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Summary

The excitation spectrum of a spin-orbit coupled Bose-Einstein condensate
is investigated by the use of the Bose-Hubbard model and a mean-field ap-
proach. The undiagonalized Hamiltonian matrix for a general inversion-
symmetric Bravais lattice is found. Analytical expressions for the excita-
tion spectrum is then found in the limiting case of on-site interactions and
nearest-neighbor hopping on a one-dimensional chain and a two-dimensional
quadratic lattice. The densities of particles in the ground state acting as
mean-field parameters are found self-consistently by minimization of the free
energy, and they are seen to be in agreement with published literature.
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Sammendrag

Eksitasjonsspekteret for et spinbanekoblet Bose-Einstein-kondensat under-
søkes ved hjelp av Bose-Hubbard-modellen og en middelfelttilnærming. Det
blir funnet en ikke-diagonalisert Hamilton-operator for et generelt inversjons-
symmetrisk Bravais-gitter. Deretter finnes analytiske uttrykk for eksitasjons-
spekteret i grensetilfellet med kun lokale vekselvirkninger og hopping til
nærmeste nabo på en kjede i én dimensjon og et kvadratisk gitter i to dimen-
sjoner. Middelfeltparametrene tetthet av partikler i grunntilstand bestemmes
selvkonsistent ved minimering av fri energi, noe som resulterer i verdier som
stemmer overens med litteraturen.
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1. Introduction

Most people should be familiar with the three phases of matter that surround
us in everyday life: gas, liquid, and solid. Under extreme conditions there
exist several other phases as well. One such phase is the Bose-Einstein
condensate (BEC). Condensation to this phase occurs when bosons are
cooled down to just above absolute zero, i.e. −273.15 ◦C. In this phase,
a macroscopic number of particles are occupying the quantum mechanical
ground state of the system. A BEC is thus a macroscopic manifestation of
quantum mechanical phenomena. This is impossible in higher-temperature
many-body systems where the thermal energy excites the particles into a
number of excited states. The study of BECs makes it possible to develop
theories that are experimentally verifiable in many-body quantum mechanics.

The existence of BECs was predicted theoretically by Satyendra Nath
Bose and Albert Einstein in the 1920’s. Helium superfluids were subsequently
produced by Pyotr Kapitza [1], John F. Allen, and Don Misener [2] in 1937.
However, as the name "fluid" signals, the strong interatomic interactions
of helium atoms easily lift the system out of the ground state, making it
unfitting to consider the weak-coupling limit. Only in the last couple of
decades have BECs with weak interactions been created experimentally, by
sufficient cooling of atomic gases: In 1995 this was achieved with rubidium
[3] and sodium [4] atoms. Novel advancements in cooling methods made
sufficient cooling possible [5]. There has been an intensification in both
theoretical and experimental research on BECs made from ultracold gases
ever since.

Research on BECs has revolved around the case of a continuous uniform
condensate, and on the case of ultracold atoms being confined to a lattice.
The latter case can be obtained through the optical lattice: Periodic poten-
tials produced by the interference of two or more lasers acting as a lattice for
the atoms. Periodic confinement of atoms allows for the mathematically less
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12 1. Introduction

involved discrete Fourier transform, as well as application of the physically
intuitive Bose-Hubbard model. Moreover, investigations into BECs on a lat-
tice may provide insight into the physics of solids, since the optical lattice
structurally mimic a crystal. The optical lattice, however, has the advantage
of having tunable lattice parameters such as the degree of binding to lat-
tice points and lattice constants, in addition to being devoid of complicating
interactions such as those of the phonon.

While the investigation into BECs is concerned with bosons, the study
of crystals typically involves electrons. One complicating interaction arising
in a material is the spin-orbit coupling (SOC) experienced by the spin-
1/2 fermions. In quantum mechanics, SOC is an interaction that couples
the particle’s spin to its movement that arises naturally from the relativistic
Dirac equation [6]. It contributes to the fine structure of the energy levels of
an electron bound to an atom. It also affects electrons moving in spatially
inhomogeneous electric fields in matter. Creating an environment for the
isolated study of SOC on electrons experimentally, however, would require
electric fields that are much stronger than what is typically available in a
laboratory [7].

SOC experienced naturally by bosons is of the integer-spin type, instead
of the spin-1/2 version for electrons. Its experimental fabrication would also
require strong fields because of its weak nature. However, extensive research
has been done on creating systems of synthetic SOC. All needed is a two-
state system with a transition that both impacts and is influenced by the
atom’s momentum, and the result is essentially spin-1/2 SOC. For example,
by using a two-component BEC containing two hyperfine states of an atom,
such as rubidium, that interacts with an external electric field, an observable
and highly tunable synthetic SOC is created [8]. In addition to being used
in the understanding of SOC in electrons, the unique situation of a spin-
1/2 coupling of integer-spin particles allows for some new and fascinating
phenomena [9].

In recent years there has been intensive research in the area of synthetic
SOC in BECs. A comprehensive review of experimental and theoretical stud-
ies of synthetic spin systems can be found in Ref. [10]. More recently, parti-
cles in such a system were shown to display properties of having negative mass
[11], triggering mainstream interest in popular science [12]. Phase diagrams
and density distributions of a spin-orbit coupled BEC on a two-dimensional
lattice was done in Ref. [13], making use of the Bose-Hubbard model and
the so-called Rashba-type SOC both of the weak and strong type. Phase
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transitions and real-space density distributions have been the focus for this
and many other papers through finding the wave function of the condensate.

Finding the excitation spectrum of the BEC does not necessarily include
working with wave functions. In this thesis the aim is to investigate the
excitation spectrum of a weakly interacting BEC, bypassing wave functions
altogether, and instead focusing on operator formalism. Starting from the
treatment of a two-component weakly interacting BEC in Ref. [14], the two
components may be interpreted as spin states, and boson operators may be
expressed in terms of the helicity basis that diagonalizes the spin-orbit cou-
pled single-particle Hamiltonian. This procedure includes mean field theory
in momentum space where ground state bosons interacting with both helicity
bands are included. The result of this treatment is two-fold: an expression for
the Hamiltonian matrix with a high degree of generality, and explicit expres-
sions for the energy spectrum in limiting cases. The limiting cases discussed
will be the case of nearest-neighbor hopping and on-site interactions, applied
on a one-dimensional chain and a two-dimensional quadratic lattice. The
highly general excitation matrix could be of use by others in investigations
into further limiting cases.

A similar treatment with an erroneous and excessively simplifying as-
sumption was made in the author’s specialization project [15]. This lead to
results that did not agree with literature. Because the underlying concepts
mostly overlap, parts of this thesis will be based on sections of Ref. [15], and
these parts will be marked with an asterisk (*).

First some preliminary concepts are presented. The Bose-Hubbard model
and SOC models are then described and cast in a form used in this paper.
The general case of an inversion symmetric Bravais lattice is then considered.
Explicit results for the excitation spectrum is then found for the limiting case
of nearest-neighbor hopping, and on-site interactions in the one- and two-
dimensional cases. A discussion of the results follows, before we conclude.
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2. Preliminaries

2.1 Mathematical conventions*

We write variable vectors in italic boldface, as in the wave vector k; Cartesian
unit vectors are denoted x̂, ŷ and ẑ; while basis vectors are denoted by Φ,
ξ, Ψ, and χ. Complex conjugation of scalars is denoted with an asterisk, as
in s∗; Hermitian conjugation is denoted by a dagger, as in Φ†; transpose is
denoted T, as in Φk =

`

bk↑ bk↓
˘T . Vectors and matrices are enclosed by

parentheses. We do not use any specific notation for operators, but we use
hats on field operators ψ̂ to emphasize that they are not wavefunctions. The
commutator between operatorsA andB is [A,B] = AB−BA. The Kronecker
delta is written δij. Greek letters α and β refer to either components, spin
states, or helicity bands depending on the context. Spin states are written
↑ and ↓; helicity bands are written + and −. a (a†) and b (b†) are used
for annihilation (creation) operators. Multiple subscripts are in general not
separated by commas, as in bk↑. The Pauli spin matrices are

(2.1)

σx =

(
0 1
1 0

)
,

σy =

(
0 −i
i 0

)
,

σz =

(
1 0
0 −1

)
.

The notation σαβi means the element of σi where α =↑, ↓ picks out the first
or second row, respectively, and β =↑, ↓ picks out the first or second column,
respectively.
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16 2. Preliminaries

2.2 Second quantization*

Describing a many-body system by the use of wavefunctions can be awkward
due to the complexity of the resulting functions. Also, one is not necessarily
interested in the exact probability density for the location of each particle.
In the second quantization scheme one has therefore introduced the number
state, in bra-ket notation:

(2.2)|A〉 = |nν1 , nν2 , ...〉 ,

where nνi denotes the number of particles in state νi. We also introduce the
annihilation and creation operators, aνi and a†νi , which reduce and increase
the number nνi by one, respectively:

(2.3)aνi |nν1 , nν2 , ..., nνi , ...〉 =
a

nνi − 1 |nν1 , nν2 , ..., nνi − 1, ...〉 ,

(2.4)a†νi |nν1 , nν2 , ..., nνi , ...〉 =
?
nνi |nν1 , nν2 , ..., nνi + 1, ...〉 .

For a many-particle system of bosons, considered in this thesis, the num-
bers nνi can have any non-negative integer value, whereas in fermionic sys-
tems they can only be 0 or 1 by the Pauli exclusion principle. By the sym-
metry properties of bosons it can be shown [16] that the bosonic creation
and annihilation operators obey the commutation relations

(2.5)

[aνi , aνj ] = 0,

[a†νi , a
†
νj

] = 0,

[aνi , a
†
νj

] = δνiνj .

Whenever the basis ν is the position r the annihilation and creation
operators are called field operators, ψ̂ and ψ̂†, respectively, by convention.
When working with number states, operators can be expressed in terms of
annihilation and creation operators. For single-particle operators H1 and
two-particle operators H2 this is done by the following scheme [17], in terms
of field operators:

(2.6)

H1 =
∑
i

h(ri)→
∫
drψ̂†(r)h(r)ψ̂(r),

H2 =
1

2

∑
i 6=j

v(ri, rj)→
∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)v(r, r′)ψ̂(r′)ψ̂(r),
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where h(r) is the single-particle Hamiltonian of a single particle located at
r, v(r, r′) is the two-particle interaction of two particles located at r and
r′. Here we have igored a possible spin-dependency of the operators, which
would result in sums over spin states as well. We note that single-particle
operators are quadratic in creation and annihilation operators, while two-
particle operators are biquadratic.

In a system of bosons residing on lattice points it is convenient to choose
the basis ν to be lattice points i. Thus ai (a†i ) annihilates (creates) a boson
at lattice site i. The periodic nature of the lattice allows the creation and
annihilation operators to be expressed as a descrete Fourier transform of
creation and annihilation operators for k-states:

ai =
1

?
Ns

∑
k

bke
−ik·ri , (2.7)

where Ns is the number of lattice sites, ri is the location of lattice site i, and
the sum is over all k-vectors of the first Brillouin zone.

In addition we mention that we have the following relation on lattice,
where the sum is over all lattice points:

1

Ns

∑
j

e−i(k−k
′)·rj = δk,k′ . (2.8)

This relation is shown in Ref. [18].

2.3 Bose-Einstein condensate

A gas of bosons will condense into a Bose-Einstein condensate under some
critical conditions. This is a quantum mechanical effect that could never
occur in a classical gas. According to statistical mechanics, such a boson gas
will obey Bose-Einstein statistics, i.e. the number of particles in an energy
state i of energy εi and degeneracy gi is given by

ni(εi) =
gi

e(εi−µ)/kT − 1
, (2.9)

where µ is the chemical potential, k is Boltzmann constant og T is the tem-
perature. The total number of particles is

N =
∑
i

ni =

∫ ∞
0

g(ε)

e(εi−µ)/kT − 1
dε, (2.10)
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where g(ε) is the density of states.
From this it is seen that the density ρ = N/V is an increasing function

of µ. From statistical mechanics it is known that we must have µ < εi
for the partition function of state i to exist. Specifically, this means that
µ < ε0, where ε0 is the ground state energy. When N is sufficiently large, the
zero-point energy may be ignored by setting ε0 = 0 [19], leading to µ < 0.
Combined with the known result g(ε) = CV ε1/2 for a non-interacting Bose
gas in three dimensions [19], and defining the integration variable x = ε/kT ,
we find the maximum possible density to be

ρ = C(kT )3/2

∫ ∞
0

x1/2

ex − 1
dx = ρc, (2.11)

i.e. a finite value.
This result is paradoxical since higher densities can indeed be obtained.

The solution is that the integral approximation in (2.10) fails for the lowest
energy levels. Singling out the ground state (assuming g0 = 1),

ρ =
1

V

1

e−µ/kT − 1
+ C

∫ ∞
0

ε1/2

e(εi−µ)/kT − 1
dε = ρ0 + ρc. (2.12)

Thus we see that increases in density only occur in the ground state den-
sity ρ0. By surpassing ρc, or equivalently going below a critical temperature
Tc, the system undergoes a continuous phase transition, where one possible
order parameter could be ρ0. As seen from (2.11), ρc is a function of T and
thus for T > Tc, ρ0 vanishes when ρc is made arbitrarily large. At the transi-
tion ρ0 would be close to zero, but by moving further into the ordered state
this number is made finite and therefore macroscopic, in a process called
condensation. We can thus speak of BECs having a macroscopic number of
particles in the ground state.

For a system to exhibit Bose-Einstein condensation it is required that ρc
be finite for a given T , as in (2.11). In a three-dimensional system the form
of g(ε) makes the integral converge. The same is true for a two-dimensional
system at T = 0 or if the particles are confined by a harmonic-oscillator po-
tential [19]. Bose-Einstein condensation in one-dimensional free Bose gases is
not possible. However, one-dimensional BECs may nevertheless be obtained
experimentally given that either the confining potential or the lattice point
potentials are sufficiently strong [20].



3. Theoretical models

3.1 Bose-Hubbard model for two-component sys-
tem*

We consider a many-body system of particles of two distinct species, labeled
α, β = A,B. Each particle of species α has the single-particle Hamilto-
nian hα(r). Two particles of species α and β located at position r and r′,
respectively, have the two-particle interaction vαβ(r, r′); note that we con-
sider both intra- and interspecies interactions. The general second-quantized
Hamiltonian for the system is then, by (2.6):

(3.1)

H = H1 +H2

=
∑
α

∫
drψ̂†α(r)hα(r)ψ̂α(r)

+
1

2

∑
αβ

∫
dr

∫
dr′ψ̂†α(r)ψ̂†α(r′)vαβ(r, r′)ψ̂α(r′)ψ̂α(r),

where ψ̂α(r) and ψ̂†α(r) are the annihilation and creation field operators,
respectively. Suppressing the species index α, the annihilation field operator
can be written as

(3.2)ψ̂(r) =
∑
ν

φν(r)bν ,

and correspondingly for the creation field operator ψ̂†(r). ν is the quantum
number of a member of any basis set, φν(r) and bν are the basis wavefunction
and annihilation operator, respectively, for any specific ν.

We now consider the system to be on a lattice. We do not specify the
dimensionality. This means that there are periodic potential wells in hα(r),

19



20 3. Theoretical models

common for both species, that make the particles attracted to periodic lattice
points. We do not consider interactions between the particles and the lattice
points1. We assume that the space between the lattice points are much larger
than the reach of the potential wells (called the "atomic limit"), meaning that
the particles tend to be located at specific lattice sites. This situation is called
the tight-binding model [21].

The tight-binding model motivates choosing the basis in (3.2) to be the
lattice sites, ν = ri. The wavefunctions φri then becomes Wannier functions
Wαri(r) ≡ Wα(r − ri)2. The field operator then becomes

(3.3)ψ̂α(r) =
∑
i

Wα(r − ri)biα,

where the sum is over all lattice sites ri. Inserting (3.3) into (3.1) and
collecting single-particle terms into sums where i = j and i 6= j produces the
first expression for the Bose-Hubbard model:

(3.4)H = −
∑
α

∑
i 6=j

tijαb
†
iαbjα +

∑
iα

εiαb
†
iαbiα +

1

2

∑
αβ

∑
ijkl

Uijklαβb
†
iαb
†
jβbkβblα,

where we have introduced the parameters

(3.5)tijα = −
∫
drW ∗

α(r − ri)hαWα(r − rj),

(3.6)εiα =

∫
drW ∗

α(r − ri)hαWα(r − ri),

Uijklαβ =

∫
dr

∫
dr′W ∗

α(r − ri)W ∗
β (r − rj)vαβ(r, r′)Wβ(r − rk)Wα(r − rl).

