
Finite element solutions to the wave
equation in non-convex domains
A relaxation of the CFL condition in the

presence of local mesh refinement

Andreas Borgen Longva

Master of Science in Physics and Mathematics

Supervisor: Ulrik Skre Fjordholm, IMF
Co-supervisor: Daniel Peterseim, University of Bonn

Mira Schedensack, University of Bonn

Department of Mathematical Sciences

Submission date: March 2017

Norwegian University of Science and Technology

Abstract

Finite element solutions in non-convex domains generally suffer from reduced conver-
gence rates due to reduced regularity. This is also the case for the wave equation.
To remedy the situation, (strong) local mesh refinement can restore the optimal con-
vergence rates associated with smooth solutions in convex domains. However, this is
problematic for the application of explicit time integrators such as the Leapfrog method,
for which time steps are required to satisfy the well-known CFL condition.

In this thesis, we study a method proposed by Peterseim and Schedensack which
promises to recover the stability of the Leapfrog method while maintaining the op-
timal convergence rate associated with convex domains. The method has two stages.
In the offline phase, a basis for a corrected finite element space is constructed. In the
online phase, the wave equation is solved as usual with the mass- and stiffness matrices
from the corrected space.

The main contribution of this thesis is the efficient implementation and subsequent
evaluation of the practical applicability of the method by Peterseim and Schedensack.
We show through numerical experiments that the cost of computing the basis is rea-
sonable in the sense that it can be within the same order of magnitude as the cost
of online computations. Moreover, we show that the method clearly outperforms the
solution methods considered with respect to the cost of online computations.

In addition, we propose an augmented version of the Leapfrog method which is shown
to perform very well in numerical experiments, and we prove that the method is stable
under the same CFL condition as the standard finite element space on the quasi-uniform
mesh.

The thesis concludes with a discussion of settings for which the method may be par-
ticularly well-suited and lists scenarios for which the method is expected to perform
poorly.

i

Sammendrag

Løsninger av differensialligninger med endelig-element-metoden fører ofte til reduserte
konvergensrater p̊a grunn av redusert regularitet av den eksakte løsningen. For å
motvirke dette kan man anvende lokalt forfinede mesh med det hensyn å gjenoppn̊a
den optimale konvergensraten som man assosierer med glatte løsninger i konvekse
domener. Det viser seg derimot at dette skaper problemer for eksplisitte tidsinte-
gratorer slik som Leapfrog-metoden, som krever at tidsstegene oppfyller den velkjente
CFL-betingelsen.

I denne oppgaven studerer vi en metode som nylig ble foresl̊att av Peterseim og Scheden-
sack, og som lover å gjenoppn̊a stabilitet for Leapfrog-metoden samtidig som man
oppn̊ar den optimale konvergensraten man er kjent med fra konvekse domener. Meto-
den har to stadier. I offline-fasen konstruerer man en basis for et korrigert endelig-
element-rom. I online-fasen løser man bølgeligningen p̊a vanlig m̊ate ved hjelp av
masse- og stivhetsmatrisen fra det korrigerte rommet.

Hovedbidraget ved denne oppgaven er en effektiv implementasjon av metoden til Pe-
terseim og Schedensack, samt en evaluering av metodens praktiske anvendbarhet. Vi
viser gjennom numeriske eksperimenter at kostnaden ved å regne ut basisen er rimelig
i den forstand at den kan være av samme størrelsesorden som kostnaden av online-
fasen. Videre viser vi at metoden åpenbart yter bedre i online-fasen enn de andre
løsningsmetodene vi vurderer.

I tillegg foresl̊ar vi en modifisert Leapfrog-metode som viser seg å fungere veldig bra
i numeriske eksperimenter, og vi viser at denne metoden er stabil gitt den samme CFL-
betingelsen som det vanlige endelig-element-rommet p̊a det kvasi-uniforme meshet.

Oppgaven avsluttes med en diskusjon av situasjoner hvor det kan tenkes at metoden
er spesielt godt egnet, samt scenarioer hvor metoden antas å fungere d̊arlig.

ii

Acknowledgements

There are in particular three individuals to which I owe a significant debt of gratitude
to. They have each played a crucial role in my work on this thesis, so I will not mention
them in order of importance.

The first is my local supervisor at NTNU, Professor Ulrik Skre Fjordholm. I think it
is fair to say that I owe a great portion of what I know about academic writing to his
persistently excellent advice and his detailed feedback. It was also his course on the
Finite Element Method that initially sparked my interest in pursuing finite element
methods further.

The second is Professor Daniel Peterseim at the Institute for Numerical Simulation
(INS) at the University of Bonn. Professor Peterseim graciously allowed me to write
my thesis as a visiting student at the University of Bonn, working on a topic that
tightly integrates with his research.

The third is Dr. Mira Schedensack, also at the INS. Dr. Schedensack has largely been
responsible for patiently correcting my misconceptions and mistakes as I gradually
absorbed the ideas of their research. I entered most meetings in a state of great
confusion, yet almost always emerged with a clear idea of the road ahead.

I would also like to thank Professor Anton Evgrafov at NTNU for his advice on nu-
merical linear algebra during the course of a few brief exchanges.

Finally, I have relied on a number of open-source software libraries in my work on this
thesis. While I am grateful to all authors of these libraries, I would especially like to
mention a few developers in particular. First, I am grateful to the developers of the
Eigen library for their extremely impressive response time when they patched a bug
which was blocking my work. I am also grateful to Luis Pedro Coelho for his work on the
excellent task-based parallelization framework Jug, without which I have no idea how
I would have completed my numerical experiments, and also for his personal assistance
on one occasion. Finally, I would like to thank Denis Demidov for his helpfulness when
I wanted to integrate his library amgcl into my work.

iii

Remarks

I want to point out that the work behind Chapter 3 — in which I prove stability and
derive error estimates for the Leapfrog and Crank-Nicolson methods — was for the
most part carried out in the semester project that came before this Master’s thesis. I
have included it in this thesis because I could not find appropriate references which
would give me the exact results I needed.

For the purposes for this thesis, I have however rephrased and generalized the conver-
gence results so that they would also be applicable to the corrected finite element space
defined in Chapter 5.

iv

Contents

1 Introduction 3
1.1 Outline of the thesis . 5
1.2 Notation . 6

2 Mathematical foundation 9
2.1 Weak formulation . 9
2.2 Finite element spaces . 10

3 Discretization 15
3.1 Finite difference operators . 17
3.2 The Leapfrog method . 18
3.3 The Crank-Nicolson method . 26
3.4 Mass lumping . 33
3.5 Initialization: Taking the first step . 34

4 The geometrical setting 37
4.1 Triangulation and simple bisection . 37
4.2 Corner singularities in non-convex domains 42

5 CFL relaxation by spatial reduction 49
5.1 Construction of a reduced finite element space 51
5.2 A local admissible quasi-interpolator . 57
5.3 A basis for the corrected space . 59

5.3.1 Localization . 59
5.3.2 Support of basis correctors in locally refined meshes 62

5.4 Application to the wave equation . 65

6 Efficient corrector computation 67
6.1 The local quasi-interpolator in matrix form 68
6.2 An algebraic formulation for the corrector problem 71
6.3 Linear solvers for the corrector problem 76

6.3.1 Schur complement reduction and sparse direct solvers 76
6.3.2 Algebraic Multigrid and block-preconditioned GMRES 78

6.4 A high-level algorithm for corrector computation 80

1

2 CONTENTS

6.5 crest: An open-source implementation 82

7 Augmented Leapfrog 85

8 Numerical experiments 89
8.1 Experimental setup . 90

8.1.1 Model problem . 90
8.1.2 Offline computation . 91
8.1.3 Online computation . 92

8.2 Error measurements for the online computations 94
8.3 Performance . 101

9 Concluding remarks 109
9.1 Main takeaways . 109
9.2 Possible improvements . 110
9.3 Applications . 111
9.4 Future work . 112

Bibliography 113

Chapter 1

Introduction

In this thesis, we will consider the solutions of the second-order wave equation in
polygonal domains with finite element methods. The equation can be written in its
classical form

utt −∆u = f.

We consider the domain of interest Ω to be a bounded, polygonal domain. Because we
wish to study problems in which classical derivatives may not exist, we must instead
consider the functional-analytic weak formulation

(utt, v) + (∇u,∇v) = (f, v) v ∈ H1
0 (Ω)

with appropriate initial and boundary conditions. This will be precisely defined in
Section 2.1.

One of the most popular approaches for solving the wave equation with the Finite
Element Method (FEM) in space uses the Leapfrog method [1][2][3] to advance the
solution in time. The Leapfrog method is an explicit method, and along with other
explicit time integrators for the wave equation, its stability depends on the relation
between the time step ∆t and the resolution of the computational mesh. More precisely,
one has the requirement that ∆t must satisfy

∆t ≤ Chmin

for some constant C > 0 independent of hmin, which relates to the size of the smallest
element in the mesh. For linear finite elements, we will see that given sufficient regular-
ity of the exact solution u, the method attains an error bound of O(h2 + (∆t)2) in the
L2(Ω) norm and O(h+(∆t)2) in the H1 norm. Here h denotes the mesh resolution. For
quasi-uniform mesh families, we usually have that h/hmin is not too large, and so we
see that the above requirement for stability is typically a reasonable condition.

For convex domains with sufficiently smooth initial conditions and right-hand side f ,
it can be shown that the exact solution u is smooth enough to attain these convergence

3

4 CHAPTER 1. INTRODUCTION

rates with quasi-uniform meshes. However, if the domain Ω is not convex and has
re-entrant corners - corners whose interior angle exceeds π radians - it is possible that
even with smooth data, the exact solution u exhibits singularities in the re-entrant
corners. In this case, the regularity of u is reduced, and the standard piecewise linear
polynomial finite element space with a quasi-uniform mesh will fail to give the optimal
convergence rate O(h2) in the L2 norm and O(h) in the H1 norm.

It is well-known from elliptic problems (see e.g. [4][5]) that appropriate local mesh
refinement in the vicinity of re-entrant corners may help to restore the optimal conver-
gence rate associated with smooth solutions. It turns out that this is the case also for
the wave equation [6], and by way of local refinement one can recover the optimal rate
O(h) = O(hmax) in the H1 norm. However, the resulting locally refined meshes are
heavily graded towards the re-entrant corners, and as a result, it is observed that

hmin � hmax.

In fact, the size of the smallest element may be many orders of magnitude smaller
than the largest. From the above discussion, it is clear that this is severely detrimental
to the stability of the Leapfrog method. The result is that the method is essentially
unusable in the presence of such local mesh refinement.

To overcome this difficulty, the most straightforward approach is to use an uncon-
ditionally stable implicit scheme. To this end, we will show how one can adapt the
classical Crank-Nicolson method [7] for parabolic PDEs so that it gives rise to an un-
conditionally stable method for the wave equation. Here we have mostly adapted and
extended the techniques used to develop the theory of the Leapfrog method to prove
the fundamental properties of the Crank-Nicolson-derived scheme.

The downside to using an implicit method is increased computational complexity as-
sociated with solving a possibly ill-conditioned linear system at each time step. In
the pursuit to achieve greater computational efficiency, several techniques [8][9][10][11]
that in different ways restore the usefulness of explicit time integrators have been de-
veloped. The main objective of this thesis is to study a method proposed by Peterseim
and Schedensack [12], which uses techniques from multi-scale modeling and numerical
homogenization to combine the reasonable stability region of the quasi-uniform mesh
with the optimal convergence rate of the locally refined mesh.

The gist of this method is the computation of a number of correctors, which are used
to augment the standard basis associated with the quasi-uniform mesh in a way such
that it is able to exploit information from the locally refined mesh. The result is a new
finite element space in which the Leapfrog method is both stable and is able to attain
the optimal convergence rate in the H1 norm.

The computational efficiency of the method is however somewhat of an open question.
The computation of the correctors involves the solution to a large number of elliptic
problems. A central question is thus whether the computation of these correctors is
practically feasible, in the sense that the computation can be performed in reason-
able time. Moreover, the mass- and stiffness matrices associated with the new finite

1.1. OUTLINE OF THE THESIS 5

element space might have considerably higher density than the system matrices asso-
ciated with the standard finite element space. A second important question is then
whether the increased density is so significant that the method is ultimately rendered
inefficient.

The goal of this thesis is to at least partially answer both of these questions. To that
end, we will describe an efficient implementation of the method, and in the process we
propose two different methods that allow the efficient computation of correctors. It is
also important to note that these two methods are not mutually exclusive. While one
method which leverages a sparse direct solver is perhaps particularly suited to solving
the smaller elliptic problems, the second method based on GMRES [13] may be better
suited for the larger problems.

During the course of running numerical experiments, an augmented version of the
Leapfrog method was discovered to perform very well in practice. The augmented
version reduces the cost of computing load vectors and allows the usage of a much
sparser mass matrix than the original method proposed by Peterseim and Schedensack.
Stability for this new method is proved, but theoretical error estimates have not been
obtained.

We will finally present numerical experiments which show that the method of Peterseim
and Schedensack can attain high efficiency, and for the model problem considered, it is
clearly the most efficient approach of the ones considered. However, it is likely that the
performance of the Crank-Nicolson method which we have used as a baseline is tainted
by an inappropriate preconditioner, and it is possible that the outcome would not be
so clear cut given a better preconditioner. We conclude the thesis by a discussion of
the advantages and limitations of the method, as well as an outlook on future topics
of further research.

A prototype software library named crest providing a complete implementation of the
method of Peterseim and Schedensack is also released as part of this thesis.

1.1 Outline of the thesis

A brief outline of the contents of each chapter follows.

• Chapter 2 introduces the weak formulation of the problem, as well as basic lan-
guage and notions associated with finite element theory.

• Chapter 3 introduces the Leapfrog and Crank-Nicolson methods, and develops
the theory for the energy conservation, stability and convergence properties of
each method.

• Chapter 4 discusses triangulation of the domain, and demonstrates how local
refinement can mitigate the detrimental effects caused by non-convex domains.

• Chapter 5 discusses the theory of the method proposed by Peterseim and Scheden-
sack.

6 CHAPTER 1. INTRODUCTION

• Chapter 6 discusses practical aspects of the aforementioned method, and pro-
poses two methods for solving the corrector problems that are associated with
the method.

• Chapter 7 proposes an augmented Leapfrog method which has less computational
complexity than the original Leapfrog method when used in conjunction with the
method by Peterseim and Schedensack, and stability is proved for this augmented
method.

• Chapter 8 presents an experimental error analysis of the numerical methods, as
well as providing empirical evidence for the runtime characteristics of the methods
studied.

• Chapter 9 summarizes some of the most important results and observations in
the thesis, and mentions some possible directions for future research.

1.2 Notation

For the convenience of the reader, some of the notation that is frequently used is
presented here, in addition to wherever it is introduced.

• C is often used as a generic constant, and is typically different between individual
theorems and lemmas. However, within the same context, an effort has been made
to clearly distinguish different constants by incrementally indexing new constants
by C0, C1, etc.

• C(u, T) emphasizes the fact that the constant depends only on data of the prob-
lem, which includes T , f , u0, v0.

• Ω represents an open, bounded polygonal domain.

• Hs = Hs(Ω) = W s,2(Ω) for any s, unless otherwise stated, where W s,2 is stan-
dard notation for Sobolev spaces. Similarly, L2 = L2(Ω).

• The gradient ∇ and Laplacian ∆ refer only to spatial derivatives.

• For a Hilbert space V ,

Lq(0, T ;V) =

{
g : [0, T]→ V such that g is measurable and

∫ T

0

‖g(t)‖qV dt <∞

}
.

• (·, ·) = (·, ·)L2 = (·, ·)L2(Ω) denotes the L2 inner product.

• ‖·‖ = ‖·‖L2 = ‖·‖L2(Ω) denotes the L2 norm.

• a(·, ·) = (∇·,∇·)L2(Ω).

• C∞c (Q;R) denotes an infinitely differentiable mapping from Q to R with compact
support, and C∞c (Q) = C∞c (Q;R).

1.2. NOTATION 7

• ∆t represents a constant time step for a fully discretized scheme.

• tn = n∆t for n ≥ 0.

• fn = f(tn) and similarly for other functions.

• unh represents a fully discretized (in space and time) approximation of the exact
solution u(tn).

• δun+1/2 = (un+1 − un)/∆t.

• un+1/2 = (un+1 + un)/2.

• δ2unh =
un+1
h −2unh+un−1

h

(∆t)2 .

• Th is a mesh with mesh resolution h, e.g. a set of elements. In Chapters 5 and
onwards, TH and Th refer to a pair of meshes where TH is quasi-uniform and Th
is a local refinement of TH .

• N (Th) is the set of vertices in the mesh Th, and #N (Th) denotes the number of
vertices in the mesh.

• Sp(Th) and Sp0 (Th) are piecewise polynomial finite element spaces of degree p on
the mesh Th as defined by Definition 2.2.1.

• Nh = dimS1
0(Th) and similarly NH = dimS1

0(TH).

• λi or λz corresponds to a basis function (often a Lagrangian basis function)
associated with the node index i in the associated finite element space or vertex
z in the associated computational mesh.

• λH,i ∈ S1
0(TH) and λh,i ∈ S1

0(Th) refer to Lagrangian basis functions in the coarse
and fine polynomial space, respectively.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Mathematical foundation

In this chapter, we will introduce some essential basic notions associated with the
solutions of partial differential equations with the Finite Element Method (FEM). In
order to avoid having to repeat large amounts of standard finite element theory, we
will assume that the reader is acquainted with the solution of time-dependent problems
with the FEM by the method of lines, but only to the extent of basics one would find
in any textbook on the subject.

We will not discuss properties of the wave equation itself. For this, we refer the reader
to the standard monograph by Evans [14]. The thesis should otherwise be largely self-
contained, although some experience with numerical linear algebra may be required to
fully appreciate the discussion in Chapter 6.

2.1 Weak formulation

This section introduces the formal definition of the problem by way of a weak for-
mulation of the wave equation. We refer the reader to [14] for the motivation and
justification for the following formulation of the problem, as well as the corresponding
theory of existence and uniqueness.

9

10 CHAPTER 2. MATHEMATICAL FOUNDATION

Definition 2.1.1 (Weak formulation)
Let Ω ⊆ Rd for d = 2, 3 be a bounded, polygonal domain. For a function u which
satisfies

u ∈ L2(0, T ;H1
0 (Ω)), u̇ ∈ L2(0, T ;L2(Ω)), ü ∈ L2(0, T ;H−1(Ω)),

we say that u is a weak solution to the wave equation if

1. f ∈ L2(0, T ;L2(Ω)).

2. u(0) = u0 ∈ H1
0 (Ω).

3. u̇(0) = v0 ∈ L2(Ω).

4. for almost every t ∈ [0, T],

(ü(t), v) + a(u(t), v) = (f(t), v) ∀v ∈ H1
0 (Ω), (2.1)

where

a(u, v) := (∇u,∇v) . (2.2)

Remark. In the above definition, as is always the case with Sobolev spaces, the deriva-
tives must be understood in a distributional sense.

By the Poincaré inequality, it is easy to see that a(·, ·) induces an inner product on the
space H1

0 (Ω), and consequently
√
a(·, ·) is a norm on the space H1

0 (Ω). The following
lemma follows naturally.

Lemma 2.1.2 (Equivalence of norms)
There exist constants C0, C1 > 0 such that for all v ∈ H1

0 (Ω),

C0 ‖v‖H1 ≤
√
a(v, v) ≤ C1 ‖v‖H1 . (2.3)

Throughout this thesis, we will use both the notation (∇u,∇v) and a(u, v) inter-
changably.

2.2 Finite element spaces

In order to apply the FEM to Definition 2.1.1, we let Th denote a mesh of our compu-
tational domain Ω. We will make a more precise statement on the geometrical setting
in Chapter 4. For now, it is sufficient to let Th denote a set of elements, and that for
each element T ⊆ Ω, d + 1 vertices are associated with it. Here, the mesh resolution
parameter h relates to the size of the largest element. For the purposes of this thesis, we

2.2. FINITE ELEMENT SPACES 11

consider a finite element space to be a finite-dimensional subspace of H1(Ω) generated
from the computational mesh Th.

We now introduce the notation we use for the standard piecewise polynomial finite
element space, which coincides with the notation used in [12].

Definition 2.2.1 (Piecewise polynomial finite element spaces)
Given a computational mesh Th, we define the standard piecewise polynomial
finite element space Sp(Th) of order p

Sp(Th) :=
{
vh ∈ C0(Ω) | vh

∣∣
K
∈ Pp(K) ∀K ∈ Th

}
(2.4)

where Pp(K) denotes the set of polynomials on K of total degree less or equal
to p. We furthermore define the piecewise polynomial space Sp0 (Ω) to be the
corresponding space which vanishes at the boundary of Ω by

Sp0 (Th) := Sp(Th) ∩H1
0 (Ω). (2.5)

In principle, any basis for this space will do. However, for the sake of computational
complexity it is desirable to use a basis with small, local support. To this end we define
the notation for the standard Lagrangian basis below.

Definition 2.2.2 (Lagrangian basis)
Given a polynomial finite element space Sp(Th), we define the Lagrangian basis
function λi ∈ Sp(Th) associated with node ni ∈ Ω by the property

λi(nj) =

{
1 if i = j

0 if i 6= j
(2.6)

for each node nj ∈ Ω associated with a degree of freedom in Sp(Ω).

Remark. Because our purpose here is merely to make clear the notation used for the
Lagrangian basis functions, we will avoid the exact definition of what constitutes a
node of Sp(Th), but it suffices to say that it coincides with the usual notions.

The next definition introduces a property of finite element spaces that is of crucial
importance in the derivation of a stability estimate for the Leapfrog method, which we
will introduce in Chapter 3.

12 CHAPTER 2. MATHEMATICAL FOUNDATION

Definition 2.2.3 (Inverse property)
For a finite element space Xh ⊆ H1

0 (Ω), we say that it has the inverse property if
and only if there exists a constant CI > 0 independent of h such that

‖∇vh‖L2(Ω) ≤ CI h
−1 ‖vh‖L2(Ω) ∀vh ∈ Xh. (2.7)

Remark. The above definition for the inverse property is a specialized version of the
more general definition found in [3]. Moreover, Quarteroni notes in [15] that Xh has the
inverse property if Ω is triangulated by a regular and quasi-uniform family of meshes
{Th | h > 0}. These properties will be properly introduced in the later section on
triangulation.

The following lemma will be useful in our later proofs, and is a direct consequence of
the preceding definition and the Cauchy-Schwarz inequality.

Lemma 2.2.4 (Inverse property for the bilinear form)
If Xh ⊆ H1

0 (Ω) has the inverse property, there exists Cinv > 0 independent of h
such that

a(uh, vh) ≤ Cinv

h2
‖uh‖ ‖vh‖ (2.8)

for any uh, vh ∈ Xh.

On occasion, it will be necessary to approximate a given function on H1
0 (Ω) in a finite

element space. For example, we might need to construct finite-dimensional approxima-
tions of the initial conditions u0 and v0. If u0 and v0 are continuous, it is usually suffi-
cient to use the standard nodal interpolator. Throughout this thesis, we will frequently
make use of the elliptic projection, sometimes also called the Ritz interpolator.

Definition 2.2.5 (Elliptic projection)
Let Xh be a finite element space and V be a subspace of H1

0 (Ω), and assume
that Xh ⊆ V ⊂ H1

0 (Ω). The elliptic projection Rh : V → Xh is defined as the
orthogonal projection of V onto Xh with respect to the a(·, ·) inner product, in
the sense that, for any v ∈ V ,

a(Rhv, vh) = a(v, vh) ∀vh ∈ Xh. (2.9)

The elliptic projection is a special case of a projection. We will give a formal definition
from [16] of a projection below, as we will use it in later chapters.

2.2. FINITE ELEMENT SPACES 13

Definition 2.2.6 (Projection)
Given a vector space V and a subspace W ⊆ V , an operator P : V → W is a
projection if P 2 = P , or equivalently

Pw = w ∀w ∈ P (V),

where P (V) ⊆W denotes the image of P .

In order to estimate the error of the Leapfrog and Crank-Nicolson methods in Chapter
3, we will require error estimates for the elliptic projection in piecewise polynomial
spaces.

Lemma 2.2.7 (Error of elliptic projection in polynomial spaces)
For Xh = Sp0 (Th) and 2 ≤ s ≤ p+ 1, there exist constants C0, C1 > 0 independent
of h such that for all v ∈ Hs(Ω) ∩H1

0 (Ω),

‖v −Rhv‖L2(Ω) ≤ C0h
s ‖v‖Hs(Ω) (2.10)

‖v −Rhv‖H1(Ω) ≤ C1h
s−1 ‖v‖Hs(Ω) . (2.11)

Proof. See [17].

The reason that the elliptic projection plays such an important role in this thesis is
that it is closely related to the best approximation error in H1 for a given finite element
space. To define precisely what we mean by this, consider the following lemma, which
is a simple consequence of Céa’s lemma.

Lemma 2.2.8
Given any u ∈ H1

0 (Ω), there exists a constant C > 0 such that the elliptic projec-
tion onto a finite element space Xh satisfies

‖u−Rhu‖H1 ≤ C inf
vh∈Xh

‖u− vh‖H1 (2.12)

Lemma 2.2.8 states that the elliptic projection of u ∈ H1
0 (Ω) onto the finite element

space Xh is the best approximation of u in Xh up to a constant, with respect to the
H1 norm. We emphasize this point because it has great significance for Chapter 4 and
5.

In order to link the functional-analytic definitions with algebraic formulations that are
suitable for direct computation, we will need to be able to relate the quantities that
appear in the weak (Galerkin) formulation of the problem with algebraic equivalents.

14 CHAPTER 2. MATHEMATICAL FOUNDATION

In order to do so, we will need to introduce the usual mass- and stiffness matrices
(collectively referred to as system matrices).

Definition 2.2.9 (System matrices)
For a finite element space Xh with dimension Nh := dimXh and a basis
Λ = {λi | i = 1, . . . , Nh} ⊆ Xh, we define the mass matrix M ∈ RNh×Nh and stiff-
ness matrix A ∈ RNh×Nh by

Mij = (λj , λi) , (2.13)

Aij = a(λj , λi) (2.14)

for i, j = 1, . . . , Nh.

As in the case of elliptic equations, we define the concept of load vectors which relate
to the right-hand side term f .

Definition 2.2.10 (Load vectors)
For a finite element space Xh with dimension Nh := dimXh and a ba-
sis Λ = {λi | i = 1, . . . , Nh} ⊆ Xh, we define the (time-dependent) load vector
b(t) ∈ RNh by

bi(t) = (f(t), λi) . (2.15)

for i = 1, . . . , Nh.

Note that neither the definition for the system matrices M and A nor the definition
of the load vector b(t) are limited to Lagrangian basis functions. In Chapter 5 we
will introduce a class of finite element spaces for which the basis we will use is not
Lagrangian.

Chapter 3

Discretization

In this thesis, we consider spatial discretization with the Finite Element Method. For
the discretization in time, we consider two different methods which have similar con-
vergence and energy conservation properties, but differ in computational complexity
and conditions for stability.

We denote by unh ≈ u(tn) the approximation of the exact solution u at time tn = n∆t,
and the two methods under study are both two-step recurrence relations, which means
that un+1

h depends on unh and un−1
h .

Due to its simplicity and approximation properties, the Leapfrog method is a very
natural fit for the wave equation, and hence is arguably the most popular. It is
straightforward to implement, conserves the energy of the system, offers relatively
low computational complexity and sports a quadratic convergence rate in time. How-
ever, as we shall see, its stability depends on the fulfillment of the well-known CFL
condition.

