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ABSTRACT 
 
Effective population size (Ne) is a fundamental concept for understanding evolutionary 
dynamics and can be defined as the size of an ideal Wright-Fisher population in which the 
rate of genetic drift is the same as in the observed population. Natural populations are not 
ideal so that Ne is often < Nc. A low Ne can lead to inbreeding depression and reduced 
potential for adaptive evolutionary change in a population, thus it is essential to know Ne 
for threatened populations as Ne influences their probability of long-term survival. Ne can 
be estimated using genetic or demographic data. In this study I compared four different 
genetic estimators (LDNE, ONeSAMP, MLNE and CoNe) and a demographic estimator 
based on Engen et al. (2005) using data from a natural house sparrow metapopulation. 
These estimators all estimate Ne reflecting the current rate of genetic drift. How Ne related 
to Nc was also examined. All four genetic estimators seemed to be upwardly biased. 
However, LDNE often produced estimates in the expected range (Ne < N) and thus 
appeared to be less biased. Genetic Ne was much higher than demographic Ne, probably 
due to the greater effect of immigration on genetic than demographic processes. To 
understand how characteristics of natural populations may affect the rate of genetic drift 
it is important to examine what influence the Ne/Nc-ratio. Thus, I investigated whether 
population characteristics such as population size, sex ratio, immigration rate, variance in 
population size and population growth rate explained variation in the Ne/N ratio for the 
different genetic estimators. A general result was that the immigration rate had a positive 
effect on the Ne/Nc-ratio. The apparent upward bias of genetic Ne estimates and the 
positive effect of immigration rate on Ne/Nc-ratio suggest that gene flow between 
subpopulations within the study metapopulation was of significant importance for the 
local rate of genetic drift. Genetic estimators of Ne seem like promising tools. However, if 
no knowledge of the ecology of the population in question exists, Ne should be interpreted 
cautiously. When assumptions underlying estimators are violated this can lead to 
erroneous conclusions about genetic processes in the population. 
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SAMMENDRAG 
 
Et fundamentalt begrep innenfor biologi er effektiv bestandsstørrelse (Ne), definert som 
den bestandsstørrelsen der genetisk drift skjer like raskt som i en tilsvarende ideell 
Wright-Fisher bestand. Potensielle konsekvenser av en lav Ne er innavlsdepresjon, samt en 
redusert evne til evolusjonære tilpasninger og dermed redusert overlevelse av bestanden i 
fremtiden. Man kan bruke enten demografiske eller genetiske data for å estimere Ne. Her 
ble data fra en naturlig oppsplittet gråspurvbestand, fordelt på 15 ulike øyer, brukt til å 
sammenlikne fire genetiske Ne-estimatorer (LDNE, ONeSAMP, MLNE, CoNe) og en 
demografisk estimator basert på fremgangsmåten i Engen et al. (2005). I tillegg ble 
forholdet mellom Ne og observert bestandsstørrelse (Nc) undersøkt. Alle de genetiske 
estimatorene ga generelt verdier høyere enn det som var forventet ut ifra teorien (Ne<Nc), 
med unntak av LDNE som ofte ga estimater lavere enn Nc. Genetisk Ne var mye høyere enn 
demografisk Ne, antakeligvis fordi immigranter har større effekt på genetiske enn 
demografiske prosesser. For å forstå om demografiske parametere for en bestand påvirker 
genetisk drift er det viktig å undersøke hva som kan påvirke Ne/Nc-forholdet. Derfor 
undersøkte jeg om deler av variasjonen i Ne/Nc for hver enkelt estimator kunne forklares 
ut ifra demografiske parametere slik som bestandsstørrelse, kjønnsforhold, 
immigrasjonsrate, varians i bestandsstørrelse og bestandsvekst. Et generelt resultat var at 
immigrasjonsrate hadde en positiv innvirkning på Ne/Nc. Dette antyder at genflyt mellom 
lokale bestander i dette øy-systemet har en viktig betydning for hvor raskt genetisk drift 
skjer. Genetiske estimatorer av Ne er nyttige verktøy, men fordi de ofte overestimerer bør 
man være forsiktig med å bruke estimatene som beslutningsgrunnlag i forbindelse med 
forvaltning.  
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INTRODUCTION 
 

Effective population size (Ne) is a fundamental concept in evolutionary biology. Ne 
determines the expected rate of random genetic drift in a population, the increase through 
time in the degree of inbreeding and the loss of selectively neutral heterozygosity. It also 
affects the evolutionary effects of selection through influencing the fixation probabilities of 
advantageous, as well as deleterious mutations (Wright 1931; Crow and Kimura 1970; Lande 
1976; Ewens 1982). Ne is defined as the size of an ideal Wright-Fisher population in which 
the rate of change in heterozygosity or allele frequencies is the same as in the observed 
population (Wright 1931). Thus, it is the size of an idealized population experiencing the 
same amount of inbreeding or genetic drift as the population in question (Kimura and Crow 
1963). An ideal Wright-Fisher population is a population with discrete generations, diploid 
individuals, sexual reproduction, and where the population size is constant across 
generations, there is no migration, mating is random, there are no mutations, the sex ratio is 
1:1, there is no selection and the average number of recruits produced by each individual is 
Poisson distributed with a mean and variance of 2 (Fisher 1930; Wright 1931). Usually in 
natural populations a number of these assumptions are violated, resulting in Ne << N (Wright 
1931; Wright 1938; Frankham 1995; Nunney 1995; Vucetich et al. 1997).   

In an infinite population not exposed to selection and with no mutations or migration, the 
allele and genotype frequencies will not change from one generation to another, resulting in 
a constant level of genetic variation over time. Natural populations are on the other hand 
finite in size, and thus allele and genotype frequencies will change even in the absence of 
selection through random sampling errors known as random genetic drift (Crow and Kimura 
1970; Wang 2005). Over time genetic variation will decrease unless introduced by mutation 
or immigration, mutations being the ultimate source of genetic variation (Nei 1987). A 
general result from theoretical population genetic models is that genetic variation is lost at 
the rate of 1/(2Ne) per generation. Consequently, over time neutral genetic variation is lost 
in a population of finite size at an exponential rate roughly described by the following 
equation: 

 Ht

H0
= �1 - 

1
2Ne

�
t

~ e-t 2Ne⁄  
(1) 

where Ht is the heterozygosity at generation t and H0 is the original heterozygosity (Crow 
and Kimura 1970). This equation has also been shown to apply to additive genetic variation 
(Frankham 1996). In addition, Ne determines the relative influence of natural selection 
compared to genetic drift; if Ne is sufficiently small then advantageous mutations may be lost 
and deleterious mutations may become fixed in the population, due to chance effects 
(Kimura 1983; Otto and Whitlock 1997; Small et al. 2007; Ellegren 2009).  
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Ne is thus a key parameter to understand the viability of endangered populations and 
evolution in small populations (Frankham 1996; Frankham 2010). One advantage of using Ne 
instead of the census size (Nc)  is that Ne allows for the measuring of the strength of genetic 
drift across all real populations with different life histories using a common reference (Hare 
et al. 2011). More importantly, population genetic theory relating to population size is 
dependent on Ne and not Nc (Charlesworth 2009).  Given that the rate of genetic drift is 
inversely proportional to effective population size (eqn. 1), populations with small Ne risk 
losing genetic variation at a greater rate than new variation is introduced to the population. 
This has the short term effect of reducing the average fitness in the population due to 
inbreeding (mating between biological relatives) and the long term effect of reducing the 
population’s evolutionary potential (Franklin and Frankham 1998; Willi et al. 2006). 
Inbreeding depression is a reduction in fitness accompanying inbreeding, and can 
significantly increase the extinction probability of small populations (Charlesworth and 
Charlesworth 1999; Willi et al. 2006; Evans and Sheldon 2008). The reason for this is believed 
to be that inbreeding leads to increased homozygosity, increasing the probability of 
expressing recessive deleterious alleles (Charlesworth and Charlesworth 1987; Charlesworth 
and Charlesworth 1999). Empirical studies do indeed show that endangered populations 
have lower genetic variation on average than non-endangered populations, and this is 
related to small population size (Frankham 1996). Thus, it is essential to know the effective 
population size of endangered populations or species, so that the importance of negative 
genetic effects mentioned above can be evaluated and minimized if necessary and possible. 
For instance, the effective population size can be maximized by artificially increasing gene-
flow or carrying out strict breeding regimes (Templeton and Read 1984; Schwartz et al. 2007; 
Palstra and Ruzzante 2008; Hedrick and Fredrickson 2010).  

Depending on which aspect of genetic drift is considered, there are different ways of 
defining Ne (Crow 1954; Crow and Denniston 1988), the two most commonly used being the 
inbreeding Ne (NeI) and the variance Ne (NeV). The various definitions of Ne have different 
properties and implications for further interpretation. NeI is used to predict the rate at which 
heterozygosity is lost, whereas NeV reflects the variance of change in allele frequency from 
one generation to the next. NeI depends more on the number of individuals in the parent 
generation, whereas NeV depends more on the number of offspring (Kimura and Crow 1963). 
Furthermore, NeV is more sensitive to reductions in population size, and thus more relevant 
for monitoring endangered species (Schwartz et al. 2007). However, NeI and NeV should be 
equal in a single isolated population of constant size (Kimura and Crow 1963).   

In addition to the conceptual varieties of Ne, there are many different methods of estimating 
Ne, which can be roughly divided into two categories; those using demographic ecological 
data and those using genetic markers (Anderson and Garza 2009). The demographic 
approach gives an estimate reflecting the current rate of genetic drift, but most methods 
(e.g. Felsenstein 1969; Hill 1972; Engen et al. 2005) require extensive data on ecological 
parameters such as population size, variance in reproductive success, sex ratio etc. Such data 
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are rarely obtainable for most natural populations (Nunney and Elam 1994). This is why 
considerable effort has been put into developing estimators based on genetic data to 
estimate Ne in recent years. This development has been fueled by a revolution in the 
advancement of techniques to efficiently genotype individuals in a population on 
polymorphic molecular markers (Anderson and Garza 2009).  

Estimators based on genetic data can be based on a single sample (in time), which gives a NeI 
estimate, or multiple samples spaced by one or more generations (temporal method), which 
gives a NeV estimate (Waples and Yokota 2007). The temporal method is generally 
considered to be superior to single sample methods (Waples 2010). However, the 
disadvantage of the temporal method is that it requires samples separated by several 
generations, which for some populations (e.g. mammals, birds and perennial plants) can be 
many years or even decades (Waples 2010). The disadvantage with most of the genetic 
methods is that they assume closed populations with random mating and discrete 
generations. For more extensive reviews on genetic Ne estimators, see Nunney and Elam 
(1994); Wang (2005); Anderson and Garza (2009); Charlesworth (2009); and Luikart et al. 
(2010).  

Because of the fundamental importance of Ne in conservation, population genetics and 
evolutionary biology knowledge of its size, and in particular how large Ne in general is 
relative to Nc is needed. Hence, the ratio of effective population size to census size (Ne/Nc) is 
interesting to biologists. If Ne/Nc is known this has several practical applications. Firstly, Ne or 
Nc can be inferred by knowing the other if the Ne/Nc-ratio is known. This is however only 
appropriate if the Ne/Nc-ratio is relatively constant over time and across populations, which 
may not be valid for some species (Engen et al. 2007; Luikart et al. 2010). Secondly, one can 
use the Ne/Nc-ratio to determine how different population characteristics influence the rate 
of genetic drift and in this way increase our understanding of this important process 
(Kalinowski and Waples 2002). Third, it can be used to develop management strategies to 
reduce the rate of genetic drift and retain genetic variation (Araki et al. 2007; Tanaka et al. 
2009). It is also imperative to compare genetic estimators of Ne, because there are many of 
them in the scientific literature, and they all aim at measuring the same quantity, Ne. 
However, they differ in what they actually measure and in how well they measure it 
(Anderson and Garza 2009). Erroneous estimates may lead to wrong conclusions regarding 
evolutionary processes (Leberg 2005). Having quantitative knowledge of the correspondence 
between various genetic estimators is therefore important. Such knowledge will for instance 
enable assessing the reliability of using non-invasive sampling methods (DNA samples from 
hair, feces, feathers etc.) to estimate Ne for endangered populations or species, where 
extensive ecological studies are unfeasible (Pauli et al. 2010). If Ne is overestimated and the 
resulting genetic effects of a lower Ne are ignored the risk of extinction could be 
underestimated and inappropriate management strategies implemented (Frankham 2005).  
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In this study data from a long-term house sparrow metapopulation study at Helgeland, 
Norway, was used to estimate Ne with four different genetic estimators. This dataset is 
exceptional because of its metapopulation structure (the main study system consist of 18 
different island populations) and timespan (data has been collected from 1993 to 2011 in 
the main study system). Because a large proportion of all birds on the study islands are 
individually marked and followed from hatching to death, and individual genotypes exist at 
15 presumably neutral molecular markers, individual information on key parameters such as 
sex, survival, reproductive success and dispersal is available in this study system. This 
provides population level information such as census population size (Nc), sex-ratio, 
migration rates, and inter- and intra-individual genetic variation (Jensen et al. 2003; Jensen 
et al. 2004; Husby et al. 2006; Engen et al. 2007; Jensen et al. 2007; Jensen et al. 2008; Pärn 
et al. 2009), which can be used to estimate the current rate of genetic drift in a population. 
The study system thus presents a unique opportunity to not only compare different genetic 
estimators of Ne, but also examine which population characteristics that are most important 
in explaining any deviation between Ne and Nc (i.e. Ne/Nc). Furthermore, it allows comparing 
of genetic estimates strongly affected by the history of the population with the current Ne 
based on demographic data. I used two single sample estimators; the linkage disequilibrium 
method LDNE (Waples and Do 2008; Waples and Do 2010) and an approximate Bayesian 
computation (ABC) approach ONeSAMP (Tallmon et al. 2008). Two temporal estimators 
were also used; a pseudo-maximum-likelihood method MLNE (Wang 2001; Wang and 
Whitlock 2003) and a coalescent based approach CoNe (Berthier et al. 2002; Anderson 
2005). These methods all give estimates of Ne on a contemporary time scale.  

