@NTNU

Norwegian University of
Science and Technology

Information security as a
countermeasure against cheating in
video games

Kevin Kjelgren Mikkelsen

Master in Information Security
Submission date: June 2017
Supervisor: Erik Hjelmas, IIK
Co-supervisor: ~ Simon McCallum, IDI

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Information security as a countermeasure against cheating in video games

Preface

This is a master thesis in Information security at NTNU that have been carried out
over the course of a year and a half starting spring semester of 2016 and finished
spring semester 2017. The goal of this paper is to prevent cheating in competi-
tive video games. This paper assumes a background in software development and
should be of interest for anyone working on a competitive video game or business
solution with similar requirements in technology and performance.

The issue of players being able to modify their game clients or the data stream
to the game server in order to gain unfair advantages is an increasing problem in
video games as the stakes in competitive games grow higher. This is also an issue
if businesses are to use the already existing technology in game engines for de-
velopment of virtual business meeting solutions and similarly security dependent
applications. The way this paper aims to reach this goal is by looking at video
games from an information security point of view to figure out if these problems
have been faced in other areas of software development where security have had
more of a priority, how these issues have been handled and whether there are ex-
isting solutions that can be of use in a game development setting.

31-05-2017

Information security as a countermeasure against cheating in video games

Acknowledgment

I would like to thank supervisor Simon McCallum for continued support and input
during this project with his help in providing an angle for the project as well as the
help sorting out what areas to focus and game engines where this research might
prove the most useful.

I would also like to thank the unreal engine developers for providing a widely
used open source engine making the research for this project easier and useful for
a larger group of developers, as well as some helpful people on their forum for
providing input and pointers on the inner workings of the unreal game engine.

K.K.M.

iii

Information security as a countermeasure against cheating in video games

Abstract

Most cheating in video games is possible due to information being accessible out-
side the intended frames of the game developer. The issue of protecting sensitive
information have been handled in many areas outside of video games for a long
time now. The goal of this paper is to review these information security solutions
that are in use in more security concerned areas today and to potentially find trans-
ferable approaches that can help protect important and sensitive information in
video games and that way help prevent cheating.

In this paper the current threat and approaches of cheating is investigated to
find the most commonly used security breaches. Then potential ways to increase
the security of these areas are reviewed in order to find transferable security mea-
sures. A promising approach using hardware assisted virtualization is presented,
that by using the virtualization hypervisor will handle encryption and decryption
of application memory as well as preforming security checks for interaction with
the host operating system, This can potentially provide a safe environment that can
be used for video games while maintaining the required performance.

Information security as a countermeasure against cheating in video games

Contents

Preface e i
Acknowledgment iii
Abstract e v
CONENtS i i e e vii
Listof Figures e ix
1 Introduction 1
1.1 The problem, and cheating as a business market 1
1.1.1 Cheaters. o ot i i i e e e 2

1.1.2 Hackers i it e e e e e e e 3

1.1.3 Providers e e 4

1.2 Formsofcheating. uiien... 6
1.2.1 Exploits o . e e e e e 6

1.2.2 Automation 6

1.2.3 Overlays. oo o e 7

1.2.4 State Manipulation L. 7

2 Literature Review 9
2.1 Third party anti-cheat software 9
2.2 Current Information security used in video games and game engines 11
2.3 Hiding techniques for cheating software 11
2.4 Other approaches currently used to prevent cheating 12

3 Methods e 15
3.1 Cheating software, Howitworks 15

3. 1.1 Overlays o oo e e e 15

3.1.2 Automationo 16

3.1.3 State Manipulation 17

3.2 Conceptgame it e e e e 18
3.3 Exploring the information channels exploited by Cheating software . 18
34 Areasoffocus 20
3.5 Memory Focused security 20
3.5.1 Sandboxing 20

3.5.2 Hardware assisted virtualization 21

3.6 Network security approaches 23

4 Results e 25

vii

Information security as a countermeasure against cheating in video games

5 Discussion e 27
6 Conclusion 29
7 Furtherwork 31
7.1 Neural network game logic 31
Bibliography e 33
Appendix A: Finding insecurities that can be used for cheating in online
GAMES e e e e e e e e 37

viii

Information security as a countermeasure against cheating in video games

List of Figures

1 Wireshark Capture, 19

ix

Information security as a countermeasure against cheating in video games

1 Introduction

Video games is a large and growing entertainment market, with a total investment
as of 2016 of over 91 billion USD[1] spread across different markets within the
game industry, for several of whom where information security and players finding
ways to gain an unfair advantage is causing problems. Cheating players takes away
from the enjoyment of game communities themselves both for casual players and
the big market that is based around watching video game tournaments and other
videos through channels such as YouTube and Twhich.