The literature search for citable, rigorous and complete results for the expected con-
vergence rate for the Leapfrog method in polynomial spaces was unfortunately not
entirely fruitful. While Christiansen [1] and Joly [2] both discuss the method, their
discussion takes place from a more general perspective, and convergence results are
not ultimately shown specifically for polynomial spaces, though attainable results are
hinted at. However, this leaves open the questions of what assumptions must be made
on the regularity of the exact solution and how to approximate the u0

h and u1
h for

optimal convergence rates to be attained. On the other hand, there is a fairly detailed
proof in [3], but it makes the arguably very impractical assumption that u0 = v0 = 0.
For the purposes of this thesis we also had the additional constraint of making sure
that we could prove convergence also for the corrected finite element space that will
be introduced in Chapter 5. Because of all these considerations, we will here present
the complete stability and error analysis of the Leapfrog method for any (sufficiently
regular) u0 and v0. The proof of convergence presented here relies on techniques from
the aforementioned literature, but ultimately follows its own line of reasoning to the

15

16 CHAPTER 3. DISCRETIZATION

final result.

Because the stability of the Leapfrog method is generally not preserved in the presence
of strong local mesh refinement, an unconditionally stable method with comparable
convergence properties was sought as a baseline with which to compare the method
that will be presented in Chapter 5. To this end, we will derive a method similar to
the Crank-Nicolson method for parabolic PDEs. It turns out, however, that the results
we need for the purposes of this thesis are not easily found in the existing literature.
Dupont [18] and Baker [19] study a method which is in some sense mathematically
equivalent, but it relies on the common practice of rewriting the second-order wave
equation as a first-order system. For our purposes, this is less than ideal because it
doubles the number of variables in the system, and so is not a completely appropriate
comparison with the Leapfrog method. In contrast, the method we present in this
section is based directly on the second-order formulation, and so is very similar to the
Leapfrog method. The method appears in [20] in relation to a multi-scale method for
the wave equation, but the results seem not to be directly applicable to our present
situation. An almost identical method is also presented by Larsson [17], but it has a
slightly different right-hand side. In this case, optimal convergence rates are presented
without proof, but curiously the method does not seem to work as advertised in nu-
merical experiments unless f = 0. In light of these difficulties, we will - as in the case
of the Leapfrog method - present the full stability and convergence analysis for the
Crank-Nicolson method. In order to make the process a little easier on the reader, we
have sought to develop proofs that closely follow the flow of the corresponding proofs
for the Leapfrog method.

It must also be noted that there exists a French paper by Bamberger et al. [21]
which seems to cover a detailed analysis of various discretization schemes for the wave
equation, but due to the risk of quite literally getting lost in translation, we have elected
not to use the results of this paper.

Our strategy for the analysis will be as follows. For each of the two methods, we will
first present a functional-analytic formulation similar to the weak formulation (2.1)
for the wave equation. We will go on to show how this formulation is equivalent to
an algebraic formulation which leads to a practically computable method. Next, we
define an appropriate notion of discrete energy for each method, and go on to show
that this energy is conserved, but only under certain assumptions for the Leapfrog
method. The energy conservation is furthermore shown to lead to stability of the
method. Finally, we complete the analysis by proving convergence in terms of errors
of the elliptic projection defined in Definition 2.2.5, and subsequently demonstrating
how this leads to expected convergence rates for piecewise polynomial finite element
spaces.

3.1. FINITE DIFFERENCE OPERATORS 17

3.1 Finite difference operators

The discretization methods we present rely on finite difference operators for the tem-
poral discretization. In order to prove convergence, we will need some results involving
these operators. For brevity, we will omit the proofs of these results, as they are easily
obtained from the theory of Taylor series by using mean-value forms of the remainder,
along with applications of the intermediate value theorem where appropriate.

Lemma 3.1.1 (First-order difference operators)
Given t0 ∈ R, k > 0 and a function g ∈ C([t0 − k, t0 + k]) ∩ C2((t0 − k, t0 + k)),
the first-order forward and backward operators satisfy

δ+g(t0) :=
g(t0 + k)− g(t0)

k
= ġ(t0) +

k

2
g̈(t+), (3.1)

for the forward operator, and

δ−g(t0) :=
g(t0)− g(t0 − k)

k
= ġ(t0)− k

2
g̈(t−), (3.2)

for the backward operator, for some t+ ∈ (t0, t0 + k) and t− ∈ (t0 − k, t0). If in
addition, g ∈ C3((t0 − k, t0 + k)), the first-order central operator satisfies

δg(t0) :=
g(t0 + k)− g(t0 − k)

2k
= ġ(t0) +

k2

6

d3g

dt3
(tc), (3.3)

for some tc ∈ (t0 − k, t0 + k).

Lemma 3.1.2 (Second order central difference operator)
Given t0 ∈ R, k > 0 and a function g ∈ C([t0 − k, t0 + k]) ∩ C4((t0 − k, t0 + k)),
the second order central difference operator satisfies

δ2g(t0) :=
g(t0 + k)− 2g(t0) + g(t0 − k)

k2
= g̈(t0) +

k2

12

d4g

dt4
(tc) (3.4)

for some tc ∈ (t0 − k, t0 + k).

In addition to using the above difference notations for continuous functions, we will

18 CHAPTER 3. DISCRETIZATION

also use it to denote fully discrete quantities. More precisely, we have that

δu
n+1/2
h :=

un+1
h − un−1

h

∆t
,

δ2unh :=
un+1
h − 2unh + un−1

h

(∆t)2
.

3.2 The Leapfrog method

We will now define the Leapfrog method in terms of a functional-analytic weak formu-
lation. We will go on to give a fully algebraic representation more suitable for direct
computation. Furthermore, we will show that under conditions on the size of the time
step ∆t, the method preserves a discrete approximation of energy, which leads to sta-
bility. Finally, we will prove convergence of the method for any finite element space in
terms of the approximation properties of the elliptic projection onto the space.

Definition 3.2.1 (Leapfrog method for the wave equation)
Given a finite element space Xh ⊆ H1

0 (Ω), the weak formulation of the fully
discretized Leapfrog method is for t = n∆t and integer n ≥ 1 given by(

un+1
h − 2unh + un−1

h

(∆t)2
, vh

)
+ a(unh, vh) = (fn, vh) ∀vh ∈ Xh. (3.5)

The next lemma gives an equivalent, computable representation as a linear system,
which lets us solve the problem numerically.

Lemma 3.2.2 (Algebraic formulation of the Leapfrog method)
Let unh be defined as in Definition 3.2.1 and let Λ = {λi | i = 1, . . . , Nh} be a basis
of Xh, with Nh = dimXh. Define ξn ∈ RNh such that

unh =
∑
j=1

ξnj λj . (3.6)

Then the Leapfrog method is for n ≥ 1 equivalent to the linear system

Mξn+1 = (∆t)2 (bn −Aξn) +M
(
2ξn − ξn−1

)
, (3.7)

where the system matrices M and A are defined by Definition 2.2.9 and the load
vector bn := b(tn) by Definition 2.2.10.

Proof. Let vh = λi in (3.5) and insert (3.6).

3.2. THE LEAPFROG METHOD 19

We note that a very favorable property of the Leapfrog method is that it only requires
the solution of the mass matrix M at every time step. It is well known that the mass
matrix is generally well-conditioned and reasonably cheap to invert. Furthermore, we
will see in Section 3.4 that the mass matrix can be accurately approximated by a
diagonal matrix, which makes the method fully explicit.

Our next goal is to show that the Leapfrog method conserves a certain discrete energy
quantity, which we define below.

Definition 3.2.3 (Discrete energy for the Leapfrog method)
We define the discrete energy for the Leapfrog method by

Ên+1/2
h :=

1

2

∥∥∥δun+1/2
h

∥∥∥2

L2(Ω)
+

1

2
a(unh, u

n+1
h), (3.8)

where

δu
n+1/2
h :=

un+1
h − unh

∆t
. (3.9)

From the above definition, we note that, due to the second term, the discrete energy
is in general not a non-negative quantity. For the stability analysis of the Leapfrog
method, it is desirable to determine a condition for which the discrete energy is non-
negative. The next lemma will enable us to do exactly that.

Lemma 3.2.4 (CFL and the non-negativity of the Leapfrog discrete energy)
Assume that Xh has the inverse property from Definition 2.2.3, and that ∆t is
chosen sufficiently small such that

1− Cinv(∆t)2

2h2
≥ λ > 0 (3.10)

for some λ ∈ (0, 1), and Cinv the same as in Lemma 2.2.4. Then

Ên+1/2
h ≥ λ

2

∥∥∥δun+1/2
h

∥∥∥2

L2(Ω)
+

1

4

[
a(un+1

h , un+1
h) + a(unh, u

n
h)
]
≥ 0. (3.11)

(3.10) is referred to as the CFL condition.

Proof. By assumption, Xh has the inverse property. We begin by rewriting the second

20 CHAPTER 3. DISCRETIZATION

term from (3.8) in terms of symmetric arguments, before applying Lemma 2.2.4:

2a(unh, u
n+1
h) = a(un+1

h , un+1
h) + a(unh, u

n
h)− a(un+1

h − unh, un+1
h − unh)

= a(un+1
h , un+1

h) + a(unh, u
n
h)− (∆t)2a(δu

n+1/2
h , δu

n+1/2
h)

≥ a(un+1
h , un+1

h) + a(unh, u
n
h)− Cinv(∆t)2

h2

∥∥∥δun+1/2
h

∥∥∥2

L2(Ω)
.

Inserting this into (3.8) we get

Ên+1/2
h ≥ 1

2

(
1− Cinv(∆t)2

2h2

)∥∥∥δun+1/2
h

∥∥∥2

L2(Ω)
+

1

4

[
a(un+1

h , un+1
h) + a(unh, u

n
h)
]

≥ λ

2

∥∥∥δun+1/2
h

∥∥∥2

L2(Ω)
+

1

4

[
a(un+1

h , un+1
h) + a(unh, u

n
h)
]
,

which is a sum of non-negative quantities.

Theorem 3.2.5 (Energy conservation for the Leapfrog method)
Assume that the conditions in Lemma 3.2.4 hold. Then, if f = 0, the Leapfrog
method conserves energy in the sense that, for all n ≥ 0,

Ên+1/2
h = Ê1/2

h . (3.12)

If f 6= 0, we have, for all n ≥ 0,√
Ên+1/2
h ≤

√
Ê1/2
h +

n∑
k=1

∆t√
2λ

∥∥fk∥∥ . (3.13)

Remark. The estimate blows up if λ tends to zero. In practical applications, this is
problematic as it is often desirable to let λ be close to zero, since it admits larger time
steps. An estimate of the energy which does not blow up can be found in [2].

Proof of Theorem 3.2.5. Let vh = un+1
h − un−1

h = (un+1
h − unh) + (unh − u

n−1
h) in the

Leapfrog weak formulation (3.5). We obtain(
un+1
h − 2unh + un−1

h

(∆t)2
, un+1
h − un−1

h

)
+ a(unh, u

n+1
h − un−1

h) =
(
fn, un+1

h − un−1
h

)
.

Expanding the terms we may rewrite this as

2
(
Ên+1/2
h − Ên−1/2

h

)
=
∥∥∥δun+1/2

h

∥∥∥2

L2(Ω)
+ a(unh, u

n+1
h)−

∥∥∥δun−1/2
h

∥∥∥2

L2(Ω)
− a(un−1

h , unh)

=
(
fn, un+1

h − un−1
h

)
.

3.2. THE LEAPFROG METHOD 21

If f = 0, we have that fk = 0 for all k ∈ N0. Summing over the integers k = 1, . . . , n

then yields Ên+1/2
h = Ê1/2

h , which proves the first part of the theorem. Otherwise, if
f 6= 0, we continue the above derivation to obtain

2
(
Ên+1/2
h − Ên−1/2

h

)
=
(
fn, un+1

h − unh
)

+
(
fn, unh − un−1

h

)
= ∆t

(
fn, δu

n+1/2
h

)
+ ∆t

(
fn, δu

n−1/2
h

)
≤ ∆t ‖fn‖

(∥∥∥δun+1/2
h

∥∥∥+
∥∥∥δun−1/2

h

∥∥∥) .
Since the CFL condition is assumed to be satisfied, we may apply Lemma 3.2.4 to the
right side of the above inequality, which yields

Ên+1/2
h − Ên−1/2

h ≤ ∆t√
2λ
‖fn‖

(√
Ên+1/2
h +

√
Ên−1/2
h

)
.

If Ên+1/2
h 6= 0, we may perform the necessary division to obtain√

Ên+1/2
h −

√
Ên−1/2
h =

Ên+1/2
h − Ên−1/2

h√
Ên+1
h +

√
Ên−1/2
h

≤ ∆t√
2λ
‖fn‖ .

If, on the other hand, Ên+1/2
h = 0, it follows trivially from the fact that Ên−1/2

h is a

non-negative quantity that

√
Ên+1/2
h ≤

√
Ên−1/2
h , and the above inequality still holds.

Summing over k = 1, . . . , n, we’re consequently left with√
Ên+1/2
h ≤

√
Ê1/2
h +

n∑
k=1

∆t√
2λ

∥∥fk∥∥ .

Theorem 3.2.6 (Stability of the Leapfrog method)
Assume that the conditions in Lemma 3.2.4 hold. Then the Leapfrog method is
stable in the sense that there exists some C > 0 independent of h and ∆t such
that ∥∥∥δun+1/2

h

∥∥∥
L2

+
∥∥un+1

h

∥∥
H1 ≤ C

(∥∥∥δu1/2
h

∥∥∥
L2

+
∥∥u0

h

∥∥
H1 +

∥∥u1
h

∥∥
H1 (3.14)

+

n∑
k=1

∆t
∥∥fk∥∥

L2

)
.

22 CHAPTER 3. DISCRETIZATION

Proof. We seek to bound the norms on the left-hand side of (3.14) by the discrete
energy. Recall the equivalence of norms from Lemma 2.1.2, which lets us obtain, for
constants C0, C1 > 0 independent of h and ∆t,∥∥∥δun+1/2

h

∥∥∥
L2

+
∥∥un+1

h

∥∥
H1 ≤

∥∥∥δun+1/2
h

∥∥∥
L2

+ C0

√
a(un+1

h , un+1
h)

≤
√

2

λ
Ên+1/2
h + C0

√
4Ên+1/2
h

≤ C1

√
Ên+1/2
h .

We can write

2a(u, v) = a(u, u) + a(v, v)− a(u− v, u− v) ≤ a(u, u) + a(v, v),

which together with Theorem 3.2.5 and the equivalence of norms from Lemma 2.1.2
gives us√

Ên+1/2
h ≤

√
Ê1/2
h +

n∑
k=1

∆t√
2λ

∥∥fk∥∥
=

√
1

2

∥∥∥δu1/2
h

∥∥∥2

+
1

2
a(u0

h, u
1
h) +

n∑
k=1

∆t√
2λ

∥∥fk∥∥
≤
√

1

2

∥∥∥δu1/2
h

∥∥∥2

+
1

4
a(u0

h, u
0
h) +

1

4
a(u1

h, u
1
h) +

n∑
k=1

∆t√
2λ

∥∥fk∥∥
≤
√

1

2

∥∥∥δu1/2
h

∥∥∥2

+ C2 ‖u0
h‖

2

H1 + C2 ‖u1
h‖

2

H1 +

n∑
k=1

∆t√
2λ

∥∥fk∥∥
≤ C3

(∥∥∥δu1/2
h

∥∥∥+
∥∥u0

h

∥∥
H1 +

∥∥u1
h

∥∥
H1 +

n∑
k=1

∆t
∥∥fk∥∥)

for suitable constants C2, C3 > 0 independent of h and ∆t. Combining the preceding
inequality with the above bound for the norms completes the proof.

We are now ready to prove error estimates for the Leapfrog method. We will first give
an estimate in terms of the elliptic projection defined in Definition 2.2.5 that applies
to any finite element space. Afterwards, we will use the error estimates for the elliptic
projection in polynomial spaces (Lemma 2.2.7) to determine the expected convergence
rate of the method given certain regularity assumptions on the exact solution u.

3.2. THE LEAPFROG METHOD 23

Theorem 3.2.7 (Error estimates for the Leapfrog method)
Given a finite element space Xh, assume that the following conditions are satisfied:

• u ∈ C4(0, T ;H1
0 (Ω)).

• The conditions of Lemma 3.2.4 are satisfied.

Furthermore, let εnh := unh −Rhu(tn), rh := u−Rhu and define enh := unh − u(tn),
the error at time t = n∆t. Then the following error estimate holds for the Leapfrog
method:∥∥∥δen+1/2

h

∥∥∥
L2

+
∥∥en+1
h

∥∥
Q

+ ‖enh‖Q ≤ C

(∥∥∥δε1/2h

∥∥∥
L2

+
∥∥ε1h∥∥H1 +

∥∥ε0h∥∥H1 (3.15)

+ (∆t)2 + sup
0≤z≤T

‖rh(z)‖Q

+

2∑
i=1

sup
0≤z≤T

∥∥∥∥∂irh∂ti
(z)

∥∥∥∥
L2

)
,

for Q = L2 and Q = H1, and C = C(u, T) > 0 is independent of h and ∆t.

Proof. Writing rnh := rh(tn) = u(tn)−Rhu(tn) we can reformulate the error as

enh = unh − u(tn) = [unh −Rhu(tn)]− [u(tn)−Rhu(tn)] = εnh − rnh .

Consequently, by replacing unh with εnh in the Leapfrog weak formulation (3.5) and using
the definition of the elliptic projection (2.9), we observe that

(δ2εnh, vh) + a(εnh, vh) =

(f(tn),vh)︷ ︸︸ ︷
(δ2unh, vh) + a(unh, vh)−(δ2Rhu(tn), vh)−

a(u(tn),vh)︷ ︸︸ ︷
a(Rhu(tn), vh) .

By using (2.1) to replace the term involving f , we get

(δ2εnh, vh) + a(εnh, vh) = (ü(tn)− δ2Rhu(tn), vh)

= (ü(tn)− δ2u(tn) + δ2u(tn)− δ2Rhu(tn), vh)

= (τn + δ2rnh , vh),

where τn := ü(tn) − δ2u(tn) is the discretization error from the second order central
difference operator. We may now use our stability result from Theorem 3.2.6 to bound

24 CHAPTER 3. DISCRETIZATION

the error term εnh:∥∥∥δεn+1/2
h

∥∥∥
L2

+
∥∥εn+1
h

∥∥
L2 + ‖εnh‖L2 ≤

∥∥∥δεn+1/2
h

∥∥∥
L2

+
∥∥εn+1
h

∥∥
H1 + ‖εnh‖H1

≤ C1

(∥∥∥δε1/2h

∥∥∥
L2

+
∥∥ε1h∥∥H1 +

∥∥ε0h∥∥H1

+ ∆t

n∑
k=1

∥∥τk + δ2rkh
∥∥
L2

)
.

The forth term needs a little work. The triangle inequality lets us easily treat τk and
δ2rkh separately. We begin with τk, and from (3.4) we have, for some tτ ∈ (tk−1, tk+1),

∥∥τk∥∥ =

∥∥∥∥− (∆t)2

12

∂4u

∂t4
(tτ)

∥∥∥∥ ≤ (∆t)2

12
sup

0≤z≤T

∥∥∥∥∂4u

∂t4
(z)

∥∥∥∥
Next, we may again use (3.4) to obtain the following estimate, where tr ∈ (tk−1, tk+1):

∥∥δ2rkh
∥∥
L2 =

∥∥δ2rh(tk)
∥∥
L2 =

∥∥∥∥∂2rh
∂t2

(tk) +
(∆t)2

12

∂4rh
∂t4

(tr)

∥∥∥∥
L2

≤
∥∥∥∥∂2rh
∂t2

(tk)

∥∥∥∥+
(∆t)2

12
sup

0≤z≤T

∥∥∥∥∂4rh
∂t4

(z)

∥∥∥∥
L2

.

It is easily seen that the definition of Rh leads to, for any t∗ ∈ [0, T],∥∥∥∥∂4rh
∂t4

(t∗)

∥∥∥∥
L2

≤
∥∥∥∥Rh ∂4u

∂t4
(t∗)

∥∥∥∥
H1

+

∥∥∥∥∂4u

∂t4
(t∗)

∥∥∥∥
H1

≤ 2

∥∥∥∥∂4u

∂t4
(t∗)

∥∥∥∥
H1

,

which when combined with the above yields

∥∥δ2rkh
∥∥
L2 ≤ sup

0≤z≤T

∥∥∥∥∂2rh
∂t2

(z)

∥∥∥∥+
(∆t)2

6
sup

0≤z≤T

∥∥∥∥∂4u

∂t4
(z)

∥∥∥∥
H1

.

Denoting Nt = T/∆t the number of time steps, the preceding results let us write

∆t

n∑
k=1

∥∥τk + δ2rkh
∥∥
L2 ≤ ∆t

Nt∑
k=1

∥∥τk + δ2rkh
∥∥
L2

≤��∆t
T

��∆t

(
sup

0≤z≤T

∥∥∥∥∂2rh
∂t2

(z)

∥∥∥∥
L2

+
(∆t)2

4
sup

0≤z≤T

∥∥∥∥∂4u

∂t4
(z)

∥∥∥∥
H1

)

Having obtained estimates for εh, we turn to the task of estimating
∥∥∥δrn+1/2

h

∥∥∥. Using

a procedure analogous to the one we used to estimate
∥∥δ2rkh

∥∥ along with the finite
difference estimate (3.3), we have for tr ∈ (tn, tn+1),

3.2. THE LEAPFROG METHOD 25

∥∥∥δrn+1/2
h

∥∥∥
L2

=

∥∥∥∥∂rh∂t (tn+1/2) +
(∆t)2

24

∂3rh
∂t3

(tr)

∥∥∥∥
L2

≤ sup
0≤z≤T

∥∥∥∥∂rh∂t (z)

∥∥∥∥
L2

+
(∆t)2

12
sup

0≤z≤T

∥∥∥∥∂3u

∂t3
(z)

∥∥∥∥
H1

.

(3.16)

Finally, we collect all our partial results to conclude the theorem:∥∥∥δen+1/2
h

∥∥∥+
∥∥en+1
h

∥∥
L2 + ‖enh‖L2 ≤

∥∥∥δεn+1/2
h

∥∥∥+
∥∥εn+1
h

∥∥
L2 + ‖εnh‖L2

+
∥∥∥δrn+1/2

h

∥∥∥+
∥∥rn+1
h

∥∥
L2 + ‖rnh‖L2 ,

for the L2 norms, and∥∥en+1
h

∥∥
H1 + ‖enh‖H1 ≤

∥∥εn+1
h

∥∥
H1 + ‖εnh‖H1

+
∥∥rn+1
h

∥∥
H1 + ‖rnh‖H1 ,

for the H1 norms.

Corollary 3.2.8 (Error estimates for the Leapfrog method in polynomial spaces)
Given a finite element space Xh = Sp0 (Th), assume that the following conditions
are met:

• u ∈ C4(0, T ;H1
0 (Ω)) ∩ C2(0, T ;Hs(Ω)), for some s ∈ [2, p+ 1].

• The conditions of Lemma 3.2.4 are satisfied.

• u0
h and u1

h are chosen such that for some C0 > 0 independent of h and ∆t∥∥∥δε1/2h

∥∥∥
L2

+
∥∥ε0h∥∥H1 +

∥∥ε1h∥∥H1 ≤ C0(hs + (∆t)2), (3.17)

where εnh = unh −Rhu(tn).

Then the following error estimates hold for the Leapfrog method:∥∥∥δen+1/2
h

∥∥∥
L2

+
∥∥en+1
h

∥∥
L2 + ‖enh‖L2 ≤ C

(
hs + (∆t)2

)
, (3.18)∥∥en+1

h

∥∥
H1 +‖enh‖H1 ≤ C

(
hs−1 + (∆t)2

)
, (3.19)

where enh = unh − u(tn) denotes the error at time t = n∆t and C = C(u, T) > 0 is
independent of h and ∆t.

Remark. One can obtain the same results or similar with relaxed regularity assumptions
on u. However, the theorem as presented here is sufficient for the purposes of this thesis
while avoiding additional tedious technicalities.

26 CHAPTER 3. DISCRETIZATION

Proof of Corollary 3.2.8. This result is a straightforward consequence of Theorem 3.2.7
along with the the given assumptions. Because u, u̇, ü ∈ Hs(Ω), the error estimates for
the elliptic projection found in 2.2.7 can be applied to the terms involving the elliptic
projection in Theorem 3.2.7.

3.3 The Crank-Nicolson method

In this subsection we will derive an implicit method for the wave equation that closely
resembles the well-known Crank Nicolson method for parabolic partial differential equa-
tions. We will follow the recipe of the derivation of the properties for the Leapfrog
method, in that we will first define a functional-analytic definition followed by an alge-
braic formulation. We will go on to show that the method conserves a discrete energy
quantity with no restrictions on the time step ∆t, which leads to unconditional stabil-
ity. Finally, we will derive error estimates and formulate the results in a similar fashion
as for the Leapfrog method.

We note first that for a scalar, parabolic PDE

∂u

∂t
= F (x, t, u,∇u,∆u),

a discretization in time similar to the Crank-Nicolson method [7] gives

un+1 − un

∆t
=

1

2

[
F (x, tn+1, un+1,∇un+1,∆un+1) + F (x, tn, un,∇un,∆un)

]
Next, consider the scalar wave equation utt −∆u = f . Let w = ut and U = [u,w]T to
obtain the vector-form PDE

∂

∂t

(
u
w

)
=

(
0
f

)
+

(
w

c2∆u

)
=⇒ ∂U

∂t
= F (x, t, U,∆U).

In this form we apply the vector-equivalent of the above scalar Crank-Nicolson method
for two consecutive values of n to obtain

un+1 − un =
∆t

2

(
wn+1 + wn

)
wn+1 − wn =

∆t

2

(
fn+1 + c2∆un+1 + fn + c2∆un

)
un − un−1 =

∆t

2

(
wn + wn−1

)
wn − wn−1 =

∆t

2

(
fn + c2∆un + fn−1 + c2∆un−1

)
.

3.3. THE CRANK-NICOLSON METHOD 27

Finally, forming a recurrence relation by combining the above equations and then
taking the inner product with a test function vh ∈ Xh motivates the following defini-
tion.

Definition 3.3.1 (Crank-Nicolson method for the wave equation)
Given a finite element space Xh ⊆ H1

0 (Ω), the weak formulation of the fully
discretized Crank-Nicolson method is for t = n∆t and integer n ≥ 1 given by(

un+1
h − 2unh + un−1

h

(∆t)2
, vh

)
+

1

4
a(un+1

h + 2unh + un−1
h , vh) (3.20)

=
1

4

(
fn+1 + 2fn + fn−1, vh

)
for all vh ∈ Xh.

For practical implementation, we require a different representation that is better suited
to computation, which the next lemma provides.

Lemma 3.3.2 (Algebraic formulation of the Crank-Nicolson method)
Let unh be defined as in Definition 3.3.1 and let Λ = {λi | i = 1, . . . , Nh} be a basis
of Xh, with Nh = dimXh. Define ξn ∈ RNh such that

unh =
∑
j=1

ξnj λj . (3.21)

Then the Crank-Nicolson method is for n ≥ 1 equivalent to the linear system(
M +

(∆t)2

4
A

)
ξn+1 =

(∆t)2

4
(bn+1 + 2bn + bn−1) (3.22)

+M(2ξn − ξn−1)− (∆t)2

4
A(2ξn + ξn−1),

where the system matrices M and A are defined by Definition 2.2.9 and the load
vector bn := b(tn) by Definition 2.2.10.

Proof. Let vh = λi in (3.20) and insert (3.21).

We note that the coefficient matrix M + (∆t)2A/4 associated with the Crank-Nicolson
method is in general not so easy to invert as the mass matrix which needs to be inverted
for the Leapfrog method. However, in the experience of the author, the method is
competitive to the Leapfrog method without mass lumping when the computational
mesh is quasi-uniform and the time step is sufficiently small (as a rule of thumb, within
the region of stability for the Leapfrog method).