My objectives are to examine the congruence of different genetic estimators of Ne by 
comparing estimates from different methods based on the same data set. I will then relate 
the different estimates of Ne to the actual population size (Nc), and examine whether 
different population characteristics can explain the difference between genetic estimates of 
Ne and Nc in subpopulations within this metapopulation. Finally, I will examine if Ne based on 
analyses of genetic data agrees with demographic estimates of Ne (Engen et al. 2007). In this 
way, I can explore whether differences in genetic estimates of Ne strongly affected by 
processes affecting genetic variation over long periods of time can be explained by short-
term variation in population dynamics known to affect demographic estimates of Ne.
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MATERIALS AND METHODS 
 

Study system 
The main study area consisted of eighteen islands along the coast of Northern Norway. The 
northernmost island was Myken (66°46´N, 12°29´E) and the southernmost island was 
Sleneset (66°22´N, 12°36´E), and the whole archipelago covered approximately 1600 km2. 
These eighteen islands were populated continuously or periodically by house sparrows 
during the study period (1993-2009; Table A3). Out of these eighteen islands, three were 
excluded due to insufficient sampling, leaving fifteen islands included in this study (Fig. 1). 
The house sparrow populations on ten of the islands (Gjerøy, Hestmannøy, Indre Kvarøy, 
Lovund, Lurøy, Myken, Nesøy, Onøy, Sleneset and Træna) persisted throughout the study 
period. Aldra was colonized in 1998 and was populated continuously thereafter (Billing et al. 
In press). Populations on two islands, Sundøy and Ytre Kvarøy, went extinct in 2000 (Ringsby 
et al. 2006), and the Selvær population went effectively extinct in 2000 as there were only 
four males present on the island. However, the Selvær population was swiftly restored by 
immigration from other islands in later years. Selsøyvik has experienced several bottleneck 
events, with population sizes ranging from 2 to 15 over the study period (Ringsby et al. 
unpublished results).  
 
In this study system the house sparrow is easily studied due to its close association to human 
settlements, in small villages or farms (mainly dairy farms). This way individual-based 
information on a large proportion of individuals present in the populations can be collected 
with relatively little effort. In this study area the breeding season usually starts in May and 
ends in August, with 1-3 clutches per breeding pair (Husby et al. 2006). House sparrows are 
socially monogamous and both females and males contribute in raising the young (Ringsby 
et al. 2009). There is however variation among males in mating success (Jensen et al. 2008) 
due to extra-pair copulations (Larsen et al. manuscript). Accordingly, although variation in 
lifetime reproductive success seems similar for males and females, a higher proportion of 
variation in lifetime reproductive success seems explained by variation in annual 
reproductive success in males than in females in this meta-population system (Jensen et al. 
2004). The sex ratio in complete broods deviates slightly, but not significantly, from 1:1, with 
on average 54.9% males (Husby et al. 2006). After one year the house sparrows become 
reproductively active, and the recruitment rate is 15-20% (Ringsby et al. 2002). The dispersal 
rate is relatively low (approx. 10%) and seems similar for males and females (Pärn et al. 
2009). Dispersal outside of the study system is very rare (Tufto et al. 2005; Jensen et al. 
unpublished results). Immigrant males have significantly lower reproductive success than 
resident males, whereas female immigrants do not differ from resident females in 
reproductive success  (Pärn et al. 2009). For more extensive information regarding this study 
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system, see Sæther et al. (1999); Ringsby et al. (2002); Jensen et al. (2004); Jensen et al. 
(2007); Pärn et al.(2009) ; Pärn et al. (2012). 

Data collection and sampling scheme 
Adult and fledged juvenile individuals have been captured using mist nets, whereas nestlings 
were sampled directly from the nest. From each individual a blood sample was drawn 
(approximately 25 µL) from the underside of the wing. These blood samples were stored in a 
standard buffer (used 1993-1999; Jensen et al. 2003) or 96% ethanol (used 2000 and 
onwards). A metal ring with a unique number was put on each bird's left or right tarsus and 
used to identify each individual. In addition, 3 colored plastic rings were combined with the 
metal ring on the two tarsi and used for subsequent unique identification of free ranging 
individuals by observation. This allowed for estimation of demographic parameters such as 
survival, dispersal and population size from recapture and observation data.  

The data used in this study span from 1993 to 2009. As the average generation time for the 
house sparrow is approximately 2 years (Jensen et al. 2008) I assumed that samples spaced 
by 3 years were from separate generations. Accordingly, this minimized the possibility that 
the same individuals were represented in subsequent samples. The following six years were 
selected to represent six generations: 1994, 1997, 2000, 2003, 2006 and 2009. For the single 
sample estimators of Ne, one point estimate was obtained for each island population in each 
of those years. For the temporal estimators of Ne, two samples were included for each island 
population, with either 1, 4 or 7 generations between samples (for the different 
combinations of years and islands see Table A3 and Table A4). Thus, spatio-temporal trends 
in Ne could be plotted and compared with spatio-temporal trends in Nc, and the 
correspondence between different Ne estimators could be examined at different time spans 
between sampling events.  

Population characteristics 

Population size 
The population size in this study was defined as the number of adults in a population; 
juveniles were excluded because they do not contribute genetically to the population, unless 
they become recruits the following breeding season (Luikart et al. 2010). Census population 
size (Nc) was estimated in two ways depending on the sampling effort on a given island. On 
the islands where the sparrows mostly live on farms (Aldra, Gjerøy, Hestmannøy, Indre 
Kvarøy, Nesøy, Sundøy and Ytre Kvarøy), the percentage of marked individuals is high 
enough (>70%, and often close to 100%) that Nc could simply be estimated as the number of 
marked individuals present in each population. Individuals not observed or captured in a 
given year on an island would still be regarded as present if they were observed or captured 
in later years (Jensen et al. 2006). For the islands where the sparrows are found mainly in 
villages (Lovund, Lurøy, Myken, Onøy, Selsøyvik, Selvær, Sleneset and Træna) Nc was 
estimated by counting adult birds each spring before the breeding season begins. This 



Materials and Methods 

11 
 

census population size estimate was compared with N�e for the single sample estimator. For 
temporal estimators, N�e was compared with the harmonic mean population size (NH) across 
the years since the previous sampling event (both years of sampling included). This is 
because the single sample N�e represents Ne at the time of sampling, whereas the temporal 
N�e represents the harmonic mean Ne in the time interval considered (Waples 2010). Also, 
Ne/NH relates to the Ne/Nc-ratio per generation, and thus corresponds to the Ne/Nc-ratio for 
single sample estimators (Kalinowski and Waples 2002).  

The variance in population size (σNc
2 ) was calculated as:  

 
σNc

2  = �
(Ni - N�)2

t-1

t

i=1

 
(2) 

where t is the number of years and N� is the arithmetic mean from N1 to Nt. For single sample 
N�e, N1 was the population size in the year representing the previous generation before 
sampling and Nt the population size in the year of sampling. For temporal N�e, N1 was the 
population size in the year of the first sample and Nt was the population size in the year of 
the last sample. Population growth rate (dN/dt) was calculated as:  

 dN
dt

 = 
N2 - N1

N1
 (3) 

For single sample N�e, N1 was the population size in the year representing the previous 
generation before sampling and N2 the population size in the year of sampling. For temporal 
N�e, N1 was the population size in the year of the first sample and N2 was the population size 
in the year of the last sample (Table 1). 

Sex ratio 
The sex ratio (SR) was defined as the proportion of males in the population. For single 
sample N�e, SR was simply the SR in the year of sampling. For temporal N�e I used the average 
SR for the two years at the start and at the end, respectively, in the relevant time interval 
(e.g. for the interval 1997-2000 SR would be the average SR for the years 1997 and 2000).  

Immigration 
A disperser was defined as any nestling or juvenile marked on an island one year, and 
captured or observed on a different island in the subsequent calendar year. Consequently, 
any breeding dispersal (adult dispersers) was excluded. Because breeding dispersal is rare in 
the study system (Pärn et al. 2009) this was not likely to introduce any bias. The immigration 
rate (m) was estimated differently according to whether it would be compared with single 
sample estimates of Ne or temporal estimates of Ne. In the first case, m was estimated as the 
number of new immigrants to the island population in the three years prior to the year of 
sampling (e.g. immigrants arriving in 1998, 1999 and 2000 for Ne estimate of 2000) divided 
by Nc in the year of sampling. In the latter case, m was estimated as the sum of the annual 
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immigration rate (number of new immigrants to an island population in one year divided by 
Nc in the same year) over the same time interval as Ne was estimated for, and dividing that 
sum by the number of years in that time interval. 

Molecular analyses 
DNA was extracted from proteinase K digested blood samples using a Silica-gel based 
procedure carried out in 96-well plates, as described in Elphinstone et al. (2003). The DNA 
was then available for PCR-amplification. Intra-individual genetic variation was determined 
by genotyping 15 microsatellite loci; Ase18 (Griffith et al. 2007), Pdoµ1, Pdoµ3 (Neumann 
and Wetton 1996), Pdoµ5 (Griffith et al. 1999), Pdo10 (Griffith et al. 2007), Pdo16, Pdo17, 
Pdo19, Pdo22, Pdo27, Pdo32, Pdo33, Pdo40, Pdo44, Pdo47 (Dawson et al. In press). The PCR 
amplification was executed on Applied Biosystems GeneAmp PCR system 9700 PCR 
machines (Applied Biosystems, USA). Ase18, Pdoµ1, Pdoµ3, Pdoµ5, Pdo10, Pdo33, and 
Pdo40 were multiplexed with the avian sex-determination primers P2 and P8 (Griffiths et al. 
1998) in multiplex Panel 1, whereas Pdo16, Pdo17, Pdo19, Pdo22, Pdo27, Pdo32, Pdo44 and 
Pdu47 were multiplexed in multiplex Panel 2. Included in each reaction mixture (10µL) were 
5µL 2x QIAGEN Multiplex PCR Master Mix (QIAGEN Inc, USA), 5µL MilliQ H2O, 0.125µM of 
each primer, and approximately 20ng of genomic DNA. For both multiplex panels PCR was 
carried out using a touchdown profile: a denaturing step at 94oC for 15 minutes followed by 
12 cycles at 94oC for 30 seconds; an annealing step initially at 62oC for 30 seconds 
(successively reduced by 1oC each cycle); and an elongation step at 72oC for 60 seconds. 
Following this were 19 cycles with 94oC for 30 seconds, 50oC for 30 seconds and 72oC for 60 
seconds. Finally, the PCR machine ran for 5 minutes at 60oC, and the PCR-product was 
thereafter kept at 4oC. For each sample, 1µL of the PCR products in a multiplex panel was 
mixed with 0.5µL of a size ladder (GeneScan LIZ 600, Applied Biosystems, USA), and 10µL Hi-
Di Formamide solution (Applied Biosystems, USA). The separation of PCR products was by 
electrophoresis in an automated 16 capillary electrophoretic analysis system: ABI Prism 
3130xl Genetic Analyzer (Applied Biosystems, USA). Alleles were visualized by fluorescently 
labeling the forward primer, with either FAM (Pdoµ1, Pdoµ5, Pdo19, Pdo22, Pdo44), NED 
(P2P8, Pdoµ3, Pdo16, Pdo27, and Pdo33), VIC (Ase18, Pdo10, Pdo32, Pdo40 and Pdo47) or 
PET (Pdo17). Genotypes of all individuals on each of the microsatellite loci were determined 
using the software package GENEMAPPER 4.0 (Applied Biosystems, USA). Pdo32 and Pdo33 
were excluded from further analyses because of scoring difficulties. Allele frequencies of the 
remaining 13 microsatellite loci did not deviate significantly from Hardy Weinberg 
equilibrium expectations across years within the largest population Hestmannøy (n = 560). 
The only exception was Pdo17 which had a slight deficiency of heterozygotes (He = 0.89, Ho = 
0.87). Furthermore, these 13 loci are likely to either be located on different chromosomes or 
far apart on the same chromosome and hence not physically linked (Dawson et al. In press). 
These loci are therefore likely to be suitable for estimating genetic effective population size 
(see also Jensen et al. (2003); Jensen et al. (2007); Hermansen et al. (2011); Kekkonen et al. 
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(2011); and Schrey et al. (2011) for use of these loci in molecular ecological and population 
genetic studies).  

