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Abstract

This thesis aims to characterize 112 weathered oil samples collected on shore, at
18 islands, along the coastline of Mid-Norway during a time period of 2011-2015.
Emphasis have been made on characterizing samples by three di�erent multivari-
ate methods; Principal component analysis (PCA), Partial least square-discriminant
analysis (PLS-DA) and Hierarchal cluster analysis (HCA), however univariate meth-
ods have been applied as a starting point.

In multivariate data analysis, diagnostic ratios were calculated between biomark-
ers and PAH components and applied to look for interesting structures in the plot.
The classi�cation from univariate methods, were combined to identify the position
of di�erent oil types in the plots.

PCA, PLS-DA and HCA demonstrated their ability to categorize weathered sam-
ples, and identi�ed samples that could not be identi�ed by the traditional univariate
method. The multivariate techniques were able to classify samples without some of
the typical identifying biomarkers that are used in univariate oil spill forensics and
indicates that multivariate techniques could be a promising method for identifying
heavily weathered samples that often have inconclusive or missing measurements for
typically used biomarkers and diagnostic ratios.

Selected samples were imported into an international oil spill database to identify
matches to external samples from other projects and laboratories. Six samples in
this study were a probable match to oil samples collected at the Shetland islands.

Sammendrag

Denne oppgaven har som mål å karakterisere 112 forvitrede oljeprøver som er samlet
inn på 18 øyer langs Trøndelagskysten i løpet av tidsperioden 2011-2015. Prøvene har
blitt karakterisert ved hjelp av tre ulike multivariate teknikker; Prinsipal komponent
analyse (PCA), Delvis minstekvadrat-diskriminant analyse (PLS-DA) og Hierarkisk
klyngeanalyse (HCA), og univariate statistiske metoder har blitt brukt som et ut-
gangspunkt for dette.

I multivariat dataanalyse har diagnostiske ratioer blitt regnet ut mellom bio-
markører og PAH komponenter, og blitt benyttet for å se etter interessante strukturer
i plottet. Klassi�seringen fra den univariate metoden ble kombinert for å identi�sere
posisjonen til ulike oljetyper i plottet.

PCA, PLS-DA og HCA har vist at de kan kategorisere forvitrede prøver og iden-
ti�sere prøver som ikke kunne bli identi�sert av tradisjonelle univariate metoder. De
multivariate metodene klarte å klassi�sere prøver uten bruk av de typiske identi�s-
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erende biomarkørene som brukes i univariat oljesøl identi�kasjon. Dette indikerer
at multivariate teknikker kan være en lovende metode for å identi�sere tungt forvit-
rede prøver som ofte har manglende målinger for de typiske brukte biomarkørene og
diagnostiske ratioer.

Utvalgte prøver fra prøvesettet har blitt importert til en internasjonal oljesøl
database for å identi�serte likheter mellom eksterne prøver og prøver fra dette dataset-
tet. Seks prøver ble i dette prosjektet antatt å være en sannsynlig match med ol-
jeprøver som er samlet inn fra Shetland øyene.
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Chapter 1

Introduction

Oil spilled into the sea represents a threat to the environment and marine life. In
addition, cleaning up procedures are costly, and will only be able to limit the dam-
age an oil spill may cause. A majority of the oil spills covered by the media, are
ships accidents and o�shore releases. These types of oil spill are only a small part
of the total releases worldwide. Nevertheless, they are typically few events that
each is large in scale. They are given great attention because of the amount of oil
that are released, fatalities, large local environmental problems and large clean-up
costs [Fingas, 2010] [Wang and Stout, 2010]. Acute oil spills are divided into acci-
dents and intentional operational discharges. Accidental oil spills may occur from
pipeline spills, blowout from wells, collision between vessels, or if vessels run aground.
Examples of intentional operational discharges include discharges from vessels, such
a bilge water. Bilge water is oily wastewater from ships and contain a mixture of
petroleum and other compounds [Wang and Stout, 2010]. In many ships it is cus-
tomary to run bilge water through an oil-water separator, but it is suspected that
poor maintenance may cause releases of oil with concentrations above the legal level.
Equipment failure and human errors are the largest causes for accidental oil spills.
Transportation of petroleum from oil �elds to shore involves di�erent transportation
steps and transportation alternatives. These are factors that increase the chance of
an oil spill to occur [Fingas, 2010].

Both the industry and governments have been working to prevent oil spills world-
wide. This has lead to increased focus on operating and maintenance procedures.
In addition, pollution protocols and protocols for operation of ships to prevent pol-
lution have been established [Fingas, 2010] [International Maritime Organization,
2016]. According to the database provided by The International Tanker Owners
Pollution Federation (ITOPF), the number of large spills, which is de�ned as spills
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over 700 tonns, have decreased from 1970 to 2015, even though ship tra�c from oil
trade have increased in this period [ITOPF, 2016].

In oil spill forensic, chemical �ngerprinting is used for the purpose of localizing the
source of an oil spill by applying analytical techniques such as Gas Chromatography-
Flame Ionisation Detector (GC-FID) and Gas Chromatography-Mass Spectrometry
(GC-MS). This has to hold in court, thus making it possible to take legal actions
against the accountable party [Wang and Stout, 2010]. E�orts have been made to
make the chemical �ngerprinting as defensible as possible. The CEN methodology
was established in 2002 with the aim of being a forensic tool for comparison and
identi�cation of oil spills, by using di�erent analytical techniques and gives legal
support when actions are taken against the party responsible for the oil spill in the
environment [CEN, 2012]. The Bonn agreement was established in the late 1970s
between north sea countries and European union. Their aim is to work together and
assist each other to detect and prevent pollution of oil [Wang and Stout, 2010] [Bonn
Agreement, 2016]. Computerized oil spill identi�cation (COSIWeb) database was
created in 1999, and is a database that strengthens the work with identi�cation of
unknown oil samples. This database contain oil samples from accidental oil spills,
with both known and unknown oil types and di�erent crude oils from around the
world. The database is available through any browser and allows the user to upload
oil samples into the database which is then available for all other users. The user
may then compare the uploaded oil samples with other samples in the database to
investigate possible matches [COSIWeb, 2016] [Stout and Wang, 2016].

The CEN methodology, and COSIweb database are based on univariate statis-
tics, however the use of multivariate data analysis is becoming more used within oil
spill forensic. Multivariate analysis o�er many advantages such as handling many
variables at the same time, and give greater insight into the data by explaining hid-
den structures. PCA and PLS are examples of multivariate techniques in oil spill
forensics [Christensen et al., 2004] [Nielsen et al., 2012] [Christensen and Tomasi,
2007] [Wang et al., 1999] [Stout et al., 2001].

1.1 Background

The coastline of Norway can be exposed to contamination of oil from ship tra�c
and from �elds in the Norwegian sea. This has the potential to a�ect areas such the
marine life, seabirds and �sheries [Norwegian Environment Agency, 2016]. There are
examples of major oil spills that have polluted the Norwegian coastline, such as the
Full City and Server, both shipping accidents. In 2009 Full city ran aground near
Langesund in Telemark. Approximately 293 tonnes of heavy oil leaked out and 75
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km of the coastline was contaminated. They were able to collect about 100 tonnes
of oil. In 2007 the MS Server ran aground near Fedje in Hordaland. 388 tonnes of
heavy bunker oil was released into the environment [S. Boitsov and Dolva, 2013].

Figure 1.1 shows a map of the oil �elds collectively known as the Haltenbanken
�elds, and ship tra�c around Mid-Norway.

Figure 1.1: Overview over fairways and oil �elds close to Mid-Norway [Norwegian
Environment Agency, 2016]

A consequence analysis was published in 1998 for the oil�elds in the Haltenbanken
area. This report says that blowouts releases, leaks from �oating storages, and
accidents with shuttle tankers are accidents that most likely would cause the largest
spills of oil in the Mid-Norwegian shelf, typically in the range between a few thousand
tons to over 300,000 tons. The probability of these oil spills was very low and summed
up to a release every 38 years in year 2000 and every 24 years in 2009. Calculation of
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oil spill trajectories from the Mid-Norwegian shelf, presume that the oil will spread
to the northeast and east due to the predominant wind direction being south to
southwest, and due to the background currents that follows the coast northward.
The coastline that may be a�ected from a blowout in the Mid-Norwegian shelf are
areas from the south of Hitra to Kvaløya in Troms [Statoil, 1998].

The following quote is also written on the Norwegian Petroleum webpage [Nor-
wegian Petroleum, 2016]:

The Norwegian petroleum industry has not been the cause of any major oil spills
that have resulted in environmental damage. In the roughly 50 years since Norway's
petroleum activities began, no oil spill from the industry has ever reached the shore-
line. (Norwegian Petroleum webpage, 08.03.2016)

As a part of the course KJ3050-Marine Organic Environmental Chemistry pro-
vided by NTNU and SINTEF, students have searched for weathered samples of oil
spills along the coastline of Mid-Norway during a time period of 2010 to 2015. A ma-
jority of these islands are a part of the Froan nature reserve, which an area were the
aim is to protect living and nesting sites for birds and marine mammals, as well as
�ora and fauna [Visit Norway, 2016]. Approximately 400 samples have been collected
during these �eldtrips and interpreted by students as a part of this course. Work
with part of this material has also been presented by earlier master students [Henrik-
sen, 2012] [Vike, 2014]. However, nobody have evaluated the complete dataset and
analyzed it for the major trends.

1.2 Objectives

The objective of this thesis is to

• Identify trends in sample material collected by previous students in the period
2011-2015 from KJ3050 by using multivariate techniques.

• Characterize samples according to oil type.

• Collect and characterize oil samples from Sula.

• Import selected sample material to COSIWeb with the aim of sharing re-
sults with other oil spill laboratories, and search for identifying samples in
the database.
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1.3 Approach

Sample material collected at Sula will be analysed by GC-FID and GC-MS. The
entire sample material will be assessed by inspection of chromatograms according
to the CEN procedure to identify the type of oil (Crude or Bunker). The sample
material will be analyzed by di�erent multivariate techniques to observe trends in
the dataset. Di�erent multivariate techniques include principal component analysis
(PCA), Hierarchical Cluster Analysis (HCA), and Partial least squares discriminant
analysis (PLS-DA). Part of the sample material will be included and analyzed in the
COSIWeb database.
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1.4 Abbreviations

AGNES Agglomerative Nesting
CEN European Committee for Standardization
CI Chemical ionization
DCM Dichloromethane
DR Diagnostic Ratio
EI Electron Ionization
FID Flame Ionization Detector
GC Gas Chromatography
HCA Hierarchical Cluster Analysis
HFO Heavy Fuel Oil
LFO Light Fuel Oil
LOQ Limit Of Quanti�cation
MS Mass Spectrometry
SIM Selected Ion Monitoring
MVA Multivariate Analysis
M/Z Mass to Charge Ratio
NA Not Available
NS North sea
NTNU Norwegian University of Science and Technology
PAH Polyaromatic Hydrocarbon
PC Principal Component
PCA Principal Component Analysis
PLS- DA Partial Least Square-Discriminant Analysis
RSD Relative Standard Deviation
SD Standard Deviation
UCM Unresolved Complex Mixture
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Chapter 2

Theory

2.1 Factors a�ecting oil spill �ngerprinting

In oil spill forensic the idea is to characterize di�erent properties of the oil to form
a conclusion about the type of oil and origin of the oil spill. These properties will
depend on factors both prior to the spill, such as the origin of crude oil, and re-
�ning processes of the oil. It will also depend on factors after the spill, such as
weathering and mixing. Crude oil is naturally occuring petroleum (oil that is found
underground), and is formed as a result of various geological processes. The compo-
sition of crude oil depends on the origins of the oil, hence the chemical and physical
properties of crude oil will vary. This also means that when crude oil is spilt at sea
they will behave di�erently [Wang and Stout, 2010].

Crude oil is re�ned into (manmade) petroleum products. Examples of re�ned
petroleum products are fuel oil, lubricants and sludge products. The composition
of these re�ned petroleum product is a mixture of the original chemical properties,
and new chemical properties, since some alterations of the chemical compositions
occur during the re�nery process. It has for example been shown that distillation
and thermal cracking may a�ect certain PAHs and biomarkers [Wang and Stout,
2010]. When oil is released into the sea there are both natural and anthropogenic
sources that may mix with the oil spill. These sources contribute to a large amount
of the total oil in the environment. Examples of anthropogenic sources are runo� and
deposition of air pollution. Natural sources may come from natural oil seeps [Wang
and Stout, 2010]. Moreover in the event of an oil spill, oil may mix with other oils
if several oils are included in an oil spill (e.g. if tankers collide) which makes the
�ngerprinting even more demanding.
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2.2 Composition of Crude oil

The composition of crude oil can be divided into two main groups; hydrocarbons
and nonhydrocarbons. The majority of compounds are hydrocarbons. As the name
implies, hydrocarbons consist of hydrogens (12-14 %) and carbons (84-87 %), and
these vary in complexity from light, volatile compounds such as propane to heavy
compounds such as waxes. They can be straight chained, branched or cyclic, and
their chemical bonds can be saturated or unsaturated. In addition, crude oil contain
elements of sulphur, nitrogen and oxygen as well as trace metals such as vanadium,
nickel and chromium [Brandvik and Daling, 2014].

2.2.1 Hydrocarbons

Hydrocarbons can be further classi�ed into para�ns, naphthenes and aromatics
[Simanzhenkov and Idem, 2003]. Para�ns are saturated, straight-chain alkanes and
isomers of alkanes. Straight chained alkanes up to four carbon atoms are in gaseous
form (methane, ethane, propane and buthane), and straight chained alkanes with 5
to 17 carbon atoms are liquids. When the number of carbon atoms in a straight chain
con�guration reaches 18 carbons they are termed waxes. The occurrence of para�ns
in crude oil can vary from 2-50 % [Simanzhenkov and Idem, 2003]. Naphthenes are
saturated cyclic alkanes with one or more ring structure and may include para�nic
side chains [Speight, 2014], see �gure 2.1. Aromatic hydrocarbons are unsaturated
compounds containing one or more aromatic ring structure such as benzene, and
these can be connected to para�nic hydrocarbons or naphthene rings [Speight, 2014].

2.2.2 Non-hydrocarbons

Crude oil contain small portions of sulphur, nitrogen and oxygen and trace met-
als of vanadium, nickel and chromium. Asphaltenes and resins are examples of
non-hydrocarbons. Resins are compounds that show polar character compared to
hydrocarbons. Their molecular weight lies in the area between 700-1000. They often
contain compounds such as carboxylic acids, sulphoxides and phenols and are dark
in color [Simanzhenkov and Idem, 2003] [Brandvik and Daling, 2014] Asphalthenes
are compounds with large molecular weights ranging from 1000 to 10 000. Their
structures are poorly described in the litterature, and they are one of the most com-
plex compounds in crude oils. They are red to brown in in color and are described
as polycyclic aromatic compounds. [Simanzhenkov and Idem, 2003] [Brandvik and
Daling, 2014].
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Figure 2.1: Examples of di�erent hydrocarbons. From left to right: straight chained
alkane (hexane), a naphthenic structure (Ethyl-cyclohexane) and polyaromatic hy-
drocarbon (Phenantrene). Chemical structures are made in Chemdraw.

2.3 Re�nery products

In this thesis bunker oil is used as a collective term for oil products formed from
re�nery processes and include fuel oil, lubricating oil and sludge. Light fuel oil rep-
resents distilled intermediates and fuels such as gas oil and marine diesel. Biomarkers
with high boiling point are typically not present in these oils [CEN, 2012]. Heavy
fuel oil are oils with high density and viscosity. The re�nery processes often changes
the methylphenantrene pattern due to a catalytic cracker which alters some of the
aromatic patterns. It increases the amount of methylanthracene and reduces the con-
centration of retene [CEN, 2012]. Sludge is a high fuel oil, or a mixture of HFO and
lubricating oil (motor oil). It typically do not contain the biomarker retene [CEN,
2012].

2.4 Weathering of oils in water

When oil products are spilt at sea there are di�erent weathering processes that will
alter the physical and chemical properties of the oil. The oils degree of weathering
will be dependent on the oils original physical and chemical properties as well as
environmental conditions (waves, wind, temperature etc) and properties of the sea
(currents, temperature, salinity, density, oxygen, bacteria etc). Weathering can fur-
ther be divided into evaporation, dissolution, emulsi�cation, redistribution of compo-

10



nents, biodegradation, chemical alteration and contamination [Brandvik and Daling,
2014] [CEN, 2012]. Figure 2.2 shows the di�erent weathering processes of oil at sea.

Figure 2.2: Weathering processes of oil spilt at sea. Image courtesy of SINTEF.

2.4.1 Evaporation

Evaporation is one of the �rst weathering processes that occurs when oil is spilt
at sea, and is especially prominent for the �rst days as presented in �gure 2.3. It
is one of the most important processes that removes oil from water. In particular,
components with low boiling point are exposed to this weathering process. As a rule
of thumb, oil components with boiling point less than 200◦C will evaporate within
12-24 hours. This correspond to n-alkanes up to approximately n−C11. The degree
of evaporation will depend on the amount of light compounds in the oil, as well as
temperature in the sea, wind speed and the thickness of the oil slick [Brandvik and
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Daling, 2014] [CEN, 2012].

Figure 2.3: Dominance of weathering processes at di�erent times. Image courtesy of
SINTEF.