(3.7)

Physically, tijα is the hopping amplitude from site i to site j, εiα is the energy
offset at site i, and Uijklαβ is the interaction amplitude. (3.4) represents the
version of the Bose-Hubbard model used in this thesis.

1I.e. the lattice point potentials are unaffected by the particles. In a material this
means we neglect phonons

2We use the Wannier basis of the lowest energy band.
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It is clear that the parameters (3.5), (3.6), and (3.7) are calculated by
integrating the overlap of Wannier functions. However, since Wannier func-
tions are highly localized around their respective lattice points the overlap
of different sites quickly vanish with increasing distance between the points.
The convenient consequence of choosing the Wannier basis is thus that most
parameters vanish. It is therefore common to only include lowest-order con-
tributions in the sums in (3.4), thus obtaining the most common form of the
Bose-Hubbard model:

H = −
∑
α

tα
∑
<i,j>

b†iαbjα +
∑
iα

εiαb
†
iαbiα +

1

2

∑
αβ

Uαβ
∑
i

b†iαb
†
iβbiβbiα, (3.8)

where < i, j > denotes the sum over nearest-neighbor sites i and j, tα is the
corresponding hopping amplitude, and Uαβ is the onsite interaction ampli-
tude.

The following expressions were used for hα(r) and vαβ(r, r′) in Ref. [14]
and serve as examples for concreteness:

(3.9)hα(r) = − ∇
2

2mα

− µα + V0(r) + VT,α(r),

(3.10)vαβ(r, r′) = γαβδ(r − r′),

wheremα and µα are the mass and chemical potential, respectively, of compo-
nent α; V0(r) is the optical lattice potential; VT,α(r) is the trapping potential
of component α; and γαβ is the onsite interaction strenght between species
α and β.

The Bose-Hubbard model is in this thesis applied on a boson gas residing
on an optical lattice. To obtain this the bosons are trapped by a trapping
potential VT,α(r); this slowly varying electric field confines the bosons to a
certain volume of space. The optical lattice is made by a periodic potential
V0(r) made possible by two interfering lasers making an interference pattern
that influences the bosons such as to mimic a lattice. See e.g. Ref. [14] for
details.

In the following we interpret the two species A and B to be so-called syn-
thetic spin states, explained in Section 3.2.2. We thus have the designation
α, β =↑, ↓.
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3.1.1 Fourier transform

We want to express H in terms of the momentum of the particles, rather
than the position. The real space boson operators can be defined in terms of
the Fourier-transformed boson operators:

biα =
1

?
Ns

∑
k

bkαe
−ik·ri , (3.11)

where Ns is the number of lattice sites. We assume that the energy offset at
each lattice point is constant for each spin, εiα = Tα. Inserting (3.11) into
the single-particle part of (3.4) gives

(3.12)
H1 = −

∑
α

∑
i 6=j

tijα
1

Ns

∑
kk′

b†kαbk′αe
−ik′·rjeik·ri

+
∑
iα

Tα
1

Ns

∑
kk′

b†kαbk′αe
−ik′·rieik·ri .

We let rj = ri+δ so that the sum over j is replaced by a sum over all vectors δ
between point i and all other neighboring points. We do not restrict ourselves
to nearest-neighbor hopping. We assume that the hopping amplitude is only
dependent on the vector δ between the two lattice points, so that tijα = tα(δ).
Using this, and eliminating the sum over k′ by the relation (2.8), yield

(3.13)

H1 = −
∑
α

∑
δ

tα(δ)e−ik
′·δ
∑
kk′

b†kαbk′α
1

Ns

∑
i

e−i(k
′−k)·ri

+
∑
α

Tα
∑
kk′

b†kαbk′α
1

Ns

∑
i

e−i(k
′−k)·ri

=
∑
kα

(εkα + Tα) b†kαbkα,

where

εkα = −
∑
δ

tα(δ)e−ik·δ. (3.14)

The Fourier transform of the interaction Hamiltonian becomes
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(3.15)
H2 =

1

2

∑
αβ

∑
{ki}

∑
ijkl

Uijklαβ
1

N2
s

b†k1αe
ik1·rib†k2βe

ik2·rjbk3βe
ik3·rkbk4αe

ik4·rl

= H↑↓2 +
∑
α

Hα
2 ,

where {ki} indicates a sum over k1,k2,k3,k4, and Hα
2 includes the terms

for which α = β and H↑↓2 includes the terms for which α 6= β. We now
let rj = ri + δ1, rk = ri + δ2, and rl = ri + δ3. We assume that the
scattering potential is independent of the lattice points involved, only their
relative positions, so that Uijklαβ = Uαβ(δ1, δ2, δ3). When α = β we let
Uαβ(δ1, δ2, δ3) ≡ Uα(δ1, δ2, δ3) and obtain

Hα
2 =

1

2Ns

∑
α

∑
{ki}

Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei(k2·δ1−k3·δ2−k4·δ3)


b†k1αb

†
k2α
bk3αbk4α

1

Ns

∑
i

e−i(k3+k4−k1−k2)·ri

=
1

2Ns

∑
α

∑
{ki}

Ũα(k2,k3,k4)b†k1αb
†
k2α
bk3αbk4αδk1+k2,k3+k4 ,

(3.16)

where {δi} indicates a sum over all δ1, δ2, δ3, except for (δ1, δ2, δ3) = (0, 0, 0).
In the last equality we have again used (2.8), and introduced the Fourier
transform of the intra-spin scattering potential,

Ũα(k2,k3,k4) = Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei(k2·δ1−k3·δ2−k4·δ3). (3.17)

When α 6= β we obtain
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H↑↓2 =
1

2Ns

∑
{ki}

∑
α6=β

0∑
{δi}

Uαβ(δ1, δ2, δ3)b†k1αb
†
k2β
bk3βbk4αe

i(k2·δ1−k3·δ2−k4·δ3)

· 1

Ns

∑
i

e−i(k3+k4−k1−k2)·ri

=
1

2Ns

∑
{ki}

0∑
{δi}

[
U↑↓(δ1, δ2, δ3)b†k1↑b

†
k2↓bk3↓bk4↑e

i(k2·δ1−k3·δ2−k4·δ3)

+ U↓↑(δ1, δ2, δ3)b†k1↓b
†
k2↑bk3↑bk4↓e

i(k2·δ1−k3·δ2−k4·δ3)
]
δk1+k2,k3+k4 ,

(3.18)

where 0 above the sum indicates that the sum includes (δ1, δ2, δ3) = (0, 0, 0),
and where we used (2.8) in the last equality. We now assume that U↑↓ = U↓↑.
In the first term in the parathesis we change the names of the k variables
so that k2 → k3, k3 → k4, and k4 → k2; in the second term we do the
assignment k2 → k1, k3 → k2, and k1 → k3. Thus we obtain

H↑↓2

=
1

2Ns

∑
{ki}

0∑
{δi}

U↑↓(δ1, δ2, δ3)
[
b†k1↑b

†
k3↓bk4↓bk2↑e

i(k3·δ1−k4·δ2−k2·δ3)δk4+k2,k1+k3

+ b†k3↓b
†
k1↑bk2↑bk4↓e

i(k1·δ1−k2·δ2−k4·δ3)δk2+k4,k3+k1

]
=

1

2Ns

∑
{ki}

2U↑↓(0, 0, 0) +
∑
{δi}

U↑↓(δ1, δ2, δ3)
(
ei(k1·δ1−k2·δ2−k4·δ3)

+ ei(k3·δ1−k4·δ2−k2·δ3)
) b†k1↑bk2↑b†k3↓bk4↓δk1+k3,k2+k4

=
1

Ns

∑
{ki}

Ũ↑↓(k1,k2,k3,k4)b†k1↑bk2↑b
†
k3↓bk4↓δk1+k3,k2+k4 ,

(3.19)

where we in the penultimate equality commuted the boson operators ac-
cording to the commutation relation (2.5), and then introduced the Fourier
transform of the inter-spin scattering potential,
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Ũ↑↓(k1,k2,k3,k4) = U↑↓(0, 0, 0) +
1

2

∑
{δi}

U↑↓(δ1, δ2, δ3)
(
ei(k1·δ1−k2·δ2−k4·δ3)

+ ei(k3·δ1−k4·δ2−k2·δ3)
)
.

(3.20)

In total we now have the following Fourier transformed Hamiltonian:

(3.21)

H =
∑
kα

(εkα + Tα) b†kαbkα

+
1

Ns

∑
{ki}

[
1

2

∑
α

Ũα(k2,k3,k4)b†k1αb
†
k2α
bk3αbk4αδk1+k2,k3+k4

+ Ũ↑↓(k1,k2,k3,k4)b†k1↑bk2↑b
†
k3↓bk4↓δk1+k3,k2+k4

]

≡ H1 +
1

Ns

[
1

2

∑
α

Hα
2 +H↑↓2

]
.

This result is the same as in Ref. [14] except for a factor of 1/2 supposedly
missing in the Fourier-transformed inter-spin potential.

3.2 Spin-orbit coupling*

Spin-orbit coupling (abbreviated SOC throughout this thesis) is a coupling
between a particle’s spin and movement appearing in the Hamiltonian. We
will here consider spin-1/2 SOC, typically affecting electrons. SOC appears as
a consequence of the movement of electrons in electric fields. This movement
causes a magnetic field in the electron’s frame of reference. When considering
electrons bound to hydrogen-like atoms the spin-orbit coupling can either be
derived through a non-relativistic qualitative argument, or through an exact
relativistic argument. The non-relativistic argument finds an expression for
the magnetic field in the electron’s frame of reference by a non-relativistic
transformation between frames of reference, and thereby finds this field’s
coupling to the electron’s spin; see Chapter 4 in Ref. [22] for the complete
argument.
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The relativistic argument obtains the SOC as a consequence of treat-
ing the system relativistically through the Dirac equation. Taking the non-
relativistic limit produces explicitly a term in the Hamiltonian proportional
to L · S, representing SOC. See Chapter 15 of Ref. [23] for a thorough
derivation.

3.2.1 Rashba SOC

In materials, electrons experience electric fields e.g. caused by broken spatial
symmetry, giving rise to SOC. The review article referenced in Ref. [7] offers
an insightful discussion on this phenomena. Rashba spin-orbit coupling is
a special case of SOC where the electric field experienced by the electrons
is perpendicular to the two-dimensional plane on which the electrons are
confined [7]. Introducing the electric field E = Eẑ into the SOC term in the
Dirac equation yields

(3.22)

HSOC = − eh̄

4m2
ec

2
σ · (E × p)

= − eh̄

4m2
ec

2
Eσ · (ẑ × p)

=
eh̄

4m2
ec

2
E(σxpy − σypx)

=
eh̄2

4m2
ec

2
E(σxpy − σypx)

= λR(σxpy − σypx),

which is the familiar form of the Rashba SOC, where we have used the
operator identity p = h̄k and defined λR = eh̄2E

4m2
ec

2 .
The second-quantized version of (3.22) for a general two-dimensional

inversion-symmetric Bravais lattice is provided in Ref. [24], but only the
one-dimensional version is derived in the same reference. We thus seek to
make a heuristic justification for this expression using the same procedure as
in Ref. [24], but generalized from the case of a one-dimensional chain.

The ki operator in the i-direction is ki = −i∂i, by definition. Let âj be a
unit vector in the direction of a nearest-neighbor lattice site j. The inversion
symmetry of the lattice implies a nearest neighbor site in the −âj-direction
as well. The derivative in the âj-direction can then be expressed in a second
quantized form, and we write
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(3.23)kâj
= −i

∑
ri

(
b†ribri+âj

− b†ribri−âj

)
.

The y-component of this operator is

(3.24)
kâj ,y = (kâj

âj) · ŷ
= −i

∑
ri

(
b†ribri+âj

− b†ribri−âj

)
âj · ŷ.

The total ky is found from summing over all non-parallel nearest-neighbor
unit vectors, ky =

∑
âj
kâj ,y. We thus obtain

(3.25)

σxky =
∑
âj

σxkâj ,y

=
∑
ri,âj

∑
α,β

[
b†ri,ασ

αβ
x (−iâj · ŷ)bri+âj ,β + b†ri,ασ

αβ
x (iâj · ŷ)bri−âj ,β

]
.

By the same arguments we obtain

(3.26)σykx =
∑
ri,âj

∑
α,β

[
b†ri,ασ

αβ
y (−iâj · x̂)bri+âj ,β + b†ri,ασ

αβ
y (iâj · x̂)bri−âj ,β

]
.

Using periodic boundary conditions we can change the summation vari-
able ri → ri + âj in the second terms. Reordering, we finally obtain

HSOC = λR(σxpy − σypx)
= λR

∑
ri,âj

∑
α,β

[
b†ri,α

(
σαβx (−iaj · ŷ) + σαβy (iaj · x̂)

)
bri+aj ,β

+ b†ri+aj ,α

(
σαβx (iaj · ŷ) + σαβy (−iaj · x̂)

)
bri,β

]
= λR

∑
ri,âj

∑
α,β

b†ri,α
[
−σαβx (iaj · ŷ) + σαβy (iaj · x̂)

]
bri+aj ,β +H.c.

(3.27)

where H.c. means Hermitian conjugate. This expression is the same as the
one provided in Ref. [24]. Equation (3.27) is valid for an inversion-symmetric
two-dimensional Bravais lattice. However, by only including one pair of op-
positely positioned nearest neighbors, i.e. only one term a in the sum over
aj, (3.27) represents spin-orbit coupling on a one-dimensional chain in the
a-direction.
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3.2.2 Synthetic SOC

The SOC of spin-1/2 systems are of great importance in many interesting
materials [7]. These effects, however, are difficult to study directly since they
would require electric fields that are much stronger than what is typically
produced in a laboratory. This thesis is concerned with a system that can
simulate spin-1/2 SOC with the use of a ultracold boson gas. The bosons are
typically spin-1 and would thus possess a real intrinsic SOC. However, this
coupling is also very weak, just like the spin-1/2 type, and not as interesting
as spin-1/2 since systems of electron gases are much more abundant.

Producing a synthetic SOC in a ultracold boson gas is accomplished
through the introduction of so-called dressed spin states. These are boson
states that in certain regards can simulate the spin property created through
some laboratory introduced interaction. The dressed spin states can be cre-
ated by the use of two-photon Raman transitions, which is the subject of this
thesis. This mechanism was first proposed in Ref. [25]; we now briefly discuss
synthetic SOC by the use of Raman transitions based on the arguments of
this paper.

The transition between two atom states of different energy through an
intermediate state by the absorption and emission of two photons is called a
two-photon Raman transition. It is an example of inelastic photon scattering.
The bosons being used in the boson gas possess two internal hyperfine ground
states, |a〉 and |b〉, and an excited state |e〉. The energy levels of |a〉 and |b〉
are separated by h̄ω0. Two lasers are directed at the gas with non-parallel
wave vectors k1 and k2. The two lasers have angular frequencies ω1 and
ω2 which couple |a〉 and |b〉 to an intermediate energy level which is lower
than |e〉 by an angular frequency ∆. The deviation ∆ ensures that the lasers
do not couple |a〉 and |b〉 to |e〉 resonantly, which would lead to irrelevant
one-photon elastic scattering, called Rayleigh scattering. The lasers will thus
induce transitions from |a〉 to |b〉, and vice versa, via the intermediate state.
When ω2 − ω1 = ω0 we say that we have Raman resonance, which is much
weaker than the resonance of Rayleigh scattering, and the transition is called
a Raman transition.