Estimation of genetic Ne  

Estimates of effective population size (N�e) based on a single sample were obtained for each 
population and  year of sampling (Table A3) using the linkage disequilibrium method 
implemented in the program LDNE (Waples and Do 2010) and the ABC method implemented 
in the ONeSAMP program (Tallmon et al. 2008). Temporal estimates were obtained for each 
population for the different combinations of sampling years using the pseudo-likelihood 
method implemented in the MLNE program (Wang 2001; Wang and Whitlock 2003) and the 
coalescent based method implemented in the program CoNe (Berthier et al. 2002; Anderson 
2005).  

Single sample estimators 
The LDNE program implements a method for estimating Ne based on random linkage 
disequilibrium (LD) that arises due to random genetic drift in a finite population (Waples and 
Do 2008; Waples and Do 2010). LD can be defined as the non-random association of alleles 
at different loci (Lewontin and Kojima 1960). LD is often approximated by r, which is the 
correlation coefficient for alleles at different gene loci, and often r2 is used when interested 
in the magnitude of LD rather than the direction (Waples and Do 2008; Waples and Do 
2010). For this method Ne is estimated as a function of the expected value of r̂2, based on 
the theoretical relationship between r̂2 and Ne:  

 E(r̂2) ≈ 
1

3Ne
 + 

1
S

 (4) 

where S is the sample size (Hill 1981). Thus Ne is inversely proportional to LD. The 
performance of the estimator depends on estimating r̂2 accurately, with rare alleles being 
the worst source of bias (see below). The key assumption of this method is that LD only 
arises from genetic drift. However, LD can also arise as a result of migration, selection, 
overlapping generations and population admixture (Service et al. 2006). In the estimation 
procedure, random mating or monogamy was assumed. In the random mating model each 
progeny is the result of a mating between a randomly, independently selected male and a 
randomly, independently selected female, chosen without replacement from the population. 
In the monogamy model each progeny is the result of a randomly selected, with 
replacement, permanently bonded male-female pair (Waples 2006). Here I assumed random 
mating, as the house sparrows in this study system do not establish life-long pair-bonds, and 
are not necessarily sexually monogamous (Jensen et al. 2008), although they do form socially 
monogamous pairs each season (Husby et al. 2006). Another setting is the Pcrit value, which 
is a criterion for excluding rare alleles; alleles with a frequency lower than Pcrit were excluded 
from the analysis. To include rare alleles may increase precision, but could result in 
estimates that are biased slightly upwards. There is an interaction between bias, Pcrit and 
sample size, S (Waples 2006; Waples and Do 2010). Following recommendations by Waples 
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and Do (2010) Pcrit was chosen to be 0.02 for S > 25, and for S ≤ 25 Pcrit was chosen so that 
1/(2S) ≤ Pcrit, rounded to the nearest two decimal places. 

The ONeSAMP program implements approximate Bayesian computation to estimate Ne by 
comparing eight summary statistics obtained for the population in question with the same 
statistics calculated for 50 000 simulated populations (Tallmon et al. 2008). Population 
genetics theory and simulations were used by Tallmon et al. (2008) to select eight summary 
statistics which relate to Ne: the number of alleles divided by allele length range, the 
difference of the natural logarithms of variance in heterozygosity and allele length, expected 
heterozygosity (He), number of alleles per locus, Wright’s inbreeding coefficient (FIS), the 
mean and variance of multilocus homozygosity, and r̂2 (a measure of LD, see above). The 
program requires a lower and an upper prior to be specified (even numbers). Because Ne 
theoretically can be at most twice as high as Nc

1, 2Nc was chosen as the upper limit. 2 was 
chosen as the lower limit. The repeat motif was specified for each locus (for repeat motif for 
the different loci, see Neumann and Wetton (1996); Griffith et al. 2007; Dawson et al. (In 
press)). Monomorphic loci or individuals with missing data at more than one locus needed to 
be excluded from the ONeSAMP input (Table A1).  

Multiple samples estimators/temporal methods 
For both temporal methods, an upper limit was needed. For each sample the upper limit was 
chosen to be 2Nc for the sampling year with the highest Nc, so that it would be comparable 
with the priors set for the ONeSAMP method.  

The MLNE software obtains N�e using a pseudo-likelihood method, which assumes that 
temporal changes in allele frequencies are caused by genetic drift alone (Wang 2001; Wang 
and Whitlock 2003). The full maximum likelihood of Ne calculated from temporal samples 
was developed by Williamson and Slatkin (1999). Their method is based on the Wright-Fisher 
model, assuming discrete generations, no immigration and constant population size. The 
drawback of the full maximum likelihood method is that it is computationally demanding, 
and only applicable to biallelic markers. Wang (2001) extended this model to include 
multiallelic loci and simplified the computation by using a pseudo-likelihood approach: a 
locus with k number of alleles was transformed into k biallelic loci. Pseudo-likelihood refers 
to the approximation of the joint probability of all the data by the product of marginal 
probabilities. Extensive simulations have shown that this represents a good approximation 
to the full likelihood (Wang 2001). I also assumed non-equilibrium between drift and 
migration equilibrium, because the populations are relatively small and the effects of 
migration and drift are not expected to cancel each other out, but rather to vary in relative 
strength in shaping the genetic variation of each population across time and space. 

                                                      
1 In an ideal population the family size is Poisson distributed with a mean (k) and variance (Vk) of 2, and Ne is 
given by: Ne = (4Nc -2)/(Vk + 2). However, from this equation it can be seen that if Vk < 2 then Ne > Nc, and the 
highest potential Ne is 2Nc (Wright 1938).  
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The program CoNe gives the likelihood of Ne given genetic data sampled from the same 
population at different points in time (Anderson 2005). This method is based on coalescent 
theory; going backwards in time from the time the last sample was taken to the first sample 
was taken, some of the gene lineages may have coalesced, due to genetic drift. The 
probability of two lineages coalescing is 1/2Ne (Kingman 1982). Berthier et al. (2002) 
introduced a maximum likelihood method of estimating Ne based on the coalescent instead 
of the Wright-Fisher population approach used by Williamson and Slatkin (1999), see above. 
Berthier et al. (2002)s´ model was further extended by Beaumont (2003), however both 
approaches are extremely computationally demanding. The CoNe implements a more 
efficient Monte Carlo approximation to the likelihood than of that described in Berthier et al. 
(2002). This method assumes that coalescent events are only caused by genetic drift. CoNe 
calculates a Monte Carlo estimate of the likelihood curve, obtaining a maximum-likelihood 
estimate of Ne (Anderson 2005).  

Estimation of demographic Ne 

Early methods for estimating Ne based on demographic data (Felsenstein 1969; Hill 1972; 
Emigh and Pollak 1979; Hill 1979; Nunney 1991; Nunney 1993) were based on rather 
restrictive assumptions (e.g. constant population and stable age-structure). The applicability 
of the demographic approach was greatly improved when Engen et al. (2005) developed a 
method for deriving formulas for Ne from the infinitesimal variance of a diffusion 
approximation. However, these formulas still involve a large number of parameters. Here I 
base my estimates on the approach by Engen et al. (2007), which assumes constant adult 
survival rates and constant mean vital rates independent of age. This simplifies the 
estimation procedures considerably.  Ne was calculated for each sex separately, due to the 
recognition that even monogamous species can have differences in reproductive success 
due to extra-pair copulations and sex-specific survival (Promislow et al. 1992). Sexual 
selection may thus contribute significantly to Ne. Ne for females (Nef) was based on a 
simplification of Engen et al. (2005) and is given by: 

 Nef = 
Nf

σdgf
2 Tf

 = 
Nf

�bf 4 ⁄ + σf
2/4 + sf�1 - sf� + cf�Tf

 (5) 

where Nf is the number of females, σ2
dgf is the demographic variance of a hypothetical 

female subpopulation of heterozygotes carrying a rare allele, bf is the mean number of 
female offspring born to each female, σ2

f is the variance in number of female offspring per 
female, sf is the probability of survival for females, cf is the covariance between an 
individual’s number of offspring and the indicator variable (0 or 1) for its survival, and Tf is 
the generation time for the female population given by Tf = λ/(λ – sf) where λ is the 
deterministic growth rate. Ne for males (Nem) was calculated in the same way. Second, the Ne 
of the total population was then calculated by using a formula, based on Wright’s formula 
for uneven sex ratios, but modified to allow for non-overlapping generations: 
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Ne = 

4λ2bNefNem

bfNef + bmNem
 

(6) 

This approach avoids the increased complexity introduced by age structure in a population 
with overlapping generations (Engen et al. 2005). Estimates from this method, N�e(demographic), 
represent NeV and are thus comparable with the temporal genetic N�e. Therefore 
N�e(demographic) was obtained from the same sampling intervals as temporal genetic N�e, by 
multiplying the mean population size for each sampling interval with the Ne/Nc ratios given 
for each island in Engen et al. (2007). These ratios were only available for 6 of the islands, 
namely Aldra, Gjerøy, Hestmannøy, Indre Kvarøy, Nesøy and Ytre Kvarøy. Note that this 
approach assumes a constant Ne/Nc-ratio across years.  

Statistical analyses 
Pearson’s correlation coefficient (r) was used to investigate the relationship between 
estimates from the two single sample estimators (N�e(LDNE) and N�e(ONeSAMP)), and between  
estimates from the two temporal estimators (N�e(MLNE) and N�e(CoNe)). Spearman’s rank 
correlation coefficients (ρ) were also estimated, but as this gave similar results only 
Pearson’s correlation coefficients are presented. Similarly, Pearson’s correlation coefficient 
was used to explore the relationship between single sample N�e and Nc, as well as between 
temporal N�e and NH. The temporal N�e were also compared with N�e(demographic) using Pearson’s 
correlation coefficient.  
 
The precision of each estimator was represented by the coefficient of variation (CV), defined 
as the range of the 95% confidence limits (given in the estimators’ output) divided by N�e and 
expressed as a percentage. The CV values were plotted against population size to examine 
how the variance in the estimates of each estimator related to population size. In order to 
determine the importance of population characteristics for the relative magnitude of N�e to N 
(i.e. Nc or NH), N�e/Nc and N�e/NH was modeled as a function of the following predictor 
variables: sex ratio (SR), immigration rate (m), population size (single sample = Nc, temporal 
= NH), population growth rate (dN/dt), temporal variance in population size (σNc

2 ) and the 
number of generations between samples (T, only for temporal estimates). Additionally, two 
interactions were included in the a priori global models: Nc×SR and Nc×m (for single sample 
estimators) or NH×SR and NH×m (for temporal estimators). These interaction terms were 
included in the model because I suspected that effect of sex ratio and immigration rate on 
N�e/N could vary with population size. Both generalized linear models (GLM) with a Gaussian 
error structure (using the lm function in R; R Development Core Team 2011)  and generalized 
linear mixed models (GLMM, with a Gaussian error structure, using the nlme package 
(Pinheiro et al. 2011)) with population as a random factor, i.e. accounting for any inter-
dependency between estimates from the same island population), were used. As GLMs and 
GLMMs gave similar results only the results from the GLMs are presented.  
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Model selection was done by Akaike’s Information Criterion with a correction for smaller 
sample sizes (AICC), which is defined as: 
 AICC  = - 2L + 2K + 

2K(K + 1)
n - K - 1  (7) 

where K is the number of parameters in the model, n is the sample size and L is the 
maximum log-likelihood of the model (Burnham and Anderson 2002). L is a measure of the 
fit of the model to the data. Every candidate model nested under the global model was 
ranked by the relative deviance in AICC from the best model (Δi). The candidate models for 
which Δi < 2 were examined more closely to determine which model was the best model 
(given the set of candidate models), as all models Δi < 2 are considered to have considerable 
evidence in the data (Burnham and Anderson 2002). Another measurement of the strength 
of evidence for each model is provided by Akaike’s weights (wi), which was also calculated: 

 
wi = 

𝑒- 12 ∆i  
∑  𝑒- 12 ∆rR

r=i

 
(8) 

where ∆r is the sum of Δi over all j to R models (R being the number of tested models). From 
this the evidence ratio (ER) for the “best” model relative to model i was calculated as wi for 
the best model divided by wi for the model i. The evidence ratio can be interpreted as how 
much “better” the “best” model is relative to model i.  