2.4.2 Dissolution

Dissolution is a process that removes the most soluble components in the oil and
applies to smaller compounds such as hetero compounds and low substituted aro-
matic hydrocarbons. These compounds however, tend to evaporate more quickly and
dissolution is not always a prominent factor for removing oil from the sea, except
in those cases were there is a high degree natural dispersion of oil [Brandvik and
Daling, 2014] [CEN, 2012].
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2.4.3 Photo-Oxidation

Photo oxidation is a process that alters some of the chemical composition of oil due
to the e�ect sunlight. Aromatics are especially prone to this e�ect, and they are
oxidized to resins and eventually asphalthenes. This actually stabilizes water-in-oil
emulsions and increases the oils persistence at sea. Because of this, slowly degradable
tarballs can be formed and drift on the sea for a long time or drift at shore [Brandvik
and Daling, 2014] [CEN, 2012].

2.4.4 Biodegradation

Microorganisms in the sea, such as bacteria, may use the oil to gain nutrition.
Biodegradation is not prominent before approximately one to two weeks after oil
is spilt at sea, see �gure 2.3. It can occur in any type of oil component except
for asphalthenes, but is especially evident in straight-chain hydrocarbons. The de-
gree of biodegradation will depend on the amount of nutrients in the oil (nitrogen
and phosphate) as well as oxygen and temperature. Biodegradation takes place at
the water-to-oil interface which means that oil that has drifted on shored degrade
slower. The degree of biodegradatoin can be estimated by the loss of n-C17 and
n-C18 compared to pristane and phytane [Brandvik and Daling, 2014] [CEN, 2012].

2.4.5 Sedimentation

Crude oil residues will normally not have higher density than water and will not
sink, except in cases where there are high concentrations of sediments, in which the
sediments may cling or stick to the oil and sink. Recent developments in oil re�neries
makes the oil more dense and hence sinking of heavy fuel oils may become a larger
problem in the future [Brandvik and Daling, 2014].

2.4.6 Water in oil emulsi�cation and natural dispersion

There are two processes that happens simultaneously after an oil spill, namely water-
in-oil emulsi�cation and natural dispersion, also known as oil-in-water emulsi�cation.
Natural dispersion refers to oil that break into droplets and mix with water and the
water column. This removes oil from the sea surface and leads to natural breakdown
of the oil. This process occurs when there are breaking waves (typically when wind
speed is above 5 m/s). Natural dispersion is one of the dominant processes the �rst
days after an oil spill. Formation of water-in-oil emulsi�cation means that water
droplets are in a continuous oil phase. The oil will become more persistent and
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remain at sea or on shore. Since the viscosity of an oil increases due to weathering,
water-in-oil emulsi�cation will eventually the dominant process compared to natural
dispersion [Brandvik and Daling, 2014].

2.5 Biomarker

In order to localize the source of an oil spill we have to look for identifying markers or
�ngerprints. The �ngerprint of the oil is what we call a biomarker. Biomarkers are
described as �complex molecules derived from formerly living organisms� [Wang et al.,
2006] [Kao et al., 2015] [Wang and Stout, 2010]. They are valuable for the purpose of
�ngerprinting since the organic structures are resistant to environmental degradation
and hence show no variation, or only small variation in structure from their parent
organic molecule. This makes it possible to extract speci�c information regarding
the source of the spilled oil. In addition, biomarkers are useful for di�erentiating and
correlating oils, monitoring degradation processes and evaluate the weathering state
of oils. They can be detected in low quantities by methods as gas chromatography-
mass spectrometry (GC-MS). By performing chemical analysis of various biomarkers,
the analyser can gain information about the chemical composition of the oil which is
helpful in the puzzle for determining the source of the spill [Wang and Stout, 2010].

2.5.1 Characterization of biomarkers

The very basic structure of most biomarkers are the isoprene unit, which contains �ve
carbon atoms, see �gure 2.4.The chemical formula is C5H8 [Peters et al., 2005] [Wang
and Stout, 2010].

Compounds that consists of these subunits are termed terpenoids or isoprenoids.
The terpenoids consists of a large group of biomarkers with either cyclic or acyclic
con�guration. They can be saturated, have double bonds or hold other elements
besides carbon and hydrogen. The subunits can be linked in a a regular manner
(head-to-tail) or irregular manner (tail-to-tail or head-to-head) [Peters et al., 2005]
[Wang and Stout, 2010]. Examples of terpenoids that are important for oil spill
identi�cation are terpanes, steranes and aromatic steranes [Wang and Stout, 2010].

Terpanes

Terpanes that are characteristic in crude oil include Sesqui- (C15), di- (C20) and
triterpanes (C30). As the name implies the sesquiterpanes, diterpanes and triter-
panes consists of three, four and six isoprene subunits respectively [Wang and Stout,
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Figure 2.4: Isoprene subunit. Chemical structure is drawn in ChemDraw

2010]. Pristane, phytane and squalene are examples of acyclic terpanes and their
chemical structures are presented in �gure 2.5.

Squalene is classi�ed as an acyclic triterpanes and are linked in a irregular manner,
with six isoprene subunits and one tail-to-tail linkage. Pristane and phytane belong
the the acyclic diterpanes. They are linked head-to-tail and stem from phytol which
is the side chain of chlorofyll. Generally, acyclic isoprenoids are more resistant to
biodegradation than the n-alkanes. Hence ratios between n-alkanes and isoprenoids
are useful for indicating the extent of biodegradation. Examples of such ratios in-
clude pristane/n-c17 and phytane/n-c18 where the ratio will decreases along with
increased weathering [Waples, 1985]. Hopanes belong to the group of pentacyclic
triterpanes. They exist in a naphtenic structure with four six-membered rings and
one �ve membered ring. They consist of three sterioisomeric series; 17α, 21β and
17β, 21β and 17α, 21α where α and β indicate whether hydrogen atoms are below
or above the plane of the rings [Peters et al., 2005]. 17α(H), 21β(H)-con�guration
of hopane ranging from 27 to 35 carbon atoms are the most abundant in petroleum
compared to the other con�gurations and helpful for oil identi�cation due to its ther-
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Figure 2.5: Chemical structure of pristane, phytane and squalane. The chemical
structures are made in Chemdraw.

modynamic stability [Peters et al., 2005]. They are usually detected using m/z 191
chromatograms [Wang and Stout, 2010].

Gammacerane and Oleanane are other pentacyclic triterpanes that are charac-
teristics in oil spill �ngerprinting. Gammacerane is characteristic for marine and
lacustrine environments. Oleanane is characteristic for lacustrine environments and
are derived from terrestrial plants [Waples, 1985].

Steranes and aromatic steranes

The sterane family is characterized by the 4-cyclic arrangement and 21 to 30 carbon
atoms. The homologous series containing 27, 28 and 29 carbon atoms have high
source speci�city and common steranes. They are detected using m/z 217 [Wang
and Stout, 2010].

Among the aromatic steranes, the monoaromatic and triarmoatic steranes are
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useful in oil spill �ngerprintig for di�erentiation and source identi�cation [Wang and
Stout, 2010].

2.6 Chromatography

Gas chromatography-�ame ionization detector (GC-FID) and gas-chromatography
mass spectrometry (GC-MS) are among the most frequently used instruments for
characterizing hydrocarbons in oil [Wang and Fingas, 2003].

In general, chromatography is a separation technique where sample components
distributes between a mobile phase and a stationary phase [Ettre, 1993]. Sample
components separate and elute through the column at di�erent retention times. This
is because they interact di�erently with the stationary phase. A detector at the end of
the column gives a signal of the components as a function of time or volume [Lundanes
et al., 2013].

In gas chromatography the mobile phase is an inert gas, which means that the
gas does not interact with the components or the stationary phase. The stationary
phase can either be a solid adsorbent or a liquid stationary phase, however the latter
is more common. Sample components are separated due to di�erent vapor pressure
and di�erent interactions with the stationary phase [Grob and Barry, 2004]. The
basic components of a GC instrument are the carrier gas tank, �ow regulators, the
sample injection chamber,the column, detector and a data system as presented in
�gure 2.6. The most common carrier gases are nitrogen, helium or hydrogen and
they are contained in a pressurized cylinder [Lundanes et al., 2013].

The sample is introduced into the column through an injection system. Type
of injection system will ultimately depend on the sample, and column type at use
[Lundanes et al., 2013]. For capillary columns the most common injection systems
are split/splitless injections, on-column and programmed-temperature vaporization
[Grob and Barry, 2004]. In a split/splittless injection system the sample is introduced
by a syringe needle through a septum into a glass liner. The sample is vaporized and
mixed with carrier gas. In split mode the mixture is separated in two parts. One part
contains only a fraction of the mixture which enters the column, and the remaining
part which contains the largest volume is sent to waste. [Lundanes et al., 2013].
In splitless mode the whole sample volume is directed to the column. Two types
of columns exist in gas chromatography; Packed columns and capillary columns.
Today the use of capillary columns are frequently used in environmental laboratories
[Fingas, 2010]. The column is placed in an oven so that the mixture is maintained
in a vaporized state, and temperatures can vary from 40 to 350 ◦C [Meyers, 2011].
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Figure 2.6: Instrument of a Gas Chromatogram. Image courtesy of Chromedia
[Chromedia, 2016].

2.6.1 Flame ionization detector

Among the many detectors that exist in gas chromatography, the �ame ionization
detector is one of the most applied detector [Skoog, 2004]. Some of the reasons
for this owes to its response to organic compounds, low detection limits, ease of
use, high sensitivity (10−13g/s), and large linear range (107g/s) [Grob and Barry,
2004]. The detector responds to ions that are produced in a �ame. The carrier
gas containing the sample components leaves the column and enters the detection
compartment through a jet tip as presented in �gure 2.7. Hydrogen gas is added and
a �ame is started at the end of the jet tip. Air enters the detection compartment
through a separate channel. Compounds containing hydrocarbons goes through a
set of chemical reactions and form ions. Detection is achived by having a collector
electrode with a potential a few volts higher than the potential of the �ame. This
generates a current which is proportional with the amount of carbon ions in the
�ame. It is a mass-sensitive detector and minor changes in temperature, �ow or
pressure does not a�ect the response [Skoog, 2004] [Grob and Barry, 2004].
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Figure 2.7: Flame ionization detector [Grob and Barry, 2004].

2.6.2 Gas Chromatography Mass Spectrometry

Chromatography separates a sample solution into its individual components and
provide information about its peak height or area which makes it possible to gain
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quantitative data. However, it cannot provide information about the structure of
the components. To achieve this the chromatogram is combined with a mass spec-
trometer. The results from a mass spectrometer provides information regarding their
chemical identity. Moreover GC-MS has a chemical and electron ionization database,
which makes identi�cation of unknown compounds possible [Lundanes et al., 2013].

The instrument consist of an ion source, mass analyzer and a detector. The
ion source ionizes atoms or molecules to ions. In GC-MS, two types of ionization
techniques are commonly used; Electron ionization (EI) and chemical ionization (CI)
whereby the most applied technique is EI. In this technique the sample is placed
under high vacuum and subjected to a beam of high energy electrons (70 eV). This
converts the sample into molecular ions and fragments of molecular ions which makes
up the mass spectrum [Poole, 2003] [Grob and Barry, 2004].

The mass analyzer separates the ions based on their mass to charge ratio (m/z).
Linear quadrupole is one of the most commonly used mass analyzer in GC-MS,
mainly due to fast scanning rate and low cost [Grob and Barry, 2004]. Linear
quadrupole is made up of four cylindrical rods alligned pararell to each other. Both
radiofrequency (RF) and direct-current (DC) potentials are applied and this create
and oscillating electrical �ed. Hence ions that have a speci�c m/z will follow a sta-
ble course and reach the detector whereas those with an unstable course will collide
with the quadrupole and not be detected. The RF and DC potential can be con-
trolled so, only ions with speci�c m/z values will reach the detector. Due to its fast
scanning rate and low cost the quadrupole is the most commonly used analyzer in
GC-MS [Grob and Barry, 2004] [Poole, 2003] . The detector generates an electrical
signal and counts the number of ions for each speci�c mass. This is plotted by the
datasystem which creates a mass spectrum [Poole, 2003] [Grob and Barry, 2004].

2.7 CEN methodology for oil spill identi�cation

The existing guideline for oil spill identi�cation is called the CEN methodology
(CEN/TR 15522-2:2012). It is a revised and improved technique which is based
on the �rst edition of the CEN guidline from 2006 (CEN/TR 15522-2 Version 1),
and the NORDTEST method from 1991 [NORDTEST, 1991] [CEN, 2012] The CEN
methodolgy is a forensic tool for "characterising and identifying the source of water-
borne oils resulting from accidental spills or intentional discharges" [CEN, 2012].It
can be applied to waterborne oils, and samples of petrogenic origin that contains sig-
ni�cant amounts of hydrocarbons with boiling points exceeding 200◦C [Daling et al.,
2002]. Examples include crude oils, light re�ned products and heavy re�ned products
such as bunker oils [Stout and Wang, 2016]. The CEN methodology is divided in two
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parts. The �rst part presents a procedure for sampling, transport and storage of oil,
while the second part is concerned with analysis and data processing of results [Stout
and Wang, 2016]. The second part is divided into three levels and is illustrated in a
�ow chart in �gure 2.8.

Figure 2.8: Flowchart for oil spill identi�cation [Daling et al., 2002].
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2.7.1 Level 1

The �rst level includes screening all samples by GC-FID. This is mainly to obtain
a general overview of the samples, and is helpful for excluding samples that do not
match a speci�c source sample, or exclude samples that turn out not to be oil. The
chromatogram provides us with information regarding the distribution of hydrocar-
bons, type of components in our sample such as n-alkanes and isoprenoids, it gives us
an indication about the boiling point range and the degree of weathering. An oil sam-
ple that has been analyzed by GC-FID will typically show several peaks of n-alkanes
along the X-axis, see �gure 2.9. Sometimes a hump under the alkanes is observed and
this is described as an unresolved complex mixture (UCM). This means that there is
a set of alkane peaks that cannot be separate by the chromatogram. There are two
types of isoprenoids that are normally used for measuring the degree of weathering,
namely pristane and phytane. Pristane is located close to nC17 and phytane close to
nC 18. This is measured by calculating the diagnostic ratio between n-c17/pristane,
n-C18/phytane and pristine/phythane [Fingas, 2010]. In cases where you observe
that a spill sample and a source sample have similar chromatograms and you suspect
that the di�erence between them is caused by weathering, a �weathering check� can
be obtained. This can be done qualitatively by overlaying two chromatograms and
compare them, or numerically by normalizing peaks [Daling et al., 2002] [Wang and
Stout, 2010].

Figure 2.9: Example of a GC-FID chromatogram (sample 2015-0839) displaying n-
alkane distribution, and a broad and �at UCM hump.
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2.7.2 Level 2

Once the general screening by GC-FID is completed and obvious non-matching sam-
ples are discarded, the remaining samples are further analyzed by GC-MS in se-
lected ion-monitoring mode. From a set of selected mass-charge values, we obtain
chromatograms that show peaks representing various biomarkers and polycyclic aro-
matic hydrocarbons (PAH) that can be used in the process of identifying the source
of an oil spill. In addition, the chromatograms provides us with helpful information
for evaluating which samples are crude oil and bunker oil and if the crude oil is from
the north sea or not. This is done by inspecting the chromatogram. [Wang and Stout,
2010] [CEN, 2012].

2.7.3 Level 3

In level three, diagnostic ratios are calculated between two PAHs or biomarkers,
preferably within the same m/z value. Diagnostic ratios represents a useful tool for
comparing oil samples. They induce a self-normalizing e�ect on the data. Variations
caused by the instrument, operator and matrix e�ects are minimized [Wang and
Stout, 2010]. So when ratios are compared they re�ect di�erences of the biomarker
distribution between samples.

For PAHs it is recommended to calculate diagnostic ratios from peak areas, and
for biomarkers it is recommended to calculate the diagnostic ratio from peak heights
[CEN, 2012]. The diagnostic ratio is calculated by the formula, where A and B
represents the peak height and peak area respectively (equation 2.1);

DR = A/B (2.1)

Diagnostic ratios from a spill sample are typically compared with diagnostic ratios
from a reference sample. In order to compare the two samples and evaluate if the
diagnostic ratio are identical, univariate statistical analysis is used. The comparison
is based upon the repeatability limit (r). A limit, r, is de�ned as the repeatability
limit. The repeatability limit is calculated from a relative standard deviation which
is set to 5 %. If you choose a 95 % con�dence interval then the repeatability limit
is 14 %. This means that when the repeatability limit exceeds 14 % we are 95 %
certain that the calculated ratio of the samples are di�erent [CEN, 2012].

A positive match can be concluded if every diagnostic ratio are below the re-
peatability limit and the only di�erences between them are due to weathering. A
probable match is concluded if only a few diagnostic ratios are above the repeatabil-
ity limit. The chromatographic pattern are similar to each other and di�erences are
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due to weathering, or contamination [Daling et al., 2002] [Wang and Stout, 2010].
An inconclusive match means that there are some similiarties between the samples,
but also too many di�erences and to many DRs above the repeatability limit which
may or may not be due to weathering or be due di�erent samples. A non match
is concluded if the chromatographic patterns are di�erent from each other and this
cannot be due to contamination or weathering. In addition many DRs are above the
repeatability limit.

2.8 Multivariate Statistics

Multivariate statistics is a branch of statistical analysis that enables you to look at
multiple variables simultaneously. This makes it possible to identify underlying in-
formation in a large dataset which would otherwise be di�cult with the conventional
univariate statistics [Esbensen et al., 2002]. The components are stored in a matrix
X, and consist of n objects and p variables. The variables are listed in the columns
and describes the property we want to measure, (e.g. Temperature, pH) and the
objects are listed in the rows [Martens and Martens, 2001].