28 CHAPTER 3. DISCRETIZATION

From experience with the Crank-Nicolson method applied to parabolic equations, we
expect it to be unconditionally stable and quadratically convergent given sufficient
regularity of the solution and a sufficiently accurate spatial discretization. Indeed, we
will shortly confirm these properties. Before we can prove stability for the Crank-
Nicolson method, however, we need a suitable concept for discrete energy.

Definition 3.3.3 (Discrete energy for the Crank-Nicolson method)
The discrete energy for the Crank-Nicolson method is defined by

Ēn+1/2
h :=

1

2

∥∥∥δun+1/2
h

∥∥∥2

+
1

2
a(u

n+1/2
h , u

n+1/2
h), (3.23)

where δu
n+1/2
h = (un+1

h − unh)/∆t and u
n+1/2
h = (un+1

h + unh)/2.

Remark. Unlike the discrete energy for the Leapfrog method (Definition 3.2.3), the
discrete energy for Crank-Nicolson is unconditionally non-negative. Indeed, as we will
see in the following theorem, this is the reason for its unconditional stability.

Theorem 3.3.4 (Energy conservation for the Crank-Nicolson method)
If f = 0, the Crank-Nicolson method conserves energy in the sense that, for all
n ≥ 0,

Ēn+1/2
h = Ē1/2

h . (3.24)

If f 6= 0, we have, for all n ≥ 0,√
Ēn+1/2
h ≤

√
Ē1/2
h +

n∑
k=1

∆t√
2

∥∥∥∥1

4
(fk+1 + 2fk + fk−1)

∥∥∥∥ . (3.25)

Proof. Choose vh in (3.20) such that

vh = un+1
h − un−1

h = (un+1
h − unh) + (unh − un−1

h) = (un+1
h + unh)− (unh + un−1

h),

and rewrite the first term on the left side as(
(un+1
h − unh)− (unh − u

n−1
h)

(∆t)2
, (un+1

h − un) + (un − un−1)

)
=
∥∥∥δun+1/2

h

∥∥∥2

−
∥∥∥δun−1/2

h

∥∥∥2

,

and the second term as

1

4
a
[
(un+1
h + unh) + (unh + un−1

h), (un+1
h + unh)− (unh + un−1

h)
]

= a(u
n+1/2
h , u

n+1/2
h)− a(u

n−1/2
h , u

n−1/2
h).

3.3. THE CRANK-NICOLSON METHOD 29

This allows us to rewrite the left-hand side in terms of the difference in the discrete
energy, and we get

2(Ēn+1/2
h − Ēn−1/2

h) =

(
1

4
(fn+1 + 2fn + fn−1), (un+1

h − unh) + (unh − un−1
h)

)
.

If f = 0, then fn = 0 for all n ∈ N, so it follows that Ēn+1/2
h = Ēn−1/2

h , and summing
over k = 1, . . . , n proves the first part of the theorem. Conversely, if f 6= 0, we bound
the right-side of the above equation to obtain

2(Ēn+1/2
h − Ēn−1/2

h) ≤
√

2∆t

∥∥∥∥1

4
(fn+1 + 2fn + fn−1)

∥∥∥∥

∥∥∥δun+1/2

h

∥∥∥
√

2
+

∥∥∥δun−1/2
h

∥∥∥
√

2

≤
√

2∆t

∥∥∥∥1

4
(fn+1 + 2fn + fn−1)

∥∥∥∥(√Ēn+1/2
h +

√
Ēn−1/2
h

)
.

From here, we make the same kind of argument as in the proof of Theorem 3.2.5 and
proceed in almost exactly the same way to complete the proof.

Theorem 3.3.5 (Stability of the Crank-Nicolson method)
The Crank-Nicolson method from Definition 3.3.1 is stable in the sense that∥∥∥δun+1/2

h

∥∥∥
L2

+
∥∥∥un+1/2

h

∥∥∥
H1
≤ C

(∥∥∥δu1/2
h

∥∥∥
L2

+
∥∥∥u1/2

h

∥∥∥
H1

(3.26)

+ ∆t

n∑
k=1

∥∥∥∥1

4
(fk+1 + 2fk + fk−1)

∥∥∥∥
L2

)
.

for some C > 0 independent of h and ∆t.

Remark. The theorem only bounds the H1 norm of the average of two consecutive time
steps, which is in some sense slightly weaker than what we proved for the Leapfrog
method.

Remark. Note that we do not need to assume that the finite element space Xh has the
inverse property, as we did for the stability of the Leapfrog method.

Proof of Theorem 3.3.5. From the equivalence of norms in Lemma 2.1.2 and the en-
ergy conservation from Theorem 3.3.4, it follows directly that, for suitable constants

30 CHAPTER 3. DISCRETIZATION

C1, C2, C > 0,∥∥∥δun+1/2
h

∥∥∥+
∥∥∥un+1/2

h

∥∥∥
H1
≤
∥∥∥δun+1/2

h

∥∥∥+ C1

√
a(u

n+1/2
h , u

n+1/2
h)

≤ C2

√
Ēn+1/2
h

≤ C2

(√
Ē1/2
h +

∆t√
2

n∑
k=1

∥∥∥∥1

4
(fk+1 + 2fk + fk−1)

∥∥∥∥ .
)

≤ C
(∥∥∥δu1/2

h

∥∥∥+
∥∥∥u1/2

h

∥∥∥
H1

+ ∆t

n∑
k=1

∥∥∥∥1

4
(fk+1 + 2fk + fk−1)

∥∥∥∥ .),
which concludes the proof.

We are finally ready to give error estimates for the Crank-Nicolson method. As in
the case of the Leapfrog method, we first give estimates in terms of the error of the
the elliptic projection, and then proceed to give concrete results for polynomial spaces
under appropriate regularity assumptions.

Theorem 3.3.6 (Error estimates for the Crank-Nicolson method)
Given a finite element space Xh ⊆ H1

0 (Ω), assume that the solution u satisfies
u ∈ C4(0, T ;H1

0 (Ω)). Furthermore, let εnh := unh − Rhu(tn), rh := u − Rhu and
define enh := unh − u(tn), the error at time tn = n∆t. Then the following error
estimate holds for the Crank-Nicolson method:

∥∥∥δen+1/2
h

∥∥∥
L2

+
∥∥∥en+1/2
h

∥∥∥
Q
≤ C

(∥∥∥δε1/2h

∥∥∥
L2

+
∥∥∥ε1/2h

∥∥∥
H1

+ (∆t)2 (3.27)

+ sup
0≤z≤T

‖rh(z)‖Q +

2∑
i=1

sup
0≤z≤T

∥∥∥∥∂irh∂ti
(z)

∥∥∥∥
L2

)
,

for Q = L2 and Q = H1, e
n+1/2
h = (en+1

h + enh)/2, and C = C(u, T) > 0 is
independent of h and ∆t.

Proof. Our method of proof is deliberately very similar to the proof of convergence for
the Leapfrog method, presented in Theorem 3.2.7, but we must make some modifica-
tions. As in the case of the Leapfrog method, write

enh = unh − u(tn) = [unh −Rhu(tn)]− [u(tn)−Rhu(tn)] = εnh − rh(tn).

3.3. THE CRANK-NICOLSON METHOD 31

Insert εnh into the left hand side of the Crank-Nicolson weak formulation (3.20) in place
of unh and leverage the discrete weak formulation of unh (3.20), as well as the elliptic
projection property (2.9) and the weak formulation of u (2.1) to obtain(

δ2εnh, vh
)

+
1

4
a(εn+1

h + 2εnh + εn−1
h , vh)

=

(1
4 (fn+1+2fn+fn−1),vh)︷ ︸︸ ︷

(δ2unh, vh) +
1

4
a
(
un+1
h + 2unh + un−1

h , vh

)
−
(
δ2Rhu(tn), vh

)
− 1

4
a
(
Rh
(
u(tn+1) + 2u(tn) + u(tn−1)

)
, vh

)
︸ ︷︷ ︸

(1
4 (fn+1+2fn+fn−1),vh)− 1

4 (ü(tn+1)+2ü(tn)+ü(tn−1),vh)

=
1

4

(
ü(tn+1) + 2ü(tn) + ü(tn−1), vh

)
−
(
δ2Rhu(tn), vh

)
=
(
ü(tn)− δ2u(tn), vh

)
+
(
δ2u(tn)− δ2Rhu(tn), vh

)
+

1

4

(
ü(tn+1)− 2ü(tn) + ü(tn−1), vh

)
=
(
τn + δ2rnh +

∆t

4
[δ+ü(tn)− δ−ü(tn)], vh

)
.

Here we have used the short-hand notation δ2εnh for the second-order central difference
operator from (3.4), as well as the forward and backward operators from (3.1) and
(3.2). As in the proof of convergence for the Leapfrog method, τn = ü(tn)− δ2u(tn) is
the time discretization error of the second-order central difference operator. We may
now use the main result of Theorem 3.3.5 to immediately obtain∥∥∥δεn+1/2

h

∥∥∥
L2

+
∥∥∥εn+1/2
h

∥∥∥
H1
≤ C1

(∥∥∥δε1/2h

∥∥∥
L2

+
∥∥∥ε1/2h

∥∥∥
H1

+ ∆t

n∑
k=1

∥∥∥∥τk + δ2rkh +
∆t

4
[δ+ü(tk)− δ−ü(tk)]

∥∥∥∥
L2

)
.

We can use the triangle inequality to bound the third term. From the proof of conver-
gence for the Leapfrog method, we have that

∆t

n∑
k=1

∥∥τn + δ2rnh
∥∥ ≤ T (sup

0≤z≤T

∥∥∥∥∂2rh
∂t2

(z)

∥∥∥∥
L2

+
(∆t)2

4
sup

0≤z≤T

∥∥∥∥∂4u

∂t4
(z)

∥∥∥∥
H1

)
.

Next, we use the properties of the forward and backward finite operators from (3.1)
and (3.2), as well as the intermediate value theorem, to write, for some t+, t−, tc ∈

32 CHAPTER 3. DISCRETIZATION

(tn−1, tn+1),

∆t

4

∥∥δ+ü(tn)− δ−ü(tn)
∥∥ =

∆t

4

∥∥∥∥∂3u

∂t3
(tn) +

∆t

2

∂4u

∂t4
(t+)− ∂3u

∂t3
(tn) +

∆t

2

∂4u

∂t4
(t−)

∥∥∥∥
=

(∆t)2

4

∥∥∥∥∂4u

∂t4
(tc)

∥∥∥∥
≤ (∆t)2

4
sup

0≤z≤T

∥∥∥∥∂4u

∂t4
(z)

∥∥∥∥ .
Employing a similar procedure as used in the Leapfrog convergence proof, we obtain
an appropriate estimate in the following form, where we have denoted Nt = T/∆t the
number of time steps,

∆t

n∑
k=1

∥∥∥∥∆t

4
[δ+ü(tk)− δ−ü(tk)]

∥∥∥∥
L2

≤��∆t
T

��∆t

(∆t)2

4
sup

0≤z≤T

∥∥∥∥∂4u

∂t4
(z)

∥∥∥∥
L2

.

What remains is to estimate the error terms involving rh. Noting that∥∥∥rn+1/2
h

∥∥∥
Q
≤ 1

2

(∥∥rn+1
h

∥∥
Q

+ ‖rnh‖Q
)
≤ sup

0≤z≤T
‖rh(z)‖Q

for Q = L2 and Q = H1, we obtain the necessary estimate for δr
n+1/2
h from (3.16). To

conclude the proof, one only needs to combine the partial estimates to arrive at the
desired result.

Corollary 3.3.7 (Error estimates in polynomial spaces)
Given a finite element space Xh = Sp0 (Th), assume that the following conditions
are met:

• u ∈ C4(0, T ;H1
0 (Ω)) ∩ C2(0, T ;Hs(Ω)), for some s ∈ [2, p+ 1].

• u0
h and u1

h are chosen such that∥∥∥δε1/2h

∥∥∥
L2

+
∥∥∥ε1/2h

∥∥∥
H1
≤ C0(hs + (∆t)2), (3.28)

where εnh = unh −Rhu(tn) for integer n, ε
1/2
h = (ε1h + ε0h)/2, and C0 > 0 is a

constant independent of h and ∆t.

Then the following error estimate holds for the Crank-Nicolson method:∥∥∥δen+1/2
h

∥∥∥
L2

+
∥∥∥en+1/2
h

∥∥∥
L2

+ h
∥∥∥en+1/2
h

∥∥∥
H1
≤ C(u, T)

(
hs + (∆t)2

)
, (3.29)

where enh = unh − u(tn) denotes the error at time t = n∆t for integer n, e
n+1/2
h =

(en+1
h + enh)/2, and C(u, T) > 0 is independent of h and ∆t.

3.4. MASS LUMPING 33

Proof. The result is a direct consequence of Theorem 3.3.6, along with the assumptions
and error estimates for the elliptic projection (Lemma 2.2.7) applied to u, u̇ and ü.

3.4 Mass lumping

It turns out that there exists a very simple technique which drastically increases the
computational efficiency of the Leapfrog method. Under certain conditions, the pro-
cedure of mass lumping replaces the mass matrix M by a diagonal matrix which suf-
ficiently accurately approximates the application of M . A short explanation of the
main idea can be found in [2], including the procedure for piecewise linear elements.
For a more thorough treatment which includes the mass lumping of higher-order finite
element spaces, see [22]. Diving into the details is beyond the scope of this thesis, but
the main result for linear piecewise elements will be of significant importance for our
numerical experiments and subsequent discussion of efficiency.

Lemma 3.4.1 (Mass lumping)
Given a Lagrangian basis for the piecewise linear finite element space S1

0(Th), the
mass matrix M can be approximated by a diagonal matrix D whose elements are
defined by

Dii =

Nh∑
j=1

Mij i = 1, . . . , Nh. (3.30)

The resulting modification to the Leapfrog method satisfies the same convergence
properties as the standard Leapfrog method presented in Definition 3.2.1.

The above lemma paves the way for a modified Leapfrog method which is fully ex-
plicit in the sense that it merely requires elementary matrix-vector operations and the
inversion of a diagonal matrix.

Definition 3.4.2 (Lumped Leapfrog)
Let unh and ξn be defined as in Lemma 3.2.2, and assume that Λ is a Lagrangian
basis for S1

0(Th). Then the mass-lumped Leapfrog method is for n ≥ 1 equivalent
to the linear system

ξn+1 = 2ξn − ξn−1 + (∆t)2D−1 (bn −Aξn) , (3.31)

where the stiffness matrix A is defined by Definition 2.2.9, load vector bn := b(tn)
by Definition 2.2.10 and D is the diagonal matrix defined in Lemma 3.4.1.

We conclude the section by noting that the mass lumping modification only works for

34 CHAPTER 3. DISCRETIZATION

the Leapfrog method, because it only requires inversion of the mass matrix M . The
matrix that needs to be inverted at every step for Crank-Nicolson does not admit a
similar technique to be used.

3.5 Initialization: Taking the first step

Until now, we have defined numerical methods that depend on values of u0
h and u1

h

in order to compute u2
h. In order to form complete numerical methods, we need to

complete the methods we have presented so far by defining a way of computing these
values. We will refer to this process as initialization.

The convergence results for the Leapfrog method in Theorem 3.2.7 and the Crank-
Nicolson method in Theorem 3.3.6 suggest that somehow approximating our initial
data with the elliptic projection Rh may be a feasible way to approach the problem of
initialization, which motivates the following lemma.

Lemma 3.5.1 (Initialization by elliptic projection)
If u ∈ C3(0, T ;H1

0 (Ω)) and u0
h and u1

h are chosen such that

u0
h = Rhu0, u1

h = Rh

(
u0 + ∆tv0 +

(∆t)2

2
ü(0)

)
, (3.32)

where Rh is the elliptic projection from Definition 2.2.5, then the following esti-
mate holds for some constant C = C(u, T) > 0 independent of h and ∆t:∥∥∥δε1/2h

∥∥∥
L2

+
∥∥∥ε1/2h

∥∥∥
H1
≤
∥∥∥δε1/2h

∥∥∥
L2

+
∥∥ε0h∥∥H1 +

∥∥ε1h∥∥H1 ≤ C(u, T)(∆t)2, (3.33)

with εnh = unh −Rhu(tn) and ε
n+1/2
h = (εn+1

h + εnh)/2.

Proof. Obviously,
∥∥ε0h∥∥ = 0. Using the equivalence of norms from Lemma 2.1.2 and

the definition of the elliptic projection in Definition 2.2.5, we first note that

‖Rhv‖H1 ≤ C0 ‖v‖H1

for some C0 > 0. Using this result, along with a Taylor expansion of u(∆t), we have

3.5. INITIALIZATION: TAKING THE FIRST STEP 35

that, for some t∗ ∈ (0,∆t),∥∥ε1h∥∥H1 =
∥∥u1

h −Rhu(∆t)
∥∥
H1

=

∥∥∥∥Rh(u0 + ∆tv0 +
(∆t)2

2
ü(0)

)
−Rh

(
u0 + ∆tv0 +

(∆t)2

2
ü(0) +

(∆t)3

6

∂3u

∂t3
(t∗)

)∥∥∥∥
H1

=

∥∥∥∥Rh((∆t)3

6

∂3u

∂t3
(t∗)

)∥∥∥∥
H1

≤ C1(∆t)3 sup
0≤z≤T

∥∥∥∥∂3u

∂t3
(z)

∥∥∥∥
H1

= C2(u, T)(∆t)3.

Finally, we use the above results to write∥∥∥δε1/2h

∥∥∥
L2

=

∥∥∥∥ε1h − ε0h∆t

∥∥∥∥
L2

=
1

∆t

∥∥ε1h∥∥L2 ≤
1

∆t

∥∥ε1h∥∥H1 = C2(u, T)(∆t)2,

which concludes the proof.

Evidently, the initialization procedure defined in the previous lemma satisfies the re-
quirements prescribed by the convergence theorems for the Leapfrog method (Corol-
lary 3.2.8) and the Crank-Nicolson method (Corollary 3.3.7) in polynomial spaces.

We close this chapter by noting that while the initialization procedure defined in
Lemma 3.5.1 yields optimal convergence rates when paired with the Leapfrog or Crank-
Nicolson methods, it is very impractical to implement, particularly because it requires
knowledge of the spatial derivatives of u0 and v0. However, in practice the nodal
interpolator is often sufficiently accurate.

36 CHAPTER 3. DISCRETIZATION

Chapter 4

The geometrical setting

Throughout the previous chapters, very little attention was paid to the geometrical
setting. The main topic of this thesis is a discussion of finite element solutions in non-
convex domains, and so we need to introduce some geometrical considerations.

We will first introduce some standard definitions and language for triangulations. We
move on to introduce the newest-vertex bisection (NVB) [23] algorithm for mesh refine-
ment. Next, we will discuss the issue of reduced regularity of the exact solution to the
wave equation in non-convex domains, which has detrimental effects on the convergence
rate associated with the standard polynomial spaces generated from quasi-uniform
meshes for smooth solutions. We will furthermore see how a particular algorithm for
local mesh refinement is able to recover the usual convergence rates in the H1 norm. We
end the chapter with an important result on the regularity of the exact solution.

4.1 Triangulation and simple bisection

In this thesis we will only consider two-dimensional, triangular elements. We will
assume that the reader is not a stranger to triangulation, but for completeness we will
recall a few important definitions, which we have borrowed from [15].

37

38 CHAPTER 4. THE GEOMETRICAL SETTING

Definition 4.1.1
For a triangulation Th of a bounded polygonal domain Ω ⊆ R2, we have that

Ω̄ =
⋃

K∈Th

K,

where Ω̄ denotes the closure of Ω. We say that

• for any triangle K ∈ Th, we define its diameter hK as the longest edge of
the triangle.

• the mesh-size h is given by

h = max
K∈Th

hK .

• Th is conforming if for any K1,K2 ∈ Th where F = K1 ∩ K2 6= ∅ and
K1 6= K2, F is either a whole edge or a single vertex in the triangulation.

• the mesh family {Th | h > 0} is (shape) regular if there exists γ > 0
independent of h such that, for any Th,

hK
ρK
≤ γ ∀K ∈ Th, (4.1)

where ρK denotes the diameter of the inscribed circle of the element K.

• the mesh family {Th | h > 0} is quasi-uniform if there exists a constant
β > 0 such that,

min
K∈Th

hK ≥ βh ∀h > 0.

The shape regularity condition is often rephrased in terms of a minimum angle, stating
that the minimum angle of any triangle in the mesh is bounded from below by a
constant independent of h.

Definition 4.1.2
N (Th) denotes the set of vertices in a triangulation, and #N (Th) denotes the num-
ber of vertices. In addition, we denote the number of triangles in the triangulation
by #Th.

While convergence properties are naturally described in terms of the mesh resolution h
for quasi-uniform meshes, this formulation offers little intuition for the computational
complexity associated with a given mesh resolution. Moreover, it is often not sufficient

4.1. TRIANGULATION AND SIMPLE BISECTION 39

to describe convergence rates where local refinement is used to better approximate the
solution. To this end, the number of vertices in the mesh is typically a much better
measure. The following is a common result that can be readily proved in terms of the
above definitions, but for brevity we will omit the proof.

Lemma 4.1.3
For any conforming mesh family Th, there exists a constant C1 > 0 such that, for
any Th ∈ Th,

#N (Th)−1/2 ≤ C1h. (4.2)

If in addition Th is (shape) regular and quasi-uniform, then there exists a constant
C2 > 0 such that

h ≤ C2(#N (Th))−1/2. (4.3)

We will now go on to define a simple algorithm for mesh refinement. The idea is to
define a set of marked triangles which we wish to refine. The marked triangles are
passed to the algorithm for refinement, and in the process it may refine additional
triangles to maintain conformity of the mesh. This forms the basis for a cycle in the
form of

MARK→ REFINE→ REPEAT

with repetition until some criterion is fulfilled. For example, if we wish to make sure
all triangles have diameter below some threshold, we would continue to mark trian-
gles whose diameter is larger than the threshold. When all triangles have diameters
below the threshold, the cycle ends by virtue of the last set of marked triangles being
empty.

The algorithm below is typically referred to as newest-vertex bisection (NVB), and is
normally attributed to Bänsch [23].

40 CHAPTER 4. THE GEOMETRICAL SETTING

z0

z1

z2

K

z0

z1

z2

z̄

K1

K2

Figure 4.1: Bisection of a single triangle K into smaller triangles K1 and K2. Dashed lines
indicate refinement edges.

Definition 4.1.4 (Newest-vertex bisection (NVB))
Let T0 be a given conforming initial triangulation, and letM⊆ T0 denote the set of
marked triangles. We let each triangle K ∈ T0 be described by an ordered triplet
(z0, z1, z2), where zi ∈ R2 denotes the coordinates of the local vertices. Then
the following algorithm, T ← REFINE MARKED(T0,M), yields a conforming
refinement of T0.

1. Let T = T0.

2. For each K = (z0, z1, z2) ∈M,

(a) let z̄ := 1
2 (z0 + z2) denote a new vertex in the triangulation.

(b) let K1 and K2 denote the two new resulting triangles, where K1 =
(z0, z̄, z1), K2 = (z1, z̄, z2).

(c) remove K from T .

(d) add K1 and K2 to T .

3. Let M = {triangles in T which contain nonconforming (hanging) nodes}.

4. If M = ∅, terminate. Otherwise, repeat from 2.

Remark. Note that the algorithm terminates in a finite number of steps [23].

By inspecting the above algorithm, we note that by refining only a subset of the
triangles, we run the risk of leaving hanging nodes - vertices which are contained
in triangles for which they are not corners - in the triangulation. Step 3 ensures
that all such hanging nodes are eventually removed. The algorithm is probably best
explained by some illustrations. See Figure 4.1 for an illustration of the bisection of
a single triangle. Figure 4.2 demonstrates the treatment of hanging nodes. Here we
observe that the first step of the algorithm produces a non-conforming triangulation,
but subsequent iteration eventually yields a conforming triangulation.

To make the steps in the next section clearer, we present a simple algorithm which

4.1. TRIANGULATION AND SIMPLE BISECTION 41

z0

z1

z2

z3 z3

z0

z1

z0

z2

z4

Hanging node

z0

z1

z0

z2

z5

z3
z5

z4

z0

z1

z0

z2

z5

z3

z4

Figure 4.2: Bisection of a triangle in a two-element triangulation. An intermediate step
leads to a nonconforming triangulation with a hanging node. Subsequent iterations pro-
duce a final, conforming triangulation. Marked triangles are indicated by a crosshatched
(patterned) surface, and refinement edges for each triangle are indicated by dashed lines.

42 CHAPTER 4. THE GEOMETRICAL SETTING

relies on the NVB algorithm to construct a mesh TH such that all triangles in the mesh
have diameter smaller or equal to H.

Lemma 4.1.5 (Refine mesh to given tolerance)
Let T0 be a conforming triangulation of the bounded, polygonal domain Ω ⊆ R2.
Then, for each H > 0, the following algorithm generates a conforming triangu-
lation TH of Ω with mesh size H, and the mesh family TH = {TH | H > 0} is
regular and quasi-uniform.

1: function REFINE TO TOLERANCE(T0, H)
2: M ← ∅
3: TH ← T0

4: repeat
5: TH ← REFINE MARKED(TH , M)
6: M ← {T ∈ TH | hT > H}
7: untilM = ∅

8: return TH
9: end function

Proof. We omit the proof for brevity, but the properties of TH are straightforward
consequences of the properties of NVB.

4.2 Corner singularities in non-convex domains

When we derived the error estimates for the Leapfrog method (Corollary 3.2.8) and the
Crank-Nicolson method (Corollary 3.3.7) in piecewise polynomial spaces, we made some
strong assumptions on the regularity of the exact solution u, namely that u(t) ∈ Hs

0(Ω)
for s ≥ 2 for all t. For sufficiently smooth initial conditions u0 and v0 and right-hand
side f , this is a reasonable assumption in convex domains. However, the assumption
of convexity is not practical for real-world applications, which indeed may require the
solutions to problems in highly non-convex domains. In this case, even smooth problem
data may lead to solutions u which are not contained in H2(Ω), and so we cannot in
general expect to attain the aforementioned convergence rates. In Chapter 8, we will
study a model problem for which the standard polynomial space on a quasi-uniform
mesh fails to attain the optimal convergence rates.

It turns out that the loss of regularity is due to the introduction of corner singularities,
which is well-known also from the study of elliptic problems. Briefly explained, this
means that the solution or its derivative blows up near re-entrant corners of the mesh.
Re-entrant corners are corners whose interior angle exceeds π radians. We will rely on
the results of Müller and Schwab [6], who detail the regularity of solutions to the wave
equation given smooth problem data in non-convex domains. Moreover, they show how
an algorithm originally introduced for elliptic problems by Gaspoz and Morin [5] can

4.2. CORNER SINGULARITIES IN NON-CONVEX DOMAINS 43

be applied to recover the optimal convergence rates for the wave equation observed in
convex domains.

In this section, we will present the most important results from the aforementioned
papers which relate to our present work, but we will do so in a fashion which attempts
to minimize the introduction of new terminology and language.

We begin by introducing the Threshold algorithm from [6], which we have adapted
so that it is a more natural fit with the content that will be presented in Chapter 5.
An example of the algorithm in action can be seen in Figure 4.3, where we have set
H = 0.5. Note that the algorithm outputs two meshes - a quasi-uniform refinement
TH of the initial mesh T0 and a refinement Th of TH .

