Mohsen Falahati-Anbaran

Evolutionary consequences of seed banks and seed dispersal in *Arabidopsis*

Thesis for the degree of Philosophiae Doctor

Trondheim, December 2011

Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Biology

NTNU – Trondheim Norwegian University of Science and Technology

NTNU

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Natural Sciences and Technology Department of Biology

© Mohsen Falahati-Anbaran

ISBN 978-82-471-3085-8 (printed ver.) ISBN 978-82-471-3086-5 (electronic ver.) ISSN 1503-8181

Doctoral theses at NTNU, 2011:260

Printed by NTNU-trykk

Acknowledgements

I want to give a special thanks to my supervisor professor Hans K. Stenøien for his invaluable assistance, encouragement, and for giving me advice during my PhD program. I also wish to thank Hans for providing me the opportunity to join to his research group and to experience a wonderful new environment somewhat different from my home country. I also deeply appreciate professor Jon Ågren at University of Uppsala for his great contribution and stimulating discussions in two of my manuscripts.

Dr. Sverre Lundemo gave an excellent contribution to the projects. I would like to thank him both for being a good friend and sharing the office during my PhD program, and discussion, giving me feedback in different subjects. We have been out in the field many times especially in Norway, Iceland and Svalbard. I never forget the time that we were in Svalbard for a couple of days looking for *Arabis alpina* and we had to cross Isfjorden in a rubber boat to access the population in stormy weather. I also appreciate Sverre for reading my thesis and for his invaluable feedback. I thank Dr. Stephan W. Ansell, at Natural History Museum, London, for his contribution on my fourth manuscript.

I would like to thank Dr. Ivar Herfindal at Department of Biology for providing me a map of Norway that has been used in my papers. Gratitude is also given to professor Cristophe Pelabon and associate professor Jenny Hagenblad for nice discussions in the journal clubs. A special thanks also to Guri F. Hansen at Plant Biology Center for watering and taking care of my plants in the greenhouse. I am grateful for help from Marianne Dore Hansen and Hanna Maja Tunset for doing microsatellite genotyping. I would like to express my gratitude to the collaboration and support of departmental staff and several anonymous people that have helped me through my PhD period at the Department of Biology.

I also thank my family, and especially my wife Mitra, who joined me in the last year of my PhD program. I thank for her love and patience and taking care of me during the last few months of writing the thesis.

Finally I acknowledge the generous financial support from the Norwegian Research Council.

December 2011, Trondheim

Mohsen Falahati-Anbaran

Contents

Acknowledgmentsi
Table of contentii
List of papers 1
Summary 3
Introduction5
Seeds and seed related traits
Materials and methods10
Study species 10 Seed and soil samples 13 Molecular and data analyses 13
Results and discussion15
Seed banks in A. thaliana and A. lyrata (Papers I and II)15Genetic diversity and structure (Papers I and II)16Evolutionary consequences of seed banks (Papers I and II)16Pattern of dispersal in time and space in A. thaliana (Paper III)17Patterns of genetic diversity and structure of A. lyrata in contrasting regions (Paper IV)18Conclusions and further remarks20
References

List of papers

This thesis is based on four papers.

I) Lundemo S, Falahati-Anbaran M, Stenøien HK (2009) Seed banks cause elevated generation times and effective population sizes of *Arabidopsis thaliana* in northern Europe. *Molecular Ecology* 18, 2798-2811.

II) Falahati-Anbaran M, Lundemo S, Ågren J, Stenøien HK (2011) Genetic consequences of seed banks in the perennial herb *Arabidopsis lyrata* subsp. *petraea* (Brassicaceae). *American Journal of Botany* 98(9): 1475–1485.

III) Falahati-Anbaran M, Lundemo S, Stenøien HK. Quantifying dispersal in time and space in northern European populations of *Arabidopsis thaliana* (manuscript).

IV) Falahati-Anbaran M, Lundemo S, Ansell SW, Stenøien HK. Contrasting patterns of genetic structuring in natural populations of *Arabidopsis lyrata* subsp. *petraea* across heterogeneous regions in Northern Europe (manuscript).

Declaration of contribution

In paper I, HKS initiated the project and organized, HKS and SL did the field work, HKS, SL and MFA performed the analysis and all authors contributed to write the paper. The project in paper II was initiated by HKS, SL did the field work, HKS, SL and MFA did the data analysis, MFA and SL wrote the paper with contribution from the other authors. In paper III, HKS initiated the experiments. HKS, MFA and SL designed and conducted the field work; MFA analysed the data and wrote the paper with the contribution from the other authors. In paper IV, HKS, SL and MFA initiated the project, MFA and SL planned and conducted the field work, MFA, SL analysed the data, MFA wrote the paper with contribution from the other authors.

Summary

In most plant species, seeds after dispersing from the mother plant (primary dispersal) may undergo secondary dispersal, either in time by remaining dormant in the soil and forming a seed bank, or in space by movement to other locations. Seed bank and dispersal in space are bet-hedging strategies that minimize the extinction risk and aid to population stability and persistence in temporally variable environments. The ability to establish seed bank via depositing a fraction of seeds into the soil may also increase the potential of early stage adaptation into new habitats. A persistent seed bank preserves genetic diversity and buffers populations from the loss of genetic variants due to random drift. Although theoretical studies have highlighted the role of seed banks in elevating effective population size, little information exists regarding the evolutionary potential of seed banks in natural populations.

In this thesis I studied inter- and intraspecific variation in genetic composition of seed banks and its significance in natural populations of two closely related species in the genus *Arabidopsis. A. thaliana* is an annual self-compatible plant whereas *A. lyrata* is perennial and self-incompatible. The potential contribution of seed banks to effective population size (N_e), generation time, genetic variation, and population dynamics has been addressed. The pattern of dispersal over time and space was investigated by monitoring of natural populations over five consecutive years in *A. thaliana*. In addition, regional differences in seed bank, genetic composition and structure in *A. lyrata* were investigated between three contrasting regions in northern Europe.

The results showed that both species form persistent seed banks throughout their Norwegian distribution range. Seedling density was lower in *A. lyrata* than *A. thaliana*, as would be expected from a perennial. Moreover, the seed bank contributes to total effective population size in perennial *A. lyrata*, though not to the same extent as in *A. thaliana*. In *A. lyrata* both seed bank and above-ground individuals seemingly have a similar contribution to the total N_e .

Monitoring *A. thaliana* populations over multiple years revealed that in most populations two or more distinct multilocus genotypes were present, which often varied in frequency between years, leading to variation in within-population diversity. Although most of the distinct multilocus genotypes within each population were genetically similar, probably due to historical mutation and recombination events, in some cases multiple colonization events due to migration from other populations were evident. Many geographically closely situated populations shared common multilocus genotypes and expressed low differentiation compared to distant ones. The results show evidence dispersal in time, i.e., persistence of dormant or ungerminated seeds in ten populations in which 29% of seeds descended two or three years before present, on average. Additionally there are signs of seed and pollen immigration from other populations in almost one fifth of the studied cohorts, reflecting an effective migration rate of 1.8% per generation. Migration through pollen and seeds in *A. thaliana* is therefore common, and the seed bank plays, at the same time a substantial role in overall population dynamics.

Comparing natural populations of *A. lyrata* in different regions revealed that soil seed banks are either absent or small in Icelandic populations and average density of seed bank is 2.5 fold smaller than what was observed among Norwegian populations, though the overall differences between regions was not statistically significant. The level of genetic variation in Icelandic was similar to Swedish and significantly higher than what found in Norwegian populations. In addition population differentiation on Icelandic was significantly lower than what found in Swedish and Norwegian populations. When comparing similar distribution areas in the regions, the effect of habitat structure was found to be less important to explain the differences in genetic structuring. Immigration rate over time was similar between regions that show variable population differentiations. The results suggest that relatively low differentiation among Icelandic populations is more likely due to large historical effective population sizes compared to Scandinavian populations, rather than immigration *per se*.

Introduction

Seeds and seed related traits

Seed size, the establishment of seed banks and dispersal in space are important traits that may influence population persistence, the colonization and extinction time and interact with environmental variables (Cohen 1966; Silvertown 1981; Brown & Venable 1986; Venable & Brown 1988; Guo et al. 2000). In most flowering plants seeds after dispersing from the mother plant (primary dispersal), may experience dispersal events, either by remaining dormant in the soil (seed bank formation), or in space by movement to other locations (dispersal in space). Seed bank formation and seed dispersal are bet-hedging strategies which enable plants to escape unfavorable environmental conditions (Venable & Brown 1988). Seed size is highly variable and may vary over ten orders of magnitude among species, from dustlike seeds of orchids being as small as 0.3μ g to the 20 kg seeds of the double coconut (Arditti 1967; Harper et al. 1970; Silvertown 1981; Moles et al. 2005; Linkies et al. 2010). Although large seed size has been attributed to higher survival rate, there is a tradeoff between seed size and seed number (Jakobsson & Eriksson 2000). A negative relationship has been observed between seed size and number for many species across different habitat types (Jakobsson & Eriksson 2000; Metz et al. 2010). Although large seeds generally have a higher chance to establish, they may experience higher mortality due to higher predation rate. In addition, a tradeoff exists between seed size and dispersal ability in which larger seeds may have limited possibilities for long distance dispersal (e.g., Parciak 2002). Generally speaking, small seeds are more easily dispersed and may thus facilitate colonization into new environments (e.g., Silvertown 1981).

Ecology of seed banks

A seed bank is a deposit of viable and ungerminated propagules, and can exist both as mature seeds on the plant (aerial seed bank) or in the soil (soil seed bank), whereas in animals this trait is evident through diapausing eggs (Cohen 1966; De Stasio 1990; Christoffoleti & Caetano 1998). Delayed germination of seeds is a bet-hedging strategy to minimize the risks of germinating at the wrong time of the growth season, and in face of unpredictable environmental disturbances (Cohen 1966; Childs *et al.* 2010). Bet-hedging has been widely investigated theoretically and empirically (e.g., Venable 2007 and references therein). While

fluctuations in environmental conditions may increase the rate of mortality and variance in reproductive success among years, seed banks may have substantial potential in buffering variation in reproductive success and minimize the extinction risk (Pake & Venable 1996).

Seeds can either persist in the soil for a short time until the next germination season (less than a year; transient seed bank) or remain in the soil as dormant beyond one year (persistent seed bank; Thompson & Grime 1979). The existence of seed banks in plants in terrestrial and aquatic ecosystems has been well documented (Thompson & Grime 1979; Leck et al. 1989; Thompson et al. 1997; Evans et al. 2007), and although seed dormancy has been strongly attributed to formation of seed bank, empirical studies have found no close relationship between dormancy and seed bank formation (Thompson et al. 2003; Honda 2008). Perennial and large seed species are less capable to establish seed banks than annual and small seed species (Silvertown 1981; Thompson 1987; Honda 2008), and large seeds usually less able to persist for longer periods of time in the soil (Thompson 1987). The number of seeds found in the seed bank of annual and biannual plants is often higher than in perennials, indicating the greater capacity of annual species to persist in the soil seed bank than perennials (Arroyo et al. 2006; Honda 2008; DeFalco et al. 2009). Seeds of plant species may remain in soil as dormant or ungerminated for a few years up to several decades, centuries, or even >1000 years (Kivilaan & Bandurski 1981; Shen-Miller et al. 1995; Thompson et al. 1997; Telewski & Zeevaart 2002). Although the ecological potential of seed traits has been extensively studied in numerous species (Howe & Smallwood 1982; Thompson 1987; Bakker 1996), little information exists about the evolutionary importance of secondary seed dispersal over time (seed bank) and space (migration) in plants that differ in several life history traits.