2.8.1 Preprocessing

Preprocessing is performed prior to analysis to improve the data and to obtain a
dataset that is reliable for further analysis. The preprocessing methods used in this
thesis are mentioned here.

Blank sample

A blank sample can give information about the background noise of a method that
has been applied. Di�erent type of blanks can be measured. An example is a method
blank which is an analyte-free sample that runs through the same experimental
procedure as the actual sample.

A blank enables calculation of a detection limit, which is the lowest concentration
or signal that can be detected by a system [Little, 2016]. Limit of quanti�cation
(LOQ) is the smallest concentration that can be measured with reasonable reliability
by the method [Mocak et al., 1997]. Limit of detection can be calculated by the
formula:

LOQ = meanblank + 10 ∗ STDblank (2.2)
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Centering

Centering is a technique preformed to remove an o�set in your data, which is the value
of the point the variables �uctuate around. The mean of the variables is typically used
as the o�set. Centering thus changes the origin of your dataset, however the distance
between the variables remains the same. This simpli�es interpretation because the
variation that now can be observed are between the variables only [van den Berg
et al., 2006]. Mathematically this is done by subtracting the column average from
every data point in the column as presented in equation 2.3. This is done for every
column in a matrix:

x̃ij = xij − x̄i (2.3)

Scaling

Scaling is a technique that can be applied to a dataset in situations where there are
variables of di�erent magnitude or di�erent types of variables. This is important to
prevent variables with high values to completely dominate the model at the cost of
variables with small values. There are di�erent ways of scaling a dataset, a common
type is by standardization, which means that variables are divided by their standard
deviation. This gives variables the same variance, thus they in�uence the model
equally [Esbensen et al., 2002] [van den Berg et al., 2006].

Standardization starts by centering data points in a column, before it is divided
by the standard deviation of the column, see equation 2.4. This refereed to as auto
scaling.

x̃ij =
xij
x̄i

(2.4)

Drawbacks to this technique can be observed when variables of small values that
should only have a minor e�ect on the model are scaled up. This is because the
measurement error, which can be large for small values, will increase and in�uence
the model [van den Berg et al., 2006].

Normality

Many univariate and multivariate techniques require that data are normally dis-
tributed, and exceptions from this can lead to results that are di�cult to inter-
pret [Hair et al., 2006]. A perfectly normally distributed dataset follows a Gaussian
curve (or a bell shape). Unfortunately, this is rarely the case, especially in �elds con-
cerning geochemistry and environmental studies. Very often a skewed distribution,
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often to the right, can be observed [Reimann and Filzmoser, 2000]. There are various
tests to check for univariate normality, some of them being histogram plots, skewness
coe�cent, kurtosis coe�cent, the shapiro-Wilks test and the Kolmogorov-Smirnov
test [Hair et al., 2006].

The skewness coe�cient displays a numerical value for the shape of the data. A
positive value may indicate that data are skewed to the right and a negative value
may indicate that data are skewed to the left. When a dataset is symmetric the
skewness coe�cient equals 0, a number which is not very realistic when dealing with
real data. As a rule of thumb the coe�cient should be between -1 to 1 in order to
describe the data as symmetric or approximately [Remenyi et al., 2011].

The kurtosis coe�cient gives a numerical value for the shape of the peak. If the
value is larger than 1 this may indicate a sharper peak than the normal distribution
and less observations can be found in the tails. If the value is less than 1 it may indi-
cate a less sharp peak than the peak of a normal distribution and more observation
can be found in the tails [Remenyi et al., 2011].

Transformations

Transformations can be applied to data that are not normally distributed. Data
transformations replace the original values with transformed values to make the
distribution more symmetric and suitable for interpretation. Di�erent techniques
exist [Bourman, 2009]. One frequently used technique is logtransformation of data,
either by taking the natural log or log base 10 (see equation 2.5):

log10xij (2.5)

2.8.2 Principal Component Analysis

In the �eld of multivariate statics there are various models that enables us to interpret
the data we wish to make sense of. Principal component analysis is one of these
models, and can be described as one of the most basic tools in the �eld of multivariate
statistics. It was �rst addressed by Pearson, but also Fisher, Mckenzie, Wold and
Hotelling are among the important contributors to this �eld [Pearson, 1901] [Wold
et al., 1987].

PCA aims to express the most relevant information that is contained in a dataset
by creating a new set of variables called principal components. These new set of vari-
ables are obtained as linear combinations of the original variables. A new coordinate
system is formed, the new axes being the principal components. Mathematically the
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principal components are calculated from a datamatrix X. The datamatrix is a prod-
uct of a scores matrix T, a loading matrix P' and a residual matrix E, see equation
2.6.

X = TP ′ + E (2.6)

The Scores matrix and loading matrix explain the most important variation in
X. The �rst principal component is always positioned in the direction of maximum
variance. The second principal component is orthogonoal to the �rst PC, and de-
scribes the next largest variance, and so on. The residual matrix is the unexplained
variance and is often noise. The goal is to obtain as much information as possible
from a minimum number of principal components. In this way the noise is not a part
of the evaluation, however it is important not to miss any important principal com-
ponents that might be of value [Wold et al., 1987]. The new axes can be visualized
in various plots to enhance interpretation. A score plot maps the objects along two
score vectors, typically vector 1 and vector 2. This plot shows the distribution of the
samples and makes it possible to detect groups of objects and visualize objects that
are outliers. Similary a loading plot is map of the variables along two loading vectors.
This plot shows which variables are important for the princpal components [Alsberg,
2015]. Variables that are situated in the periphery along a principal component
typically has a large contribution to this princpal component. Likewise, a variable
close to the center do not contribute much to this component. Variables close to
each other a positively correlated, and variables located 180 degrees to each other
are negatively correlated [Esbensen et al., 2002].

A biplot is a combination of a score plot and a loading plot. The biplot gives
an overview over which variables are positively correlated to objects, or groups of
objects. Objects that is located nearby a variable in the biplot, typically have high
values for that variable. Objects 180 degree to a variable, have a low value for that
variable [Esbensen et al., 2002] [Alsberg, 2015].

2.8.3 HCA

Hierarchical cluster analysis is a classi�cation method that combines objects into
clusters by various set of rules. This is presented in a dendogram which visualises
the formation of clusters. Agglomerative clustering is one type of hierarcial clustering
and, this method form clusters based on similarity between objects. The procedure
�rst starts with each object as a separate cluster. In each step the two most similar
clusters are grouped into one new cluster. In the next step, the distance between all
clusters are updated, and the two most similar clusters are once again grouped into
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one new cluster. This process is repeated until all samples are combined into one
large cluster. The degree of similarity among objects can be measured by di�erent
techniques. The most common measure of similarity are distance measurements.
In this category, the Euclidean distance is the most commonly used measurement,
and is basically the length (of a straight line) between two objects when visualised
graphically [Hair et al., 2006].

The distance between two objects can be calculated by a set of various linkage
methods. The most common are single linkage, complete linkage, group average
and Ward's method. Single linkage measures the minimum distance between single
objects in each of the two clusters A and B. Complete linkage measures maximum
distance between two objects in the two clusters A an B. Average linkage measures
the average distance from all objects in one cluster A to all objects in another cluster
B. Wards method calculate the average distance from all objects in one cluster. The
average distance is substracted from each object and then squared. The sum of
squares are then calculated for each cluster [Hair et al., 2006].

A possible draw back to this type of clutering, is that the procedure will always
form clusters, even in cases where there is no structure in the data. This means that
samples inside a cluster not necessarily are useful for the analyser. Di�erent methods
have been developed for selecting the optimal number of clusters, it is however up
to the analyst to make the �nal conclusion [Hair et al., 2006].

2.8.4 PLS-DA

Partial least square regression is a multivariate calibration technique that consist of
two matrices, where X contains the independent variables and Y contains the depen-
dent variables. Typically the X-matrix consist of available measurements, similar to
the X-matrix with variables and samples in PCA. The information in the Y-matrix
is typically something which is di�cult and expensive to measure directly. It is often
believed to be a causation between the information of these [Geladi and Kowalski,
1986]. The model explains the maximum variation of the data as well as achieving
maximum correlation between the X and Y dataset [Kumar and Mishra, 2015], see
equations 2.7 and 2.8.

X = TP
T

+ EX (2.7)

Y = UQT + EY (2.8)

T and U are the scores matrix of X and Y, P and Q are the loading matrix of X
and Y, E is the residual for X and Y. A common algorithm for solving this is called
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NIPALS, which is an iterative algorithm that uses the score matrix of X to update
the loading matrix of Y, and the score matrix of Y to update the loading matrix of
X. This is performed until the results converge [Alsberg, 2015].

A PLS model is created in a calibration stage where a regression model is build
with multivariate analysis techniques from known X- and Y-data. This model de-
scribe the relationship between the X- and Y-matrices, but it is unsure whether this
will be true for another set of the same data. To test this, it is common to validate
the regression model with a new set of data. When the model has been validated it
is used to predict new Y-values from new X-measurements [Esbensen et al., 2002].

There are di�erent validation methods available. One method called the Inde-
pendent validation test works by using one dataset to calibrate the model. Then a
completely new dataset are used for validating this calibration model. This is con-
sidered to be the best validation technique. However, in many cases there will not
be enough samples to create an individual validation test model, especially if it is
di�cult to acquire data for the Y-matrix [Esbensen et al., 2002].

Often it may be necessary to re-use data. In full cross validation the dataset is
split in two subsets. The �rst subset is used to calibrate the model and the second
set is used to test the model. There is only one sample in the test set. The sample
which was used in the test set is inserted into the model again, and a new sample
is extracted to test the model. This is repeated until all samples have been used to
test the model, and all samples have been included in the calibration model [Alsberg,
2015].

Partial least square discriminant analysis arise from PLS. In PLS-DA the Y-
variable is a variable with information regarding class membership. It can typically
be a binary variable, which means that samples belonging to one class is denoted
with a number, for example 1, and samples belonging to the other class is denoted
with number -1. The model is then used to classify unknown samples into one of the
categories [Esbensen et al., 2002].

2.9 Computerized oil spill identi�cation database

The computerized oil spill identi�cation (COSIWeb) is an online database contain-
ing raw GC-FID and GC-MS chromatograms of oil samples. The database contain
samples from accidental oil spills both of known and unknown origin, crude oils,
bunker oils, fresh samples and weathered samples from di�erent countries. It is
available through any browser and allows the user to upload GC-FID and GC-MS
chromatograms of oil samples in to the database which is then available for other
users of the program [Stout and Wang, 2016].

29



The database automatically integrates components in the chromatogram, com-
pare samples and express sample similarity. The user may then compare the uploaded
chromatograms with other chromatograms in the database to investigate possible
matches, which is listed in descending order. Similarity is de�ned by calculating the
Pearson correlation coe�cient and COSIWeb apply 26 diagnostic ratios (from the
CEN methodology) as a basis for calculating correlation coe�cents between samples,
and provide additional information such as diagnostic ratios, GC overlays and partial
weathering plots. This makes it possible to reach a conclusion which is in compliance
with the CEN methodology [Stout and Wang, 2016] [COSIWeb, 2016].

If the di�erence between two diagnostic ratios are below the repeatability limit
given by the CEN guideline (14%) these are colored in green. In Cosiweb this corre-
sponds to 7%. If they di�er no more than two times the standard deviation (7%-10%)
the ratios are colored in yellow. Above this they are colored in red [COSIWeb, 2016].
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Chapter 3

Materials and Methods

This section provides information about sample material, sample location, experi-
mental methods as well as data treatment and statistical methods.

3.1 Sample material

Sample material was supplied by SINTEF Sealab in Trondheim, in addition to sam-
ples collected by the author. Approximately 400 samples have been collected by
students through the course KJ3050-Marine Organic Environmental Chemistry and
by master students. 112 of these samples have been analyzed by GC-FID and GC-
MS, during a time period of 2011-2016, and are included in this thesis. Samples from
2010 have not been a part of this project.

3.2 Sample material from SINTEF

Students have collected samples from 18 di�erent islands along the period 2010-2015.
All samples have been inspected properly in the laboratory by students, with the
help of experienced sta� members. Only a subset of the total sample (approximately
400) size have been further analyzed by GC-FID and GC-MS. The sample subset
have been selected based on di�erent properties such as sample location, size of
oil sample, smell, stickiness, tar balls etc. In some instances, both the center of a
sample and the periphery of the sample have been analyzed, for example if students
wanted to investigate if this was a mixture of di�erent oil samples. It should also
be mentioned that some samples collected from the �eld trips, turned out not to be
oil when inspected in the laboratory. Appendix A provides an overview over sample
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Table 3.1: Sample overview, showing the number of samples included in this thesis

Year Total size Collected by Project size

2011 82 KJ3050 17
2012 65 KJ3050 17
2013 77 KJ3050 22
2014 58 KJ3050 21
2015 67 KJ3050 14
2012 23 Master student (Stine Henriksen) 6
2015 25 Master student (Marie Myrstad) 15
Total 403 112

number, location and description of samples. This information is written by former
students, as a part of their �eld report [KJ3050 students, 2011], [KJ3050 students,
2012] [KJ3050 students, 2013] [KJ3050 students, 2014] [KJ3050 students, 2015].

Table 3.1 gives an overview over the number of samples collected each year, and
number of samples analyzed by GC-FID and GC-MS. In 2014, samples from 2011
and 2012 were reanalyzed by a former master student [Vike, 2014], and the raw data
from this analysis have been used for these two years. Of the samples size in 2012,
6 of these samples are not from the course KJ3050, but are a subset from samples
collected at Sula by a former master student in 2012 [Henriksen, 2012].

3.2.1 Sample location

Oil samples have been collected from 18 di�erent islands. These islands are Vesterkal-
ven (2011), Storkalven (2011), Kunna (2011), Kya (2012), Frøya (2012), Blåskykøya
(2013), Olabussøya (2013), Burøya (2013), Storfosna (2013), Vingleia (2014), Gård-
søya (2014), Bordholmen (2014), Kråkvåg (2014, 2015), Vassøya (2015), Geitungan
(2015), Likøya (2015), Gildklakken (2015) and Sula (2012,2015). Figure 3.1 indicate
the approximate area of these islands.

3.3 Sample material from Sula 2015

Material for this thesis have also been collected by the author, and consist of 15
weathered oil samples from Sula. Sula is an island located at the coast of Trøndelag
and is a part of Frøya municipality. It is one of the westernmost island on the coast
of Trøndelag, thus it is exposed to waves and wind from the North Sea. The island
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Figure 3.1: Approximate area of sample location.

have previously been studied by a master student in 2012. During this �eldtrip 23
samples of tarballs and oil were collected. These were mainly found on the west side
of the island. Southeast of Sula was also inspected without any �ndings [Henriksen,
2012]. Based on this, the author was curious to inspect the island once more to
search for new samples and investigate other sampling sites on the island.

The �eld trip took place 13th of may, 2015. Samples were collected on the
north-east and north-west side of the island and both the inter-tidal and upper-tidal
zones were investigated during low tide. The weather was sunny but windy, with a
temperature of 7◦C. In total, 25 samples were collected. Of these, 4 were described
by the author as tarballs. These were found in typical �wreck bays�, which are areas
where marine debris accumulates. The remaining samples were oil stranded on rock
surfaces. All samples were described by their smell, size, viscosity and stickiness.
Additional notes were taken if samples contained biological material (such as feathers,
algae or moss) or other substances (such as plastic). A photo was taken on every
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sample station and GPS coordinates recorded. All samples taken from Sula were
characterized as either solid or semi-solid thus indicating that samples were quite
weathered. See appendix A for a complete description of collected sample material
from Sula. Pictures of oil two samples from Sula are shown in �gure 3.2 and 3.3.

Figure 3.2: Sample 16 (2016-163) collected on the North-West side of the island

Samples were collected by a spoon and knife and stored in either aluminum
containers with paper lids or small glass bottles (40 ml) with plastic lids. The
spoon and knife were cleaned with paper towel between every sampling to avoid
contamination. The samples were stored in a refrigerator (4 ◦C) at SINTEF until
laboratory work started in February 2016.

3.3.1 Inspection of samples

The laboratory work was carried out in February 2016. All samples were inspected
visually and properties that was evaluated during the excursion were evaluated in
the laboratory once more. In general, samples that was classi�ed as semi-solid in the
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Figure 3.3: Sample 19 (2016-165) collected on the North-West side of the island

�eld were more viscous, sticky and shiny compared to notes taken at Sula. This did
not come as a surprise since the temperature inside the laboratory was much higher
compared to the temperature out in the �eld.

Samples that upon visual inspection in the laboratory were found to be something
else than oil were eliminated from further analysis. This eliminated 8 samples. A
majority of these samples were recognized to be burned plastic and some turned out
to be soil covered in burned material. The plastic samples were extremely solid and
impossible to cut through. An interesting observation is that all samples described
as tarballs by the author during �eldwork turned out to be plastic. A tarball is a
solid or semi-solid globule consisting of oil that forms when they drift at sea for a
long period of time. They are highly weathered and are often found at shore together
with other marine debris that reaches land.

Sample nr 21 and 22 were omitted from further analysis since they turned out to
be extremely weathered. In total, 10 samples from the �eld trip are excluded from
further laboratory work. The remaining samples were prepared for further analysis.
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3.3.2 Experimental procedure

In this section, description of the experimental procedure applies to samples collected
at Sula in 2015, but the same procedure was followed by students in KJ3050 and by
master students Kristine Vike and Stine Henriksen. This is because all samples in
this thesis are analyzed with application of the CEN procedure [CEN, 2012].

