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Abstract

This thesis looks at some phenomena in the early universe — the stage of the Universe
from when it was populated by all the particles in the Standard Model, until the last
positrons disappeared. More specifically from when the Universe was 10�12 seconds
old until a few minutes after the big bang.

The first paper addresses the degrees of freedom related to the elementary par-
ticles, and show the evolution of these as the universe expands and cools. As the
temperature decreases the particles will go from relativistic velocities to semi- and
non-relativistic velocities, before finally disappearing. The temperature at which this
happens depends on the particles masses. One important difference between rela-
tivistic and non-relativistic particles is that they cool at different rates (T�a�1 vs.
T�a�2). If we have a mixture of both types a bulk viscous effect will arise, resulting a
heat transfer between the two components. My second and third paper discuss these
phenomena.

Bulk viscosity and entropy production are at their highest at the end of the lepton
era, just before the neutrinos decouple at T � 1010 K. At this time the neutrinos
have a very long mean free path, resulting in large momentum transfers and heat
exchange. Many previous works have concentrated their work on just the lepton era
(T � 1012 K � 1010 K), a time where most of the Universe consisted of electrons,
positrons, neutrinos, and photons. At higher temperatures, hadrons and eventually
quarks and gluons make up a significant contribution to the particle soup. I have made
a model universe where all particles except the leptons and photon are excluded. I
can thus include the heavier cousins of the electron — the muon and tau. By doing
this, we get a more qualitative picture of what happens as particle species goes from
relativistic velocities to semi- and non-relativistic temperatures and finally disappears
one by one.
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Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) as a partial fulfillment of the requirements for the degree of Philosophiae
Doctor. It is the result of six years of research at the Department of Physics at NTNU
under the supervision of professors K̊are Olaussen and Iver H. Brevik.

The first part of my thesis gives a short introduction to the field of cosmology and
more importantly to the subjects of viscosity and entropy in the early Universe. This
part is also meant to motivate and elucidate my three papers which make up the
second part of this thesis. I have tried to make this introduction fairly basic, making
it accessible to people new to the field or from a related field.

Lars Husdal
Trondheim, March 2017
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1 Introduction

In 1964, the two radio astronomers Arno Penzias and Robert Wilson accidentally
discovered the cosmic microwave background (CMB) radiation — a clear evidence
that the Universe began as a hot dense ball which has been expanding ever since.
Further studies of the CMB have shown us that the early universe was in a state
of almost perfect thermal equilibrium, being both isotropic and homogeneous. This
is what we normally would say was a state of maximum entropy. However, as we
clearly know, that was not the case, and the total entropy is continuing to increase
as time goes by (the arrow of time is by many physicists related to the increase of
entropy. So how could a state which is in perfect thermal equilibrium still increase
its entropy? One reason has to do with the fact that a non-relativistic gas cools
down at a different rate than a relativistic gas, and if we have a mixture of the two
phases, entropy will increase. During the early universe era, all the massive particles
of the Standard Model went from being relativistic to non-relativistic to essentially
disappearing completely. One would thus assume that an increase in the total entropy
would occur. Before heading into the physics, a short history of the Universe from
the Big Bang to today is in order.

1.1 Chronology of the Universe

According to the latest results from the Planck satellite and other experiments, the age
of the universe is 13.799� 0.021 billion years old [4]. Throughout this time its overall
characteristics have changed significantly. There are several ways to categorize the
different phases, and it all comes down to context. We will later see that one option
is to distinguish them according to how the geometry of the Universe evolves due to
the dominating energy contributor. This gives us radiation, matter, and dark energy
dominated eras, we being in the latter era now. An illustration of these eras are given
later in Figure 4.1. This is important when it comes to the geometry of the Universe
as a whole.

If we are more interested in what is going on the smaller scales, a better way would
be to divide the evolution into three main different phases, namely the very early
universe, the early universe, and structure formation (and if we want, we can add
another phase for the future and fate of the Universe). All three phases have distinct
characteristics.

The first phase began at the earliest time we can imagine, namely the Big Bang.
During this period the four forces we know today separated out one by one from what

3



1 Introduction

we think was one unified force. The other main point here is that the theories we have
for this period are, to some extent, speculative. By that I mean that temperatures and
energies during this phase were higher than what we can produce in any accelerators
today — it involves physics beyond the Standard Model.

The next phase is the early universe and begins at temperatures “low” enough to
be recreated in experiments here on Earth (e.g. the LHC). We are now talking about
Standard Model physics. During this phase, the Universe went from being populated
by all the known particles in the Standard Model of particle physics, to essentially
being dominated by the photons and neutrinos.

The third and current phase is that of structure formation. This phase started with
the photon decoupling which made the Universe transparent and is the theoretical
limit for how far back in time we can see using observational astronomy. During this
period matter cooled down and started to clump together, thus starting to form stars,
galaxies, and other structures — hence the name.

Each of these three phases consists of shorter periods, which we call eras, or epochs
and deserves a closer look. For the early universe, I will distinguish these eras by
number contribution (other sources might use mass domination).

1.1.1 The very early universe

Planck era (0 s � 10�43 s). According to the classical Big Bang theory, the
Universe began as a singularity with infinite density and temperature. Quantum
effects, however, are not taken into account. Our understanding of quantum theory
only makes sense in a certain range, that below the Planck scale. For time this is
called the Planck time and is defined as

�
�G�c5 � 5.39�10�44 s) Everything before

this is what we call the Planck era. Although we know very little about this era, we
believe that the gravitational force will be as strong as the other fundamental forces
and they will behave as one unified force. A theory describing this era should unite
quantum field theory (QFT) and general relativity (GR). Until such a theory comes
about, we are not able to make any predictions about what was happening in that
era.

The first step towards such a theory is to find a quantum description of gravity.
General Relativity is formulated using classical physics, while the other three forces
are formulated using quantum mechanics. Coupling together a classical and a quan-
tum mechanical system might lead to trouble, which is the case here [5]. We say that
it is not renormalizable. One popular theory for this quantization is loop quantum
gravity. If a theory also unifies gravity with the other three forces it is also a so-called
theory of everything (ToE). String theory, for example, is one such theory.

Grand unification era (10�43 s � 10�36 s). As the Universe cooled down, gravity
splits out as a separate force, while the other three forces: the strong, weak and
electromagnetic forces (collectively called the gauge forces) are still united as one
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1.1 Chronology of the Universe

force. Theories trying to explain and unify the strong and electroweak forces are called
Grand Unified Theories. There are many grand unification models. The simplest of
these uses SU(5) and was proposed by Howard Georgi and Sheldon Glashow in 1974
[6]. Common for all models is the inclusion of some heavy bosons with masses around
1015 GeV�c2. These are like analogies to the W and Z particles, but couples quarks to
leptons. In the Georgi-Glashow model, there are 12 of these, named X and Y bosons,
respectively. When the temperature decreases below this at around 10�36 s it will
result in a symmetry breaking splitting the strong force from the electroweak force.
In some theories baryogenesis is caused by the decay of these heavy bosons (X, Y, or
something equivalent), as they may violate baryon number [7].

Inflationary era (10�36 s � 10�32 s). After the grand unification era, the Uni-
verse is thought to have gone through a phase of rapid exponential expansion called
inflation. The linear size of the Universe is thought to have increased by a factor
of at least 1026 and volume by 1078 [8]. The actual mechanism behind inflation is
speculative but is thought to have started around the time of the GUT transition by
a scalar field called the inflaton (field). This field is thought to be quite similar to
dark energy or the Higgs field, but involving much higher energies.

The idea of an early inflationary epoch was proposed by a number of physicist
around 1980. Among them was Starobinsky who looked at non-singular cosmological
models, and saw the importance of quantum corrections to Einsteins Field Equations
[9, 10]. Guth is often credited for seeing the importance of inflation, and in his
original theory, the inflaton field would be in what we call a false vacuum — a kind
of positive energy (as opposed to the negative energy of gravity), which according to
general relativity would accelerate the expansion of space at an exponential rate [11].
More modern versions (e.g. Linde [12]) of inflation have abandoned the false vacuum
part, but rather assuming that the inflaton field starts at a high energy state, from
which it slow rolls down a potential well [13]. While the value of the inflaton field was
dropping very slowly, the particle content in the Universe would cool down and dilute
rapidly. As the potential start to drop more quickly, the inflation process stops and a
reheating process starts. In this process the potential energy which is released results
in the creation of particles, in a process we call reheating. In practice, everything in
our observable universe results from this process. This era is thought to have ended
at around 10�32 seconds.

Inflation theory has a lot of supporters as it solves several big questions in cosmo-
logy, the three biggest ones being the flatness problem, the horizon problem, and the
magnetic monopole problem. The flatness problem has to do with the curvature of
the Universe being so small. Without inflation, this would require the energy den-
sity in the Universe to be very fine-tuned to a special value (the critical density). If
there was an inflationary era then the Universe we observe today is just a very small
fraction of a bigger universe, which might very well be curved. The horizon problem
has to do with why the horizon on the opposite sides of the Universe (relative to an
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1 Introduction

observer) have the same temperature. Classical theory says that they should never
have been in contact with each other (causally separated). If the whole Universe went
through an inflationary period, the whole observable universe was all very close and
causally connected before inflation separated them with superluminal speeds. The
last problem has to do with magnetic monopoles, which are a type of hypothetical
particles with magnetic charge (just a north or south pole). These particles would
make the connection between electricity and magnetism more symmetric. No magne-
tic monopoles have ever been observed, but they might be too massive to be produced
from the potential energy of the inflaton field. In such case, the reason we haven’t
seen any magnetic monopoles isn’t necessary because they don’t exist, but because
they are so diluted we just haven’t seen them yet.

Cosmic inflation is the simplest theory which solves all the aforementioned pro-
blems. According to the theory the structure we see in the Universe today originate
from quantum fluctuations in the inflaton field which would grow to macroscopic si-
zes during the exponential growth. The effects of the primordial fluctuations were
studied by among others: Mukhanov and Chibisov [14, 15], and Hawking [16]

Electroweak era (10�32 s � 10�11 s). After the symmetry breaking at the GUT
scale, the strong force separated out from the what we call the electroweak force.
The Universe is filled with hot quark-gluon plasma, leptons, and the gauge bosons
of the electromagnetic and weak forces. In the electroweak era, these bosons were
all massless and named the W1, W2, W3, and B bosons. The electroweak era lasted
quite long (if we look at it from a logarithmic point of view). Then at around 100
GeV, when the Universe was around 10�11 s old, the Higgs mechanism caused a
spontaneous symmetry breaking of the electroweak force. The four aforementioned
bosons split into the three massive W�, W�, and Z0 particles; and the massless
photon.

The electroweak energy scale of 100 GeV has been possible to recreate here on
Earth for some decades now. The electroweak theory is thus well understood and
verified by experiments. However, there is a big gap between the highest energies we
can produce in accelerators today (13 TeV at the LHC) and the 1010 TeV at the end
of inflation. Most of the electroweak era is still uncharted territory.

1.1.2 The early universe

Quark era (10�11 s � 10�5 s). At this time all the four fundamental forces have
settled down to their current form. The temperature is not high enough to create the
heavier particles like W, Z, H, and t, so these will quickly annihilate. We are thus
left with (the remaining five) quarks, gluons, leptons, and photons. The temperature
is too high for quarks to form hadrons in the form of baryons and mesons. Instead,
they are in a state together with gluons which we call a quark-gluon plasma, where
they act as free elementary particles.
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1.1 Chronology of the Universe
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Figure 1.1: Relative number densities of the different particle types from kBT 106 to
10 2 MeV. We can categorize the different eras of the Universe according to the dominant
particle species. From left to right (high to low temperature) we have the quark, hadron, lepton,
and photon eras. From a number density (or energy density) point of view, the hadron era is very
short.
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1 Introduction

Hadron era (10�5 s � 10�4 s). Somewhere between 150 and 300 MeV, there is
an important phase transition. The previously freely roaming quarks and gluons
will clump together to form color-neutral hadronic particles like mesons and baryons
(see Chapter 2 on particle physics). By number density or (kinetic) energy density
(which does not include rest mass) this period does not last very long. The low
temperature only allows for a small production of the heavier baryons like protons
and neutrons. The lighter pions exist for a while longer. Eventually, all the anti-
hadrons will annihilate and we are left with only a very small portion of hadrons.

Lepton era (10�4 s � 100 s). When the temperature dropped to around 100 MeV
the number and energy density of the Universe became dominated by the leptons
(neutrinos, electrons, positrons and also some muons). At this time neutrinos were
coupled with the charged leptons through the weak interaction and remained in equi-
librium. At around T � 1 MeV the mean free path of neutrinos became greater than
the Hubble distance (the distance to something receding by the speed of light and is
defined as cH�1), and decoupled directly from the electron-positrons and indirectly
from the photons. From here on the neutrinos and the photon-coupled particles cool
down independently from each other. Shortly after the neutrino decoupling the last
numerous massive particles — the electrons and positrons will annihilate. The pho-
tons will be heated by this process, while the neutrinos won’t. Today the cosmic
microwave background photons have a temperature of 2.73 K, while the cosmic mi-
crowave neutrinos have (according to theory) a temperature of 1.95 K. At around
100 keV most of the electrons and positrons have annihilated and essentially all the
energy in the Universe is contained in the photons and neutrinos).

Photon era (100 s � 380 000 y). As the photon era begins, the antimatter parti-
cles are all but extinct. The excess matter particles (electrons, protons, and neutrons)
are outnumbered by the photons by roughly one to one billion. As we enter the pho-
ton era, the protons and neutrons start to clump together to form elements such as
deuterium, helium, beryllium, and lithium. This happens gradually, but a well-used
definition is 3 minutes after the Big Bang [17]. At this time the amount of helium-4
and deuterium was about one ten-thousandth that of the proton [8]. This is the Big
Bang nucleosynthesis (BBN) (sub)era, and last until about 20 minutes after the Big
Bang (see Figure B.1.) For thousands of years the Universe continued to dilute and
accol. Eventually, after being radiation dominated since its formation the Universe
became matter dominated, 47 000 years after the Big Bang [18].

During the photon era, the Universe is in a plasma phase, with free electrons and
nuclei. Since photons interact strongly with the ionized particles the Universe was
opaque. Eventually, the temperature becomes low enough for electrons and nuclei to
form atoms. This period is called recombination, which is kind of a bad expression, as
this suggests that they have previous been combined. The recombination happened
quite rapidly, first with most ionized isotopes of beryllium, lithium, and helium,

8



1.1 Chronology of the Universe

and then most importantly with hydrogen at around 380 000 years after the Big
Bang. Photons could now no longer interact with the neutral atoms, causing them
to decouple from matter. Light would then travel unhindered and is what we today
observe as the cosmic microwave background (CMB).

1.1.3 Structure formation

Figure 1.2: The cosmic microwave background gives an imprint of the Universe at the time of
photon decoupling at around 380 000 years after the Big Bang (redshift z 1090 [19]). The
fluctuations of around 1 part per 100 000 is the start of structure formations. Photo: ESA.

Dark ages (380 000 y 400 million y). After recombination and photon decou-
pling, matter is quite evenly distributed with only small fluctuations in density. These
small fluctuations will eventually grow to form clusters and galaxies, and voids. There
are few new sources of light, hence the name the dark ages. Future studies of the 21
cm hydrogen line might shed some more light on this relatively unknown era.

Reionization (400 million y 1 billion y). As the matter clumps together they will
form stars and quasars. These events will emit large amounts of radiation, which will
reionize the Universe. The exact time when reionization starts is still a bit unclear,
but the oldest galaxies we have observed dates back to roughly 400 million years after
the Big Bang. Hopefully, future telescopes like the James Webb Space Telescope,
scheduled to be launched in 2018 will give us more answers. The whole Universe is
thought to be reionized at about 1 billion years after the Big Bang [20]. Because
of the low density of the electrons and baryons, the interaction rate between them
and the photons are so low that the opaqueness just barely increased and Universe
remains transparent.

9



1 Introduction

Current era (1 billion y � 13.799 billion y). What happens after reionization is
quite well understood. The Universe will continue to clump together and expand,
leading to decreasing matter and radiation densities. The discovery of dark energy
in 1998 [21, 22] gave us a new ingredient to include. Assuming this is a cosmological
constant, its energy density is constant. This means that the Universe became dark
energy dominated at around 9.8 billion years after the Big Bang [18].

1.2 Cosmological parameters

Today the ΛCDM (Lambda Cold Dark Matter) model is referred to as the Standard
Model of Big Bang cosmology, as is the simplest model which reasonably describes
the cosmos (e.g. the existence and structure of the CMB, the large-scare structure
and distribution of galaxies, and the abundances of light elements through primordial
nucleosynthesis). It can also be extended to include inflation. The ΛCDM is based
on six independent (primary) parameters as shown in Table 1.1. Together with a few
fixed parameters we also get some of the more famous calculated parameters shown
in the same table.

10



1.2 Cosmological parameters

Table 1.1: Cosmological parameters according to the Planck 2015 results with the
TT,TE,EE�lowP�lensing�ext parameters with 68% confidence limits [19]. Ω is the density
compared to critical density, h is the reduced Hubble constant, defined asH0��100 kms�1Mpc�1�.
What is listed as the sound horizon at last scattering is actually the Monte-Carlo calculated an-
gular size of the sound horizon (of BAO) multiplied by a hundred. The reionization optical depth
tells us about the opacity at the time of reionization. Pertubation amplitude tells us about the
fluctuations in density in the early universe. The scalar spectral index tells us how the density
fluctuations vary with scale.

Description: Symbol: Value:

P
ri
m
a
ry

Physical baryon density Ωbh
2 0.022 30� 0.000 14

Physical cold dark matter density Ωch
2 0.1188� 0.0010

Sound horizon at last scattering 100θMC 1.040 93� 0.000 30
Reionization optical depth τ 0.066� 0.012
Perturbation amplitude ln

�
1010As

�
3.064� 0.023

Scalar spectral index ns 0.9667� 0.0040

C
a
lc
u
la
te
d Hubble constant H0 67.74� 0.46

Cosmological constant density ΩΛ 0.6911� 0.0062
Matter density Ωm 0.3089� 0.0062
Age of the Universe / Gyr t0 13.799� 0.021
Redshift at decoupling z� 1 089.90� 0.23

1 TT: temperature power spectrum, TE: temperature-polarization cross spectrum, EE: po-
larization power spectrum, lowP: Planck polarization data in the low-� likelihood, lensing:
CMB lensing reconstruction, ext: External data from Baryon acoustic oscillations (BAO), Joint
Light-curve Analysis (JLA), and the Hubble constant.
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2 Particle Physics Summary

2.1 Standard Model of elementary particles

The Standard Model of particle physics is one of the most successful theories in physics
and explains the existence and composition of all the known particles. Figure 2.1
shows the most familiar representation of the Standard Model of elementary particles,
where the particles are divided into four categories: the quarks, the leptons, the force-
carrying gauge bosons, and finally the Higgs boson. The spin of elementary particles
comes in units of the reduced Planck constant, �. Particles with half-integer spin
(1�2, 3�2, . . .) are called fermions, while bosons have an integer spin number (0, 1, 2, . . .).
All matter particles (quarks and leptons) have spin-1/2, the gauge bosons have spin-
1 and the Higgs boson has spin-0. Gravitation is not part of the Standard Model.
However, most physicists believe that gravity is mediated by a massless particle called
the graviton. This graviton should connect to what is called the stress-energy tensor.
This is a second order tensor, i.e. a 4�4 matrix, and therefore the graviton must
have spin-2. Fermions with the same quantum numbers can not occupy the space
and follow Fermi-Dirac statistics. Bosons, on the other hand, can occupy the same
state. They follow Bose-Einstein statistics.

Quarks come in six flavors. We can further divide these into three generations,
with each next generation being more massive, but otherwise possessing the same
properties. Only the first generation particles are stable. The six quarks (q) are: up
(u) and down (down), charm (c) and strange (s), and finally top (t) and bottom (b).
The quarks also have their own antiparticle (q̄) with opposite electric charge (ū, d̄, c̄, s̄,
t̄, b̄). Quarks have charge �2/3 and �1/3 (particles) and �2/3 and �1/3 (antiparticles).
Quarks interact through all the four forces: the strong, electromagnetic, weak, and
gravitational. Similar to electric charge, the strongly interacting quarks have color
charge. There are three colors for particles and three colors for antiparticles, namely:
red, green, and blue; and antired, antigreen and antiblue. Quarks are bounded by
color confinement and can never be directly observed in isolation. They need to form
color-neutral particles. These can be combinations of three colored quarks (rgb), or
three anticolored quarks (r̄ḡb̄). We call these particles baryons. The most common
baryons are the proton and the neutron. A quark can also combine with an antiquark
in a color-anticolor combination (rr̄, gḡ, bb̄, or some superposition of these) to form
mesons (e.g. pions). Current research also suggests the existence of more exotic quark
compositions like tetraquarks [23, 24] and pentaquarks [25]. All particles made up of
quarks are called hadrons.
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2 Particle Physics Summary

Figure 2.1: The Standard Model of elementary particles. (Figure is taken from Wikipedia.)

Leptons are organized in much the same way as the quarks: they are fermions and
come in three generations. We have the charged leptons: the electron (e ), the muon
(μ ), and the tau (τ ). Then we have their accompanying neutrinos, the electron
neutrino (νe), the muon neutrino (νμ), and the tau neutrino (ντ). The antiparticles
of the charged leptons are normally expressed with a “+” superscript (e , μ , τ ),
while the antineutrinos use a bar-notation (ν̄e, ν̄μ, ν̄τ). While it is clear that the
charged leptons are Dirac fermions, that is, they are not their own antiparticles,
this is unclear for the neutrinos. If they are their own antiparticles, they would be
Majorana fermions.

The fundamental forces are carried by the so-called gauge bosons: The photon (γ),
the eight gluons (g), and the W , W and Z0, are all mediators for the electromag-
netic, strong and weak forces. All these bosons are spin 1 particles. In addition, there
is the hypothetical graviton (G), which, as mentioned, should be a massless spin-2
particle mediating the gravitational force. The latest addition to the Standard Model
is the Higgs boson (H0), which is responsible for giving fundamental particles their
mass.

The total number of elementary particles depend on how we count. Disregarding
the graviton which is not part of the Standard Model (and might not even exist),
the common practice is to categorize the elementary particles by 17 different entries,
as is done in Figure 2.1. If we count antiparticles as separate particles the number
increases to 30. Further differentiating between colors gives us 61. By including
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2.2 Baryon-to-photon-ratio

Table 2.1: The elementary particles and their degeneracy (internal degrees of freedom).

Anti-
Flavors: particles: Spins: Colors: Total:

Quarks (u, d, c, s, t, b) 6 2 2 3 72
Charged leptons (e, μ, τ) 3 2 2 1 12
Neutrinos (νe, νμ, ντ ) 3 2 1 1 6
Gluons (g) 1 1 2 8 16
Photon (γ) 1 1 2 1 2
Massive gauge bosons (W�, Z0) 2 2+1 3 1 9
Higgs bosons (H0) 1 1 1 1 1
All elementary particles 17 118

possible spin states as well, we end up with 118 distinct intrinsic degrees of freedom,
as listed in Table 2.1.

2.2 Baryon-to-photon-ratio

Just after the Big Bang when the temperature was high, the Universe was filled with
photons, particles, and antiparticles. Because of constant annihilations and pair-
productions, all particles were more or less in equilibrium and as abundant as the
other. As the temperature fell, and no pair production ceased, the observable Universe
was left with an asymmetry between matter and antimatter. For some reason which
neither the Standard Model of particle physics nor general relativity can give, there
is more of the former than the latter. This is normally expressed through the baryon
asymmetry problem, which is one of the big unanswered questions in physics. The
asymmetry parameter is expressed as

η �
nB � nB̄

nγ
�

nB

nγ
. (2.1)

Counting up the baryons and CMB-photons gives us η equal to roughly 6�10�10. It
is sometimes preferred to base the baryon asymmetry on entropy density instead of
the photon density as entropy has, to a good approximation, stayed constant since at
least the electroweak era1. In such case, the asymmetry parameter may be expressed
as

ηs �
nB � nB̄

s
, (2.2)

1A reasonable assumption is that entropy has stayed fairly constant since the end of inflation. In
Standard Cosmology, entropy per comoving volume is roughly constant, only increasing by a small
amount [8].
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2 Particle Physics Summary

where s � 7.04nγ at the present era, giving ηs a value of roughly 10�10. This asymme-
try led us to a Universe where we could have primordial nucleosynthesis (see appendix
B).

2.3 Chemical potential

The chemical potential, μ, is related to the willingness for a certain reaction to occur,
and we can associate a chemical potential to every particle. First a few observations:

1. The sum of the chemical potentials μi, is conserved in chemical equilibrium,
and thus, also in thermodynamic equilibrium.

2. Since photons can be absorbed or emitted arbitrary in a reaction, the chemical
potential for photons, μγ , is zero [26].

3. A particle-antiparticle pair can annihilate into photons, the chemical potential
of a particle and its associated antiparticle is equal to zero and opposite [26].

The chemical potential is derived from the fundamental thermodynamic relation

dU � T dS � P dV �

n�
j�1

μj dNj , (2.3)

and give the following definition

μj �

�
�U

�Nj

�
S,V,Ni�j

. (2.4)

The chemical potential is thus the change in internal energy by adding or removing
one particle to or from the system, keeping the volume and entropy constant. We
can introduce a chemical potential μj for each conserved charge Qj . This is done
by replacing the Hamiltonian H of the system with H � μjNQj , where NQj is the
number operator of particles with charge Qj . In the Standard Model, there are
five independent conserved charges. These are the electric charge, baryon number,
electron-lepton number, muon-lepton number, and tau-lepton number. This means
there are also five independent chemical potentials [26]. The chemical potentials are
determined by the number densities. The electric charge density is very close to zero.
The baryon density is estimated to be less than a billionth of the photon density
[27, 28]. Lepton density is also thought to be very small, on the same order as the
baryon number. According to Weinberg [26], for an early universe scenario, we can put
all these numbers equal to zero to a good approximation. For a correct representation
of the Universe, the chemical potentials cannot all cancel out—otherwise, there would
be no matter present today.
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3 Statistical Mechanics

Statistical mechanics looks at the behavior of quantum systems on larger scales, and
is so a bridge from the microscopic quantum world to the macroscopic world. Using
probability theory, statistical mechanics studies the average behavior of mechanical
systems where the state of the system is uncertain. In this chapter I will give a brief
introduction to the topic. Most importantly to the distribution function which is the
basis for paper one: “On the Effective Degrees of Freedom in the Early Universe” [1].

3.1 Distribution function

There is a fundamental assumption in statistical mechanics, namely that “in thermal
equilibrium every distinct state with the same total energy are equally probable” [29].
Statistical mechanics is all about counting these states. However, things behave very
differently in the quantum world, so before we can start counting states we need to
know a few things about how particles occupy these states. Namely if the particles
are distinguishable? And if more than one particle occupy the same state? With
these two properties in mind we can categorize particles into three groups. First we
have classical particles, which are distinguishable and can occupy the same state.
Particles following this behavior obey the classical Maxwell-Boltzmann probability
distribution. Next we have bosons (e.g. photons), which as classical particles can
occupy the same state, but are indistinguishable. Bosons follow the Bose-Einstein
distribution. Finally we have fermions (e.g. electrons and protons). These particles
are also indistinguishable, but only one fermion can occupy one state. We have
summarized the properties in Table 3.1. On the fundamental level, particles can only
be fermions or bosons.

