion. Lastly, quivers give a short and precise definition of the

homology associated with simplicial objects.

The third section, Homology and Complexes, is dedicated to process the abstract notions

from the second section. The singular homology of a topological space and the simplicial

homology of a simplicial complex are derived over the integers. The focus lies in geometrical

aspects to be used in the study of the four colour problem, thus there is an emphasis on

CW-complexes, triangulations and the Euler characteristic.

The fourth section, Cohomology and Changing Coefficients, develop the formal concepts

surrounding cohomology and extending scalars from Z to arbitrary commutative rings. In
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particular, properties of Hom and tensor functors, the derived functors Ext and Tor, and

compatibility with simplicial objects are discussed. Examples are given to separate the

concepts from ordinary homology over Z. Lastly, the geometry of simplicial cohomology is

treated in detail.

The fifth section, The Four Colour Problem, presents a reformulation of the four colour

problem involving equations in cohomology. The equivalence of P. G. Tait’s 3-colouring of

edges and Veblen’s formulation over GF(4) is shown directly using the equations in simplicial

cohomology. Solutions obtained by Hamiltonian cycles in the dual cell structure are discussed

together with the insufficiency of this approach. Morphisms in Grph and the Euler charac-

teristic give insight in the connectedness of the triangulation together with an easy proof of

how five colours suffice when colouring maps.
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2 Categories

We will look at the foundation of some specific categories that highlight some connections

between category theory, graph theory and homology.

Note that for any category, we will assume the Hom-sets to be actual sets. This agrees

with the definition by S. Mac Lane and J. J. Rotman [ML71, Rot08], while every category

is locally small according to T. Leinster and S. Awodey [Awo10, Lei14]. Some standard

examples of categories include:

• Set, the category of sets and functions.

• Top, the category of topological spaces and continuous functions.

• Gp, the category of groups and group homomorphisms.

• Ab, the category of Abelian groups and group homomorphisms.

• VectK, the category of vector spaces over a field K with linear transformations.

• More generally, ModR, the category of leftR-modules over a ringR withR-homomorphisms.

The Hom-sets, HomModR(M,N), will be denoted HomR(M,N).

• A partially ordered set, (A,≤), is a category with elements of A as objects and mor-

phisms given by ≤, i.e. for any objects a and b there is a unique morphism a → b if

and only if a ≤ b.

• Cat, the category of small categories and functors.

• Given a small category A and a category C , we have the category of C -valued

presheaves, PreshC A as the collection of contravariant functors1 A → C and nat-

ural transformations.

Note that PreshC A gives Cat the structure of a 2-category, i.e. a category for which

we have morphisms of morphisms. We give a brief discussion about possible paradoxes

before proceeding. In 1903, Bertrand Russell released ”The principles of mathematics” which

includes a famous set-theoretic paradox known as Russell’s paradox [Rus96]. Simply put,

under certain assumptions one may form the set of all sets not an element in themselves,

which implies membership and not membership, i.e. a contradiction. Similar problems arise

1That is, functors A op → C .
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in category theory, and one should be aware of this when defining categories. As an example,

smallness guarantee that the Hom-sets of Cat and PreshC A are actual sets. Indeed,

HomPreshC A (F,G) ⊂
∏

A∈ObA

HomC (F (A), G(A))

as natural transformations are special cases of such products,2 and

HomCat(A ,B) ⊂
∏

A1,A2∈ObA ,B1,B2∈ObB

HomB(B1, B2)HomA (A1,A2)

as functors are special cases of such products.3 If we extend Cat to include every large

category, then considering Set and the trivial category, 1 = {x, 1x : x 7→ x}, we get that

each set gives rise to a functor 1 → Set so that HomCat(1,Set) = Ob Set. That is, Cat is

no longer a category according to our definition.

2.1 The Category of Graphs

What we will be referring to as a graph is often called a simple graph, i.e. the following

definition is a special case of a more general definition.4

Definition 2.1. An (abstract) graph is a pair G = (V (G), E(G)), or simply G = (V,E), of

sets where E ⊂ 2V satisfies |e| = 2 ∀e ∈ E. The elements of V and E are called vertices and

edges, respectively.5

Graphs are often represented by node networks; nodes represent vertices and straight lines

represent edges. The next definition contains some standard terminology regarding graphs.

Definition 2.2. Let G = (V,E) be a graph.

• If V = ∅, then G is the empty graph.

• The size of G, |G|, is equal to the cardinality of V . If |V | <∞ G is said to be finite.

• Two vertices, v, u ∈ V , are adjacent if {v, u} ∈ E.

• A vertex, v, and an edge, e, are mutually incident if v ∈ e.
2There is an added requirement of commutativity among the components.
3There is an added requirement of preserving identities and composition, note that the object assignment

is included as F (idA) = idF (A) whenever a functor is applied to an identity.
4This is to ease language throughout the text.
5We will only refer to an abstract graph if there is a possibility for confusion.
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• Let X, Y ⊂ V then E(X, Y ) = {{x, y} ∈ E|x ∈ X and y ∈ Y }, i.e. the set of edges

between X and Y . In the case X = Y we simply write E(X).

• G is complete if any pair of vertices are adjacent, and the complete graph of size n is

denoted Kn.

• The vertex u ∈ V is a neighbour of v ∈ V if they are adjacent.6

• The degree of a vertex v in G, degG(v), equals |E(v, V )|. Whenever G is finite, d(G)

equals the average degree, which is easily seen to be 2 |E||V | .

Remark 2.3. A graph is to be considered as a finite graph if nothing else is stated.

The next definition will make up the morphisms in the upcoming category.

Definition 2.4. Let G and G′ be two graphs. A (graph) homomorphism from G to G′ is a

function φ : V (G) → V (G′) such that ∀u, v ∈ G {u, v} ∈ E(G) ⇒ {φ(u), φ(v)} ∈ E(G′),

and it is customary to write φ : G→ G′ in this case.

Proposition 2.5. The composition of two graph homomorphisms is a homomorphism.

Proof. Let A, B and C be graphs, and let a : A → B, b : B → C be homomorphisms.

Take {u, v} ∈ E(A), then {a(u), a(u)} ∈ E(B) and {b(a(u)), b(a(u))} ∈ E(C) as a and b are

homomorphims.

By the above proposition, it is straightforward to check that the following definition does

make up a category.

Definition 2.6. Grph is the category of (abstract) graphs and graph homomorphisms.

Example 2.7. As we know, the inverse of a bijective continuous map is not necessarily

continuous. An explicit example is given by equipping [0, 1) and S1 with standard subspace

topologies from R and C, respectively. The geometrical setting makes it clear that the

function [0, 1) → S1, t 7→ e2πit is a continuous bijection, but the pre-image of [0, ε) under

the inverse is not open in S1 for any ε in (0, 1). Hence, the inverse is not continuous.

One cannot expect categories with actual functions as morphisms to satisfy that inverse

functions are automatically morphisms; an isomorphism, in any category, is defined by a

morphism that admits an inverse morphism. Several of our favourite categories does satisfy

that inverse functions are morphisms. Some examples include algebraic structures such as Gp

6There is an implicit notion of uniqueness here, ”the” will be justified by the upcoming category.
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1 id−→2 3

1 2

3

Figure 1: A bijective graph homomorphism induced by the identity on {1, 2, 3} that does not
make up an isomorphism.

and VectK for a given field K.7 As for continuous maps between topological spaces, graph

homomorphisms that are injective need not restrict to isomorphisms. An easy example is

given by an obvious bijection from a graph on two distinct vertices without edges to K2.

The coproduct in Set is easily proven to agree with the disjoint union [Awo10], and

extends to Grph by choosing the correct definition of adjacency with respect to the universal

property:

Proposition 2.8. The coproduct of two graphs G1 and G2 is the graph G1qG2 with vertex set

V (G1)q V (G2) = ∪{(xi, i)| xi ∈ Gi} and induced edge set from G1 and G2, i.e. two vertices

(v, i) and (u, j), are adjacent in G1qG2 if and only if i = j and u and v are adjacent in Gi.

Proof. The proof is straightforward; use the construction from Set and show that it extends

to Grph. Let i1 : V (G1)→ V (G1qG2), i1(v) = (v, 1) and i2 : V (G2)→ V (G1qG2), i2(v) =

(v, 2) be the coprojections. Given j = 1 or 2 and adjacent vertices u and v in Gj, we have that

ij(u) = (u, j) and ij(v) = (v, j) are adjacent by definition of adjacency in G1qG2. Take any

graph X and homomorphisms f1 : G1 → X, f2 : G2 → X, such that we have Set-morphisms

f1 : V (G1)→ V (X), f2 : V (G2)→ V (X). Define a function f : V (G1 qG2)→ V (X) by

f(v, i) =

{
f1(v) if i = 1

f2(v) if i = 2
.

If u and v are adjacent in Gj for j = 1 or 2, we have that f(u, j) = fj(u) and f(v, j) = fj(v)

are adjacent as f1 and f2 are homomorphisms, so f is a homomorphism again. By the

construction of the coproduct in Set, we have that f is the unique homomorphism satisfying

f1 = f ◦ i1 and f2 = f ◦ i2 [Awo10]. Hence, G1 q G2 satisfies the universal property and

therefore agrees with the coproduct.

Whenever the vertex sets of two graphs are both contained in a common larger set, the

union, intersection and inclusion carry over to graphs in a natural way. If G and G′ are two

7For the group case, given a bijective group homomorphism f : G → H and two elements h1 = f(g1),
h2 = f(g2), we have that f−1(h1h2) = f−1(f(g1)f(g2)) = f−1(f(g1g2)) = g1g2 = f−1(h1)f−1(h2). This
argument easily replicates to other algebraic structures.
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1 2

31 2

3 4

q =

(1, 2) (2, 2)

(3, 2)(1, 1) (2, 1)

(3, 1) (4, 1)

Figure 2: The coproduct/disjoint union in Grph.

such graphs, then G∪G′ = (V (G)∪V (G′), E(G)∪E(G′)), G∩G′ = (V (G)∩V (G′), E(G)∩
E(G′)) and G′ ⊂ G if and only if V (G′) ⊂ V (G) and E(G′) ⊂ E(G).

Definition 2.9. Let G and G′ be graphs.

• G′ is a subgraph of G if G′ ⊂ G.

• G′ is an induced subgraph of G if V (G′) ⊂ G and E(G′) = {{u, v} ∈ E(G)| u, v ∈
V (G′)}. This is denoted G′ = G[V (G′)].

• An inclusion, or (graph) embedding, i : G′ ↪→ G of G′ into G is an isomorphism of G′

onto a subgraph of G.

Definition 2.9 extend the set difference to graphs. If G and G′ are graphs, then G−G′ =
G[V (G)− V (G′)].

It is customary to define a sequence in a set X as a function f : N+ → X, where f is

identified with the infinite tuple (x1, x2, ...), xn = f(n) for any n ∈ N+. We will, however,

also refer to functions f : {1, 2, ..., n} → X as sequences. The following definitions partially

follow C. Godsil in [GR01].

Definition 2.10. Let G be a graph and k a positive natural number.

• A walk in G is a sequence in V (G) satisfying that there are edges between successive

vertices.

• A path in G is a walk for which any vertex appears at most once.

• A walk (and therefore also a path) is finite if it is defined over a finite set as a sequence,

otherwise it is infinite.

• Let W : D → V (G) be a walk with |D| ≥ 2, then the length of W is |D| − 1.

• A cycle, C = (v1, ..., vn), is a finite walk of length greater or equal to three such that

(v1, ..., vn−1) is a path and v1 = vn.

7



• A cycle is induced if the corresponding subgraph is induced.8

• A cycle is even (odd) if the length of the cycle is even (odd).

• An edge, e, is traversed in a walk W if there are successive vertices vi, vi+1 in W such

that e = {vi, vi+1}.

• A path is Hamiltonian if every vertex appears once. A Hamiltonian cycle is a hamilto-

nian path, (v1, ..., vn), such that v1 and vn are adjacent.

• G is connected if there is a path between any pair of vertices, otherwise it is discon-

nected.

• G is k-connected if |G| > k and G−X is connected for any X ⊂ V (G) with |X| < k.

• A forest is an acylcic graph, i.e. there are no cycles, and a tree is a connected forest.

K4 C4 K3

Figure 3: The graph K4 together with subgraphs C4 (even cycle) and K3.

Figure 4: A graph together with a highlighted path of length five.

Definition 2.11. Let G be a graph [Die00].

• Let C = {c1, ..., ck} be a set. A function f : V (G)→ C is said to be a k-colouring of G

if {u, v} ∈ E(G) ⇒ f(u) 6= f(v). We refer to C as a colour set, and elements of C as

colours.

8A walk, W = (v1, ..., vn), is identified with the subgraph ({v1, ..., vn}, {{v1, v2}, ..., {vn−1, vn}}).
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• G is k-colourable if there exist a k-colouring of G.

The concept of colouring graphs may be stated in more categorical terms.

Proposition 2.12. Let G be a graph, then G is k-colourable if and only if there is a homo-

morphism from G to Kk.

Proof. The statement is trivial for |G| ≤ k, so assume |G| > k. Let V (Kk) = {1, ..., k}, and

consider the partition {f−1(1), ..., f−1(k)} of G determined by a homomorphism f : G→ Kk.

Note that some of the preimages may be empty, as a homomorphism does not need to be

surjective. Within each partition class there cannot be any edges as f is a homomorphism,

hence, we can safely assign equal colours to equivalent vertices. Contrary, a vertex colouring

f : V (G) → {c1, ..., ck} is a homomorphism from G to Kk by defining V (Kk) = {c1, ..., ck}
[GR01].

Corollary 2.13. Let G and G′ be graphs. If G′ is k-colourable and there is a homomorphism

G→ G′, then G is k-colourable.

Proof. There is a homomorphism G′ → Kk by Proposition 2.12, so that we have a homomor-

phism G→ Kk by assumption. Apply Proposition 2.12 again.

Observation 2.14. In the setting of Corollary 2.13 the colouring of G is determined by the

preimage of the homomorphism G→ G′.

Proof. The proof of Proposition 2.12 shows that the colouring of G′ is determined by the

preimage of the homomorphism G′ → Kk. Consequently the homomorphism G → Kk that

factor as G→ G′ → Kk admits colours determined by the preimage of G→ G′.

Example 2.15. Given a cycle C = (c0, ..., cn−1), there is a homomorphism C → K2 (2-

colouring) if n is even and a homomorphism C → K3 (3-colouring) if n is odd. First, assume

that n is even, say n = 2m, and define a function φ2m : ci 7→ ci mod 2. This is a graph

homomorphism onto K2 with vertex set {c0, c1}: The case m = 2 is trivial, so, assuming that

the assertion holds for m = k, we notice how φ2(k+1) = φ2 ◦ φ2k, where φ2 acts on the vertex

set for which c2 is replaced with c2k and c3 is replaced with c2k+1. Consequently, the claim

follows by induction. In the case of n odd, say n = 2m+ 1, we apply φ2m from the even case

and notice that this is a homomorphism to K3 with {c0, c1, c2m} as vertex set.

9



→→

Figure 5: An illustration of how homomorphisms are connected to colouring graphs.

2.2 The Category of Quivers

Definition 2.16. A directed multigraph consists of an indexing set I together with a pair

G = (V (G), E(G)), or simply G = (V,E), of sets where E ⊂ I × V × V . The elements

of V and E are called vertices and edges, respectively. Edges in the diagonal I × ∆(V ),

∆(V ) = {(v, v)| v ∈ V }, are called loops.9

Notice how the above definition reformulate Definition 2.1 with two added features; sub-

sets of 2V are replaced by elements of V × V which correspond to adding a direction to

each edge, and an indexing set I is added to allow several ordered edges between pairs of

vertices. So, the above definition is really two definitions, directed graphs and multigraphs,

incorporated in one definition.

Definition 2.17. A quiver is a quadruple Q = (V,E, s, t) consisting of sets V and E called

vertices and edges/arrows, respectively, as well as functions s, t : E → V called source and

target, respectively.

Observe how Definition 2.16 and 2.17 are equivalent, which essentially follows as the

functions s and t applied to an arrow correspond to the first and second component of an

edge in a directed multigraph.

Observation 2.18. Definition 2.16 and Definition 2.17 are equivalent.

Proof. Given a quiver Q = (V,E, s, t), we construct Q from a directed multigraph by taking

G = (V,E(G)) where E(G) = {(e, v, u) ∈ E × V × V | s(e) = v and t(e) = u}. Contrary,

given a directed multigraph G = (V,E), consider the functions s, t : E → V, s(e) = v2 and

t(e) = v3 whenever e = (i1, v2, v3).

Historically, the name quiver originates from Peter Gabriel’s article ”Unzerlegbare Darstel-

lungen I” where he proposed the name ”Köcher”, which directly translates to quiver, for a

9The notation here comes from the diagonal functor which is often denoted ∆.
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directed multigraph [Gab72]. Gabriel imagined nodes as archers pulling arrows out of quivers

and shooting them at different targets/nodes.

Figure 6: The mother of all quivers.