65 point estimates were obtained for the LDNE method, and 70 point estimates were 
obtained for the ONeSAMP method (out of 70 possible). The LDNE method gave 5 estimates 
with negative values indicating infinity for either the point estimate or the confidence limits 
(Table A1). Infinite estimates is a result of too little information in the sample so that the 
genetic signal found in the data is due to sampling error rather than genetic drift (Waples 
and Do 2010). 86 point estimates were obtained for the MLNE method and 33 point 
estimates were obtained for the CoNe method, out of 89 possible estimates (Table A1).  

All statistical analyses were carried out using R (R Development Core Team 2011). Several 
outliers were removed from the dataset. Analyses were carried out with and without 
outliers, but results were similar and only the results without outliers are shown here. For an 
overview of removed data, including justification for removing outliers, see Table A1.
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RESULTS 
 

Single sample estimates of Ne 

Estimates of effective population size from a single sample (N�e(LDNE) and N�e(ONeSAMP)) along 
with 95% confidence limits are presented in Table A2.  

There was a significant, positive correlation between N�e(LDNE) and N�e(ONeSAMP) (r = 0.62, 
p<<0.001; Fig. 2). N�e(ONeSAMP) were generally higher than N�e(LDNE). There was however a great 
deal of variation, and approximately 23% of N�e(LDNE) were higher than N�e(ONeSAMP). 

N�e(LDNE) and N�e(ONeSAMP)  were both significantly positively correlated with Nc (r = 0.63, 
p<<0.001 and r = 0.93, p<<0.001, respectively; Fig. 3). N�e(LDNE) were generally lower than Nc 
(Fig. 3a) whereas  N�e(ONeSAMP) were mostly higher than Nc (Fig. 3b). N�e(LDNE)/Nc-values ranged 
from 0.21 to 3.14 with a mean and median of 0.90 and 0.69, respectively. N�e(ONeSAMP)/Nc-
values were in the range 0.55-2.78 with a mean and median of 1.22 and 1.19, respectively. 
The two estimators showed opposite patterns; N�e(ONeSAMP) were typically higher than Nc in 
large populations in contrast to N�e(LDNE) which were mostly lower than Nc in large 
populations (Fig. 3). At some threshold value of Nc (Nc ≈ 25) the relative magnitude of N�e and 
Nc changed for both estimators; N�e(ONeSAMP) became lower and N�e(LDNE) became higher than 
Nc below this threshold, respectively (Fig. 3).  

CV for the two estimators plotted against Nc showed opposite relationships (Fig. 4). CVLDNE 
decreased with increasing Nc (r = -0.34, p = 0.005; Fig. 4a), suggesting that precision 
increased as Nc increased. However, the relationship between CVLDNE and Nc was not linear; 
at small values of Nc (below approx. 25) the CVLDNE -values varied enormously. In contrast, 
there was a strong positive relationship between CVONeSAMP and Nc (r = 0.96, p<<0.001; Fig. 
4b), indicating that precision actually decreased as Nc increased. Furthermore, there was in 
general higher uncertainty in N�e(LDNE) than in N�e(ONeSAMP) as indicated by the larger magnitude 
and range of CVLDNE-values compared to CVONeSAMP-values (Table A3). Mean and median CV 
for N�e(LDNE) were 99.80 and 52.55, respectively. The divergence between these two values 
indicates a positively skewed distribution. Mean and median CV for N�e(ONeSAMP) were 58.25 
and 55.70, respectively. The similar values indicate a symmetric distribution of CVONeSAMP-
values (Table A3). 

Temporal estimates of Ne 

Estimates from the temporal methods (N�e(MLNE) and N�e(CoNe)) along with 95% confidence 
limits are shown in Table A4.  
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There was a significant, positive relationship between N�e(MLNE) and N�e(CoNe) (r = 0.79, 
p<<0.001; Fig. 5). There was considerable variation between the two estimators; for some 
populations the CoNe method gave estimates twice as high as MLNE, but the MLNE method 
also frequently estimated Ne much higher than the CoNe method.  

N�e(MLNE) and N�e(CoNe) were both significantly positively correlated with NH (r = 0.83, p<<0.001 
and r = 0.43, p = 0.015, respectively; Fig. 6). Both estimators gave N�e higher than NH; for 
N�e(MLNE) this relationship seemed fairly constant with population size (Fig. 6a) whereas for 

N�e(CoNe) the estimates were higher than NH, especially at lower NH-values (Fig. 6b). 
N�e(MLNE)/NH-values spanned from 0.65-5.72, however only one value was lower than 1. Mean 
and median N�e(MLNE)/NH were 2.43 and 2.33, respectively. N�e(CoNe)/NH-values covered the 
largest range of N�e/NH-values of all four estimators, from 0.50-8.53, with mean and median 
values of 2.88 and 2.10. Overall the MLNE and CoNe method thus seemed to produce quite 
similar estimates. 

For the two temporal methods the uncertainty (CV) in the estimates were differently related 
to NH (Fig. 7). CVMLNE was positively correlated with NH (r = 0.57, p<<0.001; Fig. 7a). In other 
words precision decreased with increasing population size. On the other hand, due to 
extreme variation in the CVCoNe-values (many >200) across the range of NH there was no 
significant relationship between CVCoNe and NH (r = -0.27, p = 0.15; Fig. 7b), indicating that the 
precision of N�e(CoNe) did not change with population size. Mean and median CVMLNE were 
39.55 and 34.80, respectively, indicating an almost symmetric distribution of CVMLNE-values. 
For the CoNe method, mean and median CV-values were 182.90 and 109.24, respectively. 
The large difference between these values indicates that extreme values resulted in a 
positively skewed distribution.  

Population characteristics and variation in Ne/Nc 

The most parsimonious model explaining variation in N�e(LDNE)/Nc included two parameters in 
addition to the intercept: sex ratio (SR) and immigration rate (m) (model 1, Table 2a). The 
other candidate models were all more parameterized than model 1. There were 4 models 
with AICC-values within 2 units higher than model 1, (models 2-5, Table 2a). Thus, one cannot 
exclude the possibility that they were equally “good” models, although model 1 was 1.36, 
1.61, 1.74, and 2.01 times more likely to be the “best” model than model 2, 3, 4 or 5, 
respectively. These 5 models all included the parameters SR and m. Given that the fit was 
not really improved by adding more parameters, as indicated by the similar L-values, 
Ockham’s razor dictates that the less complicated model should be chosen as the “best” 
model (Burnham and Anderson 2002). Additionally, when looking at the parameter 
estimates of each model it was apparent that the added parameters (parameters not 
included in model 1) had slopes not significantly different from zero (p>0.09). Thus it seems 
that the most important population characteristics explaining variation in N�e(LDNE)/Nc are SR 
and m (model 1, Table 2a). The parameter estimates for each variable in model 1, which 
explained 35% of the variance in N�e(LDNE)/Nc (model r2 = 0.35), are given in Table 3a. There 



Results 

20 
 

was a positive effect of SR (β1 = 2.083) and m (β2 = 6.563) on N�e(LDNE)/Nc , meaning that 
N�e(LDNE) was relatively higher compared to Nc when the population was more male biased 
and there were more immigrants.  

The only parameter included in the most parsimonious model explaining variation in 
N�e(ONeSAMP)/Nc was Nc (model 1, Table 2b). Model 2 included Nc and σNc

2 , and had an AICC-
value less than 2 units higher than the most parsimonious model. However, model 2 had 
considerably lower wi and the evidence ratio in favor of model 1 showed that this model was 
1.97 more likely to be the “best”. Furthermore, the fit (L) of model 2 was not improved by 
adding the parameter σNc

2 . Finally, the parameter estimate for σNc
2  was not significantly 

different from zero (p = 0.36). These points considered, model 1 was chosen as the “best 
model”, with associated parameter estimates shown in Table 3b. This model explained 31% 
of the variance in N�e(ONeSAMP)/Nc (model r2 = 0.31) and showed that Nc had a positive effect 
on N�e(ONeSAMP)/Nc (β1 = 0.007). This means that N�e(ONeSAMP) was relatively higher compared to 
Nc at higher values of Nc.  

Model 1 had the lowest AICC among the models tested and suggested that variation in 
N�e(MLNE)/NH was explained by population size (NH), sex ratio (SR), immigration rate (m) and 
population growth rate (dN/dt; Table 4a). Models 2-11 had AICC-values less than 2 units 
higher than model 1, which also was the most parsimonious model among them (with the 
exception of model 7 which had 5 parameters just like model 1). Thus, all 11 models can be 
said to be relevant for explaining variation in N�e(MLNE)/NH. As judged by wi model 1 was 1.04, 
1.09, 1.47, 1.47, 1.50, 1.67, 2.06, 2.12, 2.40, and 2.57 more likely in a Kullback-Leibler sense 
to be the “best” compared to models 2-11, respectively. When inspecting the models more 
closely it was evident that all 11 had the following parameters in common: NH, SR and m. 
Furthermore, only model 1 include exclusively parameters with parameter estimates that 
differed significantly from zero (all other models included explanatory variables for which 
parameter estimates had p>0.09). Also the fit (L) of the more parameterized models were 
not better than model 1. Thus, model 1 was chosen as the “best” model, with parameter 
estimates shown in Table 5a. In model 1, which explained 0.35% of the variance in 
N�e(MLNE)/NH (model r2 = 0.35), N�e(MLNE)/NH was negatively related to NH and SR (β1 = -0.017 
and β2 = -2.992, respectively), and positively related to m and dN/dt (β3 = 7.004 and β4 = 
0.260, respectively). This implied that N�e(MLNE) was relatively lower compared to NH at higher 
population sizes and at higher proportions of males, and relatively higher than NH when the 
population was growing and when there were many immigrants.  

The most parsimonious model explaining variation in N�e(CoNe)/NH included population size 
(NH), immigration rate (m), population growth rate (dN/dt) and the interaction term NH×m 
(model 1, Table 3b). Model 2 differed from model 1 by adding σNc

2 , i.e. it had more 
parameters. Model 2 had AICC-values less than 2 units higher than model 1, and both models 
are thus likely to be “best” at explaining variation in N�e(CoNe)/NH among the candidates. 
Model 1 was however 1.49 times more likely than model 2 to be the “best” according to the 
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evidence ratio. The parameters that were shared by both models (NH, m, dN/dt, and NH×m) 
were all significantly different from zero, but the main effect of NH was not. The σNc

2  
parameter included in model 2 was not significantly different from zero (p = 0.19), nor did 
including it improve the fit to the data as the L-value was slightly lower for this model. Given 
this, model 1 was selected as the “best” model explaining N�e(CoNe)/NH. 71% of the variance in 
N�e(CoNe)/NH was explained by this model (model r2 = 0.71). Parameter estimates for model 1 
(Table 5b) showed that m and dN/dt had a positive effect on N�e(CoNe)/NH (β2 = 52.220 , β3 = 
0.938, respectively), whereas NH and the interaction term NH×m had negative parameter 
estimates (β1 = -0.015 and β4 = -0.549, respectively). However, the main effect of NH was not 
significant (p = 0.20). In other words, N�e(CoNe) was relatively higher compared to NH when 
number of immigrants increased and with higher population growth rate. Furthermore, the 
magnitude of the positive effect of m on N�e(CoNe)/NH was reduced when population size 
increased. 