Another market where cheating have a more direct impact is on competitive
Esports and several professional players have been caught using third party soft-
ware in order to cheat[2]. Precautions to prevent cheating is already being brought
to the same level as conventional sports such as Drug testing being introduced
after professional players admitted to using performance enhancing drugs when
competing[3]. However software assisted cheating requires a different approach
from what found in conventional sports and preventing this kind of cheating is an
emerging problem that needs to be solved in order to grow Esports to its full po-
tential.

Another large market gaining large investments the last couple of years is the
Virtual Reality market, this is a market where the video game industry is leading
the evolution of the technologies used. Virtual reality technologies are also gaining
interests outside of the game industry, opening possibilities for uses such as long
distance virtual business meetings replacing video conferences and long distance
travel for face to face meetings[4]. However in order for such solutions to be fea-
sible the security of the information shared through such technology need to hold
the same level of confidentiality as the already used networks for sharing business
information through Video conferences and file transfers.

1.1 The problem, and cheating as a business market

The issue with video games being susceptible to cheating and how much this is
effecting the gaming market is an increasing problem. As more money is brought
into the industry both in terms of entertainment investments and gambling but
also through a massive increase in the price pools for winning Esports tournaments

Information security as a countermeasure against cheating in video games

now reaching upwards of several million dollars *. All of this makes the incentives
for winning higher, which again and provides the grounds for a million dollar busi-
ness market based around producing, providing and using third party software for
cheating in video games to grow.

The cheating business market is made up from a series of legitimate registered
tax paying companies. These businesses range from one person companies making
half to a million dollars a year, to larger companies with professional management
and teams making around 1,5 million dollars a year. The global business market is
estimated to be at about 100 Million USD as of 2016[5], making this a big lucrative
market and making preventing cheating a larger issue than what can be solved by
implementing minor difficulties.

The definitions used in this paper will be based on a presentation by Simon Al-
laeys and Aarni Rautava®. They held a talk during the Steam Developer Days 2016
and they work for the company Easy Anti-Cheat, who works on third party anti
cheat software which is the current way to combat cheating in video games, more
about the current technologies used for this will be presented in the Literature Re-
view part of this paper. In their talk they separated the business of cheating into
three categories, with profiles describing the skill set and motivation of the differ-
ent people involved. These categories and profiles will be useful to have in mind
when developing a video game and when considering the different approaches to
preventing cheaters in a video game.

1.1.1 Cheaters

Cheaters are the players playing the game with an unfair advantage, there are
many forms of cheating everything from drugs to match fixing similar to any other
sport or competition. However within the context of this paper cheating will refer
to people playing video games using third party software in order to make games
easier or give the player access additional information that is hidden to other hon-
est players. There are several reasons players choose to use these third party tools
to cheat and we can split them up into cheater profiles.

Greifers

Griefers are cheaters mainly motivated by wanting to ruin the game for the other
players and the and powerful feeling they get from breaking the game rules in ob-
vious and openly visible ways. This is a minority group of cheaters and as they are

Largest Overall Prize Pools in eSports: https://www.esportsearnings.com/tournaments
2Steam Dev Days: Anti-Cheat for Multiplayer Games https://www.youtube.com/watch?v=
hI7V60r7Jco

https://www.esportsearnings.com/tournaments
https://www.youtube.com/watch?v=hI7V60r7Jco
https://www.youtube.com/watch?v=hI7V60r7Jco

Information security as a countermeasure against cheating in video games

easily detected by administrators and removed from the game. These people will
buy several copies of games during sales or create multiple game accounts in order
to keep playing a game on their own premises. This kind of cheaters can cause a
large amount of damage to the community of a game and will cause honest players
to stop playing if the game seems unfair and if these griefers are not taken care of
effectively and therefore require large investments from the game developer.

Casual cheaters

The largest group of cheaters are the casual cheating players, these players cheat
simply to make the game easier for themselves. If they feel the game is to difficult
or that other players preform better then them they will find and use cheats to
stay competitive or in order to get an edge on their fellow players. Their aim is
not necessarily to ruin the game for others but can do this in order to stay on the
same skill level as their friends. Such players generally don’t feel any regret about
cheating and will be likely to cheat in most games they play if possible.

Achievers

The achievers are the players who wants to be the best at and win everything they
do. These cheaters will be highly secretive about using cheats in order to do so
and will play in a way as to not make their cheating obvious to others making
these the most difficult to catch. Its this group of cheater is likely to try entering
tournaments for monetary as well as social gains with the use of cheats, something
that can cause problems for video games as a sport if viewers never can be sure if
the players are playing fair or not.

Vigilante or followers

If griefers or the other types of cheaters become too prominent in a gaming commu-
nity rather than stop playing some people choose to pick up cheats for themselves
in order to level the playing field or to "punish" the people who cheated against
them. Making the game more a case of who are able to cheat the most without be-
ing caught. If a game reaches this state where cheaters are playing against cheaters
it will prevent most new players from purchasing and playing. The game will re-
ceive negative reviews and that way removing most of the future profitability of a
game, as well as giving a negative view for the game developer itself.