Consider the category I given by ObI = {0, 1} and morphisms a, b : 0→ 1 in addition

to identities, and notice how any quiver Q = (V,E, s, t) determines a contravariant functor

F : I → Set by setting V = F (0), E = F (1), s = F (a) and t = F (b).10 Contrary, a

contravariant functor F : I → Set determines a quiver (F (0), F (1), F (a), F (b)). So, we can

identify quivers with functors, and therefore we give the following definition [ML71].11

Definition 2.19. We denote Quiv as the category PreshSet I .

In this context, objects are quivers and morphisms are natural transformations of cor-

responding functors. A natural transformation η : F → G of contravariant functors F,G :

I → Set is, by definition, a collection η = (η0, η1) of functions η0 : F (0) → G(0) and

η1 : F (1)→ G(1) satisfying commutative diagrams:

F (1) G(1)

F (0) G(0)

η1

η2

F (a) G(a)

F (1) G(1)

F (0) G(0)

η1

η2

F (b) G(b)

That is, taking source and target commutes with the functions that send vertices to vertices

and edges to edges, i.e. arrows in the quiver associated with F are preserved. So, the

morphisms in Quiv are indeed morphisms in Grph extended to quivers.

10Notice that the morphisms a, b : 0→ 1 are flipped by a contravariant functor.
11The terminology here is inconsistent with that of Saunders Mac Lane in ”Categories for the working

Mathematician”, where he refers to a quiver as a graph.
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Note how quivers almost constitutes categories, and categories define quivers by taking

objects as vertices and arrows as morphisms. The latter is reflected by the forgetful functor

U : Cat → Quiv, where a (small) category A is sent to the underlying quiver U(A )

consisting of:

• Vertices as objects of A .

• Arrows as morphisms.12

• Source and target as domain and codomain, respectively.

Moreover, a functor of small categories sends objects to objects and morphisms to morphisms,

so U simply restricts the functor to the underlying quiver [ML71]. Given a field K, a finite

quiver determines a K-algebra where multiplication is given by concatenating arrows and the

vector space structure is given by taking every finite product as a basis.13 More precisely,

given a quiverQ = (V,E, s, t), add trivial arrows ev for each v ∈ V satisfying s(ev) = v = t(ev)

and

e · ev =

{
e if s(e) = v

0 if s(e) 6= v
,

ev · e =

{
e if t(e) = v

0 if t(e) 6= v

for any arrow e in E. Include arrows whenever concatenating is possible, i.e. add arrows

e ◦ f according to the multiplication rule

e · f =

{
e ◦ f if s(e) = t(f)

0 if s(e) 6= t(f)
.

The trivial arrows (ev) sums up to the multiplicative identity in the algebra [ARS97]. This

process basically extend quivers to categories in a functorial way, i.e. there is a functor

C : Quiv → Cat sending a quiver to the corresponding quiver that includes trivial arrows

and non-zero concatenation of arrows; identity morphisms are trivial arrows and composition

is given by multiplication. A natural transformation, η = (η0, η1), between two quivers is sent

to the functor C(η) given by the assignment η0 on objects and extending η1 to trivial arrows

and concatenations functorially; define C(η)(e) = id1(e) whenever e is in the domain of η1,

extend it to be functorial by setting C(η)(ef) = C(η)(e) ◦ C(η)(f) and let C(η)(ev) = eC(v).

As in the case of U , one can easily verify C to be a functor.

12Smallness ensures that the set of arrows is an actual set.
13As for graphs, a quiver is finite if its set of vertices is finite.
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The morale of how a quivers and small categories are connected is summed up in the

following proposition [ML71].

Proposition 2.20. C is left adjoint to U , i.e. there is a natural isomorphism

HomCat(C(−),−) ' HomQuiv(−, U(−))

of functors Quivop×Cat→ Set.

2.3 Simplicial Objects and Homology

We present a category that will associate a chain complex, and thus homology, to certain

contravariant functors.

Definition 2.21. The simplex category, ∆, is the full subcategory of Cat consisting of

objects [n], [n] = C(0→ 1→ · · · → n) where n ∈ N0.14

Equivalently, we may define ∆ as every poset [n] = {0 ≤ 1 ≤ · · · ≤ n} which replaces

→ with ≤ and functors with order-preserving maps. We define two important types of

morphisms:

• Face maps, for a given n ∈ N0 and 0 ≤ i ≤ n we have a functor δni : [n − 1] → [n],

(0→ 1→ · · · → n− 1) 7→ (0→ 1→ · · · → i− 1→ i+ 1→ · · · → n).

• Degeneracy maps, for a given n ∈ N0 and 0 ≤ i ≤ n− 1 we have a functor σni : [n] →
[n− 1], (0→ 1→ · · · → n) 7→ (0→ 1→ · · · → i

idi−→ i→ · · · → n− 1) where i→ i+ 1

is mapped to i
idi−→ i.

It is intuitively clear that face maps and degeneracy maps determine every morphism due to

functoriality [ML71].15

Proposition 2.22. Any morphism in ∆ is a unique composition of face maps and degeneracy

maps.

Definition 2.23. A simplicial object in a category C is an object in PreshC ∆. In the special

case for which C = Set, we refer to simplicial objects as simplicial sets.

14C is adjoint to the forgetful functor between Cat and Quiv.
15Functoriality restricts to composing forwards or restricting an arrow to the identity as there are no arrows

m→ n for m > n.
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Notice that the objects of ∆ can be considered as simplicial sets through the Yoneda

embedding that identifies [n] with Hom∆(−, [n]) [Opp16].

Recall that a pre-additive category is a category where the Hom-sets are Abelian groups

satisfying that composition is bilinear, an additive category is a pre-additive category that

admits the following two features.

• Zero object. An object 0 such that given any objectA, both HomA (A, 0) and HomA (0, A)

contain a unique morphism. This map is always denoted 0.

• Biproduct. Given any two objects A and B, there is an object A⊕B with morphisms

iA, iB, πA and πB satisfying idA = πA ◦ iA, idB = πB ◦ iB and idA⊕B = iA ◦πA + iB ◦πB.

A A⊕B B
πA

iA

πB

iB

The biproduct (if it exists) can be seen to agree with both the limit and the colimit of the

objects, and consequently it is unique. As the notation suggests, the 0 object is the 0-module

in the case of modules, and the biproduct is the direct sum [Awo10, Opp16]. Let f : A→ B

be a morphism in an additive category, then the kernel of f is the pullback/limit (if it exists)

of the diagram:

A

0 B
0

f

That is to say an object Ker f with a monomorphism Ker f
i−→ A such that f ◦ i = 0 and any

B′
g−→ A satisfying f ◦ g = 0 factor uniquely through Ker f :

B′

A BKer f
f

g∃! g′

i

Dually, the cokernel of f : A→ B is the pushout/colimit (if it exists) of the diagram:

A B

0

f

0
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That is to say an object Cok f with an epimorphism B
π−→ Cok f such that π ◦ f = 0 and any

B
g−→ B′ satisfying g ◦ f = 0 factor uniquely through π:

B′

B Cok fA
π

g ∃! g′

f

Moreover, with i and π as in the above diagrams, we define the image of f , Im f , as the

kernel of π (if it exists) and the coimage of f , Coim f , as the cokernel of i (if it exists).

Recall that a pre-Abelian category is an additive category where kernels and cokernels

always exist. Composing f with its kernel induces a map through the coimage, say f = f ′ ◦
(A→ Coim f). Further, f composed with B → Cok f is zero so that f = f ′ ◦ (A→ Coim f)

implies that f ′ ◦ (B → Cok f) = 0 as A → Coim f is an epimorphism. Hence, f ′, factor

uniquely through the image of f and we have a uniquely induced map f̄ : Coim f → Im f .

A B

Coim f Im f

Ker f Cok f
f

f̄

An Abelian category is a pre-Abelian category where this induced map is an isomorphism

[Opp16]. In the special case of ModR for a given ring R, the kernel and cokernel of an

R-homomorphism f : M → N is reduced to Ker f = {x ∈ M | f(x) = 0} with inclusion

and Cok f = N�Im f with the canonical map, where Im f = {y ∈ N | ∃ x ∈ M, y = f(x) }
[Rot08].16

Observation 2.24. As the Hom-sets are Abelian groups and ◦ is bilinear, Hom functors

from Abelian categories may be considered as functors into Ab rather than Set.

Given a chain complex

A = · · · → An+1
∂n+1−−−→ An

∂n−→ An−1 → · · · ,

16The coimage is the cokernel of the kernel, so that the image being isomorphic to the coimage is reduced
to the first isomorphism theorem in the case of modules; f : M → N in ModR for a given ring R satisfy

Coim f 'M�Ker f .
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i.e. ∂2 = 0, in an Abelian category, we have that the monomorphism Im ∂n+1 ↪→ An factor

through the monomorphism Ker ∂n ↪→ An. The definition of a kernel gives a unique monomor-

phism Im ∂n+1 ↪→ Ker ∂n whose cokernel is defined as the n’th homology, Hn(A).17 In the case

of modules this definition is reduced to the factor module Ker ∂n�Im ∂n+1
[Opp16, Rot08].

Note that a chain complex is an underlying quiver of a category by including identities and

compositions, i.e. applying the functor C. As a result, there is a category C(A ) consisting

of chain complexes and chain maps that correspond to natural transformations; given chain

complexes

A = · · · → An+1
∂n+1−−−→ An

∂n−→ An−1 → · · · ,

and

B = · · · → Bn+1
δn+1−−→ Bn

δn−→ Bn−1 → · · · ,

a chain map f : A → B is simply a collection of maps fn : An → Bn that commute with

boundary operators; fn−1 ◦ ∂n = δn ◦ fn for any n. As Hn is a cokernel, and more generally

a colimit, it is a functor C(A )→ A [Opp16].

Proposition 2.25. Let A be an additive category, and let S be any simplicial object in A .

Then we have a chain complex

· · · ∂n+1−−−→ S([n])
∂n−→ · · · ∂2−→ S([1])

∂1−→ S([0])
0−→ 0,

where ∂n =
∑n

i=0(−1)iS(δni ) is the corresponding boundary operator.

Proof. Take any n ≥ 2, we want to show that ∂n−1 ◦ ∂n = 0. Notice that the face maps

satisfy the relation δm+1
j δmi = δm+1

i δmj−1 whenever i < j for any m ≥ 1;

δm+1
j δmi (0→ 1→ · · · → n−1) = 1→ · · · → j−1→ j+1→ · · · → i−1→ i+1 · · · → m+1,

and

δm+1
i δmj−1(0→ 1→ · · · → n−1) = 1→ · · · → j−1→ j+1→ · · · → i−1→ i+1 · · · → m+1.

In particular, using that S is contravariant, we have that S(δmi )S(δm+1
j ) = S(δmj−1)S(δm+1

i )

17The assumption of Abelian gives a dual and equivalent definition of homology through cokernels and
coimages.

16



for i, j and m as above. Hence the composition is zero:

∂n−1 ◦ ∂n = (
n−1∑
i=0

(−1)iS(δn−1
i )) ◦ (

n∑
j=0

(−1)jS(δnj ))

=
∑
i,j

(−1)i+jS(δn−1
i )S(δnj )

=
∑
i<j

(−1)i+jS(δn−1
i )S(δnj ) +

∑
i≥j

(−1)i+jS(δn−1
i )S(δnj )

=
∑
i<j

(−1)i+jS(δn−1
j−1 )S(δni ) +

∑
i≥j

(−1)i+jS(δn−1
i )S(δnj )

= 0,

where (−1)i+jS(δn−1
j−1 )S(δni ) in the first sum cancel with (−1)i+j−1S(δn−1

j−1 )S(δni ) in the second

sum.

The summation trick in the above proof is standard when proving ∂2 = 0 in homology the-

ory, and is usually specialized to the case of singular homology for a given space [Rot08]. This

approach however, illustrates the combinatorial nature of the boundary operator. Moreover,

Proposition 2.25 associates a chain complex to a simplicial object whenever A is Abelian.
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3 Homology and Complexes

3.1 Singular Homology

Definition 3.1. The standard p-simplex is defined as the topological subspace

∆p = {(t0, ..., tp) ∈ Rp+1|
∑

ti = 1, ti ≥ 0 ∀i = 0, ..., p}

of Rp+1 equipped with the standard topology. Equivalently, ∆p is the convex hull of the

standard basis vectors in Rp+1.

e1

e2

∆1

e1

e2

e3

∆2

Figure 7: An illustration of the standard 1- and 2-simplex. The standard basis vectors in
Euclidean space are denoted ei.

This gives a geometrical interpretation of ∆ through the functor ∆ : ∆ → Top, deter-

mined by [p] 7→ ∆[p] = ∆p and a morphism f : [p]→ [m] maps to ∆(f)(t0, ..., tp) = (t′0, ..., t
′
m)

where t′j =
∑

f(i)=j ti.

Proposition 3.2. ∆ : ∆→ Top is a functor.

Proof. We clearly have a well-defined mapping Ob∆ 7→ Ob Top given by [p] 7→ ∆p, but we

need to verify that ∆(f) is a continuous function, i.e. a morphism in Top, whenever f is

a morphism in ∆. We have equipped the standard simplexes with the subspace topology

of Euclidean space, so that given f : [p] → [m] and an ε > 0, it suffices to find a δ > 0

such that |(t0, ..., tp) − (s0, ..., sp)| < δ implies |∆(f)(t0, ..., tp) − ∆(f)(s0, ..., sp)| < ε. Let

∆(f)(t0, ..., tp) = (t1,1 + ... + t1,r1 , ..., tm,1 + ... + tm,rm) and ∆(f)(s0, ..., sp) = (s1,1 + ... +

s1,r1 , ..., sm,1 + ...+ sm,rm), where r1 + ...+ rm = p, according to the definition of ∆. Observe

how
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|∆(f)(t0, ..., tp)−∆(f)(s0, ..., sp)|

= |((t1,1 − s1,1) + ...+ (t1,r1 − s1,r1), ..., (tm,1 − sm,1) + ...+ (tm,rm − sm,rm))|

=
√

((t1,1 − s1,1) + ...+ (t1,r1 − s1,r1))
2 + ...+ ((tm,1 − sm,1) + ...+ (tm,rm − sm,rm))2

≤
√

(t0 − s0)2 + ...+ (tp − sp)2 + (r1(r1 − 1) + ...+ rm(rm − 1))(ti − si)(tj − sj),

where r1(r1− 1) + ...+ rm(rm− 1) are the number of cross terms from the squares, and i and

j satisfy that (ti − si)(tj − sj) is the largest cross term. Without loss of generality, we may

assume that |(ti − si)(tj − sj)| ≤ (ti − si)2, giving the estimate

|∆(f)(t0, ..., tp)−∆(f)(s0, ..., sp)|

≤
√

(t0 − s0)2 + ...+ (tp − sp)2 + (r1(r1 − 1) + ...+ rm(rm − 1))(ti − si)(tj − sj)

≤
√

(t0 − s0)2 + ...+ (tp − sp)2 + (r1(r1 − 1) + ...+ rm(rm − 1))(ti − si)2

≤
√

(t0 − s0)2 + ...+ (tp − sp)2 + (r1(r1 − 1) + ...+ rm(rm − 1))((t0 − s0)2 + ...+ (tp − sp)2)

=
√

1 + r1(r1 − 1) + ...+ rm(rm − 1)
√

(t0 − s0)2 + ...+ (tp − sp)2

=
√

1 + r1(r1 − 1) + ...+ rm(rm − 1)|(t0, ..., tp)− (s0, ..., sp)|.

It suffices to take δ = ε√
1+r1(r1−1)+...+rm(rm−1)

, and ∆(f) is indeed continuous. Moreover, it is

clear that ∆ send id[n] to id∆n , and composition is preserved by noting the following. Given

f : [p] → [m] and g : [m] → [q], it is clear that if t′j =
∑

f(i)=j ti, then t′′j =
∑

g(i)=j t
′
i =∑

g(i)=j

∑
f(k)=i tk =

∑
g◦f(k)=j tk.

0

0

1 2

10∆(δ1
1)

∆(δ1
0)

∆(δ2
2)

∆(δ2
1)

∆(δ2
0)

Figure 8: The geometry of ∆.

The functor ∆ is often referred to as the geometric realization of ∆, and not only do we

get a geometrical interpretation of the objects, but also of the morphisms. The face map δni is
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sent to ∆(δni ) that embeds ∆n−1 on the i’th face of ∆n; {(t0, ..., tn) ∈ ∆n| ti = 0}. Similarly,

the geometric image of the degeneracy map σni collapse ∆n onto ∆n−1 by combining the

successive coordinates i and i+ 1.