3.3.3 Experimental procedure of samples from Sula

Laboratory work was done at SINTEF Sealab in Trondheim. Sample preparation and
solid phase extraction was carried out by the author, whereas GC-FID and GC-MS
analyses were performed by Senior Engineer Marianne Unaas Rønsberg and Senior
Engineer Inger Kjersti Almås.

Glass ware and glass wool were baked, meaning that the equipment had been
placed in a baking oven with increasing temperature of 225 ◦C per hour until it
reached 450 ◦C for three hours. All solvents were of analytical grade. A total of 15
samples were analysed.

3.3.4 Preparation of oil samples

A small portion of oil (approximately 0.1 g) was taken out of the original oil sample
with a small knife and transferred to a clear glass vial (40 mL). Care was taken to
include only a portion from the center of the sample to avoid contamination from
other substances. Dichloromethane (DCM, 10 mL) of analytical grade was added to
the glass vial containing the sample and stirred �rmly. The knife was cleaned with
DCM between every new sample and the tip of the knife was changed for every forth
sample. To ensure that the samples dissolved, they were left in room temperature
for approximately 12 hours.

Dissolved sample (4 mL) was �ltered through Pasteur pipettes into new marked
glass vials (20 mL). The pipettes contained Bilsom cotton (glass wool) and 3-4 cm of
sodium sulfate powder (Na2SO4) in order to eliminate water and unwanted particles
from the sample. Samples were further diluted with DCM in order to achieve the right
concentration for GC-FID analysis. The samples were clari�ed for analysis when the
color of the samples resembled a dark brown color. Samples were then transferred
to marked GC-vials (4 mL) and stored in a refrigerator, awaiting GC-FID analyses.
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3.3.5 GC-FID conditions

The GC-FID analyses were carried out using an Agilent 6890N Gas Chromatograph
equipped with an Agilent 7683B Series autosampler. Injection was done by splitless
injection at 330 ◦C, with injection volume of 1 uL. The compounds were separated
on a Zebron ZB-5 column (30 m long, 0.25 mm ID and 0.25 um �lm thickness). The
oven temperature was initially 40 ◦C for 1 min then increased to 330 ◦C, at 6 ◦C/min
and held at 330 ◦C for 15 min. Carrier gas consisted of helium at a �ow rate of 2.5
mL/min. Detector temperature was 330 ◦C.

3.3.6 Solid phase extraction

In order to remove interference compounds prior to GC-MS analyses, a solid phase
extraction puri�cation step (SPE) was conducted.

Prior to applying SPE, a solvent subsitution from DCM to hexane was necessary.
This was done by transferring the liquid samples from the glass vials (approximately
1 mL) to collection tubes. Hexane was added, and the tubes placed in a heating
block of max 37 ◦C in a tmhosphere of nitrogen (N2, 0.5 bar) to let DCM evaporate
until approximately 1 mL was left. Hexane was added to the test tubes once more
and the process repeated, ensuring that the remaining DCM evaporated.

The SPE device and collection tubes were rinsed with DCM prior to extraction.
Silica columns were placed on top of the SPE device and conditioned with 3 mL of
hexane. Since the columns never were to be left dry, a few drops of hexane was always
above the column. Collection test tubes were marked with ID and placed in the SPE
device. Sample (0.5 mL in hexane) was applied to the column by help of a pasteure
pipette and the collection tubes were rinsed with hexane (0.5 mL) tree times making
sure that the entire sample was transferred from the tube to the column. Samples
eluted through the column by adding hexane (3 x 2 mL) and by vacuum pressure.

The solution was dried under N2 stream (0.5 bar) until 1 mL was left in the
collection tube. The fraction was transferred from collection tubes to GC-vials. To
make sure that the whole sample would transfer to the GC-vials the tubes were
rinsed with hexane and transferred to the vials until the GC-vials were almost full
(4 mL). The volume were reduced to approximately 1mL under N2 stream.

3.3.7 GC-MS conditions

The GC-MS analyses were performed using a an Agilent 6890N Gas Chromatograph
equipped with an Agilent 5975B quadrupole mass-selective detector (MSD; ionsource:
230 ◦C). Injection was done by splitless injection at 330 ◦C, with injection volume of
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1 uL .The mass spectrometer was employed in electron ionization (EI) mode with an
ionization energy of 70 eV. The compounds were separated on a Zebron z-5ms db-5
column ( 30 m long, 0.25mm ID and 0.25 um �lm thickness). The carrier gas was
maintained at a constant helium �ow of 1.1 ml/min. The oven temperature was set
to 42 ◦C for 2.30 min and then increased to 5.5 ◦C/min to 330 ◦C and held at 330
◦C for 10 min. Selected ion monitoring mode was used during analysis, targeting 72
biomarkers and PAH compounds. A list of these compounds together with their m/z
values is presented in appendix B.

3.4 Data treatment

This section explains how data have been prepared prior to statistical analysis and
gives an overview of the statistical methods that have been applied to the data.

3.4.1 Integration

Raw data from GC-MS analyses was uploaded and integrated in Chemstation. In-
tegration was done manually by the author for each sample which comprise 112
samples. For each sample, 72 target biomarkers and PAH components were inte-
grated if they were present in the chromatogram. Peak height was integrated for
biomarkers and peak area for the PAH components as recommended by the CEN
methodology [CEN, 2012]. Peaks in the chromatogram were identi�ed by compar-
ing them to a SINTEF oil mixture. This mixture contains signi�cant levels of all
peaks recommended by the CEN guideline. To control that the biomarker and PAH
components were integrated correctly, the retention times for all samples were up-
loaded in Excel and compared with each other. If any deviation was observed, these
components were inspected once more and corrected if necessary.

3.4.2 Noise

Noise in the data that was caused by sample preparation and instrument analysis was
estimated by preparing a method blank. Three method blanks containing hexane
were prepared, by running them through Pasteur pipettes with cotton wool and
solid phase extraction prior to GC-MS analysis. Limit of quanti�cation (LOQ) was
calculated and subtracted from the dataset prior to calculating diagnostic ratios, by
equation 2.2. This resulted in very low values, and eliminated few peaks. According
to the CEN methodology, peaks with signal to noise ratio (S/N) > 3 to 5 need to
be eliminated for comparing diagnostic ratios. Signal is the peak height, and noise
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is the value from peak-to-peak around the signal. Due to much compound noise in
the data, which was not detected by the method blank, the CEN procedure was also
applied for noise determination.

3.4.3 Inspection of chromatograms

Prior to the use of more advanced statistical methods GC-FID chromatograms and
selected ion mass chromatograms were assessed, using a method inspired by level 1
and level 2 in the CEN methodology. This was done to evaluate weathering and if
possible, categorize the samples as a crude or bunker oil. GC-FID was used to get
an indication of the degree of weathering. GC-FID chromatograms were evaluated
by inspecting the boiling point area, analyzing the n-alkane pattern and unresolved
complex mixture hump, see appendix D .

Selected ion mass chromatograms were used to identify biomarkers and PAH com-
ponents that are characteristic for di�erentiating between crude oil and bunker oil,
and are able to separate a crude oil that do not originate from the north sea, and crude
oil from the north sea. These biomarkers and PAH components are also known to
be resistant to weathering, which is crucial when doing a visual inspection on weath-
ered sample material. The ion fragmentogram displaying methyl-phenanthrenes and
methylanthtrancene (m/z 192) was used to characterize the oil as either crude or
bunker. The oil was characterized as a bunker oil if the chromatogram displayed
a distinct methylantrancene peak (MA) and if �rst pair of peaks (3-methyl-and-2-
methylphenanthrenes), were clearly more abundant than the second pair of peaks
(9-/4 and 1-methylphenanthrenes). In the reverse case, namely that the second
pair of peak was more abundant than the second pair of peaks and no MA could
be identi�ed, it was characterized as a crude oil. In doubtful cases, for example if
the abundance of doublets were more or less the same, and no MA peak could be
identi�ed, the sample was characterized as unknown. Figure 3.4 shows the ion chro-
matogram (m/z 192) belonging to an oil sample characterized as crude oil. Figure
3.5 shows the ion chromatogram (m/z 192) belonging to an oil sample characterized
as a bunker oil.

The Retene peak (m/z 234) is another characteristic PAH for crude oil, since
this is typically lost in the re�nery process [CEN, 2012]. Figure 3.6 displays the
ion chromatogram of an oil sample with a retene peak. The ion fragmentogram
displaying biomarkers Oleanane(30 O) and Gammacerance (30G) (m/z 191) were
used to characterize crude oils that did not originate from the north sea, since these
usually are absent in north sea crude oil [Liv-Guri Faksness, 2002]. Figure 3.7 display
the ion chromatogram of an oil sample with these two peaks.
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Figure 3.4: Ion chromatogram (m/z 192). This is an example of a sample char-
acterized as a crude oil due to high abundance of 9-/4 and 1-methylphenanthrenes
compared to 3-methyl-and-2-methylphenanthrenes

Samples were characterized into one of the following categories "Bunker oil",
"Crude oil", "Non north sea crude oil" or "Unknown".

3.4.4 Diagnostic Ratios

Selected diagnostic ratios are listed in appendix C and follows recommendations
provided by the CEN methodology. The CEN methodology includes ratios that
are valuable for most oil spill identi�cations. The sesquiterpanes, however were not
included since these are known to be a�ected by weathering [CEN, 2012].

3.4.5 Statistical analysis

Statistical analysis were performed using Excel (2016), Unscrambler (version 10.3)
and R studio (version 3.3.1). Raw data from Chemstation was imported to excel and
di�erent spreadsheets were created to calculate diagnostic ratios and to calculate
univariate statistics for each variable. NA was represented for empty data cells.
Histogram plots, Kolmogorov-Smirnov tests and results from univariate statistics
were evaluated for each variable prior to performing mulitvariate statistics. This
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Figure 3.5: Ion chromatogram (m/z 192). This is an example of a sample character-
ized as a bunker oil due to high abundance of 3-methyl-and-2-methylphenanthrenes
compared to 9-/4 and 1-methylphenanthrenes and a distinct methylanthtrancene
peak

is because both PCA and PLS require normally distributed data [Esbensen et al.,
2002].

Diagnostic ratios were exported from Excel to Unscrambler for Principal Compo-
nent Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA). m
or -0.9973E + 24 are automatically represented for empty data cells in unscrambler,
so missing values do not in�uence the results [Esbensen et al., 2002]. Diagnostic ra-
tios were exported from Excel to R studio for Hierarchical Cluster Analysis (HCA).
"NA" was represented for empty data cells. The statistical package cluster was used
for plotting HCA, and the agglomerative Nesting (AGNES) function was applied
since this function handles empty data cells.

3.4.6 COSIWeb

Selected samples were imported into COSIWeb with means of identifying samples.
Samples from 2011, 2012 and selected samples from 2015 (2015-839, 2015-846, 2015-
881, 2015-844) was already imported into the database. Samples from 2014 and 2016
(Sula) were imported by the author.
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Figure 3.6: Ion chromatogram (m/z 234) displaying a retene peak.

Figure 3.7: Ion chromatogram (m/z 191) displaying the biomarkers Oleanane (30 O)
and Gammacerane (30 G)

Raw GC-FID and GC-MS chromatograms were converted to custom format, and
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renamed according to the COSIWeb procedure. The �les were imported into COSI-
Web along with retention times for pristane and phytane. For each sample a short
comment about sampling location, oil type and sampling date were provided. Inte-
gration of GC-MS chromatograms were provided by COSIWeb, however these were
reevaluated by the author in case any doubtful integrations was observed. In these
cases, the errors were corrected by using the manual function in COSIWeb.

When a sample is compared to existing samples in the database, COSIWeb au-
tomatically identi�es samples who returns the highest correlation coe�cient to that
sample. Only samples with a correlation of 0.98 was inspected further. This num-
ber is based on experience by previous master student Kristine Vike [Vike, 2014],
whom experienced that correlation should be at least 0.98 for similar samples. A cut
of value of 0.98 was thus chosen to get a reasonable amount of potential matches.
However it is still possible to have a match for lower values.
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Chapter 4

Results

This section presents results from inspection of chromatograms, multivariate methods
and results from the COSIWeb database.

4.1 CEN

Inspection of GC-FID and GC-MS chromatograms (level 1 and level 2) resulted in
51 samples being identi�ed as crude oils and 20 samples identi�ed as bunker oils.
40 samples were not identi�ed based on the inspection of chromatograms. Among
the samples identi�ed as crude oils, 10 samples were identi�ed as "non north sea
crude oils". The results are displayed in a map with location, sample number and
colors according to the classi�cation. Samples colored in blue are characterized as
"bunker oil", samples colored in green are characterized as "crude oil", samples
colored in yellow are characterized as "non north sea crude oil" and samples in red
are characterized as "unknown". See �gure 4.1, �gure 4.2, �gure 4.3, �gure 4.4, �gure
4.5, �gure 4.6, �gure 4.7, �gure 4.8, �gure 4.9 and �gure 4.10.

Results from the inspection of GC-FID chromatograms are not presented in this
section, but can be found in appendix D with chromatograms and a description of
the results from the chromatograms. The results from the GC-FID chromatograms
gave an indication of the degree of weathering.

4.2 Pretreatment of raw data

Variables with more than 25% missing values were removed from the dataset, and this
eliminated 15 variables from further analysis and leaves 29 variables. The removed
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Figure 4.1: Blåskykøya

Figure 4.2: Olabussøya, Burøya
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Figure 4.3: Frøya

Figure 4.4: Kya
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Figure 4.5: Sula

Figure 4.6: Gildklakken,Likøya,Geitungan,Vassøya
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Figure 4.7: Vingleia

Figure 4.8: Bordholmen, Gårdsøya
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Figure 4.9: Kunna, Storekalven, Vesterkalven

Figure 4.10: Kråkvåg, Storfosna
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Table 4.1: Variables with more than 25% missing values. These are removed from
further analysis

Ratio name

DR-C17/pris DR-B(a)F/4-Mpy DR-30O/30ab
DR-C18/phy DR-B(b+c)F/4-Mpy DR-30G/30ab
DR- pris/phy DR-Retene/ T-M-phen DR-27dbR/27dbS
DR-2MFL/4-Mpy DR-28ab/30ab DR-MA/1-MP
DR-C28(22S)/30ab DR-Retene/C4-Phe DR-29TS/30ab

variables are presented in table 4.1. The decision of removing variables with more
than 25% missing values was based on an article by Reimann and Filzmoser, and
suggests that a variable can neither be normal or lognormal distributed if more than
25% of its values are missing [Reimann and Filzmoser, 2000].

Samples with more than 70 % missing values were not included in the dataset.
This applies to three samples (2014-397, 2013-703 and 2013-698). The remaining 109
samples consist of 55 samples with no missing values, 40 samples with missing values
between 10-20%, 10 samples with missing values between 20-40% and four samples
with missing values in the range between 40-70%.

4.2.1 Descriptive Statistics

A summary of the descriptive statistics for each variable is presented in table 4.2.
This includes the mean, median, skewness, kurtosis, standard deviation (SD) and
relative standard deviation (RSD).

The table shows that the mean is slightly higher than the median which is an
indicator of skewed data [Remenyi et al., 2011]. The results of the RSD reveals
varying values, ranging from 15 % to 240 % between variables. This is as expected,
since the diagnostic ratios are speci�cally used to explain di�erences between samples.

Table 1.2 shows that 13 variables have skewness coe�cients between -1 and 1.
14 variables have skewness coe�cients above 1, and two variables have skewness
coe�cients below -1. The kurtosis coe�cient show 11 variables with kurtosis coef-
�cient between -1 and 1. 19 variables show positive kurtosis coe�cients above 1.
In addition, histogram plots and Kolmogorov-Smirnov tests were assessed for each
variable. The histogram plots and Klomogorov-Smirnov tests for each variable are
not presented, but the plots revealed that a large majority of the variables are not
normally distributed. These variables are listed in table 4.3. The combined results
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Table 4.2: Mean, median, skewness (before/after log transformation), kurtosis (be-
fore/after logtransformation), STD and RSD for each variable.

