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Summary 
 

Cervids are a widespread family of ungulates, native to the Americas, Europe and Asia 

and introduced to Australia. Densities of cervids have increased in North America, 

Europe and Japan during the last couple of decades, due to changes in land use, reduced 

hunting, lack of large carnivores and changes in management practices. Where they occur 

at high densities, native and introduced cervids may have profound effects on vegetation, 

causing knock-on effects on other taxa. Cervids are in some instances managed towards 

changing the local distribution through supplemental feeding. These supplemental feeding 

stations are causing localized areas of high cervid abundance in the landscape, and may 

have effects on plants and animal species. 

  In this thesis I investigate how high cervid densities and the practice of 

supplemental feeding impact birds and small mammals through effects on; 1) food 

resources, and 2) habitat structure. 

 Utilizing a simulated moose (Alces alces) browsing experiment, I tested how 

varying moose densities and varying site productivity affects vole preference for bilberry. 

I found that voles preferred unbrowsed bilberry at low productivity sites, while they 

preferred lightly browsed bilberry at high productivity sites, I was however unable to 

explain the preference pattern with the chemical composition of the bilberry. However, 

moose do impact vole food preferences and this could, depending on the productivity of 

the site, potentially affect food selection and population dynamics over large geographical 

areas.   

Moose browsing pressure and nutrient input gradually decline with distance from 

supplemental winter feeding stations. I utilized this gradient to test how moose activity 

affects reproduction in pied flycatchers (Ficedula hypoleuca) and great tits (Parus major). 

The two species showed contrasting responses to moose feeding stations, great tits 

preferred to nest away from feeding stations where they showed higher feeding frequency 

and also produced more fledglings compared to close to feeding stations. Pied flycatchers 

on the other hand preferred to nest close to feeding stations where they had higher feeding 

frequency and fledgling mass was higher compared to further away. Hence, for both 
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species moose browsing is affecting food availability that subsequently affects 

reproductive performance. 

Moose supplemental feeding stations also changed the habitat for small mammals 

from dwarf shrub dominated to grass and forb dominated. This did not have any effect on 

reproductive performance of the small mammals, but it did affect species composition 

along a gradient from the feeding stations. There was higher abundance of Microtus spp. 

and common shrews (Sorex araneus) close to feeding stations, while bank voles (Myodes 

glareoleus) had higher abundance away from feeding stations, the latter however was not 

statistically significant.  

Small mammals in Australian coastal heath were generally negatively associated 

with introduced rusa deer (Cervus timorensis), however one species responded positively 

to historical densities of rusa deer. It was however not possible to confirm these effects as 

being due to changes in habitat structure for the small mammals. However they may be 

explained by qualitative changes in the vegetation or alternatively by direct effects of deer 

through trampling or predation. 

Cervids and their management have an impact on other fauna, however the effects 

vary depending on small mammal and bird species. The effects of cervids also depend on 

the habitat requirements and foraging preferences of the small mammals and birds. 

Effects may be mediated through both food resources and habitat structure and are 

dependent on site productivity and cervid density.  
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Introduction 
 

Cervids are a widespread family of ungulates, native to the Americas, Europe and Asia. 

They have been introduced to Australia over the past two centuries, and are represented 

by only one native species in the bovid-dominated continent of Africa. Densities of native 

cervids have increased in North America, Europe and Japan during the last couple of 

decades (McShea et al. 1997; Côté et al. 2004; Takatsuki 2009). The reasons for these 

population increases are complex including changes in land use (Edenius et al. 2002; 

Takatsuki 2009), reduced hunting effort (Côté et al. 2004; Takatsuki 2009), lack of large 

carnivores (Wabakken et al. 2001; Takatsuki 2009), and changes in management 

practices (Solberg et al. 1999). Cervids are the most commonly introduced family of 

ungulates (Spear & Chown 2009) and have historically been introduced and continue to 

be introduced to new locations outside their native range for reasons such as sport 

hunting, deer farming or to “enhance the aesthetics of the local environment” (Moriarty 

2004a; Dolman & Waber 2008). Where they occur at high densities, native and 

introduced cervids may have profound impacts on the vegetation which in turn may cause 

knock-on effects on other taxa (McShea & Rappole 1997; Suominen & Danell 2006; 

Dolman & Waber 2008; Spear & Chown 2009). Cervids are in some instances managed 

towards changing local distribution through supplemental feeding, in order to e.g. reduce 

negative impacts on economically important plant species or reduce cervid-vehicle 

collisions (Gundersen et al. 2004; Putman & Staines 2004; van Beest et al. 2010). The 

supplemental feeding stations are causing localized areas of high cervid densities in the 

landscape. These high densities and the added plant biomass in the system, may have 

effects on plants and other animal species (e.g. Mathisen & Skarpe 2011).  

Large herbivores cause direct effects on the vegetation though browsing or 

grazing, trampling, urination and defecation (Hobbs 1996). Numerous studies have 

focused on the effects of herbivory on plant species composition and on structural and 

chemical changes in the plants (Herms & Mattson 1992; Hester et al. 2006; Skarpe & 

Hester 2008, and references therein). Recently however, there has been an increased 

focus on the indirect effects that large herbivores may have on invertebrates (Suominen et 

al. 1999; den Herder et al. 2004; Allombert et al. 2005a; Melis et al. 2006a; Melis et al. 

2006b; Suominen et al. 2008; den Herder et al. 2009), birds (Evans et al. 2006; Holt et al. 
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2011; Mathisen & Skarpe 2011) and small mammals (Keesing 1998; Saetnan & Skarpe 

2006; Johnston & Anthony 2008; Pringle et al. 2010; Buesching et al. 2011). For 

invertebrates and birds the effects vary depending on the functional group as well as the 

species of large herbivore, its density and feeding type (i.e. browser or grazer) (Evans et 

al. 2006; Melis et al. 2006b; Suominen et al. 2008; Mathisen & Skarpe 2011). The 

responses of small mammals however are surprisingly consistent despite variation in 

small mammal species and in the species and densities of large herbivores. The overall 

pattern is a negative effect of large herbivores on small mammals (Keesing 1998; Saetnan 

& Skarpe 2006; Johnston & Anthony 2008; Buesching et al. 2011).  

To focus this synthesis, and to foreshadow the research that has been carried out in 

this thesis, I next consider cervid impacts on small homeoterms. There are several non-

mutually exclusive ways that cervids may influence birds and small mammals indirectly 

or directly. Indirect effects are caused by interwoven changes in; i) food resources, and ii) 

habitat structure affecting small mammals and birds, or their invertebrate prey. Direct 

effects include trampling of nests or animals and predation. In this thesis I will focus on 

the indirect effects of high cervid densities on; i) food resources, and ii) habitat structure. 

 

Effects of cervids on food resources 

 

One way high cervid densities might influence small herbivores in the community is by 

changing the palatability and nutritional quality of food plants caused by herbivory at the 

individual plant or feeding site scale (sensu Johnson 1980). Previous herbivory may either 

increase (Danell & Huss-Danell 1985; Danell et al. 1985; Skarpe et al. 2000; Makhabu et 

al. 2006) or decrease (Bryant et al. 1994; Duncan et al. 1998) herbivore preference for a 

plant. According to the grazing facilitation hypothesis large species improve the foraging 

opportunities for smaller species by modifying plant biomass and structure (Bell 1971). 

The grazing facilitation hypothesis has also been suggested to apply to browsing systems, 

where smaller browsers may benefit from regrowth that has been stimulated by earlier 

browsing from large herbivores (Makhabu et al. 2006; Valeix et al. 2011). Facilitation by 

large herbivores may lead to increased preference by small herbivores for compensatory 
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regrowth. This could arise as a result of browsing removing many meristems1 leading to 

reduced number of shoots the following growing season. Hence, more nutrients are 

available to each shoot, which then grow rapidly and contain less structural tissue (i.e. 

cellulose or lignin) and also less chemical defense2 (Skarpe & Hester 2008). Decreased 

preference might be caused by plants producing secondary metabolites that are; 1) 

unpleasant tasting to the herbivore, 2) digestive inhibitors, or 3) toxic (Bryant et al. 1992). 

Thus there will be high selection pressure against feeding on heavily defended plants. The 

plant response can also depend on an interaction between the productivity of the site and 

browsing (Strengbom et al. 2003). The growth differentiation balance hypothesis has 

been interpreted as plants at; 1) low productivity sites have limited resources to put into 

both defense and growth, 2) sites of intermediate productivity allocate more resources to 

defense while growth is moderate, and 3) high productivity sites put more resources into 

growth and less so into defense (Herms & Mattson 1992; Stamp 2003). Facilitation would 

thus be expected primarily at high-productivity sites. Reindeer (Rangifer tarandus) have 

been shown to be associated with high densities of small mammals, thus suggesting a 

facilitating effect (Ims et al. 2007). Sheep (Ovis aries) grazing has also been shown to 

facilitate grazing for rodents (Austrheim et al. 2007). Steen et al. (2005) found that 

whereas high densities of sheep were negative to population growth rate of field voles 

(Microtus agrestis), intermediate densities had a facilitating effect on population growth 

rate. On the other hand bank voles (Myodes glareolus) were not affected by sheep 

densities (Steen et al. 2005). 

Cervids may affect food plants that are available to invertebrates, either 

quantitatively or qualitatively, and invertebrate populations may then respond to these 

changes either positively (Danell & Huss-Danell 1985; Roininen et al. 1997) or 

negatively (Bailey & Whitham 2003; den Herder et al. 2004; den Herder et al. 2009). 

Subsequently, insectivorous small mammals and birds may respond to changes in 

invertebrate abundance and assemble composition that indirectly is caused by cervid 

herbivory. 

                                                           
1 Meristems are points of new growth in plants, from which shoots may grow.  

2 Plant defense is either constitutive or induced, constitutive defense is static and not influenced by 
herbivory, while induced defense is triggered by herbivory or other damage. 
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Effects of cervids on habitat structure 

 

On the home range scale (sensu Johnson 1980), cervids may alter the structural 

complexity of habitat housing birds and small mammals. Cervid-induced reductions in 

vertical and horizontal habitat complexity are known to have negative impacts on bird 

diversity and density by reducing cover from predators and foraging substrate (McShea & 

Rappole 1997). deCalesta (1994) found that bird species nesting at intermediate heights 

(< 7.5 m) were affected negatively by high densities of white-tailed deer (Odocoileus 

virginianus) whereas species nesting on the ground or in the upper canopy were not 

affected, this was presumably because the percent ground cover and upper canopy were 

unaffected by deer. Deer-induced habitat changes also have an effect on small mammal 

densities by reducing the amount of cover from predators (Flowerdew & Ellwood 2001). 

For example tawny owls (Strix aluco) have higher predation success on wood mice 

(Apodemus sylvaticus) in parts of their territories where ground cover is low compared to 

where it is dense (Southern & Lowe 1968).  

Large herbivores may have substantial effects on invertebrates through changes in 

habitat structure (Suominen et al. 1999; Allombert et al. 2005a; Melis et al. 2006a; Melis 

et al. 2006b; Suominen et al. 2008). The direction and strength of the effects vary 

depending on the habitat requirements of invertebrates and the severity of impact by the 

large herbivore. By changing habitat structure large herbivores may therefore also 

indirectly affect insectivorous small mammals and birds. Putman et al. (1989) found that 

the abundance of insectivorous shrews were affected negatively by grazing, possibly as a 

consequence of reduced habitat complexity resulting in decreased invertebrate abundance. 

Several studies have also suggested that reduced arthropod abundance mediated though 

habitat changes by cervids can cause reduced bird species diversity (Fuller 2001; 

Allombert et al. 2005b; Holt et al. 2011). 
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Aim of thesis 
 

Densities of large herbivores are high in many parts of the world, and have the potential 

to profoundly affect vegetation and concurrently many other taxa. In this thesis I 

investigate the impacts of high densities of native and introduced large herbivores and the 

management thereof on birds and small mammals. This topic has received increasing 

focus in the past decade, but knowledge is still incomplete with much research to be done.  

 

My general aim was addressed by focusing on the following research questions: 

 How do cervid densities affect food quality available to small mammals? (Paper I) 

 How do cervid densities and management actions affect habitat structure available 

to birds? (Papers II and III) 

 How do cervid densities and management actions affect habitat structure available 

to small mammals? (Papers IV and V) 

 

Methods 
 

Study areas 
 

The collection of field data was done in three separate study areas, two in Scandinavia; 

Umeå, Västerbotten, northern Sweden (63° N, 20° E) (Paper I) (Figure 1) and Stor-

Elvdal, Hedmark, southeastern Norway (61°N, 11°E) (Papers II, III and IV) (Figures 1; 2) 

and one in Royal National Park, New South Wales, southeastern Australia (34°S, 151° E), 

(Paper V; Figure 3). The two sites in Scandinavia are located in the boreal forest, while 

the study area in Australia is located in coastal heath. Scandinavia and Australia differ in 

how they are influenced by important abiotic factors. While the boreal forest in 

Scandinavia is affected by logging, Australian coastal heath is burned periodically by 

wildfires or prescribed burns. Both these factors operate over extensive areas and can 

have large impacts on the respective ecosystems.  
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Figure 1. The two study systems in Scandinavia; Stor-Elvdal municipality, Hedmark County, SE Norway 

and Umeå, Västerbotten County, NE Sweden.  

 

Umeå study system (Paper I) 
 

To determine how moose (Alces alces) densities affect food quality to voles, I made use 

of a simulated moose density experiment established in 1999. The system consists of 

eight fenced exclosures along a productivity gradient. Each exclosure consists of four 

treatment plots of 25 m by 25 m where simulated browsing, defecation and urination have 

been carried out according to four different moose population densities (0, 1, 3 and 5 

moose per km2) corresponding to the range of known moose densities in Fennoscandia. 