In Section 2.2, we looked at a forgetful functor U : Cat → Quiv, we also looked at

how this is adjoint to equipping a quiver with identities and composition of arrows. Such

adjointness occurs in several situations, another example is the construction of free modules

over arbitrary sets. There is a forgetful functor UR : ModR → Set that simply forgets the

module structure; a module is a set with additional structure, and an R-homomorphism is

a function. Moreover, UR admits an adjoint. Consider the functor R(−) : Set → ModR

that sends a set, X, to the free R-module with X as a basis, i.e. X 7→ R(X) = {f : X →
R | |f−1(R − {0})| < ∞} where addition and scalar multiplication is inherited from R;

(f + g)(x) = f(x) + g(x) and (rf)(x) = rf(x). This module is free and admits a basis given

by the indicator functions18

χx(y) =

{
1 if y = x

0 if y 6= x

that are identified with the elements of X. Moreover, a function φ : X → Y is sent to

R(φ) : R(X) → R(Y ) defined by

(f : X → R) 7→ (y 7→
∑

x∈φ−1(y)

f(x)).

UR is obviously functorial, R(−) is easily checked to be functorial, and they are mutually

adjoint; HomSet(−, UR(−)) ' HomModR(R(−),−) [Opp16]. This gives a short definition of

singular homology.

Definition 3.3. Let X be any topological space, then we define the singular homology of X

with coefficients in Z as the homology of the corresponding chain complex from the simplicial

object Z(−) ◦ HomTop(∆(−), X).19 The i’th face of a basis element φ : ∆n → X is given by

Z(HomTop(∆(δni ),X))(φ).20

Let us make this construction explicit. Applying Z(−) ◦ HomTop(∆(−), X) to [p] yields

Z(HomTop(∆p,X)), i.e. the free Z-module with continuous functions ∆p → X as a basis, which

we will denote Sp(X) = Z(HomTop(∆p,X)). Applying HomTop(∆(−), X) to δpi : [p − 1] → [p]

gives ∂pi = HomTop(∆(δpi ), X) : HomTop(∆p, X) → HomTop(∆p−1, X), ∂pi f = f ◦ ∆(δpi )

defined by ∂pi (f)(t0, ..., tp−1) = f ◦ ∆(δpi )(t0, ..., tp−1) = f(t0, ..., ti−1, 0, ti, ..., tp−1), the i’th

18The functions have finite support so that f(y) =
∑
x∈X f(y)χx(y), i.e. χx’s generate R(X), and linear

independence follows as
∑
aiχxi

= 0 implies that ai = 0 by applying xi’s.
19Note that we could have chosen any (commutative) ring R instead of Z.
20Observe how this generalizes the geometrical i’th face of ∆n.
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face of f . In particular, the i’th face of ∆p corresponds to the image of its geometrical i’th

face homeomorphic to ∆p−1; {(t0, ..., tp) ∈ ∆p| ti = 0}. Applying Z(−) to ∂pi extend it to a

homomorphism which we also denote ∂pi . Now, ∂p =
∑p

i=0(−1)i∂pi correspond to restricting

continuous functions to the faces of ∆p with a sign convention that yields ∂2 = 0.

Hn is a functor C(Ab) → Ab, but HomTop(∆(−),−) is a bifunctor so that we may in

fact see Hn as a functor Top → Ab. We ease notation by setting Hn(X) = Hn(· · · ∂n+1−−−→
Sn(X)

∂n−→ · · · ∂2−→ S1(X)
∂1−→ S0(X)

0−→ 0). Moreover, it immediately follows that home-

omorphic spaces have equal homology groups; if h : X → Y is a homeomorphism, then

Hn(h−1)◦Hn(h) = Hn(h−1◦h) = Hn(idX) = idHn(X) and similarly Hn(h)◦Hn(h−1) = idHn(Y ).

This can be generalized further by introducing homotopy theory.

2

10

10

2

10

f

∂2
2f

∂2
2

X

Figure 9: The geometry of ∂ni ; ∂2
2 is applied to a map f : ∆2 → X.

We end this section with a simple and illustrative example taken from [Vic12].

Example 3.4. Let X = {x} be a space consisting of a single point x. There is only one

topology on this set as both the empty set and the whole set needs to be open. Moreover, given

another space Y there is only one function Y → X, namely y 7→ x for any y ∈ Y , and this

is continuous as the preimage of x is all of Y which is open. Thus, Sp(X) = (∆p → X) ' Z
for any p, and ∂pi (∆p → X) = (∆p−1 → X).21 Considering the chain complex

· · · ∂n+1−−−→ Sn(X)
∂n−→ · · · ∂2−→ S1(X)

∂1−→ S0(X)
0−→ 0,

we have that ∂1(X → ∆1) = 0 as ∂1
0 and ∂1

1 cancel, and this argument generalizes to ∂p

giving 0 if p is odd and ∆p−1 → X if p is even. Now, we can inductively determine Hn;

21Given a module M and a subset S, the notation (S) reads the smallest submodule containing S.
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H0(X) = Ker 0�Im ∂1
' Z�0 ' Z, while the others cancel giving Hn(X) = 0 for n ≥ 1.

3.2 Simplicial Complexes

Definition 3.5. Given a set, S, we define an abstract simplicial complex, A, as a subset of

2S satisfying that σ′ ⊂ σ ∈ A implies σ′ ∈ A. The elements that satisfy |σ| = k are referred

to as (k − 1)-simplexes,22 and the set of all k-simplexes is denoted Ak, the k-skeleton of A.

The set, S, in this definition is best seen as a discrete set in a topological space, i.e. a

subset of a topological space that carry the discrete topology as its subspace topology.23 In-

tuitively, one thinks of 0-simplexes as vertices or points in a space, 1-simplexes as edges/lines

in a space, 2-simplexes as triangles in a space, etc.

Observation 3.6. A graph, possibly infinite, is an abstract simplicial complex, A, for which

|σ| = 1 or 2 for any σ ∈ A.

Proof. Any graph, G = (V,E), can be defined as the abstract simplicial complex A = V ∪E ⊂
2V ; given an edge σ = {σ1, σ2} ∈ E, we know that σ1 and σ2 are both contained in V and

therefore they are also contained in A. Hence A does indeed make up an abstract simplex.

Definition 3.5 immediately gives the opposite direction.

Graphs and graph homomorphisms gives a category, Grph, which extends to abstract

simplicial complexes by not only preserving 1-simplexes, but k-simplexes in general.

Definition 3.7. Given two simplicial complexes A1 and A2, a morphism between them is a

function f : A0
1 :→ A0

2 such that a k-simplex {v0, ..., vk} ∈ Ak1 is sent to {f(v0), ..., f(vk)} ∈
Ak2.

The exact same reasoning as in Proposition 2.5 shows that abstract simplicial complexes

with the above morphisms forms a category.

We will use standard simplexes (Definition 3.1) as building blocks to embed abstract

simplicial complexes into topological spaces. Note that the standard simplexes are both

compact and Hausdorff; it is well known that [0, 1]p is compact in the standard topology,

and the standard p-simplex is homeomorphic to [0, 1]p.24 Following the construction by A.

Hatcher in [Hat01], we have the following definition.

22The k-simplexes are abstract simplexes by definition.
23Recall that the discrete topology on a set is the power set, i.e. the discrete topology on a set S is given

by 2S .
24Compactness is to be understood as every open cover admitting a finite subcover.
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Definition 3.8. A simplicial complex in a Hausdorff space, X, is a collection of maps,

{σα : ∆f(α) → X}α∈I , where I is an indexing set, and f : I → N0 is a function,25. The

collection respect the following properties:

• The restriction σα|Int(∆f(α)) is injective for any α.26

• For any restriction of σα to a face of ∆f(α), there is a β such that the restriction agrees

with σβ.

• For any α, β ∈ I either σα(∆f(α)) ∩ σβ(∆f(β)) = ∅ or they agree on a unique lower

simplex, σγ, in {ση| f(η) = f(γ)}.27

The map σα is an f(α)-simplex, the k-simplexes are the elements in {σα| f(α) = k} and

∪f(α)≤kσα(∆f(α)) is the k-skeleton. Finally, a simplicial complex is said to be finite whenever

the indexing set is finite.

The Hausdorff assumption gives nice topological properties. More precisely, an injective

continuous map is not necessarily an embedding of topological spaces in general, however

this is the case for continuous injections between compact spaces and Hausdorff spaces. That

is, an injective and continuous map, σ, from a compact space, X, to a Hausdorff space, Y ,

restricts to a homeomorphism from X to the image of σ in the subspace topology from Y .

The proof of this statement is quite easy. Indeed, take any closed V in X, then it is compact

by the compactness of X, the continuous image σ(V ) is compact by the continuity of σ, and

finally σ(V ) is closed as it is compact in Y which is Hausdorff. Thus, for a simplicial complex

{σα}, we know that σα(∆f(α)) is homeomorphic to ∆f(α), and in particular closed, compact

and Hausdorff. If, in addition, the simplicial complex is finite, we know that ∪ασα(∆f(α)) is

a finite union of closed/compact and hence closed/compact.

Example 3.9. In Section 2.1 we looked at a continuous bijection [0, 1) → S1 that did not

make up a homeomorphism, and consequently not a topological embedding. This gives a

proof of the non-compactness of [0, 1) by showing that S1 is Hausdorff.

Remark 3.10. We will ambiguously refer to the simplicial complex {σα} as ∪ασα(∆f(α)),

and vice versa.28

25The function, f , associated with {σα} keeps track of the geometrical dimension of the standard simplex
associated with a given simplex.

26Int denotes the topological interior, i.e. the union of every open set contained in a given subset.
27Hatcher does not include this requirement, however it meets our goal of embedding abstract simplicial

complexes.
28This corresponds to thinking of an embedding as its image.
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1

3

2

4 5

6

Figure 10: Not an embedding of the abstract simplicial complex {1, 2, 3, 4, 5, 6,
{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}, {1, 2, 3}, {4, 5, 6}}.

1 32

4 5

6

Figure 11: An embedding of the abstract simplicial complex {1, 2, 3, 4, 5, 6,
{1, 2}, {1, 4}, {2, 4}, {2, 3}, {2, 5}, {3, 5}, {4, 5}, {4, 6}, {5, 6}, {1, 2, 4}, {2, 3, 5}, {4, 5, 6}}.

Definition 3.11. An embedding of an abstract simplicial simplex, A, in a Hausdorff space,

X, consist of a simplicial complex {σα} in X and bijections bk : Ak → {σα| f(α) = k}. The

bijections respect the abstract simplicial complex, i.e. if ak ⊂ ak+1, then bk(ak) is a face of

bk+1(ak+1).

The above definition identifies an abstract simplicial complex with a simplicial complex

in a natural way. The second property in Definition 3.8 ensures that a simplicial complex

is an abstract simplicial complex by identifying a k-simplex with the (k + 1) underlying

0-simplexes. In terms of geometry this means that we associate 0-simplexes with points,

1-simplexes with lines, 2-simplexes with triangles, etc. Contrary, it is not possible to embed
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abstract simplicial complexes in general as we shall see later.29

Remark 3.12. We will deliberately not distinguish a simplicial complex from the abstract

simplicial complex it defines.

Given a finite simplicial complex, {σα}, one often labels the 0-simplexes {v0, ..., vn} and

denote [vi0 , ..., vip ] as the p-simplex with vi0 , ..., vip as underlying 0-simplexes.

Beware that there is one possible confusion, the k-skeleton of a simplicial complex is

defined as the union of t-simplexes for 0 ≤ t ≤ k, while the k-skeleton of the corresponding

abstract simplicial complex is given by the collection of all combinatorial k-simplexes. The

information of lower simplexes is, however, encoded in an abstract simplex.

Figure 12: Two representations of K4 for which only one is an embedding into R2.

Figure 13: A representation of a graph as a 1-skeleton.

Example 3.13. By Observation 3.6, a graph is an abstract simplex only consisting of 0-

and 1-simplexes, and thus an embedding of a graph is a simplicial complex {σα} for which

f(α) = 0 or 1 for every α. Note that the third property in Definition 3.8 ensures that the

29The complete graph on five vertices cannot be embedded in R2.
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1
3
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[1, 2]

[2, 3]

[1, 3]

[3, 4]

[1, 4] [2, 4]

[2, 3, 4]

[1, 2, 4]
[1, 2, 3]

[1, 3, 4]

Figure 14: The tetrahedron as a simplicial complex.

interior of different simplexes do not intersect, i.e. edges/1-simplexes do not intersect. Also

note that given a simplicial complex, its underlying 1-skeleton defines the embedding of some

graph.

Example 3.14. Considering the tetrahedron as a subspace of R3, we may identify it with a

simplicial complex in R3; four maps from the standard 0-simplex, six maps from the standard

1-simplex and four maps from the standard 2-simplex. Also note that the 1-skeleton is an

embedding of K4 in R3 as every vertex is adjacent in the tetrahedron. The tetrahedron is

homeomorphic to the sphere, S2, and therefore gives an embedding of T 0 ∪ T 1 = K4 in S2.

3.3 Simplicial Homology

Let {σα} be a simplicial complex in a Hausdorff space, X. From Definition 3.3 we have an

associated chain complex and singular homology of X0 = ∪ασα(∆f(α)). The submodules,

S̄n(X0) of Sn(X0), generated by n-simplexes in {σα} gives an induced chain complex, and

thus homology. This homology will be referred to as the simplicial homology of X0.

Singular homology was first introduced by S. Eilenberg in 1944 [Eil44], and together

with N. Steenrod the Eilenberg-Steenrod axioms were introduced [ES45]. CW-complexes,

short for closure weak complexes, generalizes simplicial complexes, and was introduced by

J. H. C. Whitehead [Whi49]. The idea is to attach n-disks inductively by maps from the

boundary.30 Given two topological spaces X and Y , as well as a map f : A→ Y with A ⊂ X,

30The boundary of Dn is given by ∂Dn = {x ∈ Rn| |x| = 1} = Sn−1.
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we may construct the space X
∐
Y�∼, where ∼ is generated by a ∼ f(a) for any a ∈ A.

Geometrically, A is attached to its image in Y . A CW-complex is constructed inductively.

Starting out with a non-empty set of points, the 0-skeleton, X0 attach 1-disks to X0 via

maps from the boundary to construct X1, the 1-skeleton. Proceed inductively by attaching

(k + 1)-disks to the k-skeleton, Xk, via maps from the boundary. The images of the interior

of n-disks, homeomorphic to Rn, are called n-cells. The attaching map must admit the finite

closure property. That is, the closure of each n-cell only intersect a finite number of lower

Attach

Deform

Figure 15: The 2-sphere as a CW-complex obtained by attaching a point to the boundary of
the 2-disk.

cells. An example is given by attaching D2 to a point along the boundary, giving the sphere,

S2. Moreover, CW-complexes are not equipped with the quotient topology from the above

construction, but with the weak topology; a subset is closed if and only if the intersection

with any closure of a cell is closed. Clearly, closed in the (strong) original topology implies

closed in the weak topology, and so the weak topology is in fact coarser (or weaker). A CW-

complex is finite if it is constructed by a finite set of cells. Observe how a finite CW-complex

is necessarily compact; a finite union of continuous images of compact disks.

Constructing a simplified chain complex for CW-complexes requires a lot of machinery and

will be skipped as it is a standard construction included in e.g. [Hat01], but note that the basis

in the n’th dimension is given by the n-cells.31 CW-complexes generalize simplicial complexes;

the n-disk is homeomorphic to the standard n-simplex, and embeddings gives strict rules for

gluing together simplexes. Further, the resulting homology can be shown to agree with both

the singular homology and possibly the simplicial homology of the constructed space via the

Eilenberg-Steenrod axioms.32 This is shown in most standard texts on algebraic topology

31We only need to know the generators for future arguments.
32The constructed space need not be a simplicial complex, and therefore simplicial homology need not
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[Vic12, Hat01]. In Section 3.2, there was no notion of a weak topology. However, we are

mainly concerned with finite simplicial complexes where the two topologies agree. Indeed,

given a simplicial complex X and a closed subset V ⊂ X, the intersection V ∩ ē with the

closure of a simplex e is closed as it is the finite intersection of closed, consequently V is

closed in the weak topology. Contrary, if X is a finite simplicial complex and V is closed in

the weak topology, simply observe how

X =
⋃

simplexes

ē

such that

V =
⋃

simplexes

V ∩ ē

is closed as it is a finite union of closed. The same argument works for CW-complexes in

general by replacing simplex with cell.

It is possible to compute the homology directly by applying the Smith normal form in

the finite case.33

Example 3.15. Let T be the embedding of the tetrahedron into R3, defined by Figure 14.

Numerate the 0-skeleton of the tetrahedron with {1, 2, 3, 4}. Then we have that ∂2[i, j, k] =

[i, j] + [j, k]− [i, k] whenever 1 ≤ i < j < k ≤ 4, and ∂1[i, j] = j − i whenever 1 ≤ i < j ≤ 4.

Fixing ordered bases 1, 2, 3, 4 for Z4, [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4] for Z6 and [1, 2, 3],

[1, 2, 4], [1, 3, 4], [2, 3, 4] for Z4, we get matrix representations

∂1 =


−1 −1 −1 0 0 0

1 0 0 −1 −1 0

0 1 0 1 0 −1

0 0 1 0 1 1


and

∂2 =



1 1 0 0

−1 0 1 0

0 −1 −1 0

1 0 0 1

0 1 0 −1

0 0 1 1


.

make sense in general.
33It is crucial that Z is a PID here.
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Applying row and column operations, we easily find the Smith normal forms to be

∂1 ∼


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0


and

∂2 ∼



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0


.