Variable Mean Median STD RSD Skewness Kurtosis

4-MD/1-MD 1,69 1,67 0,72 43% 1,04/-0,23 1,66/-0,08
2-MP/1-MP 1,08 1,03 0,48 44% 0,51/-0,14 -0,78/-0,93
2Mpy/4-Mpy 0,55 0,44 0,26 47% 1,46/ 0,48 3,50/-0,73
1Mpy/4-Mpy 0,46 0,43 0,16 34% 0,71/0,06 -0,17/-0,63
BNT/TM-phen 1,75 1,58 0,98 56% 1,22/-0,31 1,74/0,10
27Ts/30ab 0,16 0,15 0,05 30% 0,70 2,01
27Tm/30ab 0,26 0,27 0,10 39% 0,22/-0,68 -0,48/0,28
29ab/30ab 0,72 0,72 0,23 32% 0,37/-0,23 -0,27/-0,89
31abS/30ab 0,51 0,52 0,08 15% 0,10 -0,11
27bb/29bb 0,95 0,99 0,20 21% -1,06/-2,63 2,71/9,34
SC26/RC26+SC27 0,27 0,25 0,11 39% 1,70/0.50 3,70/0,46
SC28/RC26+SC27 0,63 0,61 0,14 22% 1,03 1,81
RC27/RC26+SC27 0,64 0,63 0,10 15% 4,23/2,26 28,06/13,58
RC28/RC26+SC27 0,68 0,66 0,22 32% 4,48/1,57 29,99/6,71
C2-dbt/C2-phe 1,01 0,77 0,67 67% 1,27/-0,02 1,58/-0,62
C3-dbt/C3-phe 1,14 1,01 0,74 65% 1,29/-0,02 1,43/0,60
C23Tr/C2-PA 0,10 0,03 0,24 240% 5,18/0,39 31,04/0,36
29aaS/29aaR 0,92 0,91 0,14 15% -0,10/-1,22 2,21/5,17
C20TA/C21TA 1,04 1,00 0,25 24% 0,79/-0,09 0,96/0,87
C21TA/RC26+SC27 0,29 0,26 0,19 66% 2,93/-1,42 11,59/6,02
Ts/Tm 0,70 0,67 0,33 47% 0,68/-0,09 -0,20/-0,96
30ba/30ab 0,11 0,10 0,03 29% 0,91/0,45 0,18/-0,69
C21TA/RC28TA 0,46 0,39 0,30 66% 2,78/-2,41 9,91/10,78
SC26TA/SC28TA 0,42 0,40 0,15 35% 1,17/0,06 2,08/0,20
RC27TA/RC28TA 0,99 0,94 0,20 20% 0,56/0,04 0,00/-0,20
C27BBSTER 0,52 0,53 0,10 19% -1,49/-3,03 4,12/11,95
C28BBSTER 0,42 0,41 0,07 17% 0,60 0,96
C29BBSTER 0,59 0,56 0,12 21% 2,00/1,03 6,62/2,15
29bb/29aa 0,64 0,65 0,11 18% -0,07 0,71
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Table 4.3: Variables considered to be normally distributed.

Ratio name

27Ts/30ab SC28/RC26+SC27
31abS/30ab C28BBSTER
29bb/29aa

from the descriptive statistics, histogram plots and Kolmogorov-Smirnov tests reveals
that only four variables can be considered to be normally distributed. Table 4.2 also
display skewness and kurtosis coe�cient after log transformation (equation 2.5) of
variables not considered to be normally distributed. A majority of these coe�cients
decrease after transformation has been applied, but there are some that increases as
well.

4.3 Multivariate data analysis

Multivariate data analysis (MVA) was applied the dataset to identi�y trends and
structures in the data. Three di�erent methods were tested; Principal component
analysis (PCA), Partial least square discriminant analysis (PLS-DA) and Hierarchical
cluster analysis (HCA). This section aims to present the most relevant �ndings for
each multivariate technuqie.

Prior to all multivariate data analysis, data was mean-centered and scaled. Sam-
ples that was not considered to be normally distributed were log transformed. This
includes all variables except those listed in table 4.3.

4.3.1 Principal component analysis

Principal component analysis was �rst applied to the data. This was done to observe
groups in the dataset, identify samples with the same chemical composition and
remove possible outliers.

Outliers

PCA applied to mean-centered, scaled and log transformed data resulted in the
following score plot, see �gure 4.11.

The score plot in 4.11 shows that PC1 and PC2 explains 38% of the variance.
It is quite evident that sample 2013-0684ii and sample 2013-0684i are located away
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Figure 4.11: First score plot of mean-centered, scaled and logtransformed oil samples.

from the other samples. PC1 are almost solely used to explain the di�erence between
the two samples and the main group of samples. Along the positive axis of PC2 there
are three samples (12-AS08, 16-154 and 11-BK2) separated from the main group.

An in�uence plot was applied to the dataset to measure how much each sample
a�ected the model, see �gure Figure 4.12. An in�uence plot display leverage values
on the X-axis and residual values on the Y-axis. A hotelling's T 2 test versus a F-
residual test was applied with a 95 % con�dence line. What can be observed from
the model is that there is no samples exceeding the F-residual con�dence line, but
nine samples are exceeding the Hotelling's T 2 test con�dence line. Five of these
are the same samples observed as possible outliers in the score plot, and these are
marked with black circles. Especially sample 13-0684ii, 13-0684i and 11-BK2 have
increased leverage values and therefore increased in�uence on the model. This does
not necessarily mean that they are outliers. On the contrary, they may be interesting
samples with valuable information. However, they should be investigated further to
rule out possible outliers [Esbensen et al., 2002]. Samples outside the con�dence line
were studied by inspecting the loading plot, raw data table, GC-FID and GC-MS
chromatograms and students �eld report.

A table describing which samples were removed with a brief explanation are shown
in table 4.4. In total 5 samples were removed from further analysis, mainly due to
extreme weathering.
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Figure 4.12: F-residual versus Hotelling's T 2 test, displaying 9 samples outside the
95 % con�dence line.

The new score plot and correlation loading plot are presented in �gure 4.13 and
�gure 4.14. The score plot in �gure 4.13 shows that data are more evenly distributed.
PC1 and PC2 explains 36% of the variance.

Table 4.4: Five samples de�ned as outliers and removed from further analysis.

Outliers Cause

2013-0684i Extremely weathered sample
2013-0684ii Extremely weathered sample
2012-AS08 Extremely weathered sample
2011-BK2 Extremely weathered sample
2016-154 Extremely weathered and diluted sample
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Figure 4.13: Score plot when outliers are removed.

Figure 4.14: Correlation loading plot. Variables between the inner and outer ellipse
indicate between 50% to 100% explained variance. Variables close to the center
explain very little variance.
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Table 4.5: Varaibles removed from after inspecting them in the correlation loading
plot.

Removed variables

C21TA/RC26+SC27 C20TA/C21TA
RC27/RC26+SC27 C27Ts/30ab
C21TA/RC28TA

The loading plot in �gure 4.14 gives a descriptive picture over variables that are
important for each principal component (Esbensen, 2012 KILDE). The Correlation
loading plot describe the importance of each variable. It shows two ellipses, the in-
ner ellipse indicate 50% explained variance, wheras the outer ellipse indicate 100%
explained variance [CAMO, 1998]. This means that variables between the two el-
lipses indicate that they have large loadings and are important for explaining the
variance. Variables inside the inner ellipse are less important for explaining the vari-
ance. Variables with low contributions were removed from the correlation loadings
plot to simplify interpretation. These are marked with black circles in the �gure.
The variables are listed in table 4.5

PCA when outliers are removed

The �nal PCA score plot and loading plot are presented in �gure 4.15 and 4.16. The
score plot for PC1 versus PC2 in �gure 4.15 explains 42 % of the variance. The
samples are evenly distributed along both principal components. Despite this there
is no obvious separation of groups in the scores plot, except perhaps for small groups.

The loading plot in �gure 4.16, indicate that there are still variables inside the
�rst ellipse, which means that they are not equally important as the variables outside
the �rst elipse. It was decided to keep these because most of them are located close to
the �rst ellipse and therefore contribute to a greater extent to the model, compared
to those variables that were removed.

Hotelling T 2-test in Figure 4.17 reveals six samples outside the con�dence interval.
Especially three of these (2013-687, 2014-394 and 2011-BSK6) have high leverage
values. These were further inspected, but the author found no reason for removing
these samples from further analysis.

The explained variance plot in �gure 4.18 shows how much variance are explained
by each principal component. The blue line represents calibration variance and the
red line represents the validation variance. All seven principal components explain
approximately 85 % of the variance, but the idea of PCA is to explain as much as
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Figure 4.15: Final score plot after removing �ve outliers and �ve variables with little
explained variance.

possible with as few principal components as possible, since the last PCs typically
contain a lot of noise. PC1 and PC2 describes 22% and 20% of the variance respec-
tively and PC3 and PC4 describes 14% and 10% of the variance. Since the score plot
for PC1 and PC2 in �gure 4.15 did not reveal any obvious distinct groups between
the samples, it was desirable to include three prinicpal components in the score plot
(PC1, PC2 and PC3) to see if this gave any interesting groups in the score plot.

Identi�cation of groups in the score plot was hence inspected by observing samples
in a 3D score plot for PC1, PC2 and PC3 (see �gure 4.19 and �gure 4.20). Figure
4.19 and �gure 4.20 represents di�erent angles if the 3 D plot. This is to illustrate
how some samples seem to belong to certain groups, but are spread when you look
at the 3D plot in di�erent angles. This was a challenging task. In the end it was
decided on �ve di�erent groups.

In addition 2D score plot for PC1 vs PC2, PC1 vs PC3 and PC2 vs PC3 were
studied to con�rm that the groups were present in all 3 PCs (see �gure 4.21, �gure
4.22 and �gure 4.23)

57



Figure 4.16: Correlation loadings plot after removing �ve variables with little ex-
plained variance.
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Figure 4.17: Hotelling T 2 test after removing �ve outliers. There are six samples
outside the con�dence interval with increased leverage values but, non were removed
from the analysis.

Figure 4.18: Explained variance plot displaying both calibration variance (blue) and
validation variance (red).
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Figure 4.19: Score plot in 3D space with �ve groups

Figure 4.20: Score plot in 3D space with �ve groups observed from a di�erent angle.
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Figure 4.21: Score plot, PC2 vs PC1, with groups made in 3D score space.

Figure 4.22: Score plot, PC1 vs PC3, with groups made in 3D score space.
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Figure 4.23: Score plot, PC3 vs PC2, with groups made in 3D score space.

When comparing the three score plots, the groups are more distinct and more
separated for the score plots displaying PC1 versus PC2 and PC1 versus PC3. In
the score plot for PC2 versus PC3, group 1, 4 and 5 merge into each other and are
less obvious.

To determine if the di�erent groups actually contain samples that are similar to
each other, the relative standard deviation (%) was calcuated for variables within
each of the �ve groups. They where then compared with the RSD containing all
samples, see table 4.6.

Figure 4.6: For groups with similar samples, one would expect the RSD to de-
crease. The table shows that the RSD especially decreases for group 1, group 2 ,
group 3 and group 4, but much less for group 5. The RSD decrease for group 5 as
well, but not to the same degree.

Color coding of PCA according to classes made by inspection of chro-
matograms

Samples were color coded according to the classi�cation made by inspection of chro-
matograms, to look for interesting trends or patterns in the score plot, see �gure
4.24. The blue circles are samples classi�ed as bunker oils, the dark green circles are
samples classi�ed as crude oils, the yellow circles samples are classi�ed as non north
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Table 4.6: Relative standard deviation (%) for variables within the �ve groups iden-
ti�ed in 3D score space and for all samples in the dataset.

All samples Group 1 Group 2 Group 3 Group 4 Group 5

Variable N=109 n= 13 n=4 n=3 n=9 n=12
4-MD/1-MD 43% 21% 17% 21% 19% 43%
2-MP/1-MP 44% 15% 26% 24% 37% 33%
2Mpy/4-Mpy 47% 12% 3% 1% 18% 26%
1Mpy/4-Mpy 34% 24% 7% 30% 37% 48%
BNT/TM-phen 56% 27% 19% 66% 47% 36%
27Ts/30ab 30% 9% 12% 1% 29% 19%
27Tm/30ab 39% 5% 6% 21% 11% 36%
29ab/30ab 32% 5% 4% 2% 12% 12%
31abS/30ab 15% 5% 7% 3% 23% 7%
27bb/29bb 21% 6% 5% 2% 15% 11%
SC26/RC26+SC27 39% 12% 13% 8% 13% 27%
SC28/RC26+SC27 22% 8% 7% 7% 10% 17%
RC27/RC26+SC27 15% 6% 9% 4% 4% 9%
RC28/RC26+SC27 32% 9% 8% 11% 7% 15%
C2-dbt/C2-phe 67% 12% 9% 16% 44% 26%
C3-dbt/C3-phe 65% 13% 5% 3% 44% 24%
C23Tr/C2-PA 240% 79% 33% 24% 110% 104%
29aaS/29aaR 15% 7% 4% 3% 11% 24%
C20TA/C21TA 24% 11% 9% 9% 15% 23%
C21TA/RC26+SC27 66% 14% 21% 20% 21% 72%
Ts/Tm 47% 13% 9% 18% 21% 54%
30ba/30ab 29% 7% 2% 3% 30% 19%
C21TA/RC28TA 66% 18% 13% 32% 25% 81%
SC26TA/SC28TA 35% 8% 13% 2% 23% 27%
RC27TA/RC28TA 20% 4% 2% 9% 7% 10%
C27BBSTER 19% 6% 6% 9% 15% 13%
C28BBSTER 17% 6% 8% 18% 10% 12%
C29BBSTER 21% 6% 5% 9% 9% 8%
29bb/29aa 18% 12% 4% 4% 26% 19%
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sea crude oil and the red circles are samples classi�ed as unknown oils.

The score plot for PC1 and PC2 (see �gure 4.24) shows that samples classi�ed
as bunker oils are located in the upper side of the plot. The majority of samples
classi�ed as crude oils are located on the lower side of the plot. The unkown samples
are spread around the entire score plot.

Figure 4.24: Classi�cation of oil types. Blue circles are bunker oils, green samples are
crude oils, yellow samples are "non north sea Crude oils", red samples are unknown

A biplot of PC1 versus PC2 is presented in �gure 4.25. A bioplot is a combination
of a loading plot and a score plot. The plot reveals 4 variables on the upper left side
of the plot namely 2-Mp/1-MP, SC26TA/SC28TA, 30ba/30ab, SC26/RC26+SC27,
1Mpy/4-Mpy and 2Mpy/4-Mpy and 4-MD/1-MD. Variables on the upper right side
of the plot are 27Tm/30ab, 29ab/30ab, C29BBSTER, RC27TA/RC28TA and C3-
dbt/C3-phe. These variables are located closest to the samples classi�ed as bunker
oils. Variables on the lower left side of the plot are C29BBSTER, SC28/RC26+SC27,
RC28/RC26+SC27 and Ts/Tm. Especially variable Ts/Tm is located close to a
group of samples classi�ed as crude oils by visual inspection. Variables 29bb/29aa,
BNT/TM-phe, C27BBSTER, 31abs/30ab, C2-dbt/C2-phe and C3-dbt/C3-phe are
located on the lower right side of the plot.
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Figure 4.25: A Biplot showing correlation between samples and DRs

4.3.2 Partial Least Square-Discriminant analysis

PLS-Discriminant analysis were performed to create two models that could predict
samples into prede�ned classes. These two classes are crude oil/bunker oil and crude
oil/non north sea crude oil. The training set for each of the two models includes a
selection of samples that have been classi�ed based on inspection of chromatograms
(see table 4.7). Emphasis was placed on selecting samples that was least a�ected
by weathering, to create a more robust model. The models were developed with full
cross validation.

PLS-DA of bunker oils and crude oils

The training set includes eight samples classi�ed as bunker oils (class B) and 21
samples classi�ed as crude oils (Class C). The Y-variable is a binary variable with
value 1 for member of class B (bunker oil) and value -1 for member of class C (crude
oil). These are listed in table 4.7.

The score plot generated from the PLS-DA model is presented in �gure 4.26.
Samples with red markings are classi�ed as crude oils and samples with blue markings
are classi�ed as bunker oils. The score plot shows that the di�erence between crude
oils and bunker oils are mainly explained by factor 1, however there is a small group
of crude oils located in the lower right quadrat, which is separated from the main
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Table 4.7: Samples selected for use in the two training sets.

Bunker 14-366, 14-394, 15-857, 15-846, 13-665, 12-256, 12-
262, 12-276

Crude 14-408, 14-420, 14-421, 14-425, 15-839, 15-844, 15-
848, 13-673, 12-AS02, 11-BK4, 11-BK7, 11-BSK16,
11-AK20, 11-AK1, 11-AK9, 11-AK17, 11-AVK18, 12-
251, 12-273, 12-273, 12-276, 12-314

Crude oil 14-384, 14-387, 14-420, 15-839, 15-844, 13-673, 11-
BK4, 11-AK1, 12-276

NNCrude
oil

14-408, 15-882, 13-680ii, 13-681i, 11-BK1, 12-
AS02,12-249, 12-314

group of crude oils. 33 % of the X-variance is used to explain 80 % of theY variance.
Factor 2 is 12 % of the X-variance to explain 8 % of the Y-variance.

Figure 4.26: PLS-DA Score plot. Samples with red markings are classi�ed as crude
oils, samples with blue markings are classi�ed as bunker oils.

Root Mean Square of Calibration (RMSEC) is 0.30 and Root Mean Square of
validation (RMSEP) is 0.43. The R2 value for the calibration model is 0.88 and 0.78
for the validation model. The optimal number of factors are 2.
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The regression coe�cient plot in �g 4.27 indicate important variables for describ-
ing each class. Varables 4-MD/1-MD, 2-MP/1-MP, 2-MPy/4-Mpy, 1-Mpy/4-Mpy
are most important for describing class B, and TS/Tm, C23Tr/C2-PA, 27TS/30ab,
BNT/TM-phen are most important for describing class C.

Figure 4.27: Regression coe�cient plot,showing important variables for class B and
class C.

PLS-DA model are then used to predict samples in the dataset. Prediction was
done for all samples in the dataset except for samples that was included in the training
set. Predicted samples are shown with their deviation in �g4.28. Samples with values
>0.5 and with deviations that do not exceed the 0.5 limit belong the group Bunker
oils, however no samples were predicted to be bunker oil from inspecting �g4.28.
Samples with values <0.5 and with deviations that do not exceed the -0.5 limit
belong to the group crude oil and are colored in green. 22 samples were predicted to
be crude oils. These samples are listed in �gure 4.8.
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Table 4.8: Samples predicted to class C, crude oil. Non samples were predicted to
class B, bunker oil.