Raman transitions result in the absorption and emission of photons of
different wave vectors, meaning that the atom is subject to a momentum
transfer of ±h̄(k2 − k1) by conservation of momentum. One of the lasers
is detuned away from Raman resonance by a small angular frequency δ.
However, the movement of the bosons causes them to experience slightly
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different laser frequencies due to the Doppler shift. Thus, depending of the
movement of the bosons, the frequencies can be shifted towards or away from
Raman resonance. In other words, the movements of the bosons influence
which state |a〉 or |b〉 they are in, while the transition between the states
influence the movement via the momentum transfer ±h̄(k2 − k1). Upon
designating |a〉 or |b〉 "spin up" and "spin down" we now effectively have
a synthetic spin-1/2 spin-orbit coupling. Unlike real SOC, this coupling is
highly tunable. It also involves bosons that are not subject to the same
fermionic constrictions, leading to many more exotic behaviors, not seen
anywhere else in physics [7]. This form of SOC produces both Rashba and
Dresselhaus type SOC of equal magnitude [7]; however, this thesis is only
concerned with the former.

Figure 3.1: Two-photon Raman scattering. Ground state energy levels |a〉 and |b〉
are separated by ω0. Transition between |a〉 and |b〉 can occur via an intermediate
energy level which is ∆ below the excited state |e〉. The transition occurs by the
absorption and emission of photons of frequency ω1 and ω2 at Raman resonance
ω2 − ω1 = ω0. δ is the small detuning from Raman resonance which is influenced
by the boson’s movement by the Doppler shift.

3.2.3 Spin-orbit coupling on a lattice

We now consider the Rashba spin-orbit coupling of spin particles residing
on a two-dimensional Bravais lattice. Fourier transforming (3.27) in 3.2 and
summing over spin indices yield
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(3.28)

HSOC = λR
∑

k,âj ,α,β

[
b†kα
(
−σαβx (iâj · ŷ) + σαβy (iâj · x̂)

)
bkβe

ik·âj

− b†kβ
(
−σβαx (iâj · ŷ) + σβαy (iâj · x̂)

)
bkαe

−ik·âj

]
= λR

∑
k,âj

[
b†k↑bk↓(−iâj · ŷ + âj · x̂)(eik·âj − e−ik·âj)

+ b†k↓bk↑(−iâj · ŷ − âj · x̂)(eik·âj − e−ik·âj)
]

= 2iλR
∑
k,âj

[
b†k↑bk↓(−iâj · ŷ + âj · x̂) sin(k · âj)

+ b†k↓bk↑(−iâj · ŷ − âj · x̂) sin(k · âj)
]

=
∑
k

(
b†k↑ b†k↓

)T ( 0 sk
s∗k 0

)(
bk↑
bk↓

)
,

where âj are non-parallel nearest neighbor unit vectors, and we in the first
equality made use of the relation (2.8), and where

(3.29)
sk = 2iλR

∑
âj

(−iâj · ŷ + âj · x̂) sin(k · âj)

= 2iλR
∑
j

e−iθj sin(k · âj),

θj being the angle between âj and the x-axis. The exponential follows from

(3.30)
âj · x̂− iâj · ŷ = cos θj − i cos(π − θj)

= cos θj − i sin θj

= e−iθj .

We now incorporate HSOC into the H1 found in (3.21) of Section 3.1.1.
Furthermore, we assume the energy parameters εkα and Tα to be independent
of synthetic spin state. Assigning εkα ≡ εk and Tα ≡ T , the total single-
particle Hamiltonian is now identified, namely

(3.31)
H1 =

∑
k

(
b†k↑ b†k↓

)( εk + T sk
s∗k εk + T

)(
bk↑
bk↓

)
=
∑
k

ξ†kAkξk.
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We now transform H1 from the current spin basis ξk =
`

bk↑ bk↓
˘T , to

a new basis Ψk, such that H1 is diagonal:

(3.32)H1 =
∑
k

Ψ†kDkΨk,

where Dk is a diagonal matrix with the eigenvalues of Ak on its diagonal.
These eigenvalues are found to be

(3.33)E±k = εk + T ± |sk|= −
∑
δ

t(δ)e−ik·δ + T ± 2λR|
∑
j

e−iθj sin(k · âj)|.

E±k are the single-particle energy bands in the spin-orbit coupled Bose-Hubbard
model. The energy offset T only represent a constant shift in the energy which
is qualitatively uninteresting in this treatment. In what remains we will set
this offset T to zero.

With the new basis labeled Ψk =
`

ak+ ak−
˘T we arrive at the single-

particle Hamiltonian

(3.34)
H1 =

∑
k

Ψ†k

(
E+
k 0
0 E−k

)
Ψk

=
∑
k

(
E+
k a
†
k+ak+ + E−k a

†
k−ak−

)
.

We will see that ak+ and ak− are boson operators, where the + (−) subscript
indicate the highest (lowest) energy band for the given k; we call them helicity
band operators.

We now consider some characteristics of the spin-orbit coupled single-
particle energy. These characteristics will be made use of in the following
treatment. Some assumptions concerning the lattice are needed. Firstly, we
assume the hopping parameter to be symmetric in the hopping vector δ,
t(δ) = t(−δ), due to the translational invariance of the system. This makes
the single-particle energy real, since
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(3.35)

(E±k )∗ = ε∗k ± |sk|

= −
∑
δ

t(δ)eik·δ ± |sk|

= −
∑
δ

t(−δ)e−ik·δ ± |sk|

= −
∑
δ

t(δ)e−ik·δ ± |sk|

= E±k ,

making, in fact, the symmetric nature of the hopping parameter a physical
demand in our model.

Secondly, since the lattice is inversion symmetric, all neighbors of a lattice
site are situated in pairs opposite of each other with respect to the lattice
site, i.e. they all appear in pairs (δi, δj) such that δi = −δj . We can then
write

(3.36)E±k = −2
∑
δ

t(δ) cos(k · δ)± 2λR|
∑
j

e−iθj sin(k · âj)|,

where now the sum over δ is only over one of each such pair. We observe
from this expression that E±k is symmetric in k, E±−k = E±k . We also note
that the ground state of H1 cannot be k = 0. To realize this we look at the
Maclaurin expansion of E−k , for k in the x ≥ 0 half plane:

(3.37)

E±k = −2
∑
δ

t(δ) cos(k · δ)− 2λR
∑
j

e−iθj sin(k · âj)

≈ −2
∑
δ

t(δ)

(
1− (k · δ)2

2

)
− 2λR

∑
j

e−iθjk · âj,

which clearly decreases with increasing k close to k = 0. We thus conclude
that the ground state vectors, named ki, are non-zero and pairwise negatives
of each other.

With a†
ki−aki− ≡ Ni being the number of particles in ground state i, we

rewrite H1 in the form
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(3.38)

H1 =
∑
k

(
E+
k a
†
k+ak+ + E−k a

†
k−ak−

)
=
∑
i

E−
ki
Ni +

′∑
k

(
E+
k a
†
k+ak+ + E−k a

†
k−ak−

)
= E0N0 +

′∑
k

(
E+
k a
†
k+ak+ + E−k a

†
k−ak−

)
,

where E0 ≡ E−
ki

is the degenerate single-particle ground state energy, N0 ≡∑
iNi is the total number of ground state particles, and

∑′

k indicates that
the sum is taken over only non-ground-state k-vectors. Using the fact that

(3.39)N0 = N −
′∑
k

(
a†k+ak+ + a†k−ak−

)
,

where N is the total number of particles, we obtain

(3.40)
H1 = E0N +

′∑
k

[
(E+
k − E

0)a†k+ak+ + (E−k − E
0)a†k−ak−

]
≡ E0N +

′∑
k

[
∆E+

k a
†
k+ak+ + ∆E−k a

†
k−ak−

]
,

where we have defined the single-particle excitation energies ∆E±k for the two
helicity bands.

Since Ak is Hermitian by inspection, there exist a unitary transformation
matrix Uk composed of orthonormal eigenvectors of Ak such that Ak =
UkDkU †k. We want

(3.41)ξ†kAkξk = ξ†kUkDkU
†
kξk

= Ψ†kDkΨk,

meaning that Ψk = U †kξk.
Ak has the orthonormal eigenvectors

(3.42)χ± =
1

?
2

(
±sk/|sk|

1

)
.
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The quantity sk/|sk| is a complex number with modulus 1, and thus we write

(3.43)eiγk ≡ sk/|sk|,

for some real phase factor γk, and we obtain

(3.44)

ξk =

(
bk↑
bk↓

)
= UkΨk

=
1

?
2

(
eiγk −eiγk
1 1

)(
ak+

ak−

)
=

1
?

2

(
eiγkak+ − eiγkak−

ak+ + ak−

)
,

meaning that the transformation from the spin basis to the helicity band
basis is given by

bk↑ =
eiγk
?

2
pak+ − ak−q ,

bk↓ =
1

?
2

(ak+ + ak−),

b†k↑ =
e−iγk
?

2

´

a†k+ − a
†
k−

¯

,

b†k↓ =
1

?
2

(a†k+ + a†k−).

(3.45)

It is shown in Appendix A by the inverse transformation that the helicity
band operators obey the boson commutation relations, i.e.

rakα, ak′βs = 0,
”

a†kα, a
†
k′β

ı

= 0,
”

akα, a
†
k′β

ı

= δk,k′δα,β, (3.46)

where α, β = +,−.
We now consider some properties of eiγk and γk. We note that eiγk is

antisymmetric in k:

eiγ−k =
s−k
|s−k|

= i

∑
j aje

−iθj sin(−k · âj)
|
∑

j aje
−iθj sin(−k · âj)|

= −i
∑

j aje
−iθj sin(k · âj)

|
∑

j aje
−iθj sin(k · âj)|

= − sk
|sk|

= −eiγk .
(3.47)
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This implies that

(3.48)eiγ−k = ei(γk+π),

in other words that

(3.49)γ−k = γk + π.

We observe that γk can be viewed as the angle of k relative to some axis
in k-space.
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4. Analytical results

The Fourier transformed Bose-Hubbard model is applied for a system of a
weakly interacting spin-orbit coupled Bose-Einstein condensate. In order to
allow for a high degree of generality, the system is in Section 4.1 considered on
a general inversion-symmetric Bravais lattice. Inversion symmetry is required
for the form of second quantized Rashba SOC Hamiltonian found in equation
(3.27). However, the complicated form of the resulting Hamiltonian matrix
occluded the formulation of comprehensible eigenvalues, and thereby of the
excitation spectrum.

The excitation spectrum is, however, found in the following Section 4.2:
The limiting case only allowing for nearest-neighbor hopping and on-site
interactions. The cases of the one-dimensional chain and two-dimensional
square lattice are investigated in particular.

4.1 Inversion symmetric Bravais lattice

The general case of bosons of two synthetic spin states residing on a Bravais
lattice are considered firstly. The discussion is valid for both one- and two-
dimensional lattices. The bosons are bound to the lattice points sufficiently
strongly, so that localized Wannier functions can be used to describe their
wave functions. This is the tight binding model, leading to the Bose-Hubbard
model.

4.1.1 Transformation of the two-particle interaction from
spin basis to helicity basis*

It was shown in section 3.1.1 that the Fourier transformed two-particle in-
teraction can be written:

37
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H2 =
1

Ns

∑
{ki}

«

1

2

∑
α

Ũαb
†
k1α
b†k2αbk3αbk4α + Ũ↑↓b

†
k1↑bk2↑b

†
k3↓bk4↓

ff

≡ 1

Ns

∑
{ki}

„

1

2
Hintra +Hinter



(4.1)

α =↑, ↓ (4.2)

where

Ũα(k2,k3,k4) =Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei(k2·δ1−k3·δ2−k4·δ3),

Ũ↑↓(k1,k2,k3,k4) =U↑↓(0, 0, 0) +
1

2

∑
{δi}

U↑↓(δ1, δ2, δ3)

·
`

ei(k1·δ1−k2·δ2−k4·δ3) + ei(k3·δ1−k4·δ2−k2·δ3)
˘

.

(4.3)

The sum over {δi} = (δ1, δ2, δ3) is over all possible combinations of lattice
vectors except for pure on-site scattering {δi} = {0}. The tilde on the
potentials U signal a Fourier transformed potential.

The fundamental idea in this treatment is to transform the spin-basis bo-
son operators into the helicity-basis boson operators found in 3.2.3. Inserting
(3.45) into the intra-spin part Hintra of (4.1) gives
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Hintra =
∑
α

Ũαb
†
k1α
b†k2αbk3αbk4αδk1+k2,k3+k4

=

ˆ

1
?

2

˙4

Ũ↑e
i(γk3+γk4−γk1−γk2 )(a†k1+ − a

†
k1−)(a†k2+ − a

†
k2−)

· (ak3+ − ak3−)(ak4+ − ak4−)δk1+k2,k3+k4

+

ˆ

1
?

2

˙4

Ũ↓(a
†
k1+ + a†k1−)(a†k2+ + a†k2−)(ak3+ + ak3−)(ak4+ + ak4−)δk1+k2,k3+k4

=
1

4
δk1+k2,k3+k4

¨

˚

˚

˚

˝

a†k1+a
†
k2+

a†k1+a
†
k2−

a†k1−a
†
k2+

a†k1−a
†
k2−

˛

‹

‹

‹

‚

T
¨

˚

˚

˝

Ũ+ Ũ− Ũ− Ũ+

Ũ− Ũ+ Ũ+ Ũ−

Ũ− Ũ+ Ũ+ Ũ−

Ũ+ Ũ− Ũ− Ũ+

˛

‹

‹

‚

¨

˚

˚

˝

ak3+ak4+

ak3+ak4−
ak3−ak4+

ak3−ak4−

˛

‹

‹

‚

,

(4.4)

where

Ũ±(k1,k2,k3,k4) = Ũ↓(k2,k3,k4)± Ũ↑(k2,k3,k4)ei(γk3+γk4−γk1−γk2 ). (4.5)

Inserting (3.45) into the inter-spin part Hinter of (4.1) gives

Hinter =Ũ↑↓b
†
k1↑bk2↑b

†
k3↓bk4↓δk1+k3,k2+k4

=

ˆ

1
?

2

˙4

Ũ↑↓e
i(γk2−γk1 )(a†k1+ − a

†
k1−)(ak2+ − ak2−)

· (a†k3+ + a†k3−)(ak4+ + ak4−)δk1+k3,k2+k4

=
1

4
Ũ↑↓e

i(γk2−γk1 )δk1+k3,k2+k4

·

¨

˚

˚

˚

˝

a†k1+ak2+

a†k1+ak2−
a†k1−ak2+

a†k1−ak2−

˛

‹

‹

‹

‚

T
¨

˚

˚

˝

1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1
1 1 1 1

˛

‹

‹

‚

¨

˚

˚

˚

˝

a†k3+ak4+

a†k3+ak4−
a†k3−ak4+

a†k3−ak4−

˛

‹

‹

‹

‚

(4.6)

Matrix notation has been used in (4.4) and (4.6) in order to simplify no-
tation. Performing the matrix multiplication shows that H2 now consists of
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32 terms that are biquadratic in helicity band operators, with every combi-
nation of operators being represented twice, once from (4.4) and once from
(4.6).

4.1.2 Mean field approximation

The single-particle spin-orbit coupled energy spectrum was found to contain
an even number of ground state k vectors, as shown in 3.2.3. Transitioning
to a many-particle system of interacting bosons could alter these energy
minima. In the weak-coupling limit, however, the ground state k vectors are
considered to be unchanged. Hence, in the BEC there is condensation to the
degenerate ground state k vectors. The number of bosons in ground state
ki0 is denoted N i

0. In order to simplify notation, we introduce

ki0 ≡ ki, aki0− ≡ ai, N i
0 ≡ Ni, (4.7)

where i takes an even number of integers.
The condensed phase is characterized by having most particles in the

ground state, so that it is safe to assume that

a†iai = Ni >> 1, (4.8)
which means that we can write a†i = ai =

?
Ni. From 3.2.3 it is known that

the ki’s are pairwise negatives of each other, so that the occupation number of
−ki, which we write N−i, also satisfy (4.8). Since the (ki,−) states dominate
in the Bose-Einstein condensate, we only consider terms in H2 where at least
one of the interacting particles has k = ki and α = −. This mean field
approach reduces H2 to a sum over terms which are at most quadratic in
boson operators. Ground state bosons interacting with non-ground state
bosons from both helicity bands are considered.