Hence, we calculate the homology of

0→ Z4 ∂2−→ Z6 ∂1−→ Z4 → 0

by changing bases according to the Smith normal form, giving

H0(T ) = Ker 0�Im ∂1
' Z,

H1(T ) = Ker ∂1�Im ∂2
' 0

and

H2(T ) = Ker ∂2�Im 0 ' Z.

3.4 Manifolds and Triangulations

Simplicial homology is particularly easy to compute over PIDs (principal ideal domains) and

fields, a computational aspect of homology that transfer to topological spaces homeomorphic

to simplicial complexes.

Definition 3.16. An n-dimensional manifold, or n-manifold, M is a Hausdorff space with a

second countable basis that is locally homeomorphic to Rn; the topology admits a countable

basis, and given any p ∈ M there is an open neighbourhood Up of p and a homeomorphism

hp : Up → Rn. The local homeomorphisms, hp, are referred to as charts.

Note that the open n-disk, B1(0) = Int(Dn), is homeomorphic to Rn, therefore we may

replace locally homeomorphic to Rn with locally homeomorphic to B1(0). The open n-disk
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'

Figure 16: A 2-manifold.

is in fact diffeomorphic (to be defined) to Rn by scaling with arctan.

Example 3.17. Equip Rn+1, n ≥ 0, with the standard topology and consider the sphere

Sn = {x ∈ Rn+1| |x| = 1} in the subspace topology. The space is clearly second countable

and Hausdorff as Rn+1 is second countable and Hausdorff. Indeed, the standard topology is

generated by ε-balls, Bε(x) = {z ∈ Rn+1| |x − z| < ε} where ε > 0 and x ∈ Rn+1. Q is

dense in R, i.e. for any open neighbourhood U of a point in R, we have that Q ∩ U 6= ∅.
Hence, we may take the collection Br((q1, ..., qn+1)), where r is a positive rational number

and qi’s are rational numbers, as a basis for the standard topology. This basis is count-

able as Q is countable and a finite product of countable sets is countable again [Mun00].

Given any distinct points x, y in Rn+1, we have that ε = |x−y|
2

gives two disjoint open balls

Bε(x) and Bε(y); z ∈ Bε(x) gives 2ε = |x − y| ≤ |x − z| + |z − y| < ε + |z − y| so that

|z − y| > ε, i.e. z /∈ Bε(y). That is to say that points are separated by open neighbour-

hoods. Altogether, Sn is Hausdorff and second countable in the subspace topology. The open

subsets U−i = {(x1, ..., xn+1) ∈ Rn+1| xi < 0} and U+
i = {(x1, ..., xn+1) ∈ Rn+1| xi > 0}

for i = 1, ..., n + 1 gives open subsets V −i = U−i ∩ Sn = {(x1, ..., xn+1) ∈ Sn| xi < 0}
and V +

i = U+
i ∩ Sn = {(x1, ..., xn+1) ∈ Sn| xi > 0} of Sn. This gives homeomorphisms

φ±i : V ±i → Int(Dn), (x1, ..., xn+1) 7→ (x1, ..., xi−1, xi+1, ..., xn+1) with inverses given by

(φ±i )−1(x1, ..., xn) = (x1, ..., xi−1,±
√

1− |x|2, xi, ..., xn) [Lee03]. Moreover, any point x in

Sn has a non-zero component, say xi, and hence x is in U−i or U+
i depending on whether

xi > 0 or xi < 0; Sn is locally homeomorphic to Rn.

Example 3.18. From the manifold Sn, the real projective space RP n may be constructed

as follows. Let ∼ be the equivalence relation generated by x ∼ −x, then we define RP n as
Sn�∼ with the quotient topology from the canonical map π : Sn → Sn�∼. Note that the

equivalence classes may be interpreted as the collection of all lines through the origin in Rn+1;

thinking of Sn as a subset of Rn+1, the lines through the origin are defined by antipodal points

on Sn. As Sn is an n-manifold, it follows canonically that RP n is an n-manifold. Indeed,
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x2

x1

V +
2

Figure 17: The upper hemisphere V +
2 is homeomorphic to (−1, 1).

the basis for the topology in RP n is countable as it is induced by the countable basis of Sn.

A space X is Hausdorff if and only if the diagonal, ∆(X) = {(x, x) ∈ X × X}, is closed

[Vic12]. Hence, the real projective space is Hausdorff as the pre-image of the diagonal under

π is given by the union

{(x, x) ∈ Sn × Sn} ∪ {(x,−x) ∈ Sn × Sn}

which is a finite union of closed as Sn is Hausdorff. Finally, it is locally homeomorphic to

Rn by composing the charts from Sn with π. Moreover, it is compact as it is the continuous

image of the compact space Sn.

Example 3.19. A simplicial complex need not be a manifold. A simple example is given

by considering three 0-simplexes, 0,1,2, and a convex 1-simplex, [1, 2], in R2, i.e. the disjoint

union of a point and a straight line. This cannot be a manifold for two reasons. First, the

point can only be homeomorphic to R0, i.e. a point, while an interior point of [1, 2](∆1) =

{[0, 1](1, 0)t + [0, 1](0, 1)(1 − t)| 0 ≤ t ≤ 1} does not admit a local homeomorphism to

a point. Given x ∈ Int([1, 2](∆1)), take ε = min{|x − [0, 1](0, 1)|, |x − [0, 1](1, 0)|} such

that there is an open neighbourhood U = Bε(x) ∩ [0, 1](∆1) = {[0, 1](1, 0)t + [0, 1](0, 1)(1−
t)| |x| − ε < t < |x| + ε} that is homeomorphic to (−ε, ε) by rotation and translation. As

(−ε, ε) is homeomorphic to R it cannot be homeomorphic to a point. The second reason

is that a point on the geometrical boundary of [0, 1](δ1), i.e. ∂1
0 [0, 1](∆1) ∪ ∂1

1 [0, 1](∆1) =

{[0, 1](0, 1), [0, 1](1, 0)}, gives open neighbourhoods homeomorphic to [0,∞) by a similar

argument as above. Removing a point, x, from R gives two connected components, (−∞, x)

and (x,∞), but removing 0 from [0,∞) yields (0,∞), which is connected. As connectedness

is preserved under continuity, [0,∞) cannot be homeomorphic to R [Mun00]. This illustrates

two general problems. First, simplicial complexes need not have a consistent geometrical

dimension (locally homeomorphic to Rn for n fixed). Secondly, simplicial complexes can
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have boundaries of lower dimension.34

0

Bε([1, 2](0, 1))

Bε(x)

[0, 1](∆1)

x

[1, 2](0, 1)

Figure 18: The disjoint union of a 0-simplex and a 1-simplex do not make up a manifold.

Definition 3.20. Let M be an n-dimensional manifold. An atlas is a collection of charts,

A = {hα : Uα → Rn}, for which {Uα} is an open cover of M . The atlas is smooth if the

transition maps, hα2 ◦ h−1
α1

: hα1(Uα1 ∩ Uα2) → hα2(Uα1 ∩ Uα2), are smooth (as functions

between open subsets of Rn).

If, for a given manifold, the set of all smooth atlases is non-empty, we easily deduce that

there is a maximal smooth atlas; a chain A1 ⊂ A2 ⊂ ... admits an upper bound, U = ∪Ai,
which clearly is smooth again, and hence there is a maximal smooth atlas by Zorn’s Lemma.

Definition 3.21. A smooth structure on a manifold, M , is a maximal smooth atlas A. In

this case, the pair (M,A) is referred to as a smooth manifold.

Note that the existence of a single smooth atlas gives the existence of a maximal smooth

atlas by the argument involving Zorn’s Lemma above. Nonetheless, the argument does not

guarantee uniqueness of maximal smooth atlases in any way, and consequently one cannot

expect smooth structures to be unique. More traditional approaches however, reveals that a

single smooth atlas is included in a unique maximal smooth atlas [Lee03]. Smooth structures

enables the use of analysis on manifolds. Given two smooth manifolds, (M1,A1) and (M2,A2),

we say that a map f : M1 → M2 is smooth if for any x ∈ M1 and charts h1 : Ux → Rn,

h2 : Uf(x) → Rm the local map h2 ◦ f |Ux∩f−1(Uf(x)) ◦ h1|−1
Ux∩f−1(Uf(x))

is smooth. Consider a

smooth map f : M → N , a point x ∈ M , two charts, h1 and h̄1 about x, and two charts,

34This property is allowed in manifolds with boundary.
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h2 and h̄2, about f(x). Similarly, to the definition of smoothness, there are neighbourhoods

where h̄2 ◦ f ◦ h̄1
−1

= (h̄2 ◦h−1
2 )◦ (h2 ◦ f ◦h−1

1 )◦ (h1 ◦ h̄1
−1

); smoothness of h2 ◦ f ◦h−1
1 implies

smoothness of h̄2 ◦ f ◦ h̄1
−1

as transition charts are smooth [Lee03]. As a result, smoothness

about a point is independent of the choice of charts and it suffices to consider sub-atlases

B1 ⊂ A1 and B2 ⊂ A2 when verifying smoothness.35

The composition of smooth maps is easily seen to be smooth again by arguments similar

to the above.

Definition 3.22. Let Diff denote the category consisting of smooth manifolds and smooth

maps. An isomorphism in Diff is called a diffeomorphism.

Example 3.23. We looked at how the n-sphere, Sn, is a manifold in Example 3.17. As a

consequence, we obtained the atlas A = {φ±i : V ±i → Int(Dn)}. The transition maps are

given by φ±i ◦ φ±j (x1, ..., xn) = (x1, ..., xi−1, xi+1, ..., xj−1,±
√

1− |x|2, xj, ..., xn), and known

to be smooth for |x| = 1 by calculus. Hence, A is included in a maximal smooth atlas, and

therefore gives a smooth structure on Sn. Similarly, RP n is smooth [Lee03].

Based on the discussion preceding Definition 3.22, one cannot expect maximal smooth

atlases to be unique, i.e. objects in Diff with homeomorphic (isomorphic in Top) underlying

manifolds are not diffeomorphic (isomorphic in Diff) in general. In 1956, J. Milnor discovered

smooth 7-manifolds homeomorphic to S7, but not mutually diffeomorphic [Mil56]. Together

with M. Kervaire, Milnor classified these exotic 7-spheres to 28 distinct objects in Diff

[KM63]. It immediately follows that Diff cannot be a subcategory of Top; isomorphic

objects in Top does not need to be isomorphic in Diff .

We will direct our discussion from smooth/analytic to combinatorial.

Definition 3.24. A triangulation of a manifold, M , is a simplicial complex equipped with

the weak topology homeomorphic to M .

The name triangulation is best understood in the case of 2-dimensional manifolds, e.g.

covering S2 with a union of triangles that obey the rules of Definition 3.8. Higher dimensions

take simplexes as generalizations of triangles. Triangulations of manifolds gives a combina-

torial view of manifolds through abstract simplicial simplexes. In the finite case, this does

not only gives a simple way of calculating homology given the triangulation, but also makes

it possible to represent the manifold on a computer. In Example 3.19 we looked at how

a simplicial complex does not need to be a manifold, and it is only natural to ask the re-

verse question. Does every manifold admit a triangulation? By the work of S. S. Cairns,

supplemented by Whitehead, the answer is yes for smooth manifolds [Cai35, Whi40].

35A sub-atlas is a subset that also makes up an atlas.
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Theorem 3.25. If (M,A) is a smooth manifold, then M admits a triangulation.

Example 3.26. Let (M,A) be a smooth manifold, then M admits a triangulation, T , by

Theorem 3.25. Whitehead proves that a compact CW-complex is necessarily finite in [Whi49];

otherwise, one may pick an infinite collection of points in disjoint cells, giving an infinite

open cover with no finite subcover in the weak topology. As such, if M is compact, any

triangulation of M is finite.36

Remark 3.27. Simplicial complexes, and therefore triangulations, will be assumed finite if

nothing else is stated.37

Example 3.28. Consider the tetrahedron, T , from Example 3.15. The tetrahedron is clearly

homeomorphic to the sphere, S2, by smoothing out the 2-simplexes. Consequently, we im-

mediately have that

H0(S2) ' Z,

H1(S2) ' 0

and

H2(S2) ' Z.

Example 3.29. Figure 19 determines a triangulation of RP 2 [Bar82]. Similarly as in Figure

14, we order bases 1, 2, 3, 4, 5, 6 for Z6, [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6],

[4, 5], [4, 6], [5, 6] for Z15 and [1, 2, 4], [1, 2, 6], [1, 3, 4], [1, 3, 5], [1, 5, 6], [2, 3, 5], [2, 3, 6], [2, 4, 5], [3, 4, 6],

[4, 5, 6] for Z10. This gives a chain complex

0→ Z10 ∂2−→ Z15 ∂1−→ Z6 → 0.

The boundary maps are explicitly given by

∂1 =



−1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 −1 −1 −1 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 −1 −1 0

0 0 0 1 0 0 0 1 0 0 1 0 1 0 −1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1


36An infinite simplicial complex cannot be compact in the weak topology, but this does not hold true for

the strong topology.
37We are interested in compact manifolds.
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and

∂2 =



1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

−1 0 −1 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0

0 −1 0 0 −1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 0 −1 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1 −1

0 0 0 0 1 0 0 0 0 1



.

1

2

3

5
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Figure 19: The sphere seen from above. Antipodal points are identified, and the illustration
is reflected across the origin giving a triangulation of RP 2 [Bar82].

With some effort, the Smith normal forms are calculated as

∂1 ∼
[
diag(1, 1, 1, 1, 1, 0) 0

]
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and

∂2 ∼

[
diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 2)

0

]
.

Changing bases according to the Smith normal forms immediately gives the kernel and images

of the boundary operators. We have to take care as one basis element in the new basis for

Z10, corresponding to the Smith normal form of ∂2, is sent to 2 times a basis element in the

new basis for Z15, which results in non-trivial torsion for H1. Consequently,

H0(RP 2) = Ker 0�Im ∂1
' Z,

H1(RP 2) = Ker ∂1�Im ∂2
' Z2

and

H2(RP 2) = Ker ∂2�Im 0 ' 0.

3.5 The Euler Characteristic

Recall that a short exact sequence

0→ A
f−→ B

g−→ C → 0

splits if B ' A ⊕ C. Equivalently the sequence splits if and only if there is a g′ : C → B

with g ◦ g′ = idC , and if and only if there is an f ′ : B → A with f ′ ◦ f = idA. Indeed, the

forward implication is trivial. If we assume the existence of g′ : C → B such that g◦g′ = idC ,

following the standard trick for the module version, we observe that idB = (idB−g′◦g)+g′◦g.

Using that f is the kernel of g and g ◦ (idB − g′ ◦ g) = 0 we find an f ′ : B → A such that

idB = f ◦ f ′ + g′ ◦ g. Finally, applying f from the right and using that f is mono, we find

that idA = f ◦ f ′ and the result follows as B agree with the biproduct of A and C. The last

implication, the existence of f̄ gives biproduct, follows dually.

Proposition 3.30. A short exact sequence

0→M ′ f−→M
g−→M ′′ → 0

in ModR is split if M ′′ is free.

Proof. Let {m′′1, ...,m′′t } be a basis, choose mi in the pre-image of m′′i under g and define

g′ : M ′′ →M accordingly.
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Proposition 3.31. Let

· · · ∂n+1−−−→ Zan ∂n−→ Zan−1
∂n−1−−−→ · · ·

be a chain complex in C(Z). Then, both the kernel and the image of ∂n are free on less or

equal number of generators than Zan and the sequence splits everywhere; Zan ' Ker ∂n⊕Im ∂n

for every n. Moreover, the free part of Hn(· · · ∂n+1−−−→ Zan ∂n−→ Zan−1
∂n−1−−−→ · · · ) is generated on

# Ker ∂n −# Im ∂n+1 generators, where # denotes the minimal number of generators.

Proof. Consider the short exact sequences

0→ Ker ∂n → Zan → Im ∂n → 0.

Recall that a submodule of a free module, on n generators, over a PID is free on s ≤ n

generators [BJN94], and so we have that the kernels, Ker ∂n, and the images, Im ∂n, are both

free. The sequence splits everywhere by Proposition 3.30. Consider the exact sequence

0→ Im ∂n−1 → Ker ∂n → Hn(· · · ∂n+1−−−→ Zan ∂n−→ Zan−1
∂n−1−−−→ · · · )→ 0,

and take s and n such that Im ∂n−1 is free on s generators and Ker ∂n is free on n generators,

where s ≤ n as Im ∂n−1 is a submodule of Ker ∂n. Finally, Hn(· · · ∂n+1−−−→ Zan ∂n−→ Zan−1
∂n−1−−−→

· · · ) is the quotient, and therefore has a free part generated by n− s elements [BJN94].38

Definition 3.32. The n′th Betti number of a CW-complex (e.g. simplicial complex), X,

is the minimal number of generators for the free part of Hn(X), denoted bn(X). The Euler

characteristic of X is (if it exists) the alternating sum

χ(X) =
∑
i

(−1)ibi(X).