Seed banks and effective population size

Most annual species and some perennials maintain seed banks, and the seed bank will over time contain seeds of different genotypes as not all seeds germinate directly after reproductive events. This buffering effect can dampen the rate of loss of genetic variation due to stochastic variation in the environment and increase the effective population size (Templeton & Levin 1979; Hairston & De Stasio 1988). Genetic variation in plant populations harbouring seed banks is influenced by mutual gene flow between the seed-bank and the above-ground individuals. Theoretical expectations and experimental studies suggest that seed banks may moderate the effect of genetic drift through buffering against changes in census sizes in above-ground cohorts (Epling *et al.* 1960; Templeton & Levin 1979; Nunney 2002; Vitalis *et al.* 2004; Honnay *et al.* 2008). Estimations of effective population size should therefore be based on both seeds from the seed-bank and above-ground individuals.

The effective size of a given population (N_e) can be defined as the size of an ideal population that looses genetic variation (through genetic drift) between generations at the same rate as the natural population under study (Wright 1931; Kimura & Crow 1963). Estimation of effective population size from genetic and ecological data is a challenging topic in evolutionary biology and many different methods have been proposed, though most of them are based on simplified assumptions that seldom apply to real populations (for review see: Leberg 2005; Wang 2005). These approaches, which can be used to estimate contemporary and historical N_{e} , are based on both demographic and genetic models (Schwartz *et al.* 1999; Nunney 2002; Leberg 2005; Wang 2005). Genetic models based on heterozygosity excess (Pudovkin et al. 1996), temporal shifts in allele frequency (Krimbas & Tsakas 1971; Waples 1989; Wang 2001) and linkage disequilibrium, LD (Hill 1981; Waples 1991; Waples & Do 2008, 2010) have received considerable attention in the estimation of $N_{\rm e}$ (Luikart *et al.* 2010). The LD method offers an unbiased single sample estimator of contemporary $N_{\rm e}$ (Bartley et al. 1992; Waples & Do 2008), and has been shown to perform better than the temporal method (Waples & Do, 2010) as it needs only a single time point per population, whereas the latter require data from at least two time points for each population. Coalescent theory may also be used to infer the demographic history of populations through estimating historical $N_{\rm e}$ based on ancestral relationships among individuals (Fu & Li 1999). Historical Ne infers the amount of genetic diversity over evolutionary time since formation of a population, reflecting bottlenecks, range expansions, migration and admixture events in the past. Neutral genetic diversity within populations is positively related to the coalescence time and effective population size.

Gene flow through seed and pollen dispersal

In flowering plants, dispersal is the movement of genes through seeds or pollen from one site to another (Endler 1977; Levin 1981). If a given dispersal event results in establishment or reproduction within the local gene pool, gene flow has occurred (Endler 1977). Gene flow among populations may increase within-population genetic diversity and reduces genetic differentiation between local populations (Ehrlich & Raven 1969). Type of mating system

play an important role in determining the level of gene flow through pollen dispersal, in which in an outcrossing plant exhibiting a self-incompatibility (SI) system, a higher level of gene flow is often expected between populations in a given space compared with predominantly self-pollinating species because the former is highly dependent on pollen flow from other individuals of the same species (e.g., Govindaraju 1988a,b; Mable & Adam 2007). The SI system in plants prevents fertilization by self-pollen and accepts only pollen from genetically unrelated individuals, thus facilitating outcrossing. Seed dispersal in plants is often expected to be a distance dependent process, i.e. with higher seed movement over short distances compare to long distances (Howe and Smallwood 1982 and references therein). However, long distance seed dispersal is very important because it can affect on colonization processes and metapopulation dynamics (Cain *et al.* 2000).

Molecular techniques have been used extensively to study the pattern of pollen and seed dispersal (Ouborg *et al.* 1999). Dispersal can be quantified using direct (parentage analysis and assignment test) and indirect approaches using population structure (e.g., genetic differentiation measures like F_{ST} ; Slatkin 1987; Cain *et al.* 2000). Historical gene flow patterns has traditionally been studied using a simple population structure model introduced by Wright (1931), in which the relationship between the number of immigrants a population receive and population differentiation (F_{ST}) can be shown as $F_{ST} = [1/(1+4Nem)]$, where N_e and *m* is the effective population size and migration rate per generation, respectively. However, this model is based on a large number of simplifying assumptions that are unlikely to hold true for natural populations (Whitlock & McCauley 1999). In addition, this method is not appropriate to study the spatial patterns of genetic structure and gene flow among subpopulations (Hutchison & Templeton 1999; Sork *et al.* 1999).

The pattern of gene flow among populations in a given geographical area is often quantified through isolation by distance, IBD. Under a stepping-stone model of population structure, the relative influence of gene flow and genetic drift on regional population structure can be inferred from the relationship between genetic and geographic distance among pairs of populations (Kimura & Weiss 1964). The pattern of IBD can thus be compared between regions to determine how gene flow and drift have contributed in shaping the genetic composition within a given region compared with others. In this model, gene flow is expected to decline with increasing geographic distance between populations. In species with restricted seed and pollen dispersal between populations, a significant relationship is expected between

genetic and geographic distance, leading to isolation by distance (Slatkin 1993). Several factors may affect the pattern of IBD, such as the scale and regional topography in which populations are being sampled, number of populations, and time since colonization of a locality (Crispo & Hendry 2005). The absence of IBD has been attributed to several factors such as recent colonization of regions followed by rapid range expansion or fragmentation (Slatkin 1993; Hutchison & Templeton 1999; Crispo & Hendry 2005).

Aims of the study

In this thesis I have used two closely related species, both of which are widely used as models in research, to study the ecological and evolutionary importance of seed banks and dispersal. In particular, I have tried to discern how annual and perennial species differ in their strategies for dealing with environmental stochasticity, and more specifically, whether the importance of seed banks differ in annual and perennial plants.

The main objectives addressed in this thesis are:

- To investigate the existence of seed banks in *A. thaliana* and *A. lyrata* and to determine the relative contribution of the seed bank to total effective population size and generation time (Papers I and II)
- 2) To study the pattern of secondary seed dispersal in time and space by quantifying the effective seed and pollen migration rate and dispersal in time in *A. thaliana* (Paper III)
- 3) To study the pattern of genetic diversity and structuring in *A. lyrata* inhabiting contrasting habitats (Paper IV)

Materials and methods

Study species

Arabidopsis thaliana (L.) Heynh. (Figure 1), known as mouse-ear cress or wild thale cress, is a weedy annual, self-pollinating plant in the mustard family (Brassicaceae). The plant has small, white flowers, and can produce large amounts of small seeds (~0.1-0.5 mm long, Figure 2). In Scandinavia it predominantly germinates in the autumn, overwinters as a rosette and does flower and sets seed in early spring. It is diploid (2n = 10) with a relatively small genome, 125Mb, and has been extensively used as a model for molecular biology and ecological and evolutionary studies (Mitchell-Olds & Schmitt 2006; Koornneef & Meinke 2010). The plant is native to Eurasia and North Africa (O'Kane & Al-Shehbaz 1997; Al-Shehbaz & O'Kane 2002). Additionally, the species has been introduced and successfully established in central and Northern Europe, North America, southwest Asia, Australia and New Zealand (Sharbel *et al.* 2000; Al-Shehbaz & O'Kane 2002; Hoffmann 2002).

Figure 1: Floral display in *Arabidopsis thaliana* (right) and *A. lyrata* (left). Photo: M. Falahati-Anbaran.

In Norway *A. thaliana* occurs in wide range of habitats from sea level and up to 1150 m asl and distributed from 58°N to 69°N. The plant occupies mainly disturbed areas such as road verges, railway tracks, and rocky slopes with thin soil layer and low vegetation cover (Figure 3).

Figure 2: Variation in flower and seed size between *Arabidopsis thaliana* (right) and *A. lyrata* (left). Photo: M. Falahati-Anbaran

Arabidopsis lyrata subsp. *petreae* (L.) O'Kane & Al-Shehbaz (1997), northern rock cress, is a perennial and self-incompatible herb that is distributed over disjunctive regions in Central and Northern Europe (Jonsell *et al.* 1995). *A. lyrata* is closely related to *A. thaliana*, and it is believed they diverged from a common ancestor about 5-10 million years ago (Koch *et al.* 2000; Hu *et al.* 2011). In contrast to *A. thaliana*, *A. lyrata* has larger flowers (Figure 1) and seeds (1-1.5 mm long, Figure 2). It is diploid (2n = 16) with a larger genome (207 Mb, Hu *et al.* 2011) than *A. thaliana*, and has been extensively used as a model in ecological and evolutionary studies (Mitchell-Olds 2001). In northern Europe, the plant is restricted to mountainous areas of south-western Norway, a small part of the eastern coast of Sweden, United Kingdom, Faeroe Islands and across most of Iceland (Jonsell *et al.* 1995; Schmickl *et al.* 2010). In Norway, the plant grows in habitats located from the sea level up to ~ 1700 m asl and deep valleys and mountain peaks my thus create physical barriers limiting connectivity between populations (Figure 3). In contrast, *A. lyrata* in Sweden occur mostly in open habitats

along the coast, with no major physical barriers between sites. In Iceland the plant is found on lava plain and disturbed and open habitats from see level to highlands.

Figure 3: Typical habitat of *Arabidopsis thaliana* locality at Byneset, Trondheim (top), and *A. lyrata* locality in Sæbo, Eidfjord (bottom). Photo: M. Falahati-Anbaran.

Seed and soil samples

Seeds from above-ground plants were sampled from natural populations of *A. thaliana* across its Norwegian distribution range between 2005 and 2009 (Papers I and III). Soil samples (ten samples in each population; $\sim 10 \times 10$ cm, 1-5 cm deep) were randomly collected throughout each population before seed dispersal in late May and early June 2005, 2008 and 2009 (Papers I and III).

In *A. lyrata*, soil samples were collected from 14 populations in southwestern Norway, in which the above-ground individuals were previously analysed by Gaudeul *et al.* (2007), (Paper II) in July 2006, before that year's seed rain. Soil and rosette leaves from ten Icelandic populations of *A. lyrata* were sampled in 2009 (Paper IV).

A. *thaliana* seeds were sown in the greenhouse and leaf tissue was collected from one individual per maternal plant (Papers I and III). Soil samples were stored at 4 °C before germination trials to break dormancy of seeds. Thereafter, the soil was spread out in a thin layer on top of commercial potting soil in 12.8×14.5 cm pots to stimulate germination of seeds (Papers I, II, III and IV). Pots were placed in the greenhouse under 16 h day length for about 10 months until no more seedlings emerged. The temperature and humidity during the germination experiment were 20 °C and 65%, respectively. Leaf tissue from each emerged seedling was collected separately. The leaves obtained from above-ground individuals and seedlings emerging from the soil samples were dried at 45 °C for 24 h (Papers I, II, III and IV).

Molecular and data analyses

Genomic DNA was extracted from individual plants of above-ground and seed-bank cohorts using the E.Z.N.A. TM SP Plant DNA Kit (Omega Bio-Tek, Inc). *A. thaliana* samples were screened using 107 (Paper I) and 103 (Paper III) SNP markers described in Törjék *et al.* (2003). Eleven (Paper I) and twenty one (Paper III) SNPs were excluded with no call or low efficiency after genotyping. *A. lyrata* samples were screened with 15 (Paper II) and 21 (Paper IV) microsatellite markers. The primer sequences of flanking regions for microsatellite loci used in *A. lyrata* are described in Bell and Ecker (1994), Clauss *et al.* (2002), Loudet *et al.* (2002), and Kuittinen *et al.* (2004).