We can now find the contributions from (4.4) and (4.6), taking into ac-
count the delta functions and the mean field approach. In (4.4) we get the
following contributions from the sum over the four independent k’s:

k1 = k2 = k3 = k4 = ki →
∑
i

N2
i Ũ

+(ki,ki,ki,ki)

k1 = k3 = ki 6= k2 = k4 = kj →
∑
i 6=j

NiNjŨ
+(ki,kj ,ki,kj)

k1 = k4 = ki 6= k2 = k3 = kj →
∑
i 6=j

NiNjŨ
+(ki,kj ,kj ,ki)

(4.9)
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k1 = −k2 = ki 6= k3 = −k4 = k→
∑
i

′∑
k

a

NiN−i

·
”

Ũ+(ki,−ki,k,−k)(ak+a−k+ + ak−a−k−) + Ũ−(ki,−ki,k,−k)(ak+a−k− + ak−a−k+)
ı

k3 = −k4 = ki 6= k1 = −k2 = k→
∑
i

′∑
k

a

NiN−i

·
”

Ũ+(k,−k,ki,−ki)(a†k+a
†
−k+ + a†k−a

†
−k−) + Ũ−(k,−k,ki,−ki)(a†k+a

†
−k− + a†k−a

†
−k+)

ı

k1 = k3 = ki 6= k2 = k4 = k→
∑
i

′∑
k

Ni

·
”

Ũ+(ki,k,ki,k)(a†k+ak+ + a†k−ak−) + Ũ−(ki,k,ki,k)(a†k+ak− + a†k−ak+)
ı

k1 = k4 = ki 6= k2 = k3 = k→
∑
i

′∑
k

Ni

·
”

Ũ+(ki,k,k,ki)(a†k+ak+ + a†k−ak−) + Ũ−(ki,k,k,ki)(a†k+ak− + a†k−ak+)
ı

k2 = k3 = ki 6= k1 = k4 = k→
∑
i

′∑
k

Ni

·
”

Ũ+(k,ki,ki,k)(a†k+ak+ + a†k−ak−) + Ũ−(k,ki,ki,k)(a†k+ak− + a†k−ak+)
ı

k2 = k4 = ki 6= k1 = k3 = k→
∑
i

′∑
k

Ni

·
”

Ũ+(k,ki,k,ki)(a†k+ak+ + a†k−ak−) + Ũ−(k,ki,k,ki)(a†k+ak− + a†k−ak+)
ı

(4.10)

where k can be any vector except the ground state vectors ki and
∑′

k is the
sum over such non-ground-state vectors. The last eight cases also contribute
with terms where k→ −k.

The cases involving negative momenta are inelastic terms. Individually
they do not conserve kinetic energy, which lead to them being wrongly omit-
ted in Ref. [15]. This greatly simplified the situation, but made the result
erroneous since the excitation energies did not reduce to known results, such
as Ref. [26] for the no-SOC case, in the non-interacting limit. Conservation
of kinetic energy should not be demanded in every term of the mean field
approach, but would rather put constraints on the excitations of the system
as a whole.

Ũ± can be simplified by our choice of k-vectors. In (4.9) and in the the
four last cases of (4.10) we see that the exponential in (4.5) can be simplified
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to

ei(γk3+γk4−γk1−γk2 ) = 1, (4.11)

while

ei(γk3+γk4−γk1−γk2 ) = e2i(γk−γki ),

ei(γk3+γk4−γk1−γk2 ) = e−2i(γk−γki ),
(4.12)

in the first two cases of (4.10), respectively. In the following we will use (4.11)
and (4.12) inserted into (4.5) and thereby exchange Ũ± with the Fourier
transformed parameters Ũ↓ and Ũ↑.

Similarly, we get the following contributions from (4.6):

k1 = k2 = k3 = k4 = ki →
∑
i

N2
i Ũ↑↓(k

i,ki,ki,ki)

k1 = k2 = ki 6= k3 = k4 = kj →
∑
i6=j

NiNjŨ↑↓(k
i,ki,kj ,kj)

k1 = k4 = ki 6= k2 = k3 = kj →
∑
i6=j

NiNjŨ↑↓(k
i,kj ,kj ,ki)ei(γkj−γki )
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k1 = −k3 = ki 6= k2 = −k4 = k→
∑
i

′∑
k

a

NiN−i

· Ũ↑↓(ki,k,−ki,−k)ei(γk−γki )(ak−a−k+ + ak−a−k− − ak+a−k+ − ak+a−k−)

k2 = −k4 = ki 6= k1 = −k3 = k→
∑
i

′∑
k

a

NiN−i

· Ũ↑↓(k,ki,−k,−ki)e−i(γk−γki )(a†k−a
†
−k+ + a†k−a

†
−k− − a

†
k+a

†
−k+ − a

†
k+a

†
−k−)

k1 = k2 = ki 6= k3 = k4 = k→
∑
i

′∑
k

Ni

· Ũ↑↓(ki,ki,k,k)(a†k+ak+ + a†k−ak− + a†k+ak− + a†k−ak+)

k1 = k4 = ki 6= k2 = k3 = k→
∑
i

′∑
k

Ni

· Ũ↑↓(ki,k,k,ki)ei(γk−γki )(ak−a
†
k− + ak−a

†
k+ − ak+a

†
k+ − ak+a

†
k−)

k2 = k3 = ki 6= k1 = k4 = k→
∑
i

′∑
k

Ni

· Ũ↑↓(k,ki,ki,k)e−i(γk−γki )(a†k−ak− + a†k−ak+ − a
†
k+ak+ − a

†
k+ak−)

k3 = k4 = ki 6= k1 = k2 = k→
∑
i

′∑
k

Ni

· Ũ↑↓(k,k,ki,ki)(a†k+ak+ + a†k−ak− − a
†
k+ak− − a

†
k−ak+)

(4.13)

The Hamiltonian can now be rewritten in matrix form in the basis

φk =
”

ak+, a−k+, ak−, a−k−, a
†
k+, a

†
−k+, a

†
k−, a

†
−k−

ıT

. (4.14)

Using the expression (3.40) for H1 together with the results (4.10) and (4.13),
including the factor 1

4
from (4.4) and (4.6), and 1

2Ns
from (4.1), we arrive at

H = H
′

0 +
1

2

′∑
k

φ†k
|Mu
kφk, (4.15)
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having defined the matrix

|Mu
k =

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

V −1 (k) 0 V −2 (k) 0 0 W−1 (k) 0 W−2 (k)
0 V −1 (−k) 0 V −2 (−k) W−1 (−k) 0 W−2 (−k) 0

V +
2 (k) 0 V +

1 (k) 0 0 W+
2 (k) 0 W+

1 (k)
0 V +

2 (−k) 0 V +
1 (−k) W+

2 (−k) 0 W+
1 (−k) 0

0 P−1 (k) 0 P−2 (k) −T (k) 0 −T (k) 0
P−1 (−k) 0 P−2 (−k) 0 0 −T (−k) 0 −T (−k)

0 P+
2 (k) 0 P+

1 (k) T (k) 0 T (k) 0
P+
2 (−k) 0 P+

1 (−k) 0 0 T (−k) 0 T (−k)

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

(4.16)

where

(4.17)

V ±1 (k) = ∆E∓k +
∑
i

ni
4

[
Ũ↓(k,k

i,k) + Ũ↑(k,k
i,k) + Ũ↓(k,k,k

i) + Ũ↑(k,k,k
i)

+ 2Ũ↑↓(k
i,ki,k,k)± Ũ↑↓(ki,k,k,ki)e−i(γk−γki )

]
V ±2 (k) =

∑
i

ni
4

[
Ũ↓(k,k

i,k)− Ũ↑(k,ki,k) + Ũ↓(k,k,k
i)− Ũ↑(k,k,ki)

± Ũ↑↓(ki,k,k,ki)e−i(γk−γki )
]

W±1 (k) =
∑
i

?
nin−i

8

[
Ũ↓(−k,ki,−ki) + Ũ↑(−k,ki,−ki)e−2i(γk−γki )

± 2Ũ↑↓(k,k
i,−k,−ki)e−i(γk−γki )

]
W±2 (k) =

∑
i

?
nin−i

8

[
Ũ↓(−k,ki,−ki)− Ũ↑(−k,ki,−ki)e−2i(γk−γki )

± 2Ũ↑↓(k,k
i,−k,−ki)e−i(γk−γki )

]
P±1 (k) =

∑
i

?
nin−i

8

[
Ũ↓(−ki,k,−k) + Ũ↑(−ki,k,−k)e2i(γk−γki )

± 2Ũ↑↓(k
i,k,−ki,−k)ei(γk−γki )

]
P±2 (k) =

∑
i

?
nin−i

8

[
Ũ↓(−ki,k,−k)− Ũ↑(−ki,k,−k)e2i(γk−γki )

± 2Ũ↑↓(k
i,k,−ki,−k)ei(γk−γki )

]
T (k) =

∑
i

ni
4
Ũ↑↓(k

i,k,k,ki)ei(γk−γki ).
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The Fourier transformed potentials are restated (α =↓, ↑):

Ũα(k2,k3,k4) =Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei(k2·δ1−k3·δ2−k4·δ3),

Ũ↑↓(k1,k2,k3,k4) =U↑↓(0, 0, 0) +
1

2

∑
{δi}

U↑↓(δ1, δ2, δ3)

·
`

ei(k1·δ1−k2·δ2−k4·δ3) + ei(k3·δ1−k4·δ2−k2·δ3)
˘

.

(4.18)

We have introduced the density of particles in ground state i, ni = Ni/Ns.
The factor 1/2 in front of the sum over k in (4.15) is accounting for the fact
that all terms are also included with negative argument, thereby appearing
twice. Moreover, we have used that Ũ↑↓(k,ki,ki,k) = Ũ↑↓(k

i,k,k,ki) and
Ũ↑↓(k,k,k

i,ki) = Ũ↑↓(k
i,ki,k,k), which are special cases of

Ũ↑↓(k1,k2,k3,k4) = Ũ↑↓(k3,k4,k1,k2), (4.19)

which follows from the definition (4.18).
We have also used that

Ũ±(k1,k2,k3,k4) = Ũ±(k2,k1,k4,k3). (4.20)

This follows from the fact that the interaction between two particles in the
same spin state in real space should be the same regardless of which particle
is moving from lattice site l to i, and from k to j, see Figure 4.1. In other
words Uα(δ1, δ2, δ3) = Uα(−δ1, δ3 − δ1, δ2 − δ1), leading to

Ũα(k2,k3,k4) = Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei(k2·δ1−k3·δ2−k4·δ3)

= Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei(k2·(−δ1)−k3·(δ3−δ1)−k4·(δ2−δ1))

= Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei((k3+k4−k2)·δ1−k4·δ2−k3·δ3)

= Ũα(k1,k4,k3),
(4.21)

using the delta function requirement in the last equation, which immediately
leads to (4.20). For the sake of clarity, the derivation of V ±1 (k) is shown:



46 4. Analytical results

(a) (b)

Figure 4.1: Illustration of Uα(δ1, δ2, δ3) = Uα(−δ1, δ3 − δ1, δ2 − δ1). 4.1a repre-
sents Uα(δ1, δ2, δ3), 4.1b represents Uα(−δ1, δ3− δ1, δ2− δ1). A particle at lattice
point k and l (both blue) interact and end up at i and j (both red). The two
situations differ only by switching particles at i and j, and at k and l. Since the
particles are indistinguishable bosons, the situations should be equivalent.

V ±1 (k) = ∆E∓k +
1

Ns

· 1

4

∑
i

Ni

[
1

2

(
Ũ+(ki,k,ki,k) + Ũ+(ki,k,k,ki) + Ũ+(k,ki,ki,k)

+Ũ+(k,ki,k,ki)
)

+2Ũ↑↓(k
i,ki,k,k)±Ũ↑↓(ki,k,k,ki)e−i(γk−γki )

]
= ∆E∓k +

∑
i

ni
4

[
Ũ+(ki,k,ki,k) + Ũ+(ki,k,k,ki)

+ 2Ũ↑↓(k
i,ki,k,k)± Ũ↑↓(ki,k,k,ki)e−i(γk−γki )

]
= ∆E∓k +

∑
i

ni
4

[
Ũ↓(k,k

i,k) + Ũ↑(k,k
i,k) + Ũ↓(k,k,k

i)

+ Ũ↑(k,k,k
i) + 2Ũ↑↓(k

i,ki,k,k)± Ũ↑↓(ki,k,k,ki)e−i(γk−γki )
]

Furthermore, we will now show that W±
1 , W±

2 , P±1 , and P±2 are all sym-
metric in k. In a translationally invariant lattice it is reasonable to assume
that

Uα(δ1, δ2, δ3) = Uα(−δ1,−δ2,−δ3), (4.22)

which leads to
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Ũα(−k2,−k3,−k4) = Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)e−i(k2·δ1−k3·δ2−k4·δ3)

= Uα(0, 0, 0) +
∑
{δi}

Uα(−δ1,−δ2,−δ3)ei(k2·δ1−k3·δ2−k4·δ3)

= Ũα(k2,k3,k4).
(4.23)

Since the ground state vectors appear in pairs of ki and −ki they can be
interchanged in a sum over all ki. Using this, (3.49), (4.19), and (4.23), we
obtain

W±
1 (−k) =

∑
i

?
nin−i

8

[
Ũ↓(k,k

i,−ki) + Ũ↑(k,k
i,−ki)e−2i(γ−k−γki )

± 2Ũ↑↓(−k,ki,k,−ki)e−i(γ−k−γki )
]

=
∑
i

?
n−ini

8

[
Ũ↓(k,−ki,ki) + Ũ↑(k,−ki,ki)e−2i(γ−k−γ−ki )

± 2Ũ↑↓(−k,−ki,k,ki)e−i(γ−k−γ−ki )
]

=
∑
i

?
n−ini

8

[
Ũ↓(k,−ki,ki) + Ũ↑(k,−ki,ki)e−2i(γk+π−γki−π)

± 2Ũ↑↓(−k,−ki,k,ki)e−i(γk+π−γki−π)
]

=
∑
i

?
n−ini

8

[
Ũ↓(−k,ki,−ki) + Ũ↑(−k,ki,−ki)e−2i(γk−γki )

± 2Ũ↑↓(k,k
i,−k,−ki)e−i(γk−γki )

]
= W±

1 (k),
(4.24)

and similarly we get

W±
2 (−k) = W±

2 (k), P±1 (−k) = P±1 (k), P±2 (−k) = P±2 (k). (4.25)

We observe in addition that the symmetry demand on the intra-spin po-
tential (4.22), together with the corresponding symmetry demand on the
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inter-spin potential, make both Ũα and Ũ↑↓ real, since the complex conjuga-
tion of the exponents in (4.18) can be countered by the change of summation
variables {δi} → {−δi}.

It is clear from (4.16) that |Mu
k is not Hermitian: As an example the

diagonal element T (k) is clearly not real. The next section is concerned with
creating a Hermitian matrix |Mk by a process of symmetrization.

4.1.3 Symmetrization of excitation matrix

|Mu
k will now be made Hermitian by commuting the boson operators by the

use of the commutation relation (3.46), e.g.

(4.26)a†k+ak− =
1

2

(
a†k+ak− + ak−a

†
k+

)
.

This process of symmetrization thus contributes with another factor 1/2. Di-
agonal non-commuting terms in |Mu

k will also contribute with a term without
boson operators, adding to the constant term H

′
0. The treatment of the total

constant term H0 is found in Section 4.1.4.
The resulting symmetrized matrix is denoted in block form as follows:

(4.27)|Mk =

(
M1 M2

M3 M4

)
where M1 through M4 are k-dependent 4-by-4 matrices. We will now inves-
tigate the hermiticity of this matrix and which demands that follow.

If |Mk can be written in the form

(4.28)qA =

(
A1 A2

A∗2 A∗1

)
,

where A1 is Hermitian, A†1 = A1, and A2 is symmetric, AT2 = A2, then |Mk

is Hermitian. This follows from

qA† =

ˆ

A1 A2

A∗2 A∗1

˙†

=

ˆ

AT1 (A∗2)T

AT2 (A∗1)T

˙∗

=

ˆ

A†1 AT2
(AT2 )∗ (A†1)∗

˙

=

ˆ

A1 A2

A∗2 A∗1

˙

= qA.