Lemma 4.2.1 (The Threshold algorithm)
Let T0 be a conforming triangulation of the bounded, polygonal domain Ω ⊆ R2,
whose M corners are denoted ci for i = 1, . . . ,M . θi ∈ (0, 2π) for i = 1, . . . ,M
denotes the interior angle of the corner ci. Furthermore, let p ≥ 1 be the poly-
nomial degree of the finite element space. Then the following algorithm generates
conforming regular meshes TH and Th for any H > 0, with TH quasi-uniform.

1: function THRESHOLD(T0, H)
2: M ← ∅
3: λ ← π

2 maxi θi
4: TH ← REFINE TO TOLERANCE(T0, H)
5: Th ← TH

6: K ← dp+1
λ log2H

−1e
7: for all 1 ≤ k < 2K do

8: M←
{
T ∈ Th | hT > H · 2−

k(p+1−λ)
2(p+1) and mini dist(ci, T̄) ≤ 2−

k
2

}
9: Th ← REFINE MARKED(Th, M)

10: end for

11: return TH , Th
12: end function

In the above algorithm, dist(ci, T̄) represents the distance from the corner ci to
the triangle T̄ .

It turns out that the finite element spaces S1
0(TH) and S1

0(Th) associated with the two
meshes generated by Threshold satisfy S1

0(TH) ⊆ S1
0(Th). Because this property is very

important for the content in Chapter 5, we emphasize it in the following lemma.

44 CHAPTER 4. THE GEOMETRICAL SETTING

0.4 0.2 0.0 0.2 0.4
x

0.4

0.2

0.0

0.2

0.4

y

(a) An initial triangulation T0 of a classic L-
shaped domain.

0.4 0.2 0.0 0.2 0.4
x

0.4

0.2

0.0

0.2

0.4

y

(b) The quasi-uniform triangulation TH pro-
duced by running Threshold on T0 with H =
0.3.

0.4 0.2 0.0 0.2 0.4
x

0.4

0.2

0.0

0.2

0.4

y

(c) The locally refined triangulation Th pro-
duced by running Threshold on T0 with H =
0.3.

0.4 0.2 0.0 0.2 0.4
x

0.4

0.2

0.0

0.2

0.4

y

(d) The locally refined triangulation Th pro-
duced by running Threshold on T0 with H =
0.075.

Figure 4.3: Results TH and Th of the Threshold algorithm from Lemma 4.2.1 applied to
an L-shaped domain with initial triangulation T0 for different H.

4.2. CORNER SINGULARITIES IN NON-CONVEX DOMAINS 45

Lemma 4.2.2
Given TH and Th generated by the Threshold algorithm, the associated finite ele-
ment spaces S1

0(TH) and S1
0(Th) satisfy S1

0(TH ⊆ S1
0(Th).

Proof. This is due to properties of the newest-vertex bisection algorithm. See [6] for
details.

Another useful property of the mesh generated by the Threshold algorithm is that the
number of vertices in the fine mesh Th is bounded.

Lemma 4.2.3
Let TH and Th be meshes generated by Threshold. There exists a constant C > 0
independent of H such that the fine mesh Th satisfies

#N (Th) ≤ C#N (TH). (4.4)

Proof. We use a complexity bound from [5], which states that

#Th −#T0 ≤ C0H
−2

for some constant C0. The result is obtained by combining this result with (4.2).

For some of the following results, we will need to make some assumptions on the data (f ,
u0, v0) of the problem. We collect these assumptions in the following definition.

Definition 4.2.4 (Strong smoothness assumptions)
If u is the exact solution to the weak formulation in Definition 2.1.1 and the
problem data satisfies

f ∈ C∞c ((0, T);C∞(Ω̄)), u0, v0 ∈ C∞c (Ω), (4.5)

we say that the data satisfies the strong smoothness assumptions.

Throughout the rest of this thesis, we will often refer to TH as a coarse mesh, and Th as
a fine mesh. We will now present the main results of this chapter. First, we give error
estimates for the elliptic projection onto the fine mesh Th and show that this leads to
the recovery of the optimal convergence rates for polynomial finite element spaces in
convex domains. Then we finally give regularity results on the exact solution in the
presence of corner singularities which will be essential to the theoretical discussion in
Chapter 5. In the following results, we will assume that the domain Ω is sufficiently
regular. The exact meaning of this is complicated and would require the introduction

46 CHAPTER 4. THE GEOMETRICAL SETTING

of a large amount of theory to accurately describe, so we will again simply refer the
reader to [6]. Suffice to say, however, that the assumptions include a large class of
non-convex meshes.

Theorem 4.2.5 (Estimates for the elliptic projection onto S1
0(Th))

Let Ω ⊆ R2 be a sufficiently regular, bounded polygonal domain, and let T0 be an
initial triangulation of Ω. Furthermore, let H satisfy

0 < H < (#N (T0))−2,

and let Th be the mesh produced by the algorithm from Lemma 4.2.1 with parame-
ters H and p ≥ 1. Moreover, assume that u satisfies the smoothness assumptions
of Definition 4.2.4. Then there exists a constant C = C(u, T) > 0, such that for
almost every t ∈ [0, T],∥∥∥∥∂ku∂tk − ∂kRhu

∂tk

∥∥∥∥
H1

≤ CN−
p
2 k = 0, 1, 2 (4.6)

where Rh denotes the elliptic projection onto S1
0(Th) and N := #N (Th) denotes

the number of vertices in the fine mesh Th.

Proof. This is clear from the discussion in the proofs of Theorem 5.3 and Theorem 5.5
in [6].

Recall from Theorem 3.2.7 and Theorem 3.3.6 that the error incurred by the Leapfrog
and Crank-Nicolson methods was estimated in terms of the elliptic projection defined in
Definition 2.2.5. Hence, if the H1 error in the elliptic projection is O(H), the optimal
H1 convergence rate associated with the Leapfrog and Crank-Nicolson methods is
restored. Combining Theorem 4.2.5 with (4.2) yields the following corollary.

Corollary 4.2.6
Let Th and H be defined as in Theorem 4.2.5. Then there exists a constant C > 0
such that ∥∥∥∥∂ku∂tk − ∂kRhu

∂tk

∥∥∥∥
H1

≤ CHp. k = 0, 1, 2 (4.7)

We end this chapter with an important regularity result on the exact solution u in
non-convex domains.

4.2. CORNER SINGULARITIES IN NON-CONVEX DOMAINS 47

Lemma 4.2.7 (Regularity of solutions in non-convex domains)
Assume that the domain Ω is sufficiently regular, and that the exact solution u and
the problem data satisfy the smoothness assumptions of Definition 4.2.4. Then
∆u(t) ∈ L2(Ω) for all t ∈ [0, T].

Proof. From Corollary 3.10 in [6], we have that for each k ∈ N0 and each t ∈ (0, T), the
solution u(·, t) admits the following decomposition (using the notation in the article):

u(x, t) = ukr (x, t) +

M∑
i=1

χi(ri)

nimax,k∑
n=1

din(x, t)Sn,i(ri, ϑi),

where ukr (·, t) ∈ Hk(Ω), din ∈ C∞([0, T];C∞(Ω̄)) and χi(ri) is a smooth cutoff function.
From Definition 3.4, Definition 3.5 and the proof of Theorem 5.3 in the same paper,
we see that the definition of Sn,i leads to ∆Sn,i = 0 and with appropriate regularity
assumptions we have Sn,i ∈ H1(Ω), which together with the product rule for the
Laplacian ∆ applied to the above decomposition leads to ‖∆u(x, t)‖ <∞.

48 CHAPTER 4. THE GEOMETRICAL SETTING

Chapter 5

CFL relaxation by spatial
reduction

As we have seen in Chapter 4, local mesh refinement in the vicinity of re-entrant
corners can potentially lead to drastic improvement of the accuracy of finite element
solutions in non-convex domains by recovering the optimal convergence rate associated
with smooth solutions in convex domains. However, it is observed that the refinement
makes the Leapfrog method unstable for all but unreasonably small time steps, and in
practice the method is rendered unusable. One can still use implicit methods like the
Crank-Nicolson method presented in Chapter 3.3, but this is typically associated with
much greater computational complexity.

Let TH and Th represent the meshes generated by the Threshold algorithm in
Lemma 4.2.1, which means that TH is a quasi-uniform triangulation and Th a re-
finement of Th. We will only consider linear finite elements. To understand why the
Leapfrog method becomes unstable in S1

0(Th), recall the statement of Theorem 3.2.6.
An assumption for stability is that the finite element space has the inverse property.
Because Th is a local refinement of TH , the mesh size of Th is in fact usually H, which
means that the inverse property for Th translates to

‖∇vh‖ ≤ CH−1 ‖vh‖ ∀vh ∈ S1
0(Th).

However, what is observed is that this does not hold for S1
0(Th), and instead the actual

inverse inequality reads [12]

‖∇vh‖ ≤ Ch−1
min ‖vh‖ ∀vh ∈ S1

0(Th).

where hmin is the size of the smallest element in the mesh. Because of the strong local
refinement in Th, we have that hmin is not bounded from below by H, and can be many
orders of magnitude smaller than H, which leads to the requirement that the time step
must be similarly small to regain stability.

49

50 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

However, because TH is quasi-uniform, we know that the corresponding space S1
0(TH)

satisfies the above inverse inequality proportional to H−1, which we repeat here for
clarity:

‖∇vH‖ ≤ CH−1 ‖vH‖ ∀vH ∈ S1
0(TH).

In other words, our current situation is the following:

• S1
0(TH) satisfies the inverse inequality proportional to H−1 which makes the

Leapfrog method stable for reasonable timesteps, but it only admits a suboptimal
convergence rate for the error.

• S1
0(Th) admits the optimal convergence rate for the error, but it does not satisfy

the inverse inequality proportional to H−1.

In this chapter, we will discuss a method introduced by Peterseim and Schedensack
[12] which relaxes the CFL condition (3.10) associated with the Leapfrog method in
the presence of strong local mesh refinement. The idea is essentially to combine the
inverse inequality of S1

0(TH) with the convergence rate of S1
0(Th) by techniques known

from multi-scale modeling and numerical homogenization.

In short, a new finite element space VH is constructed, drawing on information from
both spaces S1

0(TH) and S1
0(Th). The new space can be said to be a reduced space

with respect to S1
0(Th), because the functions in VH are typically expressed in terms of

basis functions in S1
0(Th), yet the number of degrees of freedom in VH is equal to that

of the coarse space S1
0(TH). We will now outline the procedure in a very high-level

fashion. The rest of the chapter will fill in the details we must leave out in this very
brief description.

1. Recall that S1
0(TH) ⊆ S1

0(Th).

2. Introduce a projection IH : H1
0 (Ω) → S1

0(TH) which we can use to project func-
tions from S1

0(Th) into S1
0(TH).

3. Define the space Wh := ker IH
∣∣
S1
0(Th)

. This is the space of functions vh ∈ S1
0(Th)

that vanish entirely when projected onto S1
0(TH). In other words, the coarse

space S1
0(TH) does not “see” these functions at all.

4. Define VH to be the orthogonal complement of Wh with respect to the a(·, ·) inner
product. We will see that this particular choice leads to both the recovery of the
inverse inequality of S1

0(TH) and the convergence rate of S1
0(Th).

5. To actually construct VH , we can think of it as a “correction” of S1
0(TH). In fact,

for any vH ∈ S1
0(TH), we define its corrector CvH as the elliptic projection onto

Wh, which lets us define the corresponding function ṽH ∈ VH by ṽH := (1−C)vH ,
which leads to VH = (1− C)S1

0(TH).

6. We need a basis for VH . Given the usual Lagrangian basis for S1
0(TH), we can

form a basis for VH by individually computing the corrector associated with each
Lagrangian basis function λH,i ∈ S1

0(TH) and taking λ̃H,i = λH,i − CλH,i.

5.1. CONSTRUCTION OF A REDUCED FINITE ELEMENT SPACE 51

7. The basis for VH constructed in this way has global support, which is a pro-
hibitive restriction for practical computation. In Section 5.3.1, we will justify the
approximation of the global basis by a localized approximation.

We must note that the claim in step 4 only holds if the projection IH (which we will refer
to as a quasi-interpolator in this chapter) satisfies certain stability and approximation
properties. In Section 5.2, we will give an example of a quasi-interpolator which fulfills
these properties. In Section 5.3.2, we will show that given some conditions on the
quasi-interpolator IH , correctors need only be computed in the neighborhood of locally
refined portions of the mesh. In other words, correctors do not need to be computed
in large areas in which TH and Th locally coincide.

In the rest of this chapter, we will present some of the most important theoretical results
from [12], and in so doing we will justify each step of the aforementioned procedure.
While we will cover the majority of the theory presented in [12] in detail, we will leave
some long or involved proofs out. At the same time, we will further elaborate on some
of the shorter or omitted proofs in the paper from which we hope may help the reader
to better understand the method. Although enough of the theory is presented here
as to be self-contained, there are certainly some useful insights to be learned from the
original paper which has been left out in this exposition, and so we encourage the
interested reader to study it.

In the rest of this thesis, we will make a habit of referring to the Lagrangian ba-
sis functions in S1

0(TH) as λH,z (corresponding to vertex z ∈ N (Th)) or λH,i (corre-
sponding to node labeled i), and similarly for the fine-scale Lagrangian basis function
λh,z ∈ S1

0(Th).

5.1 Construction of a reduced finite element space

Our first step is to clearly define what is meant by the quasi-interpolator IH . In the
chapter introduction, we referred to it as a projection, but we will need to give it
some additional properties. To this end, we recall the definition of a projection from
Definition 2.2.6 and define admissible quasi-interpolators below.

52 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

Definition 5.1.1 (Admissible quasi-interpolators)
A surjective projection IH : H1

0 (Ω) → XH is considered an admissible quasi-
interpolator for a finite element space XH ⊆ H1

0 (Ω) if there exists a constant
CIH > 0 independent of H such that

‖v − IHv‖ ≤ CIHH ‖∇v‖ ∀v ∈ H1
0 (Ω), (5.1)

in addition to the stability properties

‖∇IHv‖ ≤ CIH ‖∇v‖ ∀v ∈ H1
0 (Ω), (5.2)

‖IHv‖ ≤ CIH ‖v‖ ∀v ∈ H1
0 (Ω). (5.3)

We remark that the H1 stability (5.2) and the L2 approximation property (5.1) are
standard properties of quasi-interpolators, but the L2 stability (5.3) is less common.
In order to demonstrate that the specific choice of IH is immaterial for many of the
main results in this chapter, we will keep the choice of IH open for now, but we will
give an example of an appropriate admissible quasi-interpolator in Section 5.2.

We will now define Wh, the kernel of the quasi-interpolator IH when restricted to the
fine space S1

0(Th).

Definition 5.1.2 (The space of fine-scale oscillations)
Given two finite element spaces S1

0(TH) and S1
0(Th) which satisfy S1

0(TH) ⊆ S1
0(Th)

and an admissible quasi-interpolator IH : H1
0 (Ω)→ S1

0(TH), we define the space

Wh := ker(IH
∣∣
S1
0(Th)

) ⊆ S1
0(Th). (5.4)

Wh is referred to as the space of fine-scale oscillations with respect to S1
0(Th) and

S1
0(TH).

We see that Wh captures the functions in S1
0(Th) which vanish when projected onto

S1
0(TH). If one thinks of the Lagrangian basis for S1

0(TH), the functions in Wh when
projected onto S1

0(TH) vanish at each node, and so depending on the quasi-interpolator
IH , this excludes “large” functions at the coarse level. In other words, these functions
can in some sense be thought of as oscillations at the fine-scale level, which justifies its
name as the space of fine-scale oscillations.

The following lemma is not strictly necessary for the development of the subsequent
theory, but it is nonetheless useful for developing an intuitive understanding of the
procedure. Note that the result is merely a direct consequence of the kernel-range
decomposition of a projection.

5.1. CONSTRUCTION OF A REDUCED FINITE ELEMENT SPACE 53

Lemma 5.1.3
Given two finite element spaces S1

0(TH) and S1
0(Th) which satisfy S1

0(TH) ⊆ S1
0(Th)

and an admissible quasi-interpolator IH : H1
0 (Ω) → S1

0(TH) which generates Wh,
we have that

S1
0(Th) = S1

0(TH)⊕Wh.

Consequently, dim(S1
0(Th)) = dim(S1

0(TH)) + dim(Wh).

Proof. A direct consequence of the fact that IH is a surjective projection is that if
IHvH = 0 for any vH ∈ S1

0(TH), then vH = 0, and so S1
0(TH) ∩Wh = {0}. Moreover,

for any vh ∈ S1
0(Th), we may write

vh = vh + IHvh − IHvh
= IHvh︸ ︷︷ ︸
∈S1

0(TH)

+ (1− IH)vh︸ ︷︷ ︸
∈Wh

.

The direct sum follows from the preceding argument. The sum of dimensions is a trivial
consequence of all spaces being finite-dimensional vector spaces.

The main idea in the construction of the reduced space is to maintain the direct sum
property of Lemma 5.1.3, but orthogonalize S1

0(TH) against Wh with respect to the
inner product a(·, ·). Our strategy for the orthogonalization procedure is to define
correctors for each function in S1

0(TH). These correctors can be thought of as the
adjustment necessary to make each function orthogonal to the whole of Wh. We now
define the corrector problems, and go on to define the corrected space VH .

Definition 5.1.4 (Corrector problem)
For any vH ∈ S1

0(TH), we define its corrector CvH ∈ Wh with respect to Wh as
the solution to the corrector problem

a(CvH , wh) = a(vH , wh) ∀wh ∈Wh. (5.5)

Remark. The existence and uniqueness of solutions to the corrector problem is a direct
consequence of the Lax-Milgram lemma.

We note that the corrector CvH is nothing but the elliptic projection from S1
0(Th) onto

Wh, but restricted to coarse functions vH ∈ S1
0(TH) ⊆ S1

0(Th). We now have the
means to define the corrected space VH , after which we will show that it is indeed the
orthogonal complement of Wh.

54 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

Definition 5.1.5 (Corrected coarse space)
Given finite element spaces S1

0(TH) and S1
0(Th) which satisfy S1

0(TH) ⊆ S1
0(Th),

the corrected coarse space VH is defined by

VH := (1− C)S1
0(TH), (5.6)

where C : S1
0(TH)→Wh is given by Definition 5.1.4.

Lemma 5.1.6
Given a fine-scale finite element space S1

0(Th) and VH as defined in Definition 5.1.5,
then

S1
0(Th) = VH ⊕Wh, (5.7)

and the sum is orthogonal with respect to the inner product a(·, ·). Moreover,

dimVH = dimS1
0(TH). (5.8)

Proof. We have that for any vH ∈ S1
0(TH), IH(1−C)vH = IHvH , so if IH(1−C)vH = 0,

then vH = 0, and hence VH ∩Wh = {0}. Moreover, for any vh ∈ S1
0(Th),

vh = vh + IHvh − IHvh + CIHvh − CIHvh
= (1− C)IHvh︸ ︷︷ ︸

∈S1
0(TH)

+ (1− IH)vh + CIHvh︸ ︷︷ ︸
∈Wh

.

Hence, the direct sum follows, and the orthogonality of the sum is a simple consequence
of (5.5). Thus, analogous to the case in Lemma 5.1.3, we have that

dim(S1
0(Th)) = dimVH + dimWh,

and (5.8) follows.

Having constructed VH , we must verify that it indeed achieves both the convergence
rate of S1

0(Th) and an inverse inequality comparable to that of S1
0(TH).

5.1. CONSTRUCTION OF A REDUCED FINITE ELEMENT SPACE 55

Lemma 5.1.7 (Best approximation for the corrected space)
Let TH denote a regular, conforming quasi-uniform mesh, and let Th be a refine-
ment of TH such that S1

0(TH) ⊆ S1
0(Th). Assume that S1

0(Th) for some C0 > 0
satisfies

inf
vh∈S1

0(Th)
‖u− vh‖H1(Ω) ≤ C0H ‖∆u‖L2(Ω) . (5.9)

Then there exists a constant C > 0 such that for all u ∈ H1
0 (Ω) with ∆u ∈ L2(Ω),

the corrected space VH satisfies

inf
vH∈VH

‖u− vH‖H1(Ω) ≤ CH ‖∆u‖L2(Ω) . (5.10)

Proof. The first part of the proof follows the proof of Lemma 2.1 in [12]. Because the
presentation is a little different, we will also provide a proof here.

Define uh ∈ S1
0(Th) to be the projection of u onto S1

0(Th) with respect to the bilinear
form a(·, ·),

a(uh, vh) = a(u, vh) ∀vh ∈ S1
0(Th),

and similarly define uh,H to be the projection of uh onto VH . More precisely, uh,H
satisfies

a(uh,H , vH) = a(uh, vH) ∀vH ∈ VH .

Define eh,H := uh,H −uh. The Galerkin orthogonality a(eh,H , vH) = 0 for all vH ∈ VH
implies that eh,H ∈ V ⊥H = Wh, since Wh is the orthogonal complement of VH . Hence,
IHeh,H = 0, and we may employ the properties of the (implicit) admissible quasi-
interpolator IH , as defined in Definition 5.1.1, to write

‖eh,H‖L2 = ‖eh,H − IHeh,H‖L2 ≤ CIHH ‖∇eh,H‖L2 .

Again using Galerkin orthogonality, integration by parts, and finally the above result,
we may now write

‖∇eh,H‖2L2 = (∇eh,H ,∇eh,H)

= (∇uh,∇eh,H)

= (−∆u, eh,H)

≤ CIHH ‖∆u‖L2 ‖∇eh,H‖L2 .

Note that these results together imply that ‖eh,H‖H1 ≤ C1H ‖∆u‖L2 for some constant
C1 > 0. Next, observe that Céa’s lemma together with (5.9) implies that ‖u− uh‖H1 ≤

56 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

C2H ‖∆u‖L2 for some C2 > 0, which permits us to write

‖u− uh,H‖H1 = ‖u− uh + uh − uh,H‖H1

≤ ‖u− uh‖H1 + ‖uh − uh,H‖H1

≤ CH ‖∆u‖L2

for some constant C > 0, from which the final result trivially follows.

The proof of Lemma 5.1.7 provides a useful insight as to why we defined VH as the
orthogonal complement to Wh. We see that for any function vh ∈ S1

0(Th) and the
error εh = vh − RHvh where RH is the elliptic projection onto VH , we have that
εh ∈Wh. Recall the direct sum property from Lemma 5.1.6, which states that for any
vh ∈ S1

0(Th), there exist unique vH ∈ VH and wh ∈ Wh such that vh = vH + wh. It
follows that RHvh = vH . An intuitive interpretation is that due to the orthogonality
of VH and Wh, the elliptic projection RHvh captures as much information of vh as
possible. We now prove the inverse inequality.

Lemma 5.1.8 (Inverse inequality for the corrected space VH)
Let IH denote an admissible quasi-interpolator for the finite element space S1

0(TH),
and let S1

0(Th) denote a finite element space for which S1
0(TH) ⊆ S1

0(Th). Assume
that S1

0(TH) satisfies the inverse inequality

‖∇vH‖ ≤ C0H
−1 ‖vH‖ ∀vH ∈ S1

0(TH) (5.11)

for some C0 > 0 independent of H. Then the corrected space VH satisfies

‖∇ṽH‖ ≤ C0CIHH
−1 ‖ṽH‖ ∀ṽH ∈ VH , (5.12)

where VH denotes the corrected space with respect to S1
0(TH), IH and S1

0(Th), and
CIH is the constant from Definition 5.1.1.

Proof. The proof follows the second half of the proof for Lemma 2.1 in [12]. Recall
that (∇(1− C)vH ,∇wh) = 0 for any wh ∈ WH and vH ∈ S1

0(TH). Furthermore, note
that for any ṽH ∈ VH , we may write

ṽH = IH ṽH − CIH ṽH = (1− C)IH ṽH .

This further leads to

‖∇ṽH‖2 = ‖∇(1− C)IH ṽH‖2

= (∇(1− C)IH ṽH ,∇IH ṽH))−
=0︷ ︸︸ ︷

(∇(1− C)IH ṽH ,∇CIH ṽH))

= (∇ṽH ,∇IH ṽH)

≤ ‖∇ṽH‖ ‖∇IH ṽH‖ .

5.2. A LOCAL ADMISSIBLE QUASI-INTERPOLATOR 57

z

IHv(z)
v(x)

(ΠTH1 v)
∣∣∣
T1

(x)

(ΠTH1 v)
∣∣∣
T2

(x)

T1 T2

Figure 5.1: An illustration of the local admissible quasi-interpolator from Definition 5.2.1
in one dimension. At each node z ∈ TH , the values of the element-local L2 projection
ΠTH1 v in each element T1 and T2 is averaged at x = z to produce the final result IHv(z).

Using the inverse inequality assumption (5.11) and finally the quasi-interpolator L2

stability (5.3), we obtain the inequality

‖∇ṽH‖ ≤ ‖∇IH ṽH‖ ≤ C0H
−1 ‖IH ṽH‖ ≤ C0CIHH

−1 ‖ṽH‖ ,

which concludes the proof.

We close this section by noting that while the space VH does not preserve the inverse
inequality of S1

0(TH) up to the same constant, the additional factor CIH is usually
relatively small in practice, so that the stability region of the Leapfrog method is often
largely preserved.

5.2 A local admissible quasi-interpolator

In Section 5.1, the definition of the corrected space VH relied on the existence of an
admissible quasi-interpolator. Here we will present one example of a quasi-interpolator
that satisfies these properties. Moreover, it has the important property that the pro-
jection is local, in the sense that the projected values in a subset of the domain only
depend on information from the geometrical vicinity of the subset. This is crucial for
implementation efficiency, as we shall see later.

58 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

Definition 5.2.1 (A local quasi-interpolator)
Let P1(TH) denote the space of (possibly discontinuous) piecewise affine functions
on TH , defined by

P1(TH) := {w ∈ L2(Ω) | w
∣∣
K

is affine ∀K ∈ TH}, (5.13)

and define the nodal averaging operator J1 : P1(TH) → S1
0(TH) for any wH ∈

P1(TH) by the property

J1wH(z) :=
1

#{K ∈ TH | z ∈ K}
∑

K∈TH |z∈K

wH
∣∣
K

(z) (5.14)

for any interior node z in TH . Let ΠTH1 : H1
0 (Ω) → P 1(TH) denote the standard

L2 projection onto P1(TH) defined by the relation(
ΠTH1 v, pH

)
= (v, pH) ∀pH ∈ P1(TH) (5.15)

for any v ∈ H1
0 (Ω). Then an operator IH : H1

0 (Ω)→ S1
0(TH) is defined by

IHv := J1(ΠTH1 v) ∀v ∈ H1
0 (Ω). (5.16)

To get an intuitive sense of how the operator IH defined in Definition 5.2.1 works,
an illustration is provided in Figure 5.1. Here we see that for any node z ∈ TH , the
resulting value of IHv (z) for some v ∈ H1

0 (Ω) is obtained by averaging the element-local

L2 projections ΠTH1 v
∣∣∣
K

at x = z for each K ∈ TH . The illustration is one-dimensional,

but the same idea generalizes to higher dimensions.

Lemma 5.2.2
The operator IH defined in Definition 5.2.1 is an admissible quasi-interpolator for
the finite element space S1

0(TH) generated from any quasi-uniform mesh TH .

Proof. The proof of the approximation and stability properties is somewhat lengthy,
so we instead refer the reader to [12] for this proof. Here we will only briefly prove that
IH is a surjective projection as required by Definition 5.1.1.

Note first that S1
0(TH) ⊆ P1(TH), and hence ΠTH1 vH = vH for any vH ∈ S1

0(TH).
Hence, it follows that∑

K∈TH |z∈K

ΠTH1 vH

∣∣∣
K

(z) = #{K ∈ TH | z ∈ K} · vH(z),

and it trivially follows that J1(ΠTH1 vH) = vH .