Table 3.1: Particles and their distributions.

Probability Disting- Can occupy
Particles: distribution: uishable? same state?

Classical particles Maxwell-Boltzmann Yes Yes
Bosons Bose-Einstein No Yes
Fermions Fermi-Dirac No No

The difference in these three probability distributions lies in how we count the
microstates. A microstate describes the properties of the individual particles, like

17



3 Statistical Mechanics

position, velocity, spin, etc. A macrostate, on the other hand, describes the systems
macroscopic properties (like pressure, volume, temperature, etc.). Interchanging two
microstates do not change the macrostate of the system.

The occupation number Ni tells us how many particles are in each state, ψi, but does
not care about which particles are in which states. The collection of all occupation
numbers is called a configuration. The configuration which can be achieved in most
different ways is the most probable configuration. When we are working with very
large numbers we get one remarkable feature — it turns out that the distribution of
individual particle energies, when they are in equilibrium, is just the most probable
configuration [29, 30] (a simple example for a two-state system showing these feature
given in Figure 3.1). The probability that a state is occupied depends on the energy
of the system and if we are dealing with fermion or bosons, and can be approximated
to

100/0 75/25 50/50 25/75 0/100

Distribution probability between
states ψ1 and ψ2

ψ1/ψ2

10 particles
100 particles
1000 particles
∞ particles

Figure 3.1: Example given a two-state classical system (particles are distinguishable and can
occupy the same state). The probability that the particles will distribute themselves evenly between
the two states increases with the number of particles in the system. For a large number of particles
(e.g. Boltmann’s constant) this distribution is simply the most probable configuration.

Ni

gi

e α βEi
Maxwell-Boltzmann ,

gi

e α βEi 1
Fermi-Dirac ,

gi

e α βEi 1
Bose-Einstein ,

(3.1)

where gi is the degeneracy of state i and Ei is the energy of single particle in that
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3.2 Particle velocities in Maxwell-Boltzmann and Maxwell-Jüttner distributions

state. α and β are Lagrange multipliers, which can be identified as [29]

β �
1

kBT
, (3.2)

α � �
μ�T �

kBT
� �μ�T �β , (3.3)

β is called the thermodynamic beta — a systems reciprocal thermodynamic tempe-
rature, and μ is the chemical potential. We can introduce εi as the energy associated
with state i, such that for a one-particle state, Ei � 0 when it is unoccupied, and
Ei � εi when it is occupied by one particle. By dividing Eq. (3.1) by the degene-
racy of its energy states, we find the most probable number of particles in a single
“one-particle” state with energy ε, that is number density per state n:

n�ε� �

�������
������

1

e�ε�μ��kBT
Maxwell-Boltzmann ,

1

e�ε�μ��kBT � 1
Fermi-Dirac ,

1

e�ε�μ��kBT � 1
Bose-Einstein .

(3.4)

For fermions this number will always be between zero and one, while it can be any
positive number for bosons. Using this we can set up the distribution functions as
functions of momenta for classical particles, fermions, and bosons:

f�p� �
1

e�E�p��μ���kBT �
(Classical) , (3.5a)

f�p� �
1

e�E�p��μ���kBT � � 1
(Fermions) , (3.5b)

f�p� �
1

e�E�p��μ���kBT � � 1
(Bosons) . (3.5c)

3.2 Particle velocities in Maxwell-Boltzmann and
Maxwell-Jüttner distributions

We can distinguish between ultra-relativistic, semi-relativistic, and non-relativistic
velocities, according to the value of the Lorentz factor, γ. Another way to look at it,
is which energy-term is dominant — the kinetic term, the rest mass term, or both.
The ratio of semi- and non-relativistic particles plays a central role in the production
of viscous effects. We will here go through the distribution functions for particle
velocities.
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a) Particle speed distribution.
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Figure 3.2: Particle distribution function (PDF) and cumulative distribution function (CDF) of a
variable speed v and distribution parameter a kBT m (a large a gives a wider spread.

For a classical case the particle speed distribution, or probability density function
(PDF), for particles with mass m at a temperature T is given by the Maxwell-
Boltzmann distribution:

f v
m

2πkT

3 2
4πv2e

mv2

2kBT ,

2

π

v2e v2 2a2

a3
, (3.6)

with a kBT m being the distribution parameter.
For a relativistic gas the equivalent is the Jüttner distribution function [31].

f γ
βγ2z

K2 z eγz
, (3.7)

where β v c, γ 1 v c 2 1 2
is the Lorentz factor, z mc2 kBT in the

reciprocal dimensionless temperature, and K2 z is the modified Bessel function of
the second kind.

3.3 Ideal quantum gases in thermodynamic equilibrium

Calculating the macrostates for systems in thermodynamic equilibrium is quite straight-
forward. In this section I will derive the functions for number density (n), energy
density (ε), pressure (P ), and entropy density (s). This follows closely the theory
described in the paper [1].
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a) Maxwell-Jüttner distribution.
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Figure 3.3: Maxwell Jüttner distributions (MJD) of speeds in the γ-representation as functions of
z, the dimensionless temperature. This is really just the ratio of mass over temperature. Log-log
plot for large γ’s on the right.

3.3.1 Thermodynamic functions

When we are dealing with a large (ideally infinite) system we can approximate the
conditions by using small unit cells — or cubic boxes with periodic boundary condi-
tions. For boxes of volume V L3, solving the Schrödinger equation for a particle,
we find the possible momentum eigenvalues

p �p
h

L
n1�ex n2�ey n3�ez , (3.8)

where h is the Planck constant, ni 0, 1, 2, 3, ..., and �ex, �ey, �ez are the
standard units vectors in three-dimensional Euclidean space. The number of states
in momentum space is thus:

n1�ex
Δpx

n2�ey
Δpy

n3�ez
Δpz

L3

h3
, (3.9)

By adding the internal degrees of freedom (g) and dividing Eq. (3.9) with the volume
(L3) we find the density of states:

dos
g

h3
g

2π� 3
(3.10)

The energy of a particle with mass m and momentum p is E p m2c4 p2c2.
In thermal equilibrium, the probability that a single-particle state with momentum

p and energy E p is occupied is given by the Bose-Einstein or Fermi-Dirac distribu-
tion functions given in Eqs. (3.5b) and (3.5c). In order to find the total number of
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3 Statistical Mechanics

particles occupying a state with energy E, we must find the density of states in phase
space. We see from Eq. (3.8) that the number of possible states in momentum space
is L3�h3. By dividing by the volume, L3, as well, we are left with the factor �1�h�3.
If there is an additional degeneracy g (for example, spin), we can write the density
of states (dos) as

dos � g

h3
� g

�2π�3�3 . (3.11)

The density of particles with momentum p is then given by

n�p� � g

�2π�3�3 � f�p� . (3.12)

The total density of particles, n, can then be written as an integral over three-
momentum involving the distribution function as

n � g

�2π�3�3
�
f�p� d3p . (3.13)

By multiplying the distribution functions with the energy and integrating over
three-momentum, we obtain the energy density ε of the system. The pressure, P ,
can be found in a similar manner by multiplying the distribution function with
�p�2��3E�c2� (a nice derivation of this is shown by Baumann [32]). This yields the
integrals

ε � g

�2π�3�3
�
E�p�f�p� d3p , (3.14)

P � g

�2π�3�3
� �p�2

3�E�c2�f�p� d
3p . (3.15)

The entropy density s can be calculated from the thermodynamic relation

s � ε� P � μT

T
, (3.16)

where the index μT is the total chemical potential.

3.3.2 From momentum to energy integrals

It is sometimes more convenient to use energy, E, instead of the momentum, p, as the
integration variable. By integrating over all angles, we can replace d3p by 4π�p�2 dp.
Using the energy momentum relation, we find �p� � 	

E2 �m2c2�c and cp dp � E dE.
The integrals will then go from mc2 to infinity instead of p � 0 to infinity. We can
simplify these formulas further by introducing the dimensionless variables u, z, and
μ̂.

u � E

kBT
, z � mc2

kBT
, μ̂ � μ

kBT
. (3.17)
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3.3 Ideal quantum gases in thermodynamic equilibrium

This yields the following expressions for the number density, energy density, and
pressure for a species j, and for all species (as this is simply the sum of all particle
species).

nj�T � �
gj

2π2�3

� �

mjc2

E
�
E2 �m2

jc
4

e�E�μj��kBT � 1
dE (3.18a)

�
gj
2π2

�
kBT

�c

�3 � �
zj

u
�
u2 � z2j

eu�μ̂j � 1
du , (3.18b)

n�T � �
�
j

nj �
�
j

gj
2π2

�
kBT

�c

�3 � �
zj

u
�
u2 � z2j

eu�μ̂j � 1
du , (3.18c)

εj�T � �
gj

2π2�3

� �
mjc2

E2
�
E2 �m2

jc
4

e�E�μj��kBT � 1
dE (3.19a)

�
gj
2π2

�kBT �
4

��c�3

� �
zj

u2
�
u2 � z2j

eu�μ̂j � 1
du , (3.19b)

ε�T � �
�
j

εj �
�
j

gj
2π2

�kBT �
4

��c�3

� �
zj

u2
�
u2 � z2j

eu�μ̂j � 1
du , (3.19c)

Pj�T � �
gj

6π2�3

� �
mjc2

�E2 �m2
jc

4�3�2

e�E�μj��kBT � 1
dE (3.20a)

�
gj
6π2

�kBT �
4

��c�3

� �
zj

�u2 � z2j �
3�2

eu�μ̂j � 1
du , (3.20b)

P �T � �
�
j

Pj �
�
j

gj
6π2

�kBT �
4

��c�3

� �
zj

�u2 � z2j �
3�2

eu�μ̂j � 1
du . (3.20c)

As shown in Eq. (3.16) we can find the entropy density for a single species j and
the total entropy as:

sj�T � �
εj � Pj � μjnj

T
, (3.21a)

s�T � �
�
j

sj �
�
j

εj � Pj � μjnj

T
�

ε� P �
�

j μjnj

T
. (3.21b)
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3.3.3 Massless particle contributions

In Eqs. (3.18)–(3.20), we see how dimensionless units, u, z, and μ̂, simplifies the
integrals. In the ultrarelativistic limit, we can ignore the particle masses. Moreover,
as we have set the chemical potentials to zero, we can easily solve the dimension-
less integrals appearing in Eqs. (3.18b), (3.19b), and (3.20b) analytically. Since the
integrals for energy density and pressure in the massless cases are the same, we find:

�
�

0

u2

eu � 1
du �

�
3
2ζ �3� � 1.803

2ζ �3� � 2.404

(Fermions) ,

(Bosons) ,
(3.22)

�
�

0

u3

eu � 1
du �

�
7
8
π4

15 � 5.682
π4

15 � 6.494

(Fermions) ,

(Bosons) ,
(3.23)

where ζ�3� is the Riemann zeta function of argument 3. Using these results, we find
the values for n, ε, P , and indirectly s for massless bosons and fermions:

nb�T � � g
ζ�3�

π2

�kBT �
3

��c�3
, nf �T � �

3

4
g
ζ�3�

π2

�kBT �
3

��c�3
, (3.24)

εb�T � � g
π2

30

�kBT �
4

��c�3
, εf �T � �

7

8
g
π2

30

�kBT �
4

��c�3
, (3.25)

Pb�T � � g
π2

90

�kBT �
4

��c�3
, Pf �T � �

7

8
g
π2

90

�kBT �
4

��c�3
, (3.26)

sb�T � � g
2π2

45

k 4
BT

3

��c�3
, sf �T � �

7

8
g
2π2

45

k 4
BT

3

��c�3
. (3.27)

Here the subscript b is for bosons, and f is for fermions. We see that solving the
integrals gives a difference between fermions and bosons, namely a factor 3⁄4 for the
number density and 7⁄8 for energy density and pressure. We will call these two factors
the “fermion prefactors”. We also see that the pressure is simply one third that of
the energy density, while the entropy density can be found by multiplying the energy
density by 4��3T �.

3.3.4 Effective degrees of freedom

In most cases we cannot ignore the particle masses. In these cases, we must solve
the integrals in Eqs. (3.18b), (3.19b), and (3.20b) numerically. The integrals are
decreasing functions of the temperature, and they vanish in the limit kBT �mc2 � 0.
We can normalize these by dividing their values by the case of the photon (but with
g equal to one). As we recall,the photon has a bosonic nature with m � 0 and
μ � 0. This means that for massive particles at high temperature (kBT � mc2), one
actual degree of freedom for bosons contributes as much as one degree of freedom for
photons, and the fermions a little less. As the temperature drops, and less particles
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3.3 Ideal quantum gases in thermodynamic equilibrium

are created, the effective contributions will be smaller. By including the intrinsic
degrees of freedom (g), we find each particle species’ effective degree of freedom, g�j :

g�nj �T � �

gj
2π2

�
kBT
�c

�3
1

2π2

�
kBT
�c

�3
��
zj

u
�
u2�z2j

eu�1 du��
0

u2

eu�1 du
�

gj
2ζ�3�

� �

zj

u
�
u2 � z2j

eu � 1
du , (3.28)

g�εj �T � �

gj
2π2

�kBT �
4

��c�3

1
2π2

�kBT �4

��c�3

��
zj

u2
�
u2�z2j

eu�1 du��
0

u3

eu�1 du
�

15gj
π4

� �

zj

u2
�
u2 � z2j

eu � 1
du , (3.29)

g�pj �T � �

gj
6π2

�kBT �
4

��c�3

1
6π2

�kBT �4

��c�3

��
zj

�u2�z2j �
3�2

eu�1 du��
0

u3

eu�1 du
�

15gj
π4

� �

zj

�u2 � z2j �
3�2

eu � 1
du , (3.30)

g�sj �T � �
3g�εj �T � � g�pj �T �

4
. (3.31)

In Figure 3.4, we have plotted the effective degrees of freedom for massive bosons
(panel a) and fermions (panel b) with g � 1 (and μ � 0) as functions of the tempera-
ture. When the temperature is equal to the mass (kBT � mc2), the effective degrees
of freedom for energy density is approximately 0.9 for bosons and 0.8 for fermions,
compared to that of the photon. For number density, pressure, and entropy density,
they are a little lower.

The effective degrees of freedom are defined as functions of the corresponding va-
riables and temperature. We find the total effective degrees of freedom for g�n, g�ε,
and g�p by summing Eqs. (3.28)–(3.31) over all particle species j:

g�n�T � �
π2

ζ�3�

n�T �

T 3
(3.32a)

�
�
j

gj
2ζ�3�

� �

zj

u
�
u2 � z2j

eu � 1
du , (3.32b)

g�ε�T � �
30

π2

ε�T �

T 4
(3.33a)

�
�
j

15gj
π4

� �

zj

u2
�
u2 � z2j

eu � 1
du , (3.33b)

g�p�T � �
90

π2

P �T �

T 4
(3.34a)

�
�
j

15gj
π4

� �

zj

�u2 � z2j �
3�2

eu � 1
du . (3.34b)
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Figure 3.4: The effective degrees of freedom g n, g ε, g p, and g s for bosons (a) and fermions (b)
per intrinsic degree of freedom. A more detailed look at each of the four g s is given in the lower
four panels (c–f). Here the solid colored curves are for the bosons, and the dash-dotted colored
curves are for the fermions. The grey dash-dotted curves represent the fermions’ contribution
compared to its own relativistic value (such that it is 100% for T ). We have included the
relative values at kBT mc2 for the four cases (marked with “+” symbols). During particle
annihilations, the energy density falls slower than the other quantities due to the impact of the
rest mass energy. At temperatures close to the rest mass of some massive particle species, this
rest mass is substantial to their total energy.
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3.3 Ideal quantum gases in thermodynamic equilibrium

Finally, the effective degrees of freedom associated with entropy is then:

g
�s�T � �

45

2π2

s�T �

T 3
(3.35a)

�
3g

�ε�T � � g
�p�T �

4
. (3.35b)
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4 The Friedmann Equations and
Expansion of the Universe

The Friedmann equations describe the geometric expansion or contraction of homo-
geneous and isotropic universes. They are solutions to Einstein’s field equations using
the Friedmann-Lemâıtre-Robertson-Walker metric. They were derived by Alexander
Friedmann in 1922 [33] and 1924 [34], and are valid for flat, positive, and negative
spatial curvatures.

4.1 Newtonian gravity

In many cases, Newtonian gravity is a good approximation to describe gravity. From
there, we remember that the force exerted on an object with mass m by an object of
mass M is given by

F �
GMm

r2
, (4.1)

where Newton’s gravitational constant, G, is roughly 6.67�10�11 Nm2 kg�2. The
gravitational potential energy is

V � �
GMm

r
. (4.2)

4.1.1 Deriving the Friedmann equations classically

One can partly derive Friedmann’s (first) equation from Newtonian gravity [7]. First,
we start off with a proof given by Newton in his Philosophiæ Naturalis Principia Mat-
hematica [35]. Consider a spherical distribution of matter, with a particle of mass
m at a distance r from the center of mass. The particle only feel the gravitational
attraction from the mass inside this r-radial sphere, and as if all of that were a single
point at the center of mass. The gravitational attractions from outside the radius of
the sphere cancel out (just as an object inside a hollow sphere will feel no gravity at
all). The mass inside the sphere is given by

M �

4π

3
r3ρ , (4.3)
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4 The Friedmann Equations and Expansion of the Universe

where ρ is the mass density. The total energy for the particle is then the sum of
kinetic and potential energy, respectively:

ET �
1

2
m �r2 �

GMm

r

�
1

2
m �r2 �

4πr2ρGm

3
. (4.4)

Using the cosmological principle as a basis, that the Universe is homogeneous and
isotropic, every location may be considered to be the center, so we may choose one
arbitrarily. For a uniform expansion (or contraction) of space we can use comoving
coordinates. These comoving distances (x) between objects carried along the expan-
sion remain the same. The relation between the actual distance r and x is given
by the scale factor, a, and is a function of time alone (r � a�t�x). The comoving
distances do not change, such that �x � 0, this gives us:

ET �
m �a2x2

2
�

4πGρa2x2m

3
. (4.5)

Multiplying everything with �2��mx2a2� and rearranging gives us

�
�a

a

�2

�
2ET

mx2a2
�

8πG

3
ρ . (4.6)

Setting k � 2ET��mc2x2� we get

H2 �

�
�a

a

�2

�
8πG

3
ρ�

kc2

a2
, (4.7)

which is the Friedmann equation without the cosmological constant. The unit of k is
inverse comoving length squared — the curvature of space.

4.1.2 The fluid equation

The fluid equation can be derived from the first law of thermodynamics for a reversible
process (for which the heat transfer, δQ, is zero)

dU � P dV � 0 , (4.8)

where U � ρc2 is the internal energy, P is the pressure, and V � 4πa3�3 is the
volume. If the change happens over a period of dt we get

d

dt

�
4π

3
a3ρc2

�
� P

d

dt

�
4π

3
a3
�
� 0

3
�a

a
ρc2 � �ρc2 � 3

�a

a
P � 0

�ρ � �3
�a

a

�
ρ�

P

c2

�
. (4.9)
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4.2 Friedmann equations from general relativity

From this we can see that the mass density decreases both due to an increased volume
and because of pressure work done by the material on the Universe. The pressure is
material dependent and can be both positive, zero, or negative, as we will get back
to in Section 4.3.

4.1.3 The acceleration equation

The rate of change of the expansion is given by the acceleration equation. It can be
derived by first differentiating Eq. (4.7) with respect to time to get

2
�a

a

�aa� �a2

a2
� 2

kc2

a2
�a

a
� �

8πG

3
�ρ , (4.10)

Substituting �ρ with Eq. (4.9) we get

2
�a

a

�aa� �a2

a2
� 2

kc2

a2
�a

a
� �8πG

�a

a

�
ρ�

P

c2

�
, (4.11)

and dividing everything with 2 �a�a

�a

a
�

�
�a

a
�

kc2

a2

�
� �4πG

�
ρ�

P

c2

�
. (4.12)

Putting Eq. (4.7) in we get

�a

a
�

8πG

3
ρ � �

12πG

3

�
ρ�

P

c2

�

�a

a
� �

4π

3
G

�
ρ�

3P

c2

�
, (4.13)

which is the acceleration equation.

4.2 Friedmann equations from general relativity

The three equations, Eqs. (4.7), (4.9), (4.13), which we just derived classically should
be derived from Einstein’s field equations if we want the full picture. Friedmann did
this back in the early twenties, using what is now called the Friedmann-Lemâıtre-
Robertson-Walker metric [33, 34]. This gives the Friedmann equation and the accele-
ration equation in the general form which also include the cosmological constant (the
fluid equation remains unchanged). In many cases it is more convenient to express
the Friedmann equations using energy density, ε � ρc2. We then end up with

Friedmann Eq.

�
�a

a

�2

�
kc2

a2
�

8πG

3c2
ε�

Λc2

3
, (4.14)

Acceleration Eq.

�
�a

a

�
� �

4πG

3c2
�ε� 3P � �

Λc2

3
, (4.15)

Fluid Eq. �ε � �3
�a

a
�ε� 3P � . (4.16)
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4 The Friedmann Equations and Expansion of the Universe

If we are using c � 1, which is common, the Friedmann equations look the same using
ρ or ε.

4.3 Equations of state and the evolution of our Universe

In cosmology, we have four main states in the sense of how its energy density evolves
when space expands. These are the two trivial states of radiation (relativistic parti-
cles) and cold matter (non-relativistic particles), and the two less trivial: curvature
and vacuum energy (cosmological constant). How these states evolve depends on how
their pressures are related to their energy densities. This relation is expressed by the
equation of state by the dimensionless number w, which is the ratio of pressure over
energy density given by

wi �
Pi

ρic2
�

Pi

εi
, (4.17)

where wi has the following values:

Cold matter P � 0 � w � 0 . (4.18a)

Radiation P � 1�3ε � w � 1�3 . (4.18b)

Curvature P � �1�3ε � w � �1�3 . (4.18c)

Vacuum energy P � �ε � w � �1 . (4.18d)

We can use this to get the equations of state for our cases. From the thermodynamic
relation we have dU � T dS � P dV , with no increase in the entropy, such that

ε da3 � a3 dε� P da3 � 0

ε da3 � a3 dε� wεa3 � 0

ε�1� w� da3 � a3 dε � 0

dε

ε
� ��1� w�

da3

a3

ln�ε� � ��1� w� ln
�
a3
�
� C

ln�ε� � ln
�
a�3�1�w�

�
� C

ε � Ca�3�1�w� , (4.19)

where C is a constant to be defined shortly.
The curvature of our Universe depends on the Hubble parameter and the energy

density. A high density leads to a positive curvature and a low density to a negative
curvature. The critical density is the density which gives the Universe a flat curvature,
that is k equal to zero. We can find the conditions for this by rearranging Eq. (4.14):

k

a2
�

8πGε

3c2
�H2 � 0 . (4.20)
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4.3 Equations of state and the evolution of our Universe

Solving this for ε gives us the critical density εc:

εc �
3H2c2

8πG
. (4.21)

The critical density is crucial for the evolution of the Universe, and the actual densities
can be expressed as a ratio in comparison to this density. We call the ratio the density
parameter, and define it as:

Ωi �
εi
εc
�

8πG

3H2c2
εi , (4.22)

where the index i can be the one of the states from Eq. (4.18). We can then express
the energy densities as

εi � εcΩi . (4.23)

We now have two different equations for ε in Eqs. (4.19, 4.23). By defining the
scale factor at a given time, t0 (e.g. present time) to be a � 1, we get a value for the
constant C in Eq. (4.19) for that time to be εcΩ0. Or as expressed by its components:

Ci � εcΩi,0 . (4.24)

The time-varying energy density will thus be

εi � εcΩi,0a
�3�1�wi� . (4.25)

The current value of Ω, that is the sum over all Ωi looks like it is very close to one.
This is a peculiar thing, since if Ω were ever slightly different from one, it would
rapidly move away from this ratio. This is known as the flatness problem. One of
the most popular theories which solves this conundrum is inflation theory. In this
scenario the observable Universe is just a very small part of something much larger, so
even though the whole Universe might be curved, it will appear flat to us. Assuming
a flat non-curved Universe (or alternately put the curvature as part of the energy
density) we can set up the first Friedmann equation (Eq. (4.14)) to account for the
different states of matter.

�
�a

a

�2

�

8πG

3c2
εc
�
i

Ωi,0a
�3�1�wi�

� H2
0

�
i

Ωi,0a
�3�1�wi� . (4.26)

We can rewrite this as

�a2 � H2
0

�
i

Ωi,0a
��1�3wi� . (4.27)
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4 The Friedmann Equations and Expansion of the Universe

Taking the time-derivative on the left hand side in two different ways gives us

d

dt
�a2 � 2 �a�a

�

d �a2

da

da

dt
� �a

d �a2

da

� �a �
1

2

d �a2

da
. (4.28)

Taking the d�da -derivative on the right hand side of Eq. (4.27) gives us

H2
0

�

i

��1� 3wi�Ωi,0a
��2�3wi� . (4.29)

By further combining Eq. (4.28) and Eq. (4.29) we get the following equation for the
acceleration of the Universe, telling us how the Universe evolved in the past, and will
evolve in the future:

�a � �
H2

0

2

�

i

1� 3wi

a2�3wi
Ωi,0 . (4.30)

By using the latest estimates for the Hubble variable and the density parameters
we can calculate that the radiation dominated era ended roughly 50, 000 years after
the Big Bang, and the following matter dominated era ended about 10 billion years
later. These transitions happens gradually as is shown in Figure 4.1. The evolution of
the scale factor is shown in Figure 4.1 together with scenarios using different energy
densities.

4.4 Adding viscosity to the Friedmann equations

If the cosmic fluid has a bulk viscosity, the pressure will be reduced accordingly such
that we get an effective pressure, Peff. � P � Pvisc., where P is the thermodynamic
equilibrium pressure and Pvisc. is the viscous pressure given as 3ηvH, where ηv is the
bulk viscosity [36]. We can then express the effective pressure as a function of the
viscosity:

Peff. � P � 3ηvH . (4.31)

By simulating the early universe, where we can put both k and Λ equal to zero, we
can incorporate the viscous pressure into the accelerating and fluid equation (the first
Friedmann equation remains unchanged as it is independent of the pressure):

Visc. acceleration Eq.
�a

a
� �

H2

2
�

4πG

c2
�P � 3ηvH� , (4.32)

Visc. fluid Eq. �ε � �3H �ε� P � � 9ηvH
2 . (4.33)
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4.4 Adding viscosity to the Friedmann equations
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Figure 4.1: Energy contribution in the Universe by radiation, matter and a cosmological
constant (Λ). The energy density for these three cases evolves differently during expansion
(εr a 4, εm a 3, εΛ 1). This lead to the Universe going through different eras. Radiation
dominated for the first 44 700 years after the Big Bang, followed by matter. We are currently living
in an era where dark energy (e.g. a cosmological constant) is the dominant energy contributor.
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4 The Friedmann Equations and Expansion of the Universe
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Ωm = 0.31, ΩΛ = 0.69 → Flat curvature
Ωm = 0.05, ΩΛ = 0 → Negative curvature
Ωm = 1, ΩΛ = 0 → Flat curvature
Ωm = 6, ΩΛ = 0 → Positive curvature

Figure 4.2: Mapping the evolution of the Universe by Ω contributions. In (hypothetical) scenarios
with no dark energy, the curvature (and overall geometry) is determined by the matter contribution.
Ωm below, equal to, or above the critical density (here in magenta, blue and red colors) will give
negative, flat and positive curvatures. Using the current ΛCDM parameters as of 2015 [19]
gives us the green plot. Baryonic matter (5%) and dark matter (26%) make up the 31% matter
contribution, while dark energy (here in the form of the cosmological constant) make up 69%.