(4.29)
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We first consider the diagonal matrices M1 and M4 in |Mk. We see from
(4.29) that both must be Hermitian and that they must be the complex
conjugate of each other. We have that

M1 =


V −1 (k)− T (k) 0 V −2 (k) + T (k) 0

0 V −1 (−k)− T (−k) 0 V −2 (−k) + T (−k)
V +
2 (k)− T (k) 0 V +

1 (k) + T (k) 0
0 V +

2 (−k)− T (−k) 0 V +
1 (−k) + T (−k)


(4.30)

The diagonal must be real in a Hermitian matrix. One such term is

V −1 (k)− T (k) = ∆E∓k +
∑
i

ni
4

[
Ũ↓(k,k

i,k) + Ũ↑(k,k
i,k) + Ũ↓(k,k,k

i)

+ Ũ↑(k,k,k
i) + 2Ũ↑↓(k

i,ki,k,k)

− Ũ↑↓(ki,k,k,ki)e−i(γk−γki )
]

−
∑
i

ni
4
Ũ↑↓(k

i,k,k,ki)ei(γk−γki )

= ∆E+
k +

∑
i

ni
4

[
Ũ↓(k,k

i,k) + Ũ↑(k,k
i,k) + Ũ↓(k,k,k

i)

+ Ũ↑(k,k,k
i) + 2Ũ↑↓(k

i,ki,k,k)

− 2Ũ↑↓(k
i,k,k,ki) cos(γk − γki)

]
(4.31)

This term is real since ∆E+
k = E+

k − E0, Ũ↓, and Ũ↑ are real from the discus-
sions of Sections 3.2.3 and 4.1.2, respectively. The diagonal term (4.31) is
therefore real by the sufficient and physically reasonable demands

tα(δ) = tα(−δ),

Uα(δ1, δ2, δ3) = Uα(−δ1,−δ2,−δ3),

U↑↓(δ1, δ2, δ3) = U↑↓(−δ1,−δ2,−δ3).

(4.32)

In fact, the same assumptions ensure that all diagonal terms are real, see
(4.47) for the two expressions.

The demands (4.32) also make the off-diagonal terms in M1 complex
conjugate of each other, e.g.



50 4. Analytical results

V +
2 (k)− T (k) =

∑
i

ni
4

[
Ũ↓(k,k

i,k)− Ũ↑(k,ki,k) + Ũ↓(k,k,k
i)

− Ũ↑(k,k,ki) + Ũ↑↓(k
i,k,k,ki)e−i(γk−γki )

]
−
∑
i

ni
4
Ũ↑↓(k

i,k,k,ki)ei(γk−γki )

=
∑
i

ni
4

[
Ũ↓(k,k

i,k)− Ũ↑(k,ki,k) + Ũ↓(k,k,k
i)

− Ũ↑(k,k,ki)− 2iŨ↑↓(k
i,k,k,ki) sin(γk − γki)

]
=

(∑
i

ni
4

[
Ũ↓(k,k

i,k)− Ũ↑(k,ki,k) + Ũ↓(k,k,k
i)

− Ũ↑(k,k,ki) + 2iŨ↑↓(k
i,k,k,ki) sin(γk − γki)

])∗
= (V −2 (k) + T (k))∗

(4.33)

For the other diagonal matrix M4 we see that

M4 =


V −1 (k)− T (k) 0 V +

2 (k)− T (k) 0
0 V −1 (−k)− T (−k) 0 V +

2 (−k)− T (−k)
V −2 (k) + T (k) 0 V +

1 (k) + T (k) 0
0 V −2 (−k) + T (−k) 0 V +

1 (−k) + T (−k)


= M∗1 ,

(4.34)

We define E± and V1 such that

(4.35)M1 =


E+(k) 0 V1(k) 0

0 E+(−k) 0 V1(−k)
V ∗1 (k) 0 E−(k) 0

0 V ∗1 (−k) 0 E−(−k)

 ,

and we clearly see that both diagonal matrices M1 and M4 are Hermitian
and complex conjugate of each other (see (4.47) and (4.47) for definitions of
E± and V1).

The symmetrization process, and using the symmetries (4.24) and (4.25),
lead to the following inelastic off-diagonal block matrices in |Mk:
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M2

=

 0 2W−1 (k) 0 W−2 (k) +W+
2 (k)

2W−1 (k) 0 W−2 (k) +W+
2 (k) 0

0 W+
2 (k) +W−2 (k) 0 2W+

1 (k)
W+

2 (k) +W−2 (k) 0 2W+
1 (k) 0

 ,

(4.36)

M3 =

 0 2P−1 (k) 0 P−2 (k) + P+
2 (k)

2P−1 (k) 0 P−2 (k) + P+
2 (k) 0

0 P+
2 (k) + P−2 (k) 0 2P+

1 (k)
P+
2 (k) + P−2 (k) 0 2P+

1 (k) 0

 .

(4.37)

According to (4.29)M2 andM3 should be symmetric, which they are. We
should also have thatM2 = M∗

3 . To this end, we introduce two new demands
on the Fourier transformed potentials:

Ũα(−k,ki,−ki) = Ũα(−ki,k,−k),

Ũ↑↓(k,k
i,−k,−ki) = Ũ↑↓(k

i,k,−ki,−k).
(4.38)

These demands are equivalent to demanding that the rate of particles enter-
ing the condensate be equal to that of particles exiting. While it remains
to be shown explicitly to be the case from the definitions of the potentials
(4.18), the demands (4.38) seem physically sound. The result is

(4.39)P±1 (k) = (W±
1 (k))∗,

(4.40)P±2 (k) = (W±
2 (k))∗,

and thus

(4.41)M2 =


0 V −(k) 0 V2(k)

V −(k) 0 V2(−k) 0
0 V2(−k) 0 V +(k)

V2(k) 0 V +(k) 0


= M∗3 ,

where we have defined

(4.42)V ±(k) = 2W±
1 (k),

(4.43)V2(k) = W−
2 (k) +W+

2 (k),
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making M2 and M3 symmetric and complex conjugates of each other.
Everything considered we end up with the Hermitian block matrix

(4.44)|Mk =

(
M1 M2

M∗
2 M∗

1

)
,

where

(4.45)M1 =


E+(k) 0 V1(k) 0

0 E+(−k) 0 V1(−k)
V ∗1 (k) 0 E−(k) 0

0 V ∗1 (−k) 0 E−(−k)

 ,

(4.46)M2 =


0 V −(k) 0 V2(k)

V −(k) 0 V2(k) 0
0 V2(k) 0 V +(k)

V2(k) 0 V +(k) 0

 ,

and the matrix elements are defined as

(4.47)

E±(k) = V ∓1 (k)∓ T (k)

= ∆E±k +
∑
i

ni
4

[
Ũ↓(k,k

i,k) + Ũ↑(k,k
i,k) + Ũ↓(k,k,k

i) + Ũ↑(k,k,k
i)

+ 2Ũ↑↓(k
i,ki,k,k)∓ 2Ũ↑↓(k

i,k,k,ki) cos(γk − γki)
]
,

V1(k) = V −2 (k) + T (k)

=
∑
i

ni
4

[
Ũ↓(k,k

i,k)− Ũ↑(k,ki,k) + Ũ↓(k,k,k
i)− Ũ↑(k,k,ki)

+ 2iŨ↑↓(k
i,k,k,ki) sin(γk − γki)

]
,

V ±(k) = 2W±1 (k)

=
∑
i

?
nin−i

4

[
Ũ↓(−k,ki,−ki) + Ũ↑(−k,ki,−ki)e−2i(γk−γki )

± 2Ũ↑↓(k,k
i,−k,−ki)e−i(γk−γki )

]
,

V2(k) = W−2 (k) +W+
2 (k)

=
∑
i

?
nin−i

4

[
Ũ↓(−k,ki,−ki)− Ũ↑(−k,ki,−ki)e−2i(γk−γki )

]
.

The method of diagonalizing a general bilinear bosonic Hamiltonian,
where the basis consists of both creation and annihilation operators, is thor-
oughly investigated in Ref. [27]. The desired result is that H can be written

(4.48)H = H0 +
1

4

′∑
k

βTk
qDkβk
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with the bosonic quasi-particle operators

(4.49)βk =
(
βk,1 βk,2 βk,3 βk,4 β†k,1 β†k,2 β†k,3 β†k,4

)T
,

and the diagonal matrix

(4.50)qDk =

(
D 0
0 D

)
,

where D is the diagonal matrix containing the excitation energies Ek,σ, σ =
1, 2, 3, 4,

(4.51)D =


Ek,1 0 0 0

0 Ek,2 0 0
0 0 Ek,3 0
0 0 0 Ek,4

 .

The commutation relation implies that

(4.52)βkβ
†
k − [β∗k(β∗k)†]T = qσ,

where we have defined the diagonal matrix qσ = diag(1, 1, 1, 1,−1,−1,−1,−1).
By comparing commutators of H and β, and H and the old basis φk from

(4.14), one realizes that the transition matrix from φk to β diagonalizes |Mkqσ

to produce the matrix qDkqσ. This is done explicitly in Ref. [27]. Hence, it is
the eigenvalues of |Mkqσ that should be found, not |Mk, because of (4.52).

Writing out (4.48) explicitly yields

(4.53)

H = H0 +
1

4

∑
σ

′∑
k

Ekσ
(
β†kσβkσ + βkσβ

†
kσ

)
= H0 +

1

2

∑
σ

′∑
k

Ekσ

(
β†kσβkσ +

1

2

)

≡ H0 +
1

2

∑
σ

′∑
k

Ekσ

(
nkσ +

1

2

)
,

by the use of [βkσ, β
†
kσ] = 1, and where nkσ is the number operator for a

quasi particle of branch σ. Note that this is the general diagonalized form
described by four branches – in many cases they reduce to only two unique
ones, as in Ref. [14], which reduces the sum to over two unique branches and
removes the factor 1/2 in front of the sum.
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Eigenvalues are in the thesis found by the use of the symbolic computing
environment Maple. However, the large number of unique matrix elements
in |Mkqσ means that we in this very general situation are unable to find
eigenvalues that are not unmanageably large.

4.1.4 Constant term

So far we have been concerned with the excitation spectrum, and in the
process absorbing all other terms in H into the constant term H0. This term
is constant in the sense that it is not affected by excitations of the state. It
does, however, depend on the ground state occupation numbers ni.

H0 consists of contributions from the transition from the sum over all k
to the sum over non-ground state k,

∑
→
∑′

in H1 and in the mean field
procedure, and from non-zero commutators in the symmetrization process.
We write

(4.54)H0 = H1
0 +HMFT

0 +HSYM
0

for these three contributions, respectively. H1
0 = E0N was shown in Section

3.2.3. HMFT
0 is composed of contributions from (4.9) and (4.1.2):

(4.55)

HMFT
0 =

1

2Ns

· 1

4

∑
i

N2
i

[
Ũ+(ki,ki,ki,ki) + 2Ũ↑↓(k

i,ki,ki,ki)
]

+
1

2Ns

· 1

4

∑
i 6=j

NiNj

[
Ũ+(ki,kj,ki,kj) + Ũ+(ki,kj,kj,ki)

+ 2Ũ↑↓(k
i,ki,kj,kj) + 2Ũ↑↓(k

i,kj,kj,ki)ei(γkj−γki )
]

=
Ns

8

∑
i

n2
i

[
Ũ+(ki,ki,ki,ki) + 2Ũ↑↓(k

i,ki,ki,ki)
]

+
Ns

8

∑
i 6=j

ninj

[
Ũ+(ki,kj,ki,kj) + Ũ+(ki,kj,kj,ki)

+ 2Ũ↑↓(k
i,ki,kj,kj) + 2Ũ↑↓(k

i,kj,kj,ki)ei(γkj−γki )
]
.

In the symmetrization process of Section 4.1.3 we used that, e.g.

(4.56)
a†k+ak+V

−
1 (k) =

1

2

(
a†k+ak+ + a†k+ak+

)
V −1 (k)

=
1

2
a†k+ak+V

−
1 (k) +

1

2
ak+a

†
k+V

−
1 (k)− 1

2
V −1 (k).
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Every diagonal matrix element of (4.16) contribute similarly to produce

HSYM
0 = −1

4

′∑
k

[
V −1 (k) + V −1 (−k) + V +

1 (k) + V +
1 (−k) + T (k) + T (−k)

− T (k)− T (−k)
]

= −1

4

′∑
k

[
V −1 (k) + V −1 (−k) + V +

1 (k) + V +
1 (−k)

]
= −1

4

′∑
k

[
2(∆E+

k + ∆E−k )

+
∑
i

ni
2

(
Ũ↓(k,k

i,k) + Ũ↓(−k,ki,−k) + Ũ↑(k,k
i,k)

+ Ũ↑(−k,ki,−k) + Ũ↓(k,k,k
i) + Ũ↓(−k,−k,ki) + Ũ↑(k,k,k

i)

+ Ũ↑(−k,−k,ki) + 2Ũ↑↓(k
i,ki,k,k) + 2Ũ↑↓(k

i,ki,−k,−k)
)]

.

(4.57)

The constant term H0 will be further considered in the ensuing limiting
case.

4.2 Nearest neighbor hopping, on-site interac-
tions

In the remainder of our use of the Bose-Hubbard model we will consider the
limiting case of hopping only occurring to the nearest neighbor, and particles
only interacting when situated at the same lattice point. In a tight-binding
situation these first order kinetics and interactions provide a reasonable ap-
proximation of the more general case.

Only considering nearest-neighbor hopping means that there remains only
one hopping parameter t:

(4.58)t(δ)→ t.

Having only on-site interactions changes the Fourier transformed potentials
into k-independent constants Uα and U↑↓:
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Ũα(k2,k3,k4) =Uα(0, 0, 0) +
∑
{δi}

Uα(δ1, δ2, δ3)ei(k2·δ1−k3·δ2−k4·δ3),

→ Uα(0, 0, 0) ≡ Uα,

Ũ↑↓(k1,k2,k3,k4) =U↑↓(0, 0, 0) +
1

2

∑
{δi}

U↑↓(δ1, δ2, δ3)

·
`

ei(k1·δ1−k2·δ2−k4·δ3) + ei(k3·δ1−k4·δ2−k2·δ3)
˘

→ U↑↓(0, 0, 0) ≡ U↑↓.

(4.59)

We observe that in this regime the requirements (4.38) are vacuously ful-
filled.

4.2.1 Energy spectrum

The matrix elements (4.47) can now be simplified. For the elastic terms we
have

(4.60)

E±(k)→∆E±k +
∑
i

ni
2

rU↓ + U↑ + U↑↓ p1∓ cos(γk − γki)qs

=∆E±k +
n0

2
rU↓ + U↑ + U↑↓s∓ U↑↓

∑
i

ni
2

cos(γk − γki)

≡E±k ,

V1(k)→
∑
i

ni
2

rU↓ − U↑ + iU↑↓ sin(γk − γki)s

=
n0

2
(U↓ − U↑) + iU↑↓

∑
i

ni
2

sin(γk − γki)

≡Fk,
where

n0 ≡
∑
i

ni =
N0

Ns

. (4.61)

The unknown parameter n0 can be eliminated from the expression as
follows. If the ratio of the total number of bosons to number of lattice sites
is given by N

Ns
= κ, and since

N0 = N −
′∑
kα

a†kαakα, (4.62)
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then

n0 =
κN0

N
= κ− κ

N

′∑
kα

a†kαakα. (4.63)

When (4.63) is inserted into a matrix element, the latter term leads to a term
biquadratic in non-ground state boson operators, and is thus ignored in the
mean-field approach, i.e.

(4.64)

E±k =∆E±k +
κ

2
rU↓ + U↑ + U↑↓s∓ U↑↓

∑
i

ni
2

cos(γk − γki),

F (k) =
κ

2
(U↓ − U↑) + iU↑↓

∑
i

ni
2

sin(γk − γki).