Seed bank density between species was compared using a Mann-Whitney U test (Paper II). The within-species variation between contrasting habitats was investigated by comparing density of seed bank in Icelandic A. lyrata to that in Norwegian populations (Paper IV). Population genetic parameters and pairwise F_{ST} (Weir & Cockerham 1984) were estimated using Arlequin 3.5 (Excoffier et al. 2005), FSTAT (Goudet 1995) and Genepop (Rousset 2008; Papers I, II, III and IV). Analysis of molecular variance, AMOVA, was conducted using Arlequin (Paper I). Genetic structure was also inferred by model based Bayesian methods as implemented in Structure (Pritchard et al. 2000; Falush et al. 2003; Papers I, II and IV), BAPS (Corander & Marttinen 2006; Corander et al. 2008; Papers I and II) and Instruct (Gao et al. 2007; Paper III). The results of Bayesian analyses were summarized across multiple runs using CLUMPP (Jakobsson & Rosenberg 2007). Spatial structure was investigated using isolation by distance (IBD). IBD was performed by regressing genetic distance against geographical distance and the significant was tested by permutation test using GeneAlex (Peakall & Smouse 2006; Papers I and IV). Contemporary Ne was estimated with a linkage disequilibrium approach implemented in NeEstimator 1.3 (Peel et al. 2004; Paper II). Historical effective population size (N_e) was estimated based on a coalescent-based maximum likelihood method implemented in Migrate (Beerli & Felsenstein 1999, 2001; Papers I, II and IV). Dispersal in space was quantified by a conservative estimate based on distance criterion using an assignment test (Cornuet et al. 1999). Migration through pollen dispersal was also computed by identifying individuals carrying two or more private alleles at heterozygous SNP loci in each cohort. The effective migration rate, i.e. dispersal and establishment, was calculated combining both seed and pollen flow events for each population. Dispersal in time was estimated by assigning above-ground individuals sampled in 2009 to the previous aboveground cohorts using a distance based criterion (Nei et al. 1983) implemented in GeneClass2 (Piry et al. 2004). Analysis of variance, ANOVA, was conducted to test for differences between regions for various parameters (Iceland, Norway and Sweden) and the difference between regions was examined using a post hoc Bonferroni test (Paper IV). A Welch F test was used to examine differences in population differentiation (pairwise F_{ST}) among regions and multiple comparisons was conducted using Tamhane's test (Paper IV). Analysis of covariance, ANCOVA, was used to test the regression slope of isolation by distance between regions (Paper IV). All statistical analyses were performed using SPSS version 16.

Results and discussion

Seed banks in A. thaliana and A. lyrata (Papers I and II)

The results revealed that both species maintained persistent seed banks in their northern European distribution range. The seed bank density as determined by the germination method varied considerably within A. thaliana and A. lyrata populations. Overall, the seedling density in A. thaliana was an order of magnitude higher than in A. lyrata. Because soil samples were collected before seed rain, any evidence of germination from soil samples indicates the presence of a persistent seed bank. Seed banks were detected in all A. thaliana populations in 2005. In contrast, in 2 out of 14 A. lyrata Norwegian populations, no seedlings were detected. The results may indicate that the existence of a persistent seed bank is more important for annual plants than for perennials. The discrepancy in seedling density between the study species can mainly be attributed to differences in life history traits, which is in agreement with theoretical predictions and empirical studies, showing that annual plants in general have higher reproductive output than perennials (Harper & Ogden 1970; Hirshfield & Tinkle 1975; Primack 1979). Moreover seed size in A. thaliana a priori is considerably smaller than A. lyrata and it has been shown that large seed species may capable less to persist in the soil for long time relative to small seed ones (Silvertown 1981; Thompson 1987). The results are in agreement with previous studies showing a higher seed bank density in annual than perennial species (e.g., Arroyo et al. 2006). Although the seed bank density in Icelandic populations of A. lyrata was 2.5 fold smaller than that in Norwegian populations, the difference was not statistically significant (P = 0.088). Most Icelandic A. lyrata populations either lacked completely a seed bank (30%) or had low seedling densities (60%; < 50 viable seeds pr m⁻²) and in only one population the density of seed bank was high (10%; > 100 viable seeds pr m)²). The results also showed no differences between population densities (rosettes per m^{-2}) between regions. Variation in seed production between regions may be attributed the differences in seed production rather than population density (Vergeer & Kunin 2011). Other ecological and biological factors such as soil particle size, soil nutrient levels, and microbial activities may also influence the density of seeds in the seed bank (Wagner & Mitschunas 2008; DeFalco et al. 2009)

Genetic diversity and structure (Papers I and II)

The level of genetic diversity did not vary between seed bank and above-ground cohorts in either A. thaliana or A. lyrata, suggesting that most genetic variability in the seed bank is present in above-ground cohorts. This has also been reported in other studies, both for annual and perennial species (Mahy et al. 1999; Mandák et al. 2006). The average between-cohort differentiation, i.e. between seed bank and above-ground plants, was considerably lower than that among populations for both A. thaliana and A. lyrata. Similarly, model based Bayesian clustering revealed a high level of structure in Norwegian populations of A. lyrata and A. thaliana. In A. thaliana, populations were assigned to 15 ancestral clusters based on seedbank (2005 samples) and above-ground (2005 and 2006) data. In most populations the seedbank and above-ground cohorts were genetically similar. A significant correlation was detected between genetic and geographical distance in Norwegian populations of A. thaliana, indicating isolation by distance pattern for all cohorts. This suggests a high level of gene flow relative to drift over short geographical distance, and relatively lower gene flow relative to genetic drift at longer distance (Hutchison & Templeton 1999). In A. lyrata, Bayesian clustering based on seed bank and above-ground data revealed a high level of structure among populations and most of seed bank and above-ground cohorts for each population were grouped to similar ancestral clusters.

Evolutionary consequences of seed banks (Papers I and II)

The contribution of the seed bank to total effective population size (N_e) was quantified by estimating the scaled mutation parameter (θ) for individual seed-bank (θ_S) and above-ground 2005 (θ_{A-5}) and combined (θ_T) cohorts using SNP data in *A. thaliana*. The results showed that the total N_e , i.e. when combining seed-bank and above-ground individuals, was greater than when considering the above-ground cohort alone. A similar result was observed based on estimates of historical and contemporary effective population size in *A. lyrata*. Interestingly, the relative ratio measured by θ_T/θ_A was higher in *A. thaliana* than *A. lyrata*, suggesting a weaker contribution of the seed bank to N_e in the later species. In *A. lyrata*, θ_S/θ_T was slightly lower than θ_A/θ_T , but not statistically significant, suggesting a similar contribution of both seed-bank and above-ground cohorts to total N_e . Although the historical effective N_e based on the coalescence method was significantly higher than contemporary N_e estimates, a similar relative ratio was obtained based on both methods for *A. lyrata*. Generation time in *A. thaliana* was estimated based on the model introduced by Vitalis *et al.* (2004). This was conducted by estimating the total effective population size from a subset of populations using microsatellite data obtained from Stenøien *et al.* (2005). Thus, generation time in Norwegian populations of *A. thaliana* was found to be on average 4 years (range 1-8), and only two out of six (33%) populations showed a generation time of one year. This is a rough estimate of generation time in natural populations of plant species based on molecular data. This indicate that presence of seed bank elevate generation time by differential recruitment of seeds of different genotypes preserved in the soil. Taken together these results support theoretical expectations, that seed banks can substantially increase the total N_e in both annual and perennial species (Hairston & De Stasio 1988; Kaj *et al.* 2001; Nunney 2002; Vitalis *et al.* 2004; Waples 2006).

Pattern of dispersal in time and space in A. thaliana (Paper III)

A. thaliana can spread rapidly into new areas (Jørgensen & Mauricio 2004) and it has been suggested that local populations experience extensive metapopulation dynamics with occasional extinctions and subsequent recolonization by immigrations from other populations (Bergelson et al. 1998; Lavigne et al. 2001; Le Corre 2005). Both dispersal in space (immigration from other populations) and dispersal in time (regeneration from the seed bank) could contribute to recolonization (Husband & Barrett 1996). However, no studies have so far described the relative contribution of dispersal in space and time in plant populations. Through sampling the seed-bank and above-ground cohort in natural populations of A. thaliana over several years, it was possible to measure the level of migration within (dispersal in time) and between (immigration) populations. Evidence of immigration of seeds and/or pollen from other populations was observed in 49 out of 222 study cohorts, yielding an average migration rate of 1.8% per generation. Dispersal through seeds was considerably higher than pollen dispersal, with an average seed to pollen ratio being 7.06 across 10 populations. The estimated migration rate is considerably higher than what we may expected from the high F_{ST} values found across populations. The inconsistency between high population differentiation and high migration rate could be due to large effect of random genetic drift in purging rare migrants. However, one may expect a high migration rate for a weedy species that inhabits disturbed areas with a large anthropogenic impact. Moreover, some closely situated populations (< 1 km) were highly differentiated, suggesting the possible role of other factors such as long distance seed dispersal due to anthropogenic activities. Long distance dispersal has also been reported in other studies on A. thaliana that found common

multilocus genotypes were shared between populations (Bomblies *et al.* 2010; Lewandowska-Sabat *et al.* 2010).

Additionally dispersal in time was observed in one third of populations (10 out of 29) in which 29 % of seeds on average descended from two or three years before present. The average generation time for these populations exhibiting dispersal in time was 1.5 years. This is lower than the estimates based on historical effective population size (average 4 years). The discrepancy between two estimates is probably due to the fact that historical $N_{\rm e}$ reflects allelic variation over a long period relative to estimates based on short-term temporal sampling. In populations where no plants in the above ground were observed during field work in a given year, recolonization happened the subsequent year, likely due to regeneration from seed bank. This indicates a significant contribution of seed band to population dynamic in Norwegian population of A. thaliana. In many cases a high fluctuation in genetic diversity between years observed in genetically diverse populations is mostly attributed to the variation in regeneration of distinct multilocus genotypes, MLGs, from the seed bank. The average between-year population differentiation was low ($F_{ST} = 0.095$). This was lower than that recently reported for A. thaliana surveyed over four years in southern Europe ($F_{ST} = 0.16$, Gomaa et al. 2011). In some populations the two most frequent MLGs were differentiated at only one SNP site, indicating a mutation as the source of variation. In addition, signature of historical recombination events was observed through the presence of all four possible allele combinations at two-locus haplotype in several populations (sensu Stumpf & McVean 2003). The results indicate that the current pattern of genetic variation in natural populations of A. thaliana in Norway is shaped by historical events such as mutation, colonization and recombination. Despite of frequent migrations events through seed and pollen dispersal in the natural populations of A. thaliana, seed bank play a substantial role in overall population dynamic.

Patterns of genetic diversity and structure of A. lyrata in contrasting regions (Paper IV)

Patterns of genetic diversity and differentiation in natural populations of *A. lyrata* were compared between three regions in northern Europe. The level of genetic differentiation among Icelandic populations ($F_{ST} = 0.1$; mean geographical distance 93 km, range 8.6-182 km) was smaller than observed for Swedish ($F_{ST} = 0.1$ 9; mean geographical distance 40 km,

range 2-85 km) and Norwegian (F_{ST} = 0.30: mean geographical distance 165 km, range 2-385 km) populations. Additionally genetic differentiation among populations distributed over similar area in Icelandic was still considerably lower compared to Swedish and Norwegian populations. Genetic diversity in Icelandic populations ($H_E = 0.35$) was similar to that observed in Sweden ($H_{\rm E}$ = 0.33), and both were substantially higher than what found in Norwegian populations ($H_E = 0.25$). The discrepancy in the level of genetic diversity between regions is probably due to a high allelic richness in the Icelandic and Swedish populations compared with Norwegian ones. A significant relationship between genetic and geographical distance was observed in Icelandic populations (r = 55, P = 001) indicating a pattern of isolation by distance (IBD) and IBD was also evident in Norway and Sweden. However, the slope of the regression line (b) was steeper in Norwegian (b = 0.44) and Icelandic (b = 0.45) populations compared to Swedish (b = 0.15) populations. The observed pattern of IBD in Icelandic populations of A. lyrata is inconsistent to what Schierup et al. (2008) found when examining the self-incompatibility gene, S-locus. The observed IBD pattern at neutral markers is as expected because it has been shown that gene flow by both seed and pollen dispersal is restricted in A. lyrata (Schierup et al. 2006). IBD in natural populations of A. lyrata has also been documented in other studies, at both a local (Clauss & Mitchell-Olds 2006; Gaudeul et al. 2007) and continental scale (Muller et al. 2008; Ansell et al. 2010; Lloyd et al. 2011).