Simulated moose densities were allocated randomly to the treatment plots. The removal 

of plant biomass from the plots was calculated based on known daily consumption in 

winter and summer (Persson et al. 2000), and on known diet composition throughout the 

year (Cederlund et al. 1980). Moose dung and artificial urine was added according to the 
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simulated density in the respective plot, based on known urination and defecation rates 

(Persson et al. 2000). For each exclosure a site productivity index was calculated (Persson 

et al. 2007; Suominen et al. 2008; Persson et al. 2009). See Paper I for more details on the 

study system.  

Stor-Elvdal study system (Papers II, III and IV) 
 

Here I investigated the effects of high moose densities and supplementary winter feeding 

of moose on habitat structure available to passerine birds (papers II and III), and small 

mammals (Paper IV). Moose densities in Stor-Elvdal municipality range from 1.1 to 3.4 

moose per km2 (Gundersen et al. 2004; Storaas et al. 2005). In order to prevent forest 

damage and vehicle collisions moose have since 1990 been fed ensilaged grasses and 

roughage at supplementary feeding stations during winter (Gundersen et al. 2004; Figure 

2). Moose aggregate around these feeding stations giving rise to areas in the landscape 

with high browsing intensity and nutrient input. Browsing and nutrient input through 

dung, urine and silage remains is high at feeding stations and declines with distance, but 

not at the same scale. While browsing pressure remains fairly high up to approximately 

200 m from feeding stations (van Beest et al. 2010), the amount of feces and presumably 

nutrient input drops rather abruptly after approximately 50 m from the feeding stations. In 

Papers II and III I utilized the distance to feeding stations as a proxy for varying moose 

densities, while in Paper IV I investigated the effects of the management practice of 

supplementary winter feeding of moose. This type of study system is not strictly 

experimental, as treatments are not allocated randomly, but rather belongs to a group of 

studies termed quasi-experimental which are highly structured observational studies 

(Shadish et al. 2002). I divided the distance from feeding stations into different distance 

categories depending on the study (Figure 2); see Papers II, III and IV for details.  
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Figure 2. Map of the Stor-Elvdal study area (Papers II, III and IV) with the distribution of supplementary 

winter feeding stations for moose (circles), study plots (squares), main rivers and roads. Plot distribution is 

from Paper III in 2007 when the number of study plots was highest, studies reported in Papers II and IV 

were conducted at a subset of the plots shown in this map. Plots are distributed in three distance bands from 

the feeding stations; at feeding stations (FS), intermediate distance (INT; 50 - 500 m), and far from feeding 

stations (FAR > 500 m). 
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Royal National Park study system (Paper V)  
 

Here I investigated the relationship between small mammals and changes in habitat 

structure induced by large herbivores. Rusa deer (Cervus timorensis), native to parts of 

Indonesia was introduced by acclimatization societies3 to Australia at the beginning of the 

20th century. The deer spread and has established within the Royal National Park, and 

surrounding areas (Keith & Pellow 2005). Herbivory and environmental degradation 

caused by feral deer is listed as a Key Threatening Process under the New South Wales 

government Threatened Species Conservation Act 1995. (www.environment.nsw.gov.au, 

accessed June 14th 2011). Swamp wallabies (Wallabia bicolor) are the only native large 

herbivore present in the park. By conducting pellet counts and using old records of deer 

and wallaby density, I was able to classify 33 sites within the park according to past and 

present large herbivore use, and correlated this with small mammal captures (Figure 3). 

 

Study species 
 

In Papers I and IV, I studied the impacts of moose browsing and moose feeding stations 

on small mammals, specifically common shrew (Sorex araneus), Microtus species and 

bank voles. These species differ in their habitat preferences. Bank voles inhabit dwarf 

shrubs generally, and bilberry especially in Scandinavia (Selås 2006). Microtus spp. and 

common shrews on the other hand are associated with productive grass-dominated 

vegetation in the field layer (Hanski & Kaikusalo 1989; Panzacchi et al. 2010). 

In Papers II and III, I studied great tits (Parus major) and pied flycatchers 

(Ficedula hypoleuca). These are cavity nesting insectivorous passerine bird species that 

are common throughout the boreal forest and are willing to use artificial nestboxes. They 

differ somewhat in their feeding preferences, great tits are arboreal feeders, whereas 

flycatchers forage more on the ground or in the air (Slagsvold 1975; Sanz 1998). 

                                                           
3 Acclimatization societies were created by European colonists to enrich the local fauna with new species, 
particularly species that were familiar from Europe and pleasing to the eye.  
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In Paper V, I studied a suite of small mammal species in Australian coastal heath; 

the omnivorous New Holland mouse (Pseudomys novaehollandiae), insectivorous brown 

antechinus (Antechinus stuartii), omnivorous bush rat (Rattus fuscipes) and herbivorous 

swamp rat (R. lutreolus). These species have different habitat preferences and thus I 

 

Figure 3. Map of the Royal National Park study area (Paper V) with 33 sampling sites marked with black 

dots. Coastal heath is shaded gray, the thick black line marks the border of Royal National Park, surrounded 

by the towns of Bundeena, Helensburgh and Heathcote marked with triangles. 

 

expected them to show a range of different species-specific responses to large herbivores. 

The large herbivore I expected to have an effect on birds and small mammals 

differed among the studies. In Papers I, II, III and IV moose was the “treatment factor” in 

the system, while in Paper V I related small mammal captures to rusa deer and swamp 

wallaby. 
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Field procedures, lab procedures and statistical analysis 
 

I live trapped small mammals for Papers I and V, while I used snap traps for Paper IV. 

More details about the trap types, spacing between traps and the type of baiting is found 

in the respective papers.  

In the two studies on effects of moose on birds (Papers II and III), I provided nest 

boxes suitable for great tits and flycatchers. I monitored the nest boxes throughout the 

breeding season to determine nest box selection, starting date of egg laying, date of 

hatching, clutch size, number of hatchlings, fledglings and fledgling mass. For Paper III I 

also monitored parent feeding activity in the nests using activity loggers and cameras to 

record the type of prey delivered to the nest. Paper II contains bird data from two years, 

while Paper III contains bird data from five years. 

The type of vegetation sampling differed among the studies. In Paper I, I did not 

survey the vegetation in the plots since this is a well documented study system, while in 

Papers II and III I recorded tree structure and canopy cover. For Paper IV I focused on the 

field layer vegetation and recorded height of bilberry (Vaccinuim myrtillus) and the 

percentage cover of species and groups of field layer species. In Paper V I recorded 

coverage of the main vegetation growth forms and estimated the vegetation structure i.e. 

percentage cover of vegetation in different strata. See the respective papers for more 

details. 

For Paper III the sites were categorized according to forest vegetation types, and 

according to Norwegian forestry cutting classes. In Paper IV to reduce variation among 

sites I chose sites dominated by cowberry (Vaccinium vitis-idaea) or bilberry within two 

cutting classes. 

In Papers II and III I recorded moose fecal pellets and browsing pressure, while in 

Paper V I recorded wallaby and deer fecal pellets. For Paper II I also collected arthropods 

from downy birch (Betula pubescens) branches, and in Paper IV I determined potential 

visibility to predators. See the respective papers for more details. 

In Paper I I tested the preference of root vole for previously browsed bilberry in a 

cafeteria test. I presented the voles with bilberry clippings collected from the four 
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simulated moose density treatments and recorded consumption by the voles. I also gained 

access to data on the chemical composition of bilberry from the four simulated moose 

densities. 

In Paper IV I determined species, sex and age, and measured body length and 

mass of the trapped animals. For adult female voles I examined the uterus for placental 

scars or embryos (Alibhai 1982), as a measure of reproductive output. For Paper V I 

determined species of small mammal.  

 

Statistical analysis 

For all analyses I used the program R and associated packages (R Development Core 

Team 2011). Depending on the distribution of the response variable and whether random 

terms were appropriate or not I used general linear models, generalized linear models, 

general linear mixed models and generalized linear mixed models. For models with 

Poisson and binomial error structure I checked if there was overdispersion, and corrected 

for this if necessary. I used backward selection procedure if appropriate, with α set at 

0.05. Again, more detailed description of the statistical analyses is given in the individual 

papers. 

 

Results and discussion 
 

In this thesis I describe complex interactions that were uncovered among large 

herbivores, vegetation, small mammals and birds, acting though food resources (Paper I), 

and through habitat structure (Papers II, III and IV) In Paper V the mechanisms are 

unknown, but most likely due to either changes in food resources or direct effect of 

trampling or predation. 
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Effects of cervids on food resources 
 

Moose density affects vole preference for bilberry (Paper I) 
In the cafeteria test, the voles consumed more bilberry from the high productivity 

compared to the low productivity sites. This agrees with previous reports that voles prefer 

plants growing at nutrient-rich sites (Danell et al. 1991). Although there were no main 

effects of simulated moose densities, I found a significant interaction between 

productivity of the site and simulated moose densities. At low productivity sites the voles 

preferred bilberry from the unbrowsed control treatment (0 moose per km2), while they 

avoided plants from the 1 moose per km2 density. At high productivity sites the 

preference pattern was reversed; voles avoided plants from the control treatment, while 

they preferred plants from the intermediate level of browsing (1 moose per km2). This 

interaction indicated that plants at low and high productivity sites probably allocate 

resources differently as a response to the same level of browsing, and is predicted from 

the growth differentiation balance hypothesis (Herms & Mattson 1992; Stamp 2003). 

However, the voles did not show any particular preference or avoidance of the two 

highest levels of moose browsing (3 and 5 moose per km2). 

Although I found an effect of vole preference, I could not ascribe this to the 

differences in concentration of nitrogen, lignin or a range of secondary metabolites4 in the 

plants. First, a lack of correlation between plant chemistry and browser selectivity is not 

uncommon in these types of studies (e.g. Hjätén et al. 1996). Second, some plant 

secondary metabolites have alternative functions in the plant, e.g. as protection against 

photodamage (Close & McArthur 2002), thus voles might not respond to levels of 

secondary metabolites induced by factors other than herbivory. I also expected voles to 

select large, fast growing nutrient rich shoots from tall bilberry, in accordance with the 

plant vigor hypothesis (Price 1991), but the results did not support this hypothesis. 

Voles play a major role in the forest ecosystem and are affected at the population 

level by large scale changes in the nutritive quality of bilberry (Selås 2006). My results 

show that high moose densities have secondary effects through bilberry on small rodents, 

                                                           
4 Plant secondary metabolites are compounds not involved in growth, reproduction or development, but 
have other functions in the plant such as protection from e.g. herbivory or solar radiation. 
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and that these effects extend to vole species that are not bilberry specialists. Moose 

densities in Fennoscandia average around 1 moose per km2 (Solberg et al. 2006), which is 

where I found an effect on vole preference. The current densities of moose  could thus 

have a double effect on voles, first reducing the bilberry cover (Mathisen et al. 2010), and 

second reducing the palatability and possibly digestive value of bilberry at low 

productivity sites, but enhancing palatability and digestive value at high productivity 

sites. The crucial point is the productivity at a given site. Forestry (Panzacchi et al. 2010) 

and predation (Ims & Andreassen 2000) influence vole populations, but given that voles 

are controlled at least partly by their food resources (Oksanen et al. 1987; Dahlgren et al. 

2007), I hypothesize that any factor influencing vole food sources over large geographical 

areas, such as moose browsing pressure could influence vole population dynamics. 

 

Effects of cervids on habitat structure 

 

Moose browsing reduces breeding success of great tits (Paper II) 
In the first paper on great tit reproduction in relation to moose browsing I found that birch 

canopy cover was reduced, and number of tall trees lower at browsed compared to less 

browsed “control” plots. Moose browsing appears to reduce canopy cover of birch by not 

allowing young trees to escape browsing height. Moose browsing therefore reduces 

available leaf biomass for arthropods. However, I found no difference between “control” 

and browsed plots with regard to arthropod biomass on the branch scale. I interpret this as 

the total available arthropod biomass available to birds around the bird boxes is lower in 

browsed compared to control plots. I did not find any effects of browsing on numbers of 

eggs produced, number of hatchlings, date of hatching or fledgling mass. Hence, nestlings 

in browsed and control plots should get an even start in life and be of the same quality. 

Despite this, pairs in browsed plots produced on average 1.3 fewer nestlings compared to 

pairs on control plots. This suggests that moose browsing in this case had an effect only 

during the nestling season, reducing survival in the nest, presumably through lack of food. 

Van Balen (1973) found that number of fledglings decreases with decreased habitat 

quality. During the nestling period parent birds are restricted in their food search since 

they have to start their foraging trip from a central point. Models of central place foraging 
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predicts that parent should optimize their prey delivery rate by minimizing travelling 

distances and selecting patches where the gain per unit cost is high (Naef-Daenzer 2000). 

Breeding pairs in browsed plots are “forced” to nest in areas where the gain per unit cost 

is lower and where traveling distance to good foraging patches is higher compared to 

pairs in control plots. 

 The browsing in the browsed plots was unnaturally high compared to natural 

browsing, however other studies have reported browsing levels approaching the levels of 

the browsed plots in this paper. Hence, the dynamics demonstrated here may be 

applicable to larger areas with naturally high browsing regimes. 

 

Contrasting responses of passerines to moose browsing (Paper III) 
In the second paper on bird reproduction in relation to moose browsing I found 

contrasting responses of flycatchers and great tits to moose browsing with regard to nest 

box selection, breeding success, fledgling weight and feeding activity.  

Great tits increasingly preferred nest boxes further away from feeding stations as 

moose increased their use of feeding stations during the course of the study. Thus 

browsing effects accumulated over the five year study period, making the feeding stations 

less suitable for great tits, possibly by changing habitat structure and thus reducing 

foraging substrate or making the birds more prone to predation (McShea & Rappole 

1997). Great tits also produced more fledglings further away from feeding stations, either 

as a consequence of less adult predation or better foraging substrates (McShea & Rappole 

1997;  Paper II).  