Crude oil 14-384, 14-390, 14-413, 15-866, 15-879, 15-826, 15-
837, 13-637, 13-643, 12-BS03, 11-BK1, 11-AK6, 11-
AVK2, 12-290, 16-152, 16-154, 16-156,16-157, 16-162,
16-164, 16-165, 16-166

Bunker oil None

A Inlier vs Hotelling T 2 test shows that all samples fall inside the limit line, and
indicates that all predictions can be trusted.

Figure 4.30: Inlier vs Hotelling T 2 shows that samples fall inside the limit, which
means that all predictions can be trusted.

4.3.3 PLS-DA: Crude oils

PLS-DA model was created to di�erentiate between the origin of crude oils, that is,
di�erentiate between "crude oil" (possible from the north sea) and "non north sea
crude oil".
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The training set involves 17 crude oils, whereby nine samples are classi�ed as
crude oils and 8 samples are classi�ed as "non north sea crude oils". The Y-variable
is a binary variable with value 1 for member of class C (crude oil) and value -1 for
member of class C_NN (non north sea crude oil").

Samples used for classi�cation is presented in table 4.7. The resulting PLS-DA
model is presented in �gure 4.31. From the scores plot it is mainly factor 1 that
discriminates between the two groups.

It takes 53% of the X-variance to explain 83% of the Y variance. For factor 2 it
takes 10% of the X-variance to explain 9% of the Y-variance . The RMSEC (root
mean square error calibration) and the RMSEP (root mean square error prediction)
are 0.41 and 0.49 respectively. The R2 are 0.83 for the calibration model and 0.79
for the validation model. The optimal number of factor is 1.

Figure 4.31: PLS-DA Score plot. Samples with red markings are classi�ed as crude
oils, samples with blue markings are classi�ed as non north sea crude oils

The regression coe�cients plot in �g 4.27 shows important variables for describing
each class. Variables BNT/TM-phen, Ts/Tm, 29bb/29aa and RC28/(26+SC27) are
important variables for the Y-variable Crude. Variables 27Tm/30ab, 29ab/30ab, C2-
dbt/C2-phe, C3-dbt/C3-phe, C23Tr/C2-PA and 30ba/30ab are important variables
for the Y-variable Crude not north sea.

The prediction was done for all samples in the dataset except samples in the
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Table 4.9: Samples predicted to class Crude oil and samples predicted to class
NN_Crude oil

Crude oil 14-390, 14-395, 15-879, 11-AK9, 16-153, 16-157

NN_Crude
oil

12-278, 16-160

training set model. The prediction and can be seen in �gure 4.32. Samples with
values >0.5 and with deviations that do not exceed the 0.5 limit, belong the group
"crude oils", and these are colored in blue. Samples with values <0.5 and with
deviations that do not exceed the -0.5 limit belong to the group "non north sea
crude oil" and are colored in green.

Figure 4.32: Regression coe�cient plot,showing important variables for class crude
oil and class non north sea crude oil.

Samples belonging to each of these groups are presented in table 4.9
Inlier versus hotelling test indicate that there is one sample where this prediction

cannot be trusted (2011-BK2). This sample was suspected to be an outlier in PCA
and this strengthens the suspicion further.
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Figure 4.33: Inlier vs Hotelling T 2 shows sample 2011-BK2 fall outside the limit,
which means that this prediction cannot be trusted.

4.3.4 Hierarchical Cluster Analysis

HCA was computed with Eucledian distance and was tested with four di�erent link-
age methods; Single linkage, Complete linkage, Average linkage and Ward's method.
These results were displayed in a dendogram. Each dendogram was validated by cal-
culating the cophenetic correlation ceo�cient (CPCC). The dendogram displaying
the highest correlation was further assessed. Average linkage returned the highest
CPCC (0.79), and Ward's method returned the lowest CPCC (0.50).The dendogram
with average linkage are displayed in �gure 4.34.

Optimal number of clusters

Due to missing values in the dataset, the traditional "elbow method" for evaluating
the optimal number of clusters were not possible to compute. Hence,the number of
clusters were evaluated by manually computing di�erent number of clusters in the
dendogram. Based on these results it was decided that 16 clusters gave the most
reasonable separation between samples.This resulted in two large clusters and many
small clusters. The two largest clusters hold 37 and 24 samples in each cluster. Table
4.10 provides a simpli�ed overview over samples belonging to each cluster.
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Table 4.10: Samples belonging to each of the 16 clusters

Cluster 1 2013-665

Cluster 2 2012-295, 2014-394
Cluster 3 2015-847, 2014-408
Cluster 4 2011-B-SK-16
Cluster 5 2016-163, 2015-866
Cluster 6 2011-B-SK-6
Cluster 7 2012-267, 2012-258, 2011-A-VK-15, 2014-425
Cluster 8 2012-290, 2011-B-K-1, 2013-643, 2013-636
Cluster 9 2013-650, 2012-BS01, 2015-846
Cluster 10 2013-654, 2013-681ii, 2014-421, 2014-401b
Cluster 11 2013-637, 2015-881, 2011-B-SK-12, 2011-A-K-1,

2013-640, 2016-162, 2016-156, 2016-165, 2016-153,
2012-251, 2011-A-VK-2, 2011-A-K-9, 2016-157, 2011-
B-K-4, 2014-420, 2015-844, 2015-839, 2015-879, 2014-
390, 2014-387, 2014-384, 2014-395, 2013-673, 2014-
371

Cluster 12 2016-166
Cluster 13 2016-152, 2012-BS05, 2013-687, 2015-837, 2011-A-

VK-18, 2015-864, 2011-B-SK-2, 2011-A-K-6, 2011-
A-K-20, 2011-A-K-17, 2011-B-K-7, 2016-164, 2015-
882, 2015-826, 2015-848, 2014-413, 2012-276, 2012-
249, 2014-386, 2016-160, 2016-158, 2012-278, 2013-
681i, 2013-680ii, 2012-AS02, 2013-680i, 2012-BS03,
2012-AS06, 2013-626, 2012-316, 2014-414, 2013-656,
2014-424b, 2014-424, 2012-314, 2012-260, 2014-368

Cluster 14 2016-161, 2012-269, 2012-256, 2016-155, 2014-367
Cluster 15 2012-273, 2016-159, 2011-A-K-8, 2013-623, 2013-622,

2014-401
Cluster 16 2012-248, 2015-874, 2015-857, 2013-697, 2012-262,

2012-272, 2014-366
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Table 4.11: Groups identi�ed by 3D plotting are color coded after classi�cation made
by visual inspection. Samples identi�ed as dark green belong to the group "crude
oil", samples identi�ed as yellow belong to the group "non north sea crude oil",
samples identi�ed as blue belong to the group "bunker oil" and samples identi�ed as
red belong to the group "unkown".

PCA groups Color coded samples in groups

1
2014-384, 2014-387, 2014-390, 2014-395, 2014-420, 2015-879,
2015-839, 2015-844, 2011-BK4, 2011-AK9, 2016-153,
2016-157, 2016-165

2 2014-413, 2015-826, 2015-848, 2011-BK7

3 2016-155, 2014-424, 2014-424b

4
2014-425, 2013-680ii, 2013-681i, 2011-AVK15, 2012-258, 2012-267,
2016-158, 2016-160, 2016-161

5
2014-401, 2014-408, 2015-857, 2015-847, 2013-622, 2013-623,
2011-AK8, 2012-248, 2012-262, 2012-272, 2012-273, 2016-159

4.3.5 Color coding of groups in HCA and PCA based on re-

sults inspection of chromatograms

Groups created in PCA and the eight largest clusters in HCA were color coded
according to the classi�cation of samples from inspection of chromatograms. The
results are presented in table 4.11 and 4.12. Samples identi�ed as dark green belong
to the group "crude oil", samples identi�ed as yellow belong to the group "Non
north sea crude oil", samples identi�ed as blue belong to the group "bunker oil" and
samples identi�ed as red belong to the group "unkown".

4.3.6 COSIWeb

In total, 63 samples were imported and compared in the COSIWeb database. Only
samples with at least one correlation coe�cient (to an existing sample) above 0.98
were further evaluated to conclude or deny a match, and only the �ve highest cor-
relations for each sample was inspected (given that the correlation coe�cient was
above 0.98). 16 samples returned correlation coe�cient above 0.98 and these are
listed in table 4.33.

The rows in 4.33 represents the 16 samples, and the column represents the �ve
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Table 4.12: Groups identi�ed by 3D plotting are color coded after classi�cation made
by visual inspection. Samples identi�ed as dark green belong to the group "crude
oil", samples identi�ed as yellow belong to the group "non north sea crude oil",
samples identi�ed as blue belong to the group "bunker oil" and samples identi�ed as
red belong to the group "unknown".

HCA groups Color coded samples in groups

1 2011-A-VK-15, 2012-258, 2012-267, 2014-425

2 2012-290, 2011-B-K-1, 2013-643, 2013-636

3 2013-654, 2013-681ii, 2014-421, 2014-401b

4

2013-637, 2015-881, 2011-B-SK-12, 2011-A-K-1, 2013-640, 2016-162,
2016-156, 2016-165, 2016-153, 2012-251, 2011-A-VK-2, 2011-A-K-9,
2016-157, 2011-B-K-4, 2014-420, 2015-844, 2015-839, 2015-879,
2014-390, 2014-387, 2014-384, 2014-395, 2013-673, 2014-371

5

2016-152, 2012-BS05, 2013-687, 2015-837, 2011-A-VK-18, 2015-864,
2011-B-SK-2, 2011-A-K-6, 2011-A-K-20, 2011-A-K-17, 2011-B-K-7,
2016-164, 2015-882, 2015-826, 2015-848, 2014-413, 2012-276,
2012-249, 2014-386, 2016-160, 2016-158, 2012-278, 2013-681i,
2013-680ii, 2012-AS02, 2013-680i, 2012-BS03, 2012-AS06,
2013-626, 2012-316, 2014-414, 2013-656, 2014-424b,
2014-424, 2012-314, 2012-260, 2014-368

6 2016-161, 2012-269, 2012-256, 2016-155, 2014-367

7 2012-273, 2016-159, 2011-A-K-8, 2013-623, 2013-622, 2014-401

8
2012-248, 2015-874, 2015-857, 2013-697, 2012-262, 2012-272,
2014-366
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best matches along with correlation coe�cients. A code describing the country that
uploaded the sample is denoted. UK is short for United Kingdom, Fi is short for
Finland, NI is short for Northern Irleand , DE is short for Deutschland and BE is
short for Belgium. The remaining samples are imported from SINTEF. An example
is that sample 2014-384 has best match with sample 2014-384 and their correlation
coe�cient is 0.9988.

A positive, probable, inconclusive or non-match between two samples were given
after manual inspection of the GC-FID chromatograms, GC-MS chromatograms and
diagnostic ratios in COSIWeb. Samples that were concluded to be a positive match
are colored in green. Samples with a probable match is colored in yellow, Samples
with an inconclusive match is colored in blue and samples with non match are colored
in red (see �gure 4.33). In addition, number of DRs exceeding the analytical limit
between two samples are shown nearby the correlation coe�cients.

COSIWeb was used to identify samples in this dataset with samples from other
projects and laboratories. The results show that 6 samples from the dataset were
considered a probable match to four samples from the Shetland Islands.These are
chromatograms which have been imported from a lab in the United Kingdom, and
are collections of oils from bird feathers from the Shetland Islands. The type of oil
in these samples are unknown from their description.

Sample UK-1-231.4 was imported into COSIWeb in 2012 and has best match to
sample 2014-384 (0.9946). The GC-MS chromatograms look very similar although
13 of the 26 peaks have DR exceeding the 7 % limit which corresponds to 14 % in
the CEN. Two of these ratios (30G and MA) display 100 % di�erence and should
probably not have been integrated in the �rst place since they display low signals in
the chromatogram. Of the remaining 11 ratios, there are mostly PAHs and acyclic
isoprenoids that are above the limit, and most of these di�erences are most likely due
to weathering (such as C17/pr, C18/ph and pr/ph). Sample UK-1-231.4 has next
best match to sample 2014-387 (0.9935) and are considered as a probable match.
The GC-MS chromatograms look very similar. 15 of the 26 peaks exceed the limit,
mostly PAHs. As with sample 2014-384 there are two ratios (30G and MA) that
display 100 % di�erence and should not have been included. It has third best match
to sample 2011-BK-4 (0.9923). There are 17 DR outside the limit, mostly PAHs and
acyclic isoprenoids.

Sample UK-1-341.3 were imported into COSIWeb in 2014 and has best match to
sample 2014-384 (0.9943). The GC-MS chromatogram display many similarites. 19
of 26 peaks have DR exceeding the limit. Two of these ratios display (30 O and 30G)
100 % di�erence and should probably not have been integrated in the �rst place since
they display low signals. The remaining 17 ratios above the limit are a mixture of
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both hopanes, PAHs, steranes, and acyclic isoprenoids and most of these di�erences
are most likely due to weathering. Despite the many di�erences in DR they were still
considered to be a probable match. Next best match is to sample 2014-387 (0.9929).
22 diagnostic ratios are above the limit and as with sample 2014-384, it is a mixture
of di�erent hopanes, PAHs, steranes and acyclic isoprenoids. Other matches are to
samples 2011-BK-4 (0.9919), 2014-420 (0.9911). 2011-A-VK-2 (0.9869) and 2016-165
(0.9826). These were also considered a probable match, although between 20-23 DR
for these samples are above the limit.

Sample UK-1-332.2 probable match to 2015-846 (0.9856). 11 Diagnostic ratios
are above the limit. Again, a majority of these are PAHs and Isoprenoids and most
di�erences are due to weathering.

Sample UK-1-231-5 was imported into COSIWeb in 2012 and has best match to
sample 2014-387 (0.9889) and is considered a probable match. 13 DR are outside
the limit, mostly PAHs and Isoprenoids.

Table 4.13: Samples with coe�cient correlation above 0.98. Sam-
ples evaluated as positive match are colored in green, samples dis-
playing a probable match are colored in yellow, samples with no
match are colored in red and inconclusive matches are colored in
blue. Matches with external samples are shown in bold.

Sample Match 1 Match 2 Match 3 Match 4 Match 5

2014-384
2014-0387
0.9988/5

UK-1-231-4
0.9946/13

2011-B-K-4
0.9943/8

UK-1-341.3
0.9943/19

2014-420
0.9932/11

2014-0387
2014-0384
0.9988/5

UK-1-231.4
0.9935/15

UK-1-341.3
0.9929/22

2011-B-K-4
0.9894/9

UK-1-231.5
0.9889/13

2014-0420
2011-B-K-4
0.9981/8

2016-165
0.9945/7

2014-0384
0.9932/11

2011-A-VK-2
0.9919/11

Uk-1-341.3
0.9911/20

2014-394
NI-1-3063.1
0.9856/16

Fi-1-13.8
0.9854/20

Ni-1-3313-4
0.9842/22

FI-1-13.17
0.9835/22

De-1-1186.10
0.9833/21

2015-879
2015-839
0.9992/3

2015-844
0.9877/4

2015-839
2015-879
0.9992/3

2015-844
0.9883/4

De-1-1042.1
0.9833/20

2015-846
2007-0064*
0.9856/13

Uk-1-332.2
0.9856/11

BE-1-6042.142
0.9856/14

2015-881
BE-1-6042.45
0.9845/14

BE-1-6042.25
0.9799/13
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2015-844
2015-839
0.9883/4

2015-879
0.9877/4

De-1-042.1
0.9818/19

2016-165
2014-420
0.9945/7

2011-B-K-4
0.9938/13

2011-A-VK-2
0.9888/13

UK-1-341-3
0.9826/23

2014-0384
0.9815/13

2012-BS01
2012-0BS05
0.9824/19

2012-BS05
2012-0BS01
0.9824/19

2012-0115
0.982/17

2011-B-K-4
2014-420
0.9981/8

2014-384
0.9943/8

2016-165
0.9938/13

Uk-1-231.4
0.9923/17

Uk-1-341.3
0.9919/23

2011-A-VK-2
2014-420
0.9919/11

2011-B-K-4
0.9899/11

2016-165
0.988/13

uk-1-341.3
0.9869/23

2012-0262
DE-1-178230
0.9817/19
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Chapter 5

Discussion

5.1 Sources of errors

Samples in this study have been collected and analyzed at di�erent years and by
di�erent students. They have all been analyzed according to the CEN procedure
[CEN, 2012] and this minimizes errors arising from di�erent methods of analysis.

Sample material in this project are of di�erent size, thickness and degree of weath-
ering. Even though e�orts have been made to select the center of the sample that is
least a�ected by weathering, this can be di�cult for small and thin oil samples. This
has led to some samples being more weathered than others and may have a�ected
the GC-FID and GC-MS results. In addition contamination may have a�ected some
of the samples. Contamination can for example occur from multiple oil spills or
background chemicals. These are factors that can a�ect identi�cation and make it
more di�cult to characterize samples.

Although the author has not taken part in �eldtrips and laboratory work for a ma-
jority of the samples in this project, manual integration of samples have solely been
performed by the author. This was done to measure the peak height for biomark-
ers, and peak area for PAHs and was assessed for approximately 8000 components.
Manual integration is a subjective evaluation, and depends on the experience of the
analyzer, so it is an advantage that this has been done by one person. This is because
the person in charge of the integration must decide on the peak boundaries, how to
handle co-eluting peaks (overlapping), fronting and tailing. The integration will to a
large degree depend on the experience of the analyzer. The author had little knowl-
edge of manual integration prior to this thesis, but gained knowledge of this through
training under guidance of an experienced employee at SINTEF. Nevertheless, sam-
ples analyzed in the beginning may have been analysed and handled di�erently from
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samples towards the end of the integration, although the author attempted to make
it as equal as possible.