Interestingly, there was no significant differences in historical migration rate, M (M = m/u, where m and u are immigration and mutation rate per generation respectively) between regions. However, historical effective size measured based on theta (θ) was significantly larger in Icelandic than Swedish and Norwegian populations. The discrepancy between similar levels of genetic diversity, but considerably different historical sizes is probably due to higher private allelic richness found in Icelandic compared with Swedish populations. Icelandic populations, with low levels of population differentiation, exhibit larger effective population sizes compared to Scandinavian populations. It is therefore likely that the low level of population structure (F_{ST}) in Icelandic populations can be explained by a high historical effective population size, rather than high levels of gene flow.

Conclusions and further remarks

The results of this study show that both *A. thaliana* and *A. lyrata* maintain seed banks, preserve genetic variation and increase the effective population size in their distribution range in Norway. However, the investment in the seed bank is considerably higher in *A. thaliana* than in *A. Lyrata*, and is consistent with other studies showing high seed bank density in annuals relative to perennials. Rapid germination of *A. lyrata* seeds probably leads to low seed bank densities, while the large seed size limits the dispersal ability.

In *A. thaliana*, the results indicate that populations experience a relatively high degree of immigration from other populations (dispersal in space), a pattern which is expected from a weedy species inhabiting disturbed habitats impacted by human activities. Moreover, one third of the populations exhibit dispersal in time. Further studies should be aimed at understanding the molecular mechanisms of this. This is the first study that attempts to estimate real-time migration rate and dispersal in time in plant populations. More studies are therefore needed to test whether the observed pattern is valid for other plants, and to develop better models to understand the process.

Comparing patterns of genetic diversity and structure in *A. lyrata* populations from different regions revealed extremely low population differentiation among Icelandic populations compared to in Scandinavia. This pattern is more likely due to large effective population size rather than immigration *per se*, and this suggests that comparing patterns of genetic structure between habitats could be a powerful approach to understand the evolutionary mechanisms behind the current distribution of plant species.

References

- Al-Shehbaz IA, O'Kane SL (2002) Taxonomy and phylogeny of *Arabidopsis* (Brassicaceae). In: *The Arabidopsis Book*, pp. 1-22. The American Society of Plant Biologists.
- Ansell SW, Stenoien HK, Grundmann M, Schneider H, Hemp A, Bauer N, Russell SJ, Vogel JC (2010) Population structure and historical biogeography of European *Arabidopsis lyrata*. *Heredity* **105**, 543-553.
- Arditti J (1967) Factors affecting the germination of orchid seeds. *The Botanical Review* **33**, 1-97.
- Arroyo MTK, Chacon P, Cavieres LA (2006) Relationship between seed bank expression, adult longevity and aridity in species of *Chaetanthera* (Asteraceae) in central Chile. *Annals of Botany* 98, 591-600.
- Bakker JP, Poschlod, P., Strykstra, R. J., Bekker, R. M., & Thompson, K. (1996) Seed banks and seed dispersal: important topics in restoration ecology *Acta Botanica Neerlandica* 45, 461–490.
- Bartley D, Bagley M, Gall G, Bentley B (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. *Conservation Biology* **6**, 365-375.
- Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of *Arabidopsis. Genomics* **19**, 137-144.
- Bergelson J, Stahl E, Dudek S, Kreitman M (1998) Genetic variation within and among populations of *Arabidopsis thaliana*. *Genetics* **148**, 1311-1323.
- Bomblies K, Yant L, Laitinen RA, Kim ST, Hollister JD, Warthmann N, Fitz J, Weigel D (2010) Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of *Arabidopsis thaliana*. *PLoS Genetics* 6.
- Brown JS, Venable DL (1986) Evolutionary ecology of seed-bank annuals in temporally varying environments. *The American Naturalist* **127**, 31-47.
- Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. *American Journal of Botany* **87**, 1217-1227.
- Childs DZ, Metcalf CJE, Rees M (2010) Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. *Proceedings of the Royal Society B: Biological Sciences*.
- Christoffoleti PJ, Caetano RSX (1998) Soil seed banks. Scientia Agricola 55, 74-78.
- Clauss MJ, Cobban H, Mitchell-Olds T (2002) Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). *Molecular Ecology* 11, 591-601.
- Clauss MJ, Mitchell-Olds T (2006) Population genetic structure of *Arabidopsis lyrata* in Europe. *Molecular Ecology* **15**, 2753-2766.
- Cohen D (1966) Optimizing reproduction in a randomly varying environment. *Journal of Theoretical Biology* **12**, 119-129.
- Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. *Molecular Ecology* **15**, 2833-2843.
- Corander J, Marttinen P, Siren J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. *BMC Bioinformatics* **9**, 539.
- Cornuet J-M, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. *Genetics* 153, 1989-2000.
- Crispo E, Hendry A (2005) Does time since colonization influence isolation by distance? A meta-analysis. *Conservation Genetics* **6**, 665-682.

- De Stasio BT, Jr. (1990) The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. *Limnology and Oceanography* **35**, 1079-1090.
- DeFalco LA, Esque TC, Kane JM, Nicklas MB (2009) Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance. *Journal of Arid Environments* **73**, 885-893.
- Ehrlich PR, Raven PH (1969) Differentiation of populations. Science 165, 1228-1232.
- Endler JA (1977) Geographic variation, speciation, and clines Princeton University Press, Princeton, N.J. .
- Epling C, Lewis H, Ball FM (1960) The breeding group and seed storage: a study in population dynamics. *Evolution* 14, 238-255.
- Evans ME, Ferriere R, Kane MJ, Venable DL (2007) Bet hedging via seed banking in desert evening primroses (Oenothera, Onagraceae): demographic evidence from natural populations. *The American Naturalist* **169**, 184-194.
- Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. *Evolutionary bioinformatics online* **1**, 47-50.
- Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. *Genetics* **164**, 1567-1587.
- Fu Y-X, Li W-H (1999) Coalescing into the 21st century: An overview and prospects of coalescent theory. *Theoretical Population Biology* **56**, 1-10.
- Gao H, Williamson S, Bustamante C (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. *Genetics* 176, 1635 - 1651.
- Gaudeul M, Stenøien HK, Ågren J (2007) Landscape structure, clonal propagation, and genetic diversity in Scandinavian populations of *Arabidopsis lyrata* (Brassicaceae). *American Journal of Botany* 94, 1146-1155.
- Gomaa NH, Montesinos-Navarro A, Alonso-Blanco C, Picó FX (2011) Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine *Arabidopsis thaliana* populations. *Molecular Ecology* **20**, 3540–3554.
- Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. *Journal* of Heredity **86**, 485-486.
- Govindaraju DR (1988a) A note on the relationship between outcrossing rate and gene flow in plants. *Heredity* **61**, 401-404.
- Govindaraju DR (1988b) Relationship between dispersal ability and levels of gene flow in plants. *Oikos* **52**, 31-35
- Guo Q, Brown JH, Valone TJ, Kachman SD (2000) Constraints of seed size on plant distribution and abundance. *Ecology* **81**, 2149-2155.
- Hairston NGJ, De Stasio BTJ (1988) Rate of evolution slowed by a dormant propagule pool. *Nature* **336**, 239-242.
- Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1, 327-356.
- Harper JL, Ogden J (1970) The reproductive strategy of higher plants: I. The concept of strategy with special reference to *Senecio Vulgaris* L. *Journal of Ecology* **58**, 681-698.
- Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. *Genetics Research* **38**, 209-216.
- Hirshfield MF, Tinkle DW (1975) Natural selection and the evolution of reproductive effort. *Proceedings of the National Academy of Sciences* **72**, 2227-2231.
- Hoffmann MH (2002) Biogeography of *Arabidopsis thaliana* (L.) Heynh. (Brassicaceae). *Journal of Biogeography* **29**, 125-134.

- Honda Y (2008) Ecological correlations between the persistence of the soil seed bank and several plant traits, including seed dormancy. *Plant Ecology* **196**, 301-309.
- Honnay O, Bossuyt B, Jacquemyn H, Shimono A, Uchiyama K (2008) Can a seed bank maintain the genetic variation in the above ground plant population? *Oikos* **117**, 1-5.
- Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annual Review of Ecology and Systematics 13, 201-228.
- Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo Y-L (2011) The *Arabidopsis lyrata* genome sequence and the basis of rapid genome size change. *Nature Genetics* 43, 476-481.
- Husband BC, Barrett SCH (1996) A metapopulation perspective in plant population biology. *Journal of Ecology* 84, 461-469.
- Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. *Evolution* **53**, 1898-1914.
- Jakobsson A, Eriksson O (2000) A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. *Oikos* **88**, 494-502.
- Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. *Bioinformatics* 23, 1801-1806.
- Jonsell B, Kustås K, Nordal I (1995) Genetic variation in *Arabis petraea*, a disjunct species in northern Europe. *Ecography* **18**, 321-332.
- Jørgensen S, Mauricio R (2004) Neutral genetic variation among wild North American populations of the weedy plant *Arabidopsis thaliana* is not geographically structured. *Molecular Ecology* **13**, 3403-3413.
- Kaj I, Krone SM, Lascoux M (2001) Coalescent theory for seed bank models. *Journal of Applied Probability* **38**, 285-300.
- Kimura M, Crow JF (1963) The measurement of effective population number. *Evolution* **17**, 279-288.
- Kimura M, Weiss GH (1964) The stepping stone model of population structure and the secrease of genetic correlation with distance. *Genetics* **49**, 561-576.
- Kivilaan A, Bandurski RS (1981) The one hundred-year period for Dr. Beal's seed viability experiment. *American Journal of Botany* **68**, 1290-1292.
- Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in *Arabidopsis*, *Arabis*, and related genera (Brassicaceae). *Molecular Biology and Evolution* **17**, 1483-1498.
- Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. *The Plant Journal* **61**, 909-921.
- Krimbas CB, Tsakas S (1971) The genetics of dacus oleae. v. changes of esterase polymorphism in a natural population following insecticide control-selection or drift? *Evolution* 25, 454-460.
- Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppälä J, Koch M, Mitchell-Olds T, Langley CH, Savolainen O (2004) Comparing the linkage maps of the close relatives *Arabidopsis lyrata* and *A. thaliana. Genetics* **168**, 1575-1584.
- Lavigne C, Reboud X, Lefranc M, Porcher E, Roux F, Olivieri I, Godelle B (2001) Evolution of genetic diversity in metapopulations: *Arabidopsis thaliana* as an experimental model. *Genetics, Selection, Evolution* 33, S399-S423.