The relationship between genetic and demographic Ne 
The estimates of Ne from the demographic method was significantly positively correlated 
with estimates from the MLNE method (r = 0.83, p<<0.001), and estimates from the CoNe 
method (r = 0.63, p = 0.002). Thus, this suggests that these methods reflect the current rate 
of drift in these populations. However, there was absolutely no overlap between the N�e 
obtained from the two genetic temporal methods and N�e(demographic); both the MLNE method 
and the CoNe method gave estimates that were much higher than the N�e(demographic) (Fig. 8). 
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DISCUSSION 
 

All four genetic estimators of effective population size included in this study were positively 
correlated with population size, and Ne estimates were in general higher than census 
population size (Fig. 3, Fig. 6). Only the single sample estimator LDNE gave Ne estimates 
below Nc over most of its range (Fig. 3a). There was a positive relationship between the 
estimates given by the two single sample estimators (Fig. 2) and between the two temporal 
estimators (Fig. 5). Temporal genetic Ne was always higher than demographic Ne (Fig. 8). 
Furthermore, precision was positively correlated with Nc for the LDNE method (Fig. 4a), 
unrelated to Nc for the CoNe method (Fig. 7b) and negatively correlated with Nc for the 
ONeSAMP and MLNE methods (Fig. 4b and Fig. 7a, respectively). The population 
characteristics explaining the variation in N�e/Nc differed between estimators (Table 3, Table 
5). Sex ratio, population size, immigration rate and population growth rate were included 
among the explanatory variables. Population growth rate had a positive effect on N�e/Nc for 
the two temporal Ne estimators (Table 2). The effect of sex ratio on N�e/Nc was opposite for 
the two estimators for which it was important (Table 3, Table 5). A general result seemed, 
however, to be that immigration had a positive effect on the magnitude of Ne relative to Nc, 
as this was true for three of the four genetic estimators (Table 3, Table 5).  

Bias and precision of the estimators 
A good estimator should be unbiased as well as precise. Estimation bias (also called 
systematic error) refers to when the estimated value deviates from the true value (West 
1999; Walther and Moore 2005). In this study, a genetic estimator of Ne that gives estimates 
unequal to the true value of Ne is biased. Estimation bias should decrease with increasing 
sampling effort (Walther and Moore 2005). Precision is on the other hand independent of 
the true value and describes a measure of the statistical variation (variance, standard error, 
coefficient of variation etc.) of an estimation procedure (West 1999). Here the precision of 
the Ne estimates was measured by the coefficient of variation, CV (derived from the 95% 
confidence limits); a low CV indicates high precision. In general, the precision of an estimator 
should increase with sampling effort (Walther and Moore 2005). Specifically, as the signal 
from genetic drift is inversely proportional to Ne, precision is expected to be negatively 
correlated with Ne and thus also with Nc (Waples 1989; Waples 2002). Sample size is often 
close to Nc in this study system (see Table A3), so imprecision due to sampling should be 
minimal and rather caused by a relatively weaker signal from genetic drift as Nc increases. 
Precision was indeed negatively correlated with N (Nc or NH) for the ONeSAMP method (Fig. 
4b) and the MLNE method (Fig. 7a) and this is concordant with results obtained by others 
(Waples and Do 2010; Barker 2011). However the opposite relationship was shown for the 
LDNE method (Fig. 4a). It is important to note that if an estimator is biased, then the 
confidence limits may not include the true value of Ne and the estimator thus contains little 
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information even if it is very precise. Also, there could be a relationship between precision 
and bias, further complicating interpretation.  

To evaluate the bias of the estimators is difficult as the true value of Ne is unknown. Previous 
studies have carried out simulations to test for bias in the estimates from the estimators I 
have used here (Williamson and Slatkin 1999; Turner et al. 2001; Waples and England In 
press). These simulation studies generally found that bias decreases with increased sample 
size (with respect to number of individuals genotyped, number of loci and number of alleles 
per loci). Another general result is that maximum likelihood and Bayesian methods are less 
biased than moment-based methods. For an empirical study such as this, potential bias can 
be assessed by comparing estimates to population size or estimators known to be unbiased. 
Theory states that Ne should usually be less than Nc unless family size is equalized in the 
population (Wright 1931; Templeton and Read 1984; Kalinowski and Waples 2002). As Ne 
estimates in this study were generally higher than Nc (Fig. 3, Fig. 5) and temporal estimates 
were always higher than N�e(demographic) (Fig. 8), all four estimators seem to suffer from an 
upward bias. The bias was more severe for the temporal methods, and LDNE was the least 
biased estimator as 69% of its estimates were < Nc. The upward bias found here was most 
likely caused by violating one or more of the different assumptions underlying the different 
estimators, e.g. no immigration, no subdivision of the population, no mutations, no 
selection, constant population size, unlinked and statistically independent markers, loci 
sampled at random, the population sampled at random and discrete generations. All four 
genetic estimators included in this study make these assumptions, the exception being that 
CoNe may be more appropriate for organisms with overlapping generations (Anderson 
2005). However the consequence of violating these assumptions may vary, some estimators 
may be more robust when it comes to ignoring certain assumptions than others (Fraser et al. 
2007). I will discuss which assumptions that are possibly violated in this study, and the effect 
this may have had on the estimates given by the different estimators.  

If loci are physically linked, LD could be overestimated, causing a downward bias of Ne 
(Waples 2005). However, in this study loci are probably not linked so this assumption should 
not be violated (Dawson et al. In press). The effect of selection on loci (or genes linked to the 
loci) included in estimation of Ne is complex. Directional selection will result in a higher loss 
of genetic variation than expected under drift only, and thus an underestimation of Ne. 
Balancing selection, on the other hand, would maintain genetic variation and counteract 
genetic drift, thus leading to an overestimation of Ne. Either way, the potential bias 
introduced by selection should be minimal unless the selection is very strong (Waples 1989). 
I cannot exclude the possibility that markers used for estimating genetic Ne in this study 
were affected by selection, as selection has been found to operate on for instance 
morphological traits in this population (Jensen et al. 2008). However, the likelihood that any 
markers I used are tightly linked to genes affecting traits under strong selection seems low. 
In support of this, 12 out of 13 markers used in this study did not significantly deviate from 
Hardy-Weinberg equilibrium expectations in the largest population (see Material and 



Discussion 

24 
 

Methods). Selection did therefore probably not introduce much bias to the Ne estimates. The 
assumption of no mutations is also probably not violated, as the mutation rate would need 
to be extremely high and even higher than documented for microsatellites (Ellegren 2004; 
Chistiakov et al. 2006), to introduce much bias in such a short timeframe (Waples 1989; 
Waples 2002). Furthermore, as a very high proportion of individuals present in the 
population (often nearly 100%) were sampled in this study (Table A3) I conclude that the 
samples represented a random and highly representative sample of the populations’ genetic 
composition. In contrast, loci are often not chosen at random as highly polymorphic loci are 
often selected due to their suitability for genetic analyses (Griffith et al. 2007). However this 
is not likely to introduce much bias (Luikart et al. 2010). Population subdivision can increase 
inbreeding because locally breeding individuals are more likely to be related (Ovaskainen 
and Hanski 2004). This would result in a downward bias of Ne. Most of the island populations 
in this study were probably not subdivided, with Gjerøy and Hestmannøy being possible 
exceptions. The bias introduced by population subdivision is more serious if some 
subpopulations are overrepresented in the samples (Nei and Tajima 1981; Luikart et al. 
2010). This problem was probably avoided in this study as most individuals present were 
sampled both within and across populations (Table A3).   

Following the discussion above there are three potential sources of bias left in this study, 
namely violating the assumptions of overlapping generations, immigration, and fluctuations 
in population size. The house sparrow has overlapping generations; the assumption of 
discrete generations is thus violated. The bias that may result from overlapping generations 
is very complex. In this study I aimed at sampling individuals representing different 
generations as samples were spaced by three years, which is more than one generation (T ≈ 
2; Jensen et al. 2008). This means that any bias will depend on the co-variation of genetic 
relationships between cohorts and the number of generations between samples (Jorde and 
Ryman 1995; Jorde and Ryman 1996). Waples and Yakota (2007) showed that bias due to 
overlapping generations for the temporal estimators will be minimized if samples are spaced 
by at least three to five generations. However, too many generations between samples 
could result in an upward bias (Antao et al. 2011). The survivorship pattern of the population 
also influences this bias; given a type II survivorship (roughly age-independent survival rate) 
which is common for birds, Ne could suffer from a downward bias (Waples and Yokota 2007). 
Concerning the LDNE method, Waples and Do (2010) argue that if the number of cohorts 
represented in a sample is roughly equal to generation time, then N�e should conform to Ne 
for one generation. In this study system the maximum recorded age is 9 years (Jensen et al. 
2004). Furthermore, the recruitment rate is 0.15-0.20 (Sæther et al. 1999; Ringsby et al. 
2002) and adult survival rate is on average approximately 0.6 (Sæther et al. 1999). The 
number of cohorts represented in a sample will therefore generally exceed the generation 
time (2 years). However, most individuals sampled (approx. >70%) will be from the two 
cohorts produced since the previous year of sampling (Jensen et al. unpublished results), so 
the bias introduced by this may be minimal. Overall, violating the assumption of overlapping 
generations in this study could have introduced a negative bias, not a positive bias. This 
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means that violating the assumption of overlapping generations did probably not cause the 
upward bias found for all four estimators (see above). This leaves immigration and 
fluctuations in population size as potential explanations for the upward bias. 

The influence of immigration on estimates of Ne is not clear cut. For the MLNE and CoNe 
methods, if the immigrants come from a genetically distinct population, then immigration 
will mimic drift and a downward bias will be the result.  However, in the long run 
immigration tend to offset genetic drift by (re-)introducing genetic variation and hence 
result in an overestimation of Ne for a subpopulation (Wang and Whitlock 2003). Similarly, 
gene flow can influence LD in two opposing ways. Single sample estimators estimate the 
effective number of parents which produced the cohort from which the sample was drawn 
(Waples 2005). If the sample contains immigrants, then this sample is drawn from a larger 
pool of parents than just the local breeders. This will lead to an overestimation of Ne. On the 
other hand, genetically different immigrants can increase LD due to population admixture, 
which will lead to an underestimation of Ne. The latter effect is operating when migration is 
rare, whereas the first effect is more prominent if migration is common. I expect that an  
overestimation would be the result in this study system as migration is relatively common, 
with an average ecological immigration rate of approximately 0.1 across years and 
populations (Pärn et al. 2009; Pärn et al. 2012). Simulations have shown that if the 
immigration rate is less than 0.05-0.1 then the estimates from the LDNE method will not be 
affected (Waples and England In press). As ONeSAMP is also based largely on LD this might 
apply to this method as well. Similar conclusions were reached by Wang and Whitlock (2003) 
for the MLNE method. Overestimation is especially serious if migrants are not a part of the 
breeding population.  

Fluctuations in population size are expected to influence NeI (single sample) and NeV 
(temporal) differently, as variance in allele frequencies and inbreeding relates differently to 
population dynamics (Crow and Denniston 1988). Changes in NeV are expected to follow 
changes in Nc because variance in allele frequency is directly dependent on Nc, whereas NeI 

will lag by at least one generation, as it relates to the number of parents that produced the 
sample. Assuming stable population size is inappropriate for most natural populations, 
including the island populations in this study (e.g. Pärn et al. 2012). Nevertheless, the 
potential bias arising from this is poorly understood. Luikart et al. (2010) recommends 
comparing NeI and NeV to detect if this assumption is robust, given no prior knowledge of 
variation in population size is known. In general, if there has been a recent bottleneck NeI will 
tend to overestimate Ne. On the other hand, if the population has recently recovered from a 
period of low population size, then NeV may overestimate Ne if none of the samples were 
taken during the bottleneck (Templeton and Read 1984).  

An upward bias has been established for all four estimators, but the extent of this bias is 
hard to quantify. However, considerable research has gone into estimating how Ne relates to 
Nc in natural populations. Nunney (1993) derived an Ne/Nc ratio of 0.5 when accounting for 
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mating system and overlapping generations.  An empirical review by Frankham (1995) found 
an average Ne/Nc of 0.10-0.11, for birds it was a little higher (0.21). Engen et al. (2007) 
showed that when accounting for overlapping generations, unequal sex ratio and variation 
in reproductive success Ne/Nc was in the range 0.20-0.48 for a selection of the island 
populations considered here. Assuming that Ne estimated by the genetic estimators in this 
study was for the local population (see discussion on immigration above) I found that only 
LDNE produced a considerable proportion of its estimates (69%) within this range. ONeSAMP 
also gave estimates within this range when Nc was small, but generally gave Ne much higher 
than Nc (71% of N�e(ONeSAMP) ≥ Nc). MLNE and CoNe always overestimated Ne compared to the 
expectations from previous studies. This is especially clear when looking at Fig. 8; all the 
temporal genetic estimates were much higher than the demographic estimates. LDNE thus 
seems to perform better than the other estimators when it comes to bias. This is unexpected 
as one would expect the three maximum likelihood methods (ONeSAMP, MLNE, and CoNe) 
to be less biased, because they use more of the information in the data than the moment 
estimator LDNE. This result is however concordant with the results in Antao et al. (2011), 
who also concluded that LDNE was a better estimator than the temporal methods. When 
rare alleles are included, although increasing precision, a bias may result, both for methods 
based on LD (England et al. 2006) and the temporal methods (Turner et al. 2001). LDNE 
excludes rare alleles to avoid this problem (Waples 2006), but the other three methods 
considered here do not implement such a bias correction. This might explain why the LDNE 
method was less biased.   