Contrary to the great tits, flycatchers increased their preference for nest boxes 

close to feeding stations during the course of the study. This could be attributed to 

alleviated competition with great tits for nest boxes near the feeding stations. However, 

flycatchers also produced heavier fledglings and had higher feeding activity at feeding 

stations than elsewhere, which may be linked with nest box selection (Doligez et al. 

2004). This pattern is more suggestive of preference rather than reduced competition with 

great tits.  
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Both species showed better reproductive performance in their preferred habitat. 

Flycatchers showed higher fledgling weights at high moose densities while great tits 

showed higher number of fledglings at low moose densities. Great tits may adjust clutch 

size to habitat quality (Dhondt et al. 1992). Great tits also showed a larger variation in 

fledgling production compared to flycatchers, indicating different life history strategies. 

Great tits may therefore respond to high moose browsing by reducing the number of 

fledglings while flycatchers respond by increasing fledgling weight. Feeding rates also 

corresponded to the preferred habitat of the respective species. Great tits had highest 

feeding rates where they produced most fledglings and flycatchers where they produced 

the heaviest fledglings. These results support the hypothesis that food availability through 

reduced foraging substrate is the mechanism driving differences in breeding success 

between high and low moose browsing for both species (Paper II). Alternatively, moose 

browsing could cause increased production of defensive compounds in for example birch, 

affecting insect herbivores in a similar matter to voles in Paper I, causing a reduced 

abundance of herbivorous arthropods. Great tits could then be responding to this indirect 

effect of induced plant defense by producing fewer fledglings. However, as I argue in 

Paper II, arthropod abundance at the branch scale did not differ between browsed and 

control plots, hence, moose browsing is not causing qualitative changes in leafs that 

arthropod abundance is responding to.  

The two bird species responded quite differently to moose browsing. Great tits 

prefer caterpillars (Nour et al. 1998) and forage on leaves, and may thus be more 

susceptible to reduced birch leaf biomass caused by moose browsing (Paper II). 

Flycatchers on the other hand have a more diverse diet, forage in the air and on the 

ground (Sanz 1998), and may thus perform better in the more open habitat in heavily 

browsed areas. Hence, moose browsing have different effects on two relatively similar 

passerine bird species through changing habitat structure and foraging substrate for these 

insectivorous birds. 

 

Small mammal responses to moose feeding stations (Paper IV) 
Field layer vegetation at feeding stations had a much higher cover of grasses and nutrient-

demanding forbs than at sites further away, and this change in habitat structure had 
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consequences for the captures of small mammals. Captures of Microtus spp. and common 

shrews decreased as distance from feeding stations increased, while captures of bank 

voles increased as distance from feeding stations increased, however this effect was not 

statistically significant. These responses are coupled with the known habitat preferences 

of these species, with Microtus spp. and shrews preferring productive grasslands (Hanski 

& Kaikusalo 1989; Panzacchi et al. 2010) where their main food plants and invertebrate 

abundances are higher. Despite effects on the numbers of captures I did not find any 

effect of distance from feeding stations on reproductive success on any of the vole 

species, thus either survival or immigration must be higher in the preferred habitat of the 

respective species. Also, I found no effect of distance to feeding station on total small 

mammal biomass. The reason could be that numbers of Microtus spp. and shrews and 

thereby biomass decreased with increasing distance from feeding stations, while 

simultaneously, bank vole numbers and thereby biomass increased (non-significantly) 

with distance from feeding stations. Finally, the inter-annual range in small mammal 

biomass and inter-annual range in number of small mammal captures was not affected by 

distance to feeding stations. Thus, moose feeding stations do not seem to function as sites 

of high winter survival for small mammals, and do not support higher densities of small 

mammal predators. However, a complete rodent cycle is needed to draw firm conclusions 

on this issue. I am fairly confident that the results in this paper are due to changed habitat 

structure, as not only the architecture of the plants (Papers II and III), but also the plant 

species composition was altered, changing the habitat from dwarf shrub dominated to 

grass and forb dominated. Although these changes affect both food sources and habitat 

structure, the main change is altered habitat structure. Bank voles were not heavily 

affected by moose feeding stations, but feeding stations may be important for Microtus 

spp. and shrews as they provide islands of preferred habitat that allow these small 

mammals to penetrate into the matrix of less preferred forest habitat. 

 

Relationship between small mammals and large herbivores in coastal heath (Paper V) 
The general pattern in this study was that there were fewer captures of small mammals in 

sites currently occupied by deer compared to sites without deer. For brown antechinus, 

bush rats and New Holland mice, this effect was statistically significant, although not for 

swamp rats. These negative patterns found here is in accordance with other studies on 
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small mammal abundance in relation to large herbivores (Keesing 1998; Saetnan & 

Skarpe 2006; Johnston & Anthony 2008; Buesching et al. 2011). Captures of bush rats 

were negatively and New Holland mice positively related to historical deer habitat use. 

Brown antechinus and swamp rats were, however, not affected. I found no relationship 

between current wallaby habitat use and captures of any of the small mammals, 

suggesting a lower impact of wallabies compared to deer. Similar to the pattern for the 

historical presence of deer, I found a negative relationship between historical wallaby 

habitat use and captures of bush rats and a positive relationship with captures of New 

Holland mice. Despite these relationships, I was unable to confirm any of the effects of 

the large herbivores as being due to changes in habitat structure for the small mammals. I 

speculate that the deer might be causing direct effects rather than indirect effects on the 

small mammals through trampling (Beintema & Muskens 1987; Pakanen et al. 2011) or 

possibly predation (Pietz & Granfors 2000; Ellis-Felege et al. 2008). Alternatively, the 

results might reflect qualitative rather than quantitative changes in vegetation (Paper I).  

Interestingly, the insectivorous common shrew (Paper IV) and the insectivorous 

pied flycatcher (Paper III), which both feed on ground invertebrates showed the same 

habitat preference pattern with respect to distance from feeding stations and moose 

abundance. However, the insectivorous brown antechinus in coastal heath (Paper V) was 

affected negatively by current deer abundance. This discrepancy may be due to deer 

abundance in coastal heath not increasing productivity of the site in the same way that 

moose feeding stations do. In low productive environments herbivory may decrease 

nutrient cycling and reduce productivity (Pastor et al. 2006), which again may reduce 

arthropod abundance. Alternatively, it could arise due to the above mentioned changes in 

vegetation quality as a plant response to herbivory, or a direct negative effect of deer, 

while moose browsing and moose feeding stations had positive effects on the insectivores 

by increasing arthropod abundance. 

 

General discussion 
 

Productivity of a system may modulate the effect of herbivory on plant responses 

exemplified by the growth differentiation balance hypothesis (Herms & Mattson 1992; 
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Stamp 2003), and I have shown through this thesis that productivity affects the direction 

and strength of bird and small mammal responses to cervids (Papers I, II, III and IV). 

In an experimental study with large herbivore exclosures along a productivity 

gradient, Pringle et al. (2007) found that ungulates reduced the abundance of 

insectivorous lizards by reducing both tree density (habitat availability) and beetle density 

(food availability). Thus, they incorporate and disentangle the effects of the two proposed 

mechanisms addressed in this thesis. In addition, they showed that the effects of the large 

herbivores increased with decreasing productivity, meaning that the highest effect was 

found in sites with the lowest productivity. This implies that effects of large herbivores on 

the abundance of lizards, trees and beetles in control plots were reduced with increasing 

productivity, or that the density in browsed plots increased with productivity, or a 

combination of the two. It is likely that abundance of birds and small mammals also 

would respond to an interaction between productivity and large herbivore abundance. 

This has to my knowledge not been investigated in a proper experimental gradient setting. 

However, Cheng & Ritchie (2006) found that simulated livestock grazing caused reduced 

individual growth rate, higher foraging time and reduced apparent vigilance in juvenile 

Utah prairie dogs (Cynomys parvidens) in a low productivity environment. Cheng and 

Ritchie (2006) contrasts this to a facilitative effect of cattle found in a high productivity 

habitat on black-tailed prairie dogs (Cynomys ludovicianus) (Krueger 1986), effects that 

may have consequences for the abundance of prairie dogs. 

I find stronger effects of the introduced rusa deer compared to the native wallaby 

(Paper V), probably due to their higher density (Moriarty 2004b) and body mass 

(Menkhorst & Knight 2004). Some authors have pointed out the devastating effects of 

introduced deer on biodiversity (Dolman & Waber 2008; Spear & Chown 2009). 

However, it may be more sensible to avoid the “native good, alien bad” maxim that often 

has dominated the literature (Goodenough 2010), and adapt a more balanced view of alien 

species. Alien species may have detrimental effects on native species, but they may 

simultaneously have positive effects on other species, and these positive facilitating 

effects needs also to be considered. Despite this, I think that as a general rule the 

threshold for initiating actions against alien species should be lower compared to native 

species (Nugent et al. 2011), and that the management actions can be tougher.  
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I think that the severity of the impacts of cervids on the ecosystem is better 

described by their density than their geographic origin. All the papers in this thesis 

illustrate the importance of cervid density, and some of them illustrate that impacts are 

not just a matter of presence or absence (Papers I, III, IV and V). There are density 

thresholds where negative effects may occur. The impacts of increasing density are not 

likely to be linear, but rather to be of little importance up to a threshold (or rather 

threshold continuums) where the impacts become more prominent (Putman et al. 2011). 

The threshold of impacts on ecosystems varies depending on the habitat, and it varies 

depending on what species are considered within that habitat as some species are 

negatively, and other are positively affected by increasing cervid densities (Papers III, IV 

and V). If we focus on biodiversity in general rather than single species, the intermediate 

disturbance hypothesis predicts that species diversity has a unimodal relationship with 

disturbance (Connell 1978). We may consider cervids as a disturbing factor to the system 

and thus predict that as cervid density increases, diversity will first increase and then 

reach a tipping point after which it is reduced (Figure 4). As previously mentioned, we 

may expect an interaction between cervid densities and site productivity. I expect the 

unimodal relationship between cervid density and species richness to be steeper in low 

productivity habitats, while less steep in high productivity habitats (Figure 4). Also, I 

propose that the maximum cervid density where species are present would increase as 

productivity increases (Figure 4). 

This relationship between gradients of cervid density and species richness has 

been found for invertebrate (beetle) species richness (Melis et al. 2006b). However, it has 

not been shown for species richness of birds which shows a generally negative response 

to increasing deer densities (Allombert et al. 2005b; Mathisen & Skarpe 2011). Small 

mammal species richness have been shown to be unaffected by a gradient in deer 

densities (Moseley et al. 2011). The reasons for the discrepancy between invertebrates, 

birds and small mammals are unclear. The study of Mathisen and Skarpe (2011)5 and 

Moseley et al. (2011)6 could be to the right of the tipping point in figure 4 and we thus 

should expect a decrease in diversity, which Mathisen and Skarpe (2011) show, but not 

Moseley et al (2011).  Allombert et al. (2005b) have study islands along the whole cervid  
                                                           
5 Conducted in the same system as Papers II, III and IV. 

6 Moseley et al. (2011) investigated three densities of deer (12, 31 and 50 per km2) 
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density gradient. They find that the species assemblage changes with increasing deer 

density, where gamma diversity7 is stable and alpha diversity decreases.  

 

Figure 4. The intermediate disturbance hypothesis, adopted for cervid densities under varying site 

productivity. Dotted line denotes low productivity, broken line denotes intermediate productivity while 

unbroken line denotes high productivity. Relative species richness means that species richness is 

standardized among productivity levels. (Modified from Connell 1978). 

 

In addition to and interwoven with the indirect effects wrought by herbivory, 

cervids may also affect small mammal and bird habitats through other effects such as 

trampling of vegetation, wallowing, antler rubbing and addition of dung and urine (Gill 

2006; Hobbs 2006). Addition of dung and urine generally increases nutrient loading and 

cycling, and although the effects are small averaged over the total area of habitat used by 

the large herbivore, they may be substantial if the herbivores concentrate at focal sites 

(Pastor et al. 2006). From calculations in South African non-cervid multispecies 

assemblages trampling effects on vegetation may be substantial, with 15 – 25 % area 

trampled of total area used by an individual per year (Hobbs 2006). These calculations are 

sensitive to the assumptions they are based on as the area trampled is scaled up spatially 

and temporally. Nonetheless, trampling may have a large impact on the vegetation and 

concurrently small mammals and birds that utilize this vegetation, especially if the 
                                                           
7 Alpha diversity in this case refers to species richness within a sampling plot, while gamma diversity refers 
to species richness within an island (Allombert et al. 2005b). 
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trampling is concentrated at sites of high cervid activity (papers II, III and IV). Trampling 

may also cause direct negative effects on small mammals and birds (Beintema & 

Muskens 1987; Flowerdew & Ellwood 2001; Pakanen et al. 2011). Trampling may be 

important for small mammals hibernating or birds nesting on the ground. Not much 

evidence exists from wild cervids, but there are profound effects of trampling of bird 

nests in grazing systems with livestock (Beintema & Muskens 1987; Pakanen et al. 2011). 

Although the stocking densities of livestock are much higher compared to the density of 

most wild cervids, trampling by cervids may pose an additional strain on birds and small 

mammals. Another, direct negative effect of large herbivores is predation. It is rarely 

considered as an impact of large herbivores, and is most evident for omnivores such as 

the wild boar (Sus scrofa) (Suominen & Danell 2006), but other species such as white-

tailed deer may also depredate birds (Pietz & Granfors 2000; Ellis-Felege et al. 2008) and 

possibly small mammals if they encounter them. However, detecting a predation event 

does not imply a population effect and its extent and importance on small mammal and 

bird populations is largely unknown. 