1.1.2 Hackers

Hackers are the people making the third party software that allows a player to
cheat. These are the people finding and exploiting weaknesses in the software in
order to get access to what they want. A hacker is a known term within information
security but in the context of this paper we are focusing on the hackers who focus
on video games. Their motivation for this as well as their skill set and background

Information security as a countermeasure against cheating in video games

can be separated into three profiles.

Scripters

The vast majority that fits into the hacking group are known as scripters, they are
often players with some technical background. The way they develop cheating soft-
ware is typically by looking up code online, then editing and fitting this to the game
they are interested in mostly through trial and error. The motivation of this group
is mostly curiosity and a wish to test their skills in order to see what they are able
to accomplish.

As major game engines become more common simple code used for cheating
in one game can be easily modified to work for another game built using the same
game engine. And as game engines release their source code as open source these
cheats have the potential to become more advanced as deeper knowledge into the
inner workings of a game become more easily accessible. However, most of the
cheats created by this group are typically aimed to do small an simple tasks.

Researchers

The researcher group is people a bit similar to the scripters where the motivation
is to see whats possible. However these are typically highly skilled individuals that
will dig into and reverse engineer either a game or the anti cheat software itself in
order to find security holes.

The researcher group wont necessarily create software for cheating or if they do
it will be simple proof of concepts, rather than commercially viable cheating soft-
ware. These finds are then typically released publicly just as much for the developer
to find and fix as for other hackers to use.

Senior hackers

This group of hackers are typically payed and professional reverse engineers or
programmers hired to make feature rich and easy to use cheating software. This
group will have a professional approach to their software keeping it updated in
order to avoid bugs and more importantly making sure it is not detected by a
games cheat detection countermeasures.

1.1.3 Providers

There are a number of different ways cheaters can find the cheating software they
use. As they typically do not develop these cheats themselves is a large market in
distributing this kind of software. Sharing cheating software is done through dif-
ferent cheating communities, some more locked down and controlled than others.

Information security as a countermeasure against cheating in video games

Open communities

Open cheating communities are typically where both cheaters and game hackers
will start out. On open forums and web pages free and open source cheating soft-
ware will be shared and easily found through a web search. The cheating software
here are often outdated and anti cheating software will typically quickly update
their software to detect and lock accounts that are detected with openly available
cheating software. The motivation for sharing cheating software in such an open
and available form is to generate income from add revenue and lead players further
into the cheating community

Payed subscription based communities

Another way of spreading cheating software are through payed subscription ser-
vices. These services are also openly available through a web search but does re-
quire paying a monthly sum of money in order to be accessed, and that way restrict-
ing access for game developers who just want to protect their games from cheaters.

The software shared here are typically of a professional quality with nice well
developed user interfaces as well as support for paying subscribers. The software
are regularly updated in order to remain hidden from anti cheat countermeasures
and are generally hard to prevent with today’s approaches to prevent cheating.

Closed communities

The last kind of the cheating community is the closed communities where access
is reputation based. These communities have been known for requiring video chat
interviews and copies of official identification before potential members is given
accepted into the community. All of this in order to prevent members leaking infor-
mation and causing the cheats shared here to be detected

These communities are known to offer private personal cheats sold only to a
very limited number of people at prices of 40USD a month and upwards. As well
as other exclusive cheats sold to a single person or a competitive team for 500 to
1000USD who are supposed to be entirely undetectable. These cheats are typically
small simple cheats but are hidden in ways allowing some of these to be installed
and used for local tournaments, where the computers are provided by the host of
the competition and the security is generally very high.

Examples of this is cheats installed through Steam workshop[2] simply by sign-
ing into a players account. As well as suspicions of cheats hidden in the system
drivers for accessories such as mouse and keyboards where players in tournaments
are allowed to bring their own accessories to the competition.

Information security as a countermeasure against cheating in video games

1.2 Forms of cheating

Cheating in video games can take many forms based on what the cheater want to
accomplish, some cheating is more damaging to a video game community than oth-
ers and in some game genres some areas of cheating is more accepted than others.
The different ways of cheating also exploit different parts of the system and relies
on being able to gain access to different information from within the game. We
can split the cheating into categories that will be useful when discussing potential
solutions for preventing them, as there is likely blanket solution to prevent all of
these.

1.2.1 Exploits

The exploits category of cheating refers to players finding ways to make the game
behave in ways that was not intended. This is most often simply by finding design
errors in the game, this can be anything from an invisible wall left behind by a
game developer that allows a player to jump up and reach a position that was
not intended to be accessible, or players figuring out that they can use the physics
engine or a game ability to break the gravity in the game to allow them to fly. The
general theme for this category is that the cheater is not manipulating the games
code itself and there is no real hacking involved but rather abusing game logic
errors in ways not intended by the developer, and therefore is not that much of a
focus for this paper rather than it being down to the developer to do conclusive
testing and fix exploits as they show up.