From here, an exercise in [Vic12] by Vick gives the following corollary.

Corollary 3.33. Let X be a finite CW-complex (e.g. simplicial complex) with associated

chain complex

· · · ∂n+1−−−→ Zan ∂n−→ Zan−1
∂n−1−−−→ · · · .

Then the Euler characteristic of X is given by

χ(X) =
∑
i

(−1)iai,

i.e. the alternating sum of the number of cells in each dimension.
38The s quotients may, of course, result in torsion.
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Proof. We know that bi(X) = # Ker ∂n −# Im ∂n+1 by Proposition 3.31. Now,

χ(X) =
∑
i

(−1)ibi(X)

=
∑
i

(−1)i(# Ker ∂i −# Im ∂i+1)

= (# Ker 0−# Im ∂1)− (# Ker ∂1 −# Im ∂2) + (# Ker ∂2 −# Im ∂3)− · · ·

= # Ker 0− (# Ker ∂1 + # Im ∂1) + (# Ker ∂2 + # Im ∂2)− · · ·

=
∑
i

(−1)iai,

where the last equality follows by using Porposition 3.31 again.

From this corollary, we recover the classical formulae of Euler for convex polyhedrons and

more generally, the Euler characteristic of a graph that can be embedded on S2.

Definition 3.34. A graph is planar if it can be embedded on the 2-manifold S2.

The name is best seen in the light of the stereographic projection that gives a homeo-

morphsm between R2 and S2 minus a point; embed R2 so that the intersection with S2 is

the south pole and draw straight lines from the north pole through the sphere [Vic12].

Observation 3.35. Let G be a planar graph, then an embedding defines a CW-complex

homeomorphic to S2.

Proof. Take 0- and 1-skeletons according to Definition 3.11. Cycles in the embedding, X1,

separates the sphere into a finite set of open components by applying the Jordan curve

theorem [Vic12] a finite number of times. The components may intersect trees (if there is a

vertex that is not included in any cycle), but the embedding of a finite tree is closed. Hence

we may pick 2-cells as the (open) components of S2−X1; the closure defines a gluing process

to the 1-skeleton.

Corollary 3.36. Let G be a planar graph whose embedding on S2 consist of v vertices (0-

cells), e edges (1-cells) and f 2-cells, then

v − e+ f = 2.

Proof. Simply calculate the Euler characteristic of S2, χ(S2) = 1−0+1, and apply Corollary

3.33.39

39Note that we are using CW-complexes and not simplicial complexes - a planar graph need not be home-
omorphic to the 1-skeleton of a simplicial complex, but it is always a CW-complex.
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Figure 20: The components defined by a (finite) planar graph gives 2-cells.

From here it is an easy exercise to show that Kn, for n ≥ 5, cannot be embedded into R2.

Example 3.37. The complete graph on five vertices, K5, is not embeddable in R2. Indeed,

assume it is, then

2 = v − e+ f = 5− (4 + 3 + 2 + 1) + f

such that f = 7. But there are at least

4 · (4− 1)

2
+

3 · (3− 1)

2
+

2 · (2− 1)

2
= 10

faces, i.e. a contradiction.

Following an exercise by Fulton in [Ful13], the Euler characteristic gives combinatorial

bounds for triangulations.

Example 3.38. Let (M,A) be a smooth 2-manifold which is also compact, then Theorem

3.25 guarantee the existence of a triangulation of M , say T . Moreover, by Example 3.26, T

is finite. Let v, e and f denote the number of vertices (0-simplexes), edges (1-simplexes) and

triangles (2-simplexes), respectively. The second property in Definition 3.8 gives 2e = 3f

as there are three edges per triangle, each shared by two triangles. In particular 2|3f so

that 2|f , i.e. there is an even number of triangles. Moreover, the number of edges in Kv

equals 1
2
v(v − 1) so that we have the bound e ≤ 1

2
v(v − 1). Combining these with the Euler

characteristic, v − e+ f = 2, the bound

v2 − 7v + 6χ(T ) ≥ 0

follows, which reduces to

v ≥ 1

2
(7 +

√
49− 24χ(T )),
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Figure 21: Although K5 is not embeddable in R2, it is embeddable on the torus; constructed
by identifying opposite edges of the square.

as v is necessarily positive. Together with v − e+ f = 2 and 2e = 3f this bound completely

determines the minimal number of generators in each dimension for a triangulation. Some

easy calculations show that taking M = S2 yields v = 4, e = 6 and f = 4, while M = RP 2

gives v = 6, e = 15 and f = 10. We used minimal triangulations to calculate the homology

of S2 and RP 2 in Example 3.28 and 3.29, respectively.

Example 3.39. Let G be a planar graph only consisting of cycles, i.e. every vertex of G lies

on some cycle, let X0 ⊂ X1 ⊂ X2 = X denote a CW-complex as described in Observation

3.35 and set v = |X0|, e = |X1| and f = |X2|. The cycle assumption ensures that X1

partition S2 into n-gons for n ≥ 3, hence the equality 2e = 3f from Example 3.38 takes the

weaker form 2e ≥ 3f as the closure of a 2-cell consists of at least three edges. Combined with

the Euler characteristic, v− e+ f = 2, we deduce e ≤ 3(v− 2) so that the average degree of

G is bounded by

d(G) = 2
e

v
≤ 6

v − 2

v
< 6.
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4 Cohomology and Changing Coefficients

Let A and B denote Abelian categories throughout this section.

4.1 The Adjunction of Hom and Tensor Functors

Given a short exact sequence

0→ A
f−→ B

g−→ C → 0

in A , recall that a functor F : A → B is:

• Left exact if 0→ F (A)
F (f)−−→ F (B)

F (g)−−→ F (C) is exact in B, i.e. preserve kernels.40

• Right exact if F (A)
F (f)−−→ F (B)

F (g)−−→ F (C)→ 0 is exact in B, i.e. preserve cokernels.

• Exact if 0→ F (A)
F (f)−−→ F (B)

F (g)−−→ F (C)→ 0 is exact in B.

Equivalently, a functor is exact if and only if it preserves any exact sequence,41 if and only

if it is left exact and preserve epimorphisms, and if and only if it is right exact and preserve

monomorphisms. It is well known that the Hom functors are left exact:

Proposition 4.1. Given any object X in A , then both HomA (X,−) and HomA (−, X) are

left exact as functors A → Ab and A op → Ab, respectively.

Proof. We show the statement for HomA (−, X) and the case of HomA (X,−) follows dually.

Given an exact sequence 0→ A
f−→ B

g−→ C → 0 in A and any object X. Apply HomA (X,−)

to obtain a sequence

0→ HomA (X,A)
HomA (X,f)−−−−−−−→ HomA (X,B)

HomA (X,g)−−−−−−−→ HomA (X,C)

in Ab. If HomA (X, f)(h1) = HomA (X, f)(h2), i.e. f ◦ h1 = f ◦ h2, it follows that h1 =

h2 as f is mono, so HomA (X, f) is injective. If h is in the kernel of HomA (X, g), then

HomA (X, g)(h) = 0, i.e. g ◦h = 0. As f is the kernel of g, it follows that h factor through f ;

there is an h̄ such that h = f ◦ h̄. Contrary, if h is in the image of HomA (X, f), say h = f ◦ h̄,

we have that g ◦ h = g ◦ f ◦ h̄ = 0 ◦ h̄ = 0 such that h is in the kernel of HomA (X, g).

Before proceeding, we recall some elementary properties of the tensor product and the

Hom-sets [Opp16, Rot08].

40It is easily verified that A → B is the kernel of B → C; as Ker f = 0 we have that A ' Im(A → B) '
Ker(B → C).

41The sequence · · · ∂i−1−−−→ Mi
∂i−→ Mi−1

∂i+1−−−→ · · · is exact if and only if every induced sequence 0 →
Im ∂i−1 →Mi → Im ∂i → 0 is short exact. That is, a long exact sequence splits into short exact sequences.
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Proposition 4.2. Given a ring R, a left R-module M and a right R-module N , we have the

following isomorphisms in Ab.

• R⊗RM 'M , r ⊗R m 7→ rm.

• N ⊗RM 'M ⊗Rop N , m⊗R n 7→ n⊗Rop m.

If, in addition, R is commutative and (Ni)i∈I is a family of R-modules, we have the following

isomorphisms in ModR.

• R⊗RM 'M , r ⊗R m 7→ rm.

• N ⊗R (⊕i∈INi) ' ⊕i∈I(N ⊗R Ni), n⊗R (ni1 + · · ·+ nit) 7→ (n⊗R ni1 + · · ·+ n⊗R nit).

• N ⊗RM 'M ⊗R N , m⊗R n 7→ n⊗R m.

Proposition 4.3. Let A1, ..., An, B1, ..., Bm be objects in A . Then, there is an isomorphism

HomA (⊕nk=1Ak,⊕mj=1Bj) '


HomA (A1, B1) HomA (A2, B1) . . . HomA (An, B1)

HomA (A1, B2) HomA (A2, B2) . . . HomA (An, B2)
...

...
. . .

...

HomA (A1, Bm) HomA (A2, Bm) . . . HomA (An, Bm)

 ,

given by

f 7→ (πBj
◦ f ◦ iAk

),

where i and π denotes the biproduct inclusions and projections.

A left R-module is an Abelian group M together with a ring homomorphism from R into

End(M), the endomorphism ring of M . If Rop denotes the opposite ring, i.e. multiplication

given by a·opb = ba,42 a right R-module is obtained by a ring homomorphism Rop → End(M).

That is, a right module over R is a left module over Rop, and vice versa. Given rings R and

S as well as an R-S-bimodule M , HomSop(M,−) becomes a functor Mod(Sop)→ Mod(Rop)

by defining f · r = f(− ·op r). Similarly, −⊗RM becomes a functor Mod(Rop)→ Mod(Sop)

by defining multiplication in L⊗RM as (l ⊗R m) · s = l ⊗R (ms).

Proposition 4.4. Given rings S and R, as well as an R-S-bimodule M , the functor −⊗RM
is left adjoint to HomSop(M,−).

42A ring is a category consisting of a single object with elements as morphisms, multiplication as compo-
sition and unity as identity. The opposite ring is simply the opposite category in this setting.
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Whenever R is commutative, left and right modules agree so that tensoring two R-modules

automatically defines a functor ModR → ModR rather than ModR → Ab.43 Similarly,

HomR(M,−) becomes a functor ModR→ ModR.

Remark 4.5. Every ring is assumed to be commutative.

Recall that left adjoints preserve colimits, and right adjoints preserve limits [Opp16].

Proposition 4.6. Given a ring R and an R-module M , the functor − ⊗R M : ModR →
ModR is right exact.

Proof. Apply Proposition 4.4 to −⊗RM .

The motivation of the next example is due to standard calculations of Ext and Tor (to

be discussed later), and shows that neither Hom nor tensor functors are exact in general.

Example 4.7. Take n and m in N+ such that n,m ≥ 2 and d = gcd(n,m) > 0. Consider

the exact sequence

0→ Z ·n−→ Z→ Zn → 0,

where ·n is defined by multiplication with n. Apply HomZ(Zm,−) and use that HomZ(Zm, ·n) =

·n, HomZ(Zm, ·n)(f) = ·n ◦ f = nf , to obtain

0→ HomZ(Zm,Z)
·n−→ HomZ(Zm,Z)→ HomZ(Zm,Zn),

which is exact by Proposition 4.1. We want to check if HomZ(Zm,Z) → HomZ(Zm,Zn) is

surjective. Given f in HomZ(Zm,Z), observe how

0 = f(0̄) = f(m̄) = mf(1),

such that f(1) = 0 and hence f = 0, i.e. HomZ(Zm,Z) = 0.44 But HomZ(Zm,Zn), on the

other hand, is not zero. Indeed, an f in HomZ(Zm,Zn) is uniquely determined by f(1) and

is well-defined if and only if mf(1) = f(m̄) = 0 mod n. Using that d is the greatest common

divisor this reduces to the requirement of df(1) = 0 mod n, which is solved by

f(1) = 0,
n

d
, 2
n

d
, ..., (d− 1)

n

d
mod n.

This constitutes an isomorphism

HomZ(Zm,Zn) ' Zd,
43The tensor product, M ⊗R N , of R-modules becomes an R-module by defining r · (m⊗ n) = (rm)⊗R n

whenever R is commutative.
44A bar above an element is its coset in the adequate quotient.
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but there are no surjections 0 → Zd. Consequently, HomZ(Zm,−) is not exact. Going back

to the start and applying HomZ(−,Zm) to

0→ Z ·n−→ Z→ Zn → 0,

and using that HomZ(·n,Zm)(f) = f ◦ ·n = nf as f is a Z-homomorphism, yields

0→ HomZ(Zn,Zm)→ HomZ(Z,Zm)
·n−→ HomZ(Z,Zm)

which is exact by Proposition 4.1.45 Reusing arguments from above, we have isomorphisms

HomZ(Z,Zm) ' Zm and HomZ(Zn,Zm) ' Zd. But ·n : Zm → Zm is no surjection; we simply

observe how 0 < x < d in Zm cannot be in the image of ·n as d is the greatest common

divisor. The non-exactness of HomZ(−,Zm) follows. Analogous arguments show that neither

Zm ⊗Z − nor −⊗Z Zm are exact by first proving

Zm ⊗Z Zn ' Zd.

A functor between Abelian categories is additive if it preserves the biproduct and conse-

quently an additive functor preserve split sequences.

Proposition 4.8. Let F : A → B be additive and assume that

0→ A
f−→ B

g−→ C → 0

is split exact. Then

0→ F (A)
F (f)−−→ F (B)

F (g)−−→ F (C)→ 0

is split exact again.

Corollary 4.9. If

0→ A
f−→ B

g−→ C → 0

is split exact, then given any object X

0→ HomA (C,X)
HomA (g,X)−−−−−−−→ HomA (B,X)

HomA (f,X)−−−−−−−→ HomA (A,X)→ 0

and

0→ HomA (X,A)
HomA (X,f)−−−−−−−→ HomA (X,B)

HomA (X,g)−−−−−−−→ HomA (X,C)→ 0

45A contravariant functor is by definition a functor from the opposite category, so that HomZ(−,Zm)
preserve cokernels, i.e. kernels in the opposite category.
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are both exact. If A = ModR, then given any R-module M ,

0→ A⊗RM
f⊗RidM−−−−−→ B ⊗RM

f⊗RidM−−−−−→ C ⊗RM → 0

and

0→M ⊗R A
idM⊗Rf−−−−−→M ⊗R B

idM⊗Rg−−−−−→M ⊗R C → 0

are both exact.

Proof. By Proposition 4.2 and 4.3, Hom and tensor functors are additive. Apply Proposition

4.8.

4.2 Projective and Injective Resolutions

Definition 4.10. Let A = {An, ∂n} and B = {Bn, δn} be chain complexes, and f : A→ B a

morphism in C(A ). Then, f is null-homotopic if there are morphisms hn ∈ HomA (An, Bn+1)

such that fn = δn+1 ◦ hn + hn−1 ◦ ∂n for every n.

An+1 An An−1

Bn Bn−1Bn+1

∂n+1 ∂n

δn

fn fn−1fn+1 hn hn−1

δn+1

Two morphisms, f and g, in C(A ) are homotopic if f − g is null-homotopic.

One may show that identifying homotopic maps in C(A ) defines a category K(A ), the

homotopy category, and that homology is preserved under null-homotopic maps. Therefore,

Hn becomes a functor K(A )→ A [Opp16, Rot08].46

Definition 4.11. An object, P , is projective if HomA (P,−) is exact. Dually, an object, I,

is injective if HomA (−, I) is exact.

Writing out what this means, the following Proposition follows [Rot08].

Proposition 4.12. An object P is projective if and only if given a diagram

P

B 0A

g

f

46The name is due to the fact that homotopy of chain complexes relates to homotopy of topological spaces.
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with exact row, there is a g′ : P → A satisfying g = f ◦ g′. Dually, an object I is injective if

and only if given a diagram

I

A B0
f

g

with exact row, there is a g′ : B → I satisfying g = g′ ◦ f .

An immediate corollary is that injective resolutions in A are equivalent to projective

resolutions in A op and vice versa.

Definition 4.13. A has enough projectives if for any object A there is a projective P and

an epimorphism P → A. Dually, A has enough injectives if for any object A there is an

injective I and a monomorphism A→ I.

Example 4.14. The Abelian category ModR has both enough projectives and enough injec-

tives for any ring R [Rot08]. A module is projective if and only if it is the direct summand of

a free module, a statement that is quite straightforward to prove. Indeed, if P is projective,

then we have a canonical map R(P ) p−→ P . Apply Proposition 4.12 to idP : P → P ; the

sequence splits, that is R(P ) ' P ⊕Ker(p). Contrary, given any indexing set I, consider the

adjunction preceding Definition 3.3; HomSet(−, UR(−)) ' HomModR(R(−),−). It suffices to

show that HomSet(I,−) sends surjections to surjections. Given a surjection f : A → B in

Set and a function g2 : I → B, define g1 : I → A by g2(i) = a if and only if a ∈ f−1(g1(i)).