4.5 Viscosity by numbers and illustrations

The concept of shear and bulk viscosity is discussed in my second paper “Viscosity in
a lepton-photon universe” [2], and shown briefly here in Figure 4.3 and 4.4. The first
numerical calculation of shear viscosity ηs was done by Misner in 1967, where he stu-
died a mixture of massive particles interacting with massless photons and neutrinos.
He got a result of [37]:

ηs
4

15
ετ 1.23 1038T 1 , (4.34)

where τ is the mean free time of flight. In 1978, Caderni, Fabbri, Van den Horn, and
Sisskens came of with a much smaller value of the ηs during the lepton era [38]:

ηs 2.20 1035T 1 . (4.35)

In the early eighties, a lot of progress were done on the topic of relativistic kinetic
theory by, among others, Hoogeveen, et al. This group estimated the shear viscosity
to [39]:

ηs 9.81 1035T 1 . (4.36)

The two latter papers also gave estimates to the bulk viscosity during the lepton era.
These vary much more with temperature but for a temperature of 1012 K, Caderni’s
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4.6 The deceleration parameter

Figure 4.3: Concept drawing of shear viscosity for a flow. The shear stress increases as the
particles travel farther in the perpendicular direction of the flow. Weakly interacting particles is
thus the main contributor to shear viscosity.

group found

ηv � 5.85� 1012g cm2 s�1 , (4.37)

while Hoogeveen’s group came to a result of

ηv � 2.30� 1013g cm2 s�1 , (4.38)

which is roughly 5 times larger.

4.6 The deceleration parameter

The deceleration parameter is used to make corrections when calculating the lumino-
sity distance. It is actually just the acceleration equation divided by the Friedmann
equation, and is defined as

q � �
�aa

�a2
�

1

2

�
�1� 3wi�Ωi�

Ωi
. (4.39)

The sum of the density parameters is very close to one (in many models it is defined
as one), so we can remove the denominator (otherwise

�
Ωi varies over time). By

inserting the values for w we can express Eq. (4.39) as

q �
1

2
ΩM � Ωr � ΩΛ . (4.40)

It is worth noting that the deceleration parameter is independent of the curvature
term (because wk � �1�3 and hence the nominator becomes zero). We can easily
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4 The Friedmann Equations and Expansion of the Universe

Figure 4.4: Concept drawing of bulk viscosity. If we have two types of particles, which wants to
cool down at different rates we get a heat transfer from the hotter particles to the colder particles.
In my papers [2, 3], a model universe consisting only of the known leptons and the photons have
been used. In this scenario, the first particles which stops behaving purely relativistic are the tau-
particles. As the rest mass becomes a significant contribution to the tau’s total energy, it will start
to cool down slighly faster, and then more so as the temperature drops further. We can divide
the heat transfer into two events. First, we have the very-frequent-low-momentum-exchange heat
transfer between the taus and the other electromagnetically charged particles. All these particles
are thus cooled down slightly faster than before. The second event is the heat exchange between
all the charged leptons and the neutrinos. The neutrinos, which only interact weakly and thus
have kept their temperature for a longer time, will give rise to a much larger momentum transfer.
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4.6 The deceleration parameter

calculate today’s value of q0 using the latest data. The radiation contribution today
is negligible, and we get:

q0 � �0.54 , (4.41)

which we see is a negative value, meaning that the expansion of the Universe is
accelerating.
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5 Kinetic Theory

5.1 Four-vectors, velocities and momenta

Four-vectors are important in relativistic kinetic theory, and a short primer is given
here. The familiar spatial vectors from Euclidean geometry has to be replaced with
new ones containing the time coordinate as well. We will use a metric signature of
�� � ���, which in Minkowski space gives the following matrix

�
���
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

�
��� .

We will use the following notation for variables for positions, velocities, and momenta

x � xμ � �x0, x1, x2, x3� � �ct, x, y, z� � �ct,x� , (5.1)

u � uμ � �u0, u1, u2, u3� � γ�c, vx, vy, vz� � γ�c,v� , (5.2)

p � pμ � �p0, p1, p2, p3� � �E�c, px, py, pz� � �E�c,p� , (5.3)

where γ � �1��v�c�2��1�2 is the Lorentz factor. The momentum four-vector is defined
as pμ � muμ. We have used bold parameters to represent the three spatial variables.
Thus for a particle with mass m and momenta p, the energy is given as

E � cp0 � c
�
p�m2c2 . (5.4)

The magnitudes of the four-velocity and four-momentum is given as

u 	 u � uμuν � gμνu
μuν � c2 , (5.5)

p 	 p � pμpν � gμνp
μpν � �E�c�2 � 
p
2 � mc2 , (5.6)

where gμν is the metric. Finally we may write down the four-flow which is the
relativistic equivalence of particle flow, j�x, t�:

Nμ�x� � �cn�x, t�, j�x, t�� . (5.7)

5.2 Cross sections and mean free paths

Charged leptons interact via the weak and electromagnetic forces, neutrinos only
through the weak force, and photons only through the electromagnetic force. If we
limit ourselves to the lepton era we can distinguish between four different collisions:
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5 Kinetic Theory

1. νν and νe collisions � governed by the weak force (wk),

2. ee and eγ collisions � governed by the electromagnetic force (em),

3. γγ collisions,

4. νγ collisions.

As functions of the mean kinetic energy, kBT , we have approximate expressions for
these four cross sections [39, 40]:

σwk �

�
GkBT

2π�2c2

�2

, (5.8)

σem �

�
α�c

kBT

�2

, (5.9)

σγγ �

�
α2

�c

kBT

�2

, (5.10)

σνγ � 0 . (5.11)

The mean free path is the inverse of the number density and cross section:

l �
1

nσ
. (5.12)

As we see from Eqs. (5.8)–(5.10), the weak and electromagnetic cross sections behave
quite differently as functions of temperature. One gets smaller as the temperature
drops, and the other one increases. The electromagnetic force and the weak force
merge together to what we call the electroweak force at around 100 GeV (around the
masses of the intermediate vector bosons — the W’s and Z). These simple approxi-
mated cross sections and mean free paths are shown in Fig. 5.1. For a more rigorous
estimate we need to take the particle flavors into account.

5.3 Weinberg-Salam model for weak interactions

We can make a more precise estimate of the weak cross sections by using the Weinberg-
Salam model for electroweak interactions. For the lepton era (at energies below the
mass-equivalent of the intermediate vector bosons: W�, W�, and Z0) we can use a
current-current coupling approximation [39]. The charged current is the exchange of
either W� or W� bosons, and the neutral current is the exchange of the Z0 boson.
This is equivalent to the photon exchange in the electromagnetic interaction. For
elastic collisions we have:

k � l� k � l . (5.13)
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Figure 5.1: Simplified plots of cross sections (left plot) and mean free paths (right plot) for
electromagnetically interacting and weakly interacting particles. At around 100 GeV the two
forces merge together to the electroweak force.

The charged leptons will predominantly interact with each other (and the photon)
through the electromagnetic force, while the interactions involving neutrinos can only
happen through the weak force. For the interactions involving neutrinos we have:

k νe, ν̄e, νμ, ν̄μ, ντ, ν̄τ , (5.14)

l νe, ν̄e, νμ, ν̄μ, ντ, ν̄τ, e, ē,μ, μ̄, τ, τ̄ . (5.15)

Before we go any further we should introduce what are called the Mandelstam
variables.

5.3.1 Mandelstam variables

For scattering processes with two particles (k and l) going in and two particles going
out, we can use the center-of-momentum frame as is done in Figure 5.2. The four-
momentum of the ingoing particles are thus pk and pl, and the two particles going out
have four-momentum pk and pl. This gives us three possible scenarios, or channels,
which represent the different outcomes, namely the s, t, and u channel (shown in
Figure 5.3). The associated variables are called the Mandelstam variables and are
related to energy, momentum, and angles in the scattering process. They are defined
as:

s pk pl
2 pk pl

2 , (5.16a)

t pk pk
2 pl pl

2 , (5.16b)
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Figure 5.2: Two-particle (pk and pl) to two-particle (p�

k and p�

l) elastic scattering with corre-
sponding angle in the center-of-momentum frame of the system.

u � �pk � p�
l�2 � �pl � p�

k�2 . (5.16c)

Here s is the square of the center-of-mass energy (invariant mass) for the two incoming
particles k and l. t is the square of the four-momentum transfer, and is related to
the scattering angle in the center of momentum system, which is defined later in Eq.
(5.23). p�

k is the four-momentum of particle k after the collision.
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Figure 5.3: Feynman diagrams for s (space), t (time), and u channel. They represent the different
possible scatterings with two incoming and two outgoing particles. The s-channel represents the
two incoming particles, pk and pl, merging together to form an intermediate particle, which then
splits into particles p�

k and p�

l. In the t-channel particle p emits a particle, becoming particle p�

k,
and particle pl absorbs the intermediate particle and becoming particle p�

l. For the u-channel the
roles of the two outgoing particles are changed, such that pk becomes p�

l and pl becomes p�

k.

5.3.2 Weak currents

The effective interaction Lagrangian density for the currents are [39]:

Leff � GF�
2

�
JcλJc�

λ � 2JnλJn
λ

�
, (5.17)

where Jcλ and Jnλ are the charged and neutral currents, and λ is the four-vector
index (used instead of μ to avoid confusion with the symbol for the muon particle),
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5.3 Weinberg-Salam model for weak interactions

and the � symbol is for the Hermitian conjugate. The three (six if we count anti
particles) charged lepton contributions to these are:

Jcλ
e � ν̄eγ

λ�1� γ5�e , (5.18a)

Jcλ
μ � ν̄μγ

λ�1� γ5�μ , (5.18b)

Jcλ
τ � ν̄τγ

λ�1� γ5�τ , (5.18c)

Jnλ
e �

1

2
ν̄eγ

λ�1� γ5�νe �
1

2
ēγλ

�
1� 4 sin2 θW � γ5

�
e , (5.18d)

Jnλ
μ �

1

2
ν̄μγ

λ�1� γ5�νμ �
1

2
μ̄γλ

�
1� 4 sin2 θW � γ5

�
μ , (5.18e)

Jnλ
τ �

1

2
ν̄τγ

λ�1� γ5�ντ �
1

2
τ̄γλ

�
1� 4 sin2 θW � γ5

�
τ . (5.18f)

The γλ’s here are the four gamma matrices (also known as 4 � 4 Dirac matrices),
and γ5 � iγ0γ1γ2γ3. They are given in Appendix C.

The amplitude for any k � l 	 k � l reaction is the sum of the aforementioned
s-channel, t-channel, and u-channel contribution. According to Hoogeveen [39] we
can write all these using the s and t channel only with the addition of two matrices:
v and a (as given in Tables 5.1 and 5.2). This leads to the following equations for the
weak cross sections:

dσkl
dΩCM

�
G2

Fs

32π2�4c2
Sf�s, t� , (5.19)

where GF is the Fermi coupling constant. s is the square of center-of-mass collision
energy, and was defined in Eq. (5.16a). S is a prefactor which compensates for the
number of identical particles in the final state (nf !), and contains a factor 2 for each
neutrino in the initial state (incoming particles). This latter factor comes from the
fact that neutrinos only have one polarization state, while the other particles have 2
(spin up and spin down), which gives us the following value:

S �
2nν

nf !
. (5.20)

The final variable in Eq. (5.19) is f�s, t�, which is a function of the Mandelstam
variables, s and t and two prefactors, a and v. a and v relate the current couplings
to flavors of the k and l particle. This gives us [39]:

f�s, t� � �v�a�2
�
s�m2c2

s

�2

��v�a�2
�
s� t�m2c2

s

�2

��v2�a2�
2m2c2t

s2
, (5.21)

where m is the mass of the charged lepton1. T a and v matrices are given in Tables
5.1 and 5.2.
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5 Kinetic Theory

Table 5.1: a matrix.

νe ν̄e νμ ν̄μ ντ ν̄τ e� e� μ� μ� τ� τ�

νe : 1 -1 1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2
ν̄e : -1 1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2
νμ : 1/2 -1/2 1 -1 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2
ν̄μ : -1/2 1/2 -1 1 -1/2 1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2
ντ : 1/2 -1/2 1/2 -1/2 1 -1 -1/2 1/2 -1/2 1/2 1/2 -1/2
ν̄τ : -1/2 1/2 -1/2 1/2 -1 1 1/2 -1/2 1/2 -1/2 -1/2 1/2

Table 5.2: v matrix. w� and w� are abbreviations for sin2 θW � 1�2, which are equal to 0.7223
and �0.2777, respectively.

νe ν̄e νμ ν̄μ ντ ν̄τ e� e� μ� μ� τ� τ�

νe : 1 1 1/2 1/2 1/2 1/2 w� w� w� w� w� w�

ν̄e : 1 1 1/2 1/2 1/2 1/2 w� w� w� w� w� w�

νμ : 1/2 1/2 1 1 1/2 1/2 w� w� w� w� w� w�

ν̄μ : 1/2 1/2 1 1 1/2 1/2 w� w� w� w� w� w�

ντ : 1/2 1/2 1/2 1/2 1 1 w� w� w� w� w� w�

ν̄τ : 1/2 1/2 1/2 1/2 1 1 w� w� w� w� w� w�

We may rewrite Eq. (5.16a) as

P 2
kl � s � �pk � pl�

2 , (5.22)

and then Eq. (5.16b) as

t �m2
kc

2 �m2
l c

2 � P 2
kl �

�P 2
kl �m2

kc
2 �m2

l c
2��P 2

kl �m2
kc

2 �m2
l c

2�

2P 2
kl

�
�P 2

kl � �mkc�mlc�
2��P 2

kl � �mkc�mlc�
2�

2P 2
kl

cos θkl ,

(5.23)

where θkl is the scattering angle in the center-of-momentum of the system, as is shown
if Figure 5.2. We can define the angle θ as [40]

cos θ �

�
pk 	 p

���

k


pk

p
���

k


�
CM

�
�pμk � pμl ��p

�

kμ � p�lμ�

�pk � pl�2
, (5.24)

and relate it to the parameter, t, through the relation

cos θ � 1 �
2t

s� 4m2c2
. (5.25)

1We don’t include interactions involving two charged leptons, as they interact mainly through the
electromagnetic force.
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5.4 Relativistic kinetic equation

For pure neutrino-neutrino interactions (here we treat them as massless, which is
very close to reality), Eq. (5.23) and Eq. (5.21) simplifies significally to

tm�0 �
P 2
kl

2
�cos θ � 1� , (5.26)

f�s, t�m�0 � �v � a�2 �
�v � a�2

4
�1� cos θ�2 . (5.27)

For the interaction between neutrinos and the massive leptons, we need to do the full
calculation.

5.4 Relativistic kinetic equation

The classical Boltzmann transport equation, or kinetic equation, was derived by Lud-
wig Boltzmann in 1872. It describes macroscopic quantities in non-equilibrium sys-
tems, such as energy and number of particles, in terms of statistical behavior. The
relativistic version of the kinetic equation was developed gradually during the last
century. We will here give a short version following the theory developed by de
Groot, van Leeuwen, and van Weert in the book “Relativistic kinetic theory” [40].
To quote them: “The kinetic equation is a closed equation (meaning it can be calcu-
lated in a finite number of operations, and usually do not contain any limits) for the
space-time behavior of the distribution function”. In relativistic kinetic theory, all
the macroscopic quantities are defined with help from the distribution functions. In
Section 3.1, Eqs. (3.5), we defined those in the cases of thermodynamic equilibrium.
For non-equilibrium states, we need to include the positions as well such that we
get f�x, p�. The relativistic kinetic equation requires, first of all, that the number
of particles in the system is large enough that a statistical approach is justified. A
second requirement is that the equations are covariant2. The kinetic equation also
assumes three properties (both in the classical and relativistic case):

1. Only two particle interactions are considered.

2. The hypothesis of molecular chaos. By that, we assume that the velocities of the
colliding particles are uncorrelated and independent of position. The number of
(binary) collisions is proportional to the product of the distributions functions
of the two colliding particles. It is also proportional to a transition rate, which
is a measure of the probability of the collision process.

3. The change in the distribution function is negligible in spacetime. That is: the
characteristic lengths and times are negligibly small.

2An equation is Lorentz covariant if all its key properties are valid in all inertial reference frames
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5.4.1 Kinetic equation without collisions

Consider a small volume Δ3σ located at position x. The changes in its three-surface
element changes is given by the four vector d3σμ. In the Lorentz frame this vector is
purely time-like (d3x , 0, 0, 0). The number of particle world lines crossing the segment
Δ3σ with momentum in the range Δp around �p is given by:

ΔN�x, p� �

�
Δ3σ

�
Δ3p

d3σμ
d3p

p0
pμf�x, p� . (5.28)

In the Minkowski space element Δ4x the net flow through the surface Δ3σ vanishes
such that Eq. (5.28) becomes zero. By using the divergence theorem we can rewrite
this as �

Δ4x

�
Δ3p

d4x
d3p

p0
pμ�μf�x, p� , (5.29)

where �μ � ���xμ � �c�1�t,∇� is the differential with respect to the space-time
coordinates. However, since the intervals Δ4x and Δ3p are arbitrary, we get:

pμ�μf�x, p� � 0 4–vector notation (5.30a)

��μ � �u�∇�f�x, p� � 0 3–vector notation , (5.30b)

which is the collisionless relativistic transport equation.

5.4.2 Kinetic equation with collisions

If we have collisions between particles within the range of Δ4x and a given momentum,
changes. For a particle k, with momenta in the range Δ3pk the change is equal to

Δ4x
Δ3p

p0
C�x, p� , (5.31)

where C�x, p� is an invariant function. Using the theory of molecular chaos, the
average number of collisions in a volume element Δ3x during a time interval Δt is
proportional to

1. The average number of particles per unit volume with three momentum in the
range �pk,pk �Δpk� � Δ3pkf�x, pk�.

2. The average number of particles per unit volume with three momentum in the
range �pl,pl �Δpl� � Δ3plf�x, pl�.

3. The intervals Δ3p�

k, Δ
3p�

l, and Δ4x.

The proportionality factor is denoted as:

W �pk, pl�p
�

k, p
�

l�

p0kp
0
l p

�0
k p

�0
l

, (5.32)
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5.4 Relativistic kinetic equation

where the nominator W �pk, pl�p
�

k, p
�

l� is called the transition rate. It is Lorentz scalar
(a scalar which is invariant under a Lorentz transformation), and depends only on
the four-momenta before and after collision. We can rewrite Eq. (5.32) using three
vectors as:

w�pk,pl�p
�

k,p
�

l� �
cW �pk, pl�p

�

k, p
�

l�

p0kp
0
l p

�0
k p

�0
l

. (5.33)

The quantity w�pk,pl�p
�

k,p
�

l�Δ
3p�kΔ

3p�l is the transition probability per unit volume
and per unit time that two particles having momenta pk and pl are scattered with
an outgoing momenta of �pk �Δpk� and �pl �Δpl�.

According to the theory of molecular chaos the total number of particles lost to
collisions in the range Δ4x and �p�Δp� is found by integrating the proportionality
factor over all values of pl, p

�

k, and p�l. We also gain particles due to collisions, that
is particles with initial momenta �p�k,p

�

l� ending up with momenta �pk,pl�. We also
have to include a factor 1�2, since the two momenta states �p�k,p

�

l� and �p�l,p
�

k� can
not be distinguished. The resulting net change of particles in the interval Δ4x and
Δ3p is the collision function C�x, pk�

C�x, pk� �
1

2

�
d3pl
p0l

d3p�k
p�0k

d3p�l
p�0l

�
f�x, p�k�f�x, p

�

l�W �p�k, p
�

l�pk, pl�

	 f�x, pk�f�x, pl�W �pk, pl�p
�

k, p
�

l�
�
. (5.34)

We then get the following explicit equation for the relativistic transport equation with
elastic collision:

pμk
μf�x, pk� �C�x, pk�

�
1

2

�
d3pl
p0l

d3p�k
p�0k

d3p�l
p�0l

�
f�x, p�k�f�x, p

�

l�W �p�k, p
�

l�pk, pl�

	 f�x, pk�f�x, pl�W �pk, pl�p
�

k, p
�

l�
�
. (5.35)

In non-relativistic theory, pμ
μf�x, pk� is called the streaming term, while C�x, pk� is
also called the collision term.
If k and l are different particles (mixture) we need to sum over all particle species

pμk
μf�x, pk� �
N�
l�1

Ckl�x, pk� , (5.36)

with the collision matrix given by

Ckl �γkl

�
d3pl
p0l

d3p�k
p�0k

d3p�l
p�0l

�
f�x, p�k�f�x, p

�

l�Wkl�p
�

k, p
�

l�pk, pl�

	 f�x, pk�f�x, pl�Wkl�pk, pl�p
�

k, p
�

l�
�

(5.37)

k, l � 1, 2, 3, . . . , N , (5.38)
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where γkl � 1 � 1�2δkl, δkl being the Kronecker delta. Finally, if we have inelastic
scattering, we get k � l � i� j, and a transition rate given as

Wkl�ij �Wkl�ij�pk, pl�pi, pj� (5.39)

and a collision matrix

Ckl 	
1

2

N�

i,j�1

�
d3pl
p0l

d3pi
p0i

d3pk
p0j

�
f�x, pi�f�x, pj�Wij�kl

� f�x, pk�f�x, pl�Wkl�ij

�
(5.40)

k, l 	 1, 2, 3, . . . , N . (5.41)

For reactions k � l � i � j for the i and j particles are heavier, the transition rate
Wkl�ij should go zero at a certain treshold.
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A Short history of Modern Cosmology

We will start with a short history of modern cosmology. This section is based upon
several sources. Among them are the books by Guth, Lederman, Randall and Panek
[41, 42, 43, 44]. These are highly recommended introductory texts meant for the
layman.

One could say that modern cosmology started with Albert Einstein. Not long
after publishing his theory on special relativity in 1905 (which concerns space and
time in inertial frames [45]), Einstein began thinking about incorporating gravity into
his theory. The first step was his principle of equivalence, which roughly says that
there is no difference between inertial mass and gravitational mass [46]. It would,
however, take almost another decade before all the pieces fell into place. In 1915
he published his famous field equations which describe gravity as spacetime being
curved by matter and energy [47]. The year after he published his final version of
the general theory of relativity [48] Einstein quickly understood the implications his
theory would have for cosmology, namely that the Universe could not be static. In
order to fix this “problem”, he introduced the famous cosmological constant in his
1917 paper “Cosmological Considerations in the General Theory of Relativity” [49],
an act which he supposedly would call the biggest blunder of his life [50, 51]. Also,
his fix was not a stable solution.

Karl Schwarzschild was the first to find an exact solution to Einstein’s field equa-
tions, for the limited case of a spherical non-rotating mass [52]. He also found the
equation for the event horizon [53]. In 1917 Willem de Sitter found another solution
— one for a massless universe with a positive cosmological constant [54]. Arguably
the most important solution was first found by Alexander Friedmann in 1922 [33]
and 1924 [34] and describes a homogeneous and isotropic expanding or contracting
universe.

In 1915 V.M. Slipher was the first to measure the radial velocity of galaxies [58].
In 1927 the Belgium priest and physicist, Georges Lemâıtre proposed a theory of
an expanding Universe [59]. Combining his own measurements with Sliphers, Edwin
Hubble published his paper about the relation between distance and radial velocity
of galaxies in 1929 [56] (see Figure A.1).

After the discovery of the cosmic expansion, two competing models arose: the Big
Bang theory and the Steady State theory. The Big Bang theory is often credited
to Lemâıtre who in 1931 wrote a short article [60] suggesting that that the Universe
began as a dense “primeval atom”. The most important implication of this theory
is that as we go back in time, the Universe gets denser and hotter — and thus
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A Short history of Modern Cosmology

Figure A.1: Two Hubble diagrams, showing radial velocity vs. distance (as replotted in [55]).
Hubble’s original data plotted from 1929 on the left [56]. By looking at much larger scales (and
using newer data [57]) the straight line representing the Hubble constant fits much better.

both have a beginning and a finite size. The Steady State theory was proposed
by Fred Hoyle, among others, in 1948 [61]. This theory suggests that the Universe
continuously creates new matter as it expands. This would happen at a pace which
would perfectly balance the dilution caused by expansion. In the Steady State model,
the Universe on a large scale will always have the same density and always look the
same. This theory is truthful to the Perfect Cosmological Principle, which says that
the Universe is homogeneous and isotropic both in space and time. A steady state
expanding universe does not run into Olbers’ paradox (If the Universe is infinite, how
can the night be dark?) as the light gets redshifted. The total energy flux from the
sky thus remains finite.

The same year as Hoyle’s Steady State paper; Alpher, Bethe, and Gamow published
their famous paper on Big Bang nucleosynthesis [62], predicting the proportion of
heavier elements in the Universe. Bethe was actually only added by his friend Gamow
to make a wordplay on α, β, γ. This undoubtedly brought a lot of extra attention
to the paper as describes in Figure A.2. The same Alpher, together with Herman
predicted that a Big Bang model would cause a cosmic microwave background [63].

The death of the Steady State theory came in 1964 when the two astronomers Arno
Penzias and Robert Wilson at Bell Labs discovered the 2.7 K microwave background
more or less by accident [65]. The noise was interpreted as black body radiation from
the Big Bang by Robert Dicke, James Peebles, Peter Roll, and David T. Wilkinson
[66].

A few years later, in 1967, Andrei Sakharov wrote a famous paper about the requi-
rements for a baryon-antibaryon asymmetry [67], which is one of the main unanswered
questions in physics: why is there more matter than antimatter?
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Figure A.2: Alpher, Bethe, and Gamow’s 1948 paper. The story behind as quoted in Gamow’s
book “The Creation of the Universe” from 1952 [64].

In the late sixties, the Big Bang theory was presented with several problems. Char-
les Misner and Robert Dicke formally presented the horizon problem [68] and flatness
problem [69]. The first being that distant regions in the Universe, according to the
standard Big Bang theory, have never been in contact with each other, and hence it is
peculiar why they would have the same temperature. The flatness problem is about
the overall curvature of the observable universe and why it appears to be so close to
flat. The curvature is related to the overall energy-density in the Universe, and it can
be shown that if this is slightly off the critical density, it will quickly diverge. This
means that if the Universe is flat now, it must have been incredibly flat in its very
early stages. It can be shown that if the observable universe had just a single gram
of extra matter it would tip off balance [70]) .

In 1970 Vera Rubin and Kent Ford found evidence for dark matter by measuring
galaxy rotation curves at large radii [71], although it was already postulated by both
Jan Oort and Fritz Zwicky in 1932 and 1933 [72].

In 1980 Alan Guth, among others, came up with the inflationary theory [11], pro-
posing that the Universe went through a period of extremely rapid exponential ex-
pansion from when it was around 10 36 to 10 32 seconds old. This theory solves the
magnetic monopole problem, which was one of the original motivations for his theory,
as well as the flatness and horizon problem.