The antisymmetry of eiγk from (3.47) implies that cos(γk−γki) and sin(γk−
γki) is also antisymmetric in k. This leads to F (−k) = F ∗(k), and accord-
ingly we suppress the argument for this matrix element. E±k do not possess
any symmetry in k.

The inelastic matrix terms can be further simplified by realizing that
?
nin−ie

iγki is antisymmetric in ki1:

(4.65)

∑
i

?
nin−ie

−i(γk−γki ) = e−iγk
∑
j

?
njn−j(e

iγ
kj + eiγ−kj )

= e−iγk
∑
j

?
njn−j(e

iγ
kj − eiγkj )

= 0,

where the sum over j is over ki’s from only one half plane. This produces

(4.66)

V ±(k) =
∑
i

?
nin−i

4

[
Ũ↓(−k,ki,−ki) + Ũ↑(−k,ki,−ki)e−2i(γk−γki )

± 2Ũ↑↓(k,k
i,−k,−ki)e−i(γk−γki )

]
→
∑
i

?
nin−i

4

[
U↓ + U↑e

−2i(γk−γki )
]

≡ G1(k),

1The factor ni destroys this antisymmetry in the elastic terms.
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V2(k) =
∑
i

?
nin−i

4

[
Ũ↓(−k,ki,−ki)− Ũ↑(−k,ki,−ki)e−2i(γk−γki )

]
→
∑
i

?
nin−i

4

[
U↓ − U↑e−2i(γk−γki )

]
≡ G2(k).

The inelastic terms G1 and G2 are seen to be symmetric in k, and we suppress
the argument for these matrix elements as well.

Since E±k do not have any symmetry in k, they should appear in the
form of both E±k and E±−k. This leads to four distinct matrix elements on
the diagonal, producing impossibly large eigenvalues. However, since the
sum over k in the Hamiltonian includes both k and −k, we may consider
both terms as a single matrix element. This procedure on the diagonal and
antidiagonal, leaving the matrix Hermitian, produces the following limiting
case matrix:

(4.67)|Mk =

(
N1 N2

N∗2 N∗1

)
,

where

(4.68)N1 =


2E+

k 0 F 0
0 0 0 F ∗

F 0 0 0
0 F ∗ 0 2E−−k

 ,

(4.69)N2 =


0 G1 0 2G2

G1 0 0 0
0 0 0 G1

2G2 0 G1 0

 .

The four-branched excitation spectrum is thus

(4.70)E +
kσ =

[
K +

?
R + σ

?
2

b

H +K
?
R

] 1
2

,

(4.71)E −kσ =

[
K −

?
R + σ

?
2

b

H −K
?
R

] 1
2

,

for σ = +,−, and where
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(4.72)K = (E+
k )2 + (E−−k)2 + |F |2 − |G1|2 − 2|G2|2,

(4.73)R = ((E+
k + E−−k)2 − 4|G2|2)(E+

k − E
−
−k)2,

(4.74)H =
[
(E+

k )2 + (E−−k)2 − 2|G2|2
]
·
[
|F |2 − |G1|2 − 4|G2|2

]
+ (E+

k )4 + (E−−k)4 + 2|G2|2
[
2E+

k E
−
−k − 3|G2|2

]
,

(4.75)

E±k =∆E±k +
κ

2
rU↓ + U↑ + U↑↓s∓ U↑↓

∑
i

ni
2

cos(γk − γki),

F =
κ

2
(U↓ − U↑) + iU↑↓

∑
i

ni
2

sin(γk − γki),

G1 =
∑
i

?
nin−i

4

”

U↓ + U↑e
−2i(γk−γki )

ı

,

G2 =
∑
i

?
nin−i

4

”

U↓ − U↑e−2i(γk−γki )
ı

,

and where κ is the number of bosons per lattice site. These are the eigenvalues
of the matrix |Mkqσ, as described at the end of Section 4.1.3, found by the
use of the symbolic computing environment Maple.

We see that in the limit of U↑↓ = U↑ = U↓ = 0, i.e. reducing the system to
non-interacting spin-orbit coupled bosons, we obtain E ±k+ = 2∆E±k , E ±k− = 0.

Verification of matrix simplifications

The procedure of moving diagonal and anti-diagonal matrix elements in order
to obtain (4.68) and (4.69) will now be discussed briefly. The new matrix
clearly has a new set of eigenvalues, since the two matrices are not similar.
This means that the diagonalized Hamiltonian expresses the energy in terms
of different quasiparticles than without the procedure. However, since the
sum over k remains unchanged, so should the total free energy. We will
investigate this by considering the free energy F at temperature T = 0 of
the known non-SOC case from Ref. [14], part B, expressed in terms of these
distinct sets of quasiparticles.

The corresponding real block matrices read

N1 =

¨

˚

˚

˝

EAk 0 FAB 0
0 EAk 0 FAB

FAB 0 EBk 0
0 FAB 0 EBk

˛

‹

‹

‚

, N2 =

¨

˚

˚

˝

0 F 0 FAB
F 0 FAB 0
0 FAB 0 F

FAB 0 F 0

˛

‹

‹

‚

. (4.76)
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Diagonalization of |Mk · qσ gives D = diag(Ek,+,E−k+,Ek,−,Ek,−). The four
eigenvalues are identified as two distinct branches each represented with k
and −k. Renaming the basis (k, 2)→ (−k, 1), (k, 4)→ (−k, 3), 1, 3→ +,−
in (4.51), inserting into (4.53) and performing −k → k in the summation
produces

(4.77)H = H0 +
∑
σ

′∑
k

Ekσ

(
nkσ +

1

2

)
.

In the limit of zero temperature, T = 0, an argument similar to the one in
Appendix B leads to the following expression for the Helmholtz free energy:

(4.78)F = H0 +
1

2

∑
σ

′∑
k

Ekσ,

where σ = +,−.
By instead defining

N1 =

¨

˚

˚

˝

2EAk 0 FAB 0
0 0 0 FAB

FAB 0 0 0
0 FAB 0 2EB−k

˛

‹

‹

‚

, N2 =

¨

˚

˚

˝

0 F 0 2FAB
F 0 0 0
0 0 0 F

2FAB 0 F 0

˛

‹

‹

‚

, (4.79)

we end up with the four distinct branches D = diag(E +
k,+,E

+
k−,E

−
k,+,E

−
k,−), as

in (4.70) and (4.71). Assigning each basis member in (4.51) to these branches
we retain the unchanged expression (B.6):

(4.80)F = H0 +
1

4

∑
σ

′∑
k

Ekσ,

where σ = 1, 2, 3, 4.
As a validation of the equality of the total free energy in the two bases,

the second terms in (4.78) and (4.80) are investigated numerically by using
the explicit expressions given in Ref. [14]. We set FA = FB ≡ F in order
to make the matrix more comparable to (4.69). In addition we set UA =
UB = UAB ≡ U , and calculate the dimensionless quantity F−H0

U
on a two-

dimensional square lattice. Using 402 lattice points we find that the two
cases differ by only 0.0014%. This supports the claim that the changes that
resulted in (4.68) and (4.69), thereby producing manageable eigenvalues, do
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not change the total free energy. This allows for the use of the obtained
eigenvalues in the process of minimizing free energy.

In our expression for the energy spectrum (4.70) and (4.71) the unknown
densities of particles ni in the four degenerate single-particle ground states
remain to be found. We will find this distribution of densities self-consistently
by minimization of free energy, in the one-dimensional and two-dimensional
cases in Sections 4.2.3 and 4.2.4, respectively. The result from this final part
of the mean field procedure can also serve as a form of validation of our model
by comparing the distribution to known results.

4.2.2 Constant term

The limiting case of nearest-neighbor hopping and on-site interactions re-
duces the constant term (4.54) to

H0 = H1
0 +HMFT

0 +HSYM
0

= E0N +
Ns

8

∑
i

n2
i [U↓ + U↑ + 2U↑↓]

+
Ns

8

∑
i 6=j

ninj
[
2(U↓ + U↑) + 2U↑↓ + 2U↑↓e

i(γ
kj
−γki )

]
− 1

4

′∑
k

[
2(∆E+

k + ∆E−k ) +
∑
i

ni (2(U↓ + U↑) + 2U↑↓)

]

= E0N +
Ns

8
[U↓ + U↑ + U↑↓]n

2
0 +

Ns

8

∑
i 6=j

ninj
[
U↓ + U↑ + 2U↑↓e

i(γ
kj
−γki )

]
− 1

2

′∑
k

[
∆E+

k + ∆E−k + n0 (U↓ + U↑ + U↑↓)
]

= C +
Ns

8

∑
i 6=j

ninj
[
U↓ + U↑ + 2U↑↓e

i(γ
kj
−γki )

]
.

(4.81)

The terms proportional to n0 will contribute with terms quadratic in
boson operators from (4.63) that enter into the matrix elements. Reminding
that κ = N

Ns
and n0 = N0

Ns
, the first of these quadratic terms is
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−Ns

8
[U↓ + U↑ + 2U↑↓] ·

2κ2

N

′∑
kα

a†kαakα = −κ
4

[U↓ + U↑ + 2U↑↓]

′∑
kα

a†kαakα,

(4.82)

while the second one is

(4.83)
1

2

′∑
k′

[U↓ + U↑ + U↑↓] ·
κ

N

′∑
kα

a†kαakα =
1

2
[U↓ + U↑ + U↑↓]

′∑
kα

a†kαakα,

where we used that there are Ns terms in the sum over k′ .
The contribution from the ninj sum in (4.81) cannot be considered until

the distribution of ni is found. The terms in C do not depend on this distri-
bution, and so it will not influence minimization of free energy carried out
in its derivation. Therefore we do not include the terms in (4.82) and (4.83)
until the distribution is determined.

4.2.3 One-dimensional chain

Single-particle ground state

We consider the special case of a one-dimensional lattice in the x-direction
with lattice parameter a.

(4.84)
E±k = εk ± |sk|= −

∑
δ

tα(δ)e−ik·δ ± 2λR|
∑
j

e−iθj sin(k · aj)|

= −2t cos(kxa)± 2λR|sin(kxa)|.

The phase factor eiγkx is now real, i.e.

(4.85)

eiγkx =
skx
|skx|

=
sin kxa

|sin(kxa)|

=

{
1, if 0 < kx <

π
a

−1, if − π
a
≤ kx < 0,

and by consequence the phase γkx is given by
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(4.86)γkx =

{
0, if 0 < kx <

π
a

π, if − π
a
≤ kx < 0,

which describes mathematically the obvious fact that any k vector is either
parallel or anti-parallel to the positive direction of the only axis available,
the x-axis. From now on we drop the subscript on kx.

The ground state vectors are now k1 = −k2 = arctan(λ/t)
a

≡ k0 by mini-
mization of (4.84). The ground state energy is

(4.87)
E0 = −2t

t
a

t2 + λ2
R

− 2λR
λR

a

t2 + λ2
R

= −2
b

t2 + λ2
R.

Several simplifications can now be made to the matrix elements of (4.44).
The sum over ki reduces to

(4.88)

∑
i

ni
4

cos(γk − γki) =
1

4
[n1 cos(γk) + n2 cos(γk − π)]

=
1

4
cos(γk) [n1 − n2] ,

producing

(4.89)E+
k = ∆E+

k +
κ

2
[U↓ + U↑ + U↑↓]−

1

2
U↑↓ cos(γk) [n1 − n2] ,

(4.90)E−−k = ∆E−k +
κ

2
[U↓ + U↑ + U↑↓]−

1

2
U↑↓ cos(γk) [n1 − n2] .

E−−k has been written in this form by using the antisymmetry of cos(γk) with
respect to k.

The sum over ki in F produces sin(γk) which is zero, since eiγk is real,
consequently

(4.91)F =
κ

2
(U↓ − U↑).
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The remaining sums over ki gives

(4.92)

∑
i

?
nin−i

4
e−2i(γk−γki ) =

?
n1n2

4

[
e−2iγk + e−2i(γk−π)

]
=

?
n1n2

2
e−2iγk

=

?
n1n2

2
,

where we used that eiγk = ±1, and thus

(4.93)G1 =

?
n1n2

2
[U↓ + U↑] ,

(4.94)G2 =

?
n1n2

2
[U↓ − U↑] .

In what follows we set U↓ = U↑ = U , meaning that F = G2 = 0. We
obtain the four excitation branches

(4.95)E +
kσ =

[
2(E+

k )2 −G2
1 + 2σE+

k

b

(E+
k )2 −G2

1

] 1
2

,

(4.96)E −kσ =

[
2(E−−k)

2 −G2
1 + 2σE−−k

b

(E−−k)
2 −G2

1

] 1
2

.

Determination of ground state density distribution

The excitation energies (4.95) and (4.96) are used to calculate F/U , where
we have introduced the parameter α such that U↑↓ = αU . The occupation
numbers n1 and n2 are found numerically by minimization of F/U using 105

lattice points. In addition to computing the sum over k for the excitation
branches, we must also include the constant term (4.81). However, the term
C is independent of the distribution and may be omitted.

For α ≤ 1 it is found that condensation occurs to the ground state n1,
i.e. the ground state with positive k vector. Since the choice of positive k-
direction is arbitrary, it is evident that condensation to both ground states is
equally likely. To put it differently, the direction to which the condensation



4. Analytical results 65

spontaneously occurs is defining the positive direction of the k axis in our
system. This single-k valued phase is called the plane wave phase.

For α > 1 it is found that condensation occurs equally to both ground
states. The condensate consists of an equal number of particles with two
equal but opposite directed momenta. This leads to a stripy distribution of
spin particles in real space, giving rise to the name stripe phase.

Final excitation energy: Plane wave phase

First we consider the plane wave phase:

(4.97)
n1 = n0 = κ− κ

N

′∑
kα

a†kαakα,

n2 = 0.

The last term in the constant (4.81) vanishes:

(4.98)
Ns

8

∑
i 6=j

ninj
[
2U + 2U↑↓e

i(γ
kj
−γki )

]
= 0.

Using (4.82) and (4.83), the total renormalization of the chemical poten-
tial from H0 s then

(4.99)
µ =

1

2
[2U + U↑↓]−

κ

2
[U + U↑↓]

= U
(

1− κ

2

)
+

1

2
U↑↓ (1− κ) .

When inserted into the matrix elements the approximation n1 ≈ κ holds,
since these terms are already part of expressions quadratic in boson operators.
Only E±±k is now non-zero:

(4.100)E±±k = ∆E±k + κU +
κ

2
U↑↓ [1− cos(γk)] ,

(4.101)G1 = U
?
n1n2

= 0.
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We end up with the final result for the energy spectrum on the one-dimensional
chain. From (4.95) and (4.96) it is clear that E +

k− and E −k− vanish, and we are
left with the two branches

E ±k+ = 2E±k = 2∆E±k + 2κU + κU↑↓ r1− cos(γk)s . (4.102)

which are plotted in Figure 4.2. cos(γk) causes a discontinuity for both
branches at k = 0, illustrated in Figure 4.3. See Section 5 for a discussion of
this suspicious finding.

Final excitation energy: Stripe phase

The stripe phase is characterized by

n1 = n2 =
κ

2
− κ

2N

′∑
kα

a†kαakα. (4.103)

The last term in the constant (4.81) gives rise to the quadratic term:

Ns

8

∑
i 6=j

ninj
[
2U + 2U↑↓e

i(γ
kj
−γki )

]
=
Ns

2
n1n2 [U − U↑↓]

≈ Ns

2
[U − U↑↓] ·

[
κ

2
− κ

2N

′∑
kα

a†kαakα

]

→ −1

4
[U − U↑↓]

′∑
kα

a†kαakα,

(4.104)

where we have used that∑
i 6=j

ei(γkj−γki ) = ei(π−0) + ei(0−π) = −2. (4.105)

Combined with (4.82) and (4.83), the total renormalization of the chem-
ical potential from H0 is then

(4.106)µ =
1

2
U

(
3

2
− κ
)

+
1

2
U↑↓

(
1

2
− κ
)
.
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Figure 4.2: Energy divided by interaction strength U in the first Brillouin zone
for the plane wave phase α ≤ 1. Upper energy band E +

k+ in red; lower energy band
E ±k− in blue. The spectrum is almost identical to the single-particle spectrum,
except for a lowering of energy by the amount of 2κU↑↓ for positive k compared
with negative k, illustrated by the two horizontal bars. In this plot α = 1, and
t/U = λR/U = 10.