 

Management implications 
 

None of the Scandinavian birds or small mammals are considered threatened species in 

Norway (www.artsdatabanken.no, accessed September 26th 2011). They may however 

serve as models for predicting effects of cervids on endangered species with similar 

habitat preferences, although care should be taken when generalizing, exemplified by the 

contrasting effects of the great tit and pied flycatcher (Paper III). In Australia the situation 

with the endemic species is a bit different. Bush rats and brown antechinus are not 

considered threatened (www.iucnredlist.org, accessed September 26th 2011). Swamp rats 

are currently classified as of least concern, but their population trend is negative. The 

threats are coastal development, and “inappropriate burning regimes” resulting in habitat 

changes (www.iucnredlist.org, accessed September 26th 2011). Fortunately, swamp rats 

are affected by neither rusa deer nor swamp wallabies. New Holland mice are considered 

vulnerable, facing a high risk of extinction in the wild with a decreasing population trend 

(www.iucnredlist.org, accessed September 26th 2011). Managing New Holland mice 
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through rusa deer would be challenging as this species is related negatively to current 

deer habitat use, but related positively to historical habitat use (Paper V). I would rather 

manage it through prescribed burns, as it is an early successional fire-adapted species (e.g 

Fox 1982). As shown in Paper I, moose densities may cause changes in the food plants 

for voles, and I hypothesize that moose browsing pressure could potentially affect vole 

population dynamics. If this is the case, moose could be the cause of voles not reaching 

the densities experienced in former years (Hanski et al. 1993; Hörnfeldt 2004), which 

would have large implications for the boreal food web.  

In this thesis I have shown that cervids have an impact on birds and small 

mammals, and that responses vary. Hence, it is impossible to classify cervids as either 

“good” or “bad”, as illustrated by Figure 4. Managers need to find the appropriate balance 

of cervid densities, not too many and not too few by for example assessing their impacts 

on assemblages of indicator plants (Williams et al. 2000). The challenge is to establish a 

consensus on what those densities should be. 

 

Future prospects 
 

In this thesis I have discovered that large herbivores have both positive and negative 

effects on abundance and reproduction of small mammals and birds. Since these animals 

are important as prey, the next step would be to include the next trophic level, predators 

(McCauley et al. 2006), and test what effects large herbivores may have on predators of 

small mammals and birds. In paper IV I hypothesize that moose feeding stations function 

as small predator feeding stations, I did not find this, but it should be tested over a 

complete rodent cycle. 

Although we have knowledge of the effects of moose feeding stations on arboreal 

arthropods (Paper II), the effect of moose feeding stations on invertebrates inhabiting 

other vegetation strata needs to be tested more explicitly. Specifically, investigations are 

needed into the effects of feeding stations on ground dwelling invertebrates that probably 

are important as prey to shrews and flycatchers, and also on flying insects that are 

important to flycatchers. 
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In Paper V I have discovered that small mammals generally are negatively related 

to deer habitat use. Deer in Australia are recognized as pests in some states and territories 

(Hall & Gill 2005), despite this there seems to be an disproportionally large gap between 

the large focus on introduced deer in Australia and the limited knowledge of their impacts 

on vegetation, invertebrates, small mammals, birds and native large herbivores, a point 

also emphasized by Nugent et al. (2011). These are areas that need further attention, 

preferably though replicated experimental gradient studies, with reliable estimates of deer 

densities (Putman et al. 2011). 

Flowerdew and Ellwood (2001) suggested a decade ago that replicated exclosure 

studies provide a way of better understanding the mechanisms of how cervids affect other 

taxa. Nonetheless, studies on this topic are still conducted using non-experimental 

approaches, including, ironically, parts of this thesis. I think the reasons for this are that 

experimental studies are costly and they also need to run for a longer period than the 

normal research project or PhD before they start to yield trustworthy results. However, 

one needs to consider how to achieve this, i.e. by initiating and funding more long-term 

studies with an experimental approach, and sustaining funding for already established 

experiments. 
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Changes made to the following proof of Paper I 

 

Page 344,  Second column, the second sentence in the second paragraph under ”Simulated 
moose browsing” reads “The chosen densities are…”, but should read “The chosen densities 
were…” 

 

Page 345, Second column, line 6-7 in the first paragraph under “Chemical analysis and 
morphology” reads “The bilberry was dried (at 22 ° C, relative humidity 10%)”, but should 
be:  “The bilberry was dried (at 22 ° C, 10 % relative humidity)” 

 

Page 346, First column, 17th line under “Data analysis” reads: “The site productivity index for 
the sites ranged from 1.2 to 6.8 and was for this analysis grouped in 2 categories: below and 
above a productivity index of 5; and high productivity (3 sites) and low productivity( 5 
sites)”, here the underlined “and” has been deleted. 

 

Page 347, First column, lines 1-4: “When testing for an effect of productivity and moose 
density on deviance, we did not find any effect of productivity, due to productivity summing 
up to 1 in every batch (Table 3), or moose density (Table 3).” 

This should be: 

“When testing for an effect of productivity and moose density on deviance, neither did we 
find any effect of productivity, due to deviance summing up to 0 in every batch (Table 3), nor 
moose density (Table 3).” 

 

Figure 1: Values on the Y-axis in the proof are -0.10; -0.050; .00; 0.05; 0.10; 0.15, but should 
be:  

-0.10; -0.05; 0.00; 0.05; 0.10; 0.15 
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Abstract: Large herbivores may modify the ecosystem in a way that affects habitat 
quality and resource availability for other fauna. The increase in wild ungulate abundance 
in many areas may therefore lead to ecosystem changes, affecting distribution and 
reproduction of other species. Moose (Alces alces) in Scandinavia is a good example of a 
herbivore that has recently increased in abundance, and has the potential to affect the 
ecosystem. In this study we investigated how different levels of moose winter activity 
around supplementary feeding stations for moose affect reproduction in two insectivorous 
passerines: great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). The two 
bird species showed contrasting responses to high moose activity at feeding stations. 
Great tits avoided habitats with high moose activity, where fledging success and feeding 
frequency was lower than at low moose activity habitats. Flycatchers nested more often at 
high moose activity habitats where fledging weight and feeding frequency were higher 
than at low moose activity habitats. Filming of nest boxes with great tits showed an 
increase in adult Lepidoptera in the diet at supplementary feeding stations for moose, and 
a smaller size of caterpillar prey at intermediate moose activity. The results support the 
hypothesis that herbivores may affect insectivorous passerines through changed arthropod 
food availability.  
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Introduction

Large herbivores can be considered as drivers of ecosystem processes, as they modify 

their environment by eating, defecating, trampling, wallowing, and other activities 

(Hobbs 1996; Persson 2003). They have the potential to affect directly and indirectly 

plant biomass and reproduction, vegetation structure and plant species composition, as 

well as ecosystem processes such as vegetation succession and soil nutrient cycling 

(Danell et al. 2003; Davidson 1993; Olff and Ritchie 1998; Pastor and Cohen 1997).�By 

modifying the ecosystem, herbivores may affect habitat quality and resource availability 

for other fauna living in the same community; however documentation of such cascading 

effects is scarce (Suominen and Danell 2006).�In Europe, North-America and Japan, the 

populations of cervids have increased through the last decades, and in some areas to 

extremely high densities (Côté et al. 2004; McShea et al. 1997). This increase in cervids 

has caused some concern for how ecosystem processes and biodiversity may be affected 

(Fuller and Gill 2001; Garrott et al. 1993), and research on how cervids may affect other 

fauna is needed. The moose (Alces alces) in Fennoscandia is a good example of a cervid 

that recently has experienced a large population increase (Cederlund and Bergström 

1996). The moose is the largest native herbivore in Fennoscandia, and as a selective 

browser, it has the potential to influence the boreal forest ecosystem strongly (Pastor and 

Naiman 1992; Persson et al. 2000). Supplementary feeding is a common management 

tool to increase or sustain population sizes of game species such as moose, but also to 

mitigate problems with high ungulate densities e.g. herbivory damage to commercial tree 

species and traffic accidents (Andreassen et al. 2005; Luccarini et al. 2006; Putman and 

Staines 2004). However, how supplementary feeding may affect ecosystem processes, is 

not known. 

 

Cervid browsing may have indirect effects on arthropod diversity and abundance, and 

both positive and negative responses have been reported (Allombert et al. 2005a; Danell 

and Huss-Danell 1985; Riipi et al. 2005; Suominen et al. 2008). This�may in turn affect 

the many species, including mammals and birds, which live on an arthropod diet. Effects 

of cervid browsing on bird diversity and abundance have also been documented 

(Allombert et al. 2005b; Berger et al. 2001; Fuller 2001; Mathisen and Skarpe 2011; 

McShea and Rappole 2000). These studies are in general based on presence or absence of 
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birds in a certain area, and give little insight into the mechanisms that link cervid 

browsing with bird abundance. However, Bailey and Whitham (2003) showed 

experimentally that elk (Cervus elaphus) browsing affects the distribution of arthropods 

and foraging patterns in insectivorous birds, and other studies suggest a link between 

herbivory, arthropod abundance and bird reproduction (Baines 1996; Evans et al. 2005; 

Pedersen et al. 2007). Cervid browsing may potentially affect birds in many ways, by 

changing vegetation structure, tree species composition, food availability, predation 

pressure and nest losses through trampling (Fuller 2001).  

 

In this study, we investigated how different levels of moose activity affect reproduction in 

two insectivorous passerines, and if differences in reproduction can be linked to arthropod 

food availability. We have used nest boxes placed along a gradient in moose activity 

around moose winter supplementary feeding stations to investigate the effects of moose 

on habitat selection,�reproduction and nestling feeding activity of great tits (Parus major) 

and pied flycatchers (Ficedula hypoleuca). Supplementary feeding stations represent 

gradients in moose activity in the winter time, with high browsing pressure and high 

levels of moose dung and urine close to the feeding stations, and decreasing browsing 

pressure and dung density with increasing distance from feeding stations (Gundersen et 

al. 2004; van Beest et al. 2010). Although effects of browsing on arthropod abundance 

vary with herbivore density, habitat productivity and arthropod group (Suominen et al. 

2008), high intensity browsing generally has negative effects (Stewart 2001). We 

therefore hypothesize that high moose browsing intensity will have negative effects on 

bird reproduction due to reduced arthropod food availability. A previous study has shown 

negative effects of high moose activity on great tit reproduction in the same area 

(Pedersen et al. 2007). The present study extends the previous study by investigating 

further the mechanisms of how moose browsing affects passerine birds, including habitat 

selection, feeding activity, diet composition and the response of another insectivorous 

passerine. 
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Methods 

Study area 

This study was carried out in Stor-Elvdal municipality, Hedmark County in southeast 

Norway (~61oN, 11oE). The study area is situated between 291 and 684 m.a.s.l. in the 

middle and northern boreal vegetation zones (Moen et al. 1999). The area is dominated by 

the Glomma river valley running northwest - southeast, with side valleys and adjacent 

mountainous areas.  The forest in this area consists of pure or mixed stands of Scots pine 

(Pinus sylvestris), Norway spruce (Picea abies), downy birch (Betula pubescens) and 

silver birch (Betula pendula) interspersed with species such as grey alder (Alnus incana), 

rowan (Sorbus aucuparia), aspen (Populus tremula) and willows (Salix spp.). Most of the 

forest is managed for commercial production of timber or pulp. The field layer vegetation 

is often dominated by dwarf shrubs such as cowberry (Vaccinium vitis-idaea) and bilberry 

(V. myrtillus). Data from weather stations in the valley bottom from the last 30-year 

period show a mean summer temperature of 10.6 oC (May – September) and mean winter 

temperature of -5.8 oC (October – April). During the same 30-year period, the mean 

annual precipitation was 628 mm and the mean snow depth 39 cm (NMI 2008).  

 

The moose population in the area is mainly migratory, spending the summer at higher 

altitudes and migrating down to the valley bottom where the snow depth is lower in 

winter. Since 1990 local landowners have carried out organised supplementary winter 

feeding of moose with grass silage (Gundersen et al. 2004), to reduce traffic accidents and 

browsing damage to young pine stands. The amount of food supplied has more than 

doubled during the study period, from 800 tonnes in 2003-2004 to 1700 tonnes in 2007-

2008 (Stor-Elvdal landowner association, unpubl. data). The feeding stations are mainly 

placed along forest roads in the side-valleys (Figure 1). The overall moose density in the 

municipality varies between 1.1-3.4 moose per km2 (Gundersen et al. 2004; Storaas et al. 

2005), but in winter the effective moose density may be many times higher in the vicinity 

of feeding stations. High moose densities at feeding stations may be comparable to 

concentrations of large herbivores around waterholes or salt-licks (Brits et al. 2002; 

Miller and Litvaitis 1992), or areas with extremely high densities due to population 

increase (Côté et al. 2004; Garrott et al. 1993; McShea et al. 1997). 
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Field procedures 

Study design 

Feeding stations for moose represent points in the landscape with high browsing pressure 

and nutrient input (though silage, dung and urine) and both effects decrease with distance 

to feeding stations (van Beest et al. 2010). In this study, the gradient in moose activity 

from a total of 44 feeding stations was used to analyse the effect of moose on 

reproduction in passerine birds. This can be considered a “quasi-experimental” design 

(Shadish et al. 2002) where moose activity in the area is manipulated by the presence of 

feeding stations. We selected feeding stations that were placed in mixed conifer-

deciduous forest. Nest boxes with a hole of diameter 32 mm were placed at 1.5m height 

on trees in a gradient from 0 m up to 1700 m from feeding stations for moose and 

surveyed in the period 2004 -2008 (Figure 1). The nest boxes were grouped in five areas: 

four side valleys and the main valley area. The sample size varied among years because 

boxes were added in 2006 and 2007 to increase sample size, and removed in 2008 from 

feeding stations that were no longer in use (number of nest boxes pr year: 2004-2005: 38, 

2006: 83, 2007: 130, and 2008: 65). The study design from 2004-2005 was earlier 

described in Pedersen et al. (2007).  