Then, HomSet(I, f)(g1) = g2 as f is surjective. The argument of injectives requires more

work [Rot08].

Definition 4.15. Given an object A, a projective resolution of A is (if it exists) a chain

complex,

· · ·P1 → P0 → 0,

of projectives that is exact everywhere, except in position 0, where the cokernel is given by

A. Dually, an injective resolution of A is (if it exists) an exact sequence,

0→ I0 → I−1 → · · · ,

of injectives that is exact everywhere, except in position 0, where the kernel is given by A.
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It is easily observed that the assumption of enough projectives and injectives gives the

existence of resolutions. Indeed, take a projective P0 such that

0→ Ker(P0 → A)→ P0 → A→ 0

is exact. Now, take a projective P1 such that

0→ Ker(P1 → Ker(P0 → A))→ P1 → Ker(P0 → A)→ 0

is exact and define P1 → P0 = (Ker(P0 → A) → P0) ◦ (P1 → Ker(P0 → A)). Proceed

inductively to construct a sequence of projectives, (Pn), such that

· · · → P1 → P0 → A→ 0

is exact. The argument for injectives is dual. Hence, we make the following assumption.

Remark 4.16. Any Abelian category is assumed to have both enough projectives and enough

injectives.

In light of Proposition 4.12, it is obvious that given projective resolutions

P = · · ·P1 → P0 → 0

and

P ′ = · · ·P ′1 → P ′0 → 0

of objects A and B, respectively, as well as a morphism f : A → B, there is an induced

chain map p(f) : P → P ′ determined by fn : Pn → P ′n induced successively starting with

n = 0. The chain map p(f) also extends to a chain map (fn, f) between P → A → 0 and

P ′ → B → 0 by construction, and is in fact unique in K(A ) with respect to this property;

a morphism in A determines a unique morphism in K(A ) [Rot08].

ff0f1

P1 P0 A 0

P ′1 P ′0 B 0

· · ·

· · ·

In the case of B = A and f = idA, the induced map p(idA) can be shown to be an isomorphism

in K(A ) [Rot08].47 Thus, taking projective resolutions defines a functor p : A → K(A ).

Dually, one may define a functor i : A → K(A ) by taking injective resolutions.

47So any resolutions of a given object agree up to homotopy.
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4.3 Tor and Ext

The functor Hn : K(A )→ A measure exactness in position n of a given chain complex, an

interpretation that will be extended to measure exactness of functors. Note that any functor

F : A → B extend to a functor K(A )→ K(B) by using functoriality,

F (· · · ∂n+1−−−→ An
∂n−→ An−1

∂n−1−−−→ · · · ) = (· · · F (∂n+1)−−−−→ F (An)
F (∂n)−−−→ F (An−1)

F (∂n−1)−−−−−→ · · · ),

deliberately denoted F again.

Definition 4.17. Given a right exact functor F : A → B, we define the n’th left derived

functor of F as

Ln(F ) = Hn ◦ F ◦ p : A → B

for any n ∈ N0. Dually, given a left exact functor F : A → B between Abelian categories,

we define the n’th right derived functor of F as

Rn(F ) = H−n ◦ F ◦ i : A → B

for any n ∈ N0.

Using that a right (left) exact functor F : A → B preserves cokernels (kernels), we

immediately deduce that L0(F )(A) = F (A) (R0(F )(A) = F (A)). Further, if F : A → B is

exact, then Ln(F ) and Rn(F ) vanish for n > 0. An observation that follows as exact functors

preserve exact sequences.48 Given a short exact sequence,

0→ A→ B → C → 0,

in A , there are induced long exact sequences

· · ·L1F (A)→ L1F (B)→ L1F (C)→ F (A)→ F (B)→ F (C)→ 0

when F is right exact and

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ · · ·

when F is left exact [Opp16].

Let A be an object in A . Consider a right exact functor F : A → ModR and a projective

48 A projective (injective) resolution is exact for n > 0, according to Definition 4.15.
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resolution

· · ·P1 → P0 → 0,

of A. Then, we know that the higher (n > 0) left derived functors are given by

LnF (A) =
Ker(F (Pn)→ F (Pn−1))

Im(F (Pn+1)→ F (Pn))
.

Dually, for a left exact functor F : A → ModR and an injective resolution

0→ I0 → I−1,

of A, we get the higher (n > 0) right derived functors

RnF (A) =
Ker(F (I−n)→ F (I−n−1))

Im(F (I−n+1)→ F (I−n))
.

Hom and tensor functors are left exact and right exact, respectively, by Proposition 4.1

and 4.6.

Definition 4.18. We define

ExtnA (A,−) = Rn HomA (A,−)

and

ExtnA (−, B) = Rn HomA (−, B).

When A is given by ModR for some ring R, we also define

TorRn (M,−) = Ln(M ⊗R −)

and

TorRn (−, N) = Ln(−⊗R N).

It can be shown that Tor and Ext are bifunctors in the sense that ExtnA (A,−)(B) =

ExtnA (−, B)(A) and TorRn (M,−)(N) = TorRn (−, N)(M), which we will denote ExtnA (A,B)

and TorRn (M,N), respectively [Opp16, Rot08].

As the names suggests, Tor and Ext are connected to torsion and extensions, respectively.

The details will be omitted, but the following example illustrates the relationship of Tor with

torsion.

Example 4.19. Let R be a PID and M a finitely generated R-module. If M = (m1, ...,mn),

then there is a canonical map Rn ' R({m1,...,mn}) p−→,M depending on m1, ...,mn, and hence
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a short exact sequence

0→ Ker(p)→ Rn →M → 0.

A submodule of a free module, on n generators, over a PID is free on s ≤ n generators

[BJN94], such that Ker(p) ' Rs for some s ≤ n resulting in an exact sequence

0→ Rs → Rn →M → 0.

Notice how the sequence is a projective resolution of M by Example 4.14. Further, Propo-

sition 4.2 shows that the sequence is in fact (− ⊗ R) ◦ p applied to M , i.e. TorRn (M,R)

vanishes for n > 0 by going to homology. More generally, by applying −⊗R N , we see that

TorRn (M,N) vanishes for n > 1. Let Quot(R) denote the field of fractions over R and consider

the short exact sequence

0→ R→ Quot(R)→ K → 0,

where K is the cokernel. The induced long exact sequence when applying M ⊗R − reduces

to

0→ TorR1 (M,K)→M → Quot(R)⊗RM → K ⊗RM → 0

by Proposition 4.2 and vanishing higher Tor for R and Quot(R); − ⊗R Quot(R) is exact as

it corresponds to localizing in 0 [AM94]. Consequently, TorR1 (M,K) is the torsion part of M

(the elements for which there is an r 6= 0 and rm = 0). By the structure theorem of finitely

generated modules over PIDs, M can be decomposed as Rs ⊕ R
(a1)
⊕ · · · ⊕ R

(ar)
where ai|ai+1,

and therefore the torsion part of M is a finite product of quotients; R
(a1)
⊕· · ·⊕ R

(ar)
[BJN94].49

Example 4.20. Take n, m and d as in Example 4.7. A projective resolution (injective in

the opposite category) of Zn is given by

0→ Z ·n−→ Z→ 0.

Apply HomZ(−,Zm) and reuse isomorphisms from Example 4.7 to obtain the chain complex

0→ Zm
·n−→ Zm → 0

with kernel Zd. The cokernel is given by Zm�n · Zm ' Zd, i.e.

ExtiZ(Zm,Zn) =

{
Zd if i = 0, 1

0 if i > 1
.

49The decomposition follows by applying the Smith normal form to Rs → Rn in 0→ Rs → Rn →M → 0.

52



Analogous arguments give the same answer for TorRi (Zn,Zm). For the case n = 1 (d = m)

consider the projective resolution

0→ Z ·m−→ Z→ 0

of Zm. Apply HomZ(−,Z), and notice how HomZ(·m,Z)(f) = f ◦ (·m) = mf as f is a

Z-homomorphism, to obtain

0→ Z ·m−→ Z→ 0

whose kernel is zero and 1’st homology is Zm, i.e.

ExtiZ(Zm,Z) =

{
Zm if i = 1

0 if i 6= 1
.

Finally, for the case m = 1 (d = n), simply use the projective resolution

0→ Z→ 0

for Z to deduce

ExtiZ(Z,Zn) =

{
Zn if i = 0

0 if i ≥ 1
.

4.4 Extension of Scalars

Let R denote a (commutative) ring throughout this section. Given an R-algebra B and an

R-module M , we may construct the B-module B ⊗R M , where multiplication is given by

b·(1⊗m) = b⊗m; an extension of scalars. Thus, B⊗R− becomes a functor ModR→ ModB.

This extends to chain complexes, if

· · · ∂n+1−−−→Mn
∂n−→Mn−1

∂n−1−−−→ · · ·

is a chain complex in ModR, apply B ⊗R − to obtain a chain complex

· · · idB⊗R∂n+1−−−−−−→ B ⊗RMn
idB⊗R∂n−−−−−→ B ⊗RMn−1

idB⊗R∂n−1−−−−−−→ · · ·

in ModB. Notice that the Abelian group structure of a ring makes every ring into a Z-algebra

by defining multiplication with n ∈ Z as the repeated sum n times.

Definition 4.21. Let X be any topological space, then we define the singular homology

of X with coefficients in R as the homology of the corresponding chain complex from the
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simplicial object R⊗Z (Z(−) ◦ HomTop(∆(−), X)).

We will use the notationHn(X;R) for the homology associated withR⊗Z(Z(−)◦HomTop(∆(−), X)).

Moreover, this is compatible with our earlier construction through simplicial objects:

Proposition 4.22. The chain complexes associated with the simplicial objects R(−)◦HomTop(∆(−), X)

and R⊗Z (Z(−) ◦ HomTop(∆(−), X)) are isomorphic.

Proof. Let ∂̃n =
∑n

i=0(−1)i∂̃ni denote the boundary operator associated withR(·)◦HomTop(∆(·), X)

and notice how ∂̃ni (f) = ∂ni (f), i.e. ∂̃n(f) = ∂n(f), when applied to a basis element

f ∈ HomTop(∆n, X).50 Proposition 4.2 gives isomorphisms

φn : R⊗Z (Z(HomTop(∆n,X)))→ R(HomTop(∆n,X))

for each n. Therefore, it suffices to show that the following diagram commute.

R⊗Z (Z(HomTop(∆n,X))) R⊗Z (Z(HomTop(∆n−1,X)))

R(HomTop(∆n,X)) R(HomTop(∆n−1,X))

idR ⊗Z ∂n

∂̃n

φn φn−1

As R⊗Z (Z(HomTop(∆n,X))) is generated by elements of the form r⊗Z f where f is of the form∑t
i=1 zifi with zi ∈ Z and fi ∈ HomTop(∆n, X), the bilinearity of ⊗Z shows that it suffices to

check elements of the form r ⊗Z f with r ∈ R and f ∈ HomTop(∆n, X). A direct calculation

reveals that

φn−1 ◦ (idR⊗Z ∂n)(r⊗Z f) = φn−1(r⊗Z ∂n(f)) = r∂n(f) = r∂̃n(f) = ∂̃n(rf) = ∂̃n ◦φn(r⊗Z f).

Example 4.23. The homology of RP 2 was calculated as H0(RP 2) = Z, H1(RP 2) = Z2

and H2(RP 2) = 0 in Example 3.29. Doing the same calculations as for the Smith normal

form over Z, we may replace 2 with 1 by multiplying with 1
2
, so that H0(RP 2;Q) = Q,

H1(RP 2;Q) = 0 and H2(RP 2;Q) = 0.

4.5 Cohomology

In category theory ”co” is to be understood in a dual context. An example is given by

monomorphisms and epimorphisms. A morphism f is mono if given any composable g1 and

50The functors Z(−) and R(−) simply extend HomTop(∆(∂ni ), X) to homomorphisms.
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g2 such that f ◦ g1 = f ◦ g2, we have that g1 = g2. Dually, h is an epimorphism if given

any composable g1 and g2 such that g1 ◦ h = g2 ◦ h, we have that g1 = g2. Transitioning

to the opposite category, these concepts are swapped so that mono is epi and vice versa; an

epimorphism is a comonomorphism. Other examples include kernels and cokernels, and more

generally, limits and colimits.

Given a chain complex,

· · · ∂n+1−−−→Mn
∂n−→Mn−1

∂n−1−−−→ · · ·

in ModR, how can we revert the order? Simply passing to the opposite category does not

produce anything new, but applying the contravariant functor HomR(−, R) gives a cochain

complex

· · · HomR(∂n+1,R)←−−−−−−−− HomR(Mn, R)
HomR(∂n,R)←−−−−−−− HomR(Mn−1, R)

HomR(∂n−1,R)←−−−−−−−− · · ·

as HomR(∂n, R) ◦ HomR(∂n−1, R) = HomR(∂n−1 ◦ ∂n, R) = HomR(0, R) = 0.

Definition 4.24. Let X be any topological space. The singular cohomology of X with

coefficients in R is given by the homology corresponding to the simplicial object HomR(−, R)◦
(R(−) ◦ HomTop(∆(−), X)).

We will use the notation Hn(X;R) for the n’th cohomology of X with coefficients in R,

and dn = HomR(∂n, R) for the coboundary operator. In the case of R = Z, we simply write

Hn(X).

There is an important connection between homology and cohomology, namely the uni-

versal coefficient theorem for cohomology [Rot08].

Theorem 4.25. Let R be a PID (or more generally hereditary), B be an R-algebra and K

be a chain complex in K(ModR). Then, for all n > 0 there is a split exact sequence

0→ Ext1
R(Hn−1(K), B)→ Hn(HomR(K,B))→ HomR(Hn(K), B)→ 0.

Example 4.26. The homology of RP 2 was calculated as H0(RP 2) = Z, H1(RP 2) = Z2

and H2(RP 2) = 0 in Example 3.29. From Example 4.20 it is known that Ext1
Z(Z2,Z) ' Z2,

Ext1
Z(0,Z) is obviously zero and Ext1

Z(Z,Z) is zero by considering the resolution 0 → Z →
0. Thus, applying the universal coefficient theorem for cohomology (Theorem 4.25), the

cohomology of RP 2 is given by

H0(RP 2) ' HomZ(H0(RP 2),Z)⊕ Ext1
Z(0,Z) ' Z,
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H1(RP 2) ' HomZ(H1(RP 2),Z)⊕ Ext1
Z(H0(RP 2),Z) ' 0

and

H2(RP 2) ' HomZ(H2(RP 2),Z)⊕ Ext1
Z(Z2,Z) ' Z2.

In particular, the homology and cohomology of RP 2 do not agree.

Let simplicial cohomology denote the resulting homology from applying HomR(−, R) to

simplicial homology over a (commutative) ring R. An immediate corollary of the universal

coefficient theorem is that homology completely determines cohomology, such that simplicial

cohomology agree with singular cohomology. In simplicial homology, applying the boundary

operator to an edge (1-simplex), results in a formal linear combination of the vertices (0-

simplexes). More generally, when applying the boundary operator to a k-simplex, the result

is a formal linear combination of its faces consisting of (k − 1)-simplexes. This is a higher

dimensional analogue of adjacency.

Definition 4.27. Let A be an abstract simplicial complex. Two k-simplexes in A, σ1 and

σ2, are adjacent if there is a (k + 1)-simplex in A that admit both σ1 and σ2 as faces. A

k-simplex, σk, and a (k + 1)-simplex, σk+1, are mutually incident if σk is a face of σk+1.

Observation 4.28. Adjacency/incidence in the 1-skeleton of an abstract simplicial complex

agree with Definition 2.2.

To give a geometrical interpretation of simplicial cohomology, we take a simplicial complex

with a finite number of generators in each dimension and order the bases such that we have

a corresponding chain complex

· · · ∂n+1−−−→ Ran ∂n−→ Ran−1
∂n−1−−−→ · · · .

Applying HomR(−, R) gives the transition to the cochain complex

· · · dn−1−−−→ HomR(Ran , R)
dn−→ HomR(Ran+1 , R)

dn+1−−−→ · · · .

Proposition 4.3 gives canonical isomorphisms HomR(Ran , R) ' HomR(R,R)an . The isomor-

phism from Example 4.7, HomZ(Z,Z) ' Z, generalizes to HomR(R,R) ' R as the isomor-

phism only rely on the existence of unity; f 7→ f(1). Altogether HomR(Ran , R) ' Ran .

Furthermore, the isomorphism gives a natural way of identifying the standard basis of Ran

with the standard basis of HomR(Ran , R). Or in terms of geometry, given an n-simplex, σn,

identify it with the projection, πσn , that send σn to 1 and other n-simplexes to 0. Considering

the coboundary operator, we know that d = HomR(∂,R), which applied to a homomorphism,
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f , yields d(f) = f ◦ ∂. Let σk be a k-simplex with associated co-simplex πσk , and similarly

σk+1 a (k+1)-simplex corresponding to πσk+1
. Then, dk+1(σk)(σk+1) = σk(∂k+1(σk+1)) equals

±1, if and only if σk is incident to σk+1. This shows that applying dk+1 to a k-simplex, σ,

results in an alternating linear combination of the (k + 1)-simplexes that are incident to σ.