- Le Corre VL (2005) Variation at two flowering time genes within and among populations of *Arabidopsis thaliana*: comparison with markers and traits. *Molecular Ecology* **14**, 4181-4192.
- Leberg P (2005) Genetic approaches for estimating the effective size of populations. *Journal* of Wildlife Management **69**, 1385-1399.
- Leck MA, Parker VT, Simpson RL (1989) *Ecology of soil seed banks* Academic Press, San Diego.
- Levin DA (1981) Dispersal versus gene flow in plants. Annals of the Missouri Botanical Garden 68, 233-253.
- Lewandowska-Sabat AM, Fjellheim S, Rognli OA (2010) Extremely low genetic variability and highly structured local populations of *Arabidopsis thaliana* at higher latitudes. *Molecular Ecology* **19**, 4753-4764.
- Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. *New Phytologist* **186**, 817-831.
- Lloyd MW, Roche B, Roberts RP (2011) Genetic variation and population structure of *Arabidopsis lyrata* ssp. *lyrata* (Brassicaceae) along the easternseaboard of North America. *Castanea* **76**, 28-42.
- Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in *Arabidopsis. TAG Theoretical and Applied Genetics* **104**, 1173-1184.
- Luikart G, Ryman N, Tallmon D, Schwartz M, Allendorf F (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. *Conservation Genetics* **11**, 355-373.
- Mable BK, Adam A (2007) Patterns of genetic diversity in outcrossing and selfing populations of *Arabidopsis lyrata*. *Molecular Ecology* **16**, 3565-3580.
- Mahy G, Vekemans X, Jacquemart A-L (1999) Patterns of allozymic variation within *Calluna* vulgaris populations at seed bank and adult stages. *Heredity* **82**, 432-440.
- Mandák B, Bímová K, Mahelka V, I P (2006) How much genetic variation is stored in the seed bank? A study of *Atriplex tatarica* (Chenopodiaceae). *Molecular Ecology* 15, 2653-2663.
- Metz J, Liancourt P, Kigel J, Harel D, Sternberg M, Tielbörger K (2010) Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. *Journal of Ecology* **98**, 697-704.
- Mitchell-Olds T (2001) *Arabidopsis thaliana* and its wild relatives: a model system for ecology and evolution. *Trends in Ecology & Evolution* **16**, 693-700.
- Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in *Arabidopsis*. *Nature* **441**, 947-952.
- Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005) A brief history of seed size. *Science* **307**, 576-580.
- Muller MH, Leppala J, Savolainen O (2008) Genome-wide effects of postglacial colonization in Arabidopsis lyrata. Heredity 100, 47-58.
- Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. *Journal of Molecular Evolution* **19**, 153-170.
- Nunney L (2002) The effective size of annual plant populations: the interaction of a seed bank with fluctuating population size in maintaining genetic variation. *The American Naturalist* **160**, 195-204.
- O'Kane SLJ, Al-Shehbaz IA (1997) A synopsis of *Arabidopsis* (Brassicaceae). Novon 7, 323-327.
- Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. *Journal of Ecology* **87**, 551-568.

- Pake CE, Venable DL (1996) Seed banks in desert annuals: implications for persistence and coexistence in variable environments. *Ecology* **77**, 1427-1435.
- Parciak W (2002) Environmental variation in seed number, size, and dispersal of a fleshyfruited plant. *Ecology* **83**, 780-793.
- Peakall ROD, Smouse PE (2006) Genalex 6: genetic analysis in Excel. population genetic software for teaching and research. *Molecular Ecology Notes* **6**, 288-295.
- Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size, Version 1.3. Queensland Government, Department of Primary Industries and Fisheries.
- Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. *Journal of Heredity* 95, 536-539.
- Primack RB (1979) Reproductive effort in annual and perennial species of *Plantago* (Plantaginaceae). *The American Naturalist* **114**, 51-62.
- Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. *Genetics* **155**, 945-959.
- Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. *Genetics* **144**, 383-387.
- Rousset F (2008) genepop'007: a complete re-implementation of the genepop software for Windows and Linux. *Molecular Ecology Resources* **8**, 103-106.
- Schierup MH, Bechsgaard JS, Nielsen LH, Christiansen FB (2006) Selection at work in selfincompatible Arabidopsis lyrata: mating patterns in a natural population. Genetics 172, 477-484.
- Schmickl R, Jorgensen M, Brysting A, Koch M (2010) The evolutionary history of the *Arabidopsis lyrata* complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. *BMC Evolutionary Biology* **10**, 98.
- Schwartz MK, Tallmon DA, Luikart G (1999) Using genetics to estimate the size of wild populations: many methods, much potential, uncertain utility. *Animal Conservation* 2, 321-323.
- Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in *Arabidopsis thaliana*: biogeography and postglacial colonization of Europe. *Molecular Ecology* **9**, 2109-2118.
- Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred Lotus from China. *American Journal of Botany* 82, 1367-1380.
- Silvertown JW (1981) Seed size, life span, and germination date as coadapted features of plant life history. *The American Naturalist* **118**, 860-864.
- Slatkin M (1987) Gene flow and the geographic structure of natural populations. *Science* 236, 787-792.
- Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. *Evolution* **47**, 264-279.
- Sork VL, Nason J, Campbell DR, Fernandez JF (1999) Landscape approaches to historical and contemporary gene flow in plants. *Trends in Ecology & Evolution* **14**, 219-224.
- Stenøien HK, Fenster CB, Tonteri A, Savolainen O (2005) Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Molecular Ecology 14, 137-148.
- Stumpf MPH, McVean GAT (2003) Estimating recombination rates from population-genetic data. *Nat Rev Genet* **4**, 959-968.
- Telewski FW, Zeevaart JAD (2002) The 120-yr period for Dr. Beal's seed viability experiment. *American Journal of Botany* **89**, 1285-1288.

- Templeton AR, Levin DA (1979) Evolutionary consequences of seed pools. *The American Naturalist* **114**, 232-249.
- Thompson K (1987) Seeds and seed banks. New Phytologist 106, 23-34.
- Thompson K, Bakker JP, Bekker RM (1997) *The soil seed banks of north west Europe: methodology, density and longevity* Cambridge University Press, Cambridge, UK
- Thompson K, Ceriani RM, Bakker JP, Bekker RM (2003) Are seed dormancy and persistence in soil related? *Seed Science Research* **13**, 97-100.
- Thompson K, Grime JP (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. *Journal of Ecology* **67**, 893-921.
- Törjék O, Berger D, Meyer RC, Müssig C, Schmid KJ, Rosleff Sörensen T, Weisshaar B, Mitchell-Olds T, Altmann T (2003) Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis. The Plant Journal 36, 122-140.
- Venable DL (2007) Bet hedging in a guild of desert annuals. *Ecology* 88, 1086-1090.
- Venable DL, Brown JS (1988) The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. *The American Naturalist* 131, 360-384.
- Vergeer P, Kunin WE (2011) Life history variation in *Arabidopsis lyrata* across its range: effects of climate, population size and herbivory. *Oikos*, no-no.
- Vitalis R, Glémin S, Olivieri I (2004) When genes go to sleep: the population genetic consequences of seed dormancy and monocarpic perenniality. *The American Naturalist* **163**, 295-311.
- Wagner M, Mitschunas N (2008) Fungal effects on seed bank persistence and potential applications in weed biocontrol: A review. *Basic and Applied Ecology* **9**, 191-203.
- Wang J (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. *Genetics Research* **78**, 243-257.
- Wang J (2005) Estimation of effective population sizes from data on genetic markers. *Philosophical Transactions of the Royal Society B: Biological Sciences* **360**, 1395-1409.
- Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. *Genetics* **121**, 379-391.
- Waples RS (1991) Genetic methods for estimating the effective size of cetacean populations. *Report of the international whaling commision* **13**, 279-300.
- Waples RS (2006) Seed banks, salmon, and sleeping genes: effective population size in semelparous, age structured species with fuctuating abundance. *The American Naturalist* 167, 118-135.
- Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. *Molecular Ecology Resources* **8**, 753-756.
- Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. *Evolutionary Applications* **3**, 244-262.
- Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. *Evolution* **38**, 1358-1370.
- Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82, 117-125.
- Wright S (1931) Evolution in mendelian populations. Genetics 16, 97-159.

Paper I

Is not included due to copyright

Paper II

Is not included due to copyright

Paper III

Is not included due to copyright

Paper IV

Is not included due to copyright

Doctoral theses in Biology Norwegian University of Science and Technology Department of Biology

Year	Name	Degree	Title
1974	Tor-Henning Iversen	Dr. philos	The roles of statholiths, auxin transport, and auxin
		Botany	metabolism in root gravitropism
1978	Tore Slagsvold	Dr. philos	Breeding events of birds in relation to spring temperature
		Zoology	and environmental phenology
1978	Egil Sakshaug	Dr.philos	"The influence of environmental factors on the chemica
		Botany	composition of cultivated and natural populations of marine phytoplankton"
1980	Arnfinn Langeland	Dr. philos	Interaction between fish and zooplankton populations
		Zoology	and their effects on the material utilization in a freshwater lake
1980	Helge Reinertsen	Dr. philos	The effect of lake fertilization on the dynamics and
		Botany	stability of a limnetic ecosystem with special reference the phytoplankton
1982	Gunn Mari Olsen	Dr. scient	Gravitropism in roots of Pisum sativum and Arabidopsi
		Botany	thaliana
1982	Dag Dolmen	Dr. philos	Life aspects of two sympartic species of newts (Trituru
		Zoology	<i>Amphibia</i>) in Norway, with special emphasis on their ecological niche segregation
1984	Eivin Røskaft	Dr. philos	Sociobiological studies of the rook Corvus frugilegus
		Zoology	
1984	Anne Margrethe	Dr. scient	Effects of alcohol inhalation on levels of circulating
Cameron		Botany	testosterone, follicle stimulating hormone and luteinzin
1004	A L' C M NTL	D	hormone in male mature rats
1984	Asbjørn Magne Nilsen	Dr. scient	Alveolar macrophages from expectorates – Biological
		Botany	monitoring of workers exosed to occupational air pollution. An evaluation of the AM-test
1985	Jarle Mork	Dr. philos	Biochemical genetic studies in fish
1705	Julie Work	Zoology	Bioenemical genetic studies in fish
1985	John Solem	Dr. philos	Taxonomy, distribution and ecology of caddisflies
		Zoology	(Trichoptera) in the Dovrefjell mountains
1985	Randi E. Reinertsen	Dr. philos	Energy strategies in the cold: Metabolic and
		Zoology	thermoregulatory adaptations in small northern birds
1986	Bernt-Erik Sæther	Dr. philos	Ecological and evolutionary basis for variation in
		Zoology	reproductive traits of some vertebrates: A comparative approach
1986	Torleif Holthe	Dr. philos	Evolution, systematics, nomenclature, and zoogeograph
		Zoology	in the polychaete orders Oweniimorpha and
			Terebellomorpha, with special reference to the Arctic
			and Scandinavian fauna
1987	Helene Lampe	Dr. scient	The function of bird song in mate attraction and
		Zoology	territorial defence, and the importance of song repertoir
1987	Olav Hogstad	Dr. philos Zoology	Winter survival strategies of the Willow tit <i>Parus</i> montanus
1987	Jarle Inge Holten	Dr. philos	Autecological investigations along a coust-inland
	-	Botany	transect at Nord-Møre, Central Norway