5.3. A BASIS FOR THE CORRECTED SPACE 59

5.3 A basis for the corrected space

In this section, we will see how one can construct a basis for the corrected space VH .
The main idea relies on the following result.

Lemma 5.3.1 (Basis for VH)
Let Λ ⊆ S1

0(TH) be a basis for S1
0(TH). Then (1− C)Λ ⊆ VH is a basis for VH .

Proof. We wish to show that (1− C)Λ is linearly independent. Let
Λ = {λj | j = 1, . . . , NH}. Let αj ∈ R be such that

NH∑
j=1

αj(1− C)λj = 0.

It follows that

vH :=

NH∑
j=1

αjλj =

NH∑
j=1

αjCλj =: wh,

where vH ∈ S1
0(TH) and wh ∈ Wh. But from Lemma 5.1.3, S1

0(TH) ∩ Wh = {0},
and so αj = 0 for all j. It follows that (1 − C)Λ is linearly independent. Since
dimVH = dimS1

0(TH) = #Λ, we conclude that (1− C)Λ is a basis for VH .

Hence, in order to form a basis of VH , the general idea is to take the Lagrangian basis
functions λH,z of S1

0(TH) and for each basis function compute the corrector CλH,z by
solving (5.5). However, this straightforward approach is not without issues. In order
to take steps towards a practically feasible method we will need to make sure that we
can obtain basis functions which have local support.

5.3.1 Localization

One major disadvantage of the approach we have presented so far is that (5.5) is a
global problem, in the sense that for each corrector, one must take the entire domain
into account, and that CvH for any vH ∈ S1

0(TH) has global support in the general
case. This further implies that the stiffness and mass matrices associated with VH are
unlikely to have favorable sparsity patterns. As a result, the method, as presented thus
far, is simply infeasible for actual computation.

Luckily, there exists a remedy. It has been observed that the correctors CλH,z decay
at an exponential rate outside of the support of λH,z [24]. This suggests that a local

60 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

ΩT,3

ΩT,2

ΩT,1

T

Figure 5.2: Illustration of local patches ΩT,m around a triangle T for different values of m.
Each increment of m adds another layer to the patch.

approximation might be possible, and indeed, that is the case. While the most straight-
forward approach would be to simply truncate correctors, it is instead advocated in
[12] to use the localization procedure introduced in [25], which is based on oversam-
pling. The idea is to solve a localized corrector problem in a local patch around each
element T ∈ TH , where we replace Wh with a truncated subspace local to the patch.
The patch size is determined by an oversampling parameter m, which is a new experi-
mental parameter that must be chosen appropriately large to give sufficient accuracy.
Summing up the individual solutions from each patch then constitute the localized
correctors.

Definition 5.3.2 (Truncated kernel spaces)
For each T ∈ TH , we define the truncated kernel space

Wh(ΩT,m) := {wh ∈Wh | supp(wh) ⊆ ΩT,m}, (5.17)

where ΩT,m is the m-th order patch defined by

ΩT,m = ∪
{
K ∈ TH |

∃K0, . . . ,Km ∈ TH with K0 = T,Km = K
and Kj ∩Kj+1 6= ∅ for all j = 0, . . . ,m− 1

}
. (5.18)

Remark. The definition of ΩT,m looks more complicated than it really is. Figure 5.2
illustrates how the patch ΩT,m may look like. Here it is observed that each increment
of m merely adds another layer of neighboring triangles to the patch.

5.3. A BASIS FOR THE CORRECTED SPACE 61

Definition 5.3.3 (Localized basis correctors for Wh)
Given any standard Lagrangian basis function λH,z ∈ S1

0(TH) associated with each
internal node z, we define the m-th order localized approximation

CmλH,z :=
∑
T∈TH

CT,mλH,z, (5.19)

where CT,mλH,z ∈Wh(ΩT,m) solves the corrector problem

(∇CT,mλH,z,∇wh) =

∫
T

∇λH,z · ∇wh dx ∀wh ∈Wh(ΩT,m). (5.20)

While Definition 5.3.3 defines CmλH,z as a sum over all elements in TH , note that if
T is outside of the support of λH,z, the right-hand side of (5.20) is identically zero,
and with the homogeneous Dirichlet conditions that are imposed on the problem, this
implies that CT,mλH,z = 0 for any T which does not contain z. Hence, in practice, one
only needs to sum the element correctors for elements for which z is contained in the
element. When TH is a (shape-)regular mesh like here, the number of such elements
for any given z is bounded by a constant that only depends on the mesh family, and
hence O(1). As a result, the number of corrector problems that need to be solved is
O(NH), where as before NH = dimS1

0(TH) = dim(VH).

The localization procedure brings up two important problems that need to be solved.
Since the localization merely approximates the actual correctors CλH,z, we need to
determine the error associated with the procedure. Moreover, the oversampling pa-
rameter m is a new discretization parameter that needs to be chosen such that the
localized basis well approximates the global basis of VH . The next lemma addresses
the first problem, and we will have more to say on the second.

Lemma 5.3.4 (Error of the localized basis functions)
Assume that Th is (shape) regular and that IH is the local admissible quasi-
interpolator from Definition 5.2.1. Then there exist constants β > 0 and C > 0
such that

‖∇(CλH,z − CmλH,z)‖ ≤ Ce−βm ‖∇λH,z‖ (5.21)

for any oversampling parameter m and Lagrangian basis function λH,z ∈ S1
0(TH).

Proof. Proofs can be found in [26][25][24]. Here we present the formulation used in
[12].

Lemma 5.3.4 demonstrates that by choosing a suitable oversampling parameter m,
an arbitrarily accurate approximation of the global basis can be attained. However,

62 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

because larger m corresponds to increased computational complexity and density of
the system matrices, we want to choose m as small as possible while still maintaining
sufficient accuracy. To get an idea of how m needs to be chosen relative to H, we note
that if H < 1 and we choose m ≥ 1

β | lnH|, then

‖∇(CλH,z − CmλH,z)‖ ≤ CH ‖∇λH,z‖ .

This isn’t a truly rigorous result, because λH,z depends on H, but it does provide
some intuition for the relationship between m and H. Unfortunately the minimal m
corresponding to a given H which admits sufficient accuracy can not in general be
determined in advance. Instead, it needs to be determined experimentally.

The above approximation bounds justifies using a local, oversampled approximation of
VH . Since this approximation is what we will work with when we discuss an efficient
implementation, we provide the following definition.

Definition 5.3.5 (Localized corrected space)
The localized corrected space is defined by

V mH := span{λH,z − CmλH,z | z an interior node of TH}, (5.22)

where CmλH,z is the localized corrector from Definition 5.3.3.

We have so far not actually proved that the localization procedure actually maintains
the desired convergence rate of Th, nor have we shown that the inverse inequality of TH
is maintained in V mH . While it looks as if this can be shown by piecing together results
from papers on numerical homogenization methods, it is not done in [12], and we will
also not do it here, as we would rather want to prioritize the study of the practical
aspects of the method.

5.3.2 Support of basis correctors in locally refined meshes

The previous section demonstrated how a basis of a local approximation of VH can be
obtained. However, the original basis of VH exhibits a property that can be exploited
for a more efficient implementation in the case when Th only locally refines TH , in the
sense that only a comparatively small number of elements in TH are actually refined.
It turns out that the fine-scale functions in the kernel space Wh vanish within any
non-refined coarse triangle for which all of its neighboring triangles in TH are also not
refined. The property is illustrated by Figure 5.3, and precisely defined by the following
lemma.

5.3. A BASIS FOR THE CORRECTED SPACE 63

(a) Quasi-uniform mesh TH . Shaded region
denotes support of correctors.

(b) Local refinement Th of TH .

Figure 5.3: Support of correctors in domain with limited local mesh refinement.

Lemma 5.3.6
Assume that IH satisfies the local stability property

‖IHv‖L2(T) ≤ C ‖v‖L2(ΩT) ∀v ∈ V (5.23)

for all T ∈ TH and ΩT = ∪{K ∈ TH | K ∩ T 6= ∅}. Then, for any wh ∈ Wh, we
have that

wh
∣∣
Ω̃

= 0, (5.24)

where Ω̃ = ∪{T ∈ TH | K ∈ TH ∩ Th ∀K ∈ TH for which K ∩ T 6= ∅}.

Proof. The proof closely follows the proof of Proposition 4.1 in [12], but the details are
elaborated on for the benefit of the reader. Let N := N (Th) \ N (TH) \ ∂Ω denote the
set of interior nodes in Th that are not in TH . We define wy := λh,y − IHλh,y for any
y ∈ N . Here λh,y ∈ S1

0(Th) denotes the fine-scale Lagrangian basis function associated
with node y in the fine mesh Th. Evidently, wy ∈Wh. We wish to show that all the wy
constitute a basis of Wh. To this end, we claim that {wy}y∈N is linear independent.
We use an argument similar to that of the proof of Lemma 5.3.1, and introduce αy ∈ R
such that ∑

y∈N
αywy = 0.

64 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

From the definition of wy, this lets us write

S1
0(Th) 3 vh :=

∑
y∈N

αyλh,y =
∑
y∈N

αyIHλh,y := vH ∈ S1
0(TH).

Since vh ∈ S1
0(TH) and λh,y(zH) = 0 for any coarse node zH ∈ TH , we have that

vh(zH) = 0 and consequently vh = 0. Since {λh,y | y ∈ N} is linearly independent,
it follows that αy = 0 for all y ∈ N . Consequently, the functions wy are linearly
independent. Moreover, by a simple dimensional argument, it follows that the functions
wy constitute a basis of Wh.

Next, we first observe that if T ∈ Ω̃, we have that λh,y
∣∣
ΩT

= 0 for all y ∈ N . To see

this, it is enough to realize that since elements in Ω̃ are not refined, Ω̃ ∩ N = ∅. This
leads to suppλh,y ∩ Ω̃ = ∅ for any y ∈ N .

Using this property, we may use (5.23) to write

‖wy‖L2(T) = ‖λh,y − IHλh,y‖L2(t) ≤ ‖λh,y‖L2(T) + ‖IHλh,y‖L2(T)

≤ C0 ‖λh,y‖L2(ΩT)

= 0,

for any T ∈ Ω̃. For any wh ∈Wh, we write wh =
∑
y∈N βywy for some βy ∈ R for each

y ∈ N , and we finally obtain

‖wh‖L2(Ω̃) =
∑
T∈Ω̃

‖wh‖L2(T) =
∑
T∈Ω̃

∥∥∥∥∥∥
∑
y∈N

βywy

∥∥∥∥∥∥
L2(T)

≤
∑
T∈Ω̃

∑
y∈N

|βy| ‖wy‖L2(T) = 0,

from which the result follows.

Lemma 5.3.6 tells us that the correctors vanish in regions where the coarse mesh TH
is not refined. This is an important result for two reasons. First, depending on the
application, it allows us to avoid corrector computation altogether for entire regions
of the domain. This saves some time when computing the correctors. However, an
arguably perhaps more important effect is that in practice it may significantly reduce
the density of the mass- and stiffness matrices associated with V mH . When computing
correctors in regions for which the correctors vanish in exact arithmetic, the insidious
properties of floating-point arithmetic will lead to (barely) non-zero correctors in these
regions. While some filtering of correctors depending on magnitude is possible, one
cannot easily determine when a corrector is ”small enough” to be considered zero, and
so it is a much better approach to simply not compute these correctors - which one
knows should be precisely zero in exact arithmetic - in the first place.

5.4. APPLICATION TO THE WAVE EQUATION 65

5.4 Application to the wave equation

We now summarize the results of the previous sections in the context of the wave
equation.

The first corollary shows that the Leapfrog method is stable in VH if it satisfies a
CFL condition comparable to that of S1

0(TH). This is a straightforward consequence
of Lemma 5.1.8 and Theorem 3.2.6.

Corollary 5.4.1 (CFL condition for VH)
Assume that S1

0(TH) has the inverse property from Definition 2.2.3 with constant
CI , and assume that ∆t is chosen sufficiently small such that

1−
C2
IH
C2
I (∆t)2

2H2
≥ λ > 0 (5.25)

for some λ ∈ (0, 1) and CIH from Definition 5.1.1. Then the Leapfrog method is
stable in the space VH in the sense of Theorem 3.2.6.

We are finally ready to reconcile the results of Chapter 4 with the results of this chapter.
By combining the estimate for the elliptic projection onto S1

0(Th) from Theorem 4.2.5
with the regularity result on ∆u from Lemma 4.2.7 and the best approximation error
for VH in Lemma 5.1.7 together with the error estimates for the Leapfrog method in
Theorem 3.2.7, we see that under the (usually reasonable) assumptions of these results,
the solution unh ∈ VH by the Leapfrog method satisfies

‖u(tn)− unh‖H1 ≤ C(H + (∆t)2) (5.26)

for some constant C > 0 independent of H and ∆t. We note also that the same applies
to the Crank-Nicolson method, but with the estimate in the same style as that of
Corollary 3.3.7.

66 CHAPTER 5. CFL RELAXATION BY SPATIAL REDUCTION

Chapter 6

Efficient corrector
computation

In Chapter 5, we introduced a method due to Peterseim and Schedensack which was
shown to combine the favorable inverse inequality of a coarse space S1

0(TH) with the
convergence rate of a fine space S1

0(Th) constructed from a local refinement Th. The
method was introduced in [12]. However, many of the practical aspects of this method
are not discussed in their paper. This chapter is largely dedicated to covering the
remaining considerations that must be taken into account when implementing the
method.

Our main objective will be to determine a suitable algebraic formulation of the localized
corrector problem from Definition 5.3.3, and then discuss appropriate solvers for the
resulting linear system.

The method in question originates from numerical homogenization techniques. In
this domain, one usually deals with a coarse mesh TH and a global refinement Th.
Apart from the fact that Th in our case is a local refinement, the method presented
in Chapter 5 is otherwise almost identical to the Localized Orthogonal Decomposition
(LOD) method for elliptic multi-scale problems in heterogeneous media. Engwer et
al. [27] discuss an efficient implementation of the LOD, and show how to transform
the corrector problems into suitable algebraic formulations, culminating in a linear
saddle-point formulation of the corrector problem.

We will use a very similar approach as that described by Engwer et. al, but because Th is
only a local refinement in our case, the algebraic formulation used for the LOD may not
in general be applied directly to the localized corrector problems from Definition 5.3.3.
We propose a modified formulation of the linear saddle-point problem which overcomes
this problem, enabling the fast computation of correctors.

We go on to discuss two different types of solvers for the saddle point problem. The
first makes use of the Schur complement of the stiffness matrix associated with the

67

68 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

standard finite element space on the local patch. We conclude that for our problem,
this approach is particularly appropriate when paired with a direct sparse solver for
the stiffness matrix, such as Sparse Cholesky.

While direct solvers are very fast for problems of small to medium size, they tend to
become too expensive for larger problems. With this in mind, we also propose a second
method which relies on solving the saddle point problem directly with the iterative
solver GMRES [13]. In order for GMRES to attain acceptable convergence rates, a
suitable preconditioner is a necessity. We show how we can exploit the block structure
of the saddle point problem to construct an appropriate (block) preconditioner for the
problem.

We conclude the discussion with a high-level overview of the procedure to compute
correctors for all basis functions and hence fully describe the space V mH as defined in
Definition 5.3.5. Once all correctors have been obtained, we show that the computation
of system matrices and load vectors is very straightforward.

Finally, as part of this thesis, an experimental prototype software library named crest

is also released to the public. A brief description of this library is given at the end of
the chapter.

Note that in this chapter, we will assume that Ω ⊆ R2 for the sake of simplicity. The
generalization to 3D is straightforward.

6.1 The local quasi-interpolator in matrix form

The interpolator presented in Definition 5.2.1 is a linear operator, and as such we can
come up with a matrix representation for it if we restrict it to the domain S1

0(Th).
This will be particularly useful when we wish to compute the basis correctors in later
sections. From here on, IH refers to this particular quasi-interpolator.

As we have seen in Definition 5.2.1, IH is defined in terms of the composition of ΠTH1

- the projection into the space of (possibly discontinuous) piecewise affine functions
on TH - and J1, the nodal averaging operator. In order to construct a matrix that
represents the action of applying IH , we will first construct matrices that represent
each of these linear operators when constrained to the domain S1

0(Th).

6.1. THE LOCAL QUASI-INTERPOLATOR IN MATRIX FORM 69

Definition 6.1.1 (Standard basis for P1(TH))
Assume that for every T ∈ TH , each local vertex in T is labeled by l = 1, 2, 3, and
let zT,l refer to the l-th local vertex in T . Then pT,l for T ∈ TH and l = 1, 2, 3
denotes the standard basis for P1(TH), defined by the properties

pT,l
∣∣
K

= 0 if T 6= K, (6.1)

pT,l(zK,k) =

{
1 if K = T and k = l

0 otherwise
. (6.2)

Remark. The basis functions pT,l can be seen as the result of slicing the standard
Lagrangian basis functions for the standard linear finite element space S1

0(TH) along
element edges.

Lemma 6.1.2 (Matrix representation of the P1 projection)
Let n := 3#TH where #TH denotes the number of elements in TH , and let λh,j
denote the standard Lagrangian basis function associated with the node labeled j

in S1
0(Th). The matrix representation of ΠTH1

∣∣∣
S1
0(Th)

with respect to the standard

(Lagrange) bases for S1
0(Th) and P1(TH) is given by P̂ ∈ Rn×Nh , defined by

P̂ := P−1
M B, (6.3)

where the matrices PM ∈ Rn×n and B ∈ Rn×Nh are defined by

PM,(T,i),(K,j) = (pK,j , pT,i) for T,K ∈ TH and i, j = 1, 2, 3, (6.4)

B(T,i),j = (λh,j , pT,i) for T ∈ TH and i = 1, 2, 3 and j = 1, . . . , Nh. (6.5)

Remark. Note that PM has block diagonal structure if the coefficients for each element
are grouped together, and so is very simple to invert. For example, in 2D, the diagonal
blocks have the size 3× 3.

Proof of Lemma 6.1.2. For any vh ∈ S1
0(Th), we may write vh =

∑Nh
j=1 ξjλh,j , and

we similarly express ΠTH1 vh ∈ P1(TH) as ΠTH1 vh =
∑
K∈TH

∑3
j=1 µK,j pK,j . Inserting

these expressions into (5.15) for pH = pT,i, we obtain

PMµ = Bξ,

from which the result follows.

70 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

Lemma 6.1.3 (Matrix representation of the nodal averaging operator J1)
The matrix representation of J1 with respect to the standard (Lagrange) bases for
S0(TH) and P1(TH) is given by Ĵ ∈ RNH×3#TH , defined by

Ĵi,(T,j) :=

{
(#{K ∈ TH | zi ∈ K})−1 if zi = zT,j

0 otherwise
. (6.6)

Proof. Let pH =
∑
T∈TH

∑3
j=1 µT,jpT,j , and let jH ∈ S1

0(TH) represent the result of

applying the operator, written jH =
∑NH
i=1 γiλH,i for basis functions λH,i. Then, for

any interior node zi ∈ TH ,

γi = JwH(zi) = (#{K ∈ TH | zi ∈ K})−1
∑

K∈TH |zi∈K

wH(zi)

= (#{. . . })−1
∑

K∈TH |zi∈K

∑
T∈TH

3∑
j=1

µT,jpT,j(zi)

=
∑

T∈TH |zi∈T

3∑
j=1

ρT,j
pT,j(zi)

#{. . . }︸ ︷︷ ︸
Ĵi,(T,j)

.

The realization that pT,j(zi) = 1 if and only if zi = zT,j and otherwise 0 concludes the
proof.

Lemma 6.1.4 (Matrix representation of the local admissible quasi-interpolator)
The matrix representation of IH

∣∣
S1
0(Th)

with respect to the standard Lagrange bases

for S1
0(Th) and S1

0(TH) is given by ÎH ∈ RNH×Nh , defined by

ÎH := Ĵ P̂, (6.7)

with Ĵ as defined in Lemma 6.1.3 and P̂ as defined in Lemma 6.1.2. Moreover,

rank(ÎH) = NH = dimS1
0(TH). (6.8)

Proof. (6.7) is a simple consequence of the fact that IH is defined as the composition
of J1 and ΠTH1 . That ÎH has full row rank is due to the fact that IH is surjective by
definition of the admissible quasi-interpolator in Definition 5.1.1.

6.2. AN ALGEBRAIC FORMULATION FOR THE CORRECTOR PROBLEM 71

6.2 An algebraic formulation for the corrector prob-
lem

Because the localization procedure discussed in 5.3.1 introduces additional complexities
to the corrector computation procedure, we will first work with the global corrector
problem defined in Definition 5.1.4. Having presented a fully algebraic formulation for
the global problem, we will show how to make some modifications to obtain a similar
algebraic formulation for the localized problem defined in Definition 5.3.3. The method
presented here for the global problem is essentially the same as the one advocated in
[27], but this approach does not consider issues of rank-deficiency related to localization
that may occur if the mesh Th is only a local (i.e. not global) refinement of TH , which
we will discuss later in this section.

As was already explained in previous chapters, we have no a priori knowledge of a basis
for Wh, the kernel of IH

∣∣
S1
0(Th)

. To cope with this situation, we will instead constrain

the corrector such that it lies in Wh. We will first present the main result which we
will need for a practical implementation. The accompanying proof should hopefully
provide some of the intuition.

Lemma 6.2.1 (Constrained corrector problem)
Given any Lagrangian basis function λH,z ∈ S1

0(TH) and its associated corrector
CλH,z ∈Wh ⊆ S1

0(Th), let ξ ∈ RNh and η ∈ RNh satisfy

λH,z =

Nh∑
j=1

ξjλh,j , CλH,z =

Nh∑
j=1

ηjλh,j , (6.9)

where λh,j ∈ S1
0(Th) denotes the standard fine-scale Lagrangian basis function

associated with node j. Then there exists a unique κ ∈ RNH such that

Ah,H
(
η
κ

)
=

(
Ah ÎTH
ÎH 0

)(
η
κ

)
=

(
Ahξ

0

)
. (6.10)

Here Ah denotes the stiffness matrix of a(·, ·) associated with the standard basis
for S1

0(Th).

Remark. The vector κ is simply a Lagrange multiplier, and has no real use other than
as an auxiliary variable.

Proof of Lemma 6.2.1. We first wish to show that the block matrix Ah,H is invertible.
We note that the matrix S := IHA

−1
h ITH is symmetric positive definite because Ah is

s.p.d. and ÎH has full row rank. We denote the identity matrix of dimension NH as

72 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

ENH , and similarly for ENh . We have the block triangular decomposition(
Ah ÎTH
ÎH 0

)
=

(
Ah 0

ÎH ENH

)(
ENh A−1

h ITH
0 −S

)
,

from which we deduce that

det(Ah,H) = det(Ah) det(−S) 6= 0,

and hence Ah,H is invertible. It follows that there exist unique η, κ that solve (6.10).
Next, we wish to show that η is also the unique solution to the corrector prob-
lem in Definition 5.1.4. Let w ∈ RNh denote the weights of an arbitrary function
wh =

∑
i wiλh,i ∈Wh, so that ÎHw = 0. Writing out parts of the linear system in

(6.10), we have

wT (Ahη −Ahξ) = −wT (ÎTHκ) = −κ(ÎTHw) = 0 =⇒ wTAhη = wTAhξ.

Rewriting each side of the resulting expression, we have

wTAhη =
∑
i

∑
j

wi(Ah)ijηj =
∑
i

∑
j

a(ηjλh,j , wiλh,i) = a(CλH,z, wh),

wTAhξ =
∑
i

∑
j

wi(Ah)ijξj =
∑
i

∑
j

a(ηjλh,j , wiλh,i) = a(λH,z, wh).

Together with the constraint ÎHη = 0 =⇒ IHCλH,z = 0, we have that η satisfies

a(CλH,z, wh) = a(λH,z, wh) ∀wh ∈Wh,

IHCλH,z = 0,

which is exactly the corrector problem from Definition 5.1.4. Since the corrector prob-
lem has a unique solution, we know that η coincides with the unique solution, and we
can conclude the proof.

An algebraic formulation for the localized problem

Lemma 6.2.1 transforms the abstract (global) corrector problem from Definition 5.1.4
into a linear system which can be solved numerically. In order to define a practi-
cally feasible method, however, we will need to determine a similar approach for the
localized corrector problem as defined by Definition 5.3.3. We first introduce some
notation.

Definition 6.2.2 (Patch-local meshes)
Given a patch ΩT,m ⊆ Ω and associated coarse and fine meshes TH and Th, we
define the patch-local meshes TH,T,m and Th,T,m by

TH,T,m := {K ∈ TH | K ⊆ Ω̄T,m}, (6.11)

Th,T,m := {K ∈ Th | K ⊆ Ω̄T,m}. (6.12)

6.2. AN ALGEBRAIC FORMULATION FOR THE CORRECTOR PROBLEM 73

The meshes TH,T,m and Th,T,m defined in Definition 6.2.2 are just the meshes of ΩT,m
that result from taking the elements in TH and Th that fit inside of ΩT,m. We see
then that the truncated kernel space Wh(ΩT,m) is simply a subspace of the finite-
element space S1

0(Th,T,m). We now want to relate the fine-scale stiffness matrix Ah,T,m
associated with the fine-scale space S1

0(Th,T,m) to the stiffness matrix Ah associated
with the global fine-scale space S1

0(Th). We see that if we interpret the space S1
0(Th,T,m)

as a subspace of the larger space S1
0(Th) by extending each function vh ∈ S1

0(Th,T,m) to
the whole of Ω by vh = 0 outside of ΩT,m, we have that for any vh, v

′
h ∈ S1

0(Th,T,m) ⊆
S1

0(Th), we may write

a(vh, v
′
h) =

∑
z,z′∈N (Th)

ξzξ
′
z′a(λh,z, λh,z′)

=
∑

z,z′∈N (Th,T,m)

ξzξ
′
z′a(λh,z, λh,z′) +

∑
z,z′ 6∈N (Th,T,m)

ξzξ
′
z′︸︷︷︸

=0

a(λh,z, λh,z′)

=
∑

z,z′∈N (Th,T,m)

ξzξ
′
z′a(λh,z, λh,z′),

which means that the local stiffness matrix Ah,T,m is a submatrix of the global sub-
matrix Ah, and can hence be assembled simply by taking the appropriate rows and
columns corresponding to nodes that reside in Th,T,m. This is a convenient property,
but not a strictly necessary one: the local matrix Ah,T,m can be assembled for each
corrector problem. This has both advantages and disadvantages. For one, one does not
need to keep the entire global matrix Ah in memory. On the other hand, it may prove
detrimental to performance. Matrix assembly is however usually a memory-bound pro-
cess, so the cost of fetching a submatrix from Ah might very well be comparable to
that of simply assembling it from scratch. The right choice depends on the application.
For this thesis the submatrix approach was used.

In order to formulate the problem in terms of a saddle point problem as for the global
problem in Lemma 6.2.1, we need to formulate the kernel constraint IHvh = 0 in terms
of an appropriate matrix representation of IH . We cannot use the global matrix ÎH
for two reasons: for one, it would be woefully inefficient, and second, the number of
columns must be equal to the dimension of S1

0(Th,T,m). In Chapter 5.2 we saw that
the quasi-interpolator IH is local in nature. We will now exploit this property.

Lemma 6.2.3
Assume that supp vh ⊆ ΩT,m for vh ∈ S1

0(Th). Then

IHvh(z) = 0

for all vertices z ∈ N (TH) such that z /∈ Ω̄T,m.

Remark. Recall that the value of IHvh(z) corresponds exactly to the basis weight
associated with the node z.