Samples with biomarkers and PAH components below the detection limit were
not included in the analysis, which lead to some diagnostic ratios not being included
in the thesis. This could be unfortunate for some of the samples that actually have
valid measurements for some of the DRs. An alternative approach would be to �ll
in missing values for samples below the detection limit, but this was not considered
for this work.

5.2 Inspection of chromatograms

Results from the inspection of chromatograms, based on recommendations from the
CEN methodology [CEN, 2012] have been used as a starting point for other analyses.
This can be a vulnerable technique to classify oil samples. Firstly, the visual inspec-
tion will be a�ected by how weathered the sample material is. This may lead to
faulty assumptions or no conclusion at all. Faulty assumptions can be prominent in
cases where abundance of a peak or abundance between peaks are used for character-
ization. Separation between crude oil and bunker oil was based on this, since oils are
characterized as crude oils if the �rst doublet (3-methyl-and-2-methylphenanthrenes)
is more abundant than the second doublet (9-/4 and 1-methylphenanthrenes) and
vice versa for bunker oils (see �gure 3.4 and �gure 3.5). However for bunker oils, the
characterization is safer in the sense that there also have to be a MA peak present
for it to be classi�ed as a bunker oil. Secondly this method also depend largely on
the analyst, and the experience of the analyst.

Many of the GC-FID chromatograms were a�ected by weathering. The best
information that could be aqcuired from these, was basically to separate the most
weathered samples from less weathered samples. The results from the GC-MS chro-
matograms were easier to interpret, which is as expected since this evaluation was
based on biomarkers and PAH components that are resistant to degradation. Ap-
proximately 36% of the samples could not be identi�ed solely on the inspection of
chromatograms. In some samples, even the most resistant biomarkers were highly
weathered, which made it hard to characterize them. This was especially evident in
ion chromatogram m/z 192, which was used to compare doublets to decide if the oil
was crude oil or bunker oil. In some samples the abundance of the doublets were
equal which made it di�cult to classify them based on the height of the doublets.
In some cases a very small MA peak could be identi�ed but due to much noise, in
the chromatogram it was di�cult to conclude if it was the noise or the biomarker.
In these cases they were identi�ed as unkown. The abundance of oleanane og gam-
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macerane (see �gure 3.6 and 3.7) is to some degree a subjective evaluation, by which
the person decides to what the degree of abundance must be to classify them into
certain groups.

The results from the visual inspection were compared to students classi�cation in
the course KJ3050 - Marine Organic Environmental Chemistry, and previous master
students. Of 97 samples, 27 samples were classi�ed di�erently by the author com-
pared to the students. Of 27 samples, 25 of these where classi�ed as either crude or
bunker by other students, while the author classi�ed these as unknown. One sample
was classi�ed as bunker by the author, and this was classi�ed as crude oil by the
students. This concerns sample 2014-394. One sample was classi�ed as crude oil
by the author, and this was classi�ed as bunker oil by the students. This is sample
2011-A-VK-15. Moreover the author characterized less crude samples into the group
"Non north sea crude oil", compared to the students. Since this classi�cation was
intended to be used in the rest of the work, it was important to be prudent and to
avoid any false identi�cations. To classify something wrong, would be worse for the
analysis than having one more unkown.

For islands with many sampling points such as Sula, there were a mixture of
both crude oils, bunker oils and unkown samples. For islands with small sample
sizes there are some islands with samples from only one classi�cation, in addition
to unkown samples. Examples are Olabussøya where there are �ve sampling points,
three samples are characterized as bunker oils and two samples are characterized as
unkown. At Gårdsøya and Borholdmen, two very close islands, almost all samples are
characterized as bunker oils, except one which is characterized as unkown. However,
no conclusions about identi�cation of unkown samples can be based solely by looking
at the map since there is no guarantee, with this limited sample size, that there is
only one type of oil on the island.

Interestingly, many of the biomarkers that were used to identify oil samples based
on the CEN methodology, were not included in the multivariate analysis. This
includes Oleanane, Gammacerance, Methylantrancene and Retene (see �gure 3.4,
�gure 3.5, �gure 3.6 and �gure 3.7). This is because their diagnostic ratios were
missing for more than 25% of the samples. Methylantrancene is only visible in
bunker oils, and since only a small part of the sample material was characterized
as bunker, and some probably were not characterized due to weathering, it is not
surprising that this diagnostic ratio is missng many values. This also applies to the
biomarkers oleanane and gammacerane. These only shows high abundance in few
samples. When it comes to retene, this biomarker is only source speci�c for some
samples.
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5.3 Principal component analysis

In the analysis, three principal components were considered, which in total explained
55% of the variance. PC1 and PC2 explained 42 % of the variance, thus PC3 was also
considered. Since the focus of this work was to study the larger trends in the data,
it was not desirable to include too many principal components. If a more detailed
view is desired, it is possible that more components should be considered, although
this increase the risk of including noise.

The identi�cation of groups in 3D score space resulted in 5 groups selected visually
(�gure 4.19). But there might be several groups that the author did not identify or
other samples belonging to one of the groups. The RSD, which describe how similar
the results within a group are, show that especially group 1-4 consist of internally
similar samples. Group 5 had a higher RSD, indicating that it is a less tightly knit
group (�gure 4.6).

5.3.1 Combining results from inspection of chromatograms

with results from PCA-2D score plot

It was not suggested groups of samples based on the 2D score plot, only in terms of
the 3D plot. Instead, samples in the 2D score plot were assigned colors according to
the category it belonged to from inspecting chromatograms. The score plot for PC1
and PC2 (see �gure 4.24) shows that samples classi�ed as bunker oils are distributed
in the upper side of the plot, especially in the upper left corner. The majority of
samples classi�ed as crude oils are located on the lower side of the plot, although
there are samples classi�ed as crude oils in the upper right side of the plot as well,
especially non north sea crude oil. The unknown samples are spread around the
entire score plot. From this it seems like PC1 is related to separation of oil type.

5.3.2 Combining results from inspection of chromatograms

with results from PCA-3D score plot

Table 4.11 shows that group 1-4 which was created in the 3D plot are dominated
by oils that have been classi�ed as crude oils, and most bunker oils are in group 5.
The di�erence between north sea and non north sea crude oil is less clear. However,
there is some indication of this as well, mainly because there are no �non north
sea� crude oils in group 1, 2 and 3. There are two samples in group one that are
categorized as unknown, namely 2014-395 and 2016-153. Since the majority of these
samples have been characterized as crude oils, it can be reasonable to assume that
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these unknown samples are crude oils as well. In group 4 there is a mixture of crude
oils, and three unknown samples. From this one may assume that the unknown
samples also are crude oil, but it is di�cult to say anything about the type of crude
oil. Group 5 had the highest RSD which means that there is less similarity between
these samples compared to the other groups. This also re�ected by looking at the
color classi�cation. The majority of samples are classi�ed as bunker oils, but there
are some samples classi�ed as crude oil and some unknown as well.

5.3.3 Biplott

The biplot can be used to determine which variables are important for characterizing
di�erent samples. In a previous study [Sun et al., 2015] PCA biplot was used on a
set of crude oils, light fuel oils, heavy fuel oils, weathered fuel oils and weathered
crude oils. They used 43 diagnostic ratios, of which 23 are shared with the analysis
in this thesis, and of which 13 are included in this PCA biplot.

They concluded that n-alkanes were positively correlated with light fuel oil (LFO),
aromatic hydrocarbons were positively correlated with Heavy fuel oil (HFO) and
terpanes and steranes were indicative of crude oil.

The biplot in �gure 4.25 shows that variables located to samples classi�ed as
bunker oils are 2-Mp/1-MP, 1Mpy/4-Mpy, 2Mpy/4-Mpy 4-MD/1-MD, SC26TA/
SC28TA, 30ba/30ab, SC26/RC26+SC27, 27Tm/30ab and 29ab/30ab. The �rst
three of these were also identi�ed as such by the previous study. Since both studies
have identi�ed these, it is an indication that these DRs are useful for identifying
bunker oils. But there are also di�erences. From their study the DRs C2-dbt/C2-
phe and C3-dbt/C3-phe are also shown to be characteristics of bunker oil. From
our biplot it seems like these two diagnostic ratios are more prominent for samples
classi�ed as crude oils, but they are also located close to a group of many unknown
samples.

Variables that are closest located to samples classi�ed as crude oil (both from the
north sea and not from the north sea) are C29BBSTER, SC28/RC26+SC27, RC28/
RC26+SC27 and Ts/Tm, 29bb/29aa, BNT/TM-phe, C27BBSTER, 31abs/30ab,
29aaS/29aa, 27bb/29bb, C2-dbt/C2-phe and C3-dbt/3-phe, 31aBs/30ab, C23Tr/C2-
P, RC27TA/RC28TA. In their study, the results shows that Ts/Tm and RC27TA/
RC28TA are DRs indicative of crude oils, but they also show this for DR SC26TA/
SC28TA which in our study seems more indicative of bunker oils.

Moreover the article says that the diagnostic ratios C29ab/30ab, C27BBster, C3-
D/C3-C were positively correlated with LFO and distinguished LFO from both HFO
and crude oils. From our biplot, the ratios 27Tm/30ab and 29ab/30ab are positively
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correlated with some samples classi�ed as bunkers, which are located on the upper
right side of the plot, but nothing conclusive can be said about these being light fuel
oil, since the material is extremely weathered. Moreover diagnostic ratios C27BBster
is positively correlated with many crude oils in this plot. The same can be said about
the diagnostic ratio C2-D/C3-C although there are more unknown samples close to
this ratio.

5.4 PLS-DA

5.4.1 PLS-DA-for crude oil and bunker oil

The PLS-DA model classi�ed 22 samples as crude oils, but no samples as bunker
oils. Of 13 samples classi�ed as crude oils, these have been classi�ed as crude oils by
inspecting chromatograms (2014-384, 2014-390, 2014-0413, 15-879, 15-826,16-152,
16-156, 16-157, 16-162, 16-165, 12-BS03, 11-BK1 and 11-AK6). The remaining 9
samples have been classi�ed as unknown by inspecting chromatograms (15-866,15-
837, 16-637, 16-643, 11-AVK2,12-290, 16-154,16-164, 16-166). Thus the model is able
to predict some unkown samples into a category. Since the model predicted only
known crude oil samples (from inspection of chromatograms) and no bunker oils into
the crude oil category, this makes it more plausible that the unknown samples in fact
are crude oil samples.

Important variables for predicting crude oils from the regression coe�cient plot in
�gure 4.27 were TS/TM, C23Tr/C2-PA, 27TS/30ab, BNT/TM-phen. These are also
variables witch have been correlated to crude oils in PCA, except variable 27TS/30ab
which was removed from the loading plot in PCA since it did not contribute mutch
to the model.

The performance of the model was assesed by looking at the RMSEC, RMSEP
and R2 values for the calibration and validation model. RMSEC and RMSEP was
0.30 and 0.43 respectively. The increased prediction value is as expected since this
is tested on samples that was not in the calibration model. Ideally these should be
equal and as low as possible. The R2 value for the calibration model was 0.88 and
for the validation model 0.78.

In the training set only 8 samples were used in the bunker oil category, whereas
22 samples were used in the Crude oil category. The low prediction for bunker oils
indicate that the samples were not representative for the training set. Important
variables for predicting bunker oils were 4-MD/1-MD, 2-MP/1-MP, 2-Mpy/4-Mpy,
1-Mpy/4-Mpy. This was also seen in the PCA score plot.
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5.4.2 PLS-DA-for crude oil and non north sea crude oil

The PLS-DA model predicted 6 samples as crude oils and 2 samples as non north sea
crude oil. Of the 6 samples classi�ed as crude oils, 4 of these samples (14-390, 15-879,
16-157,11-AK9) were classi�ed as crude oils by inspection of chromatograms. The
two other samples (16-153,14-395) are classi�ed as unknown when inspecting chro-
matograms. Of the 2 samples classi�ed into the group non north sea crude oil (12-278
and 16-160) these have been classi�ed as unknown by inspection of chromatograms.

The RMSEC and RMSEP are 0.41 and 0.49. R2 values are 0.83 and 0.79. These
values are lower than the predictive ability for the PLS-DA model between crude oil
and bunker oil. Variables that were important for describing samples in the group
crude oil was variables BNT/TM-phen, Ts/Tm, 29bb/29aa and RC28/(26+SC27).
Variables that were important for predicting the Y-variable "Crude oil not north
sea" are 27Tm/30ab, 29ab/30ab, C2-dbt/C2-phe, C3-dbt/C3-phe, C23Tr/C2-PA
and 30ba/30ab. These are trends that we also can identify in the PCA biplot, and
all of these variables are located in or close to the upper right quadrant in PCA
where the majority of samples classi�ed as non north sea crude oil are located.

5.5 HCA

In the analysis it was determined to have 16 clusters, found by manual inspection.
Fewer clusters lead to many small clusters, with one or two samples, and one large
group with the remaining samples. Due to missing values it was di�cult to get an
objective suggested number of clusters. There are methods for accomplishing this,
with missing values, but this was not prioritized as the decision for number of cluster
ultimately will be a subjective evaluation in the end.

With 16 clusters, the two largest clusters were made up of 24 samples and 37
samples. In �gure 4.12, eight of the largest clusters are color coded based on the
category it was given by inspection of chromatograms. Group 1-4 are dominated by
crude oils. Group 8 only consist of samples characterized as bunker oils. Group 5 is
a large group with a mix of di�erent types, but almost all non north sea crude oil are
in this group. Since the majority of samples are classi�ed as crude oils in group 1-4
(possibly from the north sea) this can indicate that the unknown samples in these
groups also are crude oils. This applies to 2012-267 (group 1), 2012-290, 2013-643,
2013-636 (group 2), 2013-637, 2015-881, 2011-B-SK-12, 2013-640, 2016-153, 2011-A-
VK-2 and 2014-395 (group 4).

Sample 2014-395 and 2016-153 are grouped together in PCA in group 1, where
the majority of samples are classi�ed as crude oils. This strengthens the assumption
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that at least these two samples are crude oils. This is also seen for sample 2012-267
which is grouped in PCA in group 4, where the majority of samples are classi�ed as
crude oils (from both origins).

5.6 Search in the international database COSIWeb

High correlation coe�cient between two samples in COSIWeb does not necessarily
mean that the diagnostic ratios are below the limit given by CEN methodology. In
fact, all comparison between samples resulted in a number of DRs exceeding the
limit set by CEN (see �gure 4.33). In some samples this was only evident for DRs
that are prone to weathering such as acyclic isoprenoids, but in many samples this
was also the case for resistant biomarkers, such as hopanes. Some di�erences in DRs
were just slightly above the limit and some were extremely di�erent. Even though
the DRs always were considered when comparing two samples, it was inspection
of the di�erent ion chromatograms that eventually was the deciding factor. The
inconsistency between high degree of correlation despite DRs exceeding the limit
between many samples, may be due to weathering and contamination of samples, and
may show that COSIWeb has some issues when analyzing very weathered samples.

COSIWeb found samples with correlation coe�cient above 0.98 for 16 of 63 sam-
ples imported into cosiweb. Among these samples, many display high correlation
coe�cients with each other. This did not come as a surprise, since the material
is sampled from the same area, and it is reasonable to assume that some sample
originate from the same source. Although it is interesting to study samples that are
correlated within this dataset, this have already been accomplished the multivariate
methods just described. The strength of COSIWeb is that it can provide information
about similar samples that have been collected in connection to di�erent projects and
by di�erent countries.

Interestingly samples 2014-387, 2014-384, 2014-420, 2011-A-VK-2, 2011-B-K-4
were identi�ed as a probable match to samples from the Shetland Islands, namely
UK-1-231-4, UK-1-341-3, UK-1-231-5. From the results in this thesis, it has been
established that the matching samples likely are crude oils, possibly from the north
sea. Sample 2015-846 were identi�ed as a probable match UK-1-332.2. From the
result in this thesis it, the sample was characterized as a bunker oil. Similar matches
have also been identi�ed by a previous master student ( [Vike, 2014])

The spreading of oil samples between these two locations may be a result of
drifting of wind currents and coastal currents, such as the North Atlantic current.
These results is also an example of how oil spill may a�ect seabirds, since the samples
from Shetland are oil collected from bird feathers.
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5.7 Comparing multivariate methods

PCA and HCA categorized many samples into the same groups. For example, group
1 in PCA contain the same samples as group 4 in HCA, although group 4 contain
additional samples. HCA were also able to categorize one cluster only consisting
of bunker oil. PLS-DA identi�ed samples into crude oil classes, but no samples as
bunker oils.

HCA and PCA were able to locate some of the unknown samples into groups
that consist of one type of oil, and so the multivariate techniques seems robust to
weathered samples. Of the unknown samples 2011-A-VK-2, 2014-395, 2016-153,
2012-267, 2016-158, 2016-160, 2013-637, 2015-881, 2011-BSK-12, 2013-640 are most
likely crude oil samples. The two PLS-DA models categorized together 13 unkown
oil samples, most likely as crude oil samples (from both origins).

Since there is little knowledge of the sample material, and many samples are very
weathered it is di�cult to say anything absolute about the correctness of the results.
However, these result can be used as a indication for future controlled experiments.
The biplot in PCA and correlation loading plot in PLS-DA made it possible to
identify diagnostic ratios that are useful in these type of weathered samples.