1987 Rita Kumar	Dr. scient Botany	Somaclonal variation in plants regenerated from cell cultures of <i>Nicotiana sanderae</i> and <i>Chrysanthemum morifolium</i>
1987 Bjørn Åge Tømmerås	Dr. scient. Zoolog	Olfaction in bark beetle communities: Interspecific interactions in regulation of colonization density, predator - prey relationship and host attraction
1988 Hans Christian Pederser	n Dr. philos Zoology	Reproductive behaviour in willow ptarmigan with special emphasis on territoriality and parental care
1988 Tor G. Heggberget	Dr. philos Zoology	Reproduction in Atlantic Salmon (<i>Salmo salar</i>): Aspects of spawning, incubation, early life history and population structure
1988 Marianne V. Nielsen	Dr. scient Zoology	The effects of selected environmental factors on carbon allocation/growth of larval and juvenile mussels (<i>Mytilus</i> <i>edulis</i>)
1988 Ole Kristian Berg	Dr. scient Zoology	The formation of landlocked Atlantic salmon (<i>Salmo</i> salar L.)
1989 John W. Jensen	Dr. philos Zoology	Crustacean plankton and fish during the first decade of the manmade Nesjø reservoir, with special emphasis on the effects of gill nets and salmonid growth
1989 Helga J. Vivås	Dr. scient Zoology	Theoretical models of activity pattern and optimal foraging: Predictions for the Moose <i>Alces alces</i>
1989 Reidar Andersen	Dr. scient Zoology	Interactions between a generalist herbivore, the moose <i>Alces alces</i> , and its winter food resources: a study of behavioural variation
1989 Kurt Ingar Draget	Dr. scient Botany	Alginate gel media for plant tissue culture
1990 Bengt Finstad	Dr. scient Zoology	Osmotic and ionic regulation in Atlantic salmon, rainbow trout and Arctic charr: Effect of temperature, salinity and season
1990 Hege Johannesen	Dr. scient Zoology	Respiration and temperature regulation in birds with special emphasis on the oxygen extraction by the lung
1990 Åse Krøkje	Dr. scient Botany	The mutagenic load from air pollution at two work- places with PAH-exposure measured with Ames Salmonella/microsome test
1990 Arne Johan Jensen	Dr. philos Zoology	Effects of water temperature on early life history, juvenile growth and prespawning migrations of Atlantic salmion (<i>Salmo salar</i>) and brown trout (<i>Salmo trutta</i>): A summary of studies in Norwegian streams
1990 Tor Jørgen Almaas	Dr. scient Zoology	Pheromone reception in moths: Response characteristics of olfactory receptor neurons to intra- and interspecific chemical cues
1990 Magne Husby	Dr. scient Zoology	Breeding strategies in birds: Experiments with the Magpie <i>Pica pica</i>
1991 Tor Kvam	Dr. scient Zoology	Population biology of the European lynx (<i>Lynx lynx</i>) in Norway
1991 Jan Henning L'Abêe Lund	Dr. philos Zoology	Reproductive biology in freshwater fish, brown trout <i>Salmo trutta</i> and roach <i>Rutilus rutilus</i> in particular
1991 Asbjørn Moen	Dr. philos Botany	The plant cover of the boreal uplands of Central Norway. I. Vegetation ecology of Sølendet nature reserve; haymaking fens and birch woodlands
1991 Else Marie Løbersli	Dr. scient Botany	Soil acidification and metal uptake in plants
1991 Trond Nordtug	Dr. scient Zoology	Reflctometric studies of photomechanical adaptation in superposition eyes of arthropods
1991 Thyra Solem	Dr. scient Botany	Age, origin and development of blanket mires in Central Norway

1991 Odd Terje Sandlund	Dr. philos Zoology	The dynamics of habitat use in the salmonid genera <i>Coregonus</i> and <i>Salvelinus</i> : Ontogenic niche shifts and polymorphism
1991 Nina Jonsson	Dr. philos	Aspects of migration and spawning in salmonids
1991 Atle Bones	Dr. scient	Compartmentation and molecular properties of
	Botany	thioglucoside glucohydrolase (myrosinase)
1992 Torgrim Breiehagen	Dr. scient	Mating behaviour and evolutionary aspects of the
	Zoology	breeding system of two bird species: the Temminck's
		stint and the Pied flycatcher
1992 Anne Kjersti Bakken	Dr. scient	The influence of photoperiod on nitrate assimilation and
	Botany	nitrogen status in timothy (Phleum pratense L.)
1992 Tycho Anker-Nilssen	Dr. scient	Food supply as a determinant of reproduction and
	Zoology	population development in Norwegian Puffins Fratercula arctica
1992 Bjørn Munro Jenssen	Dr. philos	Thermoregulation in aquatic birds in air and water: With
1772 Djørn Munio Jenssen	Zoology	special emphasis on the effects of crude oil, chemically
	2001055	treated oil and cleaning on the thermal balance of ducks
1992 Arne Vollan Aarset	Dr. philos	The ecophysiology of under-ice fauna: Osmotic
	Zoology	regulation, low temperature tolerance and metabolism in
		polar crustaceans.
1993 Geir Slupphaug	Dr. scient	Regulation and expression of uracil-DNA glycosylase
	Botany	and O ⁶ -methylguanine-DNA methyltransferase in
	~ .	mammalian cells
1993 Tor Fredrik Næsje	Dr. scient	Habitat shifts in coregonids.
1002 Varsun Ashigar Olasa	Zoology	Cartical demonstration Atlantic columns. Column and and
1993 Yngvar Asbjørn Olsen	Dr. scient Zoology	Cortisol dynamics in Atlantic salmon, <i>Salmo salar</i> L.: Basal and stressor-induced variations in plasma levels
	Zoology	ans some secondary effects.
1993 Bård Pedersen	Dr. scient	Theoretical studies of life history evolution in modular
	Botany	and clonal organisms
1993 Ole Petter Thangstad	Dr. scient	Molecular studies of myrosinase in Brassicaceae
	Botany	
1993 Thrine L. M.	Dr. scient	Reproductive strategy and feeding ecology of the
Heggberget	Zoology	Eurasian otter Lutra lutra.
1993 Kjetil Bevanger	Dr. scient.	,
1002 K ⁸ Hausan	Zoology	approach.
1993 Kåre Haugan	Dr. scient Bothany	Mutations in the replication control gene trfA of the broad host-range plasmid RK2
1994 Peder Fiske	Dr. scient.	Sexual selection in the lekking great snipe (<i>Gallinago</i>
1774 I edel I Iške	Zoology	<i>media</i>): Male mating success and female behaviour at the
	Loonogy	lek
1994 Kjell Inge Reitan	Dr. scient	Nutritional effects of algae in first-feeding of marine fish
	Botany	larvae
1994 Nils Røv	Dr. scient	Breeding distribution, population status and regulation of
	Zoology	breeding numbers in the northeast-Atlantic Great
	~ .	Cormorant <i>Phalacrocorax carbo carbo</i>
1994 Annette-Susanne	Dr. scient	Tissue culture techniques in propagation and breeding of
Hoepfner	Botany	Red Raspberry (<i>Rubus idaeus</i> L.)
1994 Inga Elise Bruteig	Dr. scient	Distribution, ecology and biomonitoring studies of
1994 Geir Johnsen	Bothany Dr. scient	epiphytic lichens on conifers Light harvesting and utilization in marine phytoplankton:
1774 Och Johnsen	Botany	Species-specific and photoadaptive responses
1994 Morten Bakken	Dr. scient	Infanticidal behaviour and reproductive performance in
	Zoology	relation to competition capacity among farmed silver fox
		vixens, Vulpes vulpes
		- *

1994 Arne Moksnes	Dr. philos Zoology	Host adaptations towards brood parasitism by the Cockoo
1994 Solveig Bakken	Dr. scient Bothany	Growth and nitrogen status in the moss <i>Dicranum majus</i> Sm. as influenced by nitrogen supply
1994 Torbjørn Forseth	Dr. scient Zoology	Bioenergetics in ecological and life history studies of fishes.
1995 Olav Vadstein	Dr. philos Botany	The role of heterotrophic planktonic bacteria in the cycling of phosphorus in lakes: Phosphorus requirement, competitive ability and food web interactions
1995 Hanne Christensen	Dr. scient Zoology	Determinants of Otter <i>Lutra lutra</i> distribution in Norway: Effects of harvest, polychlorinated biphenyls (PCBs), human population density and competition with mink <i>Mustela vision</i>
1995 Svein Håkon Lorentsen	Dr. scient Zoology	Reproductive effort in the Antarctic Petrel <i>Thalassoica antarctica</i> ; the effect of parental body size and condition
1995 Chris Jørgen Jensen	Dr. scient Zoology	The surface electromyographic (EMG) amplitude as an estimate of upper trapezius muscle activity
1995 Martha Kold Bakkevig	Dr. scient Zoology	The impact of clothing textiles and construction in a clothing system on thermoregulatory responses, sweat accumulation and heat transport
1995 Vidar Moen	Dr. scient Zoology	Distribution patterns and adaptations to light in newly introduced populations of <i>Mysis relicta</i> and constraints on Cladoceran and Char populations
1995 Hans Haavardsholm Blom	Dr. philos Bothany	A revision of the <i>Schistidium apocarpum</i> complex in Norway and Sweden
1996 Jorun Skjærmo	Dr. scient Botany	Microbial ecology of early stages of cultivated marine fish; inpact fish-bacterial interactions on growth and survival of larvae
1996 Ola Ugedal	Dr. scient Zoology	Radiocesium turnover in freshwater fishes
1996 Ingibjørg Einarsdottir	Dr. scient Zoology	Production of Atlantic salmon (<i>Salmo salar</i>) and Arctic charr (<i>Salvelinus alpinus</i>): A study of some physiological and immunological responses to rearing routines
1996 Christina M. S. Pereira	Dr. scient Zoology	Glucose metabolism in salmonids: Dietary effects and hormonal regulation
1996 Jan Fredrik Børseth	Dr. scient Zoology	The sodium energy gradients in muscle cells of <i>Mytilus</i> <i>edulis</i> and the effects of organic xenobiotics
1996 Gunnar Henriksen	Dr. scient Zoology	Status of Grey seal <i>Halichoerus grypus</i> and Harbour seal <i>Phoca vitulina</i> in the Barents sea region
1997 Gunvor Øie	Dr. scient Bothany	Eevalution of rotifer <i>Brachionus plicatilis</i> quality in early first feeding of turbot <i>Scophtalmus maximus</i> L. larvae
1997 Håkon Holien	Dr. scient Botany	Studies of lichens in spurce forest of Central Norway. Diversity, old growth species and the relationship to site and stand parameters
1997 Ole Reitan	Dr. scient. Zoology	Responses of birds to habitat disturbance due to damming
1997 Jon Arne Grøttum	Dr. scient. Zoology	Physiological effects of reduced water quality on fish in aquaculture
1997 Per Gustav Thingstad	Dr. scient. Zoology	Birds as indicators for studying natural and human- induced variations in the environment, with special emphasis on the suitability of the Pied Flycatcher
1997 Torgeir Nygård	Dr. scient Zoology	Temporal and spatial trends of pollutants in birds in Norway: Birds of prey and Willow Grouse used as Biomonitors

1997 Signe Nybø	Dr. scient. Zoology	Impacts of long-range transported air pollution on birds with particular reference to the dipper <i>Cinclus cinclus</i> in southern Norway
1997 Atle Wibe	Dr. scient. Zoology	Identification of conifer volatiles detected by receptor neurons in the pine weevil (<i>Hylobius abietis</i>), analysed by gas chromatography linked to electrophysiology and to mass spectrometry
1997 Rolv Lundheim	Dr. scient Zoology	Adaptive and incidental biological ice nucleators
1997 Arild Magne Landa	Dr. scient Zoology	Wolverines in Scandinavia: ecology, sheep depredation and conservation
1997 Kåre Magne Nielsen	Dr. scient Botany	An evolution of possible horizontal gene transfer from plants to sail bacteria by studies of natural transformation in <i>Acinetobacter calcoacetius</i>
1997 Jarle Tufto	Dr. scient Zoology	Gene flow and genetic drift in geographically structured populations: Ecological, population genetic, and statistical models
1997 Trygve Hesthagen	Dr. philos Zoology	Population responces of Arctic charr (<i>Salvelinus alpinus</i> (L.)) and brown trout (<i>Salmo trutta</i> L.) to acidification in Norwegian inland waters
1997 Trygve Sigholt	Dr. philos Zoology	Control of Parr-smolt transformation and seawater tolerance in farmed Atlantic Salmon (<i>Salmo salar</i>) Effects of photoperiod, temperature, gradual seawater acclimation, NaCl and betaine in the diet
1997 Jan Østnes	Dr. scient Zoology	Cold sensation in adult and neonate birds
1998 Seethaledsumy Visvalingam	Dr. scient Botany	Influence of environmental factors on myrosinases and myrosinase-binding proteins
1998 Thor Harald Ringsby	Dr. scient Zoology	Variation in space and time: The biology of a House sparrow metapopulation
1998 Erling Johan Solberg	Dr. scient. Zoology	Variation in population dynamics and life history in a Norwegian moose (<i>Alces alces</i>) population: consequences of harvesting in a variable environment
1998 Sigurd Mjøen Saastad	Dr. scient Botany	Species delimitation and phylogenetic relationships between the Sphagnum recurvum complex (Bryophyta): genetic variation and phenotypic plasticity
1998 Bjarte Mortensen	Dr. scient Botany	Metabolism of volatile organic chemicals (VOCs) in a head liver S9 vial equilibration system in vitro
1998 Gunnar Austrheim	Dr. scient Botany	Plant biodiversity and land use in subalpine grasslands. – A conservtaion biological approach
1998 Bente Gunnveig Berg	Dr. scient Zoology	Encoding of pheromone information in two related moth species
1999 Kristian Overskaug	Dr. scient Zoology	Behavioural and morphological characteristics in Northern Tawny Owls <i>Strix aluco</i> : An intra- and interspecific comparative approach
1999 Hans Kristen Stenøien	Dr. scient Bothany	Genetic studies of evolutionary processes in various populations of nonvascular plants (mosses, liverworts and hornworts)
1999 Trond Arnesen	Dr. scient	Vegetation dynamics following trampling and burning in the outlying haylands at Sølendet, Central Norway
1999 Ingvar Stenberg	Botany Dr. scient Zoology	Habitat selection, reproduction and survival in the White-
1999 Stein Olle Johansen	Dr. scient Botany	backed Woodpecker <i>Dendrocopos leucotos</i> A study of driftwood dispersal to the Nordic Seas by dendrochronology and wood anatomical analysis