There is another dual concept of geometrical nature, obtained by interchanging the roles

of faces (adjacency) and incidence, i.e. dualizing the dimension of a simplicial complex:

The plan is to partition n-simplexes using barycentric coordinates, and then embed them

into triangulations to obtain CW-complexes. Consider the standard n-simplex, n ≥ 2, and

take p0,1 = e1,... ,p0,n+1 = en+1 as the standard basis elements of Rn+1, i.e. the 0-simplexes.

For k-simplex number i in ∆n, σk,i, let p0,i1 ,... p0,ik+1
denote the k+ 1 0-simplexes that meet

σk,i and take

pk,i =
p0,i1 + · · ·+ p0,ik+1

k + 1
,

i.e. its centroid (σk,i is the convex hull of p0,i1 ,..., p0,ik+1
). Pick q0 = pn,1 and q1,i as the

convex hull of {pn−1,i, q0} for every (n− 1)-simplex, i.e. i = 1, ..., n+ 1. Proceed inductively

by choosing qk,i as the convex hull of

{pn−k,i} ∪ {qk−1,j| σn−k,i is incident to σn−(k−1),j}.

Observe how a qk,i is the convex hull of a finite set of points, and increasing from k − 1 to k

adds one affine dimension, so it is in fact homeomorphic to ∆k. The result decomposes ∆n,

∆n = qn,1 ∪ · · · ∪ qn,k+1.

Indeed, the case n = 2 is easily seen by explicitly calculating the q’s as shown in Figure 22, so

assume that the assertion holds for (n−1) ≥ 2. Given any x ∈ ∆n, the straight line defined by

q0 and x is contained in ∆n by convexity. As ∆n is bounded, the line intersects a face of ∆n in

the direction from q0 to x, say σn−1,i, and therefore a q̃ in the decomposition of σn−1,i by the

induction hypothesis. But q̃ is constructed by taking convex hulls of centroids belonging to

simplexes in ∆n, and consequently q̃ is contained in some qn,j (by construction). Finally, the

convexity of qn,j implies that the straight line, and in particular x, is contained in qn,j. Observe

how this shows that the decomposition of ∆n project down to give decompositions of its faces.

Recall that a continuous injection from a compact space into a Hausdorff space is necessarily

a topological embedding. In particular, given a triangulation of an n-manifold M , each k-

simplex is an embedding of ∆k into M , so that the above decomposition of intersecting faces

may be identified for every k. The result is a CW-complex homeomorphic to M satisfying

that the k-cells are in bijection with the (n−k)-cells of the triangulation; for a given (n−k)-
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simplex, σ, glue together the homeomorphic images of qk,i’s that intersect σ and originates

from n-simplexes containing σ. Indeed, the case n = 2 is geometrically clear, glue together

triangles as in Figure 22 following the rules of Definition 3.8, so assume the assertion holds

for (n − 1) ≥ 2. Take 0-cells as centroids of n-simplexes. For a given 0-simplex, v, consider

p2,1

p1,1 p1,2

p1,3p0,3 p0,2

p0,1

q1,1
q1,2

q1,3

q2,1

q2,2q2,3

Figure 22: The building blocks for the dual cell in the 2-dimensional case.

the n-simplexes that contain v, say σ1, ..., σl. For a fixed i, the unique (top dimensional) qn,ij
containing v is homeomorphic to Dn (homeomorphic to ∆n as discussed above). Intersections

of σi(qn,ij)’s agree with homeomorphic images of qn−1,k’s, and thus become homeomorphic

to Dn again, i.e. ∪iσi(qn,ij) ' Dn. Finally, the boundary homeomorphic to Sn−1 contain

every centroid of lower simplexes in the σi(qn,ij)’s and therefore admit a CW-structure by

the induction hypothesis; take the interior of ∪iσi(qn,ij) as the n-cell corresponding to v. The

result is homeomorphic to M as the decomposition into q’s reconstruct each n-simplex by

the previous induction.

Given a finite triangulation, T , of an n-manifold, the constructed CW-complex is the dual

simplicial complex, denoted T ∗. This construction is well-defined; combinatorial relations

determine the dual simplicial complex, not the choice of embeddings. Note that Definition

3.11 implies that the 1-skeleton of T ∗ is a graph as every (n−1)-simplex is the face of exactly

two distinct n-simplexes, i.e. adjacency is defined by incidence in T n−1 ∪ T n.

Definition 4.29. Let T be a triangulation of a manifold M . The dual graph of T 0 ∪ T 1 is

the graph defined by the 0- and 1-cells in T ∗.

In particular, the above construction for M = S2 shows the following as the dual is

automatically embedded in S2.
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Proposition 4.30. Let T be a triangulation of S2, then the dual graph of T 0 ∪ T 1 is planar.

Figure 23: The dual about a vertex of degree five in some triangulation.

The above construction dates to the work of Henri Poincaré in Analysis Situs [Die09,

Veb31], where it is used to prove the first version of Poincaré duality; the above discussion

gives an outline of why it is reasonable to expect isomorphisms Hn−k(M) ' Hk(M) under

certain conditions, i.e. a categorical duality from a geometric construction.51

51Although we have not defined the CW-boundary operator, the basis in each dimension is given by n-cells
for n fixed.

59



60



5 The Four Colour Problem

Recall that we are going to colour (actual) maps in such a way that no regions separated by

a single border have the same colour, and want to achieve more understanding of why four

colours suffice. It clearly suffices to colour planar graphs; let vertices represent regions and

edges represent borders. The result by Appel and Haken may be stated in the following way

[AHK77a, AHK77b].

Theorem 5.1 (Appel, Haken 1977). Every planar graph is 4-colourable.

Figure 24: A map that requires four colours together with the underlying graph (K4).

5.1 A Simple Reduction

By considering morphisms in Grph we use some rather geometrical properties to show that

it suffices to verify Theorem 5.1 for triangulations of the sphere. A typical intuitive view of

continuous maps between Euclidean spaces is how they act as deformations without ripping

or tearing apart. An example of this intuition is Brouwer fixed point theorem that dates back

to a paper by L. E. J. Brouwer in 1911 [Bro11]. The theorem states that any continuous map

f : Dn → Dn admits a fixed point, i.e. there is an x ∈ Dn such that f(x) = x. A modern

proof assumes that this is not the case, which makes it possible to construct a continuous

map from Dn to Sn−1 by normalizing the difference idDn − f . This contradict the intuition

of continuity as the map essentially poke a hole in the disk, an argument that is made formal

by using of homology [Vic12]. In the same manner, thinking about graphs as 1-skeletons,
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' ' ' · · ·

Figure 25: An infinite chain of homeomorphic 1-skeletons representing non-isomorphic
graphs.

a graph homomorphism is a map that cannot rip the vertices of a graph. Hence, graph

homomorphisms somehow fold graphs into subsets of other graphs. Note that there is an

added combinatorial complexity of graph homomorphisms, in contrast to continuous maps,

e.g. calculating the automorphisms of a given graph.

Lemma 5.2. Let C be a cycle and T a tree such that they have exactly one vertex in common.

Then there is a graph homomorphism T ∪ C → C.

→ →

Figure 26: A geometrical view on a graph homomorphism onto a cycle.

Proof. Let V (C) ∩ V (T ) = {r0}. First, fix r1 adjacent to r0 in T and let f1 : V (C ∪ T ) →
V (C ∪ T ) map r′ 7→ r1 for any r′ adjacent to r0 in T [V (T )\r1], while keeping the rest of

the vertices fixed. Clearly, f1 is a homomorphism as any pair of vertices adjacent to r0 in

T cannot be adjacent by the definition of a tree. Take any vertex, say r2, different from

r0 and adjacent to r1 and construct a homomorphism, f2, with the same scheme as for f1.

Repeating this process gives a sequence of homomorphisms, f1, f2, f3, ..., but the process will

end as the tree is finite, say f1, f2, ..., fn. After applying fn ◦ ... ◦ f1, we are left with C and

a path P ⊂ T . By construction, we have that P = (r0, r1, ..., rn). Letting C = (c0, c2, ..., cm)

with c1 = cm, define g : V (C ∪ P ) → V (C) by ri 7→ ci mod m for i = 0, ..., n and cj 7→ cj for

j = 0, ...,m. Now, f = g ◦ fn ◦ ... ◦ f1 is a homomorphism of C ∪ T onto C.

Theorem 5.3. Given any connected planar graph, we can find a homomorphism to some

triangulation of the sphere.

Proof. First, note that any cycle on the sphere separates it in two open components by the

Jordan curve theorem [Vic12]. Let X1 denote the embedding of the graph on S2. Given
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any cycle for which one of the component has an empty intersection with X1, add a vertex

adjacent to every vertex in the cycle [Sto79]. This results in an inclusion into a connected

planar graph consisting of unions of triangles and trees (Figure 27). Given a tree that

intersects with a single cycle, apply Lemma 5.2 to safely remove it. Take a maximal union of

triangles M with respect to Definition 3.8, i.e. cannot be extended and still be a simplicial

complex, and apply Lemma 5.2 to any tree, T , intersecting it. The other cycles intersecting

T will intersect M in exactly one vertex post homomorphism and can be embedded inside

a triangle in M by the assumption of planar. Repeat the above actions iteratively and note

that the process will end as graphs are assumed finite. Hence, the result is a single union of

triangles without trees and cycles of length greater than three. The resulting space must be

a triangulation of the sphere, otherwise the above process may continue.

↪→

Figure 27: An inclusion of a cycle to a refinement consisting only of 3-cycles that preserve
the planar property.

This theorem tells us that it suffices to prove Theorem 5.1 for triangulations of the sphere.

Indeed, given any planar graph, G, there is a triangulation, T , and a homomorphism G→ T .

If every triangulation is 4-colourable, then Corollary 2.13 gives the assertion.

5.2 The Galois Field with Four Elements

We construct the Galois field with four elements explicitly and recall some arithmetic prop-

erties.

The maximal ideals in a PID are given by the ideals generated by irreducible elements,

i.e. the elements p for which p = p1p2 implies that p1 or p2 is a unit [BJN94]. Standard

examples of PIDs includes Z and K[x] for a field K, such that maximal ideals in Z and

K[x] are generated by prime numbers and irreducible polynomials, respectively. The ideal

generated by 2 in Z, (2), gives the field Z2 = Z�(2) consisting of two elements. Now, we

need an irreducible polynomial of degree two to obtain a field with four elements. Checking

the 22 = 4 monic polynomials (1 as leading coefficient) of degree two in Z2, we see that the
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only irreducible is x2 + x+ 1. Thus, we have the field GF(4) = Z2[x]�(x2 + x+ 1) with four

elements.52

The characteristic of GF(4) is clearly two and the elements are given by 0, 1, x and x+ 1

with the notation f = f+(x2 +x+1). Noticing how x2 + x+ 1 = 0, we have that x+ 1 = x2,

such that the elements of GF(4) may be written 0, 1, x and x2. There are two arithmetic

properties that will be important to us in the discussion of the four colour problem:

• a+ b 6= 0 for any distinct elements a, b ∈ GF(4).

• 1 + x+ x2 = 0.

The first follow as the characteristic is two (each element is its own additive inverse), and

the second by the construction of GF(4) as a quotient.

5.3 A Reformulation Using Homology

Consider a finite triangulation of S2, say T . Let v be the number of vertices (0-simplexes),

e be the number of edges (1-simplexes) and f the number of triangles (2-simplexes). By

the discussion in Example 3.38, we know that f is even, say f = 2n, and 2e = 3f , so that

applying the Euler characteristic (Corollary 3.36) gives e = 3n and v = n+2. Ordering bases

results in a chain complex

0→ Z2n ∂2−→ Z3n ∂1−→ Zn+2 → 0.

The homology of S2 was calculated in Example 3.28, and reveals that we have exactness in

Z3n, kernel Ker ∂2 = Z and cokernel Cok∂1 = Z, which results in an exact sequence

0→ Z→ Z2n ∂2−→ Z3n ∂1−→ Zn+2 → Z→ 0.

This sequence splits everywhere by Proposition 3.31, such that applying −⊗Z GF(4) results

in the exact sequence

0→ GF(4)→ GF(4)2n ∂̃2−→ GF(4)3n ∂̃1−→ GF(4)n+2 → GF(4)→ 0,

by Proposition 4.2 and Corollary 4.9. Similarly, applying HomGF(4)(−,GF(4)) is exact, and

thus Proposition 4.3 together with the isomorphism HomGF(4)(GF(4),GF(4)) ' GF(4) yields

0→ GF(4)→ GF(4)n+2 d1−→ GF(4)3n d2−→ GF(4)2n → GF(4)→ 0.

52By the division algorithm, any polynomial in Z2[x] can be written as (x2 + x+ 1)q(x) + r(x), where the
degree of r is less than two.
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Consequently, the cohomology of S2 over GF(4) is given by

H0(S2; GF(4)) ' GF(4),

H1(S2; GF(4)) ' 0

and

H2(S2; GF(4)) ' GF(4).

We are ready to present a reformulation of the four colour problem.53

Proposition 5.4. Let T be a finite triangulation of S2, v be the number of vertices (0-

simplexes), e be the number of edges (1-simplexes) and f the number of triangles (2-simplexes).

Colouring T with four colours is equivalent to finding an element α ∈ (GF(4)∗)e such that

d2α = 0.

Proof. Assume that T is 4-colourable. Then, we can colour T with elements of GF(4), say

β = (β1, ..., βv). Picking α = d1(β), it immediately follows that d2α = d2 ◦ d1β = 0 as

d2 ◦ d1 = 0. Moreover, each coefficient αi comes from the coefficients of the vertices that

makes up its 0-skeleton. That is, given any 1 ≤ i ≤ e, there are two components/colours βi1

and βi2 in β satisfying αi = βi1 + βi2 , but β is a 4-colouring of T such that βi1 6= βi2 , and

hence αi 6= 0 by the arithmetic properties of GF(4). Contrary, assume that α = (α1, ..., αe)

satisfies that d2(α) = 0 and αi 6= 0 for any i. Using the exactness of the free GF(4)-module

over the edges, we also have that α ∈ Im d1, i.e. there is a β ∈ GF(4)v such that α = d1(β).

We claim that β is a 4-colouring of T : As above, each component αi 6= 0 is the sum βi1 +βi2 ,

such that βi1 6= βi2 , otherwise αi = 0 as GF(4) has characteristic two.

Remark 5.5. Given any triangulation of the sphere, the equation dα = 0 will always refer

to the equation in Proposition 5.4 that determine a 4-colouring of the 1-skeleton.

Consequently, colouring a graph with four colours may be stated as an equation involving

the coboundary operator. In the context of deRham cohomology, d is often referred to as

a differential and the above equation may be interpreted as a discrete differential equation.

The problem of solving dα = 0 also somehow captures the philosophy of cohomology; easy

to solve locally, but hard to glue together into a global solution.

Graph homomorphisms, adjacency and incidence were all extended to abstract simplicial

complexes. Similarly, one may extend graph colouring to abstract simplicial complexes.

53Given any ring R, we denote R∗ = R− {0}.

65



Definition 5.6. Let A be an abstract simplicial complex and C = {c1, ..., cn} a set. A

function f : Ak → C is an n-colouring of Ak if any adjacent k-simplexes, σ1 and σ2, satisfy

f(σ1) 6= f(σ2). A is n-colourable if there is an n-colouring.

Observation 5.7. Colouring the (k+1)-skeleton of an abstract simplicial complex, A, agree

with colouring the graph with Ak as vertices and edge set according to adjacency in A.

Proof. Setting V = Ak and E = {{σ1, σ2} ⊂ Ak| σ1 and σ2 are adjacent}, we see that

colouring Ak is equivalent to colour the graph (V,E).

Given an abstract simplicial complex A, we recover Definition 2.11 by colouring A0,

further colouring A1 correspond to colour the edges (1-simplexes).

Proposition 5.8. Let T be a finite triangulation of S2. Solving dα = 0 is equivalent to

colouring the edges of T with three colours.

Proof. Take C = GF(4)∗ in Definition 5.6, notice how each component of dα = 0 correspond

to the sum of non-zero coefficients of the edges incident to the corresponding triangle. This

occurs if and only if the edges incident to a triangle admits pairwise distinct coefficient by

the arithmetic properties of GF(4).

Corollary 5.9. The following are equivalent.

• Colouring any planar graphs with four colours.

• The equation dα = 0 may be solved for any triangulation of the sphere.

• The edges of any triangulation of the sphere may be coloured by three colours.

Proof. By Theorem 5.3, it suffices to consider graphs that corresponds to triangulations of

the sphere. Given an arbitrary triangulation of the sphere, say T , T 0 is 4-colourable if and

only if dα = 0 by Proposition 5.4, if and only if T 1 is 3-colourable by Proposition 5.8.

We give a simple example to illustrate the connections in Corollary 5.9.