 

Nutrient input and browsing intensity at feeding stations operate on different spatial 

scales. Nutrient input through dung and urine is intense at a local scale (up to 50 m from 

feeding station) and then decreases rapidly, caused by high processing of supplementary 

food at feeding stations. Browsing pressure on birch is intense up to 500 m and decreases 

gradually with distance from feeding station but at a larger scale than dung density. Pine 

browsing pressure is high up to 1 km from feeding stations, whilst spruce browsing 

occurs almost only up to ~50 m from feeding stations (Gundersen et al. 2004; Pedersen et 

al. 2007; van Beest et al. 2010).  

 

To analyse the effect of distance to feeding stations on bird reproduction, we grouped 

nest-boxes into 3 categories with similar sample sizes (bird box years: 132/121/101); at 

feeding station (FS: < 50 m from feeding station), at intermediate distance (INT: 50-500 

m from feeding station) and far away from feeding station (FAR: 501-1700 m from 

feeding station) (Figure 1). When nest boxes were located between feeding stations, the 
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distance to the nearest feeding stations was used. This classification allows us to separate 

to some degree the effects of nutrient input at feeding stations and browsing pressure. The 

three categories therefore represent different levels of moose activity: 

� FS : high nutrient input, high browsing pressure on all tree species 

� INT: low nutrient input, high browsing pressure on most tree species 

� FAR : low nutrient input, low to intermediate browsing pressure 

 

To check that this division into categories reflected moose activity, we recorded moose 

pellet group density and moose browsing pressure in spring in 2004, 2006 and 2007, 

when new nest boxes were added. Moose pellet groups and moose browsing pressure 

were recorded in 5 circular plots of 50 m2, one plot under the nest box and four plots 20 m 

from the observation point in each of the directions north, south, west and east. We 

estimated moose browsing as number of shoots browsed as a proportion of number of 

shoots available within browsing height (0.5 – 3 m). In 2004 the proportion of birch, pine 

and spruce shoots browsed was grouped into four classes quantified on a subjective 

observational scale: 1) No browsing, 2) Less than 1/3 of the shoots browsed, 3) Between 

1/3 and 2/3 of the shoots browsed, and 4) More than 2/3 of the shoots browsed (see 

Pedersen et al. (2007)), while in 2006 and 2007 moose browsing pressure was estimated 

as % shoots browsed in the same plots. In order to compare data across all years, we 

converted the browsing classes from 2004 into % twigs browsed, and used the mean for 

each class (Solbraa 2002). The analysis of these data are presented in Online Resource 1, 

and show that our classification of feeding stations, intermediate and controls is 

consistent with a gradient in moose dung density and browsing pressure as described 

above. However, dung density and browsing pressure at intermediate and far sites 

increased through the study period, as found by van Beest et al. (2010). Moose pellet 

group density was an order of magnitude higher at feeding stations than intermediate sites 

and far sites (Online Resource 1).  

 

Habitat variables were measured in 2007 for all nest boxes used in this study to control 

for possible biases in the sampling design. We surveyed vegetation variables in July in a 

circular plot of 10 m radius around the nest box as follows: canopy cover of trees with 

total height below and above browsing height (3 m) for birch, pine, spruce and other 

species (aspen, rowan, Salix spp. and alder were grouped because of their low densities) 
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and cover of the categories herbs (forbs and graminoids), lichens and dwarf shrubs. 

Canopy cover (%) of trees and field layer was estimated visually. The sites were 

categorised by forest vegetation type (Moen et al. 1999): lichen forest, cowberry-bilberry 

forest, heather bog-bilberry pine, bilberry forest and small-fern forest. The age of the 

forest was categorised according to Norwegian forestry age classes: 1 = clear cut, 2 = 

trees up to 8 m height, 3 = trees higher than 8 m but not mature, 4 = mature forest for 

cutting. The different distance categories (FS/INT/FAR) showed no differences in 

elevation, forest age class or vegetation type (Online Resource 2).  

 

Cover of birch above browsing height was higher at intermediate distances than at 

feeding stations and far from feeding stations, and cover of pine at browsing height was 

lower at feeding stations than intermediate and far distance (Online Resource 2). Cover of 

herbs was higher at feeding stations than at intermediate and far distances, and cover of 

dwarf-shrubs was lower at feeding stations than at intermediate and far distances (Online 

Resource 2). Moose browsing at feeding stations has probably caused a reduction in cover 

of small pine trees and dwarf shrubs, whilst herb cover has most likely increased due to 

increased light availability and fertilisation at feeding stations (Mathisen et al. 2010; 

Torgersen 2008). 

 

Habitat choice and reproductive success 

Each year the nest boxes were surveyed weekly from April – July. Around hatching date 

the boxes were checked every day, to determine the date of hatching. The species nesting, 

laying date of the first egg, and number of eggs, hatchlings and fledglings produced were 

recorded. Nestlings were weighed individually at day 13 for pied flycatchers and day 15 

for great tits with a Pesola spring balance during 2004-2007. The number of fledglings 

alive at the day of weighing was used as a measure of number of fledglings produced. 

Only first clutches were included in the analysis. Nests that failed to hatch (8 nests in 

total) were not included in the analysis, as we wanted to focus on the effect of moose on 

food availability during the nestling period. Predation of chicks occurred in only 4 boxes, 

and these were also excluded from the analysis.  
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Feeding activity 

In 2007 nest boxes were surveyed for feeding activity using activity loggers. Because of 

the limitation of number of loggers available, we chose to focus on nest boxes at feeding 

stations and far distance (1 km from feeding stations), to cover the greatest possible 

variation in moose activity (sample size: great tits: 7 boxes at FS, 7 boxes at FAR, 

flycatchers: 4 boxes at FS, 7 boxes at FAR). The activity loggers covered the nestling 

period, from the first day of hatching to the last day of fledging of chicks. The logger was 

placed on the nest box, with a light beam and a sensor across the opening hole, and each 

time the beam was broken, date and time of day were registered. The activity loggers 

were produced by Lamberg Bio Marin, including a Hobo Event logger using the software 

BoxCar (1997). The number of logger events was divided by 2 to reflect the number of 

feeding trips per day, as at each feeding event, the logger registered entry and exit of the 

box. To ensure that the number of logged events was proportional to the number of 

feeding trips, we observed the nest opening with binoculars several times during the 

nesting period, and compared the number of events seen with the numbers registered by 

the logger. There was a good agreement between the approaches (Pearson’s correlation, r 

= 0.80, dF = 15, p < 0.001), suggesting that the logger events reflected feeding trips to the 

nest box.  

 

Diet composition 

Nest boxes for great tits (only) were also filmed in 2007 (Sample sizes by category:  FS: 

12, INT: 6, FAR; 18) with digital video cameras following the protocol in Currie et al. 

(1996), to investigate diet composition and size of prey items brought to the nest box. 

Because of limited resources for field work, we focused on the bird species in which we 

had observed changes in reproduction with moose activity at that time (Pedersen et al. 

2007), to investigate the mechanisms further. Filming was carried out on the day when 

the chicks were 9-10 days old, and at the time around mid-day when feeding activity was 

highest.  Each nest box was recorded for 80 minutes. The box was rigged the day before 

filming, so the birds could get habituated to the filming equipment. The videos were 

subsequently scanned for all feeding events, and when a food item was clearly visible it 

was identified and measured. The food items were identified to group (Lepidoptera, 

Hymenoptera, Coleoptera, Aranea, and Diptera) and to development stage (larvae, pupae, 



9 

 

and imago). The length and the width of the food item, excluding legs and wings, were 

measured relative to the beak length of the bird. The volume of each item was then 

estimated by assuming a cylindrical form (V = πr2h), similar to the methods in Slagsvold 

and Wiebe (2007).  

 

Statistical analysis 

All analyses were performed using the R software version 2.10 (R Development Core 

Team 2009). We used general and generalized linear mixed models depending on the 

response variable distribution for all analyses of effects of distance to feeding stations on 

different response variables. As nest box occupation varied among years, we tested for an 

interaction with year or an additive effect of year for all response variables. Most 

variables seemed to vary randomly among years, but there was a continuous trend in nest 

box occupation with time. Therefore year was added as a categorical variable to all 

analyses of all response variables, except nest box occupation where it was added as a 

continuous variable. If year did not affect the results, it was not included in the tables and 

figures. 

 

The variables included in the models were distance to feeding station (FS/INT/FAR or 

only FS/FAR for logger activity) and year and the interaction between them as fixed 

effects, and nest box ID nested within area as random intercept terms. For chick weight, 

year was added as a random intercept nested within box ID and area, to account for 

dependency among chicks within the same box. Environmental variables and diet 

composition were only measured in 2007, and were therefore analysed with linear or 

generalized linear models. To investigate possible differences between the three distance 

categories in forest age classes and vegetation types a two-way contingency table and a 

chi-square test was used. For the analysis of feeding frequency, day since hatching and 

the interaction between day and distance to feeding stations was included to account for 

the increase in feeding frequency with nestling age. Day was included as a 2-degree 

polynomial, as this gave a lower AIC (Burnham and Anderson 2002) than a linear term 

alone. Number of hatchlings was also included in this analysis as a fixed effect, as 

feeding frequencies may differ among nests with different number of chicks. 
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Chick weights and volume of prey were analysed with a normal error distribution and an 

identity link function. Vegetation cover was arcsine square-transformed, and analysed 

with a normal error distribution. Number of fledglings produced, moose pellets, feeding 

frequency and prey numbers were analysed with a Poisson error distribution and a log-

link function. Because of overdispersion in the analysis of moose pellets, prey numbers 

and feeding frequency, we corrected the standard error by using a quasi-Poisson GLM 

where the variance is given by φ*μ, where μ is the mean and φ is the dispersion parameter 

(Zuur et al. 2009). Browsing pressure (shoots browsed/available), proportion of prey 

groups in the diet (group items/total items) and nest box occupation (0/1) were analysed 

with a binomial error distribution and a logit-link function. A quasi-binomial error 

correction was used for prey groups that showed overdispersion. For flycatchers that 

generally arrive at the breeding ground after great tits, their box choice was restricted to 

the subsample of boxes available after great tits had started breeding. Nest box 

availability for flycatchers was therefore calculated by removing the boxes already 

selected by great tits.  

 

Results

Habitat selection and reproduction 

Over this 5 year study, from a total of 354 nest box years available, 243 boxes produced 

fledgings of the studied species, 125 boxes for the great tit, and 118 for the pied 

flycatcher. Habitat preferences changed with time for both species, and they showed 

opposite patterns in preference/avoidance of feeding stations. Both species showed an 

interaction between distance to feeding station bands and year (Great tits: χ2
2 = 16.94, p 

<.001, Flycatchers: χ2
2 = 4.77. p= 0.092). Great tits showed a decrease in preference for 

boxes at feeding stations and an increase in preference for boxes far from feeding stations 

during the study period (Figure 2). The flycatcher’s occupancy at feeding stations 

increased during the study period, with almost no nests at feeding stations the two first 

years and more nests at feeding stations than far distance the last 2 years. Overall 

occupation rate by flycatchers increased with time in all categories, whilst great tit 

occupation rate was rather constant (Figure 2). On average 21 % (± 6 SE) of the boxes 

were empty each year. 
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Great tits produced on average 7.52 (±1.05) fledgings at far distance from feeding 

stations, and 1.15 (±1.09) fledglings less at feeding stations than at far distance, and 1.02 

(±1.09) fledglings less at intermediate sites than at far distance (Table 1). Pied flycatchers 

produced on average 5.1 (±1.1) fledgings at far distance, and 1.2 (±1.1) more fledgings at 

feeding stations, and 1.1 (±1.1) fledgings more at intermediate sites than far (Table 1). 

However, the difference between the three distances was not significant for flycatchers 

(Table 1). Great tit fledging production showed a larger overall variance (σ2=4.6) than 

fledging production in pied flycatchers (σ2=2.4). 

 

There was no effect of distance to feeding station on weight of great tit chicks, but 

flycatcher chicks were heavier at feeding stations (+0.5 g) and intermediate distances 

(+0.7g) than in boxes far from feeding stations (Table 2). For flycatchers there was no 

effect of the interaction between year and distance to FS (F 2,20 = 0.63, p = 0.543), or year 

alone (F 1,20 = 0.05, p = 0.828) on chick weight. For great tits the interaction between year 

and distance to FS was not significant (F 2,15 = 1.41, p = 0.275), but weight varied among 

years, and was lowest in 2004 (Table 2).  

 

Feeding activity 

The number of feeding trips per day in 2007 made by great tits and pied flycatchers also 

showed opposite responses to feeding stations (Table 3, Figure 3). In general, flycatchers 

had higher activity at feeding stations than at far distance from feeding station during 

most of the nestling period, whilst great tits had higher activity at far distance from 

feeding stations towards the end of the nestling period (from day 10 and onwards, Figure 

3). Both species increased the activity greatly during the nestling period, from the day of 

hatching to the day of fledging. The variation around day 9-10 for great tits is probably 

due to disturbance in setting up the filming equipment (Figure 3). The number of feeding 

trips was positively correlated with number of fledgings for flycatchers, but this 

correlation was not significant for great tits (Table 3). 
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Diet composition 

We recorded a total of 1070 items delivered to nest boxes by great tits belonging to the 

groups Lepidoptera (31%), Hymenoptera (17%), Coleoptera (15%), Aranea (10%), 

Diptera (3%) and unidentified (24%). Most of the objects were insect larvae (59%), the 

remaining were imago (32%), pupae (1%) and unidentified (8%). Lepidoptera larvae 

were the most frequent food item, making up 30-38% of the diet at feeding stations, 

intermediate and far distance. Proportion of imagos of Lepidoptera in the diet, was higher 

at feeding stations compared to intermediate and far distance (Table 4). In general, the 

proportion of imagos in the diet was higher at feeding stations, but not statistically 

significant (Table 4). Diptera larvae occurred only in the diet at far distance (Table 4).  