1999 Trina Falck Galloway	Dr. scient Zoology	Muscle development and growth in early life stages of the Atlantic cod (<i>Gadus morhua</i> L.) and Halibut (<i>Hippoglossus hippoglossus</i> L.)
1999 Marianne Giæver	Dr. scient Zoology	(<i>Mippogrossus hippogrossus</i> L.) Population genetic studies in three gadoid species: blue whiting (<i>Micromisistius poutassou</i>), haddock (<i>Melanogrammus aeglefinus</i>) and cod (<i>Gradus morhua</i>) in the North-East Atlantic
1999 Hans Martin Hanslin	Dr. scient Botany	The impact of environmental conditions of density dependent performance in the boreal forest bryophytes Dicranum majus, Hylocomium splendens, Plagiochila asplenigides, Ptilium crista-castrensis and Rhytidiadelphus lokeus
1999 Ingrid Bysveen Mjølnerød	Dr. scient Zoology	Aspects of population genetics, behaviour and performance of wild and farmed Atlantic salmon (<i>Salmo</i> <i>salar</i>) revealed by molecular genetic techniques
1999 Else Berit Skagen	Dr. scient Botany	The early regeneration process in protoplasts from <i>Brassica napus</i> hypocotyls cultivated under various g- forces
1999 Stein-Are Sæther	Dr. philos Zoology	Mate choice, competition for mates, and conflicts of interest in the Lekking Great Snipe
1999 Katrine Wangen Rustad		Modulation of glutamatergic neurotransmission related to cognitive dysfunctions and Alzheimer's disease
1999 Per Terje Smiseth	Dr. scient Zoology	Social evolution in monogamous families: mate choice and conflicts over parental care in the Bluethroat (<i>Luscinia s. svecica</i>)
1999 Gunnbjørn Bremset	Dr. scient Zoology	Young Atlantic salmon (<i>Salmo salar</i> L.) and Brown trout (<i>Salmo trutta</i> L.) inhabiting the deep pool habitat, with special reference to their habitat use, habitat preferences and competitive interactions
1999 Frode Ødegaard	Dr. scient Zoology	Host spesificity as parameter in estimates of arhrophod species richness
1999 Sonja Andersen	Dr. scient Bothany	Expressional and functional analyses of human, secretory phospholipase A2
2000 Ingrid Salvesen	Dr. scient Botany	Microbial ecology in early stages of marine fish: Development and evaluation of methods for microbial management in intensive larviculture
2000 Ingar Jostein Øien	Dr. scient Zoology	The Cuckoo (<i>Cuculus canorus</i>) and its host: adaptions and counteradaptions in a coevolutionary arms race
2000 Pavlos Makridis	Dr. scient Botany	Methods for the microbial econtrol of live food used for the rearing of marine fish larvae
2000 Sigbjørn Stokke	Dr. scient Zoology	Sexual segregation in the African elephant (<i>Loxodonta africana</i>)
2000 Odd A. Gulseth	Dr. philos Zoology	Seawater tolerance, migratory behaviour and growth of Charr, (<i>Salvelinus alpinus</i>), with emphasis on the high Arctic Dieset charr on Spitsbergen, Svalbard
2000 Pål A. Olsvik	Dr. scient Zoology	Biochemical impacts of Cd, Cu and Zn on brown trout (<i>Salmo trutta</i>) in two mining-contaminated rivers in Central Norway
2000 Sigurd Einum	Dr. scient Zoology	Maternal effects in fish: Implications for the evolution of breeding time and egg size
2001 Jan Ove Evjemo	Dr. scient Zoology	Production and nutritional adaptation of the brine shrimp Artemia sp. as live food organism for larvae of marine cold water fish species
2001 Olga Hilmo	Dr. scient Botany	Lichen response to environmental changes in the managed boreal forset systems

2001 Ingebrigt Uglem	Dr. scient	Male dimorphism and reproductive biology in corkwing
2001 Bård Gunnar Stokke	Zoology Dr. scient	wrasse (<i>Symphodus melops</i> L.) Coevolutionary adaptations in avian brood parasites and
	Zoology	their hosts
2002 Ronny Aanes	Dr. scient	Spatio-temporal dynamics in Svalbard reindeer (<i>Rangifer tarandus platyrhynchus</i>)
2002 Mariann Sandsund	Dr. scient	Exercise- and cold-induced asthma. Respiratory and
2002 Wartalin Sandsund	Zoology	thermoregulatory responses
2002 Dag-Inge Øien	Dr. scient	Dynamics of plant communities and populations in
2002 Dag-Inge Ølen	Botany	boreal vegetation influenced by scything at Sølendet,
	Dotally	Central Norway
2002 Frank Rosell	Dr. scient	The function of scent marking in beaver (<i>Castor fiber</i>)
2002 1 funk Rosen	Zoology	The function of seent marking in beaver (<i>Casior fiber</i>)
2002 Janne Østvang	Dr. scient	The Role and Regulation of Phospholipase A_2 in
2002 Junie Østvang	Botany	Monocytes During Atherosclerosis Development
2002 Terje Thun	Dr.philos	Dendrochronological constructions of Norwegian conifer
2002 Terje Thun	Biology	chronologies providing dating of historical material
2002 Birgit Hafjeld Borgen	Dr. scient	Functional analysis of plant idioblasts (Myrosin cells)
2002 Dirgit Haljeld Dorgen	Biology	and their role in defense, development and growth
2002 Bård Øyvind Solberg	Dr. scient	Effects of climatic change on the growth of dominating
2002 Dard Øyvind Solderg	Biology	tree species along major environmental gradients
2002 Per Winge	Dr. scient	The evolution of small GTP binding proteins in cellular
2002 Tel Whige	Biology	organisms. Studies of RAC GTPases in <i>Arabidopsis</i>
	Diology	<i>thaliana</i> and the Ral GTPase from <i>Drosophila</i>
		melanogaster
2002 Henrik Jensen	Dr. scient	Causes and consequences of individual variation in
2002 11011111 00115011	Biology	fitness-related traits in house sparrows
2003 Jens Rohloff	Dr. philos	Cultivation of herbs and medicinal plants in Norway –
	Biology	Essential oil production and quality control
2003 Åsa Maria O. Espmark	Dr. scient	Behavioural effects of environmental pollution in
Wibe	Biology	threespine stickleback <i>Gasterosteus aculeatur</i> L.
2003 Dagmar Hagen	Dr. scient	Assisted recovery of disturbed arctic and alpine
	Biology	vegetation – an integrated approach
2003 Bjørn Dahle	Dr. scient	Reproductive strategies in Scandinavian brown bears
5.	Biology	1 0
2003 Cyril Lebogang Taolo	Dr. scient	Population ecology, seasonal movement and habitat use
	Biology	of the African buffalo (Syncerus caffer) in Chobe
	0.	National Park, Botswana
2003 Marit Stranden	Dr.scient	Olfactory receptor neurones specified for the same
	Biology	odorants in three related Heliothine species (Helicoverpa
		armigera, Helicoverpa assulta and Heliothis virescens)
2003 Kristian Hassel	Dr.scient	Life history characteristics and genetic variation in an
	Biology	expanding species, Pogonatum dentatum
2003 David Alexander Rae	Dr.scient	Plant- and invertebrate-community responses to species
	Biology	interaction and microclimatic gradients in alpine and
		Artic environments
2003 Åsa A Borg	Dr.scient	Sex roles and reproductive behaviour in gobies and
	Biology	guppies: a female perspective
2003 Eldar Åsgard Bendiksen	Dr.scient	Environmental effects on lipid nutrition of farmed
	Biology	Atlantic salmon (Salmo Salar L.) parr and smolt
2004 Torkild Bakken	Dr.scient	A revision of Nereidinae (Polychaeta, Nereididae)
	Biology	
2004 Ingar Pareliussen	Dr.scient	Natural and Experimental Tree Establishment in a
	Biology	Fragmented Forest, Ambohitantely Forest Reserve,
		Madagascar

2004 Tore Brembu	Dr.scient Biology	Genetic, molecular and functional studies of RAC GTPases and the WAVE-like regulatory protein complex in <i>Arabidopsis thaliana</i>
2004 Liv S. Nilsen	Dr.scient Biology	Coastal heath vegetation on central Norway; recent past, present state and future possibilities
2004 Hanne T. Skiri	Dr.scient Biology	Olfactory coding and olfactory learning of plant odours in heliothine moths. An anatomical, physiological and behavioural study of three related species (<i>Heliothis</i> <i>virescens</i> , <i>Helicoverpa armigera</i> and <i>Helicoverpa</i> <i>assulta</i>)
2004 Lene Østby	Dr.scient Biology	Cytochrome P4501A (CYP1A) induction and DNA adducts as biomarkers for organic pollution in the natural environment
2004 Emmanuel J. Gerreta	Dr. philos Biology	The Importance of Water Quality and Quantity in the Tropical Ecosystems, Tanzania
2004 Linda Dalen	Dr.scient Biology	Dynamics of Mountain Birch Treelines in the Scandes Mountain Chain, and Effects of Climate Warming
2004 Lisbeth Mehli	Dr.scient Biology	Polygalacturonase-inhibiting protein (PGIP) in cultivated strawberry (<i>Fragaria x ananassa</i>): characterisation and induction of the gene following fruit infection by <i>Botrytis</i> <i>cinerea</i>
2004 Børge Moe	Dr.scient Biology	Energy-Allocation in Avian Nestlings Facing Short-Term Food Shortage
2005 Matilde Skogen Chauton	Dr.scient Biology	Metabolic profiling and species discrimination from High-Resolution Magic Angle Spinning NMR analysis of whole-cell samples
2005 Sten Karlsson	Dr.scient Biology	Dynamics of Genetic Polymorphisms
2005 Terje Bongard	Dr.scient Biology	Life History strategies, mate choice, and parental investment among Norwegians over a 300-year period
2005 Tonette Røstelien	ph.d Biology	Functional characterisation of olfactory receptor neurone types in heliothine moths
2005 Erlend Kristiansen	Dr.scient Biology	Studies on antifreeze proteins
2005 Eugen G. Sørmo	Dr.scient Biology	Organochlorine pollutants in grey seal (<i>Halichoerus grypus</i>) pups and their impact on plasma thyrid hormone and vitamin A concentrations
2005 Christian Westad	Dr.scient Biology	Motor control of the upper trapezius
2005 Lasse Mork Olsen	ph.d Biology	Interactions between marine osmo- and phagotrophs in different physicochemical environments
2005 Åslaug Viken	ph.d Biology	Implications of mate choice for the management of small populations
2005 Ariaya Hymete Sahle Dingle	ph.d Biology	Investigation of the biological activities and chemical constituents of selected <i>Echinops</i> spp. growing in Ethiopia
2005 Anders Gravbrøt Finstad	ph.d Biology	Salmonid fishes in a changing climate: The winter challenge
2005 Shimane Washington Makabu	ph.d Biology	Interactions between woody plants, elephants and other browsers in the Chobe Riverfront, Botswana
2005 Kjartan Østbye	Dr.scient Biology	The European whitefish <i>Coregonus lavaretus</i> (L.) species complex: historical contingency and adaptive radiation