Example 5.10. Let T be the tetrahedron as illustrated in Figure 14 and order bases as in

Example 3.15. Let GF(4) = {0, 1, x, x2} and consider the 4-colouring α = (0, 1, x, x2) of T 0.

Applying d1 and using that x2 = x+ 1 yields a 3-colouring of T 1;

d1(0, 1, x, x2) = (0 + 1, 0 + x, 0 + x2, 1 + x, 1 + x2, x+ x2)

= (1, x, x2, x2, x, 1).
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Figure 28: A 4-colouring of the vertices gives a 3-colouring of the edges.

Of course, d2 ◦ d1α = 0, by the properties of the coboundary operator, explicitly

d2(1, x, x2, x2, x, 1) = (1 + x+ x2, 1 + x+ x2, 1 + x+ x2, 1 + x+ x2)

= (0, 0, 0, 0).

5.4 Solutions Given by Hamiltonian Cycles

Whenever the dual graph associated with a triangulation admits a Hamiltonian cycle (Def-

inition 2.10), there is an easy strategy to colour the edges with three colours, i.e. solve the

equation dα = 0.

Proposition 5.11. Let T be a triangulation such that the dual graph in T ∗ admits a Hamil-

tonian cycle. Then T 0 is 4-colourable.

Proof. Let G denote the 1-skeleton of T with G∗ as the dual graph and let H denote a

Hamiltonian cycle in G∗. The number of triangles (2-simplexes) in T is even by Example

3.38, such that the number of 0-cells in T ∗ is even, and consequently H takes the form

(v0, v1, ..., v2n). Define f : E(H)→ GF(4),

{vi, vi+1} 7→

{
1 if i even

x if i odd
,

notice how this label the edges of H with 1 and x successively as H is even. Each edge in H

intersect exactly one edge in T by the construction of T ∗, such that we may define an injection
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i : H → T 1 according to this property. This gives a well-defined function g : T 1 → GF(4)∗,

e 7→

{
f(i−1(e)) if e ∈ i(H)

x2 if e /∈ i(H)
,

which constitutes a 3-colouring of T 1. Indeed, any triangle (2-simplex) in T admits exactly

three faces for which two are given distinct colours in {1, x} by the construction of f and the

last face is coloured with x2.

1

x

x

1

x2

x2

Figure 29: Colouring the edges of K4 using a Hamiltonian cycle in the dual graph (isomorphic
to K4).
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Figure 30: Colouring the edges of the triangulation used to construct a minimal triangulation
of RP 2. The left part represents the north of equator, while the right part represents the
south of equator. The edges that are identified along the equator is indicated by a, b, c and
d.
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The proposition is illustrated in Figure 29 and 30.

It is only natural to ask when a planar graph admits a Hamiltonian cycle. Whitney proved

that every 4-connected (Definition 2.10) triangulation of the sphere admits a Hamiltonian

cycle in 1931 [Whi31].

Theorem 5.12 (Whitney, 1931). A triangulation whose 1-skeleton is 4-connected admits an

Hamiltonian cycle.

Notice that the dual of a triangulation is a triangulation if and only if every vertex in the

original triangulation has degree three. Indeed, (2−k)-simplexes and k-cells are in bijection,

such that a 0-simplex with degree greater than three gives a cycle of length greater than three

and vice versa. Hence, Theorem 5.12 cannot guarantee Theorem 5.1. W. T. Tutte proved

that the triangulation assumption is superfluous in 1956 [Tut56].

Theorem 5.13 (Tutte, 1956). Any 4-connected planar graph admits a Hamiltonian cycle on

the subgraph induced by cycles.

The awareness of Proposition 5.11 is due to P. G. Tait [Saa72, Tai31], who also conjectured

the existence of Hamiltonian cycles in planar graphs for which every vertex has degree three.

This is, in particular, the case for dual graphs of triangulations as a triangle consists of three

edges. The conjecture was proven to be false in 1946 by Tutte himself, who gave an explicit

counterexample on 46 vertices illustrated in Figure 31 [Tut46]. Consequently, Tutte already

knew that Theorem 5.13 could not guarantee Theorem 5.1 at the time. However, he also

noticed that Theorem 5.13 is somewhat useless in the situation of Theorem 5.1. Indeed,

the dual graph of a triangulation cannot be 4-connected; removing three adjacent 0-cells of

a given 0-cell renders the dual graph disconnected whenever the triangulation admits more

than four 2-simplexes.

Let T be a triangulation of the sphere. Any vertex in T 0 has degree greater than two;

otherwise, the third property in Definition 3.11 will be violated. Moreover, the vertices may

be assumed to have degree greater than three. If the triangulation consists of four vertices,

colouring with four colours is trivial, otherwise any vertex of degree three is a refinement of a

triangulation. More precisely, if deg(v) = 3, take the three edges in T 1 incident to v, say [v, v1]

[v, v2] and [v, v3], and consider the triangle, t, defined by v1, v2 and v3. The Jordan curve

theorem implies that t separates S2 in two disjoint open components, U and V , such that one

intersection with T 1 is ∪([v, vi](∆1)−{vi}). Without loss of generality, we assume U ∩ T 1 =

∪([v, vi](∆1)−{vi}), while V ∩T is non-empty by the assumption of |T 0| > 4. Consequently,

U agree with the interior of a face that makes up a triangulation of S2; if triangulations are

assumed to be 4-colourable, v may safely be given a fourth colour. If there are ”enough”
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Figure 31: The counterexample by Tutte [Tut46].

triangles, one may even assume that every vertex has degree greater than four. Consider a

4-cycle, (v1, v2, v3, v4), embedded into R2 by identifying v1 = (−1, 0), v2 = (0, 1), v3 = (1, 0)

and v4 = (0,−1). Triangulate the bounded component of R2 − (v1, v2, v3, v4) by identifying

a vertex, v, with (0, 0) and adding edges to every vi (similar as in the proof of Lemma 5.2).

Denote the resulting graph G and define a homomorphism φ : G → G[V (G) − {v3}] by

v3 7→ v1, while keeping the other vertices fixed. Geometrically, we fold the square defined by

the convex hull of {v1, v2, v3, v4} into the triangle given by the convex hull of {v1, v2, v4, v}.
Alternatively, we divide out by the orbit of the obvious group action of Z2 given by reflecting

graph about the (0, 1)-axis, i.e. generated by the automorphism v1 7→ v3, v3 7→ v1, while

keeping the other vertices fixed. Whenever there is a vertex of degree four on T , it defines

a 1-skeleton isomorphic to G in Grph, and thus φ may be extended to T by fixing the other

vertices. Intuitively, φ induces a continuous map, φ∗, that quotient points by squeezing the

surface. The result is a space constructed by gluing one edge of a triangle to the sphere; the
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v1

v2

v3

v4

v φ(v1)

φ(v2)

φ(v4)

φ(v)
φ∗

R2 R2
−

Figure 32: The group action given by the identity and the automorphism v1 7→ v3, v3 7→ v1

to the left, and the quotient of the orbit to the right.

v1
v2

v3

v4

v
φ∗

φ(v4)
φ(v1)

φ(v2)

φ(v)

Figure 33: The graph homomorphism v3 7→ v1 induces a continuous map from the sphere to
the space constructed by gluing a triangle to the sphere along a face.

triangle contains φ(v) as well as the edges [φ(v), φ(v1)], [φ(v), φ(v2)] and [φ(v), φ(v4)] while

the rest of φ(T 0 ∪ T 1) is contained in S2 (Figure 33). The subgraph of φ(T 0 ∪ T 1) induced

by φ(T 0) − {φ(v)} is especially embedded on S2, and if, in addition, v is the only vertex

of degree less than five, it is in fact a triangulation of S2 again. Indeed, each vi has degree

greater than four before applying φ and therefore lies in more than four triangles. When φ

identify [v1, v2] with [v2, v3] and [v4, v1] with [v3, v4], the third property in Definition 3.11 is

preserved; no triangles that share edges have other edges identified. Under the assumption

that the subgraph induced by φ(T 0) − {φ(v)} is 4-colourable, we immediately deduce a 4-

colouring of φ(T 0), as φ(v) is only adjacent to three vertices in φ(T 0 ∪ T 1). Corollary 2.13

gives a 4-colouring of T 0 for which v1 and v3 are given equal colours by Observation 2.14.

The following observation is justified.

Observation 5.14. Under the assumption that 0-skeletons of triangulations for which every
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vertex has degree less or equal to five may be coloured with four colours, we can ensure that

the 0-skeleton of any triangulation for which there is only one vertex of degree less than five

may be coloured with four colours.

u

v1 v2

v3

v4

φ(u)

φ(v4)

φ(v1)

φ(v2)

φ∗

Figure 34: Degree greater or equal to five is necessary for two non-adjacent vertices both
adjacent to a vertex of degree four; the image is not a graph (nor part of a triangulation).

The counterexample by Tutte, in Figure 31, contain cycles of length four, and based on

Observation 5.14 one may argue that this is somewhat insufficient. This matter is however

settled by G. B. Faulkner and D. H. Younger who found a non-Hamiltonian planar graph

with no cycles of length less than five [FY74]. As a result, it seems like one cannot expect to

prove Theorem 5.1 using the Hamiltonian connection given by Proposition 5.11.

Relaxing the triangulation assumption to planar, we give another reason why vertices of

degree five are particularly interesting. Consider the set

Γ = {n ∈ N+| ∃ a non-4-colourable planar graph of size n}.

Theorem 5.1 obviously imply Γ = ∅, but assume not, for the purpose of contradiction. We

may safely assume the graphs resulting in non-empty Γ to only consist of cycles by Lemma

5.2, i.e. every vertex lies on a cycle. That is, the graphs in question partition S2 into n-gons

for n ≥ 3 via the Jordan curve theorem [Vic12]. The existence of a minimal m ∈ Γ implies

the existence of a planar graph, G, with |G| = m that is not 4-colourable. Example 3.39

gives the existence of a vertex, say v, of degree less than six. If degG(v) = 4, consider the four

0-cells (vertices) adjacent to v, say v1, v2, v3 and v4, that constitute four 2-cells, R1, R2, R3

and R4, whose closure contain v. Removing v, the underlying embedding of G[V (G)− {v}]
connects region R1, R2, R3 and R4 to one 2-cell. Firstly, G[V (G) − {v}] is 4-colourable as

|G[V (G) − {v}]| = m − 1 and we may define a graph homomorphism, say φ, sending one
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Figure 35: A minimal planar non-4-colourable graph has five as minimal degree.

of the vi’s to a distinct vj.
54 The image graph, φ(G[V (G) − {v}]), is also 4-colourable as

it is planar and |φ(G[V (G) − {v}])| = m − 2; the image is a continuous deformation on

the sphere as illustrated in Figure 36. A 4-colouring φ(G[V (G) − {v}]) → K4 gives a 4-

colouring G[V (G)− {v}]→ K4, and Observation 2.14 reveals that the distinct vi and vj are

coloured with the same colour. As a result, we see that a 4-colouring of G[V (G)−{v}] gives

a 4-colouring of G by safely colouring v with the fourth colour. A contradiction.

Observation 5.15. If there is a non-4-colourable planar graph, then any minimal, with

respect to Γ, such graph satisfy that every vertex has degree greater than four.

5.5 An Application of Modular Equations in Analysis Situs

In the early days, the problem of colouring maps was not defined as a graph-colouring prob-

lem, but as a colouring of partitions into bounded regions (map colouring). The graph

formulation is somewhat dual, but a planar graph does not need not be a suitable partition

into regions, e.g. trees do not make sense before applying Lemma 5.2. Hence, the existence

of a dual construction in the language of graph theory is non-trivial. Considering Theorem

5.3, however, the equivalence is easily checked. The transition from maps to graphs caused

some confusion, but was treated in detail by Whitney [Saa72, Whi31]. Older papers study

the map problem rather than the equivalent graph problem.

P.G. Tait proved the equivalence of Theorem 5.1 and 3-colouring the 1-skeleton of tri-

angulations of the sphere [Saa72, Tai80].55 Tait also proved the map-version of Proposition

5.11 and conjectured the existence of Hamiltonian cycles as discussed in Section 5.4. About

32 years later, in 1912, O. Veblen published a paper called ”An Application of Modular

Equations in Analysis Situs” as a response to Poincaré’s ”Analysis Situs” and its second sup-

plement [Die09, Poi00, Veb12, Veb31]. At the time, there was no notion of homology groups

54In the case where every Ri is a triangle, we have to pick vi and vj that do not constitute a triangle before
removing v.

55The classic language here would be a cubic map rather than a 1-skeleton.
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and everything was expressed in terms of Betti numbers, e.g. the first version of Poincaré

duality as motivated in Section 4.5. There was, in particular, no notion of neither changing

coefficients nor going to cohomology. The early work of Poincaré focus on polyhedrons and

their generalized geometry, in particular a boundary map was introduced. Given a manifold

partitioned into a finite number of polyhedrons (instead of triangles), one may define the

following boundary matrices from the associated CW-structure: B = (bij) and A = (aij),

where bij equals 1 if and only if the i’th 1-cell is in the closure of the j’th 2-cell, otherwise

bij is zero, and similarly, for aij between 1-cells and 0-cells. In the case where the entries are

considered as elements in a field of characteristic two, we know that these are the boundary

operators. In his paper, Veblen first studies these matrices over Z2, where he spends some

time discussing kernels and cokernels, before considering the entries as elements of GF(4).

He notices how the colours of maps may be considered as elements of GF(4), and use char-

acteristic two to prove the following. Let X0 ⊂ X1 ⊂ X2 be the cell decomposition of a

map partitioned into polyhedrons, then colouring X2 with four colours (in terms of the map

problem) is equivalent to finding a Z ∈ GF(4)|X
2| such that BZ ∈ (GF(4)∗)|X

1|. The special

case where each polyhedron is a triangle follows from part of the proof of Proposition 5.4,

and the argument is in fact the same; the image on an edge (1-cell), which is a sum of the

elements corresponding to the two incident polyhedrons (2-cells), is non-zero if and only if

the elements on the incident polyhedrons are distinct as the characteristic of GF(4) equals

two. Of course, the boundary matrices of Poincaré relates to boundary maps in homology;

the building blocks can be any choice of n-gons [Hat01].

The reformulations of Tait and Veblen seems to be directly related as both associate three

distinct elements with edges of triangulations. Nonetheless, they have only been proven equiv-

alent through Theorem 5.1. The proof of Proposition 5.4 shows how trivial first homology of

S2 directly associate the reformulations; BZ ∈ (GF(4)∗)|X
1| is a 3-colouring of the edges and

conversely a 3-colouring Y ∈ GF(4)|X
1| is in the image as AY = 0. Veblen probably did not

notice this due to the incomplete state of homology theory. Or put differently, the paper is

an early motivation of changing coefficients in homology.

5.6 Topology and Colouring Graphs

We have seen that Theorem 5.1 is associated with triangulations of the sphere through

Theorem 5.3, and the motivation for studying colourings originates from colouring actual

maps. Further, when Heawood proved that five colours suffice to colour maps by reusing
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Kempe’s arguments, he also derived the Heawood numbers

Hg =

⌊
7 +
√

1 + 48g

2

⌋
, g = 1, 2, 3, ...

The numbers give a sufficient number of colours when colouring graphs embeddable on a

surface of genus g [Hea90, Saa72]. The proof is topological in nature as it relies on the

Euler characteristic, but the argument does not extend to the case g = 0 (a sphere). Note

that inserting g = 0 into the formulae gives H0 = 4, such that Theorem 5.1 completes the

Heawood numbers. Hence, it is reasonable to associate Theorem 5.1 with S2. Combining

arguments similar to those in Section 5.4, there is an easy proof of how five colours suffice to

colour maps/planar graphs, and the argument rely heavily on the Euler characteristic.

Proposition 5.16. Any planar graph is 5-colourable.

Proof. Observation 5.15 is eligible in the case of five colours. Our strategy is to replicate the

arguments preceding Observation 5.15 for 5-cycles. Assume

Γ = {n ∈ N+| ∃ a non-5-colourable planar graph of size n} 6= ∅.

Take a minimal G, and consider a vertex, v, of minimal degree. Observation 5.15 gives

degG(v) = 5. The removal of v enables a homomorphism between two of the five vertices

adjacent to v, showing how four colours is enough to colour the vertices adjacent to v; apply

the argument involving Observation 2.14. Consequently, we may extend the colouring to a

5-colouring of G. A contradiction.56

v1

v2

v3

v4v5

v

R1 R2

R3

R4

R5

R φ(v1)

φ(v2)

φ(v4)
φ(v5)

φ∗v1

v2

v3

v4v5

Figure 36: Planar graphs are 5-colourable.

The topology of S2 is not fully utilized in the discussion of Theorem 5.1. More precisely,

one may restate the above theory in R2 through the stereographic projection; they are not

56Note that these arguments cannot be extended to show Theorem 5.1; the vertex of degree five is coloured
by a fifth colour.
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homeomorphic, they do not even have the same homology (H2(R2) = 0). In particular,

H2(S2) ' Z does not seem to be helpful. We are interested in an element in the kernel of d2,

the coboundary operator, and thus surjectivity does not seem to be important.
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