 

Both total number of prey and prey volume recorded was lower at intermediate distance 

than at feeding stations and far from feeding stations, and although the overall effect of 

distance categories was not statistically significant (Table 4), number of prey tended to be 

lower at intermediate sites than at far sites (comparison INT – FAR: p=0.063). These 

results may be affected by the low sample size of nest boxes (n=6) at intermediate 

distance. Because of this low sample size, distance to feeding stations was also analysed 

as a continuous variable for volume of prey in intermediate and far distance nest boxes. 

Volume of Lepidoptera larva and volume of all insect groups combined, showed an 

increase with increasing distance to feeding stations, for intermediate and far distance 

nest boxes (Lepidoptera larva: F1,18 = 7.22, p = 0.015, all insect groups: F1,22 = 7.38, p = 

0.013).  

 

Discussion

Great tits and pied flycatchers showed contrasting responses to distance to moose feeding 

stations, both in nest box selection, breeding success, fledgling weight and feeding 

activity. This indicates that the two bird species respond differently to high levels of 

moose activity, and that there is a link between herbivore disturbance and bird habitat 

choice, food availability and fledgling production. The responses to feeding stations 

increased with time, parallel with an increase in moose use of feeding stations. We 

suggest that the mechanism behind this pattern is that moose activity changed arthropod 

food availability in different ways for the two bird species.  
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Great tits increasingly preferred nest boxes far away from feeding stations as moose dung 

density and browsing pressure at feeding stations increased during the study period. A 

study of browsing intensity around supplementary feeding stations for moose over the 

period 1998-2008 in the same area as the current study, showed increased use by moose 

of feeding stations with time, and  browse depletion in 2008 of the natural vegetation 

within 200 m from feeding stations (van Beest et al. 2010). This indicates that higher 

moose activity and increasing cumulative effects of moose browsing on the vegetation 

close to feeding stations has over time made the habitat less suitable for great tits. 

Possible mechanisms behind the observed pattern of great tit habitat choice may be 

changed habitat structure and tree species composition, leading to reduced availability of 

foraging sites or increased risk for predation. Common nightingales (Luscinia 

megarhynchos)  have been shown to prefer unbrowsed exclosures as breeding territory to 

areas browsed by multiple deer species in Britain, probably because of reduced density of 

understorey vegetation and availability of feeding sites outside of exclosures (Holt et al. 

2010). On the other hand, mixed livestock grazing at low intensities may increase habitat 

suitability for species such as the meadow pipit (Anthus pratensis) by increasing habitat 

heterogeneity (Evans et al. 2006). As fledgling production was higher at greater distance 

from feeding stations, habitat choice may be linked to reproductive success, or great tits 

may be able to assess food availability from habitat cues (Hilden 1965). Great tits 

generally prefer to nest in deciduous forest (Cramp 1977) and may avoid feeding stations 

because of reduced birch biomass or changed tree structure caused by moose browsing 

(Persson et al. 2007; Persson et al. 2005). Moose browsing creates a more open habitat 

(Persson et al. 2005), which may lead to increased risk of predation (Martin and Joron 

2003). 

 

The flycatcher’s choice of nesting sites was limited to boxes that were left after tits had 

made their choice, and although they seemed to avoid feeding stations in the first two 

years of the study period, in the last years they had a higher occupancy rate at feeding 

stations than at boxes far from feeding stations. This pattern may be an effect of 

competition with great tits for nest boxes (Slagsvold 1975), since great tits showed the 

opposite pattern. However, flycatchers had a higher fledging weight and higher feeding 

activity at feeding stations, which may be linked to nest box selection (Doligez et al. 
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2004). This suggests a preference for boxes at feeding stations. Also other studies have 

shown than flycatchers prefer to nest and forage in open areas (Cramp 1977), and areas 

with high browsing pressure from deer or sheep grazing may open up the vegetation and  

favour the flycatcher (Fuller and Gill 2001). The switch towards boxes at feeding stations 

may also be caused by a general population increase caused by increased availability of 

nest boxes (Hilden 1965), as box occupation increased in all distances. 

 

Feeding stations had a negative effect on number of great tit fledglings produced.  

Herbivory in the tree canopy may lead to less cover and higher vulnerability to predation 

(Fuller 2001; Suominen and Danell 2006). Direct predation on chicks was rare in this 

study, probably because the nest box provided good protection. However adult predation 

may have been affected by moose browsing, with subsequent negative effects on nestling 

survival close to feeding stations. Moose browsing may affect food availability and great 

tit reproduction through reduced birch biomass (Pedersen et al. 2007). Other possible 

mechanisms affecting nestling survival may be changed microclimate and parasite 

burden. Ectoparasites in this study were rarely observed and showed no relationship with 

moose activity (K. M. Mathisen, unpublished data). Flycatchers showed higher fledgling 

weights at high moose densities, but great tits showed only in-between year variation in 

fledgling weight, although the direction of the trend follows fledgling production. Great 

tits may adjust clutch size to habitat quality (Dhondt et al. 1992), which may explain why 

we saw little effect on fledgling weights. Great tits had a larger variance in fledgling 

production than flycatchers, which may further indicate different life-history strategies in 

the two species. Therefore great tits may respond to high moose browsing by reducing 

number of fledgings, whilst flycatchers respond by increasing weight of fledgings.  Great 

tits also only showed negative effects of high moose activity on feeding frequency late in 

the breeding period, whilst for flycatchers the difference was more consistent with time, 

which may explain the difference in chick weight response in the two species.  

 

The sites with highest feeding rates corresponded to the sites with the highest fledgling 

production in great tits, and the highest fledgling weight in flycatchers. This supports the 

hypothesis that food availability may be a mechanism behind differences in reproductive 

success between high and low moose activity sites in both bird species (Pedersen et al. 

2007). Feeding rates were higher at high browsing pressure and high nutrient input than at 
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low browsing pressure and low nutrient input for flycatchers. Great tits showed the 

opposite pattern, with reduced provisioning rates at feeding stations at the end of the 

breeding period. Feeding activity increased in general through the nestling period, hence 

the reduced feeding frequency at feeding stations for great tits coincided with the period 

of highest demand for food. Higher feeding frequencies may not be a good indicator of 

higher food availability, as smaller prey items may be compensated for with higher 

feeding frequencies, and load size may vary (Nour et al. 1998). However we know from 

filming that prey item size was similar between boxes at feeding stations and far away, 

and that great tits are generally single-loaders (Naef-Daenzer et al. 2000) indicating that 

feeding frequency in this case reflected food availability. We therefore suggest that lower 

fledging success in the great tit at feeding stations was due to reduced food availability 

because of high moose browsing pressure (Pedersen et al. 2007).  

 

The opposite effects on the two bird species may be caused by different diet or foraging 

strategies. Great tits are more dependent on caterpillars (Nour et al. 1998), and may be 

more susceptible to reduced biomass of deciduous trees caused by browsing (Persson et 

al. 2007; Persson et al. 2005). Flycatchers are more flexible and may also eat spiders, 

dipterans, coleopterans, hymenopterans and imagos to a greater extent (Sanz 1998), and 

may have higher success in heavily browsed areas compared to the great tit. Great tits are 

more active in picking insects from leaves, whilst the flycatchers catch insects in the air 

(Slagsvold 1975), and may feed frequently on the ground (Sanz 1998), especially in 

grazed areas (Stowe 1984). The flycatcher may profit from insects in the herbaceous 

vegetation and among moose dung increasing at the highly fertilized feeding stations, 

whilst great tits may suffer from reduced leaf and branch density due to browsing in such 

areas (Persson et al. 2007; Persson et al. 2005). Moose browsing may open up the canopy, 

increase light availability and increase the abundance of flying insects (Mathisen 2011). 

The higher occurrence of Lepidoptera in the great tit diet at feeding stations may be 

caused by a more open and sunlit habitat, and higher flower diversity and abundance at 

feeding stations (Bergman et al. 2008; Torgersen 2008). A more open habitat and 

increased abundance of flying insects may be beneficial for flycatchers. 

 

Moose browsing may potentially affect nestling diet quality in addition to quantity of 

prey, by changing the species composition of different invertebrate prey (den Herder et al. 
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2009; Suominen et al. 2008). Great tits are known to select for large caterpillar larvae, 

and the size of larvae has been shown to have a direct positive effect on nestling growth 

(Naef-Daenzer et al. 2000). Therefore negative effects of high moose browsing on prey 

size may potentially affect great tit nestling growth. In addition, adult Lepidoptera 

increased in frequency in the diet at feeding stations. This may indicate a lower quality 

diet at feeding stations, with a higher ratio of imagoes to larva. These results indicate that 

moose activity may affect nestling production also through changing diet quality. The 

other components of the diet showed little difference between nest-box distance classes, 

but as this was measured at a very coarse taxonomic scale (family level), we cannot rule 

out differences at lower taxonomic levels.  

 

In this study we have shown that passerine reproduction and habitat selection was 

affected by the level of moose browsing and nutrient input at supplementary feeding 

stations. Great tits were negatively affected at high moose activity in accordance with our 

hypothesis and previous results (Pedersen et al. 2007) whilst contrary to our hypothesis 

flycatchers were positively affected by high moose activity. This is one of the few studies 

that have documented effects of large herbivores on passerine reproduction, which may in 

turn affect population dynamics. The results indicate that high levels of moose browsing 

pressure may change food availability for small passerines (Pedersen et al. 2007). 

Although low intensity herbivory may have positive effects on some bird species that 

prefer open areas (Evans et al. 2006; Loe et al. 2007), high browsing intensity in a low-

productive environment most likely has negative effects on bird diversity and 

reproduction (Fuller 2001), and in some areas this may be a concern for conservation. As 

there are currently high densities of wild ungulates in many areas (Garrott et al. 1993), 

indirect effect on other species and trophic levels should be expected. These indirect 

effects may be hard to predict, as we have seen in this study that two quite similar bird 

species such as the great tit and the pied flycatcher, react in very different ways to high 

moose browsing. 
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Tables 

Table 1 Estimates from a loglinear mixed model of effects of distance to feeding stations for moose (FS: 

feeding station, INT: 50-500m from feeding station, FAR: > 500m from feeding station) on number of 

fledglings produced at weighing for great tits and pied flycatchers. Estimates and standard errors for FS and 

INT are relative compared to the category FAR. 

Species Distance to FS Estimate Std. Error t value Pr(>|t|) 

Great tit FAR 2.02    0.05   38.34    <0.001 

 FS -0.14     0.08    1.70    0.089   

 INT -0.02    0.08    0.29    0.769     

 Chi square test of distance to feeding station: χ2 
2,73=3.12, p = 0.210 

      

Pied flycatcher FAR 1.64   0.08 19.98   <0.001 

FS 0.15     0.10    1.49     0.136     

INT 0.06     0.11    0.53     0.598     

Chi square test of distance to feeding station: χ2 
2,111 =2.75, p = 0.253 
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Table 2 Linear mixed model of the effects of distance to feeding stations for moose (FS : feeding station, 

INT : 50-500m from feeding station, FAR : > 500m from feeding station) and year (categorical) on chick 

weights (g) 2004-2007 for great tits and pied flycatchers, with area/box ID/year as random intercepts.  The 

estimates and standard errors for FS and INT are relative to the category FAR, and the estimates for year 

are relative to 2004. 

Species Variable Value Std. Error DF t-value p-value 

Great tit FAR 2004 15.50 0.65 612 23.62 <.001 

 FS -0.29 0.43 64 0.67 0.504 

 INT -0.20 0.42 64 0.48 0.631 

 2005 2.49 0.68 15 3.68 0.002 

 2006 2.27 0.70 15 3.23 0.006 

 2007 2.38 0.58 15 4.09 0.001 

       

Pied flycatcher FAR 14.0 0.26 424 53.10 <.001 

FS 0.49 0.27 53 1.85 0.071 

INT 0.69 0.26 53 2.69 0.001 
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Table 3 Generalized linear mixed model with a quasi-Poisson error correction of daily feeding activity for 

great tits and pied flycatchers including the effects of distance to feeding station for moose (FS: feeding 

station, FAR: > 1km from feeding station), day since hatching fitted as a 2-degree polynomial, the 

interaction day*FS and number of chicks hatched as fixed effects, and box ID as a random effect. 

Species Variable Value Std.Error DF t-value p-value 

Great tit FAR 4.88 0.534 218 9.14 <.001 

 FS 0.13 0.19 11 0.72 0.485 

 Day 0.17 0.02 218 8.45 <.001 

 Day2 -0.0053 0.0008 218 6.42 <.001 

 Hatchlings 0.067 0.063 11 1.07 0.307 

 FS*day -0.020 0.010 218 1.95 0.052 

Pied flycatcher       

 FAR 4.21 0.27 157 15.80 <.001 

 FS -0.14 0.17 8 0.83 0.429 

 Day 0.30 0.03 157 11.35 <.001 

 Day2 -0.0168 0.0014 157 11.71 <.001 

 Hatchlings 0.143 0.041 8 3.51 0.008 

 FS*day 0.027 0.014 157 1.96 0.051 
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Table 4 Prey numbers, prey volume and diet composition from filming of nest boxes with great tits  to 

determine nestling diet, at feeding stations (FS) intermediate (INT: 50-500m) and FAR (>500m) from 

feeding stations for moose. Values given are mean (+/- SE) of number of items delivered to nest boxes 

during 80 min filming, ratio of arthropod groups in the diet (items per group/total items) and food item 

volume (see methods for calculation). Difference between FS/INT/FAR was tested with a linear model for 

volume, and a logistic model for ratios. 