To sum up the discussion with respect to bias, immigration seems to be the main cause of 
the overestimation of genetic Ne. When looking at the relationship between the temporal 
genetic estimates and the demographic estimates of Ne (Fig. 8) it is apparent that the 
demographic estimates do not seem to be affected by immigration in the same way, as the 
values of Ne fall within what is expected with respect to NH (Ne < NH). The demographic 
method is sensitive to demographic parameters such as mean and variance in vital rates and 
deviation from a 1:1 sex ratio, so that if these parameters are affected by immigrants, for 
instance because immigrants have a different demography than residents, then immigration 
will indirectly affect the estimate of demographic Ne (Engen et al. 2005; Engen et al. 2007). 
However, even if demographic parameters were different for immigrants and residents, the 
effect on estimates of Ne was not likely to be as substantial. On the other hand, genetic Ne 
will be directly affected by immigration. Immigrants may introduce new genetic variation to 
the population, and thus counteract the effect of genetic drift. This could explain why 
genetic estimates of Ne are higher than expected in this metapopulation. As stated earlier, 
there was an upward bias in the temporal genetic estimates. However, the true Ne may lie 
somewhere between Ne estimated using the demographic approach, which accounts for 
demographic processes in the population, and Ne estimated using genetic methods, which 
are directly affected by the genetic consequences of immigration.   
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The apparent upward bias detected here in the genetic Ne estimators can have serious 
implications. Overestimation is more severe than underestimation of Ne if the purpose of 
estimating Ne is to determine where conservation efforts should be directed, because it may 
lead to a failure in detecting populations most likely to experience reduced viability due to 
loss of genetic variation. Caution should thus be exercised when interpreting genetic 
estimates of Ne for management purposes (Frankham 2005; Leberg 2005). 

Population characteristics and variation in Ne/Nc 

Even if the genetic estimators overestimate Ne to a certain degree, there was still 
considerable variation in Ne/Nc across years and populations (Fig. 3, Fig. 5). Although this 
relationship seemed to be shifted upwards it may still be possible to identify population 
characteristics that influence the magnitude of Ne relative to Nc. Accordingly, the results 
showed that population characteristics explained between 31 and 71 % of the observed 
variance in Ne/Nc for the different genetic estimators. This pattern is however complicated, 
as the population characteristics affecting the Ne/Nc-ratio differed between estimators.  

Population size and population growth rate 
According to theory there should be no relationship between Ne/Nc and Nc (Kalinowski and 
Waples 2002). However, Nc positively affected Ne/Nc for the ONeSAMP method (Table 3b) 
and negatively affected Ne/Nc for the MLNE and CoNe method (Table 5). Because the effect 
of an explanatory variable is estimated accounting for the effect of any other explanatory 
variables included in the model, this may explain why the MLNE and CoNe methods showed 
the opposite relationship between Nc and Ne/Nc compared to ONeSAMP. However, Palstra 
and Ruzzante (2008) reviewed temporal genetic methods and found a negative relationship 
between Ne/Nc and Nc similar to what was found here. Accordingly, Beebee (2009) found a 
negative relationship for Ne/Nc and Nc. Similar findings have been reported elsewhere (Pray 
et al. 1996; Ficetola et al. 2010). Palstra and Ruzzante (2008) attributed this negative 
relationship between Ne/Nc and Nc to genetic compensation, which is a higher than expected 
Ne at low values of Nc because reproductive variance may be lower in small populations. 
Ardren and Kapuscinski (2003) reached the same conclusion in their study. However, 
reproductive variance may not decrease in smaller populations, as suggested by Lande et al. 
(2003) reproductive variance is actually expected to increase in smaller populations. 
Furthermore, as pointed out by Palstra and Ruzzante (2008), the negative relationship 
between Nc and Ne/Nc might be a mathematical artifact of plotting a fraction against its 
denominator. The positive relationship between Ne/Nc and Nc obtained for ONeSAMP thus 
seems inconsistent with previous studies. The explanation could of course be that the 
upward bias in the ONeSAMP method previously mentioned is increasing with Nc (see Fig. 
3b), and this explains the relatively higher Ne values at higher values of Nc. This is consistent 
with results obtained by Phillipsen et al. (2011) and Haag et al. (2010), which found a 
positive relationship between sample size and Ne/Nc for this estimator.  
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For the two temporal methods my analyses also showed a positive effect of population 
growth rate on Ne/Nc. Because the temporal methods estimate NeV, which is predicted to 
closely follow changes in Nc (see above; Crow and Denniston 1988), the positive effect of 
population growth rate is as expected from theory.   

Sex ratio 
A prediction from Wright’s theory is that a skewed sex ratio will decrease Ne toward the 
effective size for the rarest sex (Wright 1931; Wright 1938). Individuals of the rare sex have 
relatively higher reproductive success than individuals of the common sex, leading to an 
overall increase in variance in reproductive success, causing a reduction in Ne (Wright 1938). 
Empirical studies have reported that unequal sex ratio had a negative effect on Ne/Nc 
(Frankham 1995). However, the effect of sex ratio on Ne/Nc needs to be viewed in light of 
variance in reproductive success and mating system (Nunney 1993). The house sparrow 
mating system is likely some sort of dominance polygyny, resulting in higher variance in 
reproductive success for males than females (Anderson 2006). Accordingly, in this study 
system a clutch often has more than one genetic father (Larsen et al. manuscript) causing 
considerable variation in mating success among males (Jensen et al. 2008). As a 
consequence, a higher proportion of variation in lifetime reproductive success seems to be 
explained by variation in annual reproductive success for males than for females in this 
metapopulation system (Jensen et al. 2004). For species with dominance polygyny it is 
expected that the maximum value of Ne/Nc is obtained in a male biased population (Nunney 
1993). This is concordant with the results for the LDNE method, where sex ratio (i.e. 
proportion of males) affected Ne/Nc positively (Table 3a). However, for MLNE the opposite 
result was found (Table 5a). This could be due to confounding effects of the other 
parameters included in the model (population size, immigration and population growth 
rate), as other factors could influence the relationship between sex ratio and Ne/Nc.  

Immigration   
Immigration rate had a positive effect on Ne/Nc for three of the estimators: LDNE, MLNE and 
CoNe (Table3a, Table 5). This should be seen in the context of violating the assumption of a 
closed population mentioned above and thus be interpreted as a confirmation of positive 
bias of Ne estimates due to immigration. In any case, this positive relationship between 
immigration rate and Ne/Nc could be a direct consequence of the increased genetic variation 
introduced by immigrants. The effect of immigration depends on the genetic differentiation 
between the source population and recipient population. An average FST value of 0.02 have 
been reported for this metapopulation, indicating little or moderate genetic differentiation 
(Kristiansen et al. manuscript). Immigration rates thus seems low enough to uphold genetic 
differentiation across populations in this metapopulation system, but high enough that 
immigration is an important factor reducing the effect of genetic drift in each island 
population. Given the consistent effect of immigration on Ne/Nc across estimators it would 
be interesting to know the metapopulation Ne. However, this may be very difficult to 
estimate as the metapopulation Ne is not equal to the sum of all the subpopulation Ne-values 
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(Hedrick and Gilpin 1997). Under Wright’s island model, Ne for a metapopulation is actually 
higher than the equivalent panmictic population. However, if extinction-recolonization 
dynamics are accounted for, metapopulation Ne will be smaller than its panmictic 
counterpart (Hedrick and Gilpin 1997; Whitlock and Barton 1997; Ovaskainen and Hanski 
2004). Trying to estimate metapopulation Ne would nevertheless be an important extension 
of the present study, because my results strongly indicates the importance of identifying the 
proper spatial scale for estimating Ne; if unaware of metapopulation dynamics one might risk 
either overestimating local Ne or underestimating metapopulation Ne (see also Fraser et al. 
2007; Palstra and Ruzzante 2011). 

Conclusions and implications  
The four genetic estimators used in this study all seemed to suffer from a considerable 
upward bias, but LDNE less so. Given that LDNE is also a simpler estimator to use than the 
other methods because it requires only one sample in time and the estimation procedure is 
user friendly, LDNE may be a better choice than the other estimators. If genetic Ne is 
estimated with proper caution shown with respect to potential biases or imprecisions, then 
information on Ne can be used to guide management decisions (Leberg 2005). Identifying Ne 
is vital for conservation biologists, but not sufficient. The factors causing low values of Ne 
also need to be identified (Wang 2009), as well as knowledge of how Ne can be maximized by 
management. From my analyses it is clear that population size itself is an important factor, 
as Ne increased with Nc for all estimators. Frankham (1995) and Vucetich et al. (1997) 
conclude that fluctuations in population size is the most important factor responsible for 
depressing the Ne/Nc ratio. Immigration had a positive effect on Ne/Nc, thus facilitating gene 
flow in fragmented habitats may be an important conservation measure to reduce loss of 
genetic variation. I suggest that more effort should be put into estimating Ne for 
metapopulations, both with respect to Ne for the local populations and for the total 
metapopulation. Because more populations will become fragmented in the future and 
metapopulation structure will be more common, increasing our understanding of how 
different factors affect the rate of genetic drift in such populations will be essential (Hedrick 
and Gilpin 1997). 
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TABLES 
 

Table 1: Notation used. 

He Expected heterozygosity 
LD  Linkage disequilibrium 

ML Maximum likelihood 

ABC Approximate Bayesian computation 

CV Coefficient of variation 

Ne Effective population size 

Nc Census population size 

NeI Inbreeding effective population size 

NeV Variance effective population size 

NH Harmonic mean population size 

N�e Estimate of effective population size 

N�e(LDNE) 
Estimate of effective population size from the linkage 
disequilibrium method 

N�e(ONeSAMP) 
Estimate of effective population size from the ABC 
method 

N�e(MLNE) 
Estimate of effective population size from the pseudo-
maximum-likelihood method 

N�e(CoNe) 
Estimate of effective population size from the coalescent 
based method 

N�e(demographic) 
Estimate of effective population size from the 
demographic method 

SR Sex ratio (the proportion of males in the population) 

dN
dt

 Population growth rate 

σNC
2       Temporal variance in population size 

m Immigration rate 

T Number of generations 
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Table 2: Modeling variation in N�e(LDNE)/Nc and N�e(ONeSAMP)/Nc as a function of population size (Nc), sex 
ratio (SR), variance in population size (σNc

2 ), immigration rate (m), population growth rate (dN dt⁄ ), 
the interaction between Nc and SR, the interaction between Nc and m, and intercept (β0). The global 
models are model 6 and 3, respectively. Models nested within the global models were tested (52 for 
N�e(LDNE)/Nc and 52 for  N�e(ONeSAMP)/Nc), however only a subset containing the “best” models along 
with the null model (including only intercept) and the global model are shown. K denotes the number 
of parameters, L is the log Likelihood of the model, AICC is Aikaike’s information criterion for small 
sample sizes, Δi is the difference in AICC between the best model and model i, wi is the Aikake weight 
of model i, and the evidence ratio is the evidence that the “best” model is better than model i.  

  Predictor variables        

Dependent 
variable Mdl β0 Nc SR σNc

2  m 
dN
dt

 
Nc 

× 
SR 

Nc 

× 
m 

K L AICC Δi wi ER 

a) 
N�e(LDNE)

Nc
 

1 X  X  X    3 -43.96 96.61 0.00 0.155 1.00 

2 X X X  X  X  5 -41.87 97.24 0.63 0.114 1.36 

3 X  X  X X   4 -43.26 97.57 0.96 0.096 1.61 

4 X X X  X    4 -43.34 97.72 1.11 0.089 1.74 

5 X X X  X X X  6 -40.99 98.02 1.41 0.077 2.01 

6 X X X X X X X X 8 -40.70 102.79 6.18 0.007 22.14 

7 X        1 -57.53 119.06 22.44 0.000 ∞ 

b)
N�e(ONeSAMP)

Nc
 

1 X X       2 -20.41 47.19 0.00 0.227 1.00 

2 X X  X     3 -19.96 48.55 1.36 0.115 1.97 

3 X X X X X X X X 8 -19.13 59.37 12.18 0.001 227.00 

4 X        1 -33.14 70.28 23.09 2.2x10-6 103181 
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Table 3: Parameter estimates (coefficient) for explanatory variables for the “best” generalized linear 
models (GLMs) explaining variance in the relationship between population characteristics and a) 
N�e(LDNE)/Nc and b) N�e(ONeSAMP)/Nc, respectively. Explanatory variables included in the “best” models 
were sex ratio (SR) and immigration rate (m) for N�e(LDNE)/Nc, and census population size (Nc) for 
N�e(ONeSAMP)/Nc (see Table 2). SE is the standard error of the parameter estimates. All the explanatory 
variables are continuous so that the associated coefficient values indicates whether N�e/Nc increases 
(β>0) or decreases (β<0) with increased values of the explanatory variables.  