PCA have in this project been used as a subjective technuqie when it comes to
identifying groups of samples. This can be a disadvantage since it depends on the
expertise of the person in charge of the analysis. However this subjective evaluation
can be veri�ed by di�erent techniques, such as calculcating the RSD for each group
and comparing them to the whole sample set. There are more formal statistical
techniques that could have been used for selecting groups in PCA, but this was not
included in this thesis.

HCA is a method that collects all samples into di�erent clusters, and may be a less
time consuming method. Each cluster should ideally represent homogeneous groups,
which depends on the right selection of clusters. However in cases were there are little
similarities between samples, it may lead the analyst to erroneous conclusions. PLS-
DA is an objective technuqie and is able to objectively select samples into groups,
but this will depend on how representative the training set is.
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Chapter 6

Conclusion

A majority of the samples in this thesis were categorized as crude oil (possibly from
the north sea). This seems logical, since there are many oil �elds in the north sea,
and transportation routes along the Norwegian coastline. In addition some samples
were identi�ed with high abundance of oleanane (30 O) and gammacerane (30 G),
thus indicating long distance oil migration.

There was not observed any distinct relationship between oil type and sampling
location, di�erent oil types were randomly located on the di�erent islands. This have
also been shown by a previous master student who inspected samples from 2011 and
2012 [Henriksen, 2012].

PCA, HCA, PLS-DA have demonstrated their ability to categorize weathered
samples into groups and clusters, and categorized some unkown samples. Compared
to univariate methods, such as the CEN methodology this provides a fast and (to
some degree ) objective measure of sample similarity, especially when there are many
samples in a dataset.

An interesting �nding is that the multivariate approaches are able to group sam-
ples without using some of the typical identifying biomarkers that are used for inspec-
tion of chromatograms, or some of the typical DR used in univariate oil spill forensics
(MA, 30O, 30G and retene). This shows that multivariate techniques, could be a
promising method for identifying heavily weathered samples that often have incon-
clusive or missing measurements for these typically used biomarkers and diagnostic
ratios.

By applying COSIWeb, external oil spill samples from Shetland proved a match
to six samples in the dataset, which makes it possible to form a picture over the
distances these samples have traveled. It also shows that oil stranded on shore not
necessarily are related to a local incidents.
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Chapter 7

Further work

This thesis have investigated samples from 18 di�erent islands around the Froan area
during a time period of 2010-2016. During these periods, new islands have almost
always been investigated each year. It could be interesting to go back to some of the
islands previously visited and investigate if newer oil samples are observed, which
could be helpful to say something about the frequency of oil spills along the shore.
This have to some extent been studied Sula, but this could be performed on several
islands.

It would be interesting to enhance the PLS-DA model by including weathered oil
samples of known origin in the training set. However, this may be di�cult to achieve
since, it would require known samples that have weathered over a long period. It
could also be advantageous to include a trainig set with equal sizes of bunker and
crude oil to see if this improved the prediction ability of bunker oils.

Samples with correlation 0.98 was investigated in the database COSIWeb, lower
correlations may also be looked in to, in case this results in additional matches with
external samples.

It would also be interesting to go deeper into speci�c correlations between diag-
nostic ratios and samples in PCA biplot and PLS-DA plot, to evaluate if more could
be said about their source.
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Appendix A

Description of Oil Samples

Tables and GC-FID chromatograms used in this thesis are presented here. For more
detailed information contact: marie.myrstad@gmail.com
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Appendix B

PAH and Biomarkers

Table B.1: Target PAH and biomarker compounds

Target PAH and Biomarkers analysed by GC-MS-SIM Abbreviations

Target PAH (Groups and Single compounds)
Naphthalene N0
C1-Naphthalenes N1
C2-Naphthalenes N2
C2-Dibenzothiophenes D2
C3-Dibenzothiophenes D3
C2-Phenanthrenes/Anthracenes P2
C3 Phenanthrenes/Anthracenes P3
C4-Phenanthrenes/Anthracenes P4
C2-highest peak Phenanthrenes/Anthracenes
C1-Fluorenes F1
C2-Fluorenes F2
C2 benzothiophenes C2-bt
C2 Fluoranthrenes/Pyrenes FP2
C1 chrysenes/benzanthracenes C1
C1-dekalin DE1
2-Methylanthracene 2MA
4-Methyl Dibenzothiophene 4MD
1-Methyl Dibenzothiopene 1MD
2-methyl phenanthrene 2MP
1-methyl phenanthrene 1MP
Retene R
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Tetramethyl-phenanthrene T-M-phe
Benzo[b]naptho(1,2-d)thiopene BNT
Benzo(b+c)�uorene B(b+c)
2-methylpyrene 2Mpy
4-methylpyrene 4Mpy
1-methylpyrene 1Mpy
2-Methyl�uoranthene 2MFL
Benzo(a)-�uorene B(a)F
Pentacyclic triterpanes (hopanes)
18α(H)-22,29,30-trisnorhopane 27-TS
17α(H)-22,29,30-trisnorhopane 27-TM
17α(H),21β(H)-28,30-bisnorhopane 28ab
17α(H),21β(H)-30-norhopane 29ab
18α(H)-30-nornehopane 29Ts
18α(H)-oleanane 30O
17α(H),21β(H)-hopane (hop) 30ab
Gammacerane 30G
17α(H),21β(H)-30-homohopane 31abS
17β(H),21α(H)-moretane 30ba
17α-(H),21β(H), 22S-bishomohopane 32abS
Tricyclic Triterpanes
C23 Tricyclic triterpane C23 Tr
C24 Tetracyclic triterpane C24 Tr
C25 Tricyclic triterpane C25 Tr
C28 Tricyclic triterpanes C28 (22S)
C29 Tricyclic triterpanes C29 (22S)
Triaromatic Steroids
C20-Triaromatic sterane C20TA
C21-Triaromatic sterane C21TA
C26,20S-Triaromatic sterane SC26TA
C28,20S-Triaromatic sterane SC28TA
C27,20R-Triaromatic sterane RC27TA
C28,20R-Triaromatic sterane RC28TA
C26,20R- + C27, 20S-Triaromatic sterane RC26TA+SC27TA
Steranes
C27 13β(H), 17α(H), 20S-Diacholestane (diasterane) C27dbS
C27 13β(H), 17α(H), 20R-Diacholestane (diasterane) C27dbR
C28 24-methyl-5α(H),14α(H), 17α(H), 20R-cholestane C28aaR
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C29 24-ethyl-5α(H), 14α(H), 17α, 20S-cholestane C29aaS
C29 24-ethyl-5α(H), 14β(H), 17β, 20S+R-cholestane C29bbR+S
C29 24-ethyl-5α(H), 14α(H), 17α, 20R-cholestane C29aaR
C27 5α(H), 14β(H), 17β(H), 20R+S-cholestane C27bbR+S
C29 24-ethyl-5α(H), 14β(H), 17β(H), 20R+S-cholestane C29bbR+S
C29 24-methyl-5α(H),14β(H), 17β(H), 20R+S-cholestane C28bbR+S
Sesquiterpanes
C15H28-sesquiterpanes SES1
C15H28-sesquiterpanes SES2
C15H28-8β(H)-drimane SES3
C15H28-sesquiterpanes SES4
C16H30-8β(H)-homodrimane SES8
Selected n-Alkanes and Acyclic Isoprenoids
Heptadecane C17
Pristane Pri
Octadecane C18
Phytane Phy
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Appendix C

Diagnostic ratios

Table C.1: Diagnostic ratios

Recommended diagnostic ratios for PAH

Ratio name De�nition Ion mass
DR-2-MP/1-MP 2-methylphenanthrene/1-methylphenanthrene 192
DR-MA/1-MP Methylanthracene/11-methylphenanthrene 192

DR-4-MDBT/1-MDBT
4-methyldibenzothiophene/
1-methyldibenzothiophene

198

DR-C2-DBT/C2-phe C2-dibenzothiophenes/C2-phenanthrenes 212/206
DR-C3-DBT/C3-phe C3-dibenzothiophenes/C3-phenanthrenes 226/220
DR-Retene/C4-phe Retene/C4-phenanthrenes 234
DR-Retene/T-M-phe Retene/Tetra-methyl-phenantrene 234
DR-BNT/T-M-phe Retene/ Tetra-methyl- phenantrene 234

DR-2MFL/4-MPy 2-Methyl�uoranthene/4-metylpyrene 216
DR-B(a)F/4-MPy Benzo(a)�uorene/4-methylpyrene 216
DR-B(b+c)F/4-MPy Benzo(b+c)�uorene/4-methylpyrene 216
DR-2MPy/4-MPy 2-methylpyrene/4-methylpyrene 216
DR-1MPy/4-Mpy 1-methylpyrene/4-methylpyrene 216

DR-C23Tr/C2-phe-hp
C23 Tricyclic diterpane/Highest peak
of the C2-phenantrenes/anthracenes.

191
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Table C.2: Diagnostic ratios of biomarkers. Ratios col-
ored in red was not used in this thesis.

Recommended diagnostic ratios of Sesquiterpanes

Ratio name De�nition Ion mass
DR-SES 1/3 SES1/SES3 123
DR-SES 2/3 SES2/SES3 123
DR-SES 4/3 SES4/SES3 123
DR- SES 8/3 SES8/SES3 123

Diagnostic ratios for the tricyclic terpanes and hopanes

Ratio name De�nition Ion mass
DR-C28/30ab C28(22S)/30ab 191
DR-27Ts/30ab 27Ts/30ab 191
DR-27Tm/30ab 27Tm/30ab 191
DR-28ab/30ab 28ab/30ab 191
DR-29ab/30ab 29ab/30ab 191
DR-Ts/Tm Ts/Tm 191
DR-29Ts/30ab 29Ts/30ab 191
DR-30O/30ab 30O/30ab 191
DR-30ba/30ab 30ba/30ab 191
DR-31abS/30ab 31abS/30ab 191
DR-30G/30ab 30G/30ab 191

Diagnostic ratios of the regular steranes and diasteranes

Ratio name De�nition Ion mass
DR-27dbR/27dbS 27dbR/27dbS 217
DR-29ααS/29ααR 29ααS/29ααR 217

Diagnostic ratios of Triaromatic Steroids

Ratio name De�nition Ion mass
DR-C20TA/C21TA C20TA/C21TA 231
DR-C21TA/RC26+SC27 C21TA/RC26TA +SC27TA 231
DR-SC26/RC26+SC27 SC26TA/RC26TA +SC27TA 231
DR-SC28/RC26+SC27 SC28TA/RC26TA+SC27TA 231
DR-RC27/RC26+SC27 RC27TA/RC26TA +SC27TA 231
DR-RC28/RC26+SC27 RC28TA/RC26TA+SC27TA 231
DR-C21TA/RC28TA C21TA/RC28TA 231
DR-SC26TA/SC28TA SC26TA/SC28TA 231
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DR-RC27TA/RC28TA RC27TA/RC28TA 231

Diagnostic ratois of selected n-Alkanes and Acyclic Isoprenoids

Ratio name De�nition Ion mass
DR-C17/pri n-heptadecane/pristane 85
DR-C18/phy n-octadecane/phytane 85
DR-pr/phy pristane/phytane 85
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Appendix D

GC-FID

Table D.1: Description of GC-FID chromatograms.

Sample ID Approximate Carbon range UCM hump

2014-366 c15-c30 broad,medium
2014-367 c20-c35 broad,medium
2014-368 c20-c35 narrow,high
2014-371 c21-c35 broad, medium
2014-384 c15-c35 broad,�at
2014-0386 c15-c30 broad,medium
2014-0387 c15-c35 broad, �at
2014-390 c15-c40 broad, �at
2014-0394 no carbon range observed even with SPE cleanup narrow, high
2014-0395 c21-c40 broad, �at
2014-0397 no carbon range observed
2014-0401 no carbon range observed narrow, high
2014-0401b c25-c35 �at
2014-0408 C30-C40 broad, �at
2014-0413 C23-C40 �at
2014-0414 no carbon range observed broad, medium
2014-0420 no carbon range observed broad, medium
2014-0421 C23-C40 broad, �at
2014-0424 C22-C34 �at
2014-0424b C21-C34 �at
2014-0425 no carbon range observed broad, medium
2015-864 c26-c46 broad, �at
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2015-866 c20-c40 Narrow, high
2015-857 c20-c40 broad, high
2015-879 C20-C40 broad,high
2015-881 c24-c40 broad, �at
2015-882 c24-c46 broad, �at
2015-874 c23-c40 narrow, �at
2015-837 c30-c44 broad, medium
2015-839 c17-C44 broad, �at
2015-844 C17-C43 Broad, �at
2015-846 C15-C40 Broad, high
2015-847 C18-C46 broad, �at
2015-848 C24-C46 broad, �at
2013-622 C25-C46 broad, medium
2013-623 C24-C45 broad, medium
2013-626 C18-C40 narrow, high
2013-636 C18-C40 narrow, high
2013-637 C29-C40 broad, �at
2013-640 C18-C40 broad, �at
2013-643 C30-C45 broad, high
2013-650 C25-C45 narrow, high
2013-654 C21-C45 broad, �at
2013-656 C30-C45 narrow, high
2013-665 C21-C45 narrow, high
2013-673 C18-C40 broad, �at
2013-680i C27-C45 narrow, high
2013-680ii C24-C40 narrow, medium
2013-681i C28-C40 narrow, medium
2013-681ii C30-C45 broad, �at
2013-684i C23-C45 narrow, high
2013-684ii C23-C45 narrow, high
2013-687 C22-C45 narrow, high
2013-697 C17-C45 broad, medium
2013-698 c16-C45 broad, �at
2013-703 C25-C45 broad, �at
2016-152 c30-c42 broad, medium
2016-153 c28-c42 broad, medium
2016-154 SPE cleanup is needed
2016-155 SPE cleanup is needed
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2016-156 C31-C41 broad, medium
2016-157 C29-C41 broad, medium
2016-158 SPE cleanup is needed
2016-159 C26-C43 broad, medium
2016-160 SPE cleanup is needed
2016-161 C31-C43 broad, medium
2016-162 C28-C43 broad, �at
2016-163 SPE cleanup is needed
2016-164 C27-C43 broad, �at
2016-165 C30-C43
2016-166 SPE cleanup is needed
2012-AS02 C29-C45 broad, medium
2012-AS06 no carbon range observed broad, medium
2012-AS08 no carbon range observed broad, medium
2012-BS01 C21-C45 broad, medium
2012-BS03 C40-C45 broad, �at
2012-BS05 no carbon range observed
2011-BK01 C26-C40 broad, medium
2012-BK02 C21-C45 broad, medium
2012-BK04 C18-C45 broad, medium
2012-BK07 C26-C45 broad, �at
2012-BSK02 C14-C45 broad, medium
2012-BSK06 C25-C45 broad, medium
2012-BSK12 C28-C45 broad, �at
2012-BSK16 C18-C36 narrow, high
2012-AK20 C28-C40 broad, �at
2012-AK01 C26-C45 broad, medium
2012-AK06 C24-C45 broad, �at
2012-AK08 C22-C45 broad, �at
2012-AK09 C17-C45 broad, �at
2012-AK17 C30-C40 broad, �at
2012-AVK02 C17-C45 broad, medium
2012-AVK15 C30-C45 broad, �at
2012-AVK18 C26-C45 broad, �at
2012-0248 C17-C45 broad, medium
2012-249 C18-C45 broad, �at
2012-0251 C24-C45 broad, �at
2012-0256 C14-C45 broad, medium
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2012-0258 C25-C45 broad, �at
2012-0260 C17-C45 broad, medium
2012-0262 C18-C45 broad, medium
2012-0267 C28-C45 broad, medium
2012-0269 C17-C45 broad, medium
2012-0272 C21-C45 broad, medium
2012-0273 C24-C45 broad, medium
2012-0276 C17-C45 broad, medium
2012-0278 C30-C45 broad, �at
2012-0290 C24-C45 broad, �at
2012-0295 no carbon range observed broad, narrow
2012-314 C19-C45 broad, medium
2012-0316 C16-C45 broad, medium
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Appendix E

COSIWeb

Table E.1: Diagnostic ratios applied in COSIWeb

Ratio name De�ntion (m/z)

TS 27Ts/30ab 191
TM 27Tm/30ab 191
28ab DR-28ab/30ab 191
29ab 29ab/30ab 191
30O 30O/30ab 191
31abS 31abS/30ab 191
30G 30G/30ab 191
27dbR 27dbR/27dbS 217
27bb 27ββ(S+R)/29ββ(S+R) 218
TASC26 SC26TA/RC26TA +SC27TA 231
TASC28 SC28TA/RC26TA+SC27TA 231
TARC27 RC27TA/RC26TA +SC27TA 231
TARC28 RC28TA/RC26TA+SC27TA 231
C17/pr n-heptadecane/pristane 85
C18/ph n-octadecane/phytane 85
pr/ph pristane/phytane 85
2MP 2-methylphenanthrene/1-methylphenanthrene 192
MA Methylanthracene/11-methylphenanthrene 192
4MD 4-methyldibenzothiophene/1-methyldibenzothiophene 198
2MF 2-Methyl�uoranthene/4-metylpyrene 216
B(a)F Benzo(a)�uorene/4-methylpyrene 216
B(b+c)F Benzo(b+c)�uorene/4-methylpyrene 216
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2MPy 2-methylpyrene/4-methylpyrene 216
1Mpy 1-methylpyrene/4-methylpyrene 216
Retene Retene/Tetra-methyl-phenantrene 234
BNT Retene/ Tetra-methyl-phenantrene 234
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