74 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

Proof of Lemma 6.2.3. Recall that IH = J1 ◦ ΠTH1 . Since the projection ΠTH1 is local
for each element, we have that for all K ∈ TH with K 6⊂ Ω̄T,m, ΠTH1 vh satisfies(

ΠTH1 vh

∣∣∣
K
, pH

)
L2(K)

= (vh, pH)L2(K) = 0 ∀pH ∈ P1(TH),

and hence ΠTH1 vh

∣∣∣
K

= 0 for all K ∈ TH outside of the patch ΩT,m. Thus supp ΠTH1 vh ⊆
ΩT,m. The result now follows directly from the definition of J1 applied to any vertex
z outside of the local patch ΩT,m.

Since vh(z) = 0 for vh ∈ S1
0(Th,T,m) and any vertex z not in the interior of ΩT,m,

Lemma 6.2.3 tells us that we only need to consider the columns of ÎH which correspond
to interior vertices of Th,T,m and rows that correspond to all vertices z ∈ TH,T,m
(including the boundary vertices). More precisely, this lets us define a localized version
ÎH,T,m of ÎH by

ÎH,T,m = ÎH [I,J],

where we have used MATLAB-like index notation to denote the submatrix with respect
to the index sets I and J defined by

I := {i | zi ∈ Ω̄T,m for zi ∈ N (TH)},
J := {j | zj ∈ int(ΩT,m) for zj ∈ N (Th)}.

Putting the above pieces together and proceeding as in the proof of Lemma 6.2.1, we
eventually arrive at a saddle point problem of the form(

Ah,T,m ÎTH,T,m
ÎH,T,m 0

)(
η
κ

)
=

(
bT,m

0

)
.

Unfortunately, this is not quite correct. Recall that in the derivation of the algebraic
formulation of the global problem, we relied on the fact that ÎH has full row rank to
show that the saddle point matrix is invertible, which we further used to justify the
existence of the Lagrange multiplier κ. We claim now that the matrix ÎH,T,m does not
generally have full row rank. To see this, let us consider a simple counterexample. If
TH,T,m = Th,T,m, we have from the above definitions that #I > #J . This implies that

ÎH,T,m has more rows than columns, and it follows that it cannot have full row rank.

The reason that ÎH,T,m may be rank-deficient whereas ÎH has full row rank comes from
the fact that IHv(x) is defined to be identically zero at the boundary of Ω, but in the
localized case, there are no similar constraints on the value of IHv(x) at the boundary
of ΩT,m.

The rank-deficiency of ÎH,T,m presents a challenge for numerical computation of the

corrector. One approach is to replace ÎH,T,m by a related matrix with full row rank

6.2. AN ALGEBRAIC FORMULATION FOR THE CORRECTOR PROBLEM 75

which shares the null space of ÎH,T,m, but because ÎH,T,m is sparse, this is generally
quite difficult and possibly very expensive. At the outset of this thesis, the primary
goal was the fast computation of correctors. With that in mind, a very simple ap-
proximation turned out to work remarkably well. The idea is essentially to remove
the kernel constraint IHvh at the boundary of ΩT,m altogether, and instead only en-
force the kernel constraint for the interior coarse nodes in TH,T,m. This way the new

(perturbed) localized quasi-interpolator matrix ĨH,T,m always has full rank by virtue
of Lemma 6.2.3. Note that this perturbs the system: the corrector CλH,z is no longer
contained exactly in Wh. However, in practice this still seems to work very well, and it
is likely that the error introduced can be mitigated by for example an additional layer
of oversampling (incrementing m by 1), but the perturbation remains theoretically
unjustified.

We note that ĨH,T,m corresponds exactly to the matrix representation of
IH : H1

0 (ΩT,m)→ S1
0(TH,T,m) (note the local domain and codomain). We use this to

state the final perturbed, localized corrector problem in algebraic form.

Definition 6.2.4 (Perturbed local corrector problem in algebraic form)
Given any Lagrangian basis function λH,z ∈ S1

0(TH,T,m), denote by λh,j ∈ S1
0(Th,T,m)

the standard fine-scale Lagrangian basis function associated with node j and define
bT,m ∈ RdimS1

0(Th,T,m) by

(bT,m)k :=

∫
T

∇λH,z∇λh,k k = 1, . . . ,dimS1
0(Th,T,m). (6.13)

Let η ∈ RdimS1
0(Th,T,m) satisfy

Ah,H,T,m
(
η
κ

)
=

(
Ah,T,m ĨTH,T,m
ĨH,T,m 0

)(
η
κ

)
=

(
bT,m

0

)
. (6.14)

for some κ ∈ RdimS1
0(TH,T,m). We then define the associated perturbed corrector

C̃T,mλH,z ∈ S1
0(Th,T,m) by

C̃T,mλH,z :=

Nh∑
j=1

ηjλh,j , (6.15)

In the above, Ah,T,m denotes the stiffness matrix associated with the standard

basis for S1
0(Th,T,m) and ĨH,T,m is the matrix representation of the local operator

IH : H1
0 (ΩT,m)→ S1

0(TH,T,m).

76 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

6.3 Linear solvers for the corrector problem

In this section, we will review several techniques for solving the linear systems that
arise from the (perturbed) localized corrector problems, as defined by Definition 6.2.4.
The techniques are generally applicable also for the global problem in Lemma 6.2.1,
provided that the right-hand side is changed accordingly. We note that the problem
is a classical symmetric saddle point system, on which there exists a vast amount of
literature. For more background on the methods presented here, the reader is referred
to [28], which is a survey of solution methods for linear saddle point problems.

For the sake of readability, we will refer to the matrices and vectors in (6.14) by
their global equivalents. That is, we will denote by Ah the stiffness matrix Ah,T,m
for the local problem, and similarly ĨH,T,m and Ah,H,T,m will be denoted simply ÎH
and Ah,H , respectively. Moreover, we will (re)define NH = dimS1

0(TH,T,m) and Nh =
dimS1

0(Th,T,m).

6.3.1 Schur complement reduction and sparse direct solvers

We first note that the localized system can be solved quite simply by a direct method
such as Sparse LU. This actually works relatively well for small to medium size prob-
lems. We can however do better. To do so, we first require the notion of the Schur
complement.

Definition 6.3.1 (The Schur complement of Ah)
The Schur complement S of Ah with respect to the linear system (6.14) is defined
by

S = ÎHA
−1
h ÎTH . (6.16)

Remark. The reader may notice that this definition is a specialized definition of the
more general notion of a Schur complement in linear algebra.

It is straightforward to see that S is symmetric positive definite because Ah is.

Lemma 6.3.2 (Schur complement reduction)
η, ξ and κ from (6.14) satisfy

Sκ = ÎHA
−1
h bT,m, (6.17)

Ahη = bT,m − ÎTHκ. (6.18)

6.3. LINEAR SOLVERS FOR THE CORRECTOR PROBLEM 77

Proof. Rewriting Ah,H as a system of equations, we have

Ahη + ÎTHκ = bT,m,

ÎHη = 0.

Left-multiplying the first equation by ÎHA
−1
h and inserting the result of the second

gives us

ÎHA
−1
h ÎTH︸ ︷︷ ︸
S

κ = ÎHA
−1
h bT,m.

This gives us the first equation in the result, and the second is merely a reorder of
terms.

Lemma 6.3.2 enables us to formulate a simple method for solving (6.14). First, solve
(6.17) to obtain κ, and then insert it into (6.18) and solve for η. Because Ah is simply
the standard stiffness matrix for the Poisson problem, there is a large body of literature
available for the efficient solution of such systems. The more interesting problem here,
however, is arguably how to solve (6.17) for κ.

There seem to be two main ideas. Both are based on the fact that while S is not
initially available, we may perform matrix-products Sx in the following fashion:

• Solve Ahz = ÎTHx for z, which means that z = A−1
h ÎTHx.

• Compute Sx = ÎHz.

First, one can make the assumption that NH is small, in which case it’s feasible to
explicitly form S by computing NH matrix-vector products Sei where ei is the unit
vector for i = 1, . . . , NH . This is advocated in [27]. Second, one may use the conjugate
gradient method in a matrix-free context to solve for κ without explicitly forming S.
We will consider the second method, because it scales much better as NH increases,
and can often be faster even for small NH .

The idea is to leverage the fact that iterative linear solvers such as the Conjugate
Gradient method do not depend on having an explicit matrix representation available.
Rather, it is sufficient to be able to perform matrix-vector multiplication with the
matrix. In other words, we can use the conjugate gradient method to solve (6.17)
simply by computing a series of matrix-vector products Sxk for k = 1, Moreover,
this feature is commonly available in linear algebra software libraries, and as such is
usually straightforward to implement.

One question that arises when dealing with CG applied to S is what - if anything -
to use as a preconditioner. Here we may exploit our knowledge of the origins of S
to come up with a preconditioner based on some heuristic ideas. In particular, note
that the action of S on some vector x essentially maps a coarse-scale vector into the
fine-scale space, applies A−1

h and then maps it back to the coarse-scale space. It is
thus not unreasonable to expect A−1

H - the inverse of the stiffness matrix for the local
coarse space - to be a fair approximation for S, and consequently the preconditioner AH

78 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

would approximate S−1. In practice this does indeed seem to accelerate convergence
somewhat.

From the above discussion, it is clear that the Schur complement reduction procedure
means that one might have to solve a system Ahx = b for different right-hand sides b a
significant number of times. Consequently, if obtaining the solution to this system is a
very expensive process, this particular method may not be so attractive. On the other
hand, linear solvers based on factorization - such as Sparse LU or Sparse Cholesky -
typically perform an expensive factorization step once, after which subsequent solves
are very inexpensive in comparison. As a result, they are very well suited when paired
with Schur complement reduction. Sparse direct solvers typically outperform iterative
methods for small to medium systems, after which they quickly become unusable due
to high storage and asymptotic runtime costs. The exact equilibrium point between
direct and iterative solvers is naturally very heavily problem dependent, but as a rule
of thumb, direct solvers are often competitive up to the order of 100 000 unknowns.
For the specific problem at hand, we remind the reader that Ah is a symmetric positive
definite matrix, and as such, Sparse Cholesky is both applicable and a very good choice
for small to medium systems. Its factorization step can often be roughly twice as fast
that of Sparse LU.

6.3.2 Algebraic Multigrid and block-preconditioned GMRES

In 6.3.1 we concluded that Schur complement reduction in combination with a sparse
direct solver can provide an efficient way to solve the corrector problem (6.14) for sys-
tems of small to medium size. However, as was noted, direct solvers become practically
unusable for sufficiently large systems. Recall that Ah is simply the stiffness matrix
associated with the standard FEM Poisson problem, and as such there is ample choice
in applicable linear solvers. An important feature of Ah is that its condition number
grows with the size of the system, and so simple preconditioning techniques for itera-
tive solvers are usually not efficient. A well-known efficient solver for elliptic problems
is Algebraic Multigrid (AMG)[29][30]. It can be used a linear solver on its own, but it
is arguably more commonly used as a preconditioner for iterative methods such as CG
or GMRES.

For a given coefficient matrix, AMG first constructs a suitable hierarchy associated with
the matrix. We refer to this process as the setup phase. This only needs to be done
once for a given matrix, after which solving Ahx = b can be done with reasonably high
efficiency. It is therefore possible to just plug in AMG in the Schur complement method
that was described in 6.3.1. However, unlike direct factorization-based methods, the
relative cost of solving the system Ahx = b compared to the cost of the setup phase
of AMG is much higher. Moreover, it is very unfortunate that when using the Schur
complement method, we must accurately solve systems involving Ah many times just
to obtain κ, which is a Lagrange multiplier that can be discarded afterwards. Instead,
it would be ideal to solve for κ and η simultaneously, so that for each step of an iterative
method, we get closer to the solution of the corrector η.

6.3. LINEAR SOLVERS FOR THE CORRECTOR PROBLEM 79

One way to accomplish this is to use GMRES [13] on the saddle point problem (6.14)
combined with a suitable preconditioner. The main difficulty then is to construct such
a preconditioner. Since (6.14) is represented in the form of a block matrix, it makes
sense to look for a preconditioner which has a favorable block pattern. The following
lemma, inspired by [31], provides us with a useful starting point.

Lemma 6.3.3 (Ideal preconditioner for the corrector problem)
Let Ph,H be the matrix defined by

Ph,H :=

(
A−1
h A−1

h ÎTHS
−1

0 −S−1

)
, (6.19)

where S is the Schur complement from Definition 6.3.1. Furthermore, let Ah,H
be the coefficient matrix from (6.14). Then Ph,H is an ideal right preconditioner
for Ah,H in the sense that the eigenvalues of the preconditioned system matrix
Ah,HPh,H are all 1.

Proof. Performing the product and denoting by ENh and ENH the identity matrix of
respective size Nh and NH , we have that

Ah,HPh,H =

(
Ah ÎTH
ÎH 0

)(
A−1
h A−1

h ÎTHS
−1

0 −S−1

)

=

 ENh ÎTHS
−1 − ITHS−1

ÎHA
−1
h ÎHA

−1
h ÎTH︸ ︷︷ ︸
S

S−1

 =

(
ENh 0

ÎHA
−1 ENH

)
,

which is a triangular matrix with ones on the diagonal, from which the result follows.

Although we could in fact apply the preconditioner defined in Lemma 6.3.3 directly by
solving multiple systems involving Ah and S, this would demand at least as much work
as just solving the whole system by using the Schur complement method in the first
place. Instead, we realize that it is typically sufficient to use a good approximation
of Ph,H . Moreover, we can once again use the fact that Krylov subspace methods
only require a linear operator and not a full matrix. The idea is then to construct
approximate operators Ã−1

h ≈ A−1
h and S̃−1 ≈ S−1 such that the preconditioned

system is still (hopefully) well conditioned. If these approximations are available, an

application of the approximate preconditioner to a vector
(
x y

)T ∈ RNh+NH can be
written

Ph,H
(
x
y

)
=

(
A−1
h (x+ ÎTHS

−1y)
−S−1y

)
≈
(
Ã−1
h (x+ ÎTH S̃

−1y)

−S̃−1y

)
.

If one saves the result of S̃−1y, each application of the approximate preconditioner
requires only one application of S̃−1 and one application of Ã−1

h .

80 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

The last remaining piece of the puzzle is to determine which approximations to use
for Ã−1

h and S̃−1. Drawing on our earlier discussion, we can expect that we can

replace Ã−1
h by an AMG-based preconditioner (for example a single V-cycle). A suitable

approximation of S−1 is less obvious, but from the discussion on Schur complement
methods in 6.3.1, S̃−1 ≈ AH may provide a starting point.

We close this section by noting that a block-preconditioned GMRES with an AMG-
based preconditioner is a heavy piece of advanced machinery. As a result, one could
reasonably expect the method not to be competitive for sufficiently small problems
when compared to the Schur complement reduction method. On the other hand, as
the size of the system increases, one could hope to achieve much greater efficiency than
what is possible to achieve with direct solvers. Given that distinct corrector problems
may come in many different sizes, it may be worthwhile to conditionally decide on
which type of solver to use based on the size of each corrector problem.

6.4 A high-level algorithm for corrector computa-
tion

Having determined how to solve the individual corrector problems, we are ready to
summarize the process of computing all (localized) correctors for the basis functions of
S1

0(TH). We will see that as we compute the correctors for each patch ΩT,m ⊆ Ω, we
will need to store the weights of the corrected basis functions in a (sparse) matrix that
we will refer to as the correction matrix.

Definition 6.4.1 (Correction matrix)
The correction matrix Qcorr ∈ RNH×Nh is defined such that for the corrected basis
function λ̃H,i ∈ VH associated with node i in VH , we have that

λ̃H,i =

Nh∑
j=1

(Qcorr)ijλh,j , (6.20)

where λh,j ∈ S1
0(Th) corresponds to the fine-scale Lagrangian basis function asso-

ciated with node j in S1
0(Th).

In general, the correction matrix Qcorr provides a way to map weights of functions in
VH with respect to the basis of the fine-scale space S1

0(Th) into weights with respect to
the basis of VH .

The following lemma explains how to obtain the stiffness and mass matrices associated
with the corrected space VH once the correction matrix has been obtained.

6.4. A HIGH-LEVEL ALGORITHM FOR CORRECTOR COMPUTATION 81

Lemma 6.4.2
The mass and stiffness matrices M̃H and ÃH associated with the basis for the space
VH and the mass and stiffness matrices Mh and Ah associated with the standard
basis for the space S1

0(Th) satisfy

M̃H = QcorrMhQ
T
corr, (6.21)

ÃH = QcorrAhQ
T
corr. (6.22)

Proof. This is simply a straightforward consequence of inserting (6.20) into the defini-
tion of the mass and stiffness matrices M̃ and Ã.

When solving the wave equation with the finite element method, we must compute load
vectors whose individual elements take the form bi(t) = (f(t), λi) for a basis function
λi. The next lemma demonstrates a very simple relation between the load vectors
associated with each space VH and S1

0(Th).

Lemma 6.4.3 (Load vectors for VH)
Let bh(t) ∈ RNh denote the load vector associated with the fine space S1

0(Th). Then
the load vector b̃H(t) ∈ RNH associated with the corrected space VH satisfies

b̃H(t) = Qcorr bh(t). (6.23)

Proof. Given a basis function λ̃H,i ∈ VH , we may write for each element i = 1, . . . , NH ,

b̃H,i(t) = (f(t), λ̃H,i) = (f(t),
∑
j

(Qcorr)ijλh,j)

=
∑
j

(Qcorr)ij(f(t), λh,j) =
∑
j

(Qcorr)ij bh,j(t),

from which the result immediately follows.

We are now ready to provide a step-by-step high-level algorithm for how to compute
the correctors. Given a quasi-uniform mesh TH and a (possibly non-quasi-uniform)
refinement of Th and the oversampling parameter m ≥ 1, the following is a summary
of the steps necessary to compute the correction matrix Qcorr:

1. Let Ccorr ∈ RNH×Nh = 0. This matrix will hold the actual correctors as we
compute them. Specifically, row i corresponds to the corrector CλH,i of the
coarse basis function λH,i.

2. For every coarse element T ∈ TH , determine all K ∈ Th that are descendants of
T and store the results in an appropriate data structure.

82 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

3. Assemble Ah and ÎH .

4. For every coarse element T ∈ TH :

(a) Compute the patch ΩT,m.

(b) Determine the fine-scale vertices that are in the interior of the (coarse) patch
by performing a lookup in the data structure that was constructed in step
2.

(c) Assemble Ah,T,m and ĨH,T,m by taking submatrices of Ah and ÎH corre-
sponding to the appropriate degrees of freedom.

(d) For each vertex zi in T :

i. Compute the right-hand side vector in (6.14).

ii. Solve the system in (6.14) (see 6.3 for solution methods) to obtain cor-
rector weights η.

iii. Set any weights in η that are below a certain tolerance (i.e. close to
machine epsilon) to 0, in order to avoid accidental fill-in due to rounding
errors.

iv. Map the weights stored in η into corresponding weights for S1
0(Th) and

add them to the (sparse) row i in Ccorr.

5. Form the (sparse) matrix B ∈ RNH×Nh , which is defined by the relation λH,i =∑Nh
j=1Bijλh,j . Here, λH,i corresponds to the standard Lagrange basis function

for node i associated with the coarse space S1
0(TH), and λh,j corresponds to

the standard Lagrange basis function for node j associated with the fine space
S1

0(Th).

6. Form the correction matrix Qcorr = B − Ccorr.

6.5 crest: An open-source implementation

The method proposed in this thesis is quite involved, and considerable work has gone
into building an experimental prototype software library which powers the numerical
experiments.

In the event that anyone should want to build on this research, some information about
this library, called crest, will be summarized below. While the library bears several
of the hallmarks of experimental code - such as leaky abstractions at the wrong level,
sparse documentation and the occasional hack - a large amount of its functionality is
thoroughly tested by an automatic test suite, and so it is straightforward to experiment
with modifications while still ensuring correctness of the implementation. It is the
author’s belief and hope that the library can provide a useful starting point for any
further work on this subject.

6.5. CREST: AN OPEN-SOURCE IMPLEMENTATION 83

crest is a software library written in C++14, and at the time of writing can be ob-
tained at github.com/Andlon/crest. In the event that the provided URL should
become invalid, the reader is invited to contact the author upon interest. The library
relies heavily on the open-source Eigen [32] library for linear algebra, and provides the
following features:

• A header-only template library that abstracts over the scalar type (i.e. double,
float).

• Geometry:

– A data structure for 2D triangle meshes.

– A fast and memory-efficient implementation of the newest vertex bisection
(NVB) algorithm, as well as a fast implementation of the Threshold algorithm
from Lemma 4.2.1.

– A BiscaleMesh data structure which serves as an abstraction over a mesh
TH and its refinement Th. Among other things, the data structure provides a
convenient way to quickly determine fine triangles in Th that are descendants
of specific triangles in TH .

• Corrector computation:

– An abstraction over different ways to compute correctors, which simplifies
experimenting with new ways to compute correctors.

– A default implementation based on direct solution with Sparse LU from the
Eigen library.

– An implementation which leverages the Sparse Cholesky decomposition from
Eigen in conjunction with the Schur complement reduction method based
on the Conjugate Gradient method described in 6.3.1.

– An implementation based on AMG block-preconditioned GMRES as de-
scribed in 6.3.2. The AMG functionality as well as the LGMRES [33] solver
used are powered by the open-source library amgcl [34].

• A comprehensive test suite consisting of unit tests, automatic convergence tests
and property-based tests with randomized input ensure correctness of many of
the algorithms that have been implemented. In particular, the output from the
different implementations for corrector computation is verified to satisfy funda-
mental properties of the method for randomized input meshes.

• Fast quadrature computation based on quadrature points from [35] for polynomial
orders ranging from 1 to 20, using compile-time selection of quadrature strength.

• Temporal discretization schemes: Leapfrog, mass-lumped Leapfrog, Crank-Nicolson.

• A limited abstraction for solving the wave equation for various input data, includ-
ing functionality to estimate the error with respect to some reference solution.

http://github.com/Andlon/crest

84 CHAPTER 6. EFFICIENT CORRECTOR COMPUTATION

Chapter 7

Augmented Leapfrog

Recall that the method presented in chapter 5 has its origins in numerical homoge-
nization of elliptic problems. In this context, it is known that one can often achieve
similar accuracy by replacing the load vector associated with the corrected space VH
with the load vector associated with S1

0(TH). This is desirable because in those kind of
problems, one often has dimS1

0(Th) � dimS1
0(TH), which means that the load vector

computation for dimS1
0(Th) (and consequently VH through Lemma 6.4.3) may be pro-

hibitively expensive. In the kind of problems we consider in this thesis, the difference
in the number of vertices between the two meshes is not quite as drastic, but as we
will see in Chapter 8, it may still be significant.

During the course of the development of the implementation for the method discussed
in chapters 5 and 6, it was observed that using the load vectors from S1

0(TH) also seemed
to work very well for the model problem. Moreover, it was observed that replacing the
mass matrix associated with VH with the mass matrix from S1

0(TH) worked similarly
very well. This is interesting for several reasons:

• The mass matrix associated with S1
0(TH) may be considerable sparser than the

matrix associated with VH .

• If it can be proved that the act of replacing the mass matrix does not reduce
the favorable convergence rate associated with VH , then this may theoretically
justify mass lumping of the mass matrix.

Since the construction of the corrected space VH relies on orthogonalization with the
inner product a(·, ·), the intuitive explanation for why this might work is that this
property is encoded perhaps primarily in the stiffness matrix.

We will now formalize these modifications to the Leapfrog method in terms of a
functional-analytic description. For lack of a better name, we will call the resulting
method augmented Leapfrog.

85

86 CHAPTER 7. AUGMENTED LEAPFROG

Definition 7.0.1 (Augmented Leapfrog)
Let VH be the corrected space defined in Definition 5.1.5, and let IH be its associ-
ated admissible quasi-interpolator. Then the weak formulation of the augmented
Leapfrog method is for t = n∆t and integer n ≥ 1 is given by(

IH

(un+1
h − 2unh + un−1

h

(∆t)2

)
, IHvH

)
+ a(unh, vH) = (fn, IHvH) ∀vh ∈ VH . (7.1)

We will now briefly show stability. The idea is the same as for the standard Leapfrog
method. First, we define an appropriate discrete energy, show that this energy is non-
negative under the CFL condition, demonstrate how this leads to energy conservation
and finally stability of the method. However, because the derivation of these results
is virtually identical to that of the standard Leapfrog method, we will omit these
intermediate results and instead only show that the energy indeed is non-negative.
The only difference is the definition of the energy and an additional occurrence of IH
on the right-hand side. For example, instead of

2(Ên+1/2
h − Ên−1/2

h) = (fn, un+1
H − un−1

H),

one has

2(Ên+1/2
H,h − Ên−1/2

H,h) = (fn, IH(un+1
H − un−1

H)).

The rest of the derivation follows naturally with these modifications.

Definition 7.0.2 (Augmented energy)
We define the discrete energy for the augmented Leapfrog method by

Ên+1/2
H,h :=

1

2

∥∥∥IHδun+1/2
H

∥∥∥2

L2(Ω)
+

1

2
a(unH , u

n+1
H), (7.2)

where unH ∈ VH is the augmented Leapfrog solution of the wave equation at time
t = tn.

Lemma 7.0.3 (Non-negativity of augmented energy)
Assume that S1

0(TH) has the inverse property, and assume that ∆t is chosen suffi-
ciently small such that it satisfies the CFL condition (3.10) for the standard coarse
space S1

0(TH). Then the augmented energy for the space VH satisfies

Ên+1/2
H,h ≥ λ

2

∥∥∥IHδun+1/2
H

∥∥∥2

L2(Ω)
+

1

4

[
a(un+1

H , un+1
H) + a(unH , u

n
H)
]
≥ 0. (7.3)

87

Proof. The key property that we need for the proof is the following observation. Let
vH ∈ VH , and recall that we may write vH = IHvH − CIHvH . This leads to

a(vH , vH) = a(IHvH , IHvH)− a(CIHvH , CIHvH).

Using this property, we do as in the proof of Lemma 3.2.4 and write

2a(unH , u
n+1
H) = a(un+1

H , un+1
H) + a(unH , u

n
H)− (∆t)2a(δu

n+1/2
H , δu

n+1/2
H)

= a(un+1
H , un+1

H) + a(unH , u
n
H)

− (∆t)2a(IHδu
n+1/2
H , IHδu

n+1/2
H) + (∆t)2a(CIHδun+1/2

H , CIHδun+1/2
H)

≥ a(un+1
H , un+1

H) + a(unH , u
n
H)− (∆t)2a(IHδu

n+1/2
H , IHδu

n+1/2
H)

≥ a(un+1
H , un+1

H) + a(unH , u
n
H)− Cinv(∆t)2

H2

∥∥∥IHδun+1/2
H

∥∥∥
L2(Ω)

.

In the above, Cinv is the inverse constant from Lemma 2.2.4 associated with S1
0(TH).

From this point, we proceed in exactly the same manner as in Lemma 3.2.4 to arrive
at the result.

Theorem 7.0.4 (Stability of the augmented Leapfrog method)
Assume that the conditions in Lemma 7.0.3 hold. Then the augmented Leapfrog
method is stable in the sense that there exists some C > 0 independent of H and
∆t such that∥∥∥IHδun+1/2

H

∥∥∥
L2

+
∥∥un+1

H

∥∥
H1 ≤ C

(∥∥∥IHδu1/2
H

∥∥∥
L2

+
∥∥u0

H

∥∥
H1 +

∥∥u1
H

∥∥
H1 (7.4)

+

n∑
k=1

∆t
∥∥fk∥∥

L2

)
.

Proof. Omitted because it is almost identical to the derivation of the standard Leapfrog
stability result presented in Chapter 3.2.