Model Variable Coefficient SE p-value 

a) N
�e(LDNE)

Nc
  = β0 + β1SR +  β2m + e 

 

Intercept β0 = -0.502 0.368 0.178 

SR β1 = 2.083 0.674 0.003 

m β2 = 6.563 1.489 <0.001 

b) N
�e(ONeSAMP)

Nc
 = β0 + β1Nc + e 

Intercept β0 = 0.934 0.066 <<0.001 

Nc β1 = 0.007 0.001 <0.001 
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Table 4: Modeling variation in N�e(MLNE)/NH and N�e(CoNe)/NH as a function of population size (NH), sex 
ratio (SR), variance in population size (σNc

2 ), immigration rate (m), number of generations (T), 
population growth rate (dN dt⁄ ), interaction between NH and SR, interaction between NH and m, and 
intercept (β0). Models (Mdl) number 12 and 3, respectively, are the initial, global models. Models 
nested within the global models were tested (104 for N�e(MLNE)/NH and 104 for N�e(CoNe)/NH), however 
only a subset containing the “best” models along with the null model (including only intercept) and 
the global model are shown. K denotes the number of parameters, L is the log likelihood of the 
model, AICC is Aikaike’s information criterion for small sample sizes, Δi is the difference in AICC 
between the best model and model i, wi is the Aikake weight of model i, and the evidence ratio (ER) 
is the evidence that the “best” model is better than model i. 

  Predictor variables          

Dependent 
variable Mdl β0 NH SR  σNC

2  m T 
dN
dt

 
NH 

× 
SR 

NH 

×  
m 

K L AICC Δi wi ER 

a) 
N�e(MLNE)

NH
 

1 X X X  X  X   5 -93.70 200.47 0.00 0.072 1.00 

2 X X X X X  X  X 7 -91.35 200.56 0.09 0.069 1.04 

3 X X X X X  X   6 -92.61 200.65 0.18 0.066 1.09 

4 X X X X X  X X X 8 -90.44 201.25 0.78 0.049 1.47 

5 X X X  X  X  X 6 -92.91 201.25 0.78 0.049 1.47 

6 X X X X X    X 6 -92.93 201.30 0.83 0.048 1.50 

7 X X X X X     5 -94.22 201.50 1.03 0.043 1.67 

8 X X X  X  X X  6 -93.23 201.89 1.42 0.035 2.06 

9 X X X  X  X X X 7 -92.10 201.97 1.50 0.034 2.12 

10 X X X X X  X X  7 -92.17 202.21 1.74 0.030 2.40 

11 X X X X X   X X 7 -92.26 202.38 1.91 0.028 2.57 

12 X X X X X X X X X 9 -90.44 203.82 3.35 0.014 5.14 

13 X         1 -112.50 229.01 28.53 4.6x10-8 1.6×106 

b) 
N�e(CoNe)

NH
 

1 X X   X  X  X 5 -70.64 155.44 0.00 0.232 1.00 

2 X X  X X  X  X 5 -69.64 156.23 0.79 0.156 1.49 

3 X X X X X X X X X 9 -67.42 161.13 5.69 0.013 17.85 

4 X         1 -98.78 201.56 46.12 0.000 ∞ 
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Table 5: Parameter estimates (coefficient) for explanatory variables included in the “best” 
generalized linear models (GLMs) explaining variance in the relationship between population 
characteristics and a) N�e(MLNE)/NH and c) N�e(CoNe)/NH, respectively. Explanatory variables included in 
the “best” models were population size (NH), sex ratio (SR), immigration rate (m) and population 
growth rate (dN dt⁄ ) for N�e(MLNE)/NH, and population size (NH),variance in population size (σNc

2 ),  
immigration rate (m) and NH × m for N�e(CoNe)/NH (see Table 4). SE is the standard error of the 
parameter estimates. All the explanatory variables are continuous so that the associated coefficient 
values indicates whether N�e/NH increases (β>0) or decreases (β<0) with increased values of the 
explanatory variables.  

Model Variable Coefficient SE p-value 

a) N
�e(MLNE)

NH
  = β0 + β1NH +  β2SR  

                          + β3m + β4
dN

dt
 + e 

 

Intercept β0 = 4.352 0.787 <0.001 

NH β1 = -0.017 0.003 <0.001 

SR β2 = -2.992 1.369 0.032 

m β3 = 7.004 2.646 0.010 

dN
dt

 β4 = 0.260 0.120 0.033 

b) N
�e(CoNe)

NH
 = β0 + β1NH + β2m  

                    + β3
dN

dt
 + β4NH × m + e 

Intercept β0 = 2.574 0.600 <0.001 

NH β1 = -0.015 0.011 0.197 

m β2 = 52.220 10.268 <<0.001 

dN
dt

 β3 = 0.938 0.310 0.004 

NH × m β4 = -0.549 0.248 0.032 
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FIGURES 
 

 

Figure 1: The study system off the coast of Northern Norway. The 15 islands included in this study 
are named and shown in black.  
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Figure 2: The relationship between N�e(ONeSAMP) and N�e(LDNE). Pearson's correlation coefficient r is 
shown along with its associated p-value. The solid line represents the correlation, whereas the 
dotted line represents a perfect 1:1 relationship. Each population is represented by a unique symbol; 
for each island there are multiple estimates spaced by three years.  
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Figure 3: The relationship between a) N�e(LDNE) and Nc and b) 
N�e(ONeSAMP) and Nc. Pearson's correlation coefficient r is shown along 
with its associated p-value in each figure. The solid line represents 
the correlation, whereas the dotted line represents a perfect 1:1 
relationship. Each population is represented by a unique symbol; for 
each island there are multiple estimates spaces by three years. 
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Figure 4: The precision (CV) in the single sample N�e plotted against Nc 
with the correlation between the two variables represented by the 
solid line. Pearson’s correlation coefficient (r) is shown along with the 
associated p-value. Each population is represented by a unique 
symbol; for confidence limits for the different estimates, see Table 
A3. Notice different scales on the y-axis for a) and b).  
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Figure 5: The relationship between N�e(CoNe) and N�e(MLNE). Pearson's correlation coefficient r is shown 
along with its associated p-value. The solid line represents the correlation, whereas the dotted line 
represents a perfect 1:1 relationship. Each population is represented by a unique symbol; there are 
several estimates for each population for different combinations of years, see table A4. Notice that 
there are only 11 populations.  
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Figure 6: The relationship between a) N�e(MLNE) and NH and b) N�e(CoNe) and 
NH. Pearson's correlation coefficient r is shown along with its associated p-
value in each figure. The solid line represents the correlation, whereas the 
dotted line represents a perfect 1:1 relationship. Each population is 
represented by a unique symbol; there are several estimates for each 
population for different combinations of years, see table A4. Notice that in 
b) there are only 11 populations.  
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Figure 7: The precision (CV) in the temporal N�e plotted against NH 
with the correlation between the two variables represented by the 
solid line. Pearson’s correlation coefficient (r) is shown along with the 
associated p-value. Each population is represented by a unique 
symbol; for confidence limits for the different estimates, see table 
A4. Notice different scales on the y-axis for a) and b).  
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Figure 8: The relationship between a) N�e(MLNE) and N�e(demographic) and b) 
N�e(CoNe) and N�e(demographic). Pearson's correlation coefficient r is shown 
along with its associated p-value in each figure. The solid line represents 
the correlation, whereas the dotted line represents a perfect 1:1 
relationship. Each population is represented by a unique symbol; there 
are several estimates for each population for different combinations of 
years, see table A4. Notice that in a) there are 6 populations, whereas in 
b) there are only 5 populations.  
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APPENDIX 1: MISSING/EXCLUDED DATA 
 

Table A1: Data excluded from the ONeSAMP analyses due to individuals with too few genotypes 
and/or loci with too little information. Population and year is given where the sample size is reduced, 
with ring number of the excluded individual and/or the excluded loci.  

Population Year Excluded individual Excluded locus 
Aldra 2000 - Pdo19 
Gjerøy 2000 8681361 - 
Gjerøy 2009 8L89161 Ase18 
Hestmannøy 2000 8732651 - 
Hestmannøy 2009 - Ase18 
Lovund 2009 - Ase18 
Onøy 2009 - Ase18 
Selsøyvik 2009 - Ase18 
Selvær 2009 - Ase18 
Sleneset 2009 - Ase18 
Sundøy 1994 - Pdo20 
Sundøy 1997 - Pdo21 
Træna 2006 8L30301 - 
Træna 2009 8981657 - 
Træna 2009 - Ase18 
 

The ONeSAMP method requires that monomorphic loci or individuals with missing data at 
two or more loci are excluded from the data set. Table A1 shows which individuals and/or 
loci that were removed.  

For the single sample estimators (LDNE and ONeSAMP), 5 and 2 data points were removed, 
respectively, due to missing data on one or more of the predictor variables (Table A2). These 
data points were excluded from the dataset used in analyses of population characteristics 
and Ne/Nc, but included in the correlation between estimators and Nc, and variance in 
estimators and Nc. 

For the CoNe method 37 estimates had infinite upper confidence limits (Table A2). These 
estimates were excluded from the correlations between N�e(CoNe) and N�e(MLNE), NH, 
N�e(demographic), respectively. However, these estimates were included in the GLM explaining 
variance in N�e(CoNe)/NH. This was a result of a trade-off between precision and sample size; 
excluding 37 estimates would have given the GLM little power in explaining N�e(CoNe)/NH, but 
it is important to note that many of these estimates are extremely uncertain. 

For the temporal estimators MLNE and CoNe, 3 and 5 outliers were removed, respectively, 
because the residuals were more than 2 standard deviations from the mean (Table A2). For 
both methods 3 of the removed estimates were for the Selvær population. Selvær 



 

52 
 

experienced a severe bottleneck event in year 2000, effectively going extinct with only 4 
males present on the island. However, the population quickly recovered by receiving 
immigrants from nearby islands. So the estimates that span this bottleneck event but do not 
include samples from the years when the bottleneck took place may overestimate Ne for this 
interval. NH on the other hand will be depressed by this bottleneck. The result is Ne/NH 
values that are beyond what is reasonable, as high as 20 (for the CoNe method). 
Additionally, for the CoNe method one estimate each was excluded from the Myken and 
Sleneset population, respectively. Although these estimates were excluded from the 
analyses as they were examples of extreme estimates, it does highlight a general concern 
with Ne estimators; without any knowledge of the history of a population, N�e can be biased 
without the researcher ever detecting it. Thus, N�e should be interpreted even more 
cautiously if no other information exists.  

 
Table A2: An overview of number of possible estimates and the actual number used for the GLMs.  
Also given is the amount of data not included in the analyses due to infinite estimates or confidence 
limits, no estimates, missing data on predictor variable(s) or being defined as an outlier.  

   Number of excluded data points   

Estimator 
Potential 
number of 
estimates 

Number of 
estimates 
in GLMs 

Infinite 
estimate/no 
estimate 

Infinite 
confidence 
limits 

Missing 
data on 
predictor 
variable(s) 

Outliers 

LDNE 70 60 3 2 5 0 

ONeSAMP 70 68 0 0 2 0 

MLNE 89 86 0 0 0 3 

CONE 89 46 38 19 0 5 
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APPENDIX 2: ESTIMATES OF EFFECTIVE 
POPULATION SIZE 

 
Table A3: Estimates of effective population size (Ne) using single samples from the LDNE method and 
the ONeSAMP method, for 15 populations from 1994-2009, 95% confidence limits are given in 
brackets. Population size (Nc) and sample size for each population each year is also given. For the 
ONeSAMP estimator the upper prior was the census size multiplied by two.  