The last 25 years have been a golden age for experimental cosmology and astro-
nomy. There has been a boost in new telescopes and technologies. The COBE
(COsmic Background Explorer) satellite was launched in 1989 to measure the cosmic
microwave background radiation (CMB). When adjusted to the cosmic frame the re-
sults matched that of a blackbody spectrum to a precision of 1 to 100 000. It also
gave the first (and very famous) picture of the full-sky anisotropy of the CMB. A year
later, the Hubble Space Telescope was launched, giving us some of the most spectacu-
lar pictures of our universe. As of 2015, on its 25th year, the Hubble telescope is still
operational. By observing distant Type Ia supernovae in the late 90s, two teams (the
High-Z Supernova Search Team and Supernova Cosmology Project) found evidence
that the Universe is expanding at an accelerating rate [21, 22]. The most accepted
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hypothesis to explain these observations is dark energy, an unknown form of energy
which permeates all space. If this energy is constant in space and time it will act as
the cosmological constant, Λ, which Einstein introduced in 1917. There can, however,
be different solutions, such as quintessence which is a dynamic quantity which can
vary in space and/or time.

The COBE mission had two successors: WMAP (Wilkinson Microwave Anisotropy
Probe), launched in 2001 and then the Planck satellite which was launched in 2009.
Data from these two missions [73, 27] have been the main contributions for estimating
several important cosmological parameters, like the age of the universe, the energy
constituents, and the Hubble parameter. The ΛCDM (cosmological constant with
cold dark matter) model is considered the Standard Model of cosmology. The 2015
result from the Planck mission suggests a universe consisting of roughly 5% baryonic
matter, 26% dark matter, and 69% dark energy [19]. The results from the Planck
mission are discussed a bit further in Section 1.2.

It seems almost poetic that this section which started with Einstein will also end
with him. On February 11, 2016, one of the biggest scientific discoveries was announ-
ced — namely the first direct detection of gravitational waves [74]. These waves were
predicted by Einstein in 1916 [75, 76] and was was indirectly discovered in 1974 by
measuring the orbits of the HulseTaylor binary system [77]. The measured changes
in the orbit of this system and others due to the radiation of gravitational waves are
in very good agreement with the theory. The first direct detection of gravitational
waves, however, came almost a hundred years after Einstein’s prediction. This hap-
pened on September 14, 2015, when the gravitational waves from two merging black
holes were detected here on Earth. Gravitational waves open up a completely new
field of astronomy as we will be able to observe the Universe not only through the
electromagnetic spectrum but trough the ripples of spacetime itself.
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B Big Bang Nucleosynthesis

At temperatures above a few MeV, the neutrons and protons were essentially in the
same abundance, being kept in equilibrium by the reactions

n� νe � p� e� , (B.1)

n� e� � p� νe . (B.2)

The neutron is slightly heavier than the proton, and this will significantly affect the
ratio of neutrons to protons when the temperature (kBT ) is in the same order as the
mass difference between the two particles. This neutron-to-proton-ratio given as [18]

nn

np
� exp

�
�
mnc

2
�mpc

2

kBT

�
� exp

�
�
1.29 MeV

kBT

�
. (B.3)

Luckily for us, at kBT � 1 MeV, the cross-sections for the reactions given in Eqs. (B.1,
B.2) are very small. The reaction involve weak force, which effectively the reactions
stop and the neutrons freeze out at around 0.8 MeV [18]. This happens at t � 1 s,
and the neutron-to-proton-ratio is down to 1/6. As we know, free neutrons have
a mean life of about 15 minutes, resulting in a slighter lower number of neutron-to-
proton-ratio after nucleosynthesis is complete. Around 10 seconds after the Big Bang,
the production of nuclei with more that one nucleon start, what we call primordial
nuclear synthesis. The majority of nucleosynthesis happens between three and twenty
minutes, as is shown in the left panel of Figure B.1. Only light elements are created
during this period, the most important one being helium-4, and a smaller amount
of deuterium (hydrogen-2), helium-3, lithium-7, and the two radioactive elements
tritium (hydrogen-3) and beryllium-7. The latter two would decay into helium-3 and
lithium-7. A reaction chain is given in the right panel in Figure B.1. All other elements
are believed to have been created much later. The main source being evolving and
exploding stars (stellar and supernova nucleosynthesis). Some of the lighter elements
are also created by cosmic rays spallation. After the primordial nuclear synthesis
ended the Universe consisted (by mass) of roughly 75% of hydrogen-1, about 25%
helium-4, a few times 10�5 of deuterium and helium-3, and just trace amounts (in
the order of 10�10) of lithium [81].
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Figure B.1: Model for elements created during Big Bang nucleosynthesis (BBN). Timeline on
right and main reactions on left. Timeline from [78]. Recent studies suggests that the BBN is
not the source of Lithium-6 [79, 80].
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C Gamma matrices

The γ-matrices, also known as the 4� 4 Dirac matrices being used in Section 5.3 are
defined using contravariant representation and metric signature of (����) as:

γ0 �

�
���

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

�
��� , (C.1)

γ1 �

�
���

0 0 0 1
0 0 1 0
0 �1 0 0

�1 0 0 0

�
��� , (C.2)

γ2 �

�
���

0 0 0 �i
0 0 i 0
0 i 0 0
�i 0 0 0

�
��� , (C.3)

γ3 �

�
���

0 0 1 0
0 0 0 �1

�1 0 0 0
0 1 0 0

�
��� . (C.4)

The product of the four gives us γ5 � iγ0γ1γ2γ3 which we can represent as

γ5 �

�
���

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

�
��� . (C.5)
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Abstract: We explore the effective degrees of freedom in the early Universe, from before the
electroweak scale at a few femtoseconds after the Big Bang until the last positrons disappeared
a few minutes later. We look at the established concepts of effective degrees of freedom for energy
density, pressure, and entropy density, and introduce effective degrees of freedom for number density
as well. We discuss what happens with particle species as their temperature cools down from
relativistic to semi- and non-relativistic temperatures, and then annihilates completely. This will
affect the pressure and the entropy per particle. We also look at the transition from a quark-gluon
plasma to a hadron gas. Using a list a known hadrons, we use a “cross-over” temperature of 214 MeV,
where the effective degrees of freedom for a quark-gluon plasma equals that of a hadron gas.

Keywords: viscous cosmology; shear viscosity; bulk viscosity; lepton era; relativistic kinetic theory

1. Introduction

The early Universe was filled with different particles. A tiny fraction of a second after the Big
Bang, when the temperature was 1016 K ≈ 1 TeV, all the particles in the Standard Model were present,
and roughly in the same abundance. Moreover, the early Universe was in thermal equilibrium. At this
time, essentially all the particles moved at velocities close to the speed of light. The average distance
travelled and lifetime of these ultra-relativistic particles were very short. The frequent interactions
led to the constant production and annihilation of particles, and as long as the creation rate equalled
that of the annihilation rate for a particle species, their abundance remained the same. The production
of massive particles requires high energies, so when the Universe expanded and the temperature
dropped, the production rate of massive particles could not keep up with their annihilation rate. The
heaviest particle we know about, the top quark and its antiparticle, started to disappear just one
picosecond (10−12 s) after the Big Bang. During the next minutes, essentially all the particle species
except for photons and neutrinos vanished one by one. Only a very tiny fraction of protons, neutrons,
and electrons, what makes up all the matter in the Universe today, survived due to baryon asymmetry
(the imbalance between matter and antimatter in the Universe). The fraction of matter compared to
photons and neutrinos is less than one in a billion, small enough to be disregarded in the grand scheme
for the first stages of the Universe.

We know that the early Universe was close to thermal equilibrium from studying the Cosmic
Microwave Background (CMB) radiation. Since its discovery in 1964 [1], the CMB has been thoroughly
measured, most recently by the Planck satellite [2]. After compensating for foreground effects, the
CMB almost perfectly fits that of a black body spectrum, deviating by about one part in a hundred
thousand [3]. It remained so until the neutrinos decoupled. For a system in thermal equilibrium, we
can use statistical mechanics to calculate quantities such as energy density, pressure, and entropy
density. These quantities all depend on the number density of particles present at any given time.
How the different particles contribute to these quantities depends of their nature—most important
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being their mass and degeneracy. The complete contribution from all particles is a result of the sum of
all the particle species’ effective degrees of freedom. We call these temperature-dependent functions
g⋆, and we have one for each quantity, such as g⋆n related to number density, and g⋆ε, g⋆p, and g⋆s,
related to energy density, pressure, and entropy density, respectively.

In this paper, we will show how to calculate these four quantities (n, ε, P, s), as well their associated
effective degrees of freedom (g⋆n, g⋆ε, g⋆p, g⋆s). These latter functions describe how the number of
different particles evolve, and we have plotted these values in Figure 1. Throughout this paper, we
will look more closely at five topics. After first having a quick look at the elementary particles of the
Standard Model and their degeneracy (Section 3), we address the standard approach when everything
is in thermal equilibrium in Section 4. Next, we take a closer look at the behavior during the QCD
phase transition; i.e., the transition from a quark-gluon plasma (QGP) to a hot hadron gas (HG) in
Section 5. We then look at the behavior during neutrino decoupling (Section 6). For the fifth topic, we
study how the temperature decreases as function of time (Section 8). In Appendix A, we have also
included a table with the values for all four g⋆s, as well as time, from temperatures of 10 TeV to 10 keV.
The table includes three different transition temperatures as we go from a QGP to a HG. This article
was inspired by the lecture notes by Baumann [4] and Kurki-Suonio [5]. Other important books on the
subject are written by Weinberg [6,7], Kolb and Turner [8], Dodelson [9], Ryden [10], and Lesgourgues,
Mangano, Miele, and Pastor [11].
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Figure 1. The evolution of the number density (g⋆n), energy density (g⋆ε), pressure (g⋆p), and entropy
density (g⋆s) as functions of temperature.

2. Notations and Conventions

The effective degrees of freedom of a particle species is defined relative to the photon. This is not
just an arbitrary choice, but chosen since the photon is massless, and whose density history is best
known. The most important source of information about the early Universe comes from the CMB
photons. Even though the photon is the natural choice as a reference particle, technically any particle
could be used. Additionally, when talking about effective degrees of freedom, we most often do so
in the context of energy density g⋆ε, which in most textbooks is just called “g⋆”. Here, we use the
notation g⋆ε for that matter, and g⋆ as a collective term for all four quantities.

The term “particle annihilations” frequently appears in this paper. Strictly speaking, we have
particle creations and annihilations all the time, but in this context, “particle annihilations” refers to
periods where the annihilation rate is (noticeable) faster than the production rate for a particle species.

In many textbooks, the value of the speed of light (c), the Boltzmann constant (kB), and the Planck
reduced constant (h̵) are set to unity. We have chosen to keep these units in our equations to avoid
any problems with dimensional analysis during actual calculations. One of the advantages of using
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h̵ = c = kB = 1 is that we can use temperature, energy, and mass interchangeably. For our equations, we
use kBT and mc2 when we want to express temperature and mass in units of MeV, but in the main text,
when we talk about temperature and mass, it is implied that these are kBT and mc2.

Simplifications are important when we first want to approach a new subject. One of our
assumptions in this paper is that the early Universe was in total thermal equilibrium. There were,
however, periods where this was not so. In those cases, viscous effects drove the system (the Universe)
towards equilibrium. This increased the entropy. For our purposes, all viscous effects have been
neglected. Some relevant papers address this issue [12–14].

3. The Standard Model Particles and Their Degeneracy

Let us start by looking at the degeneracy of the different particle species—their intrinsic degrees of
freedom, g. The Standard Model of elementary particles are often displayed as in Figure 2. The quarks,
leptons, and neutrinos are grouped into three families, shown as the first three columns. These are all
fermions. The two last columns are the bosons. The fourth column consists of force mediator particles,
also called gauge bosons. These are the eight gluons, the photon, and the three massive gauge bosons.
The Higgs boson that was discovered at CERN in 2012 [15,16] comprises the fifth and last column.

Figure 2. All particle species of the Standard Model of elementary particles.

A particle’s degeneracy depends on its nature and which properties it possesses. We have listed
these as four different columns in Table 1. They are: (1) Number of different flavors. These are different
types of particles with similar properties, but different masses. These are listed as separate entries in
Figure 2; (2) Existence of antiparticles. Antiparticles have different charge, chirality, and color than their
particle companion. Not all particles have anti-partners (e.g., the photon); (3) Number of color states.
Strongly interacting particles have color charge. For quarks and their anti-partners, there are three
possibilities (red, green, blue, or antired, antigreen, antiblue). Gluons have eight possible color states.
These are superpositions of combined states of the three plus three colors; (4) Number of possible spin
states. We remember from quantum mechanics that all bosons have integer spins, while fermions have
half integer spins, both in units of h̵. The spin alignment of a particle in some direction is called its
polarization. Quarks and the charged leptons have two possible polarizations: +1⁄2 or −1⁄2. Another way
of saying this is that they can be either left-handed or right-handed. Neutrinos, on the other hand, can
only be left-handed (and antineutrinos only right-handed), so they only have one spin state. Actually,
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whether neutrinos are Dirac or Majorana fermions is still an open question. Majorana fermions are
their own antiparticles, while Dirac fermions have distinct particles and antiparticles. In the latter case,
we expect there to be additional right-handed neutrinos and left-handed antineutrinos, whose weak
interaction is suppressed. These “new” neutrinos are expected to have negligible density compared to
the left-handed neutrinos and right-handed antineutrinos [17]. The book by Lesgourgues, Mangano,
Miele, and Pastor [11] also discusses this topic in detail. The massive spin-1 bosons (W± and Z0) have
three possible polarizations (−1, 0, 1): one longitudinal and two transverse. The massless spin-1 bosons
(photons and gluons) have only two possible polarizations, namely the transverse ones. The Higgs
particle is a scalar particle and has spin-0. Finally, we should say that hadrons can have multiple
possible spin states, depending on their composition.

Table 1. The Standard Model of elementary particles and their degeneracies.

Flavors Particle + Antiparticle Colors Spins Total

Quarks (u, d, c, s, t, b) 6 2 3 2 72
Charged leptons (e, μ, τ) 3 2 1 2 12
Neutrinos (νe, νμ, ντ) 3 2 1 1 6
Gluons (g) 1 1 8 2 16
Photon (γ) 1 1 1 2 2
Massive gauge bosons (W±, Z0) 2 2, 1 1 3 9
Higgs bosons (H0) 1 1 1 1 1
All elementary particles 17 118

At high temperatures where all the particles of the Standard Model are present, we have 28 bosonic
and 90 fermionic degrees of freedom. It turns out that fermions do not contribute as much as bosons,
since they can not occupy the same state. We will get back to this in the next section, and just say
that fermions have 28+ 7⁄8× 90 = 106.75 effective degrees of freedom for energy density, pressure, and
entropy density. For the number density, the effective degrees of freedom is 28+ 3⁄4× 90 = 95.5.

4. Statistical Mechanics of Ideal Quantum Gases in Thermodynamic Equilibrium

In this section, we briefly review the statistical mechanics of ideal quantum gases in thermal
equilibrium. We also introduce the concept of effective number of degrees of freedom for a particle
species, and how to count these as functions of the temperature.

4.1. Thermodynamic Functions

In order to calculate the thermodynamic functions, we need to know the single-particle energies
of the system. We consider a cubic box with periodic boundary conditions, and with sides of
length L and volume V = L3. Solving the Schrödinger equation for a particle, we find the possible
momentum eigenvalues

p⃗ = h
L
(n1 e⃗x + n2 e⃗y + n3 e⃗z) , (1)

where h is the Planck constant, ni = 0, ±1, ±2, ±3, ..., and e⃗x, e⃗y, e⃗z are the standard units vectors
in three-dimensional Euclidean space. The energy of a particle with mass m and momentum p⃗ is
E(p⃗) = √m2c4 + p⃗2c2.

In thermal equilibrium, the probability that a single-particle state with momentum p⃗ and energy
E(p⃗) is occupied is given by the Bose–Einstein or Fermi–Dirac distribution functions

f (p⃗) = 1
e(E(p⃗)−μ)/(kBT) ± 1

, (2)

where the upper sign is for fermions and the lower sign for bosons. Moreover, kB is the Boltzmann
constant and μ is the chemical potential. In order to find the total number of particles occupying a state
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with energy E, we must find the density of states in phase space. We see from Equation (1) that the
number of possible states in momentum space is L3/h3. By dividing by the volume, L3, as well, we are
left with the factor (1/h)3. If there is an additional degeneracy g (for example, spin), we can write the
density of states (dos) as

dos = g
h3 = g(2π)3h̵3 . (3)

The density of particles with momentum p⃗ is then given by

n(p⃗) = g(2π)3h̵3 × f (p⃗) . (4)

The total density of particles, n, can then be written as an integral over three-momentum involving
the distribution function as

n = g(2π)3h̵3 ∫ f (p⃗)d3 p⃗ . (5)

By multiplying the distribution function (2) with the energy and integrating over
three-momentum, we obtain the energy density ε of the system. The pressure, P, can be found
in a similar manner by multiplying the distribution function with ∣p⃗∣2/(3E/c2) (a nice derivation of this
is shown by Baumann [4]). This yields the integrals

ε = g(2π)3h̵3 ∫ E(p⃗) f (p⃗)d3 p⃗ , (6)

P = g(2π)3h̵3 ∫ ∣p⃗∣2
3(E/c2) f (p⃗)d3 p⃗ . (7)

Finally, let us mention the entropy density s. It can be calculated from the thermodynamic relation

s = ε + P − μT

T
, (8)

where the index μT is the total chemical potential. We will get back to chemical potentials in Section 4.3.

4.2. From Momentum to Energy Integrals

It is sometimes more convenient to use energy, E, instead of the momentum, p⃗, as the integration
variable. By integrating over all angles, we can replace d3 p⃗ by 4π∣p⃗∣2 dp⃗. Using the energy momentum
relation, we find ∣p⃗∣ = √E2 −m2c2/c and cp⃗ dp⃗ = E dE. We can simplify these formulas further by
introducing the dimensionless variables u, z, and μ̂.

u = E
kBT

, z = mc2

kBT
, μ̂ = μ

kBT
. (9)

This yields the following expressions for the number density, energy density, and pressure for
a species j, and for all species (as this is simply the sum of all particle species).

nj(T) = gj

2π2h̵3 ∫ ∞mjc2

E
√

E2 −m2
j c4

e(E−μj)/kBT ± 1
dE (10a)

= gj

2π2 (kBT
h̵c
)3 ∫ ∞

zj

u
√

u2 − z2
j

eu−μ̂j ± 1
du , (10b)

n(T) = ∑
j

nj = ∑
j

gj

2π2 (kBT
h̵c
)3 ∫ ∞

zj

u
√

u2 − z2
j

eu−μ̂j ± 1
du , (10c)
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εj(T) = gj

2π2h̵3 ∫ ∞mjc2

E2
√

E2 −m2
j c4

e(E−μj)/kBT ± 1
dE (11a)

= gj

2π2
(kBT)4(h̵c)3 ∫ ∞zj

u2
√

u2 − z2
j

eu−μ̂j ± 1
du , (11b)

ε(T) = ∑
j

εj = ∑
j

gj

2π2
(kBT)4(h̵c)3 ∫ ∞zj

u2
√

u2 − z2
j

eu−μ̂j ± 1
du , (11c)

Pj(T) = gj

6π2h̵3 ∫ ∞mjc2

(E2 −m2
j c4)3/2

e(E−μj)/kBT ± 1
dE (12a)

= gj

6π2
(kBT)4(h̵c)3 ∫ ∞zj

(u2 − z2
j )3/2

eu−μ̂j ± 1
du , (12b)

P(T) = ∑
j

Pj = ∑
j

gj

6π2
(kBT)4(h̵c)3 ∫ ∞zj

(u2 − z2
j )3/2

eu−μ̂j ± 1
du . (12c)

As shown in Equation (8) we can find the entropy density for a single species j and the total
entropy as:

sj(T) = εj + Pj − μjnj

T
, (13a)

s(T) = ∑
j

sj = ∑
j

εj + Pj − μjnj

T
= ε + P −∑j μjnj

T
. (13b)

4.3. Chemical Potentials

Before we proceed, we briefly discuss the chemical potentials. We recall from statistical mechanics
that we can introduce a chemical potential μj for each conserved charge Qj. This is done by replacing
the Hamiltonian H of the system with H − μjNQj , where NQj is the number operator of particles with
charge Qj.

In the Standard Model, there are five independent conserved charges. These are electric charge,
baryon number, electron-lepton number, muon-lepton number, and tau-lepton number. This means
there are also five independent chemical potentials [7]. The chemical potentials are determined by the
number densities. The electric charge density is very close to zero. The baryon density is estimated to
be less than a billionth of the photon density [18,19]. Lepton density is also thought to be very small,
on the same order as the baryon number. According to Weinberg [7], for an early Universe scenario,
we can put all these numbers equal to zero to a good approximation. For a correct representation
of the Universe, the chemical potentials cannot all cancel out—otherwise, there would be no matter
present today. For more general calculations including chemical potentials, the book by Weinberg
is recommended [6]. The implications of a large neutrino chemical potential is discussed by Pastor
and Lesgourgues [20]. Mangano, Miele, Pastor, Pisanti, and Sarikasa discuss the chemical potentials
and their influence on the effective number of neutrino species [21] (we will briefly mention effective
neutrino species in Section 6.2).
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4.4. Massless Particle Contributions

In Equations (10)–(12), we see how dimensionless units, u, z, and μ̂, simplifies the integrals.
In the ultrarelativistic limit, we can ignore the particle masses. Moreover, as we have set the chemical
potentials to zero, we can easily solve the dimensionless integrals appearing in Equations (10b), (11b),
and (12b) analytically. Since the integrals for energy density and pressure in the massless cases are the
same, we find:

∫ ∞
0

u2

eu ± 1
du = ⎧⎪⎪⎨⎪⎪⎩

3
2 ζ (3) ≃ 1.803

2ζ (3) ≃ 2.404

(Fermions) ,

(Bosons) ,
(14)

∫ ∞
0

u3

eu ± 1
du = ⎧⎪⎪⎨⎪⎪⎩

7
8

π4

15 ≃ 5.682
π4

15 ≃ 6.494

(Fermions) ,

(Bosons) ,
(15)

where ζ(3) is the Riemann zeta function of argument 3. Using these results, we find the values for n, ε,
P, and indirectly s for massless bosons and fermions:

nb(T) = g
ζ(3)
π2
(kBT)3(h̵c)3 , nf (T) = 3

4
g

ζ(3)
π2
(kBT)3(h̵c)3 , (16)

εb(T) = g
π2

30
(kBT)4(h̵c)3 , εf (T) = 7

8
g

π2

30
(kBT)4(h̵c)3 , (17)

Pb(T) = g
π2

90
(kBT)4(h̵c)3 , Pf (T) = 7

8
g

π2

90
(kBT)4(h̵c)3 , (18)

sb(T) = g
2π2

45
k 4

B T3(h̵c)3 , sf (T) = 7
8

g
2π2

45
k 4

B T3(h̵c)3 . (19)

Here the subscript b is for bosons, and f is for fermions. We see that solving the integrals gives
a difference between fermions and bosons, namely a factor 3⁄4 for the number density and 7⁄8 for energy
density and pressure. We will call these two factors the “fermion prefactors”. We also see that the
pressure is simply one third that of the energy density, while the entropy density can be found by
multiplying the energy density by 4/(3T).
4.5. Effective Degrees of Freedom

In most cases we cannot ignore the particle masses. In these cases, we must solve the integrals in
Equations (10b), (11b), and (12b) numerically. The integrals are decreasing functions of the temperature,
and they vanish in the limit kBT/mc2 → 0. We can normalize these by dividing their values by the
case of the photon (but with g equal to one). As we recall,the photon has a bosonic nature with m = 0
and μ = 0. This means that for massive particles at high temperature (kBT ≫ mc2), one actual degree
of freedom for bosons contributes as much as one degree of freedom for photons, and the fermions
a little less. As the temperature drops, and less particles are created, the effective contributions will be
smaller. By including the intrinsic degrees of freedom (g), we find each particle species’ effective degree
of freedom, g⋆j :

g⋆nj(T) =
gj

2π2 ( kBT
h̵c )3

1
2π2 ( kBT

h̵c )3
∫ ∞zj

u
√

u2−z2
j

eu±1 du

∫ ∞0 u2

eu±1 du
= gj

2ζ(3) ∫ ∞zj

u
√

u2 − z2
j

eu ± 1
du , (20)
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g⋆εj(T) =
gj

2π2
(kBT)4(h̵c)3

1
2π2

(kBT)4(h̵c)3
∫ ∞zj

u2
√

u2−z2
j

eu±1 du

∫ ∞0 u3

eu±1 du
= 15gj

π4 ∫ ∞zj

u2
√

u2 − z2
j

eu ± 1
du , (21)

g⋆pj(T) =
gj

6π2
(kBT)4(h̵c)3

1
6π2

(kBT)4(h̵c)3
∫ ∞zj

(u2−z2
j )3/2

eu±1 du

∫ ∞0 u3

eu±1 du
= 15gj

π4 ∫ ∞zj

(u2 − z2
j )3/2

eu ± 1
du , (22)

g⋆sj(T) = 3g⋆εj(T) + g⋆pj(T)
4

. (23)

In Figure 3, we have plotted the effective degrees of freedom for massive bosons (panel a) and
fermions (panel b) with g = 1 (and μ = 0) as functions of the temperature. We have also listed the
results in Table B1 in Appendix B. When the temperature is equal to the mass (kBT = mc2), the effective
degrees of freedom for energy density is approximately 0.9 for bosons and 0.8 for fermions, compared
to that of the photon. For number density, pressure, and entropy density, they are a little lower.

10 1 0.1
0

1/4

1/2

3/4

7/8

1

7/8

3/4

a) Bosons

kBT

mc2

g 

g�n
g�ε
g�p
g�s

10 1 0.1

b) Fermions

kBT

mc2

g 

g�n
g�ε
g�p
g�s

10 1 0.1
0

1/4

1/2

3/4
7/8

1 c) gn

@kBT=mc2

b: 0.74

f: 0.63 = 84%
kBT
mc2

10 1 0.1

d) gε

@kBT=mc2

b: 0.89

f: 0.81 = 92%
kBT
mc2

10 1 0.1

e) gp

@kBT=mc2

b: 0.78

f: 0.73 = 83%
kBT
mc2

10 1 0.1

f) gs

@kBT=mc2

b: 0.86

f: 0.79 = 90%
kBT
mc2

Figure 3. The effective degrees of freedom g⋆n, g⋆ε, g⋆p, and g⋆s for bosons (a) and fermions (b) per
intrinsic degree of freedom. A more detailed look at each of the four g⋆s is given in the lower four
panels (c–f). Here the solid colored curves are for the bosons, and the dash-dotted colored curves
are for the fermions. The grey dash-dotted curves represent the fermions’ contribution compared to
its own relativistic value (such that it is 100% for T → ∞). We have included the relative values at
kBT = mc2 for the four cases (marked with “+” symbols). During particle annihilations, the energy
density falls slower than the other quantities due to the impact of the rest mass energy. At temperatures
close to the rest mass of some massive particle species, this rest mass is substantial to their total energy.