2006 Kari Mette Murvoll	ph.d Biology	Levels and effects of persistent organic pollutans (POPs) in seabirds
		Retinoids and α-tocopherol – potential biomakers of POPs in birds?
2006 Ivar Herfindal	Dr.scient Biology	Life history consequences of environmental variation along ecological gradients in northern ungulates
2006 Nils Egil Tokle	ph.d Biology	Are the ubiquitous marine copepods limited by food or predation? Experimental and field-based studies with main focus on <i>Calanus finmarchicus</i>
2006 Jan Ove Gjershaug	Dr.philos Biology	Taxonomy and conservation status of some booted eagles in south-east Asia
2006 Jon Kristian Skei	Dr.scient Biology	Conservation biology and acidification problems in the breeding habitat of amphibians in Norway
2006 Johanna Järnegren	ph.d Biology	Acesta Oophaga and Acesta Excavata – a study of hidden biodiversity
2006 Bjørn Henrik Hansen	ph.d Biology	Metal-mediated oxidative stress responses in brown trout (<i>Salmo trutta</i>) from mining contaminated rivers in Central Norway
2006 Vidar Grøtan	ph.d Biology	Temporal and spatial effects of climate fluctuations on population dynamics of vertebrates
2006 Jafari R Kideghesho	ph.d Biology	Wildlife conservation and local land use conflicts in western Serengeti, Corridor Tanzania
2006 Anna Maria Billing	ph.d Biology	Reproductive decisions in the sex role reversed pipefish Syngnathus typhle: when and how to invest in reproduction
2006 Henrik Pärn	ph.d Biology	Female ornaments and reproductive biology in the bluethroat
2006 Anders J. Fjellheim	ph.d Biology	Selection and administration of probiotic bacteria to marine fish larvae
2006 P. Andreas Svensson	ph.d Biology	Female coloration, egg carotenoids and reproductive success: gobies as a model system
2007 Sindre A. Pedersen	ph.d Biology	Metal binding proteins and antifreeze proteins in the beetle <i>Tenebrio molitor</i> - a study on possible competition for the semi-essential amino acid cysteine
2007 Kasper Hancke	ph.d Biology	Photosynthetic responses as a function of light and
2007 7	Biology	temperature: Field and laboratory studies on marine microalgae
2007 Tomas Holmern	ph.d Biology	Bushmeat hunting in the western Serengeti: Implications for community-based conservation
2007 Kari Jørgensen	ph.d Biology	Functional tracing of gustatory receptor neurons in the CNS and chemosensory learning in the moth <i>Heliothis virescens</i>
2007 Stig Ulland	ph.d Biology	Functional Characterisation of Olfactory Receptor Neurons in the Cabbage Moth, (<i>Mamestra brassicae</i> L.) (Lepidoptera, Noctuidae). Gas Chromatography Linked to Single Cell Recordings and Mass Spectrometry
2007 Snorre Henriksen	ph.d Biology	Spatial and temporal variation in herbivore resources at northern latitudes
2007 Roelof Frans May	ph.d Biology	Spatial Ecology of Wolverines in Scandinavia
2007 Vedasto Gabriel Ndibalema	ph.d Biology	Demographic variation, distribution and habitat use between wildebeest sub-populations in the Serengeti National Park, Tanzania

2007 Julius William Nyahongo	ph.d Biology	Depredation of Livestock by wild Carnivores and Illegal Utilization of Natural Resources by Humans in the Western Serengeti, Tanzania
2007 Shombe Ntaraluka Hassan	ph.d Biology	Effects of fire on large herbivores and their forage resources in Serengeti, Tanzania
2007 Per-Arvid Wold	ph.d Biology	Functional development and response to dietary treatment in larval Atlantic cod (<i>Gadus morhua</i> L.) Focus on formulated diets and early weaning
2007 Anne Skjetne Mortensen	ph.d Biology	Toxicogenomics of Aryl Hydrocarbon- and Estrogen Receptor Interactions in Fish: Mechanisms and Profiling of Gene Expression Patterns in Chemical Mixture Exposure Scenarios
2008 Brage Bremset Hansen	ph.d Biology	The Svalbard reindeer (<i>Rangifer tarandus platyrhynchus</i>) and its food base: plant-herbivore interactions in a high-arctic ecosystem
2008 Jiska van Dijk	ph.d Biology	Wolverine foraging strategies in a multiple-use landscape
2008 Flora John Magige	ph.d Biology	The ecology and behaviour of the Masai Ostrich (Struthio camelus massaicus) in the Serengeti Ecosystem, Tanzania
2008 Bernt Rønning	ph.d Biology	Sources of inter- and intra-individual variation in basal metabolic rate in the zebra finch, (<i>Taeniopygia guttata</i>)
2008 Sølvi Wehn	ph.d Biology	Biodiversity dynamics in semi-natural mountain landscapes.A study of consequences of changed agricultural practices in Eastern Jotunheimen
2008 Trond Moxness Kortner	ph.d Biology	"The Role of Androgens on previtellogenic oocyte growth in Atlantic cod (<i>Gadus morhua</i>): Identification and patterns of differentially expressed genes in relation to Stereological Evaluations"
2008 Katarina Mariann Jørgensen	Dr.Scient Biology	The role of platelet activating factor in activation of growth arrested keratinocytes and re-epithelialisation
2008 Tommy Jørstad	ph.d Biology	Statistical Modelling of Gene Expression Data
2008 Anna Kusnierczyk	ph.d Bilogy	Arabidopsis thaliana Responses to Aphid Infestation
2008 Jussi Evertsen	ph.d Biology	Herbivore sacoglossans with photosynthetic chloroplasts
2008 John Eilif Hermansen	ph.d Biology	Mediating ecological interests between locals and globals by means of indicators. A study attributed to the asymmetry between stakeholders of tropical forest at Mt. Kilimanjaro, Tanzania
2008 Ragnhild Lyngved	ph.d Biology	Somatic embryogenesis in <i>Cyclamen persicum</i> . Biological investigations and educational aspects of cloning
2008 Line Elisabeth Sundt-Hansen	ph.d Biology	Cost of rapid growth in salmonid fishes
2008 Line Johansen	ph.d Biology	Exploring factors underlying fluctuations in white clover populations – clonal growth, population structure and spatial distribution
2009 Astrid Jullumstrø Feuerherm	ph.d Biology	Elucidation of molecular mechanisms for pro- inflammatory phospholipase A2 in chronic disease

2009	Pål Kvello	ph.d Biology	Neurons forming the network involved in gustatory coding and learning in the moth <i>Heliothis virescens:</i> Physiological and morphological characterisation, and
2000	Tayawa Davald Kiallaan	nh d	integration into a standard brain atlas
2009	Trygve Devold Kjellsen	pn.a Biology	Extreme Frost Tolerance in Boreal Conifers
2009	Johan Reinert Vikan	ph.d Biology	Coevolutionary interactions between common cuckoos <i>Cuculus canorus</i> and <i>Fringilla</i> finches
2009	Zsolt Volent	ph.d Biology	Remote sensing of marine environment: Applied surveillance with focus on optical properties of phytoplankton, coloured organic matter and suspended matter
2009	Lester Rocha	ph.d Biology	Functional responses of perennial grasses to simulated grazing and resource availability
2009	Dennis Ikanda	ph.d Biology	Dimensions of a Human-lion conflict: Ecology of human predation and persecution of African lions (<i>Panthera leo</i>) in Tanzania
2010	Huy Quang Nguyen	ph.d Biology	Egg characteristics and development of larval digestive function of cobia (<i>Rachycentron canadum</i>) in response to dietary treatments -Focus on formulated diets
2010	Eli Kvingedal	ph.d Biology	Intraspecific competition in stream salmonids: the impact of environment and phenotype
2010	Sverre Lundemo	ph.d Biology	Molecular studies of genetic structuring and demography in <i>Arabidopsis</i> from Northern Europe
2010	Iddi Mihijai Mfunda	ph.d Biology	Wildlife Conservation and People's livelihoods: Lessons Learnt and Considerations for Improvements. Tha Case of Serengeti Ecosystem, Tanzania
2010	Anton Tinchov Antonov	ph.d Biology	Why do cuckoos lay strong-shelled eggs? Tests of the puncture resistance hypothesis
2010	Anders Lyngstad	ph.d Biology	Population Ecology of <i>Eriophorum latifolium</i> , a Clonal Species in Rich Fen Vegetation
2010	Hilde Færevik	ph.d Biology	Impact of protective clothing on thermal and cognitive responses
2010	Ingerid Brænne Arbo	ph.d Medical technology	Nutritional lifestyle changes – effects of dietary carbohydrate restriction in healthy obese and overweight
2010	Yngvild Vindenes	ph.d Biology	Stochastic modeling of finite populations with individual heterogeneity in vital parameters
2010	Hans-Richard Brattbakk	ph.d Medical	The effect of macronutrient composition, insulin stimulation, and genetic variation on leukocyte gene expression and possible health benefits
2011	Geir Hysing Bolstad	ph.d Biology	Evolution of Signals: Genetic Architecture, Natural Selection and Adaptive Accuracy
2011	Karen de Jong	ph.d Biology	Operational sex ratio and reproductive behaviour in the two-spotted goby (<i>Gobiusculus flavescens</i>)
2011	Ann-Iren Kittang	ph.d Biology	Arabidopsis thaliana L. adaptation mechanisms to microgravity through the EMCS MULTIGEN-2 experiment on the ISS:- The science of space experiment integration and adaptation to simulated microgravity
2011	Aline Magdalena Lee	ph.d Biology	Stochastic modeling of mating systems and their effect on population dynamics and genetics
2011	Christopher Gravningen Sørmo		Rho GTPases in Plants: Structural analysis of ROP GTPases; genetic and functional studies of MIRO GTPases in <i>Arabidopsis thaliana</i>

2011 Grethe Robertsen	ph.d Biology	Relative performance of salmonid phenotypes across environments and competitive intensities
2011 Line-Kristin Larsen	ph.d Biology	Life-history trait dynamics in experimental populations of guppy (<i>Poecilia reticulata</i>): the role of breeding regime and captive environment
2011 Maxim A. K. Teichert	ph.d Biology	Regulation in Atlantic salmon (<i>Salmo salar</i>): The interaction between habitat and density
2011 Torunn Beate Hancke	ph.d Biology	Use of Pulse Amplitude Modulated (PAM) Fluorescence and Bio-optics for Assessing Microalgal Photosynthesis and Physiology
2011 Sajeda Begum	ph.d Biology	Brood Parasitism in Asian Cuckoos: Different Aspects of Interactions between Cuckoos and their Hosts in Bangladesh
2011 Kari J. K. Attramadal	ph.d Biology	Water treatment as an approach to increase microbial control in the culture of cold water marine larvae
2011 Camilla Kalvatn Egset	ph.d Biology	The Evolvability of Static Allometry: A Case Study
2011 AHM Raihan Sarker	ph.d Biology	Conflict over the conservation of the Asian elephant (<i>Elephas maximus</i>) in Bangladesh
2011 Gro Dehli Villanger	ph.d Biology	Effects of complex organohalogen contaminant mixtures on thyroid hormone homeostasis in selected arctic marine mammals
2011 Kari Bjørneraas	ph.d Biology	Spatiotemporal variation in resource utilisation by a large herbivore, the moose
2011 John Odden	ph.d Biology	The ecology of a conflict: Eurasian lynx depredation on domestic sheep
2011 Simen Pedersen	ph.d Biology	Effects of native and introduced cervids on small mammals and birds