Population Year Nc 
Sample 
size N�e(LDNE) N�e(ONeSAMP) 

Aldra 2000 18 18 6 (4-9) 19 (16-25) 
Aldra 2003 33 33 14 (12-18) 24 (19-31) 
Aldra 2006 36 36 10 (9-12) 29 (24-41) 
Aldra 2009 48 47 12 (11-14) 33 (26-49) 
Gjerøy 1994 53 52 21 (19-24) 82 (63-123) 
Gjerøy 1997 33 32 22 (18-26) 50 (39-69) 
Gjerøy 2000 63 61 39 (34-44) 111 (84-173) 
Gjerøy 2003 55 46 23 (21-26) 77 (62-116) 
Gjerøy 2006 58 55 24 (21-27) 86 (68-135) 
Gjerøy 2009 99 94 33 (30-36) 128 (97-234) 
Hestmannøy 1994 93 87 51 (46-57) 174 (122-298) 
Hestmannøy 1997 65 65 33 (30-37) 89 (71-136) 
Hestmannøy 2000 118 111 80 (71-91) 328 (238-615) 
Hestmannøy 2003 94 86 42 (38-46) 187 (137-334) 
Hestmannøy 2006 143 138 79 (71-89) 218 (148-448) 
Hestmannøy 2009 160 129 77 (69-87) 249 (173-516) 
Indre Kvarøy 1994 50 50 29 (26-33) 89 (69-131) 
Indre Kvarøy 1997 48 48 32 (28-36) 83 (67-117) 
Indre Kvarøy 2000 28 27 27 (22-36) 46 (36-64) 
Indre Kvarøy 2003 43 35 37 (30-46) 69 (54-103) 
Indre Kvarøy 2006 41 39 48 (39-59) 71 (57-103) 
Indre Kvarøy 2009 30 30 32 (25-42) 43 (35-55) 
Lovund 2000 15 8 - 11 (10-14) 
Lovund 2003 26 24 39 (30-53) 35 (31-47) 
Lovund 2006 60 35 102 (71-176) 103 (78-156) 
Lovund 2009 38 18 26 (18-43) 31 (25-43) 
Lurøy 1994 28 22 9 (7-11) 22 (18-30) 
Lurøy 1997 13 13 11 (7-18) 17 (15-20) 
Lurøy 2000 22 21 30 (22-44) 25 (22-29) 
Lurøy 2003 14 11 15 (9-30) 12 (11-15) 
Lurøy 2006 40 18 16 (12-23) 37 (29-53) 
Myken 1994 8 5 16 (3-∞) 4 (4-5) 
Myken 1997 15 15 5 (3-7) 16 (14-19) 
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Population Year Nc 
Sample 
size 

N�e(LDNE) N�e(ONeSAMP) 

Myken 2000 30 30 19 (16-23) 38 (31-55) 
Myken 2003 27 26 11 (9-14) 29 (24-41) 
Myken 2006 20 17 63 (31-592) 23 (20-31) 
Myken 2009 11 10 11 (6-21) 12 (10-14) 
Nesøy 1994 18 15 8 (6-11) 19 (16-26) 
Nesøy 1997 19 17 9 (7-12) 22 (18-29) 
Nesøy 2000 27 23 9 (7-11) 25 (20-33) 
Nesøy 2003 14 12 30 (15-126) 16 (14-19) 
Nesøy 2006 14 14 15 (10-23) 16 (14-19) 
Nesøy 2009 15 15 8 (6-11) 19 (16-23) 
Onøy 1994 23 23 17 (14-22) 32 (27-41) 
Onøy 1997 14 13 36 (19-135) 16 (14-18) 
Onøy 2000 22 21 49 (33-87) 28 (25-32) 
Onøy 2003 10 9 64 (20-∞) 11 (10-13) 
Onøy 2006 12 7 18 (8-100) 8 (7-9) 
Onøy 2009 15 8 14 (7-42) 9 (7-11) 
Selsøyvik 2000 13 9 28 (14-180) 12 (10-14) 
Selsøyvik 2009 15 13 20 (12-43) 18 (16-21) 
Selvær 1994 47 47 31 (27-36) 59 (46-89) 
Selvær 1997 47 47 47 (40-56) 64 (52-96) 
Selvær 2003 21 11 - 16 (13-19) 
Selvær 2006 60 40 127 (85-226) 89 (69-145) 
Selvær 2009 64 34 60 (45-87) 66 (53-100) 
Sleneset 1997 35 16 33 (20-81) 29 (24-41) 
Sleneset 2000 50 48 65 (53-82) 71 (58-100) 
Sleneset 2003 35 27 24 (20-31) 39 (31-52) 
Sleneset 2006 68 32 75 (53-119) 86 (63-144) 
Sleneset 2009 32 19 19 (14-27) 23 (19-31) 
Sundøy 1994 11 11 5 (3-10) 9 (8-11) 
Sundøy 1997 15 15 13 (9-18) 22 (19-27) 
Træna 1994 60 24 54 (39-85) 49 (38-78) 
Træna 1997 25 24 41 (30-60) 36 (31-47) 
Træna 2000 20 8 - 12 (10-15) 
Træna 2006 82 48 57 (47-71) 94 (66-152) 
Træna 2009 44 38 52 (41-68) 56 (46-77) 
Ytre Kvarøy 1994 42 40 42 (35-51) 68 (53-96) 
Ytre Kvarøy 1997 15 15 3 (3-5) 14 (12-16) 
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Table A4: Estimates of effective population size (Ne) using two samples from the MLNE method and 
the CoNe method, for 15 populations from 1994-2009, 95% confidence limits are given in brackets. 
The number of generations between samples, the harmonic mean population size (NH) and upper 
limit are also given. The upper limit is the maximum Ne allowed in the estimation procedure and was 
set as the highest census population size in each time interval multiplied by two.  Sample sizes for the 
different populations in different years are given in Table A3.  

Population Years 
Generations 
between 
samples 

NH 
Upper 
limit N�e(MLNE) N�e(CoNe) 

Aldra 2000-2003 1 26 66 66 (48-66) - 
Aldra 2000-2009 4 34 96 85 (56-96) 117 (68-276) 
Aldra 2003-2006 1 40 72 71 (47-72) 115 (33-∞) 
Aldra 2006-2009 1 41 96 96 (73-96) - 
Gjerøy 1994-1997 1 41 106 104 (52-106) 116 (40-∞) 
Gjerøy 1994-2003 4 48 110 92 (66-110) 91 (64-134) 
Gjerøy 1994-2009 7 54 198 98 (77-126) 100 (79-127) 
Gjerøy 1997-2000 1 51 126 126 (95-126) - 
Gjerøy 1997-2006 4 52 116 114 (78-116) 115 (79-186) 
Gjerøy 2000-2003 1 51 126 119 (60-126) 84 (41-492) 
Gjerøy 2000-2009 4 62 198 74 (58-96) 69 (54-92) 
Gjerøy 2003-2006 1 56 116 116 (87-116) - 
Gjerøy 2006-2009 1 82 198 53 (39-80) 40 (27-64) 
Hestmannøy 1994-1997 1 75 186 163 (82-186) 112 (57-497) 
Hestmannøy 1994-2003 4 88 188 99 (77-131) 93 (72-123) 
Hestmannøy 1994-2009 7 102 320 154 (121-197) 152 (119-195) 
Hestmannøy 1997-2000 1 95 236 236 (114-236) 157 (80-∞) 
Hestmannøy 1997-2006 4 99 286 131 (100-177) 125 (95-172) 
Hestmannøy 2000-2003 1 94 236 102 (67-186) 71 (45-130) 
Hestmannøy 2000-2009 4 117 320 169 (125-237) 174 (125-251) 
Hestmannøy 2003-2006 1 114 286 247 (124-286) 212 (102-∞) 
Hestmannøy 2006-2009 1 157 320 216 (118-320) 159 (87-466) 
Indre Kvarøy 1994-1997 1 51 96 96 (77-96) - 
Indre Kvarøy 1994-2003 4 42 96 93 (65-96) 102 (69-164) 
Indre Kvarøy 1994-2009 7 41 96 96 (72-96) 100 (74-143) 
Indre Kvarøy 1997-2000 1 40 96 79 (40-96) 48 (24-226) 
Indre Kvarøy 1997-2006 4 38 96 96 (72-96) 107 (73-168) 
Indre Kvarøy 2000-2003 1 34 86 86 (49-86) 139 (45-∞) 
Indre Kvarøy 2000-2009 4 37 60 60 (49-60) 75 (51-124) 
Indre Kvarøy 2003-2006 1 39 86 86 (66-86) - 
Indre Kvarøy 2006-2009 1 41 82 82 (46-82) 117 (38-∞) 
Lovund 2000-2003 1 18 52 52 (40-52) - 
Lovund 2000-2009 4 30 76 76 (53-76) - 
Lovund 2003-2006 1 48 120 120 (83-120) - 
Lovund 2006-2009 1 49 120 120 (45-120) 85 (27-∞) 
Lurøy 1994-1997 1 17 56 56 (37-56) - 
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Population Years 
Generations 
between 
samples 

NH 
Upper 
limit N�e(MLNE) N�e(CoNe) 

Lurøy 1994-2003 4 12 56 55 (45-56) 107 (54-497) 
Lurøy 1997-2000 1 17 44 44 (35-44) - 
Lurøy 1997-2006 4 13 80 70 (41-80) 92 (49-307) 
Lurøy 2000-2003 1 9 44 44 (29-44) 71 (20-∞) 
Lurøy 2003-2006 1 21 80 80 (38-80) - 
Myken 1994-1997 1 11 30 29 (22-30) - 
Myken 1994-2003 4 17 54 52 (31-54) 190 (62-∞) 
Myken 1994-2009 7 17 22 22 (20-22) - 
Myken 1997-2000 1 23 60 59 (39-60) - 
Myken 1997-2006 4 25 40 40 (36-40) 1322 (123-∞) 
Myken 2000-2003 1 27 60 60 (34-60) 106 (28-∞) 
Myken 2000-2009 4 19 60 58 (33-60) 55 (30-159) 
Myken 2003-2006 1 25 54 54 (44-54) - 
Myken 2006-2009 1 13 40 40 (23-40) 79 (15-∞) 
Nesøy 1994-1997 1 17 38 38 (25-38) 239 (26-∞) 
Nesøy 1994-2003 4 19 36 35 (29-36) - 
Nesøy 1994-2009 7 17 36 36 (33-36) - 
Nesøy 1997-2000 1 21 54 54 (35-54) - 
Nesøy 1997-2006 4 19 38 38 (33-38) 85 (47-252) 
Nesøy 2000-2003 1 20 54 54 (29-54) 32 (14-∞) 
Nesøy 2000-2009 4 17 54 54 (37-54) 51 (33-88) 
Nesøy 2003-2006 1 16 28 28 (24-28) - 
Nesøy 2006-2009 1 15 30 29 (23-30) - 
Onøy 1994-1997 1 20 42 42 (33-42) - 
Onøy 1994-2003 4 17 42 42 (32-42) 61 (34-166) 
Onøy 1994-2009 7 15 42 42 (36-42) - 
Onøy 1997-2000 1 20 44 43 (36-44) - 
Onøy 1997-2006 4 15 28 28 (24-28) - 
Onøy 2000-2003 1 14 44 43 (29-44) - 
Onøy 2000-2009 4 13 44 43 (32-44) 74 (35-492) 
Onøy 2003-2006 1 13 24 24 (18-24) - 
Onøy 2006-2009 1 11 30 30 (18-30) - 
Selsøyvik 2000-2009 4 7 30 29 (26-30) - 
Selvær 1994-1997 1 37 70 70 (57-70) 160 (58-∞) 
Selvær 1994-2003 4 10 64 64 (50-64) 107 (53-477) 
Selvær 1994-2009 7 14 128 109 (80-128) 114 (83-161) 
Selvær 1997-2006 4 10 120 119 (98-120) 206 (121-459) 
Selvær 2003-2006 1 40 120 120 (77-120) - 
Selvær 2006-2009 1 60 128 127 (60-128) 369 (56-∞) 
Sleneset 1997-2000 1 49 100 100 (59-100) - 
Sleneset 1997-2006 4 52 136 135 (93-136) 581 (151-∞) 
Sleneset 2000-2003 1 46 100 100 (52-100) 156 (42-∞) 
Sleneset 2000-2009 4 53 100 100 (61-100) 112 (62-290) 
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Population Years 
Generations 
between 
samples 

NH 
Upper 
limit N�e(MLNE) N�e(CoNe) 

Sleneset 2003-2006 1 56 136 135 (82-136) - 
Sleneset 2006-2009 1 54 136 136 (49-136) - 
Sundøy 1994-1997 1 15 38 38 (29-38) - 
Træna 1994-1997 1 37 120 120 (63-120) - 
Træna 1994-2009 7 27 120 117 (81-120) 140 (94-234) 
Træna 1997-2000 1 36 50 50 (30-50) 158 (20-∞) 
Træna 1997-2006 4 22 164 125 (79-164) 134 (83-277) 
Træna 2000-2009 4 22 88 87 (69-88) - 
Træna 2006-2009 1 52 164 74 (42-164) 46 (26-116) 
Ytre Kvarøy 1994-1997 1 26 84 83 (49-84) - 
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