Keeping in mind that F = G2 = 0 from U↓ = U↑ = U , and using n0 ≈ κ
where terms are already quadratic in boson operators, the remaining matrix
elements read

(4.107)
E±±k =∆E±k + κU +

κ

2
U↑↓,

G1 =
κ

2
U.
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Figure 4.3: The same plot as in Figure 4.2, where the region around k = 0 has
been enlarged. We observe a discontinuity of the dispersion caused by eiγk being
ill-defined in the origin.

We obtain the four excitation energies, where again σ = ±1,

(4.108)E +
kσ =

[
K +

?
R + σ

?
2

b

H +K
?
R

] 1
2

,

=

[
2(E+

k )2 − |G1|2 + 2σE+
k

b

(E+
k )2 − |G1|2

] 1
2

,
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(4.109)
E −kσ =

[
K −

?
R + σ

?
2

b

H −K
?
R

] 1
2

=

[
2(E−−k)

2 − |G1|2 + 2σE−−k

b

(E−−k)
2 − |G1|2

] 1
2

.

Figure 4.4: Upper excitation branches divided by interaction strength U in the
first Brillouin zone for a spin-orbit coupled BEC on a 1D chain in the weak inter-
action limit, for the stripe phase α > 1. E +

k+ in red; E −k+ in blue. The spectrum
is almost identical to the single-particle spectrum, except for a lowering of energy
by a small symmetrically distributed amount. In this plot α = 1.1, κ = 1, and
t/U = λR/U = 10.
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Figure 4.5: Lower excitation branches divided by interaction strength U in the
first Brillouin zone for a spin-orbit coupled BEC on a 1D chain in the weak inter-
action limit, for the stripe phase α > 1. E −k− in orange; E +

k− in black. In this plot
α = 1.1, κ = 1, and t/U = λR/U = 10.

The σ = −1 branches will now be shown to be negligible compared to
σ = +1. The maximum of G1

E±±k

is
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(4.110)

max

(
G1

E±±k

)
= max

(
κU/2

∆E±k + κU
(
1 + α

2

))
=

κU/2

min(∆E±k ) + κU
(
1 + α

2

)
=

κU/2

κU
(
1 + α

2

)
=

1

2 + α

<
1

3
,

since α > 1. Expanding the σ = −1 branches in G2
1

(E±±k)2
< 1

9
to second order

yields

(4.111)

(E ±k,−1)2 = 2(E±±k)
2 −G2

1 − 2E±±k

b

(E±±k)
2 −G2

1

≈ 2(E±±k)
2 −G2

1 − 2E±±k

(
E±±k −

G2
1

2E±±k
− G4

1

8(E±±k)
3

)
=

G4
1

4(E±±k)
2
.

The σ = −1 branches are thus maximal when E±±k are minimal, since G1

is constant, i.e.

max(E ±k,−1) ≈

d

(κU/4)4

4(κU
`

1 + α
2

˘

)2
=

κU

32
`

1 + α
2

˘ . (4.112)

Expanding the σ = +1 branches in |G1|2

(E±±k)2
< 1

9
to second order yields

(4.113)

(E ±k,+1)2 = 2(E±±k)
2 −G2

1 + 2E±±k

b

(E±±k)
2 −G2

1

≈ 2(E±±k)
2 −G2

1 + 2E±±k

(
E±±k −

G2
1

2E±±k
− G4

1

8(E±±k)
3

)
= 4(E±±k)

2 − 2G2
1 −

G4
1

4(E±±k)
2
,
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so that

min
(
(E ±k,+1)2

)
≈ 4κ2U2

(
1 +

α

2

)2

− 2
(κ

2
U
)2

−

(
κU

32
(
1 + α

2

))2

= κ2U2

4
(

1 +
α

2

)2

− 1

2
−

(
1

32
(
1 + α

2

))2


=
κ2U2

322
(
1 + α

2

)2

[
642
(

1 +
α

2

)4

− 512
(

1 +
α

2

)2

− 1

]
.

(4.114)

The maximum of E±k,−1 and minimum of E±k,+1 are both located at k =
±k0. The smallest possible ratio of the σ = +1 branches to the σ = −1
branches is then

(4.115)

min

(
E ±k,+1

E ±k,−1

)
=

E ±k0,+1

E ±k0,−1

≈
c

642
(

1 +
α

2

)4

− 512
(

1 +
α

2

)2

− 1

> 139,

for α > 1. It is clear that E ±k,−1 < E ±k,+1/139 and therefore negligible.
The weak coupling thus creates two quasi-particle modes that are slight

perturbations of the single-particle modes, and two quasi-particle modes of
comparably negligible energy.

4.2.4 Two-dimensional square lattice

Single-particle ground state

On the two-dimensional square lattice the single-particle energy becomes

(4.116)
E±k = εk ± |sk|= −

∑
δ

t(δ)e−ik·δ ± 2λR|
∑
j

e−iθj sin(k · aj)|

= −2t [cos(kxa) + cos(kya)]± 2λR

b

sin2(kxa) + sin2(kya).

Defining τ = λR/t we obtain the following expression for the ground state:
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sin(kxa) = ± τ
?

2 + τ 2
≡ ±β, (4.117)

where we have assumed that a 6= 0, sin(kxa) 6= 0, and cos(kxa) ≥ 0. The last
requirement is true in the first Brillouin zone, where we obtain the solutions

kx = ±arcsin(β)

a
. (4.118)

The same arguments also yield

ky = ±arcsin(β)

a
. (4.119)

The ground state energy is

(4.120)E0 = −4t
a

1− β2 − 2
?

2λRβ

= −2
b

2t2 + λ2
R.

We define the ground state k-vectors:

k1 =
arcsin(β)

a
(x̂+ ŷ),

k2 = −arcsin(β)

a
(x̂− ŷ),

k3 = −arcsin(β)

a
(x̂+ ŷ),

k4 =
arcsin(β)

a
(x̂− ŷ).

(4.121)

On the square lattice the factor eiγk becomes

(4.122)

eiγk =
sk
|sk|

=

∑
j e
−iθj sin(k · aj)

|
∑

l e
−iθl sin(k · al)|

=
sin(kxa)− i sin(kya)

a

sin2(kxa) + sin2(kya)
,
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Figure 4.6: The four single-particle ground state k vectors for spin-orbit coupled
bosons on a quadratic lattice, with τ = λR/t = 1.

giving rise to the corresponding ground state phase factors2

γk1 = −π
4
, γk2 = −3π

4
, γk3 =

3π

4
, γk4 =

π

4
. (4.123)

We can now consider the sums over ki in (4.75):

(4.124)

∑
i

ni cos(γk − γki) = n1 cos(γk +
π

4
) + n2 cos(γk +

3π

4
)

+ n3 cos(γk −
3π

4
) + n4 cos(γk −

π

4
)

=
1

?
2

(n1 − n2 − n3 + n4) cos(γk)

− 1
?

2
(n1 + n2 − n3 − n4) sin(γk),

2By defining the factor sk/|sk| differently in Section 3.2.3, e.g. −ieiγk , the phase factors
would have corresponded to the polar angle of the ground state k vectors, as is done in
Ref. [28]. Obviously, this does not affect the physics.
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(4.125)

∑
i

ni sin(γk − γki) = n1 sin(γk +
π

4
) + n2 sin(γk +

3π

4
)

+ n3 sin(γk −
3π

4
) + n4 sin(γk −

π

4
)

=
1

?
2

(n1 + n2 − n3 − n4) cos(γk)

+
1

?
2

(n1 − n2 − n3 + n4) sin(γk).

(4.126)

∑
i

?
nin−ie

2iγki =
?
n1n3(−i) +

?
n2n4i+

?
n1n3(−i) +

?
n2n4i

= −2i(
?
n1n3 −

?
n2n4).

We thus obtain the following matrix elements:

(4.127)E±±k = ∆E±k +
κ

2
[U↓+U↑+U↑↓]−

1

2
?

2
U↑↓ [(n1−n2−n3 +n4) cos(γk)

− (n1 + n2 − n3 − n4) sin(γk)] ,

(4.128)F =
κ

2
(U↓ − U↑) +

i

2
?

2
U↑↓ [(n1 + n2 − n3 − n4) cos(γk)

+ (n1 − n2 − n3 + n4) sin(γk)] ,

(4.129)G1 =
1

2
U↓(

?
n1n3 +

?
n2n4)− 1

2
iU↑e

−2iγk(
?
n1n3 −

?
n2n4),

(4.130)G2 =
1

2
U↓(

?
n1n3 +

?
n2n4) +

1

2
iU↑e

−2iγk(
?
n1n3 −

?
n2n4).

Determination of ground state density distribution

For the numerical determination of the density parameters n1, ..., n4 we again
set U↓ = U↑ = U , and define α such that U↑↓ = αU . By the using the matrix
elements (4.127) – (4.130) and 1012 lattice points, F/U is calculated and
minimized with respect to the density parameters. As in the 1D case the
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term H0 − C is included in this calculation. The result is similar to that of
the one-dimensional case.

For α < 1 condensation occurs to n3. However, by renaming the x and
y axes any of the ground state vectors could be represented by n3, so that
condensation to any one of the four ground state vectors is equally likely.
This phase is referred to as the plane wave phase.

For α ≥ 1 condensation occurs to n2 and n4. This is the plane wave phase
where condensation occurs to two opposite momenta. Again, condensation
to the ground state vectors represented by n1 and n3 is equally likely by a
redefinition of the x and y axes conserving right-handedness.

Final excitation energy: Plane wave phase

The plane wave phase is characterized by

n1 = n2 = n4 = 0,

n3 = n0 = κ− κ

N

′∑
kα

a†kαakα.
(4.131)

The last term in the constant (4.81) vanishes:

(4.132)
Ns

8

∑
i 6=j

ninj
[
2U + 2U↑↓e

i(γ
kj
−γki )

]
= 0.

Using (4.82) and (4.83), the total renormalization of the chemical poten-
tial from H0 is then

(4.133)µ = U
(

1− κ

2

)
+

1

2
U↑↓ (1− κ) .

The resulting matrix elements, with U↓ = U↑ = U , again using the ap-
proximation n0 ≈ κ, are

(4.134)E±±k = ∆E±k + κU +
κ

2
U↑↓ +

κ

2
?

2
U↑↓ [cos(γk)− sin(γk)] ,

(4.135)F = − iκ

2
?

2
U↑↓ [cos(γk) + sin(γk)] ,

G1 = G2 = 0. (4.136)
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The four excitation branches for the plane wave phase are thus

(4.137)E +
kσ =

[
2(E+

k )2 + |F |2 + 2σE+
k

b

(E+
k )2 + |F |2

] 1
2

,

(4.138)E −kσ =

[
2(E−−k)2 + |F |2 + 2σE−−k

b

(E−−k)2 + |F |2
] 1

2

,

for σ = +,−. It is seen numerically that the minima of E −k+ corresponding
to k1 and k3 are found at the same k values while the minima corresponding
to k2 and k4 are displaced slightly in negative x- and y-direction.

The weak coupling thus creates two quasi-particle modes that are slight
perturbations of the single-particle modes, and two quasi-particle modes of
comparably negligible energy, none being symmetric in k.

Final excitation energy: Stripe phase

In the stripe phase we have that

n1 = n3 = 0,

n2 = n4 =
n0

2
=
κ

2
− κ

2N

′∑
kα

a†kαakα.
(4.139)

The last term in the constant (4.81) contributes with a term quadratic in
boson operators:

(4.140)

Ns

8

∑
i 6=j

ninj
[
2U + 2U↑↓e

i(γ
kj
−γki )

]
=
Ns

8
n2n4

[
4U + 2U↑↓

(
ei(γk2−γk4 ) + ei(γk4−γk2 )

)]
=
Ns

8
n2n4

[
4U + 4U↑↓ cos

(
π

4
+

3π

4

)]
=
Ns

2
n2

0 [U − U↑↓]

→ −Ns

2
[U − U↑↓] ·

κ2

2N

′∑
kα

a†kαakα

= −1

4
[U − U↑↓]

′∑
kα

a†kαakα.
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(a) E +
k+ branch.

(b) E −k+ branch.

Figure 4.7: Upper branches of the excitation spectrum divided by interaction
strength U in the first Brillouin zone for the plane wave phase α < 1. In this plot
α = 0.9, t/U = λR/U = 10, κ = 1, and 9 · 106 lattice points.
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(a) E −k− branch.

(b) E +
k− branch.

Figure 4.8: Lower branches of the excitation spectrum divided by interaction
strength U in the first Brillouin zone for the plane wave phase α < 1. In this plot
α = 0.9, t/U = λR/U = 10, κ = 1, and 9 · 106 lattice points.
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Figure 4.9: The same plot as in Figure 4.7, for ky = 0 and where the region
around kx = 0 has been enlarged. E +

k+ branch in red; E −k+ branch in blue. As in
the 1D plane wave phase, we observe a discontinuity of the dispersion caused by
eiγk being ill-defined in the origin.

Combined with (4.82) and (4.83), the total renormalization of the chem-
ical potential from H0 is then

(4.141)µ =
1

2
U

(
3

2
− κ
)

+
1

2
U↑↓

(
1

2
− κ
)
.

The matrix elements are now

(4.142)E±±k = ∆E±k + κ

[
U +

U↑↓
2

]
,

(4.143)F = 0,
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Figure 4.10: E +
k+ branch and E −k+ branch in red and blue, respectively, with

constant ky = (k3)y in the asymmetric plane wave phase. In this plot α = 0.9, and
t/U = λR/U = 10.

(4.144)G1 =
κU

4

(
1 + ie−2iγk

)
,

(4.145)G2 =
κU

4

(
1− ie−2iγk

)
.

The resulting expressions for the excitation branches cannot be readily
simplified, so we keep the form of (4.70) and (4.71) with the following quan-
tities:

(4.146)K = (E+
k )2 + (E−−k)2 − |G1|2 − 2|G2|2,

(4.147)R = ((E+
k + E−−k)2 − 4|G2|2)(E+

k − E
−
−k)2,
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(4.148)H = (E+
k )4 + (E−−k)4 + 2|G2|2

[
2E+

k E
−
−k − 3|G2|2

]
−
[
(E+

k )2 + (E−−k)2 − 2|G2|2
]
·
[
|G1|2 + 4|G2|2

]
.

As in the plane wave phase, the E +
k+ and E −k+ modes are seen to be almost

identical to the single-particle spectrum, the latter having four degenerate
global minima at the same values of k. The stripe phase thus contains
two quasi-particle modes that are slight perturbations of the single-particle
modes, and two quasi-particle modes of comparably negligible energy that
are all symmetric in k.
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(a) E +
k+ branch.

(b) E −k+ branch.

Figure 4.11: Upper branches of the excitation spectrum divided by interaction
strength U in the first Brillouin zone for the stripe phase α ≥ 1. In this plot α = 1,
t/U = λR/U = 10, κ = 1, and 9 · 106 lattice points.
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(a) E −k− branch.

(b) E +
k− branch.

Figure 4.12: Lower branches of the excitation spectrum divided by interaction
strength U in the first Brillouin zone for the stripe phase α ≥ 1. In this plot α = 1,
t/U = λR/U = 10, κ = 1, and 9 · 106 lattice points.



5. Discussion

α dependency

Most of the verifiable content is found in Sections 4.2.3 and 4.2.4 where the
model is applied to a one-dimensional chain and a two-dimensional quadratic
lattice. In both of these cases the minimization of free energy showed that
the phases to which the system condensed, namely the plane wave and stripe
phases, had a dependency on the α = U↑↓/U parameter that agreed with
literature. This was described for a one-dimensional chain in Ref. [29] and
for the a two-dimensional quadratic lattice in Refs. [13] and [30]. Both
situations, and many other topical subjects are described in the extensive
review on spin-orbit coupling in optical lattices in Ref. [28].