Response 

variable 
FS INT FAR F/Chi2 p 

Total number 

of prey 

 

30.4 ± 5.7 19.8 ± 6.7 33.4 ± 3.6 χ2
2,31=37.55 0.120 

Prey item 

volume all 

groups 

0.37 ± 0.08 0.20 ± 0.06 0.41 ± 0.08 F2,33 = 0.56 0.574 

Larvae volume 

Lepidoptera 
0.37 ± 0.10 0.15 ± 0.03 0.28 ± 0.03 F2,26 = 1.37 0.271 

Imago 

Coleoptera 
0.15 ± 0.05 0.16 ± 0.02 0.15 ± 0.05 χ2

2,31 = 1.10 0.577 

Imago Diptera 0.04 ± 0.02 0.02 ± 0.01 0.06 ± 0.04 χ2
2,31 = 0.55 0.759 

Imago 

Hymenoptera 
0.10 ± 0.07 0.06 ± 0.04 0.06 ± 0.02 χ2

2,31 = 0.39 0.823 

Imago 

Lepidoptera 
0.08 ± 0.03 0.02 ± 0.01 0.06 ± 0.01 χ2

2,31 = 7.84 0.020 

Larvae 

Coleoptera 
0.04 ± 0.02 0.08 ± 0.03 0.06 ± 0.01 χ2

2,31 = 1.04 0.595 

Larvae Diptera 0.00 0.00 0.02 ± 0.02 χ2
2,31 = 7.82 0.020 

Larvae 

Hymenoptera 
0.08 ± 0.03 0.19 ± 0.10 0.11 ± 0.04 χ2

2,31= 3.71 0.157 

Larvae 

Lepidoptera 
0.36 ± 0.09 0.31 ± 0.12 0.38 ± 0.07 χ2

2,31= 1.45 0.458 

Aranea 0.15 ± 0.06 0.16 ± 0.07 0.12 ± 0.02 χ2
2,31 = 0.86 0.650 

Larvae / Imago  

ratio all groups 
2.17 ± 0.79 2.25 ± 0.45 3.12 ± 0.62 χ2

2,31= 2.13 0.344 
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Figures  

 

 

Fig. 1 Map over the study area with the distribution of supplementary feeding stations for moose (circles), 

nest boxes (squares), main valleys, rivers and roads. Nest box distribution is shown for 2007, when the 

sample size was largest. Boxes were distributed in three distance bands from feeding stations for moose: at 

feeding stations (FS), intermediate distance (INT: 50-500m) and FAR from feeding stations (> 500 m).  

Fig. 2 Nest-box occupation (occupied/available nest boxes) 2004-2008 by great tits (above) and pied 

flycatchers (below) at feeding stations for moose (FS), intermediate distance (INT: 50-500m) and FAR 

from feeding stations (> 500 m).

Fig. 3 Number of feeding trips per day estimated from activity loggers (in 2007) as a function of day since 

hatching for nest boxes with chicks of great tits (above) and pied flycatchers (below) at feeding stations 

(FS) for moose and  > 1km from feeding station for moose (FAR). 
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Supplementary material for: Contrasting responses of two passerine bird species to moose browsing. 

European Journal of Wildlife Research.  Mathisen K. M, Pedersen, S., Nilsen, E. B and Skarpe C. 

 

 
ESM 1 Moose dung and browsing (mean % browsed shoots/available shoots ± SE) around bird-boxes at 

feeding stations for moose (FS), intermediate distance (INT: 50-499 m from feeding stations) and FAR 

distance (> 500 m from feeding stations). The effect of distance to feeding station, year (factor) and the 

interaction between them on moose browsing of the 3 dominating tree species was analyzed using a GLMM 

with binomial errors and Box ID nested within area as random effects. Moose pellet groups was analyzed 

using a GLMM with a quasipoisson error correction and the same random structure. 

 
Mean values and SE   Analysis 

Year FS INT FAR   x-Variable Test statistics 

 

Pellet groups per m2 
  

 
  

2004 0.36 ± 0.09 0.01 ± < 0.00 0.01 ± < 0.00  FS/Int/Far Χ2 2 = 129.95, p <.001 

2006 0.73 ± 0.09 0.05 ± 0.01 0.02 ± < 0.00  Year Χ2 2=1589, p <.001 

2007 0.32 ± 0.05 0.02 ± < 0.00 0.01 ± < 0.00 

 

 FSIntFar*year Χ2 4 =7.53, p = 0.110 

 

Birch browsing (%) 
 

  
  

2004 78.2 ± 2.2 37.8 ± 5.6 13.3 ± 4.8  FS/Int/Far Χ2 2 = 62.08, p <.001 

2006 80.7 ± 3.9 61.3 ± 4.8 47.5 ± 8.8  Year Χ2 2 = 2725, p <.001 

2007 97.0 ± 0.9 81.0 ± 3.6 77.1 ± 3.4 

 

 FSIntFar*year Χ2 4 = 125.7, p <.001 

 

Pine browsing (%) 
 

  
  

2004 83.3 ± < 0.00 58.7 ± 7.5 61.1 ± 13.6  FS/Int/Far Χ2 2 = 4.78, p = 0.092 

2006 69.2 ± 3.9 59.8 ± 4.6 42.8 ± 17.6  Year Χ2 2 =1570, p <.001 

2007 96.1 ± 2.0 91.3 ± 2.6 90.3 ± 2.8 

 

 FSIntFar*year Χ2 4 = 71.20, p <.001 

 

Spruce browsing (%) 
 

  
  

2004 23.1 ± 7.6 1.92 ± 1.3 0.00 ± < 0.00  FS/Int/Far Χ2 2 = 5487, p <.001 

2006 53.4 ± 4.8 17.4 ± 3.3 4.50 ± 2.1  Year Χ2 2 =1483, p <.001 

2007 68.0 ± 5.4 29.1 ± 4.9 8.10 ± 1.5 

 

 FSIntFar*year Χ2 4 = 46.85, p <.001 
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ESM 2 Distribution of nest-boxes in the different forest age classes and vegetation types and mean (+/- SE) 
of vegetation variables measured in 2007 around nest boxes at FS (feeding station for moose), INT (50-
500m from FS) and FAR (> 500m from FS). Differences among categories were tested with a one-way 
ANOVA for vegetation variables, and a chi-square test for forest age class and vegetation type. RSA: 
Rowan, Salix spp. and Aspen (grouped). 
 
Variable FS INT FAR Test statistic p 
Forest age classes (number of boxes) 
Clear-cut 3 0 1 
≤ 8m height 21 20 24 
> 8m height 15 15 18 
Mature forest 4 4 3 

χ2 = 3.95 0.684 

 
Vegetation types (number of boxes) 
Lichen  1 3 5 
Cowberry & bilberry 18 19 21 
Heather & bog-bilberry 7 5 8 
Bilberry 10 7 9 
Small-fern 7 5 3 

χ2 = 5.02 0.755 

      
Tree canopy cover (%) 
Pine > 3m height 8.2 ± 1.7 10.1 ± 1.8 12.7 ± 2.2 F2,125 = 1.09 0.341 
Pine < 3m height 0.6 ± 0.1 0.9 ± 0.13 1.1 ± 0.2 F2,125 = 3.86 0.024 
Spruce > 3m height 10.6 ± 2.5 8.7 ± 1.6 8.7 ± 1.4 F2,125 = 0.04 0.960 
Spruce < 3m height 4.4 ± 0.7 3.1 ± 0.4 3.6 ± 0.58 F2,125 = 0.56 0.574 
Birch > 3m height 9.7 ± 1.5 21.6 ± 3.5 9.1 ± 1.1 F2,125 = 8.15 <.001 
Birch < 3m height 10.1 ± 1.7 6.9 ± 1.0 9.5 ± 1.5 F2,125 = 1.60 0.206 
RSA > 3m height 2.5 ± 1.9 0.4 ± 0.2 0.5 ± 0.4 F2,125 = 1.20 0.306 
RSA < 3m height 3.0 ± 0.6 2.5 ± 0.8 1.8 ± 0.4 F2,125 = 1.19 0.308 
      
Field layer vegetation cover( %) 
Lichens 16.9 ± 2.4 23.5 ± 3.1 22.8 ± 2.5 F2,125 = 2.52 0.085 
Herbs and grasses 34.8 ± 4.6 14.1 ± 3.1 13.4 ± 3.3 F2,125 = 10.55 <.001 
Dwarfshrubs 37.6 ± 3.6 52.9 ± 3.6 53.0 ± 3.9 F2,125 = 5.36 0.006 
Elevation 482 ± 21 454 ± 17 486 ± 20 F2,125 = 0.17 0.843 
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  1989 Helga J. Vivås Dr. scient 
Zoology 

Theoretical models of activity pattern and optimal 
foraging: Predictions for the Moose Alces alces 

  1989 Reidar Andersen Dr. scient 
Zoology 

Interactions between a generalist herbivore, the moose 
Alces alces, and its winter food resources: a study of 
behavioural variation 

  1989 Kurt Ingar Draget Dr. scient 
Botany 

Alginate gel media for plant tissue culture 
 

  1990 Bengt Finstad Dr. scient 
Zoology 

Osmotic and ionic regulation in Atlantic salmon, rainbow 
trout and Arctic charr: Effect of temperature, salinity and 
season 

  1990 Hege Johannesen Dr. scient 
Zoology 

Respiration and temperature regulation in birds with 
special emphasis on the oxygen extraction by the lung 

  1990 Åse Krøkje Dr. scient 
Botany 

The mutagenic load from air pollution at two work-
places with PAH-exposure measured with Ames 
Salmonella/microsome test 

  1990 Arne Johan Jensen Dr. philos 
Zoology 

Effects of water temperature on early life history, 
juvenile growth and prespawning migrations of Atlantic 
salmion (Salmo salar) and brown trout (Salmo trutta): A 
summary of studies in Norwegian streams 

  1990 Tor Jørgen Almaas Dr. scient 
Zoology 

Pheromone reception in moths: Response characteristics 
of olfactory receptor neurons to intra- and interspecific 
chemical cues 

  1990 Magne Husby Dr. scient 
Zoology 

Breeding strategies in birds: Experiments with the 
Magpie Pica pica 

  1991 Tor Kvam Dr. scient 
Zoology 

Population biology of the European lynx (Lynx lynx) in 
Norway 

  1991 Jan Henning L'Abêe 
Lund 

Dr. philos 
Zoology 

Reproductive biology in freshwater fish, brown trout 
Salmo trutta and roach Rutilus rutilus in particular 

  1991 Asbjørn Moen Dr. philos 
Botany 

The plant cover of the boreal uplands of Central Norway. 
I. Vegetation ecology of Sølendet nature reserve; 
haymaking fens and birch woodlands 

  1991 Else Marie Løbersli Dr. scient 
Botany 

Soil acidification and metal uptake in plants 

  1991 Trond Nordtug Dr. scient 
Zoology 

Reflctometric studies of photomechanical adaptation in 
superposition eyes of arthropods 

  1991 Thyra Solem Dr. scient 
Botany 

Age, origin and development of blanket mires in Central 
Norway 



  1991 Odd Terje Sandlund Dr. philos 
Zoology 

The dynamics of habitat use in the salmonid genera 
Coregonus and Salvelinus: Ontogenic niche shifts and 
polymorphism 

  1991 Nina Jonsson Dr. philos Aspects of migration and spawning in salmonids 
  1991 Atle Bones Dr. scient 

Botany 
Compartmentation and molecular properties of 
thioglucoside glucohydrolase (myrosinase) 

  1992 Torgrim Breiehagen Dr. scient 
Zoology 

Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the Temminck's 
stint and the Pied flycatcher 

  1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate assimilation and 
nitrogen status in timothy (Phleum pratense L.) 

  1992 
 
Tycho Anker-Nilssen Dr. scient 

Zoology 
Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica 

  1992 Bjørn Munro Jenssen Dr. philos 
Zoology 

Thermoregulation in aquatic birds in air and water: With 
special emphasis on the effects of crude oil, chemically 
treated oil and cleaning on the thermal balance of ducks 

  1992 Arne Vollan Aarset Dr. philos 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism in 
polar crustaceans. 

  1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
mammalian cells 

  1993 Tor Fredrik Næsje Dr. scient 
Zoology 

Habitat shifts in coregonids. 

  1993 Yngvar Asbjørn Olsen Dr. scient 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

  1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

  1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

  1993 Thrine L. M. 
Heggberget 

Dr. scient 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra. 

  1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

  1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

  1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the 
lek 

  1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae 

  1994 Nils Røv Dr. scient 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo 

  1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.) 