An interesting feature of the augmented Leapfrog method made clear by Lemma 7.0.3
is that the CFL condition that is necessary for stability is the one associated with the
coarse space S1

0(TH), which means that the stability region of the augmented Leapfrog
method is at least as large as that of the standard Leapfrog method for S1

0(TH), which
is a very desirable property. On the other hand, the stability result is somewhat weaker

than for the standard Leapfrog method applied to VH , as it does not bound
∥∥∥δun+1/2

H

∥∥∥,

but only
∥∥∥IHδun+1/2

H

∥∥∥. However, the H1-stability of the solution is still maintained,

which is what we are primarily concerned with.

The fact that the method is stable is not interesting unless it converges faster than the
standard Leapfrog method in S1

0(TH). Ideally we would be able to show an improved

88 CHAPTER 7. AUGMENTED LEAPFROG

convergence rate, but a successful proof remains elusive. Because the proof of stability
only needed some very minor modifications compared to the standard Leapfrog method,
it is natural to think that perhaps this would also be the case for the convergence
analysis. It does not look like this is the case. However, as we will see in Chapter 8,
the numerical experiments show quite conclusively that the method works very well
in the case of our model problem. This raises the question of whether the optimal
convergence rate observed can be proved with no added assumptions compared to the
standard Leapfrog method, or if there are special circumstances surrounding our model
problem that make the augmented Leapfrog attain the optimal convergence rate. For
now, this remains an open question.

Chapter 8

Numerical experiments

In this chapter, we will study the approximation properties and performance of the
methods presented in the preceding chapters.

By comparing the errors incurred and the performance of the Leapfrog method applied
to the corrected space V mH with the more straightforward application of the Leapfrog
method applied to S1

0(TH) and the Crank-Nicolson method applied to S1
0(Th), we will

attempt to answer the following questions:

• Are the approximation properties of the corrected space V mH favorable compared
to S1

0(TH) and competitive with the space S1
0(Th)?

• How do the approximation properties of the augmented Leapfrog method pre-
sented in Chapter 7 compare with the standard Leapfrog method?

• Can mass lumping of the Leapfrog method be successfully applied in conjunction
with the space V mH ?

• Does the space V mH allow the model problem to be solved in a significantly shorter
amount of time than the standard finite element spaces S1

0(TH) and S1
0(Th) do?

• Can the correctors that are necessary to form V mH be computed in reasonable
time, or is the corrector computation a prohibitively expensive operation?

In order to try to answer these questions, we will study a model problem in a 2D pro-
totypical non-convex domain which exhibits the typical loss of the optimal convergence
rate for polynomial finite element spaces.

It is necessary to make a distinction between offline computation and online compu-
tation. The offline computations are comprised of the steps that can be performed
independently of the problem data, which corresponds to choices of f , u0 and v0, and
primarily includes corrector computation and matrix assembly. The online computa-
tions include the computation of load vectors, time integration and initialization of the
integrators.

89

90 CHAPTER 8. NUMERICAL EXPERIMENTS

Because one typically has for sufficiently small mesh resolution thatNH = dimS1
0(TH) ≈

#N (TH)), we will — in order to reduce the notational burden, particularly in graphs
— in this chapter somewhat lazily repurpose NH such that it refers to the number of
vertices #N (TH)) in TH and analogously for Nh.

8.1 Experimental setup

This section describes the details of the experimental setup, which includes the defini-
tion of the model problem as well as the various technical choices and parameters that
were used in the computations.

8.1.1 Model problem

Due to time constraints and the effort required to implement the methods presented, as
well as the sheer computational complexity of running the experiment at a sufficiently
large scale as to be able to discuss behavior, only a single example problem is examined.
It has been chosen such that it exhibits significant local refinement throughout almost
the entire mesh, and so it can in some sense be considered a “worst case” example for
the method in terms of computational effort for the offline computation as well as the
number of added non-zeros in the corrected system matrices when compared to the
standard coarse finite element method.

Definition 8.1.1 (Singular model problem)
The model problem is defined in polar coordinates by the exact solution

u(t, r, θ) = cos(2πt) sin(2θ/3)r2/3

for all t ∈ [0, 0.5] and the domain Ω = [−0.5, 0.5]2\
(
[0, 0.5]×[−0.5, 0]

)
, an L-shaped

domain centered at the origin.

Remark. The domain and the mesh family associated with the problem coincide with
the examples for the Threshold algorithm presented in Figure 4.3.

The model problem is singular because its (spatial) gradient blows up as r → 0. An
important thing to note is that the model problem does not admit homogeneous Dirich-
let boundary conditions. One way to construct a model problem which is identically
zero on the boundary is to multiply the above model problem by a bump function,
but the resulting closed form of the right-hand side function turned out to be absurdly
complicated. Instead, the problem is solved numerically by applying inhomogeneous
Dirichlet conditions, using the value of the exact solution at the boundary as the condi-
tion to be satisfied. Since the practical implementation of the inhomogeneous Dirichlet
conditions involve solving a homogeneous problem, all the theory we have derived for

8.1. EXPERIMENTAL SETUP 91

NH 65 225 833 3201 12545 49665 197633 788481
Nh 322 1404 5970 24690 100592 405984 1630510 6537150

Table 8.1: Relationship between number of vertices NH in TH and Nh in Th.

homogeneous Dirichlet conditions still hold, provided that the approximation of the
boundary terms is sufficiently accurate.

It must also be noted that the right-hand side that arises from the model problem is not
continuously differentiable in space, and so it does not fully conform to Theorem 4.2.5.
However, based on numerical experiments, it turns out that the above model problem
does indeed exhibit the properties which we wish to study. Namely, that the standard
finite element method applied to a quasi-uniform triangulation does not achieve the
optimal convergence rate, but refining the mesh with the algorithm from Lemma 4.2.1
recovers the optimal convergence rate as predicted by Theorem 4.2.5.

Experiments were run for a range of different mesh sizes. Table 8.1 demonstrates the
relationship between the number of vertices NH in TH and Nh in the refined mesh Th.
In the rest of this chapter, we will only concern ourselves with NH .

8.1.2 Offline computation

Two implementations for the offline computation of the correctors were considered.

The first is an implementation of the Schur complement reduction method discussed in
Section 6.3.1, using an implementation of Sparse Cholesky from the Eigen [32] library
to solve systems involving Ah, and the preconditioned Conjugate Gradient method
with AH as a preconditioner for the implicit S matrix. For clarity, the parameters are
summarized in Table 8.2.

Parameter Value

CG tolerance 10−10

S preconditioner AH
A solver Sparse Cholesky

Table 8.2: Schur complement reduction parameters.

The second is an implementation of the GMRES scheme with AMG-based precondition-
ing as discussed in Section 6.3.2. However, because the amgcl library which provided
the implementations for (restarted) GMRES and AMG did not allow the use of right
preconditioners for its GMRES solver, an implementation of LGMRES [33] from the
same library was used instead. This is likely of little practical consequence, and in fact
LGMRES has been shown to outperform GMRES in many situations (or at least rarely
perform worse). Moreover, there are a number of available choices for parameters. The

92 CHAPTER 8. NUMERICAL EXPERIMENTS

author of this thesis is admittedly an amateur when it comes to multigrid methods,
and although experimenting with different choices of parameters seemed to yield little
difference in performance for small problems, it is quite possible that a practitioner
with expert knowledge can tune the preconditioner in such a way that performance
can be (possibly significantly) increased. In the end, the parameters chosen coincided
with the default settings of the library. Table 8.3 attempts to list some of the most
important experimental parameters used, but it is not complete. There are a multitude
of additional parameters that can be tweaked in the library.

Parameter Value

Coarsening scheme Smoothed aggregation
Relaxation scheme SPAI0

Cycles Single V-cycle
LGMRES tolerance 10−10

S preconditioner AH

Table 8.3: LGMRES-AMG parameters.

As is usual with iterative methods, one can obtain the solution of a linear system in
a shorter amount of time if one can accept a lower tolerance for the stopping criterion
used. At the same time, the tolerance needs to be chosen such that the obtained solution
is still sufficiently accurate. For both methods of offline computation considered here,
a somewhat arbitrary tolerance of 10−10 was chosen. Keep in mind that not only do
the two methods (CG and LGMRES) prescribe somewhat different meanings to their
respective stopping criterion, but they are also solving completely different systems.
The fact that the tolerance is chosen to be the same for both schemes does not imply
that it is necessarily a fair comparison. However, informal numerical experiments
suggested that lowering the iterative tolerance seemed to only produce roughly 40%
faster computations in the best case, and at a significant loss of accuracy. Hence,
the somewhat conservative choice of 10−10 was made as a judicious trade-off between
reliability and performance.

8.1.3 Online computation

From previous discussion, it is expected that the Leapfrog method is not stable for
refined meshes constructed by the algorithm in Lemma 4.2.1. For this reason, the
Crank-Nicolson scheme is used as a comparable baseline, because it offers the same
asymptotic error rates, yet it is unconditionally stable. In addition, the “Lumped
Leapfrog” method - Leapfrog with mass lumping - is considered.

For the Leapfrog and Crank-Nicolson methods, which involve solving a linear system

at every step, the coefficient matrices here (M and M + (∆t)2

4 A) are positive definite
matrices, and the Conjugate Gradient method is applied to solve the system at each
step. An important feature of iterative methods is that they allow an “initial guess”

8.1. EXPERIMENTAL SETUP 93

to be specified. For time-dependent problems discretized by finite differences in time,
it is very natural to choose the current solution xn as the initial guess for the solution
at the next time step xn+1. If the solution does not change too abruptly, this typically
leads to very fast convergence.

Diagonal preconditioning was used for both the Leapfrog and the Crank-Nicolson meth-
ods. More precisely, the inverse of M is approximated by diag(M)−1, which is very
cheap to apply. This is well-justified for the Leapfrog method, because it is well known
that the mass matrix M associated with S1

0(TH) can be efficiently pre-conditioned this
way. Moreover, it is shown in [12] that diagonal preconditioning is also an efficient
preconditioner for the mass matrix associated with the corrected space VH . From ex-
perience, diagonal preconditioning also works very well for the Crank-Nicolson in the
context of quasi-uniform meshes if time steps are sufficiently small to be within the
region of stability for the Leapfrog method, but its performance quickly degrades with
larger time steps. Because of the much stricter inverse inequality of the locally refined
space, it is likely that diagonal preconditioning is insufficient for the Crank-Nicolson
method on S1

0(Th), but it’s not clear at this point what exactly would be a more
well-suited preconditioner.

As is the case with offline computation, an iterative tolerance needs to be chosen for
solving the linear system at every step with CG. For all experiments, the tolerance
was set to 10−12. At first, this may seem to demand excessive accuracy, but the later
discussion will demonstrate the reasoning for this choice.

At every step tn, one needs to compute the load vector b(tn), which involves the solution
of an integral. This integral is approximated in each element by a 3-point quadrature
rule with quadrature strength 2, which means that it can integrate polynomials of order
2 exactly. See [35] for the quadrature rules used.

For initialization — computation of u0
h and u1

h — nodal interpolation of u0 and the
approximation u1 ≈ u0 + ∆tv0 + 1

2 (∆t)2ü(0) was observed to yield sufficiently accurate
results for all experiments considered. Note that here we have used explicit knowledge
of ü(0) to get a more accurate approximation, because we are not overly concerned
with initialization and thus wanted to make sure it did not have an adverse effect on
the results.

The parameters used for online computation are summarized in Table 8.4.

The error ‖u(tn)− unh‖ in both L2 and H1 at each step is estimated by a 4-strength
6-point quadrature rule. These samples are further used in conjunction with the Com-
posite Simpson’s rule to estimate the space-time error ‖u− uh‖L2(0,T ;V) for V = H1(Ω)

and V = L2(Ω). An important thing to note is that the error in VH is computed in
terms of its weights in the fine space S1

0(Th).

Each experiment was run in isolation on its own node on the Atacama cluster at the
Institute of Numerical Simulation in Bonn. This minimizes errors from e.g. other
applications using the same hardware. Because of the sheer number of combinations
of parameters that had to be run for the experiments, as well as the immense com-
putational effort required to obtain results for the larger problems, each parameter

94 CHAPTER 8. NUMERICAL EXPERIMENTS

Parameter Value

Integrators Crank Nicolson, Leapfrog, Lumped Leapfrog
Oversampling (m) 0, 1, 2, 3, 4, 5 (where applicable)
CG tolerance 10−12

Preconditioning Diagonal preconditioning (where applicable)
Load quadrature strength 2 (3 points)
Initialization Nodal interpolation of u0

and u1 ≈ u0 + ∆tv0 + 1
2 (∆t)2ü(0)

Table 8.4: Parameters for the online computations.

combination was only run once. Ideally, one would run them several times in order
to get a more accurate average time. However, because the implementation is entirely
deterministic, it was observed that random errors in the runtime tend to be compar-
atively small, and so the result presented here should still give a very good indication
of the expected runtimes for the implementation.

Finally, we mention that we will present both error estimates and runtimes as functions
of the number of vertices in the coarse mesh #N (TH). Until now, we have presented
errors as a function of H, but from Chapter 4, we have seen that we can expect that
if the error is O(Hq) for some q > 0, then it is O(#N (TH)−q/2) for both S1

0(TH) and
S1

0(Th). The primary reason is that while the number of vertices is a useful measure of
complexity, the diameter of the mesh is less intuitive to deal with. This is particularly
true for runtime measurements, which clearly scale with the number of degrees of
freedom.

8.2 Error measurements for the online computations

In this section, the estimates for the errors involved when solving the model problem
will be discussed. In particular, we verify that the corrected space V mH admits the
optimal convergence rates associated with S1

0(Th) for sufficiently large m, and it is
also of interest to study the impact of the choice of the oversampling parameter m.
Moreover, we will see that the augmented Leapfrog method in which the mass matrix
and right-hand side for VH are replaced with the ones associated with S1

0(TH) perform
very well in practice, and that mass lumping is applicable to the mass matrix associated
with the corrected space VH , as well as the augmented method.

We will also see that the strong local refinement associated with the mesh refinement
algorithm from Lemma 4.2.1 leads to problems with the H1 accuracy of the solution
for the Crank-Nicolson method when applied to the fine space S1

0(Th), and that the
method when applied to the corrected space VH does not have similar issues.

Although we have computed the correctors that generate V mH in two different ways,
it was observed that the resulting error estimates were virtually independent of the

8.2. ERROR MEASUREMENTS FOR THE ONLINE COMPUTATIONS 95

H1 convergence behavior of the Crank-Nicolson method

102 103 104 105 106
NH

10 4

10 3

10 2

H
1 e

rro
r

(N 1/2
H)

(N 1/3
H)

Nt = 1025, t = 4.883e 04

S1
0(H), CN

VH, CN, m = 1
VH, CN, m = 2
S1

0(h), CN
VH, CN, m = 3

Figure 8.1: Estimated error ‖u− uh‖L2(0,T ;H1) as a function of number of vertices NH in

the coarse mesh TH for the Crank-Nicolson method applied to the coarse space S1
0(TH),

the fine space S1
0(Th) and the corrected space VH .

way in which the correctors were computed, which merely suggests that the correctors
were computed with higher accuracy than other sources of errors. In the following
study of convergence behavior, we will simply consider the space V mH to be identical
to the space spanned by the corrected basis functions as computed by the Schur-based
method. Note that this choice is arbitrary, and we might as well have chosen the
correctors from the GMRES-based computation.

Convergence behavior of the Crank-Nicolson method

We begin our discussion by studying the convergence rates associated with each space
when using the Crank-Nicolson method to solve the model problem. Figure 8.1 demon-
strates how the coarse space S1

0(TH) only attains the suboptimal convergence rate

O(N
−1/3
H), whereas S1

0(Th) admits the optimal rate O(N
−1/2
H). For oversampling pa-

rameter m = 1, we see that VH attains the optimal rate for NH . 1000, after which
it fails to yield better error estimates. For m = 2, the optimal rate is attained for
NH . 200000, and it is observed that m = 3 admits the optimal rate for all mesh
resolutions considered.

It is important to note that the time step here is chosen deliberately large. While it
is just barely small enough to make the error term proportional to (∆t)2 negligible in
comparison with the term proportional to H, it would usually be desirable to use a
somewhat smaller time step in order to minimize errors due to the size of the chosen
time step. However, it turns out that the strong refinement of Th causes issues related
to numerical accuracy for the Crank-Nicolson method. Figure 8.2 shows that as the

96 CHAPTER 8. NUMERICAL EXPERIMENTS

Numerical inaccuracy for Crank-Nicolson in S1
0(Th)

102 103 104 105 106
NH

10 3

10 2

H
1 e

rro
r

(N 1/2
H)

(N 1/3
H)

Nt = 4097, t = 1.221e 04

S1
0(H), CN

VH, CN, m = 1
VH, CN, m = 2
S1

0(h), CN
VH, CN, m = 3

Figure 8.2: Estimated error ‖u− uh‖L2(0,T ;H1) as a function of number of vertices NH in

the coarse mesh TH for the Crank-Nicolson method applied to the coarse space S1
0(TH),

the fine space S1
0(Th) and the corrected space VH .

time step is made smaller compared to that used in Figure 8.1, the Crank-Nicolson
method fails to attain the optimal convergence rate - contrary to what is expected.
The reason seems to be related to accuracy. From some informal experiments whose
results we will not reproduce here, it is clear that it is related to the accuracy of the
solution to the system (M+(∆t)2A/4)x = b. In particular, decreasing the tolerance for
the residual when applying the Conjugate Gradient method to the system makes the
solutions more accurate, but only up to a point. If the time step is made smaller or the
spatial resolution is made finer, the problems reappear. As we have noted earlier, the
tolerance used in these experiments was set to 10−12. It is clear that one cannot make
this very much lower due to lack of precision in floating point arithmetic. From Figure
8.2, it is also apparent that the corrected space V mH does not suffer from this particular
problem. Throughout all experiments, including the large number of experiments which
we have not presented here, it was observed that the methods applied to V mH seemed
to be equally robust as when applied to the coarse, quasi-uniform space S1

0(TH).

While we are primarily concerned with the H1 errors in this thesis, it also of interest to
study the L2 errors associated with the method. Figure 8.3 showcases the convergence
behavior in the spatial L2 norm. First, it is observed that the Crank-Nicolson method

approximates the solution in S1
0(TH) with the suboptimal rate O(N

−2/3
H) for the L2

error, and that in S1
0(Th) it attains the optimal rateO(N−1

H) for the L2 error. Unlike the
case ofH1 errors previously discussed, there seem to be no issues with accuracy. We also
observe that the corrected space V mH yields competitive error estimates when compared
to S1

0(Th), although the data suggests that it doesn’t quite achieve the optimal rate.
As before, we see that the oversampling parameter m must be chosen judiciously in
order to attain the correct convergence behavior.

8.2. ERROR MEASUREMENTS FOR THE ONLINE COMPUTATIONS 97

L2 convergence behavior of the Crank-Nicolson method

102 103 104 105 106
NH

10 7

10 6

10 5

10 4

10 3

10 2

L2 e
rro

r

(N 2/3
H)

(N 1
H)

Nt = 4097, t = 1.221e 04
S1

0(H), CN
VH, CN, m = 1
VH, CN, m = 2
S1

0(h), CN
VH, CN, m = 3

Figure 8.3: Estimated error ‖u− uh‖L2(0,T ;L2) as a function of number of vertices NH in

the coarse mesh TH for the Crank-Nicolson method applied to the coarse space S1
0(TH),

the fine space S1
0(Th) and the corrected space VH .

Convergence behavior of the Leapfrog method

The premise of this thesis is to study a method which relaxes the CFL condition for
the Leapfrog method in the presence of locally refined meshes. With this in mind, it
was observed that the Leapfrog method diverged even for the coarsest mesh resolution
when applied to S1

0(Th). However, as shown in Figure 8.4, it is seen that the Leapfrog
method applied to VH is stable in roughly the same region as when applied to S1

0(TH).

Moreover, it attains the optimal convergence rate O(N
−1/2
H) in the H1 norm, and from

Figure 8.5 we see that the convergence behavior in the L2 norm is similar to that when
applying the Crank-Nicolson method. In other words, it attains something close to the
optimal convergence rate also in the L2 norm. We stress that the divergence observed
at the largest step is merely a consequence of choosing a somewhat too large time step
in order to use the Crank-Nicolson scheme for S1

0(Th) as a reference.

Next, we wish to study the case of mass lumping. This involves replacing the mass
matrix M with a diagonalized approximation as described by Lemma 3.4.1. From Fig-
ure 8.6, we observe that mass lumping for the corrected space V mH seems to behave
similarly to that of the coarse space S1

0(TH), with the exception that the optimal con-
vergence rate is attained for V mH , and consequently significantly better approximations
to the exact solution are attained. It is interesting to note that there is a significant
(but acceptable) error involved when applying mass lumping to the coarsest spaces,
but that this discrepancy virtually disappears for higher mesh resolution. For clarity
of presentation, we have only included the case of m = 3 here, but the behavior was
seen to be analogous for the other values of m, in that the error very closely resembles
that of the non-lumped Leapfrog method.

98 CHAPTER 8. NUMERICAL EXPERIMENTS

H1 convergence behavior of the Leapfrog method (no lumping)

102 103 104 105 106
NH

10 4

10 3

10 2

H
1 e

rro
r

(N 1/2
H)

(N 1/3
H)

Nt = 1025, t = 4.883e 04

S1
0(H), LF

VH, LF, m = 1
VH, LF, m = 2
S1

0(h), CN
VH, LF, m = 3

Figure 8.4: Estimated error ‖u− uh‖L2(0,T ;H1) as a function of number of vertices NH in

the coarse mesh TH for the Leapfrog method (LF) applied to the coarse space S1
0(TH) and

the corrected space VH .

L2 convergence behavior of the Leapfrog method (no lumping)

102 103 104 105 106
NH

10 7

10 6

10 5

10 4

10 3

10 2

L2 e
rro

r

(N 2/3
H)

(N 1
H)

Nt = 4097, t = 1.221e 04
S1

0(H), LF
VH, LF, m = 1
VH, LF, m = 2
S1

0(h), CN
VH, LF, m = 3

Figure 8.5: Estimated error ‖u− uh‖L2(0,T ;L2) as a function of number of vertices NH in

the coarse mesh TH for the Leapfrog method (LF) applied to the coarse space S1
0(TH) and

the corrected space VH .

8.2. ERROR MEASUREMENTS FOR THE ONLINE COMPUTATIONS 99

H1 convergence behavior of the Leapfrog method with mass lumping

102 103 104 105 106
NH

10 4

10 3

10 2

10 1
H

1 e
rro

r

(N 1/2
H)

(N 1/3
H)

Nt = 4097, t = 1.221e 04

S1
0(H), L-LF

S1
0(H), LF

VH, L-LF, m = 3
VH, LF, m = 3

Figure 8.6: Estimated error ‖u− uh‖L2(0,T ;L2) as a function of number of vertices NH in

the coarse mesh TH for the mass-lumped Leapfrog method (L-LF) applied to the coarse
space S1

0(TH) and the corrected space VH , as well as the Leapfrog method (LF) applied
to both spaces.

We now turn to studying the augmented Leapfrog method from Chapter 7. It turns out
that - at least for this particular model problem - the errors introduced by replacing the
corrected mass matrix and load vectors with their coarse space equivalents are almost
negligible. Because this is impossible to discern in a logarithmic plot, the numerical
values for the errors in the H1 norm are available for inspection in Table 8.5. In order
to save some space we have excluded the experiments for the coarsest meshes. It must
also be noted that data was not available for some experiments at the finest mesh
resolutions.

Next, we look at what happens when we apply mass lumping to the augmented Leapfrog
method and compare the errors to the standard mass lumped Leapfrog method applied
to V mH . We know from prior discussion that the mass lumping procedure seems to
cause some additional errors at low mesh resolutions, and unsurprisingly this means
that there’s a slight deviation between the mass-lumped augmented Leapfrog method
and the usual mass-lumped Leapfrog method. However, as in the case of augmented
Leapfrog without mass-lumping, the errors are almost identical to the usual mass-
lumped Leapfrog method as the mesh resolution increases. The results are presented
in Table 8.6. Note that for brevity we only present the case m = 3.

100 CHAPTER 8. NUMERICAL EXPERIMENTS

NH m
Error Error
(non-augmented) (augmented)

3201
1 2.78519e-03 2.78533e-03
2 1.35095e-03 1.35009e-03
3 1.32771e-03 1.32680e-03

12545
1 2.30199e-03 2.30204e-03
2 6.96820e-04 6.96661e-04
3 6.65340e-04 6.65165e-04

49665
1 2.08943e-03 2.08944e-03
2 3.80683e-04 3.80657e-04
3 3.36544e-04 3.36513e-04

197633
1 1.99348e-03 1.99349e-03
2 2.35217e-04 2.35219e-04
3 1.71977e-04 1.71974e-04

788481
1 1.94662e-03 1.94666e-03
2 1.75244e-04 1.75260e-04
3 8.92752e-05

Table 8.5: Estimated error ‖u− uh‖L2(0,T ;H1) for the non-augmented Leapfrog and aug-
mented Leapfrog method applied to the space V mH .

NH m
Error Error
(non-augmented) (augmented)

65 3 2.33179e-02 2.53831e-02
225 3 7.40836e-03 7.57917e-03
833 3 2.83990e-03 2.84497e-03
3201 3 1.33472e-03 1.33409e-03
12545 3 6.64906e-04 6.64716e-04
49665 3 3.36345e-04 3.36302e-04
197633 3 1.71908e-04 1.71901e-04
788481 3 8.91769e-05 8.91774e-05

Table 8.6: Estimated error ‖u− uh‖L2(0,T ;H1) for the non-augmented Leapfrog and aug-
mented Leapfrog method with mass lumping applied to the space V mH .

8.3. PERFORMANCE 101

8.3 Performance

A central question that arises when considering the practical efficacy of the corrected
basis V mH is whether or not it allows for sufficiently fast solutions to the problem. More
precisely, does the Leapfrog method applied to V mH accelerate accurate solutions to the
wave equation compared to standard methods? Alternatively, is it possible to achieve
an accurate solution in a shorter amount of time by applying the Leapfrog method to
S1

0(TH) for a higher mesh resolution or by using the Crank-Nicolson method applied
to S1

0(Th)?

The results from Section 8.2 suggest that mass lumping is a viable procedure even for
the corrected space V mH . This is very desirable, because we do not need to employ
an iterative solver at every time step, instead only having to apply the inverse of a
diagonal matrix. Since dimV mH = dimS1

0(TH), it is tempting to expect that the mass-
lumped Leapfrog method will take the same amount of time time when applied to V mH
as when applied to S1

0(TH). However, recall that the right-hand side of the system in
Definition 3.4.2 requires the application of the stiffness matrix A to a vector. Because
the stiffness matrix associated with V mH is generally denser than for S1

0(TH), we can
not expect this to be the case.

In the following, we will compare actual runtimes for the following computational
methods:

• The mass-lumped Leapfrog method applied to S1
0(TH).

• The mass-lumped Leapfrog method applied to V mH .

• The augmented mass-lumped Leapfrog method applied to V mH .

• The Crank-Nicolson method applied to S1
0(Th).

In order to simplify the presentation, we neglect to show benchmarks for all values of
m. Instead, for each value of NH , we fix a single m, which is chosen such that it is the
lowest value of m which attains the optimal convergence properties at that particular
mesh resolution. More precisely, we have made the choice

m(NH) :=

{
2 if NH < 13000

3 otherwise .

To evaluate the performance of the (mass-lumped) Leapfrog method applied to the
corrected space V mH , we must make a distinction between offline and online computa-
tion. It is important to realize that the basis only depends on the meshes TH and Th,
and so the system matrices can be assembled once and reused for different right-hand
side f and initial conditions u0 and v0. It thus makes sense to evaluate the offline and
online performance of the method separately.

The most important aspect is arguably the online performance, because if the method
fails to provide benefits over the standard finite element approaches even when not
taking into account the offline costs, it is of little practical value. However, if the

102 CHAPTER 8. NUMERICAL EXPERIMENTS

method can be shown to perform better than the standard methods in the online
phase, it must still be shown that the offline costs are not prohibitive. In other words,
it is crucial that the basis can be computed in reasonable time.