The effective degrees of freedom are defined as functions of the corresponding variables
and temperature. We find the total effective degrees of freedom for g⋆n, g⋆ε, and g⋆p by summing
Equations (20)–(23) over all particle species j:
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g⋆n(T) ≡ π2

ζ(3) n(T)
T3 (24a)

= ∑
j

gj

2ζ(3) ∫ ∞zj

u
√

u2 − z2
j

eu ± 1
, (24b)

g⋆ε(T) ≡ 30
π2

ε(T)
T4 (25a)

= ∑
j

15gj

π4 ∫ ∞zj

u2
√

u2 − z2
j

eu ± 1
du , (25b)

g⋆p(T) ≡ 90
π2

P(T)
T4 (26a)

= ∑
j

15gj

π4 ∫ ∞zj

(u2 − z2
j )3/2

eu ± 1
du . (26b)

Finally, the effective degrees of freedom associated with entropy is then:

g⋆s(T) ≡ 45
2π2

s(T)
T3 (27a)

= 3g⋆ε(T) + g⋆p(T)
4

. (27b)

We again emphasize that Equations (24b), (25b), (26b), and (27b) are only valid for a system
in thermal equilibrium (i.e., all the particles have the same temperature). It turns out that after
the neutrinos decouple from the electromagnetically interacting particles (i.e., photons, electrons,
and positrons) and the electrons and positrons annihilate, we cannot calculate the four g⋆s that
straightforwardly. We will return to neutrino decoupling in Section 6.1.

5. Particle Evolution During the Cooling of the Universe

Our analysis starts with all the particles of the Standard Model present. As the Universe
expands and cools, the annihilation rate of the more massive particles will become smaller and
smaller compared to their creation rate. As the heavier particles disappear, this again will lead to
a relatively larger creation rate for all the remaining lighter particle species. The overall number of
particles in a comoving volume will thus remain (almost) constant. A few minutes after the Big Bang,
when the temperature was down to 10 keV (corresponding to 100 million Kelvin), the Universe was
mainly filled with photons and neutrinos. As we mentioned in Sections 1 and 4.3, a small—and at this
stage, negligible—portion of matter survived due to the baryon asymmetry. Without the presence of
antiparticles, the matter particles (i.e., nucleons and electrons) thus survived and “froze out” when
their reaction rate (i.e., annihilation and creation rate) became slower than the expantion rate of
the Universe (or equivalently, when the time scale of the weak interaction became longer than the
age of the Universe) [8]. This process has some similarities with the decoupling of the neutrinos
(which we will discuss in more detail in Section 6). These relic matter particles still interact with
the photons and remain in thermal equilibrium until after the photon decoupling at around 380,000
years after the Big Bang [2]. Although negligible in the early stages of the Universe, matter eventually
became the dominant energy contributor around 47,000 years after the Big Bang [10]. This is because
non-relativistic (cold) matter receive their energy mainly from their rest mass. The energy density for
cold matter goes as T−3. This is solely due to the dilution of the particles. The kinetic contribution to
the energy is negligible. Radiation (massless particles) goes as T−4, because it is also subject to redshift
as the Universe expands. A simple overview of events which affects the four g⋆s is given in Table 2.
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Table 2. List of events which impacts g⋆n, g⋆ε, g⋆p, and g⋆s. For the particle annihilation events, we
have here used the particle masses as a reference. By combining this Table with Table B1 in Appendix B,
we get a more precise picture.

Event Temperature g⋆n g⋆ε g⋆p g⋆s

95.5 106.75 106.75 106.75
Annihilation of tt̄ quarks <173.3 GeV

86.5 96.25 96.25 96.25
Annihilation of Higgs boson <125.6 GeV

85.5 95.25 95.25 95.25
Annihilation of Z0 boson <91.2 GeV

82.5 92.25 92.25 92.25
Annihilation of W+W− bosons <80.4 GeV

76.5 86.25 86.25 86.25
Annihilation of bb̄ quarks <4190 MeV

67.5 75.75 75.75 75.75
Annihilation of τ+τ− leptons <1777 MeV

64.5 72.25 72.25 72.25
Annihilation of cc̄ quarks <1290 MeV

55.5 61.75 61.75 61.75
QCD transition † 150–214 MeV

15.5 17.25 17.25 17.25
Annihilation of π+π− mesons <139.6 MeV

13.5 15.25 15.25 15.25
Annihilation of π0 mesons <135.0 MeV

13.5 14.25 14.25 14.25
Annihilation of μ+μ− leptons <105.7 MeV

9.5 10.75 10.75 10.75
Neutrino decoupling <800 keV

6.636 6.863 6.863 7.409
Annihilation of e+e− leptons <511.0 keV

3.636 3.363 3.363 3.909
† Using lattice QCD, this transition is normally calculated to 150–170 MeV.

5.1. Quark-Gluon Plasma vs. Hadron Gas

In the early Universe, quarks and gluons moved freely around. A gas consisting of quarks
and gluons at high temperature is referred to as a quark-gluon plasma, in analogy with an ordinary
electromagnetic plasma. This is in contrast to today, where we do not observe free quarks, but only
hadrons (e.g., pions and nucleons) that are bound states of either three quarks, three antiquarks,
or a quark-antiquark pair. These different combinations are called baryons and mesons, and are
both bound together by the gluons. While quarks and gluons carry color charge, the hadrons we
observe are color neutral. At some critical temperature of the Universe Tc, a phase transition from
a quark-gluon plasma to a hadronic phase took place. We call the gas formed immediately after
the phase transition a hadron gas. This is similar to the formation of atoms, where the nucleus and
electrons are bound together by electric forces. The aforementioned phase transition took place when
the temperature of the Universe was approximately 150–170 MeV [22,23]. The transition temperature
can be calculated by so-called lattice Monte Carlo simulations. Although the study of the phase
transition from a quark-gluon plasma to a hadron gas is rather difficult, we can get an estimate of the
critical temperature by evaluating the effective degrees of freedom for the energy density. This estimate
could be thought of as an upper limit bound, as we cannot have an increase in g⋆ε (i.e., the energy
density) as the universe expands

5.2. Effective Degrees of Freedom in the QGP and HG Phases

Let us start an analysis at very high temperature, where all the elementary particles are present
and effectively massless. g⋆ε is therefore at a maximum. As the temperature decreases, the various
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particles annihilate, and g⋆ε falls accordingly. We trace the number of effective degrees of freedom as
a function of the temperature in Figure 4a. Here, the yellow dotted curve shows the effective degrees
of freedom in the quark-gluon plasma phase (if it would exist for all temperatures). Without a phase
transition, the quarks disappear only when the temperatures drop below their rest mass value. At the
far right (colder) part of the scale, the gluons are still present together with the photons and neutrinos.
In a similar manner, we can trace the effective degrees of freedom in a hadronic phase (if it would
exist for all temperatures), as shown in the purple dash-dotted curve. As in the real world, relatively
speaking we only have photons and neutrinos present at low temperatures. As we go left to higher
temperatures, the first increase in g⋆ε is caused by the presence of electron–positron pairs. The muons
and the lightest mesons (namely, the pions), are the next particles to appear. We then get a very steep
increase in g⋆ε, starting at around 100 MeV. This is due to the appearance of many heavier hadrons,
whose numbers grow almost exponentially as the temperature increases.

10−210−1100101102103104105106
1

10

100

kBT [MeV]

g 
ε

a) dof for QGP and HG, w/o transition.

dof QGP
dof hadron gas

1091010101110121013101410151016

T [K]

100150170214300

10
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b) dof with different transitions.

dof QGP
dof hadron gas
dof with 214 MeV tr.
dof with 170 MeV tr.
dof with 150 MeV tr.

2.48 2.0 1.7 ×1012

T [K]
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g 
ε

Figure 4. Panel (a) shows the effective degrees of freedom (dof) for g⋆ε in the quark-gluon and hadronic
phases as functions of temperature. The yellow dotted curve represents the quark-gluon degrees of
freedom and the purple dash-dotted curve is for the hadronic equivalent. In panel (b), we have
zoomed in around the phase transition and plotted g⋆ε for three different transition temperatures:
kBTc = 214 MeV in solid green, kBTc = 170 MeV in dash-dotted red, and kBTc = 150 MeV in dashed blue.

We can now define a “cross-over” temperature T⋆, which is the temperature at which the two
curves intersect. Hence, the phase with the lower number of effective degrees of freedom for energy
density wins (in QCD theory, one normally compares the pressure of the two phases, and the phase
with the higher pressure wins). Using the particles listed by the Particle Data Group [19] (and listed
in Appendices C and D), this yields kBT⋆ = 214 MeV. However, if there are more possible baryonic
states (which there most likely are), this temperature will be lower. This cross-over temperature could
be thought of as the QCD transition temperature. To get a more accurate estimate for the transition
temperature, one can use the numerical method called lattice simulations. Using this latter method,
one obtains a transition temperature kBTc in the 150–170 MeV range. The value depends on the number
of quarks and their mass used for the calculation. Thus, our simple estimate gives us the correct order
of magnitude, but a bit too high. Speculatively, however, it is possible that it can be thought of as an
upper bound.

In Figure 4b, we zoom in around the transition temperature. We recognize the partly covered
yellow and purple curves from panel-a, representing the QGP and HG scenarios. The green curve
represents a transition temperature of the aforementioned 214 MeV. If we insist on a critical temperature
of 170 MeV, we follow the yellow curve for the QGP to the right, and as we hit this temperature,
we jump down to the HG curve. This discontinuous curve for g⋆ε is shown in dash-dotted red color.
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We will later see (Section 8) that this can be interpreted as the temperature remaining constant over
a time while the degrees of freedom are reduced. The same remarks apply to the blue curve, which
represents a 150 MeV transition.

5.3. A Closer Look at Each Particle Group

Let us have a closer look at how each group of particle species contributes to g⋆ε. Figure 5a shows
how the different particle groups contribute to the energy density as the temperature of the Universe
drops. Let us look at the simplest case first—the photon (shown as the black dashed line). It always
has two degrees of freedom, and thus a constant contribution, g⋆εγ, equal to two. The charged leptons
(l) consist of the taus, muons, electrons, and their antiparticles. They are fermions, with two possible
spin states. Each generation has a degeneracy of 3.5, which adds up to 10.5 at high temperatures.
The magenta dash-dotted curve in Figure 5a shows how the charged lepton contribution drops around
the time when the temperature (kBT) goes below that of the particle masses (mc2). The tau and antitau
have a mass of 1777 MeV, so when the temperature drops below this value, their abundance will drop,
and at a few hundred MeV they are all but gone, and g⋆εl will have dropped to about 7. The same
process happens for the muons and electrons from kBT ∼ 100 MeV and kBT ∼ 0.5 MeV, when the value
of g⋆εl drops to 3.5, and finally zero. The case is more or less the same for the massive bosons (W±, Z0,
and H0). They have a total degeneracy of 10, and all have masses of around 100 GeV, which means
that their annihilations will overlap as seen in the red dotted curve. For neutrinos (solid blue curve),
we see a fall in g⋆εν after they have decoupled, and the electron–positrons start to annihilate. We look
closer at this in Section 6.1.
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Figure 5. Panel (a) shows the contribution to the effective degrees of freedom (dof) for energy density
from all particle groups. The drop in each group’s g⋆ε value corresponds to ongoing annihilations of
particles at that temperature. Panel (b) shows the total hadron contribution (green solid curve) to g⋆ε

around the QCD phase transition temperature. We have further divided this into a baryon part (blue
dotted curve) and a meson part (red dash-dotted curve). We have also plotted the pions specifically
(black dashed curve), as they are the main hadronic contributor to g⋆ε at low temperatures. The two
plots clearly show how fast the hadronic contribution increases at temperatures beyond 100 MeV. In
both panels, we have marked the contribution to g⋆ε from hadrons, baryons, and mesons, at the three
transition values of 214 MeV (◯ symbols), 170 MeV (△ symbols), and 150 MeV (▽ symbols), respectively.

For the color-charged particles (gluons and quarks), things are a bit more complicated due to
the differences before and after the QCD phase transition. In Figure 5a, we have plotted both the
quark-gluon plasma and hadron gas without any transition. Instead, we have marked their value at
three different transition values: kBTc = 214 MeV (marked with ◯), kBTc = 170 MeV (marked with△),
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and kBTc = 150 MeV (marked with▽). The case for the gluons is straightforward—they have 16 degrees
of freedom for T > Tc, and zero after. Quarks—being massive—begin with 63 effective degrees of
freedom, which will gradually decrease as the top, bottom, and charm particles disappear. At the time
of the phase transition, this value is down to about ∼32, depending on Tc.

After the phase transition, we need to count the hadronic degrees of freedom. We can distinguish
these by baryons and mesons, as is done in Figure 5b. The only hadrons with masses less than kBTc are
the three pions, which for T = Tc have roughly three degrees of freedom. There are, however, many
heavier hadrons, which single-handedly do not contribute much at low temperatures, but the sheer
number of different hadronic states results in a collective significant contribution. Going from low to
high temperatures in Figure 5b, the effective degrees of freedom from mesons (red dash-dotted curve)
and baryons (blue dotted curve) increase almost exponentially. This value is quite different at different
Tc. Following the hadrons (green curve) from right to left, we see that at kBT = 150 MeV, the hadrons
make up roughly 12 effective degrees of freedom. At kBT = 170 MeV, this number is approximately 19,
and at kBT = 214 MeV, we have roughly 48—which is the same as the 16+ 32 degrees of freedom from
the free quarks and gluons.

6. Decoupling

As we mentioned in Section 1, particles are kept in thermal equilibrium by constantly colliding
(interacting) with each other. The collision rate depends on two factors—the cross section σ and the
particle density n. The cross section depends on several factors, but the most important one is by which
forces the particles interact. Those which feel the strong and electromagnetic force interact strongly,
while those which only feel the weak force interact much weaker. The cross sections related to the
different forces depend on the temperature, or more correctly on the energy involved in the reaction.
How these interaction strengths change are different for the four forces. In general, they become closer
in strength for higher temperatures.

When the Universe expands, dilutes, and cools, particles travel farther and farther before
interacting. That is, their mean free path and lifetime increases. As mentioned in Section 5, at
some time the interaction rate for some particles can become slower than the expansion rate of the
Universe, and (on average) those particles will never interact again. The time at which this happens is
defined as the time of decoupling. For neutrinos, this happened about one second after the Big Bang
(and we will get back to this in the next section), and for photons this happened about 380, 000 years
later (due to recombination and forming of neutral atoms). Let us look at the general case. First we
need to introduce the concept of comoving coordinates and volumes. Comoving coordinates move
with the rest frame of the Universe; i.e., they do not change as the Universe expands. An analogy of
this would be to draw dots on a balloon. The actual distance between the dots increases as the balloon
is inflated, but their comoving distance remains the same. For a comoving volume with constant
entropy S, we can write

S = s(T)a3 = g⋆s(T)2π2

45
T3a3 = constant

→ g⋆s(T)T3a3 = constant . (28)

One of the consequences of this is that the temperature will fall slower during particle annihilations
(i.e., when the effective degrees of freedom decreases). To understand this, we need to look at what is
going on during particle creations and annihilations, as well as rest mass energy vs. kinetic energy.

During reactions where we go from two massive particles to two lighter particles, the excess
rest mass energy will be converted to kinetic energy. Thus, the lighter particles will on average have
a higher kinetic energy than the other particles in the thermal “soup”. Normally, this is countered by
the reversed reaction—namely, reactions where two lighter particles create two more massive ones
with less kinetic energy. Throughout periods where we have particle annihilations, there will be a net
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flow of massive particles to lighter particles plus kinetic energy. Hence, the temperature will fall slower
in these periods.

In order to maintain thermal equilibrium, particles need to constantly interact. That is, there needs
to be some coupling between them (directly or indirectly). If some particles decouple, it means that
they on average will never interact again, so if a particle species has decoupled before an annihilation
process starts, their temperature will decrease independently of those which are still coupled together.
As a result, there will be two different temperatures: the photon-coupled temperature (T) (those
particles that directly or indirectly interact with the photons), and the decoupled-particle temperature
(Tdc). Solving Equation (28) before and after an annihilation process (indicated by subscripts “1” and
“2”) for the photon-coupled (γc) and decoupled (dc) particles gives us

gγc1T3
1 a3

1 = gγc2T3
2 a3

2 , (29)

gdc1T3
dc1a3

1 = gdc2T3
dc2a3

2 . (30)

After decoupling, but before an annihilation process, the two temperatures are the same. Well,
close enough, as we will briefly discuss in Section 8. Once a photon-coupled particle species start to
annihilate, the degrees of freedom for (all) the coupled particles will reduce, while it will remain the
same for the decoupled ones. Solving for the decoupled temperature after annihilation gives us:

T3
dc2 = gγc2

gγc1
T3

2 , (31)

which we normally write as

Tdc = 3

√
gγc2

gγc1
T . (32)

In principle, we can do this for more than one decoupled particle species, and get two or more
different temperatures for the decoupled particles.

6.1. Neutrino Decoupling

Before they are decoupled, neutrinos are kept in thermal equilibrium with the photon-coupled
particles mainly via weak interactions with electrons and positrons. Around one second after the Big
Bang, the rate of the neutrino–electron interactions becomes slower than the rate of expansion of the
Universe, H. The collision rate between neutrinos and electrons (and its antiparticle), Γν, is given
by [6,17]:

Γν = neσwk ≈ (kBT
h̵c
)3 (h̵cGwkkBT)2

≈ G2
wk(kBT)5

h̵c
, (33)

where ne is the number density of electrons and σwk is the neutrino–electron scattering cross section.
Gwk = GF/(h̵c)3 ≈ 1.166× 10−5 GeV−2 is the weak coupling constant [24,25]. By using the equation for
energy density, either from Equation (11c), or better, by fast-forwarding to Equation (48), the expansion
rate at the same time is given by the first Friedmann equation:

H =√8πG
3c2 ε =�  !8πG

3c2 g⋆ε(T)π2

30
(kBT)4(h̵c)3

≈�  !5G(kBT)4(h̵c)3 . (34)
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The prefactors in Γν and H roughly cancel each other, such that we end up with

Γν

H
≈ G2

wk

√
h̵c
5G
(kBT)3 ≈ ( T

1010 K
)3 . (35)

This is a rough estimate, but one that is most commonly used (e.g., by Weinberg [6]).
Being relativistic, the neutrino temperature Tν scales as a−1, while the energy density and number
density scale as a−4 and a−3, respectively.

6.2. Neutrino Temperature and Entropic Degrees of Freedom

Let us look more closely at the effective degrees of freedom at the time just after the neutrinos
decouple. For the entropy density before the electrons and positrons annihilate, they have 10.75
degrees of freedom, divided as 5.25 for the neutrinos and 2+ 3.5 = 5.5 for the photon plus the electron
and positron. The latter one is reduced to just 2 once all the electrons and positrons have annihilated
(i.e., gγc2/gγc1 = 2/5.5 = 4/11). We now have a higher photon temperature and a lower neutrino
temperature. Using Equation (32), we find the neutrino temperature after all electrons and positrons
have annihilated to be

Tν = 3

√
4
11

T ≃ 0.71T . (36)

Hence, after the electron–positron annihilation, the neutrino temperature is 71% that of the photon
temperature. Measurements of the Cosmic Microwave Background (CMB) radiation is found to be
2.73 K. This means that the neutrino background temperature should be 1.95 K (it should be mentioned
that no measurement of the cosmic neutrino background have been made, or is likely to be made in
the near future that would confirm this prediction).

The colder neutrinos do not contribute as much as the hotter particles to the four different g⋆s,
and this has to be taken into account when we calculate the different effective degrees of freedom.
In general, after a particle species decouples, we need to introduce a species-dependent temperature
ratio into our equations; that is, T → T(Tj/T). Here Tj is the temperature of the decoupled particle
species, while T is the photon-coupled (reference) temperature. We thus get the following g⋆n, g⋆ε,
g⋆p, and g⋆s after electron–positron annihilation is completed

g⋆n = 2+ 6× 3
4
(Tν

T
)3 = 2+ 6× 3

4
× 4

11
= 40

11
≈ 3.636 . (37)

g⋆ε = g⋆p = 2+ 6× 7
8
(Tν

T
)4 = 2+ 6× 7

8
( 4

11
)4/3 ≈ 3.363 , (38)

g⋆s = 2+ 6× 7
8
(Tν

T
)3 = 2+ 6× 7

8
× 4

11
= 43

11
≈ 3.909 . (39)

The neutrino contribution during electron–positron annihilation is found by subtracting the
electron–positron contribution in the following way:

g⋆nν = 6× 3
4
× [ 4

11
+ (1− 4

11
) 4

4× 3
g⋆ne] , (40)

g⋆εν = 6× 7
8
× ⎡⎢⎢⎢⎢⎣(

4
11
)4/3 +⎛⎝1− ( 4

11
)4/3⎞⎠ 8

4× 7
g⋆εe

⎤⎥⎥⎥⎥⎦ , (41)

g⋆pν = 6× 7
8
× ⎡⎢⎢⎢⎢⎣(

4
11
)4/3 +⎛⎝1− ( 4

11
)4/3⎞⎠ 8

4× 7
g⋆pe

⎤⎥⎥⎥⎥⎦ , (42)
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g⋆sν = 6× 7
8
× [ 4

11
+ (1− 4

11
) 8

4× 7
g⋆se] , (43)

where the four g⋆xe are the effective electron–positron contributions.
In reality, as can be seen in Figure 3 and Table B1, the first electron–positron annihilations

began slightly before the neutrino decoupling was complete. Hence, some of the energy from the
decaying electron–positron pairs heated up the neutrinos. This caused a small deviation from the
above-mentioned values, which resulted in effective numbers of neutrino species slightly larger than
three. This number is given to be 3.046 by Mangano [26] and 3.045 by de Salas and Pastor [27]. By
using Mangano’s result, a compensated result will be

g⋆n = 2+ 2× 3.046× 3
4
× 4

11
≈ 3.661 , (44)

g⋆ε = g⋆p = 2+ 2× 3.046× 7
8
( 4

11
)4/3 ≈ 3.384 , (45)

g⋆s = 2+ 2× 3.046× 7
8
× 4

11
≈ 3.938 . (46)

7. Functions for n, ε, P, and S, and Their Implications

We can now express the complete number density, energy density, pressure, and entropy density
in terms of their effective degrees of freedom:

Number density: n(T) = ζ(3)
π2 g⋆n(T)(kBT)3(h̵c)3 ,

Energy density: ε(T) = π2

30
g⋆ε(T)(kBT)4(h̵c)3 ,

(47)

(48)

Pressure: P(T) = π2

90
g⋆p(T)(kBT)4(h̵c)3 ,

Entropy density: s(T) = 2π2

45
g⋆s(T) k 4

B T3(h̵c)3 .

(49)

(50)

We have plotted these functions as well as the g⋆ values in Figure 6. The energy density and
pressure have the same dimension, while the dimensions of entropy density and number density differ
by the Boltzmann constant (unit: J K−1).

When the prefactors are accounted for, the difference in s and n, and P and ε, lies in the deviations
between g⋆s and g⋆n, and g⋆p, and g⋆ε. So, let us discuss a bit more about what is actually happening.
Both the increase in entropy per particle and the decrease in pressure (which we see as bumps and
dips in panels (g) and (h) in Figure 6) are due to the presence of particles at semi- and non-relativistic
temperatures. Before we go any farther, we should address the QCD phase transition. As not all
four g⋆s can be continuous (as we see in panels (b)–(d) in Figure 6), we get inconsistencies and some
unphysical results. For most of our plots, we use Tc = 214 MeV, keeping g⋆ε continuous, leaving g⋆n,
g⋆p, and g⋆p discontinuous at this point.

We see from panel (a) in Figure 6 that both number density and entropy density decrease more
rapidly during annihilation periods. However, this is a bit deceiving, since we are looking at their
values as functions of temperature. In fact, the total entropy stays constant (it actually increases ever so
slightly if we do not have perfect thermal equilibrium). Both s and n fall a bit as we cross the transition
temperature. We thus get a jump in the entropy per particle at this time, as can be seen in panel (g)
in Figure 6. The other bumps in entropy per particle are continuous. The entropy per particle will
start to rise when the rest mass of some massive particles becomes more significant. s then flattens out
and drops again as these particles gradually become less numerous. After all these massive particles
have annihilated and disappeared, the value of s returns to its original value (before the annihilations
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started). As mentioned in Figure 3 in Section 4.5, particles whose rest mass energy is significant have
a higher total energy, and thus a higher entropy. This entropy is eventually transferred to the remaining
particles after they annihilate. It is important to emphasize that it is not the total entropy that changes,
but rather the (total) particle number that falls and rises again. The change in entropy density after the
neutrino decoupling, as we can see at the lowest temperature in panel (b) in Figure 6, is due to the fact
that the neutrinos have a lower temperature and thus contribute less.
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Figure 6. Panel (a) shows the four g⋆s. At kBT = 214 MeV, only g⋆ε is continuous, while g⋆n, g⋆p, g⋆s

drops in value by between 10 and 30. The three upper right panels show these jumps at transition
values of 214 MeV (b), 170 MeV (c), and 150 MeV (d). Panels (e) and (f) show the evolution of n, ε, P,
and s/kB as a function of temperature. In the two lower panels, we look at the relation between entropy
density and number density (g) and pressure and energy density (h). We see small fluctuations during
periods with particle annihilations, especially right after the QCD phase transition. As we remember
from Figure 3, this is because the pressure and number density drop quicker than energy density and
entropy density at these times. The short physical explanation is that semi- and non-relativistic particles
exert less pressure and have a higher entropy than relativistic particles (at the same temperature). One
consequence of this is that particle numbers are not conserved, which is not a requirement for particles
whose chemical potential is zero.

The same explanation goes for the fall in pressure, as seen in panel (h) in Figure 6. Non-relativistic
particles exert (relatively) zero pressure. The pressure is thus at its lowest at times where the ratio of
semi- and non-relativistic particles are at their highest. We see that the two most significant drops in
pressure are just after the QCD phase transition and in the middle of the electron–positron annihilations.
We have used a naive definition for our QCD phase transition—namely, that of the lowest energy
density. In reality, this transition is quite complex, and we should interpret our result with a grain of
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salt. With that in mind, we go from an almost pure relativistic gas (QGP) to a case where the majority
of the particles are semi- or non-relativistic (HG)—which is the reason for the jump down in pressure
at T = 214 MeV.

As we will get back to in the next section, the Universe expands faster when it is matter-dominated
as compared to when it is radiation-dominated. So even though the early Universe was the latter, we
know from our study that we have periods with a significant fraction of semi-relativistic particles. One
can thus argue that a should grow slightly faster at these times.