  1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

  1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 

  1994 Morten Bakken Dr. scient 
Zoology 
 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes 



  1994 Arne Moksnes Dr. philos 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo 

  1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

  1994 Torbjørn Forseth Dr. scient 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

  1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions 

  1995 Hanne Christensen Dr. scient 
Zoology 

Determinants of Otter Lutra lutra distribution in Norway: 
Effects of harvest, polychlorinated biphenyls (PCBs), 
human population density and competition with mink 
Mustela vision 

  1995 Svein Håkon Lorentsen Dr. scient 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition 

  1995 Chris Jørgen Jensen Dr. scient 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

  1995 Martha Kold Bakkevig Dr. scient 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport 

  1995 Vidar Moen Dr. scient 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations 

  1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden 

  1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae 

  1996 Ola Ugedal Dr. scient 
Zoology 

Radiocesium turnover in freshwater fishes 

  1996 Ingibjørg Einarsdottir Dr. scient 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some physiological 
and immunological responses to rearing routines 

  1996 Christina M. S. Pereira Dr. scient 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation 

  1996 Jan Fredrik Børseth Dr. scient 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics 

  1996 Gunnar Henriksen Dr. scient 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region 

  1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in early 
first feeding of turbot Scophtalmus maximus L. larvae 

  1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters 

  1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming 

  1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture 

  1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher 

  1997 Torgeir Nygård  Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors 



  1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway 

  1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry 

  1997 Rolv Lundheim  Dr. scient 
Zoology 

Adaptive and incidental biological ice nucleators    

  1997 Arild Magne Landa Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation 

  1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius 

  1997 Jarle Tufto  Dr. scient 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

  1997 Trygve Hesthagen  Dr. philos 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

  1997 Trygve Sigholt  Dr. philos 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

  1997 Jan Østnes  Dr. scient 
Zoology 

Cold sensation in adult and neonate birds 

  1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins 

  1998 Thor Harald Ringsby Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

  1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

  1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity 

  1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro 

  1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach 

  1998 Bente Gunnveig Berg Dr. scient 
Zoology 

Encoding of pheromone information in two related moth 
species 

  1999 Kristian Overskaug Dr. scient 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

  1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

  1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway 

  1999 Ingvar Stenberg Dr. scient 
Zoology 

Habitat selection, reproduction and survival in the White-
backed Woodpecker Dendrocopos leucotos 

  1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 



  1999 Trina Falck Galloway Dr. scient 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

  1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua) 
in the North-East Atlantic 

  1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus 

  1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

  1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

  1999 Stein-Are Sæther Dr. philos 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

  1999 Katrine Wangen Rustad Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission related to 
cognitive dysfunctions and Alzheimer’s disease 

  1999 Per Terje Smiseth Dr. scient 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica) 

  1999 Gunnbjørn Bremset Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences 
and competitive interactions 

  1999 Frode Ødegaard Dr. scient 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

  1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, secretory 
phospholipase A2 

  2000 Ingrid Salvesen Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

  2000 Ingar Jostein Øien Dr. scient 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

  2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial econtrol of live food used for 
the rearing of marine fish larvae 

  2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

  2000 Odd A. Gulseth Dr. philos 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 

  2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

  2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

  2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine 
cold water fish species 

  2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 



  2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.) 

  2001 Bård Gunnar Stokke Dr. scient 
Zoology 

Coevolutionary adaptations in avian brood parasites and 
their hosts 

  2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus) 

  2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

  2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

  2002 Frank Rosell Dr. scient 
Zoology 

The function of scent marking in beaver (Castor fiber) 

  2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

  2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 

  2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

  2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

  2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms. Studies of RAC GTPases in Arabidopsis 
thaliana and the Ral GTPase from Drosophila 
melanogaster 

  2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

  2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

  2003 Åsa Maria O. Espmark 
Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

  2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

  2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

  2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

  2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species (Helicoverpa 
armigera, Helicoverpa assulta and Heliothis virescens) 

  2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

  2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

  2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

  2003 Eldar Åsgard Bendiksen Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

  2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

  2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 



  2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein complex 
in Arabidopsis thaliana 

  2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 

  2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta) 

  2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the natural 
environment 

  2004 Emmanuel J. Gerreta Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

  2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

  2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by Botrytis 
cinerea 

  2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-Term 
Food Shortage 

  2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

  2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

  2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

  2005 Tonette Røstelien ph.d 
Biology 

Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

  2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

  2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid hormone 
and vitamin A concentrations 

  2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 

  2005 Lasse Mork Olsen ph.d 
Biology 

Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

  2005 Åslaug Viken ph.d 
Biology 

Implications of mate choice for the management of small 
populations 

  2005 Ariaya Hymete Sahle 
Dingle 

ph.d 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

  2005 Anders Gravbrøt 
Finstad 

ph.d 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 

  2005 Shimane Washington 
Makabu 

ph.d 
Biology 

Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

  2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 



  2006 Kari Mette Murvoll ph.d 
Biology 

Levels and effects of persistent organic pollutans (POPs) 
in seabirds 
Retinoids and α-tocopherol –  potential biomakers of 
POPs in birds?  

  2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

  2006 Nils Egil Tokle ph.d 
Biology 

Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus 

  2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted eagles 
in south-east Asia 

  2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

  2006 Johanna Järnegren ph.d 
Biology 

Acesta Oophaga and Acesta Excavata – a study of hidden 
biodiversity 

  2006 Bjørn Henrik Hansen ph.d 
Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in 
Central Norway 

  2006 Vidar Grøtan ph.d 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

  2006 Jafari R Kideghesho ph.d 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

  2006 Anna Maria Billing ph.d 
Biology 

Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

  2006 Henrik Pärn ph.d 
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

  2006 Anders J. Fjellheim ph.d 
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

  2006 P. Andreas Svensson ph.d 
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

  2007 Sindre A. Pedersen ph.d 
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-essential 
amino acid cysteine 

  2007 Kasper Hancke ph.d 
Biology 

Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

  2007 Tomas Holmern ph.d 
Biology 

Bushmeat hunting in the western Serengeti: Implications 
for community-based conservation 

  2007 Kari Jørgensen ph.d 
Biology 

Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens 

  2007 Stig Ulland ph.d 
Biology 

Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, (Mamestra brassicae L.) 
(Lepidoptera, Noctuidae). Gas Chromatography Linked 
to Single Cell Recordings and Mass Spectrometry 

  2007 Snorre Henriksen ph.d 
Biology 

Spatial and temporal variation in herbivore resources at 
northern latitudes 

  2007 Roelof Frans May ph.d 
Biology 

Spatial Ecology of Wolverines in Scandinavia  
 

  2007 Vedasto Gabriel 
Ndibalema 

ph.d 
Biology 

Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 



  2007 Julius William 
Nyahongo 

ph.d 
Biology 

Depredation of Livestock by wild Carnivores and Illegal 
Utilization of Natural Resources by Humans in the 
Western Serengeti, Tanzania 

  2007 Shombe Ntaraluka 
Hassan 

ph.d 
Biology 

Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

  2007 Per-Arvid Wold ph.d 
Biology 

Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

  2007 Anne Skjetne 
Mortensen 

ph.d 
Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and Profiling 
of Gene Expression Patterns in Chemical Mixture 
Exposure Scenarios 

  2008 Brage Bremset Hansen ph.d 
Biology 

The Svalbard reindeer (Rangifer tarandus platyrhynchus) 
and its food base: plant-herbivore interactions in a high-
arctic ecosystem 

  2008 Jiska van Dijk ph.d 
Biology 

Wolverine foraging strategies in a multiple-use landscape 

  2008 Flora John Magige ph.d 
Biology 

The ecology and behaviour of the Masai Ostrich 
(Struthio camelus massaicus) in the Serengeti Ecosystem, 
Tanzania 

  2008 Bernt Rønning ph.d 
Biology 

Sources of inter- and intra-individual variation 
in basal metabolic rate in the zebra finch, 
(Taeniopygia guttata) 

  2008 Sølvi Wehn ph.d  
Biology 

Biodiversity dynamics in semi-natural mountain 
landscapes.  
- A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

  2008 Trond Moxness Kortner ph.d 
Biology 

"The Role of Androgens on previtellogenic 
oocyte growth in Atlantic cod (Gadus morhua): 
Identification and patterns of differentially 
expressed genes in relation to Stereological 
Evaluations" 

  2008 Katarina Mariann 
Jørgensen 

Dr.Scient 
Biology 

The role of platelet activating factor in 
activation of growth arrested keratinocytes and 
re-epithelialisation 

  2008 Tommy Jørstad ph.d 
Biology 

Statistical Modelling of Gene Expression Data 

  2008 Anna Kusnierczyk ph.d 
Bilogy 

Arabidopsis thaliana Responses to Aphid 
Infestation 

  2008 Jussi Evertsen ph.d 
Biology 

Herbivore sacoglossans with photosynthetic chloroplasts 
 

  2008 John Eilif Hermansen ph.d 
Biology 

Mediating ecological interests between locals and globals 
by means of indicators. A study attributed to the 
asymmetry between stakeholders of tropical forest at Mt. 
Kilimanjaro, Tanzania 

  2008 Ragnhild Lyngved ph.d 
Biology 

Somatic embryogenesis in Cyclamen persicum. 
Biological investigations and educational aspects of 
cloning 

  2008 Line Elisabeth  
Sundt-Hansen 

ph.d 
Biology 

Cost of rapid growth in salmonid fishes 
 

  2008 Line Johansen ph.d 
Biology 

Exploring factors underlying fluctuations in white clover 
populations – clonal growth, population structure and 
spatial distribution 

  2009 Astrid Jullumstrø 
Feuerherm 

ph.d 
Biology 

Elucidation of molecular mechanisms for pro-
inflammatory phospholipase A2 in chronic disease 



  2009 Pål Kvello ph.d 
Biology 

Neurons forming the network involved in gustatory 
coding and learning in the moth Heliothis virescens: 
Physiological and morphological characterisation, and 
integration into a standard brain atlas 

  2009 Trygve Devold Kjellsen ph.d 
Biology 

Extreme Frost Tolerance in Boreal Conifers 

  2009 Johan Reinert Vikan ph.d 
Biology 

Coevolutionary interactions between common cuckoos 
Cuculus canorus and Fringilla finches 

  2009 Zsolt Volent ph.d 
Biology 

Remote sensing of marine environment: Applied 
surveillance with focus on optical properties of 
phytoplankton, coloured organic matter and suspended 
matter 

  2009 Lester Rocha ph.d 
Biology 

Functional responses of perennial grasses to simulated 
grazing and resource availability 

  2009 Dennis Ikanda ph.d 
Biology 

Dimensions of a Human-lion conflict: Ecology of human 
predation and persecution of African lions (Panthera leo) 
in Tanzania 

  2010 Huy Quang Nguyen ph.d 
Biology 

Egg characteristics and development of larval digestive 
function of cobia (Rachycentron canadum) in response to 
dietary treatments 
-Focus on formulated diets 

  2010 Eli Kvingedal ph.d 
Biology 

Intraspecific competition in stream salmonids: the impact 
of environment and phenotype 

  2010 Sverre Lundemo ph.d 
Biology 

Molecular studies of genetic structuring and demography 
in Arabidopsis from Northern Europe 

  2010 Iddi Mihijai Mfunda  ph.d 
Biology 

Wildlife Conservation and People’s livelihoods: Lessons 
Learnt and Considerations for Improvements. The Case 
of Serengeti Ecosystem, Tanzania 

  2010 Anton Tinchov Antonov ph.d 
Biology 

Why do cuckoos lay strong-shelled eggs? Tests of the 
puncture resistance hypothesis 

  2010 Anders Lyngstad ph.d 
Biology 

Population Ecology of Eriophorum latifolium, a Clonal 
Species in Rich Fen Vegetation 

  2010 Hilde Færevik ph.d 
Biology 

Impact of protective clothing on thermal and cognitive 
responses 

  2010 Ingerid Brænne Arbo ph.d 
Medical 
technology 

Nutritional lifestyle changes – effects of dietary 
carbohydrate restriction in healthy obese and overweight 
humans 

  2010 Yngvild Vindenes ph.d 
Biology 

Stochastic modeling of finite populations with individual 
heterogeneity in vital parameters 

  2010 Hans-Richard Brattbakk ph.d 
Medical 
technology 

The effect of macronutrient composition, insulin 
stimulation, and genetic variation on leukocyte gene 
expression and possible health benefits 

  2011 Geir Hysing Bolstad ph.d 
Biology 

Evolution of Signals: Genetic Architecture, Natural 
Selection and Adaptive Accuracy 

  2011 Karen de Jong ph.d 
Biology 

Operational sex ratio and reproductive behaviour in the 
two-spotted goby (Gobiusculus flavescens) 

  2011 Ann-Iren Kittang ph.d 
Biology 

Arabidopsis thaliana L. adaptation mechanisms to 
microgravity through the EMCS MULTIGEN-2 
experiment on the ISS:– The science of space experiment 
integration and adaptation to simulated microgravity 

  2011 
 
Aline Magdalena Lee ph.d 

Biology 
Stochastic modeling of mating systems and their effect 
on population dynamics and genetics 

  2011 
 
Christopher Gravningen 
Sørmo 

ph.d 
Biology 

Rho GTPases in Plants: Structural analysis of ROP 
GTPases; genetic and functional 
studies of MIRO GTPases in Arabidopsis thaliana 



  2011 Grethe Robertsen ph.d 
Biology 

Relative performance of  salmonid phenotypes across 
environments and competitive intensities 

  2011 
 
 
 

Line-Kristin Larsen 
 

ph.d 
Biology 
 

Life-history trait dynamics in experimental populations 
of guppy (Poecilia reticulata): the role of breeding 
regime and captive environment 

  2011 Maxim A. K. Teichert 
 

ph.d 
Biology 

Regulation in Atlantic salmon (Salmo salar): The 
interaction between habitat and density 
 

  2011 Torunn Beate Hancke ph.d 
Biology 

Use of Pulse Amplitude Modulated (PAM) Fluorescence 
and Bio-optics for Assessing Microalgal Photosynthesis 
and Physiology 

  2011 Sajeda Begum ph.d  
Biology 

Brood Parasitism in Asian Cuckoos: Different Aspects of 
Interactions between Cuckoos and their Hosts in 
Bangladesh 

  2011 Kari J. K. Attramadal ph.d 
Biology 

Water treatment as an approach to increase microbial 
control in the culture of cold water marine larvae 

  2011 Camilla Kalvatn Egset ph.d 
Biology 

The Evolvability of Static Allometry: A Case Study 

  2011 AHM Raihan Sarker ph.d 
Biology 

Conflict over the conservation of the Asian elephant 
(Elephas maximus) in Bangladesh 

  2011 Gro Dehli Villanger ph.d 
Biology 

Effects of complex organohalogen contaminant mixtures 
on thyroid hormone homeostasis in selected arctic marine 
mammals 

  2011 Kari Bjørneraas ph.d 
Biology 

Spatiotemporal variation in resource utilisation by a large 
herbivore, the moose 

  2011 John Odden ph.d 
Biology 

The ecology of a conflict: Eurasian lynx depredation on 
domestic sheep 

      
 
 
  