When measuring performance, there are many aspects to take into account. Here
we have made an effort to study the most important characteristics, as well as their
combined effects. To clarify what is measured, we make the following distinctions for
different runtime measurements. For offline performance measures, we define:

• Corrector computation time: Time spent computing correctors in order to
form the correction matrix Qcorr from Definition 6.4.1.

• Assembly time: Time spent assembling the mass- and stiffness matrices. Note
that for V mH , this does not include the time for computing the correctors. It only
includes the time necessary to assemble the matrices using the relations defined
in Lemma 6.4.2 after the correction matrix Qcorr has already been obtained.

For online performance measures, we define:

• Integration time: Total time across all time steps exclusively for setting up
and solving the linear system at each time step. Does not include the time to
construct load vectors.

• Load computation time: Total time across all time steps that was necessary
to compute the load vectors associated with the method. In this context, this
depends only on the dimension of the finite element space.

• Step time: Integration time + Load computation time.

Note that while the Crank-Nicolson method requires access to load vectors for three
distinct time steps, only a single new load vector must be computed for each iteration,
and so the costs of computing load vectors for the Leapfrog method and the Crank-
Nicolson method remain the same.

Before we begin to study the results, we must make the obligatory comment that while
parts of the implementation have been heavily profiled and optimized, other parts
have not undergone the same treatment. For example, the assembly procedure for the
augmented Leapfrog method still assembles the full corrected mass matrix associated
with V mH even though it is not needed, and it has otherwise not received any study as
to whether it can be made faster. On the other hand, the load computation has been
extensively profiled and rewritten to be fairly efficient, and the integration at each step
relies on fairly optimized machinery from the Eigen [32] library.

Online performance

We first consider the step time. This is essentially a representation of the total online
performance, because it describes the cost of the two most dominant factors of the
online phase - the time integration and load computation. From Figure 8.7, we see
that the two mass-lumped Leapfrog methods applied to V mH clearly outperform the

8.3. PERFORMANCE 103

104 105 106
NH

101

102

103

104

105
St

ep
 ti

m
e

(s
)

(NH)

Nt = 4097

S1
0(h), CN

VH, L-LF
VH, L-LF (aug)
S1

0(H), L-LF

Figure 8.7: Selected step times for the model problem for the mass-lumped Leapfrog
method (L-LF), the augmented mass-lumped Leapfrog method (L-LF (aug)) and the Crank-
Nicolson method (CN).

Crank-Nicolson method applied to S1
0(Th). In fact, it looks as if the augmented method

performs similarly to that of S1
0(TH). These results tell us something important, but

may ultimately be deceptive. It turns out that the load vectors for the model problem
are very expensive to compute, involving vast numbers of trigonometric calculations,
and clearly dominate the runtime for anything but the fine space S1

0(Th). We also see
that the augmented method significantly outperforms the non-augmented method by
a constant factor. From the preceding discussion, it should come as no surprise that
the difference is due to the fact that the augmented method only needs to compute the
coarse load vectors, which for this particular problem means roughly 1/8 of the effort
for load computation.

What if f = 0, or what if f is constant? In this case, load computation is virtually free,
and the results that were just presented are not indicative of actual performance. In
this case, a much better performance metric is the integration time, which is presented
by Figure 8.8. The same data is also presented in Table 8.7. Unsurprisingly, the coarse
space S1

0(TH) admits much faster integration, but it’s important to keep in mind that
it does so with substantially less accuracy.

It is clear from Figure 8.8 that the corrected space V mH admits much more efficient
computation than what the Crank-Nicolson method is able to achieve in this case,
since we have seen that V mH yields approximations of the solution that are at least
as accurate as that of S1

0(Th). However, having just seen how fast the mass-lumped
Leapfrog method is applied to the coarse space S1

0(TH), it begs the question if one is
able to come up with equally accurate approximations in a shorter amount of time by
running the standard mass-lumped Leapfrog method on S1

0(TH) to much higher mesh
resolutions.

104 CHAPTER 8. NUMERICAL EXPERIMENTS

104 105 106
NH

10 1

100

101

102

103

104

105
In

te
gr

at
io

n
tim

e
(s

)

(NH)

(N1.65
H)

Nt = 4097
S1

0(h), CN
VH, L-LF
VH, L-LF (aug)
S1

0(H), L-LF

Figure 8.8: Selected integration times for the model problem for the mass-lumped Leapfrog
method (L-LF), the augmented mass-lumped Leapfrog method (L-LF (aug)) and the Crank-
Nicolson method (CN). See Table 8.7 for the same data in a tabular format.

To test this hypothesis, consider NH = 788481. From Figure 8.6, we have seen that
the error produced by S1

0(TH) is slightly higher than the error produced by V mH for
m = 3 and NH = 3201. Moreover, this is also the case for m = 2. Comparing the
runtimes from Table 8.7, we see that the integration time for S1

0(TH) for NH = 788481
is about 63 seconds. For comparison, the integration time for V mH for the same number
of time steps is about 1 second. Here we could also have used a much smaller number
of time steps to achieve roughly the same error, which would have further reduced the
integration time. At this point, it is fair to say that the method based on the corrected
space V mH represents a significant improvement over the coarse space S1

0(TH) in terms
of online performance.

We have now established that in our experiments, the mass-lumped Leapfrog method
applied to V mH (augmented or not) clearly outperforms both the mass-lumped Leapfrog
method applied to S1

0(TH) and the Crank-Nicolson method applied to S1
0(Th) with a

diagonal preconditioner. It is then natural to ask how the results would look like if we
were to use an effective preconditioner for the Crank-Nicolson method. We can not
make any definitive assessment, but we can actually make a prediction. The integration
time of the mass-lumped Leapfrog method is essentially completely dominated by the
matrix-vector product Ax, since only a diagonal matrix needs to be inverted. However,
the Crank-Nicolson method must perform matrix-vector multiplication with both M
and A, and then solve an ill-conditioned linear system. This lets us make the following
claim: the mass-lumped Leapfrog method in V mH is always faster than the Crank-
Nicolson method in S1

0(Th) if the number of non-zeros in the stiffness matrix AH
associated with V mH is less than the combined number of non-zeros in the stiffness
matrix Ah and Mh associated with S1

0(Th).

Some casual observations and results presented in [12] seems to suggest that the density

8.3. PERFORMANCE 105

NH
V mH V mH S1

0(TH) S1
0(Th)

L-LF L-LF (aug) L-LF CN

3201 1.62 1.24 0.14 143.98
12545 6.98 10.19 0.64 982.73
49665 96.01 99.29 2.63 11191.94

197633 521.17 529.12 14.57 108529.08
788481 2800.36 2806.56 62.67

Table 8.7: Selected integration times for the model problem for the mass-lumped Leapfrog
method (L-LF), the augmented mass-lumped Leapfrog method (L-LF (aug)) and the Crank-
Nicolson method (CN). This is the same data as presented by Figure 8.8.

of AH tends to be greater than Ah for these kind of problems, so the above claim is
not directly very useful. However, consider now that the solution of the ill-conditioned
system typically dominates the integration time for the Crank-Nicolson method. This
means that there is a great deal of leniency in the number of additional non-zero
elements that can be accepted in AH . However, due to the lack of results with an
appropriate preconditioner for the Crank-Nicolson method, we are not able to quantify
this claim.

Offline performance

One of the main goals of this thesis is to determine if correctors can be computed
in reasonable time. We have seen in the previous section that the corrected space
V mH may provide significantly better online performance than the alternatives we have
studied here. A natural follow-up question is how much of an overhead the offline phase
incurs.

Moreover, we have proposed two alternative ways to compute correctors: the Schur-
complement based method discussed in 6.3.1, and the GMRES/AMG-based method
discussed in 6.3.2.

The corrector computation times are presented in Figure 8.9 and Table 8.8.

The most important observation from Figure 8.9 is that the corrector computation is
not typically prohibitively expensive. In fact, we see that the timings are of the same
order of magnitude as the integration times we studied in the previous section. In other
words, this heavily suggests that the spatial reduction method is in fact a practically
feasible method for numerical computation.

Another thing to note from Figure 8.9 is that runtimes seem to increase at a steady
rate for problems of size NH ≤ 197633, but then suddenly make a sharp increase for the
largest problems of size NH = 788481. Although it cannot be verified with certainty at
this point, the cause seems to be partly due to technical issues rather than exclusively
the mathematical properties of the method, and so it’s hard to make inferences based on

106 CHAPTER 8. NUMERICAL EXPERIMENTS

104 105 106
NH

101

102

103

104

Co
rre

ct
or

 c
om

pu
ta

tio
n

tim
e

(s
)

(NH)

(N1.15
H)

AMG, m = 2
AMG, m = 3
Schur, m = 2
Schur, m = 3

Figure 8.9: Corrector computation times for the GMRES/AMG and Schur-based methods.

NH
GMRES/AMG GMRES/AMG Schur Schur

m = 2 m = 3 m = 2 m = 3

3201 7.08 14.93 4.12 8.11
12545 34.10 73.02 18.60 38.27
49665 169.06 354.09 93.74 187.64

197633 818.90 1601.28 533.68 979.51
788481 8083.41 13707.65 7130.53 11192.46

Table 8.8: Corrector computation times in seconds for the GMRES/AMG and Schur-based
methods.

8.3. PERFORMANCE 107

104 105 106
NH

10 3

10 2

10 1

100

101

102

As
se

m
bl

y
tim

e
(s

)

(NH)

Nt = 4097
S1

0(h), CN
VH, L-LF
VH, L-LF (aug)
S1

0(H), L-LF

Figure 8.10: Assembly computation times.

NH
V mH V mH S1

0(TH) S1
0(Th)

L-LF L-LF (aug) L-LF CN

3201 0.30 0.32 0.01 0.04
12545 1.65 1.64 0.02 0.13
49665 19.36 19.14 0.07 0.66

197633 96.91 97.14 0.28 3.43
788481 490.30 492.07 1.24

Table 8.9: Assembly computation times.

this particular behavior. In particular, the computation exhausted available memory
for m = 4 and higher for the finest mesh, and so it is natural to think that these
computations are running at a very high memory load, which is a well-known cause of
slowdowns for memory-bound code that frequently allocates memory. While the code
was profiled rather extensively in terms of runtime for smaller problems, almost no
consideration was taken with respect to memory efficiency, and so it is likely that the
computations expend much more memory than what is truly needed.

The final piece of the puzzle, so to speak, is the cost of assembly. These numbers are
presented by Figure 8.10 and Table 8.9. We see that these timings are much smaller
than the basis construction times, and so does not have an impact on the conclusions
we have made so far.

We will conclude this chapter with a brief discussion of the efficiency of each of the two
methods for computing the correctors. We see from 8.9 that the runtimes for the exper-
iments we consider here only differ by a constant factor. In fact, the GMRES/AMG-
based method never exceeds twice the runtime of the Schur-based method for all ex-
periments. Moreover, we see that the Schur-based method is competitive even for

108 CHAPTER 8. NUMERICAL EXPERIMENTS

0 50000 100000 150000 200000 250000 300000 350000
Size of corrector problem

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 c

om
pu

ta
tio

n
tim

e
NH = 197633

Figure 8.11: Approximate cumulative distribution of the proportion of time spent by the
Schur-based solver as a function of the size of the corrector problems. For any value x on
the x-axis, the corresponding value on the y-axis represents the proportion of time relative
to the total corrector computation time spent on solving corrector problems of size smaller
or equal to x. The size of a corrector problem is defined to be #N (Th,T,m), the number
of vertices in the local fine-scale mesh.

moderately large problems, although due to the memory-related technical issues men-
tioned earlier, it’s not clear if the GMRES/AMG-based method will scale better as
the problems grow in size, although the numbers may seem to suggest that this is the
case.

It is tempting to think that the bottleneck of the corrector computation is the time
it takes to solve the largest corrector problems. In that case, you would be in for a
surprise. Consider the results in Figure 8.11. Here we present an approximate discrete
cumulative distribution of the proportion of time spent in solving corrector problems
of different sizes. The corrector solver used here is the Schur-based one, but results
would be similar for the GMRES-based solver. That is, for any value x on the x-
axis, the corresponding value on the y-axis represents the proportion of the corrector
computation time that was spent in solving corrector problems of size smaller or equal
to x. As an example, we see that more than 60 % of the computation time is spent in
solving corrector problems of size 70000 or less, which corresponds to the smallest 20
% of corrector problems. It was observed that as NH grows, the smaller problems seem
to demand an increasingly larger proportion of the computation time. Note that in
this context we define the size of a corrector problem to be measured by #N (Th,T,m),
which is the number of vertices in the local fine-scale mesh.

Chapter 9

Concluding remarks

We will conclude this thesis with a summary of what is believed to be the most impor-
tant conclusions to be made from what has been presented.

9.1 Main takeaways

The main goal of this thesis was to evaluate the method for CFL relaxation proposed
by Peterseim and Schedensack [12], and try to determine if it has merit for practical
computation. Based on the numerical experiments, we can at least partially answer this
question. With regards to online computation - that is, actually solving the problem
after corrector computation and matrix assembly, we conclude that:

• The proposed method is a significant improvement over the standard Leapfrog
method applied to the coarse space S1

0(TH), which suffers from a reduction in
convergence rate.

• In the experiments considered, the method was also a significant improvement
over the Crank-Nicolson method applied to the fine space S1

0(Th), which was also
observed to have accuracy issues, but this comparison is not indicative of the real
relationship between the two methods had a more appropriate preconditioner
been used for the Crank-Nicolson method.

• Although not currently theoretically justified, mass lumping seems to work very
well for the Leapfrog method applied to the corrected space VH , at least for the
model problem considered. It was observed to attain virtually the same error as
the Leapfrog method without mass lumping.

• The oversampling parameter m must be chosen judiciously to get the best trade-
off between accuracy and performance. Even for the largest experiment consid-
ered, with roughly 200 000 vertices in the coarse mesh TH and about 6 500 000

109

110 CHAPTER 9. CONCLUDING REMARKS

vertices in the fine mesh Th, m = 3 was sufficient to attain optimal convergence
rates.

• The augmented Leapfrog method proposed in Chapter 7 was observed to give
virtually identical errors as that of the standard Leapfrog method.

• The augmented Leapfrog method was seen to yield drastic cost savings in the
case when the right-hand side f is very expensive to compute.

• Stability of the augmented Leapfrog method was proved, but optimal convergence
rates have still not been proved.

• Even though mass lumping works for VH and dimVH = dimS1
0(TH), the cost

of integration with the mass-lumped Leapfrog method may be drastically higher
for VH due to the increased density of the stiffness matrix, which is used in a
matrix-vector product at each time step.

In this thesis, we also proposed two methods for solving the corrector problems that
appear in the offline computation associated with forming the space V mH . With regards
to the offline computation, we make the following conclusions:

• In general, the runtime cost of computing the correctors is not prohibitive, in
the sense that it can be on the same order of magnitude as solving even a single
problem, depending on how many time steps are taken.

• The Schur-based method generally outperforms the GMRES/AMG-based method
for the mesh sizes studied here, but only by a factor of at most 2. This might
suggest that the preconditioner suggested for the GMRES/AMG-based method
is quite appropriate, and that it might be effective also for larger problems.

• The bottleneck of offline computation seems to be the number of small problems
to be solved, and not the time to solve the largest problems. It seems that
the number of small problems increases faster than the comparative change in
size of the large problems. This suggests that using a different corrector solver
depending on the size of the corrector problem may be a good idea.

While the author believes the method certainly has merit, it must be pointed out that
the implementation is very involved. For many purposes it may be more cost-effective to
focus on using an off-the-shelf suitable preconditioner for the Crank-Nicolson method.
We would venture a guess that an AMG-based preconditioner would work well.

To ease the implementation difficulties for anyone wishing to study this method, a
prototype C++ library named crest is published alongside this thesis. Details are
available in Chapter 6.5.

9.2 Possible improvements

We will here briefly summarize some of the possible improvements that — given enough
time to implement — the thesis would have benefited from.

9.3. APPLICATIONS 111

• The preconditioner used for the Crank-Nicolson method in the fine space S1
0(Th)

in the numerical experiments was very ineffective, and so the results for this
method are not indicative of what is possible to achieve with an appropriate pre-
conditioner. With more time, it would perhaps have been wise to attempt to use
an AMG-based preconditioner, such as the one we used for the GMRES/AMG-
based corrector solver.

• Only a single, artificial model problem was considered. So far the method has
not been evaluated on real-world workloads.

• The perturbation of the corrector problems defined in Definition 6.2.4 is not
theoretically justified. However, at least for the model problem considered, it
works flawlessly in practice. That said, it is possible that it inflates the required
value of the oversampling parameter m slightly.

• The corrector computations did not leverage the property which ensures that
correctors vanish in non-refined areas of the mesh, as shown in Lemma 5.3.6.
For the model problem in question, this probably did not make so much of a
difference for the offline runtime, but it may have had some limited effect on the
online performance due to accidental fill-in of stiffness matrices (though at the
most fill-in would only be reduced by approximately 20%).

• Offline runtime results for the very largest problem may have been affected by
memory limitations which may have slowed down computations.

9.3 Applications

We will now briefly suggest some domains for which the method is believed to be
particularly useful, and we will also point out some scenarios in which the method is
expected to perform poorly.

The method may be particularly useful in the following settings:

• Real-time simulation: In this domain one will often readily allow long pre-
computation times to achieve faster online performance. Moreover, this method
may be particularly suited for this domain because Leapfrog with mass lump-
ing avoids any kind of iterative solvers. For real-time computation, one is often
equally concerned with predictable performance as the speed of the computation.
The performance of the mass-lumped Leapfrog method performs exactly the same
number of operations at each time step, and so is completely predictable.

• Optimization: Because the correctors only need to be computed once for dif-
ferent initial conditions u0, v0, right-hand side f and final time T , the method
may be well suited for optimization problems in which these quantities vary. In
these scenarios one must often solve problems many, many times for different
parameters.

112 CHAPTER 9. CONCLUDING REMARKS

• Long-running simulations: Since the offline costs are fixed, the relative cost
of corrector computation decreases very quickly as the number of time steps
increases.

• Large domains with few re-entrant corners: In problems where only a
relatively small part of the domain needs refinement, the online computations of
the Leapfrog method in VH can be expected to perform at almost the same level
as S1

0(TH) in terms of online runtime.

On the other hand, we can expect the method not to be effective or applicable in the
following contexts:

• Domains with complicated boundaries: If the boundary of the domain does
not fit in an appropriately “coarse” quasi-uniform mesh, the method cannot be
applied with the goal of recovering Leapfrog stability. For example, if the bound-
ary has edges of size much less than H, a quasi-uniform mesh with mesh size H
can not be fit to the domain.

• Problems with a large portion of mesh refinement: If most of the area or
volume of the domain needs local mesh refinement, the number of non-zeros in the
system matrices can be much larger than for S1

0(Th). However, this was actually
the case in our model problem, and it still performed relatively well. The fill-in
is roughly ∼ Cmd times the number of non-zeros for each refined triangle in TH ,
where d is the dimension of the domain and m is the oversampling parameter, so
in 3D the density of the system matrices may be prohibitive in these cases.

9.4 Future work

Natural follow-up work to this thesis would be:

• Study the augmented Leapfrog method to see if it can be proved that the optimal
convergence rates are recovered with the same assumptions as the ones made for
VH , or if additional assumptions must be made.

• Test more appropriate preconditioners for the Crank-Nicolson method and see
how it performs relative to the Leapfrog method applied to V mH .

• In this thesis, we only compared the method against standard finite element
methods, and not any alternative approaches for overcoming a restrictive CFL
condition. This would be a natural next step after comparing with a more ap-
propriately preconditioned Crank-Nicolson method.

• Come up with an efficient way to solve the exact localized corrector problem, in
the sense that we avoid the perturbation introduced in Definition 6.2.4.

• Evaluate the corrected space VH for real-world applications.

• Evaluate the performance of the corrected space VH in 3D.

Bibliography

[1] S. H. Christiansen. “Applied Wave Mathematics: Selected Topics in Solids, Flu-
ids, and Mathematical Methods”. In: Springer Berlin Heidelberg, 2009. Chap. Foun-
dations of Finite Element Methods for Wave Equations of Maxwell Type, pp. 335–
393.

[2] P. Joly. “Variational Methods for Time-Dependent Wave Propagation Problems”.
In: Topics in Computational Wave Propagation: Direct and Inverse Problems.
Springer Berlin Heidelberg, 2003, pp. 201–264.

[3] J.T. Oden and J.N. Reddy. An Introduction to the Mathematical Theory of Finite
Elements. Dover Publications, 1976.

[4] V. Mazoya and J. Rossmann. Elliptic equations in polyhedral domains. 2010.
[5] Fernando D Gaspoz and Pedro Morin. “Convergence rates for adaptive finite

elements”. In: IMA journal of numerical analysis 29.4 (2009), pp. 917–936.
[6] F. L. Müller and C. Schwab. “Finite Elements with mesh refinement for wave

equations in polygons”. In: Journal of Computational and Applied Mathematics
283 (2015), pp. 163–181.

[7] J. Crank and P. Nicolson. “A practical method for numerical evaluation of so-
lutions of partial differential equations of the heat-conduction type”. In: Math-
ematical Proceedings of the Cambridge Philosophical Society. Vol. 43. 01. 1947,
pp. 50–67.

[8] J. Diaz and M. J. Grote. “Energy conserving explicit local time-stepping for
second-order wave equations”. In: SIAM J. Sci. Comput (2009), pp. 1985–2014.

[9] J. Diaz and M. J. Grote. “Multi-level explicit local time-stepping methods for
second-order wave equations”. In: Computer Methods in Applied Mechanics and
Engineering 291 (2015), pp. 240–265.

[10] M. Hochbruck and A. Sturm. “Error Analysis of a Second-Order Locally Im-
plicit Method for Linear Maxwell’s Equations”. In: SIAM Journal on Numerical
Analysis 54.5 (2016), pp. 3167–3191.

[11] P. Ciarlet and J. He. “The Singular Complement Method for 2d scalar problems”.
In: Comptes Rendus Mathematique 336.4 (2003), pp. 353–358.

[12] D. Peterseim and M. Schedensack. “Relaxing the CFL Condition for the Wave
Equation on Adaptive Meshes”. In: Journal of Scientific Computing (2017),
pp. 1–18.

113

114 BIBLIOGRAPHY

[13] Y. Saad and M. H. Schultz. “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems”. In: SIAM Journal on scientific and
statistical computing 7.3 (1986), pp. 856–869.

[14] L. C. Evans. Partial Differential Equations: Second Edition (Graduate Studies in
Mathematics). 2nd ed. American Mathematical Society, 2010.

[15] A. Quarteroni. Numerical Models for Differential Problems. 2nd ed. Springer,
2014.

[16] S. Brenner and Scott L.R. The Mathematical Theory of Finite Element Methods.
Springer New York, 2008.

[17] S. Larsson and V. Thomée. Partial Differential Equations with Numerical Meth-
ods. Springer Berlin Heidelberg, 2003.

[18] T. Dupont. “Lˆ2-estimates for Galerkin methods for second order hyperbolic
equations”. In: SIAM journal on numerical analysis 10.5 (1973), pp. 880–889.

[19] G. A. Baker. “Error estimates for finite element methods for second order hyper-
bolic equations”. In: SIAM journal on numerical analysis 13.4 (1976), pp. 564–
576.

[20] A. Abdulle and P. Henning. “Localized orthogonal decomposition method for
the wave equation with a continuum of scales”. In: Mathematics of Computation
86.304 (2017), pp. 549–587.

[21] A. Bamberger, G. Chavent, and P. Lailly. Etude de schémas numériques pour les
équations de l’élastodynamique linéaire. INRIA, 1980.

[22] G. Cohen et al. “Higher Order Triangular Finite Elements with Mass Lumping
for the Wave Equation”. In: SIAM Journal on Numerical Analysis 38.6 (2001).

[23] E. Bänsch. “Local mesh refinement in 2 and 3 dimensions”. In: IMPACT of
Computing in Science and Engineering 3.3 (1991), pp. 181–191.

[24] A. Målqvist and D. Peterseim. “Localization of elliptic multiscale problems”. In:
Mathematics of Computation 83.290 (2014), pp. 2583–2603.

[25] P. Henning and D. Peterseim. “Oversampling for the Multiscale Finite Element
Method”. In: Multiscale Model. Simul. 11.4 (2013), pp. 1149–1175.

[26] P. Henning, P. Morgenstern, and D. Peterseim. “Multiscale partition of unity”. In:
Meshfree Methods for Partial Differential Equations VII. Springer, 2015, pp. 185–
204.

[27] C. Engwer et al. “Efficient implementation of the localized orthogonal decompo-
sition method”. In: arXiv preprint arXiv:1602.01658 (2016).

[28] M. Benzi, G. Golub, and J. Liesen. “Numerical solution of saddle point problems”.
In: Acta numerica 14 (2005), pp. 1–137.

[29] J. W. Ruge and K. Stüben. “Algebraic Multigrid”. In: Multigrid Methods. Chap. 4,
pp. 73–130. doi: 10.1137/1.9781611971057.ch4.

[30] K. Stüben. “A review of algebraic multigrid”. In: Journal of Computational
and Applied Mathematics 128.1–2 (2001), pp. 281–309. doi: 10.1016/S0377-
0427(00)00516-1.

[31] M. F. Murphy, G. Golub, and A. J. Wathen. “A Note on Preconditioning for In-
definite Linear Systems”. In: SIAM Journal on Scientific Computing 21.6 (2000),
pp. 1969–1972. doi: 10.1137/S1064827599355153.

[32] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2017.

http://dx.doi.org/10.1137/1.9781611971057.ch4
http://dx.doi.org/10.1016/S0377-0427(00)00516-1
http://dx.doi.org/10.1016/S0377-0427(00)00516-1
http://dx.doi.org/10.1137/S1064827599355153

BIBLIOGRAPHY 115

[33] A. H. Baker, E. R. Jessup, and T. Manteuffel. “A Technique for Accelerating the
Convergence of Restarted GMRES”. In: SIAM Journal on Matrix Analysis and
Applications 26.4 (2005), pp. 962–984. doi: 10.1137/S0895479803422014.

[34] D. Demidov. AMGCL. https://github.com/ddemidov/amgcl. Last accessed March
11 2017.

[35] F. D. Witherden and P. E. Vincent. “On the identification of symmetric quadra-
ture rules for finite element methods”. In: Computers & Mathematics with Ap-
plications 69.10 (2015).

http://dx.doi.org/10.1137/S0895479803422014

	Introduction
	Outline of the thesis
	Notation

	Mathematical foundation
	Weak formulation
	Finite element spaces

	Discretization
	Finite difference operators
	The Leapfrog method
	The Crank-Nicolson method
	Mass lumping
	Initialization: Taking the first step

	The geometrical setting
	Triangulation and simple bisection
	Corner singularities in non-convex domains

	CFL relaxation by spatial reduction
	Construction of a reduced finite element space
	A local admissible quasi-interpolator
	A basis for the corrected space
	Localization
	Support of basis correctors in locally refined meshes

	Application to the wave equation

	Efficient corrector computation
	The local quasi-interpolator in matrix form
	An algebraic formulation for the corrector problem
	Linear solvers for the corrector problem
	Schur complement reduction and sparse direct solvers
	Algebraic Multigrid and block-preconditioned GMRES

	A high-level algorithm for corrector computation
	crest: An open-source implementation

	Augmented Leapfrog
	Numerical experiments
	Experimental setup
	Model problem
	Offline computation
	Online computation

	Error measurements for the online computations
	Performance

	Concluding remarks
	Main takeaways
	Possible improvements
	Applications
	Future work

	Bibliography