8. Time–Temperature Relation

As mentioned in Section 1, the measurements of the CMB thermal spectrum is very close to
that of a perfect black body [28]. The early Universe should be very homogeneous, with the same
features everywhere. How fast the early Universe expands depends on which energy contributor is
dominating—the relativistic particles (radiation), or non-relativistic particles (cold matter). By solving
the Friedmann equations for a flat adiabatic Universe with no cosmological constant, we find the
relation between the scale factor (a) and time (t) to be a = t1/2 for a pure radiation case, and a = t2/3
for a pure cold matter case. Simple derivations for this are given by Ryden [10] and Liddle [29].
Similarly, a relation between the scale factor and temperature for the two extreme cases is given
as T = a−1 and T = a−2 for the two cases [8,30]. This gives us the following relation between the
three quantities:

Just radiation: T ∝ t−1/2 ∝ a−1 , (51)

Just cold matter: T ∝ t−4/3 ∝ a−2 . (52)

For a mixture of both types of particles, we should have something in between the two
single-component cases. So, if radiation is the more dominant energy contributor, a grows almost
proportional to t1/2, or more proportional t2/3 for the matter case. Regarding temperature, for
a radiation-dominated scenario, the relation between temperature and time (after the Big Bang)
can be calculated as a function of g⋆ε, as follows [19]:

t =�  ! 90h̵3c5

32π3Gg⋆ε(T)(kBT)−2

= 2.4√
g⋆ε(T)T−2

MeV . (53)

The Universe becomes matter-dominated at roughly 105 years after the Big Bang, long after
the scope of this article. However, it should be noted that the temperature of both photons and
matter drop as the inverse of the scale factor, even long after this radiation–matter equality. This
is because temperature is determined by the kinetic energy of the particles, while the definition of
a radiation- or matter-dominated Universe is that of the total energy (where rest mass is included).
Being outnumbered more than a billion to one, matter is unable to cool down the photons, and the
temperature of the Universe drops as the inverse of the scale factor until matter decouples from
the photons.

On the other hand, when massive particles die out, their annihilation energy is transferred to the
remaining particles in the thermal bath. This should make the temperature drop slower as a function
of time. If we assume that this latter argument is dominant, we will get a Universe which drops
in temperature more slowly when g⋆ε is decreasing. Figure 7 shows the temperature as a function
of time assuming a pure radiation-dominated Universe, as given by Equation (53). During particle
annihilations, we have a smooth continuous function, but this is not the case for the QGP-to-HG
transition using our models. Here we have to consider the three different transition temperatures
separately. Using kBTc = 214 MeV, we have a scenario where the temperature will drop more slowly
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right after Tc. Using kBTc = 170 MeV and kBTc = 150 MeV, the degrees of freedom (g⋆ε) will jump
down at Tc. For kBTc = 170 MeV, the value of g⋆ε falls from around 62 to 33, while for kBTc = 150 MeV,
this value falls from around 61 to 26. This would, however, take some time. Using our simple model,
the temperature and energy density of the Universe would stay constant as the Universe expands until
it reaches its pure hadron-gas state.
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Figure 7. Energy and temperature as functions of time using the three different transition temperatures.
For the kBTc = 214 MeV transition, the temperature will drop slower after Tc, but nonetheless always
decrease over time. For kBTc = 170 MeV and kBTc = 150 MeV, there will be a period with constant
temperature and energy density while g⋆ε decreases from its quark-gluon value to its hadron gas value.

The relation made here between time and temperature during the QCD transition is naive and
simple, and the numerical values thereafter. Small deviations from our plot during the QCD transition
(and for that matter, during regular particle annihilations) only affect the period on hand, and become
negligible as time go on.

9. On the QCD Phase Transition and Cross-Over Temperature

Our method of using kBTc = 214 MeV is based on a calculation where we add all the g⋆ε from the
quark-gluon state on one hand (easy), and all the g⋆ε from the hadrons on the other hand (not so easy).
We have used the hadronic particles as listed in Appendices C and D. These are the particles listed by
the Particle Data Group [19]. There are additional candidates to these lists—some good candidates, and
some more speculative. There could also be more hadronic states which are hard to detect. For every
new hadron we add to our model, the cross-over temperature decreases. Not so much for the most
massive candidates, but more so for the lighter ones.

The phase transition we have used is of first order. Only g⋆ε is continuous at this point, and
g⋆n, g⋆p, and g⋆s are not. This will lead to some unphysical consequences—such as an instantaneous
increase of the scale factor by roughly 4% if we assume constant entropy. A proper theory about
the QCD phase transition is required to address this issue, which is beyond the scope of this article.
The theory we have presented here should be valid to a good approximation, before and after the
QCD transition.

10. Conclusions

Our knowledge of the very first stages of Universe is limited. In order to know for sure what
is happening at these extreme energies and temperatures, we want to recreate the conditions using
particle accelerators. The Large Hadron Collider at CERN can collide protons together at energies
of 13 TeV, and with their discovery of the Higgs boson, all the elementary particles predicted by the
Standard Model of particle physics have been found. This is, however, most likely not the complete
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story. Dark matter particles are the hottest candidates to be added to our list of particles, and there is
almost sure to be more particles at even higher temperatures, such as at the Grand Unified Theory
(GUT) scale of T ∼ 1016 GeV.

We have here used the statistical physics approach to counting the effective degrees of freedom
in the early Universe at temperatures below 10 TeV. Some simplifications have been used, such as
setting the chemical potential equal to zero for all particles. The aim of this article was to give a good
qualitative introduction to the subject, as well as providing some quantitative data in the form of plots
and tables.

The early Universe is often thought of as being pure radiation (just relativistic particles).
However, when the temperature drops to approximately that of the rest mass of some massive particles,
we get interesting results, where we have a mix of relativistic particles and semi- and non-relativistic
ones. This mix is most prominent during the electron–positron annihilations, and just after the phase
transition from a quark-gluon plasma to a hadron gas. Approaching this, using our “no-chemical
potential” distribution functions shows us how the entropy per particle increases when the ratio of
semi- and non-relativistic particles becomes significant.

The number of effective degrees of freedom for hadrons changes very quickly around the QCD
transition temperature. We found a cross-over temperature of 214 MeV using the known baryons
and mesons. As there could be many more possible hadronic states than we have accounted for,
this cross-over temperature could be lower. This is not meant as a claim of a new QCD transition
temperature, but rather as an interesting fact. Our first-order approach based purely on the distribution
functions has inconsistencies at the cross-over temperature.

We have listed the effective degrees of freedom for number density (g⋆n), energy density (g⋆ε),
pressure (g⋆p), entropy density (g⋆s), and time (t) as function of temperature (T) in Table A1 in
Appendix A. Table B1 in Appendix B lists the different effective contributions to a single intrinsic
degree of freedom, corresponding to our plot in Figure 3.
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Appendix A. Table for Time, g⋆n, g⋆ε, g⋆p, and g⋆s

Table A1. Values for time, g⋆n, g⋆ε, g⋆p, and g⋆s from T = 10 TeV to 10 keV. In the region between
150–214 MeV, the values for all five quantities depend on the model’s transition temperature. We
should emphasize that the values for this period are based on our simple no-chemical potential model.

kBT (eV) T (K) Time (s) g⋆n g⋆ε g⋆p g⋆s Tr. Temp.

10 TeV 1.16×1017 2.32×10−15 95.50 106.75 106.75 106.75 All
5 TeV 5.80×1016 9.29×10−15 95.49 106.75 106.75 106.75 All
2 TeV 2.32×1016 5.81×10−14 95.47 106.74 106.73 106.74 All
1 TeV 1.16×1016 2.32×10−13 95.39 106.72 106.65 106.70 All

500 GeV 5.80×1015 9.30×10−13 95.11 106.61 106.38 106.56 All
200 GeV 2.32×1015 5.83×10−12 93.55 105.90 104.75 105.61 All
100 GeV 1.16×1015 2.36×10−11 89.89 103.53 100.80 102.85 All
50 GeV 5.80×1014 9.73×10−11 83.53 97.40 93.94 96.53 All
20 GeV 2.32×1014 6.40×10−10 77.39 88.45 87.22 88.14 All
10 GeV 1.16×1014 2.58×10−9 76.20 86.22 85.85 86.13 All
5 GeV 5.80×1013 1.04×10−8 75.27 85.60 84.68 85.37 All
2 GeV 2.32×1013 6.61×10−8 71.14 82.50 79.69 81.80 All
1 GeV 1.16×1013 2.75×10−7 65.37 76.34 72.97 75.50 All

500 MeV 5.80×1012 1.15×10−6 59.69 69.26 66.43 68.55 All
214+ MeV 2.48×1012 6.63×10−6 55.37 62.49 61.52 62.25 All
214− MeV 2.48×1012 6.63×10−6 30.27 62.49 33.88 54.80 214 MeV

6.63×10−6 55.37 62.49 61.52 62.25 170 + 150 MeV
200 MeV 2.32×1012 8.42×10−6 26.45 50.75 29.62 45.47 214 MeV
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Table A1. Cont.

kBT (eV) T (K) Time (s) g⋆n g⋆ε g⋆p g⋆s Tr. Temp.

7.61×10−6 55.21 62.21 61.34 61.99 170 + 150 MeV
190 MeV 2.20×1012 1.00×10−5 24.14 44.01 27.04 39.77 214 MeV

8.44×10−6 55.10 62.03 61.21 61.83 170 + 150 MeV
180 MeV 2.09×1012 1.20×10−5 22.16 38.27 24.84 34.91 214 MeV

9.42×10−6 54.99 61.87 61.07 61.67 170 + 150 MeV
170+ MeV 1.97×1012 1.44×10−5 20.49 33.47 22.98 30.84 214 MeV

1.06×10−5 54.88 61.72 60.94 61.52 170 + 150 MeV
170− MeV 1.97×1012 1.44×10−5 20.49 33.47 22.98 30.84 214 + 170 MeV

1.06×10−5 54.88 61.72 60.94 61.52 150 MeV
160 MeV 1.86×1012 1.73×10−5 19.09 29.51 21.42 27.49 214 + 170 MeV

1.20×10−5 54.77 61.58 60.80 61.38 150 MeV
150+ MeV 1.74×1012 2.08×10−5 17.93 26.31 20.13 24.77 214 +170 MeV

1.36×10−5 54.65 61.45 60.65 61.25 150 MeV
150− MeV 1.74×1012 2.08×10−5 17.93 26.32 20.13 24.77 All
140 MeV 1.62×1012 2.51×10−5 16.96 23.77 19.05 22.59 All
130 MeV 1.51×1012 3.04×10−5 16.16 21.76 18.16 20.86 All
100 MeV 1.16×1012 5.66×10−5 14.39 18.00 16.21 17.55 All
50 MeV 5.80×1011 2.51×10−4 11.87 14.63 13.40 14.32 All
20 MeV 2.32×1011 1.78×10−3 9.71 11.33 10.99 11.25 All
10 MeV 1.16×1011 7.32×10−3 9.50 10.76 10.75 10.76 All
5 MeV 5.80×1010 2.93×10−2 9.49 10.74 10.73 10.74 All
2 MeV 2.32×1010 0.18 9.43 10.71 10.65 10.70 All
1 MeV 1.16×1010 0.74 9.22 10.60 10.36 10.56 All

500 keV 5.80×109 3.11 8.53 10.16 9.43 10.03 All
200 keV 2.32×109 2.39×101 5.97 7.66 6.20 7.55 All
100 keV 1.16×109 1.22×102 4.03 4.46 3.84 4.78 All
50 keV 5.80×108 5.24×102 3.64 3.39 3.37 3.93 All
20 keV 2.32×108 3.27×103 3.64 3.36 3.36 3.91 All
10 keV 1.16×108 1.31×104 3.64 3.36 3.36 3.91 All

Appendix B. Effective Contribution to One Single Intrinsic Degree of Freedom

Table B1. The effective contribution to a single degree of freedom as function of temperature (kBT)
over mass (mc2).

kBT

mc2

Number Density Energy Density Pressure Entropy Density

Bosons Fermions Bosons Fermions Bosons Fermions Bosons Fermions

∞ 1 0.750 1 0.875 1 0.875 1 0.875
10:1 0.993 0.749 0.999 0.874 0.996 0.873 0.998 0.874
2:1 0.901 0.716 0.970 0.859 0.929 0.831 0.960 0.852
1:1 0.740 0.630 0.890 0.808 0.784 0.724 0.863 0.787
1:2 0.438 0.409 0.658 0.626 0.477 0.461 0.613 0.585
1:3 0.236 0.227 0.427 0.418 0.257 0.254 0.385 0.377
1:4 0.116 0.115 0.253 0.251 0.129 0.128 0.222 0.222
1:5 0.055 0.055 0.139 0.139 0.061 0.061 0.120 0.120
1:6 0.025 0.025 0.073 0.073 0.028 0.028 0.062 0.062
1:7 0.011 0.011 0.037 0.037 0.013 0.013 0.031 0.031
1:8 4.93×10−3 4.93×10−3 0.018 0.018 5.48×10−3 5.48×10−3 0.015 0.015
1:9 2.12×10−3 2.12×10−3 8.37×10−3 8.37×10−3 2.35×10−3 2.35×10−3 6.87×10−3 6.87×10−3

1:10 8.94×10−4 8.94×10−4 3.87×10−3 3.87×10−3 9.94×10−4 9.94×10−4 3.15×10−3 3.15×10−3

1:12 1.55×10−4 1.55×10−4 7.81×10−4 7.81×10−4 1.72×10−4 1.72×10−4 6.29×10−4 6.29×10−4

1:14 2.58×10−5 2.58×10−5 1.49×10−4 1.49×10−4 2.87×10−5 2.87×10−5 1.19×10−4 1.19×10−4

1:16 4.21×10−6 4.21×10−6 2.74×10−5 2.74×10−5 4.67×10−6 4.67×10−6 2.17×10−5 2.17×10−5

1:18 6.71×10−7 6.71×10−7 4.87×10−6 4.87×10−6 7.45×10−7 7.45×10−7 3.84×10−6 3.84×10−6

1:20 1.05×10−7 1.05×10−7 8.42×10−7 8.42×10−7 1.17×10−7 1.17×10−7 6.61×10−7 6.61×10−7

1:30 8.52×10−12 8.52×10−12 9.96×10−11 9.96×10−11 9.47×10−12 9.47×10−12 7.71×10−11 7.71×10−11

1:40 5.87×10−16 5.87×10−16 9.03×10−15 9.03×10−15 6.52×10−16 6.52×10−16 6.93×10−15 6.93×10−15

1:50 3.69×10−20 3.69×10−20 7.04×10−19 7.04×10−19 4.10×10−20 4.10×10−20 5.38×10−19 5.38×10−19

1:100 1.98×10−41 1.98×10−41 7.43×10−40 7.43×10−40 2.19×10−41 2.19×10−41 5.62×10−40 5.62×10−40
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Appendix C. List of Mesons and Their Degeneracy

Table C1. Pseudoscalar mesons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

π0 1 1 1 1 134.9766
π± 2 1 1 1 139.57018
K± 2 1 1 1 493.677

K0K̄0 2 1 1 1 497.614
K0

S, K0
L 2 1 1 1 497.614

η 1 1 1 1 547.862
η′ 1 1 1 1 957.78

D0, D̄0 2 1 1 1 1864.84
D± 2 1 1 1 1869.61
D±s 2 1 1 1 1968.30
ηc 1 1 1 1 2983.6
B± 2 1 1 1 5279.26

B0, B̄0 2 1 1 1 5279.58
B0

s , B̄s
0 2 1 1 1 5366.77

B±c 2 1 1 1 6275.6
ηb 1 1 1 1 9398.0

Pseudoscalar Mesons g = 27

Table C2. Vector mesons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

ρ± 2 3 1 1 775.11
ρ0 1 3 1 1 775.26
ω 1 3 1 1 782.65

K∗± 2 3 1 1 891.66
K∗0, K̄∗0 2 3 1 1 895.81

φ 1 3 1 1 1019.461
D∗0, D̄∗0 2 3 1 1 2006.96

D∗± 2 3 1 1 2010.26
D⋆±s 2 3 1 1 2112.1
J/ψ 1 3 1 1 3096.916
B∗± 2 3 1 1 5325.2

B∗0, B̄∗0 2 3 1 1 5325.2 a

B∗0
s , B̄∗0

s 2 3 1 1 5415.4 a

Υ (1S) 1 3 1 1 9460.30

Vector Mesons g = 69

a These are listed without 0 superscript by PDG [19].

Table C3. Excited unflavoured mesons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

f0(500) 1 1 1 1 500
f0(980) 1 1 1 1 980
a0(980) 3 1 1 1 980

h1(1170) 1 3 1 1 1170
b1(1235) 3 3 1 1 1235
a1(1260) 3 3 1 1 1260
f2(1270) 1 5 1 1 1270
f1(1285) 1 3 1 1 1285
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Table C3. Cont.

Symbol Flavours Spin States Color States Bose or Fermi Mass

η(1295) 1 1 1 1 1295
π(1300) 3 1 1 1 1300
a2(1320) 3 5 1 1 1320
f0(1370) 1 1 1 1 1370
h1(1380) 1 3 1 1 1380
π1(1400) 3 3 1 1 1400
η(1405) 1 1 1 1 1405
f1(1420) 1 3 1 1 1420
ω(1420) 1 3 1 1 1420
f2(1430) 1 5 1 1 1430
a0(1450) 3 1 1 1 1450
ρ(1450) 3 3 1 1 1450
η(1475) 1 1 1 1 1475
f0(1500) 1 1 1 1 1500
f1(1510) 1 3 1 1 1510
f’1(1525) 1 3 1 1 1525
f2(1565) 1 5 1 1 1565
ρ(1570) 3 3 1 1 1570

h1(1595) 1 3 1 1 1595
π1(1600) 3 3 1 1 1600
a1(1640) 3 3 1 1 1640
f2(1640) 1 5 1 1 1640
η2(1645) 1 5 1 1 1645
ω(1650) 1 3 1 1 1650
ω3(1670) 1 7 1 1 1670
π2(1670) 3 5 1 1 1670
φ(1680) 1 3 1 1 1680
ρ3(1690) 3 7 1 1 1690
ρ(1700) 3 3 1 1 1700
a2(1700) 3 5 1 1 1700
f0(1710) 1 1 1 1 1710
η(1760) 1 1 1 1 1760
π(1800) 3 1 1 1 1800
f2(1810) 1 5 1 1 1800
φ3(1850) 1 7 1 1 1850
η2(1870) 1 5 1 1 1870
π2(1880) 3 5 1 1 1880
ρ(1900) 3 1 1 1 1900
f2(1910) 1 5 1 1 1910
f2(1950) 1 5 1 1 1950
ρ3(1990) 3 7 1 1 1990
f2(2010) 1 5 1 1 2010
f0(2020) 1 1 1 1 2020
a4(2040) 3 9 1 1 2040
f4(2050) 1 9 1 1 2050
π2(2100) 3 5 1 1 2100
f0(2100) 1 1 1 1 2100
f2(2150) 1 5 1 1 2150
ρ(2150) 3 3 1 1 2150
φ(2170) 1 3 1 1 2170
f0(2200) 1 1 1 1 2200
fJ(2220) 1 9 1 1 2220 b

η(2225) 1 1 1 1 2225
ρ3(2250) 3 7 1 1 2250
f2(2300) 1 5 1 1 2300
f4(2300) 1 9 1 1 2300
f0(2330) 1 1 1 1 2330
f2(2340) 1 5 1 1 2340
ρ5(2350) 3 11 1 1 2350
a6(2450) 3 13 1 1 2450
f6(2510) 1 13 1 1 2510

Excited Unflavoured Mesons g = 499

b We have used the (JPC) = (4++) for fJ .
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Table C4. Excited strange mesons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

K1(1270) 2 3 1 1 1270
K1(1400) 2 3 1 1 1400
K∗(1410) 2 3 1 1 1410
K∗0 (1430) 2 1 1 1 1430
K∗2 (1430) 2 5 1 1 1430
K∗2 (1430) 2 5 1 1 1430
K(1460) 2 1 1 1 1460
K2(1580) 2 5 1 1 1580
K1(1650) 2 3 1 1 1650
K∗(1680) 2 3 1 1 1680
K2(1770) 2 5 1 1 1770
K∗3 (1780) 2 7 1 1 1780
K2(1820) 2 5 1 1 1820
K(1830) 2 1 1 1 1830

K∗0 (1950) 2 1 1 1 1950
K∗2 (1980) 2 5 1 1 1980
K∗4 (2045) 2 9 1 1 2045
K2(2250) 2 5 1 1 2250
K3(2320) 2 7 1 1 2320
K∗5 (2380) 2 11 1 1 2380
K4(2500) 2 9 1 1 2500

Excited Strange Mesons g = 194

Appendix D. List of Baryons and Their Degeneracy

Table D1. Spin 1⁄2 baryons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

p 2 2 1 7⁄8 938.272
n 2 2 1 7⁄8 939.565

Λ0 2 2 1 7⁄8 1115.683
Σ+ 2 2 1 7⁄8 1189.37
Σ0 2 2 1 7⁄8 1192.642
Σ− 2 2 1 7⁄8 1197.449
Ξ0 2 2 1 7⁄8 1314.86
Ξ− 2 2 1 7⁄8 1321.71
Λ+c 2 2 1 7⁄8 2186.46
Σ+c 2 2 1 7⁄8 2452.9
Σ0

c 2 2 1 7⁄8 2453.74
Σ++c 2 2 1 7⁄8 2453.98
Ξ+c 2 2 1 7⁄8 2467.8
Ξ0

c 2 2 1 7⁄8 2470.88
Ξ′+c 2 2 1 7⁄8 2575.6
Ξ′0c 2 2 1 7⁄8 2577.9
Ω0

c 2 2 1 7⁄8 2695.2
Ξ+cc 2 2 1 7⁄8 3518.9
Λ0

b 2 2 1 7⁄8 5619.4
Ξ0

b 2 2 1 7⁄8 5787.8
Ξ−b 2 2 1 7⁄8 5791.1
Σ+b 2 2 1 7⁄8 5811.3
Σ−b 2 2 1 7⁄8 5815.5
Ω−b 2 2 1 7⁄8 6071

Spin 1⁄2 Baryons g = 84
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Table D2. Spin 3⁄2 baryons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

Δ++ 2 4 1 7⁄8 1232
Δ+ 2 4 1 7⁄8 1232
Δ0 2 4 1 7⁄8 1232
Δ− 2 4 1 7⁄8 1232
Σ∗+ 2 4 1 7⁄8 1382.8
Σ∗0 2 4 1 7⁄8 1383.7
Σ∗− 2 4 1 7⁄8 1387.2
Ξ∗0 2 4 1 7⁄8 1531.80
Ξ∗− 2 4 1 7⁄8 1535.0
Ω− 2 4 1 7⁄8 1672.45
Σ∗+c 2 4 1 7⁄8 2517.5

Σ∗++c 2 4 1 7⁄8 2517.9
Σ∗0

c 2 4 1 7⁄8 2518.8
Ξ∗+c 2 4 1 7⁄8 2645.9
Ξ∗0

c 2 4 1 7⁄8 2645.9
Ω∗0

c 2 4 1 7⁄8 2765.9
Σ∗+b 2 4 1 7⁄8 5832.1
Σ∗−b 2 4 1 7⁄8 5835.1
Ξ∗−b 2 4 1 7⁄8 5945.5

Spin 3⁄2 Baryons g = 133

Table D3. Excited N baryons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

N(1440) 2 2 1 7⁄8 1440
N(1520) 2 4 1 7⁄8 1520
N(1535) 2 2 1 7⁄8 1535
N(1650) 2 2 1 7⁄8 1650
N(1675) 2 6 1 7⁄8 1675
N(1680) 2 6 1 7⁄8 1680
N(1700) 2 4 1 7⁄8 1700
N(1710) 2 2 1 7⁄8 1710
N(1720) 2 4 1 7⁄8 1720
N(1860) 2 6 1 7⁄8 1860
N(1875) 2 4 1 7⁄8 1875
N(1880) 2 2 1 7⁄8 1880
N(1895) 2 2 1 7⁄8 1895
N(1900) 2 4 1 7⁄8 1900
N(1990) 2 8 1 7⁄8 1990
N(2000) 2 6 1 7⁄8 2000
N(2040) 2 4 1 7⁄8 2040
N(2060) 2 6 1 7⁄8 2060
N(2100) 2 2 1 7⁄8 2100
N(2120) 2 4 1 7⁄8 2120
N(2190) 2 8 1 7⁄8 2190
N(2220) 2 10 1 7⁄8 2220
N(2250) 2 10 1 7⁄8 2250
N(2300) 2 2 1 7⁄8 2300
N(2570) 2 6 1 7⁄8 2570
N(2600) 2 12 1 7⁄8 2600
N(2700) 2 14 1 7⁄8 2700

Excited N Baryons g = 248.5
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Table D4. Excited Δ Baryons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

Δ(1600) 2 4 1 7⁄8 1600
Δ(1620) 2 2 1 7⁄8 1620
Δ(1700) 2 4 1 7⁄8 1700
Δ(1750) 2 2 1 7⁄8 1750
Δ(1900) 2 2 1 7⁄8 1900
Δ(1905) 2 6 1 7⁄8 1905
Δ(1910) 2 2 1 7⁄8 1910
Δ(1920) 2 4 1 7⁄8 1920
Δ(1930) 2 6 1 7⁄8 1930
Δ(1940) 2 4 1 7⁄8 1940
Δ(1950) 2 8 1 7⁄8 1950
Δ(2000) 2 6 1 7⁄8 2000
Δ(2150) 2 2 1 7⁄8 2150
Δ(2200) 2 8 1 7⁄8 2200
Δ(2300) 2 10 1 7⁄8 2300
Δ(2350) 2 6 1 7⁄8 2350
Δ(2390) 2 8 1 7⁄8 2390
Δ(2400) 2 10 1 7⁄8 2400
Δ(2420) 2 12 1 7⁄8 2420
Δ(2750) 2 14 1 7⁄8 2750
Δ(2950) 2 16 1 7⁄8 2950

Excited Δ Baryons g = 238

Table D5. Excited Λ baryons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

Λ(1405) 2 2 1 7⁄8 1405
Λ(1520) 2 4 1 7⁄8 1520
Λ(1600) 2 2 1 7⁄8 1600
Λ(1670) 2 2 1 7⁄8 1670
Λ(1690) 2 4 1 7⁄8 1690
Λ(1710) 2 2 1 7⁄8 1710
Λ(1800) 2 2 1 7⁄8 1800
Λ(1810) 2 2 1 7⁄8 1810
Λ(1820) 2 6 1 7⁄8 1820
Λ(1830) 2 6 1 7⁄8 1830
Λ(1890) 2 4 1 7⁄8 1890
Λ(2020) 2 8 1 7⁄8 2020
Λ(2050) 2 4 1 7⁄8 2050
Λ(2100) 2 8 1 7⁄8 2100
Λ(2110) 2 6 1 7⁄8 2110
Λ(2325) 2 4 1 7⁄8 2325
Λ(2350) 2 10 1 7⁄8 2350

Excited Λ Baryons g = 133
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Table D6. Excited Σ baryons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

Σ(1580) 2 4 1 7⁄8 1580
Σ(1620) 2 2 1 7⁄8 1620
Σ(1660) 2 2 1 7⁄8 1660
Σ(1670) 2 4 1 7⁄8 1670
Σ(1730) 2 4 1 7⁄8 1730
Σ(1750) 2 2 1 7⁄8 1750
Σ(1770) 2 2 1 7⁄8 1770
Σ(1775) 2 6 1 7⁄8 1775
Σ(1840) 2 4 1 7⁄8 1840
Σ(1880) 2 2 1 7⁄8 1880
Σ(1900) 2 2 1 7⁄8 1900
Σ(1915) 2 6 1 7⁄8 1915

Σ(1940+) 2 4 1 7⁄8 1940
Σ(1940−) 2 4 1 7⁄8 1940
Σ(2000) 2 2 1 7⁄8 2000
Σ(2030) 2 8 1 7⁄8 2030
Σ(2070) 2 6 1 7⁄8 2070
Σ(2080) 2 4 1 7⁄8 2080
Σ(2100) 2 8 1 7⁄8 2100

Excited Σ Baryons g = 133

Table D7. Excited Ξ baryons.