In the process of numerically investigating the α dependency of the ground
state distribution, it was observed that the term H0−C itself was responsible
for the α = 1 watershed between the two phases. This term written out
explicitly for the two-dimensional square lattice is

(5.1)

UNs

4

∑
i 6=j

ninj
[
1 + αei(γkj−γki )

]
=
UNs

2

∑
i<j

ninj [1 + α cos(γkj − γki)]

=
UNs

2
(n1n3 + n2n4) [1− α] .

Upon minimizing free energy it is clear that for α > 1 the term pn1n3 + n2n4q

must be maximized subject to constraint
∑

i ni = n0. This leads to the stripe
phase n1 = n3 = n0/2, n2 = n4 = 0, or n2 = n4 = n0/2, n1 = n3 = 0. For
α < 1 the term pn1n3 + n2n4q must be minimized which leads to ni = n0 for
one of the ground states while the other densities vanish. The sum over the
excitations lead to one of the equivalent cases being chosen, but this choice is
arbitrary since it merely depends on the definition of axes. Thus the constant
term resulting from pure ground state interactions seem to be responsible for
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the widely accepted result while the validation of excitation branches is more
obscure, and more research is needed to confirm or repudiate the excitation
spectrum.

Discontinuous dispersion relations

In the one- and two-dimensional cases of the plane wave phase there was a
distinct discontinuity in the two highest excitation branches at the origin,
illustrated in Figures 4.3 and 4.9. In both cases they are caused by the
discontinuous functions cos(γk) and sin(γk) in E±±k, see (4.100) and (4.134),
causing a broken Dirac point at k = 0. These problematic parts do not cause
a discontinuity in the stripe phases, since in the equivalent expressions they
vanish. We also observe that in both instances the discontinuous terms are
proportional to U↑↓. Essentially, the discontinuity indicate that our model is
unable to describe k = 0 modes, since both their energy and group velocity
vg = ∂E /∂k are ill-defined.

The mathematical root of the problem is that the phase factor eiγk =
sk/|sk| is not defined for k = 0. Moreover, this only causes problems in
terms proportional to U↑↓, and when the condensate is in the asymmetric
plane wave phase. What this tells us physically is that there is a significant
pathology present when our model is applied on a spin-orbit coupled BEC of
finite inter-spin interactions U↑↓ in the plane wave phase, where the helicity
basis contains a phase factor eiγk which is not defined for k = 0.

A second possibility is that there is something fundamentally wrong with
the mean-field approach used in this thesis. The assumption that the number
of particles in a given ground state i, Ni, is much greater that one (4.8) is
the basis for the subsequent treatment. We later obtain that ni = 0 for
some i, which might seem contradictory. However, it was assessed that since
ni = Ni/Ns, where the number of lattice sites Ns is macroscopic, the physical
situation of ni = 0 does not necessarily exclude Ni >> 1. If e.g. Ni = 20,
ni = 0 still holds physically.

The no-SOC limit

An ideal way of verifying our results would be to consider the excitation
spectrum in the no-SOC limit and compare with known results. These results
could be the excitation spectrum of an interacting two-component BEC as in
Ref. [14], or further simplifying to a one-component BEC and the standard
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result in e.g. Ref. [26]. The latter result reads

Ek =
a

εk pεk + 2Un0q, (5.2)

for both spin states. In order to obtain a comparable result we set E0 = 0,
U↓ = U↑, energy offset T = 0, and U↑↓ = 0. Using (4.70) and (4.71) without
using (4.63), i.e. keeping n0 instead of κ, we obtain in the limit of on-site
interactions and nearest-neighbor hopping the four excitation energies

E±kσ =

[
2(εk ± |sk|+n0U)2 − |U

∑
i

?
nin−i

2

[
1 + e−2i(γk−γki )

]
|2 +

2σ(εk ± |sk|+n0U)

d

(εk ± |sk|+n0U)2 − |U
∑
i

?
nin−i

2

[
1 + e−2i(γk−γki )

]
|2
] 1

2

,

(5.3)

where σ = ±1. An attempt at a no-SOC limit would be to set λR = 0
leading to sk = 0, and setting

∑
i

?
nin−i = n0. However, the limiting value

of the phase factor eiγk = sk/|sk| does not exist. sk was in fact assumed to
be non-zero upon defining the single-particle eigenvectors in (3.42).

The limit of λR = 0 must hence be considered in the spin basis, before
applying the mean-field procedure using the non-degenerate k = 0 ground
state. This treatment is the same as in Ref. [14] with components A and B
representing spin up and spin down. In order to make the SOC and no-SOC
matrices comparable, we must set the matrix elements FA = FB ≡ F in Ref.
[14]. The equality of the inter-spin potential means that the inter-component
also must be equal, and hence that the densities of particles must be equal,
nA = nB = κ/2, using the notation for the total density of particles κ from
our thesis. With tA = tB, and considering the one-dimensional chain with
lattice parameter a, we obtain εAk = εBk = 4t sin(ka/2).

The excitation spectrum in the λR = 0 limit is then found in two separate
cases: using the unchanged matrix (4.76), and the changed matrix (4.79). In
the situation under consideration, both spectra contain two distinct branches.
In fact, upon plotting these it is clear that the upper branch of the changed
matrix equals the sum of both branches of the unchanged matrix. The role
of the lower branch of the changed matrix is more uncertain to the author.
It does not seem to equal the difference between the two branches. See figure
5.1.

This finding in the no-SOC case might suggest that the upper branches
found in Sections 4.2.3 and 4.2.4 are in fact the sums of pairs of branches in
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the corresponding unchanged matrix, the spectrum of which was too compli-
cated to study.

Figure 5.1: Energy divided by interaction strength U in the first Brillouin zone in
the λR = 0 case. The upper and lower branch of the spectrum from the unchanged
matrix are represented in red and blue, respectively. The upper branch and lower
branch of the spectrum from the changed matrix are represented in green and
black, respectively. We have set α = κ = 1, and t/U = 10.

Absence of Zeeman fields

Zeeman fields perpendicular to the lattice are not included in this treatment.
In the two-dimensional case these are terms in the Hamiltonian proportional
to σz. These terms are commonly included in literature on synthetic SOC.
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Zeeman fields causes Zeeman splitting, i.e. a gap between the two excita-
tion branches. One of the synthetic spin states is energetically favored over
the other, making the Zeeman fields play the role of a synthetic magnetic
field in the synthetic spin system. This is achieved experimentally by having
the SOC lasers pumping more particles into one of the spin states than the
other [31]. The SOC Hamiltonian that accounts for the complete interaction
with lasers that create SOC is called Raman coupling, and is equivalent to
having equal amounts of Dresselhaus og Rashba coupling [32]. The standard
long-wavelength limit result from Raman coupling is thus that SOC creates
phonon and gap branches in a spectrum that is either symmetric or asym-
metric in k, depending on α [32]. Ignoring the Zeeman field in this treatment
leads to a conservation of the ungapped Dirac points at the origin as seen
in the one-dimensional case in plots 4.2 and 4.4. Consequently, there are
relatively few analytical results in literature that are directly comparable to
our excitation spectra.

Low-energy modes

The unorthodox manipulations performed to obtain the matrix (4.67) led to
manageable eigenvalues. It was subsequently demonstrated that this proce-
dure did not change the total free energy of the system. It did, however, lead
to strange low energy modes that even vanished in the one-dimensional plane
wave phase. The physical implications of these modes remain puzzling to the
author. In a matrix of diagonal elements symmetric in k pairs of eigenval-
ues would merge into one by a change of variable −k → k, as in [14]. This
would arguably not transpire in our situation had the manipulations not been
performed, since the diagonal matrix elements are not symmetric in k.

By using (4.111) we see that in the long-wavelength limit the lower modes
in the one-dimensional stripe phase go as

E ±k,−1 ∼
1

D ± |k|a
, (5.4)

where D = κ pU + U↑↓/2q− E0.

Exclusion of terms in mean field approximation

Certain terms that would fulfill the delta function requirements in the mean
field approach could not be included. These are terms where the ground state
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particle that interacts with the non-ground-state particle change ki vector,
e.g. for the intra-spin interaction

k1 = kj, k3 = ki, k2 = k′, k4 = k, (5.5)

where ki 6= kj and k′ = k + ki − kj. These terms are not included since
there are no boson operators of type k + ki − kj, only ±k.



6. Conclusion and outlook

A spin-orbit coupled Bose-Einstein condensate was treated as a two-component
BEC where the single-particle spin basis was exchanged for the helicity basis
of a spin-orbit coupled single-particle Hamiltonian. A general form for the un-
diagonalized Hamiltonian on a Bravais lattice is presented in (4.44). The exci-
tation energy for the limiting case of on-site interactions and nearest-neighbor
hopping is then found on a one-dimensional chain and a two-dimensional
square lattice. The densities of particles in the ground states is found self-
consistently by minimizing the free energy of the system. These mean field
parameters define two distinct phases depending on the relative strength of
the intra-spin couplings U to the inter-spin coupling U↑↓. These two phases
are the plane wave phase for U > U↑↓ and the stripe phase for U < U↑↓.
This dependency agrees with literature. Inserting these densities into the
excitation spectrum yields the final expressions for the excitation spectra for
the two phases in one and two dimensions, shown in Sections 4.2.3 and 4.2.4.

The undiagonalized Hamiltonian could be used to further investigate
other limiting cases. The discontinuous nature of the excitation spectrum,
in addition to the lack of comparable standard results, imply that further
research into the validity of the results is needed.

An interesting application of the results of this thesis would be an inves-
tigation into the drag coefficient of a spin-orbit coupled BEC. Ref. [33]
is a thorough treatment of drag. Drag in a two-component interacting
BEC was found in Ref. [14]. In this treatment, the Galilean transforma-
tion k → k − mτvτ simply led to Doppler-shifted single-particle energies
ετk → ετk −mτvτ · ∇kετk , for components τ = A,B, that could then be sub-
stituted in the energy spectrum. An idea would be to do the same in a BEC
with SOC, where helicity states are used as components. In our case, how-
ever, there is k dependence in non-diagonal matrix elements as well, not only
in the single-particle energy, making it more complicated to assign a given k
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to a specific helicity state.
Another complicating factor is the influence of spin-orbit coupling on

Galilean invariance. The implications of SOC breaking Galilean invariance
must be investigated. As an example, the critical velocity depends on the
frame of reference. We thus have different physics in different frames of
reference. For literature on Galilean invariance, see Refs. [34, 35, 36, 37].
Finding drag from an expansion in velocities is explained in Ref. [38].

An alternative approach for investigating the drag coefficient is described
in Ref. [39]. Wave functions subjected to periodic boundary conditions
have phases φ that minimize the free energy of the system. ∆φi describe
a deviation from φi, for components i = 1, 2. d2F

d(∆φ1)d(∆φ2)
|∆φ1=∆φ2=0 is then

interpreted as the drag coefficient between these two components 1 and 2.



A. Commutation relations*

The helicity band operators in terms of spin operators are, by inversion of
(3.45):

ak+ =
1

?
2

`

e−iγkbk↑ + bk↓
˘

,

ak− =
1

?
2

`

−e−iγkbk↑ + bk↓
˘

,

a†k+ =
1

?
2

´

eiγkb†k↑ + b†k↓

¯

,

a†k− =
1

?
2

´

−eiγkb†k↑ + b†k↓)
¯

.

(A.1)

The boson operators bkα, α =↑, ↓, obey the commutation relations

(A.2a)[bkα, bk′β] = 0,

(A.2b)
[
b†kα, b

†
k′β

]
= 0,

(A.2c)
[
bkα, b

†
k′β

]
= δk,k′δα,β.

by assumption upon their introduction into the Bose-Hubbard model. We
now show that they are valid for ak± as well. (A.2a) and (A.2b) are valid for
ak± and a†k± as well by inspection since they both only contain bkα and b†kα
terms, respectively. For the last commutation relation we check the different
cases separately, excluding terms that are zero by (A.2a) and (A.2b), and
using (A.2c):

93



94 A. Commutation relations*

(A.3)

[
ak+, a

†
k′+

]
=

1

2

[
e−iγkbk↑ + bk↓, e

iγk′ b†k′↑ + b†k′↓

]
=

1

2

(
ei(γk′−γk)

[
bk↑, b

†
k′↑

]
+
[
bk↓, b

†
k′↓

])
=

1

2

(
ei(γk′−γk)δk,k′ + δk,k′

)
= δk,k′ ,

(A.4)

[
ak+, a

†
k′−

]
=

1

2

[
e−iγkbk↑ + bk↓,−eiγk′ b†k′↑ + b†k′↓

]
=

1

2

(
−ei(γk′−γk)

[
bk↑, b

†
k′↑

]
+
[
bk↓, b

†
k′↓

])
=

1

2

(
−ei(γk′−γk)δk,k′ + δk,k′

)
= 0,

(A.5)

[
ak−, a

†
k′+

]
=

1

2

[
−e−iγkbk↑ + bk↓, e

iγk′ b†k′↑ + b†k′↓

]
=

1

2

(
−ei(γk′−γk)

[
bk↑, b

†
k′↑

]
+
[
bk↓, b

†
k′↓

])
=

1

2

(
−ei(γk′−γk)δk,k′ + δk,k′

)
= 0,

(A.6)

[
ak−, a

†
k′−

]
=

1

2

[
−e−iγkbk↑ + bk↓,−eiγk′ b†k′↑ + b†k′↓

]
=

1

2

(
ei(γk′−γk)

[
bk↑, b

†
k′↑

]
+
[
bk↓, b

†
k′↓

])
=

1

2

(
ei(γk′−γk)δk,k′ + δk,k′

)
= δk,k′ .

We thus obtain the commutation relations
(A.7a)[akα, ak′β] = 0,

(A.7b)
[
a†kα, a

†
k′β

]
= 0,

(A.7c)
[
akα, a

†
k′β

]
= δk,k′δα,β,

where in this case, α, β = +,−.



B. Helmholtz free energy

In order to find the Helmholtz free energy of the system we need to find the
partition function Z of the system. Using (4.53) we find

Z = Tr(e−βH)

=
∑
m

〈Nm| e−βH |Nm〉

=
∑
m

〈Nm| e−βH0 exp{−β
2

∑
σ

′∑
k

Ekσ

(
nkσ +

1

2

)
} |Nm〉

= e−βH0 exp{−β
4

∑
σ

′∑
k

Ekσ}
∑
m

〈Nm| exp{−β
2

∑
σ

′∑
k

Ekσnkσ} |Nm〉 ,

(B.1)

where β = 1
kBT

. The |Nm〉 states constitute a many-particle Fock basis,
i.e. the product of one-particle number states for each quantum number µi
represented in |Nm〉:

(B.2)|Nm〉 = |nµ1〉 |nµ2〉 · · · |nµNm
〉 .

Each |Nm〉 thus picks out the eigenvalues nµi represented in each term:

∑
m

〈Nm| exp{−β
2

∑
σ

′∑
k

Ekσnkσ} |Nm〉

=
∏
kσ

∑
m

〈Nm| exp{−1

2
βEkσnkσ} |Nm〉

=
∏
kσ

∑
nk

exp{−1

2
βEkσnkσ}.

(B.3)
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This expression is a geometric sum, thus

(B.4)Z = e−βH0 exp{−β
4

∑
σ

′∑
k

Ekσ}
∏
kσ

1

1− exp{−1
2
βEkσ}

.

The free energy F can now be found:

(B.5)
F = − 1

β
lnZ

= H0 +
1

2

∑
σ

′∑
k

Ekσ + kBT
∑
σ

′∑
k

ln (1− exp{−Ekσ/2kBT}) .

Since we are considering the case T = 0 the last term vanishes, so

(B.6)F = H0 +
1

4

∑
σ

′∑
k

Ekσ,

where the sum is over σ is over four branches. In many cases, as in (4.77),
there are only two unique branches. In these cases the sum is usually only
taken over these two branches, increasing the factor 1/4 to a factor 1/2.



C. Python files

Python files used are handed in together with the thesis. These files and
their descriptions are listed in the following table.

Filename Description
totalfreeenergy.py Comparison of free energy calculated

from (4.78) and (4.80).
minimizefreeenergy1D.py Minimizing free energy with respect

to the ground state densities in one
dimension.

minimizefreeenergy2D.py Minimizing free energy with respect
to the ground state densities in two
dimensions.
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