Symbol Flavours Spin States Color States Bose or Fermi Mass

Ξ(1820) 2 4 1 7⁄8 1820
Ξ(2030) 2 6 1 7⁄8 2030

Excited Ξ Baryons g = 17.5
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Abstract We look at viscosity production in a universe con-
sisting purely of leptons and photons. This is quite close to
what the universe actually look like when the temperature
was between 1010 K and 1012 K (1–100 MeV). By taking
the strong force and the hadronic particles out of the equa-
tion, we can examine how the viscous forces behave with
all the 12 leptons present. By this we study how shear- and
(more interestingly) bulk viscosity is affected during peri-
ods with particle annihilation. We use the theory given by
Hoogeveen et al. from 1986, replicate their 9-particle results
and expanded it to include the muon and tau particles as
well. This will impact the bulk viscosity immensely for high
temperatures. We will show that during the beginning of the
lepton era, when the temperature is around 100 MeV, the
bulk viscosity will be roughly 100 million times larger with
muons included in the model compared to a model without.

Keywords Viscous cosmology · Shear viscosity · Bulk
viscosity · Lepton era · Relativistic kinetic theory

1 Introduction

Viscosity, the resistance to gradual deformation, is a well-
described phenomenon in classical fluid dynamics. Shear (or
dynamic) viscosity is the resistance to shearing flows, and
occurs when adjacent layers of a fluid, which are parallel
to each other, move at different velocities, or have differ-
ent temperatures. Bulk (or volume) viscosity is the internal
resistance for a fluid to evenly expand (or compress). Both
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1 Department of Physics, Norwegian University of Science and
Technology, Trondheim, Norway

Fig. 1 The temperature (in kelvin and MeV), and time scales used in
our paper

types of viscosity played an important role in the early uni-
verse. See Fig. 1.

Several papers about viscous cosmology have been pub-
lished over the years (Hoogeveen et al. 1986a; Treciokas and
Ellis 1971; Grøn 1990; Brevik 2015). Most of them have
looked upon it from a phenomenological point of view.

But what does this all mean in a cosmological frame-
work? Or more specifically during the lepton era? At this
time the universe consisted of photons, charged leptons and
neutrinos—more or less acting as ideal (relativistic and non-
relativistic) gases. The early universe was also very close to
being in local (and global) thermal equilibrium, it was al-
most completely isotropic.

Let us give a simple qualitative description of how the
two previously mentioned types of viscosities acted in this
era: Any stress forces driving the system towards anisotropy
is countered and resisted by viscous forces. In the first case
we have shear stress due to regional differences in flow or
temperature. The way shear viscosity drives the system back
towards equilibrium is through momentum transfer between
the regions. See Fig. 2. This is proportional to the mean free
path of the momentum-carrying particles. Because the weak
nuclear force is so much weaker than the electromagnetic
force at this time, the mean free path of neutrinos are much
larger than those of the electromagnetic interacting particles.
Practically, all the action of shear viscosity is due the inter-
actions between neutrinos and other particles.
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Fig. 2 A simple illustration of shear viscosity. The weakly interaction
neutrinos have a much longer mean free path than the electromagnetic
interacting particles (e.g. like electrons). They will thus travel much
farther in the perpendicular direction (y) of the flow

Bulk viscosity arises due to the fact that non-relativistic
and relativistic gases behave adiabatically differently. Dur-
ing expansion, relativistic gases drop in temperature as a−1,
while non-relativistic gases drop as a−2 (where a is the scale
factor). The system as a whole will try to bring these two
components into equilibrium by heat transfer. Also here the
main component of the momentum transfer is due to the neu-
trinos, but is a bit more complicated. As the temperature of
the universe cools, and some particles transitions towards
non-relativistic velocities they will be start to drop in tem-
perature according as the aforementioned a−2. They will be
heated up by all the relativistic particles (which themselves
will be cooled down). The electromagnetic interacting par-
ticles will never have time to gain any real temperature dif-
ference and they collectively will cool down a bit faster. The
neutrinos on the other hand, because of their weakly inter-
acting nature, have a longer mean life time resulting in a
larger temperature difference before they interact. This will
lead to a larger momentum transfer and a resulting larger
viscous effect. In this way the photons play an indirect role
as they help heat up the non-relativistic particles such that
the temperature difference between them and the neutrinos
are smaller than it would be the case in a no-photon case. See
Fig. 3. From the same argument it follows that compared to
the neutrinos, the muons should drop faster in temperature
than the tau-leptons, and the electrons even faster. We will
later see that bulk viscosity also has another impact as it is
associated with a pressure.

Being interested in the underlying physics, we looked at
some earlier papers with a focus on the origins for shear
and bulk viscosity, including Misner (1967, 1968, 1969),
Caderni and Fabbri (1977), van Erkelens and van Leeuwen
(1978), van Leeuwen et al. (1986) and Hoogeveen et al.
(1986a) with a special focus on the latter (“Viscous Phenom-
ena in Cosmology. I. Lepton Era”). We used their model, re-
produced their result and took a closer look at the transitions
temperatures towards the colder plasma era and the warmer
hadron and quark eras. We were interested in the evolution
of the two viscosity coefficients.

Fig. 3 A simplified illustrating of bulk viscosity. The electromagnetic
interacting particles (γ, e,μ, τ ) all have a short mean life time, result-
ing in a small momentum transfer. The longer lived neutrinos provide
a much larger momentum transfer since the temperature difference is
bigger. The heavier leptons (here illustrated by the purple τ and τ̄ par-
ticles) cool down slower compared to the a lighter lepton (here illus-
trated by the green μ and μ̄ particles), since they are heated up by more
relativistic particles

The main purpose with this work is to study the impact
of including all three lepton generations. As these will anni-
hilate at different times, we can study the build-up and fall-
down of the two viscosity coefficients. We will also look at
some aspects where this model comes short.

2 Setup and constraints

2.1 Definition of lepton era

The lepton era (or epoch) follows not long after the end of
the phase transition from quark gluon plasma to hot hadron
gas at roughly 170 MeV (1.9 × 1012 K) (Kapusta et al.
2003). At this time, the free quarks and gluons bound to-
gether to form mesons and baryons. Because the temper-
ature is too low for most pair productions, the more mas-
sive baryons quickly die out, and soon only the lightest
mesons—the pions, have a significant contribution to the
particle-mix. Already at the time of this phase transition, the
number of leptons (e, μ, τ , ν) equals that of the hadrons,
and the energy density is soon after (∼140 MeV) dominated
by the leptons. The rounded down temperature of 100 MeV
is a good definition for the start of the lepton era. From here
on the universe is mainly filled with electrons, positrons, the
6 neutrinos, and the photons. At around 1 MeV (1010 K),
two coinciding events take place: the neutrinos decouple
from matter, and soon after the temperature drops below the
threshold for e−e+ production, so they will start to annihi-
late. As the last positrons die out we enter the plasma era,
where the universe is filled with a hot plasma of photons
and the residual matter consisting of nuclei and electrons.
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2.2 Constraints in our model

For our model we use theories which is constrained to the
lepton era. Hence its validity drops as we cross over from
both sides: going to higher temperatures leading into the
hadron era, and dropping to lower temperatures leading into
the plasma era. Expanding out of the (more) valid lepton-
era can still show us some interesting physics worth explor-
ing. We use the following constraints/simplifications in our
model:

A hadron-less universe: At temperatures of 100 MeV
(1012 K) the hadronic content of the universe is mainly
pions (mπ0 = 135.0 MeV/c2, mπ± = 139.6 MeV/c2)
and only to a smaller extent other heavier hadrons, like
kaons, protons and neutrons. Going above the phase
transition at T ≈ 170 MeV there will be a quark-gluon
plasma with all its implications. This requires taking
QCD theory into account. For simplicity we disregard
all quarks, gluons, and hadrons. This will give a better
understanding of the consequences by adding a single
particle pair to our model.

Matter-antimatter neutral universe: Data from WMAP
(Bennett et al. 2012) suggest a baryon-to-photon ratio
of (6.079 ± 0.090) × 10−10, which roughly corresponds
to the matter over antimatter difference. This hardly plays
any role when the universe is still hot enough to produce
particle pairs, but this asymmetry have to be taken into
consideration as we enter the plasma era, when all an-
timatter is annihilated, and we are left with the residual
matter.

No neutrino decoupling: Neutrinos have a very long mean
free path, which makes them the primary source for
momentum transfer. Being the main contributor to both
shear and bulk viscosity, an accurate model of the neu-
trino density is important. As the rate of the (weak)
neutrino interactions becomes slower than the rate of
expansion of the universe the neutrinos will decouple.
This happens at Γν/H ≈ [G2

F/(�c)6]√�c/G(kBT )3 �
(T /1010 K)3 (see Sect. 3.4). We have neglected the neu-
trinos in our calculations, but marked the decoupling
temperature in our figures.

No electromagnetic contribution: Particle interaction in the
lepton era is dominated by the weak and electromagnetic
forces. Viscous effects are related to momentum transfer.
The long mean free path of the neutrinos ensures that its
momentum transfer is several orders of magnitude larger
to those of electromagnetic origin during this era. Elec-
tromagnetic interactions do however play a role at low
temperatures after the neutrinos decouples (plasma era)
and at high temperatures when the weak and electromag-
netic forces are closer in strength (electroweak scale).
This argument should be valid at temperatures beneath
1013 K, but become more questionable as we get towards
1014 K (Hoogeveen et al. 1986b).

No reheating from annihilations: The decay of heavier par-
ticles to lighter particles result in a temperature increase,
as the rest masses are converted to kinetic energy. Any
out-of-equilibrium effects of this origin has not been con-
sidered in this paper.

Elastic collisions and no chemical potential: As is done in
earlier writings, we only use elastic collisions in our cal-
culations. The cross-section of inelastic collisions is of
comparable sizes, so this approximation should not af-
fect the results considerably (Hoogeveen et al. 1986a).
The chemical potentials of all particles is set to zero.

3 Viscous theory

Two factors which play a role in viscosity are, first the state
of the system—which for our case is the particle composi-
tion of the system, and secondly the transport equation for
the system. We use the theory as described by Hoogeveen
et al. (1986a). The core theory and equations for shear (ηs )
and bulk (ηv) viscosities are given below, and a more thor-
ough description of the linear equations is described in Ap-
pendix A. First of, the shear and bulk viscosities are found
using the Chapman-Enskog approximation (van Erkelens
and van Leeuwen 1978; Groot et al. 1980):

ηs = 1

10
cn

(
kBT

c

)3 ∑
k

ckγk, (1)

ηv = nkBT
∑

k

akαk, (2)

where c is the speed of light, n is total particle density,
kB is Boltzmann’s constant, and T is temperature. The co-
efficients ck and ak originate from the linearized relativis-
tic Boltzmann equations. These transport equations describe
the energy-momentum transfer, essentially the “force” try-
ing to drive the system back to equilibrium. The two sets
of linear equations are given in Appendix A for particle k.
γk(nk, T ) and αk(nk, T ) are functions of the particle den-
sities and temperature and describe the state of the system.
For the shear viscosity case this is a product of the particle
composition (fraction) and enthalpy of the system, while for
the bulk case it is a more complex function of these. The two
functions are given by:

γk = 10xkĥk, (3)

αk = −xk

[
γ − (γ − 1)

(
z2
k + 5ĥk − ĥ2

k

)]
, (4)

where xk , zk and ĥk are partical fraction, inverse dimension-
less temperature and dimensionless partial specific enthalpy
respectively, and are defined as:

xk ≡ nk

n
, (5a)
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zk ≡ mkc
2

kBT
, (5b)

ĥk ≡ zk

K3(zk)

K2(zk)
. (5c)

Here K3 and K2 are the modified Bessel functions of the
second kind. (z2

k + 5ĥk − ĥ2
k) is actually the specific heat ca-

pacity per particle for constant pressure, ĉP . The γ in Eq. (4)
is the heat capacity ratio (also known as the adiabatic index)
and is given by1

γ

γ − 1
=

N∑
k=1

xk

(
z2
k + 5ĥk − ĥ2

k

)
. (6)

For low temperatures the heat capacity ratio should co-
incide with the classical value for a non-relativistic gas and
approach 5/3. For massless particles, the average kinetic en-
ergy per particle is 3kBT , the enthalpy per particle is 4kBT ,
such that γ should approach 4/3 in the relativistic limit. We
look closer at ĉP = (z2 + 5ĥ − ĥ2) and αk and their prop-
erties in Fig. 6. The partical fractions xk , depends solely on
the particle densities.

3.1 Particle densities

The particle density for a particle k is given by Andersen
(2012), Hoogeveen et al. (1986a) as

nk(T ) = gk

2π2(�)3

∫ ∞

mkc
2

E

√
E2 − m2

kc
4

eE/kBT − δk

dE, (7a)

where g is the number of possible spin states for particle k

and δ is +1 for bosons and −1 for fermions, which gives us
the expressions for the 13 different particles:

ne±,μ±,τ±(T ) = 1

π2

(
kBT

�c

)3 ∫ ∞

zk

u

√
u2 − z2

k

eu + 1
du,

(7b)

nγ (T ) = 1

π2

(
kBT

�c

)3

2ζ(3), (7c)

nνe,ν̄e,νμ,ν̄μ,ντ ,ν̄τ (T ) = 1

π2

(
kBT

�c

)3 3

4
ζ(3), (7d)

where ζ(3) ≈ 1.202 is the Riemann zeta function and u (just
as z) is a dimensionless inverse temperatures defined by

u ≡ E

kBT
. (8)

1From Groot et al. (1980) we have γ = cP /cV = ( ∂h
∂T

)P /( ∂ek
∂T

)V ,

where ek = mc2 K1(z)
K2(z)

+ 3kBT = mc2 K3(z)
K2(z)

− kBT and h = ek + P
n

=
mc2 K3(z)

K2(z)
.

Fig. 4 Particle densities nk as functions of temperature. Similar par-
ticles (i.e. 1 photon, 6 neutrinos, 2 electrons, 2 muons and 2 taus) are
added together. Rest mass of particles are marked by triangles and cir-
cles

Fig. 5 Particle fractions xk as functions of temperature

Using dimensionless numbers in Eq. (7a), the integrals
themselves will vary from 0 (low temperature) to 3ζ(3)/2
for fermions and 2ζ(3) for bosons at high temperatures. The
numerical solutions for the particles densities are given in
Fig. 4, and that for the particle fractions in Fig. 5. It is worth
noting how late the pair production of massive particles is
maintained. Their contribution is significant at temperatures
well below the pair production energy threshold of 2mk .

3.2 Bulk viscosity and its terms

Let us revisit the concept of bulk viscosity by giving a
few examples. During expansion relativistic and a non-
relativistic gases drop differently in temperature. For rel-
ativistic gases we have T ∝ a−1, while the case for non-
relativistic gases is T ∝ a−2. Since non-relativistic gases
drop quicker in temperature we will have heat transfer from
the warmer relativistic gas to the colder non-relativistic gas
in order to regain a thermal equilibrium in the mixture. Bulk
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viscosity increases with the temperature difference. Neutri-
nos have a long mean free path, resulting in a longer mean
life time than the charged leptons and the photon which in-
teract much stronger, and hence the neutrinos are the pri-
mary contributor to the bulk viscous term.

As mentioned earlier, the αk coefficients tells us about
the state of the system, more specifically it tells us about the
ratio of particles which want to drop faster (non-relativistic
particles) in temperature to those who want to drop slower
(relativistic particles). Particles, or the particle specie as a
whole to be more specific, with a positive αk are above
the equilibrium temperature, and the other way around for
particles with a negative αk , and the sum of all αk’s is
zero. Since massive particles gradually change from behav-
ing (ultra-)relativistic, to non-relativistic, and finally anni-
hilation, the “sweet spot” should therefor be somewhere in
between. Looking at Fig. 6(c) we see this peak in α when
the ratio of non-relativistic (nr) to relativistic particles (r) is√

2 : 1. For nr 	 nnr we have α ∝ nr/nnr , and will decrease
in the same manner for nr 
 nnr . For ratios of 1 : 1 and 2 : 1
α will be 1/6, while the peak at

√
2 : 1 will be just slightly

larger.
In Fig. 6(d) we have shown a case with one massive and

one massless particle with no particle decay (such that each
particle number stays constant). At high temperature most
of the massive particles move at relativistic velocities, and
the mixture expands with negligible bulk viscosity. As the
temperature drops, a bigger and bigger portion of the mas-
sive particles will behave more non-relativistic, and α will
grow as T −2 until we reach a temperature roughly equal
that of the particle mass. The growth in α will slow down
and converge towards 1/6 as the ratio of relativistic to non-
relativistic particles goes towards 1 : 1.

The complete functions of γk and αk are plotted in Fig. 7.

3.3 Viscous pressure

For a system in thermodynamic equilibrium, the energy den-
sity2 ε and pressure P is found by adding together the indi-
vidual pressures from all particle types k:

ε(T ) =
∑

k

gk

2π2�3

∫ ∞

mkc
2

E2
√

E2 − m2
kc

4

eE/kBT ± 1
dE, (9)

P(T ) =
∑

k

gk

6π2�3

∫ ∞

mkc
2

(E2 − m2
kc

4)3/2

eE/kBT ± 1
dE. (10)

Equation (10) is normally written in a simplified version as

P(T ) = gP
(T )

π2

90

(kBT )4

(�c)3
≡ PTE, (11)

2As not to be confused with the mass density ρ = ε/c2.

where gP
(T ) is the relativistic degrees of freedom for pres-

sure (compared to that of the photon). For periods where the
particle fractions stay constant the degrees of freedom stay
constant as well (for example just before neutrino decou-
pling gP

= 10.75). The evolution of gP
for all particles

in the standard model is plotted in the upper right corner
of Fig. 10. We will define this thermodynamic equilibrium
pressure for PTE, making the temperature dependence im-
plicit.

The viscous pressure is (Brevik and Gorbunova 2005):

Pvisc = −ηvu
μ

;μ = −3ηvH, (12)

where H is the Hubble constant given by

H =
√

8πG

3
ρ =

√
8πG

3

ε

c2
. (13)

The effective pressure is found by

Peff = PTE + Pvisc = ε

3
− 3ηvH. (14)

3.4 Neutrino decoupling

As the rate of the neutrino interactions, Γν , becomes slower
than the rate of expansion of the universe, H , the neutrinos
will decouple. The collision rate of neutrinos with electrons
and positrons is (Weinberg 2008):

Γν = neσwk ≈
(

kBT

�c

)3

(�cGwkkBT )2

≈ G2
wk(kBT )5

�c
, (15)

where ne is the number density of electrons and σwk is the
neutrino-electron scattering. Gwk = GF/(�c)3 ≈ 1.166 ×
10−5 GeV−2 (Griffiths 2008; Beringer 2012) is the weak
coupling constant. By using the energy density as given in
Eq. (9), the expansion rate at the same time is

H =
√

8πG

3c2
ε =

√
8πG

3c2
g

π2

30

(kBT )4

(�c)3

≈
√

G(kBT )4

(�c)3
, (16)

where g is the effective degrees for freedom for energy den-
sity. The prefactors in Γν and H roughly cancel each other
out, such that we end up with

Γν

H
≈ G2

wk

√
�c

G
(kBT )3 ≈

(
T

1010 K

)3

. (17)

It is worth noting that without taking neutrino decoupling
into account, our equations would result in the shear viscos-
ity going towards infinity as T goes towards zero. However



 263 Page 6 of 12 L. Husdal

Fig. 6 A more thorough look at the specific heat capacity per particle
(ĉP ), the heat capacity ratio (γ ), and α, as they are decomposed into
its basic constituents. Subfigures (a) and (b) show functions of z, ĥ

and the Bessel functions, which make up ĉP . (c) shows α as a function
of the amount of relativistic to non-relativistic particles. The momen-
tum transfer is biggest when the ratio is 2−1/2. (d) shows a system
with one massless and one massive particle specie in equal amount.

α will increase as the massive particles go from being relativistic to
non-relativistic. (e) shows ĉP and γ as function of kBT/mc2, and (f)
for the three charged leptons as function of temperature. The last three
subfigures show the complete functions of ĉP and γ . For (g) we have
included a hypothetical scenario with no particle annihilation (decay).
ĉP (shown in (h)) drops almost 7 % towards the non-relativistic limit
of 5/2, while γ (shown in (i)) rise almost 3.5 % towards the non-
relativistic of 5/3

the bulk viscosity would still drop as it relies on the ratio of
relativistic to non-relativistic particles.

4 Numerical model

Our model is made with Mathematica 9 using standard pre-
cision. We calculate the shear viscosity for 6, 9, 11 and 13

particles. For bulk viscosity we use 9, 11 and 13 particles.
This refers to: pure neutrino model (νe, ν̄e, νμ, ν̄μ, ντ , ν̄τ =
6), plus electron/positron and photon (plus e−, e+, γ = 9),
plus muons (plus μ−,μ+ = 11), plus taus (plus τ−, τ+ =
13). We use the particle and physical constants from PDG’s
“Review of Particle Physics (Beringer 2012). The Weinberg
angle (sin2 θW ) is set to 0.229, as it was in the original 1986



Viscosity in a lepton-photon universe Page 7 of 12  263 

Fig. 7 γk (a) and αk (b) as functions of temperature. We clearly see
how γk correlates to the particle fraction plot of Figure 5 (just slightly
shifted to the left). αk peaks at temperatures where there is a good por-

tion of both relativistic particles and non-relativistic particles. In prac-
tice this is the periods from when, in order, the tau, muon and electron
particles become non-relativistic until they annihilate

paper. The expanded parameters including τ−, τ+ for dif-
ferential cross-sections in elastic collisions are given in Ap-
pendix B, Table 3.

Using these new parameters, we have solved the coeffi-
cients as given in Appendix A in Hoogeveen et al. (1986a).
The equations used are reprinted in Appendix A.

Some integrals have been solved numerically instead of
analytically. This has resulted in some high precision er-
rors (e.g. when αk goes towards zero). This affected the cal-
culations at low temperatures when including the tau and
muon particles. The results did however converge to the
“2-particle-less” models beforehand, and hence these errors
can be disregarded. For low temperature where these are the
cases, the cells in Table 2 are left blank.

The particle densities, and the αk and γk terms were cal-
culated and plotted continuously, the viscosity terms them-
selves consist of a series of single calculations over 74 dif-
ferent temperatures and 7 particle models (4 for shear and 3
for bulk viscosities).

Readers interested in the Mathematica code are encour-
aged to email the author.

5 Results

All calculations in this article are given in CGS units. Our
main results are given in Table 2, where we have organized
the shear and bulk viscosities by numbers of particles used
in the model. For shear viscosity, this is with 7, 9, 11 and 13
particles. Since photons have no impact on the shear viscos-
ity, we might as well have written 6, 8, 10 and 12. As bulk
viscosity requires both a relativistic and a non-relativistic

Fig. 8 Top: Absolute value of ηs . Its value increases slightly more
rapidly in the regions where heavier particles annihilate. In “parti-
cle-stable” regions ηs goes as ∝T −1. The bottom plot shows the de-
viations from the 13 particle model

part, we only have 9, 11 and 13 particle models. Our re-
sults are graphed in Figs. 8, 9, ranging from 2 × 108 to
1014 K (≈20 keV to 10 GeV). Everything below the neutrino
decoupling temperature should be considered non-physical.
We have included them in our calculations and plot as they
still give us some input on the behavior of the two viscous
terms.
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Fig. 9 Top plot show the bulk viscosity, ηv . In the particle-frac-
tion-stable regions the bulk viscosity increases rapidly as ηv ∝ T −5,
and then drop quickly as the heavier particles dies out. The local max-
ima’s (peaks) corresponding to the three lepton generations show that
three peaks in ηv goes as ∝T −4/3. The bottom plot shows the devia-
tions from the 13 particle model

Table 1 Local maxima peaks in αk and ηv

(a) αk related peaks

e peak T = 2.642E9 K 227.7 keV 0.4455 me

μ peak T = 5.763E11 K 49.66 MeV 0.4700 mμ

τ peak T = 9.718E12 K 837.4 MeV 0.4713 mτ

(b) ηv related peaks

e peak T = 1.698E9 K 146.3 keV 0.2863 me

μ peak T = 4.597E11 K 39.61 MeV 0.3749 mμ

τ peak T = 7.710E12 K 664.4 MeV 0.3739 mτ

For Table 2 the range is increased one order of magnitude
to 1015 K (which is uncomfortable close to the electroweak
scale).

The peaks in αk and related peaks in the bulk viscosity,
ηv , are given in Table 1. The associated electron peaks are
found at 0.44 me for α and 0.29 me for ηv . For the muon
and tau particles they both peak at 0.47 mμ,τ for α and 0.37
mμ,τ for ηv .

Our results using a 9-particle model are very similar to
those found by Hoogeveen et al., only differing by around
1 %—which is within uncertainty. However, for our more
particle-rich models the differences are quite significant in
the high temperature regions. Plotting the pressures (Fig. 10)
shows that the viscous pressure has a negligible contribution

Fig. 10 Thermodynamic equilibrium pressure and viscous pressure.
The calculations for the latter pressure does not make sense after the
neutrinos decouple and are plotted as red dash-dots. The thermody-
namic pressure PTE is as a function of gP (shown in the subplot)

at high temperatures, and is at its highest at the time of the
neutrino decoupling (and is actually larger than the thermo-
dynamic pressure if we disregard the decoupling).

The rest of our results from Fig. 8, 9 and Table 2 will be
divided into a shear and bulk viscosity part. As a side note
we should say that by using PDG’s (Beringer 2012) entry
for sin2 θW will keep αk unchanged, but the values of ηs and
ηv will decrease by roughly 1 %.

5.1 Shear viscosity

• The photon contribution to shear viscosity is negligible,
so removing them and making models for 6, 8, 10 and 12
particles gives the same results.

• Shear viscosity goes as T −1 as long as the particle frac-
tions stays constant. This can be understood by the fact
that energy density (for relativistic particles) goes as T 4

while the interaction rate, Γ goes as T 5. As shear viscos-
ity depends on the mean free path of the particles, this is
the inverse of the interaction rate.

• At high temperatures where all charged leptons are
present we get a drop of ηs by including the extra lep-
tons in our model. For every particle pair we include in
our model, ηs drops by roughly 20 %, or more specifically

ηs(7p)
19 %−−−→ ηs(9p)

18 %−−−→ ηs(11p)
17 %−−−→ ηs(13p). (18)

5.2 Bulk viscosity

• Bulk viscosity is much more sensitive to temperature and
number densities of the different particles.

• Photons contribute to bulk viscosity indirectly as they
heat up the non-relativistic leptons. Removing the pho-
ton from our model would decreased ηv by 38 %, 29 %
and 24 % for our 9, 11 and 13 particle models.
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Table 2 Numerical values for shear and bulk viscosities for 7, 9, 11
and 13 particles. The local maximas and minimas in the bulk viscosi-
ties are marked by † and ‡, respectively. Everything after neutrinos
decoupling should be considering non-physical and are marked in a

red color. At temperatures of 1014 K and above, the viscosity due to
electromagnetic interacting particles should be considered (shown in
orange)

• Bulk viscosity goes as T −5 as long as the particle number
stays constant. When a particle species dies out ηv drops
as the particle density function (which is exponential de-
cay).

• At high temperatures where all charged leptons are
present we get a significant increase in ηv by including
the extra leptons in our model. Specifically the two jumps
are:

ηv(9p)
4.88E9−−−−→ ηv(11p)

3.22E4−−−−→ ηv(13p). (19)

• The peaks for the local maximas of ηv goes roughly
as T −4/3 (within 6 %). The maximas and minimas are
marked by † and ‡ in Table 2. (A newer value for sin2 θW

from PDG (Beringer 2012) will shift the local maxima
and minimum peaks by less than 0.1 %.)

• To understand why the peaks in bulk viscosity are as they
are we have to look at several factors. Just as shear vis-
cosity, the interacting rate vs. energy density should go
as T −1. To give an example of this: If the electron was

10 times heavier, the bulk viscosity would be a 10 times
lower. That is: Changing the masses of particles changes
the peaks as T −1.

• The remaining T −4 comes from the product of the trans-
port equations (ak) and the αk parameters. Each of which
goes as T −2.

6 Conclusions

The model universe we have presented here is a very simpli-
fied version of how the universe actually were at tempera-
tures above 1012 K = 100 MeV. Our aim for this paper is to
give a more illustrative description of early universe viscos-
ity, particularly how it behaves with a multiple of different
particles.

One important event which should be included however
is the reheating effect during particle annihilations. Another
interesting thought is whether we can use the same trans-
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port equations to get a better understanding of the neutrino
decoupling?

This extended model could be used to include new ex-
otic particles, like dark matter candidates, or as a basis for
an extended model using strongly interacting particles (e.g.
pions) as well.
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Appendix A: Coefficients occurring in the linear
equations

We begin be rewriting the equations for shear and bulk vis-
cosities

ηs = 1

10
cn

(
kBT

c

)3 ∑
k

ckγk, (A.1)

ηv = nkBT
∑

k

akαk, (A.2)

The ck and ak coefficients are solutions to the linearized rel-
ativistic Boltzmann (transport) equation for the shear and
bulk cases are given as follows:

ck = 1

n

(
kBT

c

)2

c−1
kl γk, (A.3)

ak = 1

n
a−1
kl αk, (A.4)

where

ckl = xk

(
xlc

′
kl + δkl

N∑
m=1

xmc′′
km

)
, (A.5)

akl = xk

(
xla

′
kl + δkl

N∑
m=1

xma′′
km

)
(A.6)

are matrix elements related to the differential cross-sections
in the frame of the center of momentum of the system. The
primes and double primes are defined as

c′
kl = 1

3

(
kBT

c

)4(−40I 1
12110 − 80I 1

13110 + 6I 2
21000

+ 12I 2
22000 + 8I 2

23000

)
, (A.7)

c′′
kl = 1

3

(
kBT

c

)4(
40I 1

12200 + 80I 1
13200 + 6I 2

21000

+ 12I 2
22000 + 8I 2

23000

)
, (A.8)

a′
kl = −2I12000, (A.9)

a′′
kl = 2I12000 = −a′

kl . (A.10)

Here, as in the Hoogeveen article, the particle indexes k and
l are suppressed on the right sides of the equations. The
10+2 I-integrals described above are collision integrals, and
have dimension σc [cm3/s] and are defined by van Erkelens
and van Leeuwen (1980):

I
μ
ijκλh(k, l)

=
(

cπ

z2
kz

2
l K2(zk)K2(zl)

)(
c

kBT
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×
∫ ∞

(mk+ml)c

dPklg
2i+2
kl P

−j+3
kl
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kl + m2
kc
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kl + m2
l c
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× Kj+h
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kBT

)∫ π
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dΩCM
(Pkl, θkl)

× sin θkldθkl, (A.11)

where

gkl = P −1
kl

√
1
4

(
P 2

kl − m2
kc

2 − m2
l c

2
)2 − m2

km
2
l c

4 (A.12)

is the invariant relative momentum.

Appendix B: Weak interaction cross-sections

The weak interaction cross-sections are given in Appendix C
in Hoogeveen et al. (1986a). However we have included the
tau particles in our model to give us the differential cross-
sections for 68 (compared to 45) elastic collisions

k + l → k + l, (B.1)

where

k = νe, νe, νμ, νμ, ντ , ντ , (B.2)

l = νe, νe, νμ, νμ, ντ , ντ , e
−, e+,μ−,μ+, τ−, τ+. (B.3)

The weak interaction cross-sections from Eq. (A.11) is given
as:

dσkl

dΩCM
= G2

Fs

32π2�4c2
Sf (s, t), (B.4)

where S is equal to the product of the usual symmetry factor
1/nf!, where nf is the number of identical particles in the
final state, and a factor 2 for each incoming neutrino, so e.g.
for e+e+ → e+e+ we have S = (1 × 1)/2! and for νeνe →
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Table 3 v and a matrices. w+ and w− is abbreviation for sin2 θW +½ and sin2 θW -½, respectively. The electromagnetic contribution is so small
it can be ignored. The crossection σγν is zero

(a) a matrix (b) v matrix

νeνe we have S = (2 × 2)/2!. f (s, t) is a collisions function
for the two incoming particles and is given by:

f (s, t) = (v + a)2
(

s − m2c2

s

)2

+ (v − a)2
(

s + t − m2c2

s

)2

+ (
v2 − a2)2m2c2t

s2
, (B.5)

with the a and v matrices are related to the neutral current
coupling (Hoogeveen et al. 1986a), basically how neutrinos
couples to the other particles. They are listen in Table 3. The
s and t being the Mandelstam variables:

s ≡ (pk + pl)
2 = P 2

kl, (B.6)

t ≡ (
pk − p′

k

)2
, (B.7)

where s is the square of the center-of-mass energy (invariant
mass) for the two incoming particles k and l. t is the square
of the four-momentum transfer, and is related to the scatter-
ing angle in the center of momentum system, being defined
below. p′

k is the four-momentum of particle k after collision,
such that

t = m2
kc

2 + m2
l c

2 − P 2
kl

+ (P 2
kl + m2

kc
2 − m2

l c
2)(P 2

kl − m2
kc

2 + m2
l c

2)

2P 2
kl

+ [P 2
kl − (mkc + mlc)

2][P 2
kl − (mkc − mlc)

2]
2P 2

kl

cos θkl,

(B.8)

with θkl being the scattering angle of the CM-system.
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Abstract We look at the entropy production during the
lepton era in the early universe by using a model where
we exclude all particles except the leptons and photons.
We assume a temperature dependent viscosity as calculated
recently by one of us (Husdal in Astrophys. Space Sci.
361(8):1, 2016b) with the use of relativistic kinetic theory.
We consider only the bulk viscosity, the shear viscosity be-
ing omitted because of spatial isotropy. The rate of entropy
production is highest just before the neutrinos decouple. Our
results show that the increase in entropy during the lepton
era is quite small, about 0.071 % at a decoupling temperature
of T = 1010 K. This result is slightly smaller than that ob-
tained earlier by Caderni and Fabbri (Phys. Lett. B 69:508,
1977). After the neutrino decoupling, when the Universe has
entered the photon era, kinetic theory arguments no longer
support the appearance of a bulk viscosity. At high tempera-
tures and a stable particle ratio, entropy production (dσ/dT )
goes as T −8, with the total entropy (�σ ) increasing as T −7.
These rates go slightly down just before the neutrinos de-
couple, where �σ ∝ T −6.2.
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1 Introduction

In an isotropic adiabatic expanding universe the entropy re-
mains constant. However, for periods where there is a mix-
ture of relativistic and non-relativistic particles, bulk viscous
effects will arise, leading to an increase of the entropy. The
magnitude of these depend strongly on the mean free paths
of the particles. For the early universe, the bulk viscosity
and resulting entropy production is at their highest just be-
fore the neutrinos decouple.

Back in 1977, Caderni and Fabbri calculated the entropy
production to be 0.11 % during the lepton era (Caderni and
Fabbri 1977). Nine years later, in 1986, Hoogeveen et al.,
used a more rigorous theory to calculate the viscosity, and
obtained a result about 4.5 times larger (Hoogeveen et al.
1986). This work was based on the relativistic kinetic the-
ory developed by, among others, de Groot et al. (1980), van
Erkelens and van Leeuwen (1978, 1980), and van Leeuwen
et al. (1986).

In a previous paper (Husdal 2016b) one of us used the
paper by Hoogeveen et al. as a reference and expanded their
model to include all three of the charged lepton pairs. This
was done in a hypothetical universe where all particles ex-
cept the leptons and photons were omitted. This allowed us
to perform an isolated study of the viscous phenomena at
temperatures where, strictly speaking, other particles would
interfere.

In this paper we use the theory by Brevik and Heen
(1994) to calculate the entropy production for the same
scenario, in a lepton-photon universe. We include all the
charged leptons and look at entropy production caused by
each of the three species.
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2 Setup and assumptions

2.1 Definition of lepton era

The lepton era is normally defined to be between T = 1012 K
and T = 1010 K (kBT = 100 MeV to kBT = 1 MeV).
At these temperatures the Universe is populated by pho-
tons, neutrinos, electrons and their antiparticles, and at the
warmer end of the period, also some muons and pions. At
approximately T = 1010 K the neutrinos decouple and for
lower temperatures we enter the photon era. For T > 1012 K
the appearance of baryons will increase rapidly, and at
roughly kBT = 170 MeV (Kapusta et al. 2003) there is a
phase transition to a quark-gluon plasma. At this time the
energy content of the Universe is dominated by quarks and
is hence called the quark era. In this paper, we disregard all
particles except leptons and photons, and for our purposes,
the lepton era is considered as the cosmic fluid before the
neutrinos decouple.

2.2 Assumptions in our model

The data for bulk viscosity are taken from Husdal (2016b).
We use the same assumptions, for the same reasons, as given
in that paper. Since our study goes beyond the “textbook”
lepton-era, our results for these high temperatures do not
necessarily represent the real world. However, exploring this
region in our modified universe gives us a better understand-
ing of the entropy production with multiple particles. We
make the following assumptions:

Pure lepton-photon universe: We exclude all other particles
to get a more isolated study of the entropy production at
high temperatures. This leaves out any entropy produc-
tion caused by the hadronic particles just after the quark-
gluon plasma to hadron gas transition. At this time there
would exist a large number of semi- and non-relativistic
baryons and mesons, which we expect would create a
significant viscous term. We recommend the paper by
Dobado et al. (2016) which discusses this era.

No chemical potential: The chemical potential for all parti-
cles is set to zero. This also excludes the asymmetry be-
tween matter and antimatter. This ratio is believed to be
less than 10−9 (Bennett et al. 2013), making it negligible
for our study.

No electromagnetic contribution to viscosity: The much
larger cross sections for electromagnetic interactions
compared to weak interactions mean that the weakly in-
teracting neutrinos get a much larger mean free path, and
resulting momentum transfer. We can disregard the vis-
cous contribution from electromagnetic interactions for
temperatures close up to 1014 K when the electromag-
netic and weak forces approach each other in strength.

No reheating from annihilation processes: When the mas-
sive particles annihilate they should heat up the rest of
the particles. This effect is not considered in our paper.

Only elastic collisions: We only consider elastic collisions
in our calculations. The cross sections for inelastic colli-
sions are of comparable sizes, and should thus not alter
out results considerably (Hoogeveen et al. 1986).

Simple neutrino decoupling: We use a simple cut-off for the
neutrino interactions, which means they interact 100 %
until a decoupling temperature and then 0 % thereafter.

3 Conditions in the early universe

For a universe in thermal equilibrium (which is quite accu-
rate for the early universe), the number density, n,1 and en-
ergy density, ε = ρc2, is given by the thermodynamic func-
tions (Husdal 2016a)

Number density: n = ζ(3)

π2
gn(T )

(kBT )3

(�c)3
, (1)

Energy density: ε = π2

30
gε(T )

(kBT )4

(�c)3
, (2)

where kB, �, c, and ζ(3) are the Boltzmann constant, re-
duced Planck constant, speed of light, and the Riemann zeta
function of value 3, respectively. gn and gε are the effec-
tive degrees of freedom for number density and energy den-
sity.2 For high temperatures, when all particle species are
created and destroyed at the same rate, we have gn = 15.5
and gε = 17.25. This is equal to the internal degrees of
freedom for the particles, and is found by counting all the
states of the particles, like spin, antiparticles, and including
the distributional difference between fermions and bosons.
This latter property results in fermions only contributing
3/4 (number density) and 7/8 (energy density) compared
to bosons—hence the difference in gn and gε . The taus,
muons, and electrons all contribute by 3 to gn and 3.5 to
gε at high temperatures, but as the temperature decreases
and the annihilation rate becomes faster than the creation
rate for these particles their effective contribution will de-
cline. In a lepton-photon universe the evolution of gn and
gε is given in Fig. 1. In this and the following figures we
use colored circles (©) in the graph, and triangles (�, �)
on the axes, to mark the location where the rest mass of the
taus, muons, and electrons equals that of the temperature
(mc2 = kBT ). We use magenta (taus), green (muons), and
red (electrons) colors to represent the three different mas-
sive particle pairs.

1The number density, n, is for all particles, not the net baryon number
as in e.g. Weinberg (1971).
2gε is normally written without the ε subscript, as g.
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Fig. 1 Effective degrees of freedom for energy density and number
density. As the temperature decreases below the mass equivalent for
the taus, muons, and electrons, their contributions to gn and gε will
drop, as we see as three dips in the two curves. The effective degrees
of freedom from the neutrinos decrease after they decouple (as they
are not heated by the decaying electrons and positrons). As we are
interested in the difference in entropy production for slightly different
decoupling temperatures, we keep the neutrino contribution to gn and
gε constant in our calculations. The dotted curves show the standard
representation of gε and gn where the neutrinos are not heated by the
electron-positron annihilations, and is thus lower. The masses of the
three massive leptons are marked with magenta, green, and red circles
(©) and triangles (�, �)

Assuming that the early universe was flat and with negli-
gible vacuum energy (cosmological constant equal to zero),
we can write the first Friedmann equation as

H 2 ≡
(

ȧ

a

)2

= 8πG

3c2
ε, (3)

where G is the gravitational constant. We can use the energy
density found in Eq. (2), such that

H 2 = 8πG

3c2

π2

30
gε(T )

(kBT )4

(�c)3
. (4)

For a lepton-photon universe gε will vary between 17.75
and 3.36, with a value of roughly 10.75 at the time of the
neutrino decoupling.

For a radiation dominated era, time can be calculated as
a function of gε as follows (Olive et al. 2014):

t =
√

90�3c5

32π3Ggε

(kBT )−2. (5)

4 The appearance of bulk viscosity

Bulk viscous phenomena arise when two gas components
expand differently. An expanding relativistic gas decreases
in temperature as a−1, while a non-relativistic gas decreases
as a−2. For semi-relativistic particles, we have something
in between. Whenever we have a mixture at different tem-
peratures there will be a heat transfer between the warmer
components and the colder ones. The magnitude of this vis-
cous factor depends on the temperature difference between
the two components as well as the number ratio between
them. The electromagnetic particles will interact frequently
and never have time to build up a temperature difference,
resulting in a negligible momentum transfer. The neutrinos,
on the other hand, travel much farther before interacting and
thus gain a larger temperature difference. The main compo-
nent of the heat transfer is therefore due to the transfer of
momentum from the neutrinos to the EM-coupled particles.

We emphasize that the number of particles in the mixture
plays a big role. When one of the charged (massive) lepton
species starts to drop quicker in temperature, it is almost in-
stantaneously heated by all the remaining charged leptons
and the photons. All the EM-coupled particles will thus col-
lectively decrease in temperature a bit faster than the neutri-
nos. How fast depends on the number of EM-coupled parti-
cles. The decrease in temperature will though happen faster
during e+e− annihilations than during the μ+μ−, which
again is faster than during τ+τ− annihilations.

The bulk viscosity can be calculated as (van Erkelens and
van Leeuwen 1978; de Groot et al. 1980; Husdal 2016b):

ηv(T ) = nkBT
∑

k

akαk, (6)

where ak are coefficients for particle k for the linearized
relativistic Boltzmann equations, describing the energy and
momentum transfer, and αk(nk, T ) describes the state of the
system. ak and αk are proportional to T −7 and T −2 for
kBT 	 mc2, and as we see in Fig. 2, the bulk viscosity (ηv)
builds up as T −5 as the massive leptons change to semi- and
non relativistic velocities. However, as they eventually dis-
appear we get an exponential decay of ηv .

5 Entropy production

To begin with, let us sketch the general relativistic formal-
ism leading to the expression for the local rate of entropy
production in the cosmic fluid. We assume a spatially flat
FRW universe, and for simplicity, we put c = 1 in this sec-
tion where we are dealing with the general formalism. We
include at first both the bulk viscosity ηv and the shear vis-
cosity ηs , but omit heat conduction. This kind of formal-
ism can be found in various places, for instance in Weinberg
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Fig. 2 Bulk viscosity for models using two, four, or all six of the
charged leptons in addition to the neutrinos and photon. The viscous
effect is at its greatest when there is a large contribution of semi- and
non-relativistic particles (which cool faster), and a long mean free path
for the neutrinos (such that the temperature difference has time to build
up). At kBT high above mτ,μ,ec

2 the viscosity grows as T −5. After
reaching local maxima at around 1/3 of the rest mass of the particle in
question, there will be an exponential drop. The viscosity at these local
maxima goes roughly as T −4/3 (Husdal 2016b)

(1971). Here, we follow the formalism as given in Brevik
and Heen (1994).

If Uμ = (U0,Ui) is the four-velocity of the fluid satisfy-
ing UμUμ = −1, and if hμν = gμν +UμUν is the projection
tensor, we may write the energy-momentum tensor as

Tμν = ρUμUν + (p − 3Hηv)hμν − 2ηsσμν. (7)

Here H is the Hubble variable, and σμν denotes the shear
tensor,

σμν = θμν − Hhμν, (8)

with

θμν = hα
μhβ

ν U(α;β) (9)

being the expansion tensor.
Let now n denote the total number density of particles in

the local rest frame, and let σ be the nondimensional entropy
per particle. The dimensional entropy per unit volume is thus

S = nkBσ . The entropy current four-vector is

Sμ = nkBσUμ, (10)

whose covariant divergence is

Sμ;μ = 9ηv

T
H 2 + 2ηs

T
σμνσ

μν. (11)

The energy conservation for energy

ρ̇ + 3H(ρ + p) = 9ηvH
2 (12)

now gives, together with the conservation equation for par-
ticle number,(
nUμ

)
;μ = 0, (13)

that na3 = constant in the comoving frame. Setting ηs = 0,
this leads to

σ̇ = 9ηv

nkBT
H 2, (14)

which is the desired result. This expression holds also in di-
mensional units, where c is restored (i.e. the rest of our pa-
per).

If we add the calculation for bulk viscosity done by Hus-
dal (2016b) we find the following result for the total entropy
production, �σ :

�σ =
∫ t1

t0

σ̇ dt =
∫ T1

T0

σ̇
dt

dT
dT

=
∫ T1

T0

9ηvH
2

nkBT

dt

dT
dT . (15)

Before we can calculate this integral we need to write the
variables as temperature dependent. Using Friedmann’s first
equation (Eq. (3)) as well as number density and energy den-
sity from Eqs. (1), (2) we get:

�σ = 9

kB

∫ T1

T0

ηv
8πG

3c2 gε
π2

30
(kBT )4

(�c)3

ζ(3)

π2 gn
(kBT )3

(�c)3 T

dt

dT
dT (16)

= 4π5G

5ζ(3)c2

∫ T1

T0

ηv(T )
gε(T )

gn(T )

dt

dT
dT . (17)

ηv , gε , and gn are functions of temperature and need to
be calculated numerically. Also, dt/dT needs to be calcu-
lated numerically.

6 Results

The main amount of entropy production happens just before
the neutrinos decouple. The main factors of the entropy pro-
duction come from the viscous term (ηv) and dt/dT , which
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Fig. 3 Upper plot: entropy production as function of temperature
(dσ/dT ). For high temperatures this grows as T −8, before slowing
down and reaching local maxima at around kBT = mc2

x/3. Lower
plot: the total (accumulated) increase in entropy (�σ ), which grows
as T −7 for high temperatures. In both panels we have plotted the
individual contributions by the τ±, μ±, and e± in dashed magenta,
green and red colors. At a decoupling temperature of 1010 K the en-
tropy production is 4.4 × 10−11 K−1, resulting in a total increase of
7.1 × 10−4 = 0.071 %

at high temperature (kBT 	 mc2) are proportional to T −5

and T −3. Disregarding neutrino decoupling leads to unphys-
ical and extreme values for the entropy production. We in-
clude values at temperatures below this point in our plots,
but clearly marked the neutrino decoupling, which, if not
stated otherwise, is taken to occur at 1010 K.

6.1 Entropy production for all charged leptons

The main result is shown in Fig. 3. The upper plot shows
the entropy production as a function of temperature, dσ/dT .
The lower plot shows the total (accumulated) entropy pro-
duction, �σ . We clearly see how the three different massive
lepton-pairs dominate the entropy production at different
times. The added curves (shown in dashed magenta, green,
and red) show each of the charged leptons contributions to
dσ/dT and �σ . As seen in Table 1, the final contribution
of each lighter lepton pair outweighs those of the more mas-
sive ones. The final value of �σ depends on the neutrino
decoupling temperature.

Table 1 Entropy production, dσ/dT , and total increase in entropy,
�σ , caused by the different charged leptons. As the maximum for the
electron-pair contribution is lower than the decoupling temperature,
their actual contribution is that at T = 1010 K. The last row in our
table is that for all particles at the decoupling (dc) temperature. In the
first column the temperature is that of the local maxima for entropy
production

Temp. [K] max(dσ/dT ) [K−1] Final �σ

Taus 5.26E+12 1.52E−24 1.35E−11

Muons 3.04E+11 4.68E−19 1.34E−7

Electrons 9.93E+8 2.18E−8 2.39E+1

All at dc 1.00E+10 4.38E−13 7.10E−4

If we look more closely at dσ/dT in the upper panel
of Fig. 3 we see that the entropy production shares shape
with the bulk viscosity plot in Fig. 2, but with an additional
T −3 factor. As expected, the entropy production has local
maxima slightly to the colder end of the scale compared
to the bulk viscosity. We find the local peaks for the tau
and muon at temperatures roughly one-fourth that of their
mass equivalent. For the hypothetical electron peak, this is
roughly a sixth of its mass equivalent. The local peak val-
ues of dσ/dT increases roughly as T −4.4 (T −4.43 between
the tau and muon peaks, and T −4.29 between the muon and
electron peaks).

6.2 Entropy production at different decoupling
temperatures

The total entropy production during the lepton era is ex-
tremely dependent on the temperature at the neutrino de-
coupling. If the neutrinos decouple at T = 1010 K we get
an increase of entropy by about 0.071 %. Using a colder de-
coupling temperature of kBT = 1 MeV (T = 1.16×1010 K)
we get a much smaller value, with �σ = 0.017 %. Figure 4
shows the entropy production at different decoupling tem-
peratures.

6.3 Entropy production at high temperatures

In Fig. 5 we plot the evolution of the entropy produc-
tion by temperature (dσ/dT ), and total entropy production
(�σ ) due to the three charged lepton pairs multiplied by
T 8 and T 7. For high temperatures where the particle ra-
tio3 is essentially constant, the entropy production grows
steadily as T −8. We see some deviations of this trend for
the neutrino-electron produced entropy (and slightly for the
neutrino-muon equivalent). This has two reasons. Firstly, the
temperature decreases slower when the effective degrees of

3I.e. when the creation rate and annihilation rate of the massive charged
leptons are the same.
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Fig. 4 A closer look at the total increase in entropy (�σ ) zoomed
in around the decoupling temperature. The total increase in entropy
grows roughly as T −6.2 around T = 1010 K. The final value of �σ is
therefore very sensitive to the actual temperature at decoupling. �σ

for different decoupling temperatures at intervals of 1 billion kelvins is
marked with blue stars

Fig. 5 Upper panel: the rate of change for T 8dσ/dT (shown in dashed
lines) and T 7�σ (shown in solid lines) is constant for high tempera-
tures, and are here normalized to one. We have here plotted the con-
tributions due to the different charged leptons in magenta (taus), green
(muons), and red (electrons). The fluctuations we see in the electron
(and barely in the muon) case are due to changes in gε/gn and
the time-temperature relation during particle annihilations. During this
process gε decreases and the temperature decreases slower with time.
These two effects are shown specifically in the lower panel

freedom (gε ) decreases, and secondly the energy per par-
ticle first increases (because of the rest mass contribution
of the massive particles) and then decreases (when the mas-
sive particles disappear). These two effects are shown in the
lower plot in Fig. 5.

6.4 Calculation method

Our results are based on the viscosity calculated by Hus-
dal (2016b). These are calculated for 105 different temper-
atures, with higher densities at regions with higher particle
annihilation rates, and around the neutrino decoupling tem-
perature as this is when the entropy production is at its high-
est. These points are interpolated using Pythons SciPy pack-
age of the cubic kind. The number of steps for our numeri-
cal integration was crucial. Smaller steps equaled a smaller
entropy production. Our experience was a convergence to-
wards �σ = 0.071 % with 1000 steps per decade. 10 steps
per decade would give us �σ = 0.30 %. We used 100000
steps per decade from temperatures of 1016 K to 1.6×108 K.

6.5 Difference from the Caderni and Fabbri paper

Our entropy is lower than that by Caderni and Fabbri (1977)
by about two-thirds. This is uneasy because our viscous
factor is 5 times as large. Using the viscosity as given by
Caderni and Fabbri (1977) in our model for calculating en-
tropy we get an end-result of 0.015 %, roughly 7 times
smaller than their value of 0.11 %. Our numerical integra-
tion required a relatively high precision before converging
to our given value. Using 10 steps per decade of tempera-
ture gave us an end result roughly five times larger than our
high precision integration. If �σ would continue to grow as
T −7 (in the e+e− case) its value would be roughly twice as
large. Whether or not these arguments were considered by
the Caderni and Fabbri (1977) unclear to us. However, we
note that the sensitivity around the decoupling temperature
requires a high precision numerical integration in this re-
gion. The differences from including the muon and tau par-
ticles is small (almost negligible) for the �σ value at the
time of neutrino decoupling.

7 Conclusions

For high temperatures with a stable particle ratio, the en-
tropy production (dσ/dT ) grows as T −8, while the total in-
crease in entropy (�σ ) grows as T −7. At the time of neu-
trino decoupling �σ grows roughly as T −6.2. The time of
decoupling and how this happens is, therefore, essential to
get a precise value for �σ . Our model shows an increase
in the entropy by 0.071 % at T = 1010 K, but this value
will change a lot for small changes in the decoupling tem-
perature. Using a decoupling temperature of 1 MeV we get
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�σ = 0.027 %. Our result is two-thirds of that found by
Caderni and Fabbri (1977). This is a bit peculiar as our (and
Hoogeveen et al.’s) viscous term is roughly 5 times larger.
For a more precise estimate of the entropy production dur-
ing the lepton era, a rigorous theory of the decoupling should
be used.
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