1.2.2 Automation

Automation is another category where the cheater does not necessarily dig into the
games code in order to cheat, there are more innocent ways to do automation that
are generally not as frowned upon by the game community. This can be things like
using keyboard shortcuts to have one button that activates all your abilities, or one
button to write predefined message in the chat. This is generally done in order to
save the player time or to automate repetitive tasks for some game. The capability
of doing most of these things are now a general feature in a lot of gaming accessory
software such as the driver for a mouse or keyboard and is in most cases accepted
within the gaming community, and therefor not as much a priority in this paper.

There are however other more advanced ways of automation that relies on third
party software digging into the code, memory, reading colors on the screen or the
network packages to work. An example for this is typical Aim bots, where third
party software will read the position of an enemy from the internal memory of
the game and then automatically move the mouse to target this enemy and shoot,
without requiring the player to do anything. It can work by listening to network

Information security as a countermeasure against cheating in video games

packages waiting for a particular enemy to spawn then automatically moving the
player to a position and killing it allowing a player to leave the game playing itself
for extensive amounts of time and gaining rewards without having to play the game
himself.

1.2.3 Overlays

Game overlays works much the same way as the previously mentioned more ad-
vanced form of automation. Except that rather than doing actions from the player,
it will overlay information in over the game to give the cheating player access to
more information than that which was intended by the game developer. This can
be different visibility hacks where it will overlay enemy positions onto the screen
through walls, or make them show up on a map. It can also be information through
a message or sound to let the player know if an important item is available or a
rare or important enemy have spawned into the world.

1.2.4 State Manipulation

The most intrusive way of cheating in video games is through state manipulation,
where rather than just read and abuse information available from the game in
unintended ways this will change how the game works for the cheating players.
This can through third party software edit the game while running into reducing
or disabling the gravity or game physics for the cheater allowing him to fly, jump
higher or move through walls. It can also be used in less obvious ways such as
changing the speed the player moves or teleport the player around the map by
simply changing its positional values.

Information security as a countermeasure against cheating in video games

2 Literature Review

The available literature on video games and cheating in them are currently some-
what limited, and most discussions on these subjects are typically found on devel-
oper forums, blog posts and web pages as well as videos from developer confer-
ences. Therefore the information reviewed in this section will comes from a variety
of these sources as well as a few scientific papers discussing these subjects.

2.1 Third party anti-cheat software

Cheating in video games are a large problem en certain genres and even with
the implementation of Network encryption there are still several other attack vec-
tors left open. Making the use and need for other cheating countermeasures be-
ing necessary and widely used. The approach several approaches used by current
Anti-Cheat software they are generally either looking at the statistics and data for
players, searching through things like high score lists and point scores to detect
impossibly high scores or looking at the movement of a player in order to detect
if a distance moved is possible within a certain amount of time. Another approach
is by logging statistics for each individual player, figuring out their play style and
skill level and look out for large play style changes or abnormally large jumps in
skill level.

This approach works well against very obvious cheating and players who don’t
try to hide the fact that they are using cheating software, there is however is some
games quite a large overlap where highly skilled players and subtly cheating play-
ers generate the same sets of statistics, something that can lead to either false
positives or cheaters being able to trick the system, there is also a problem with
the logging of play styles where if a player simply have a friend over playing and
playing the game on their computer could lead to a false positive if the skill level
or play style is drastically different[5].

Another approach being used is similar to the one used by anti virus systems
where signatures, where the anti cheat provider assemble a list hash signatures of
known cheating software, it will then scan the computer of everyone playing the
game in order to find any of these known signatures. This approach pretty much
ensures no false positives, but it does have the drawback of having to know about
all third party cheating software, and even a minimal change to a cheat will change

Information security as a countermeasure against cheating in video games

the signature allowing it to pass by unnoticed by the anti cheat system.

A different approach is a heuristics based approach that aims to detect cheat-
ing by recognizing known behavioural patterns, and patterns in system calls made
while the game is running. These systems don’t search for specific cheating soft-
ware but rather look at how the game engine behaves and where different system
calls land, then comparing this to how other known cheating software works and
if it find reasonable similarities files and logs will be collected from the players
computer and then investigated by the anti cheat system. This ensures that most
common cheats can be detected with a drawback of some computer viruses will
behave similarly to cheating software so a player can risk getting locked out of
their games for an unrelated virus infecting their system.

Most of the anti cheat systems is also offers a shared cheater database, mean-
ing that if there are several games tied to the same user account system a player
caught cheating in one video game using an anti cheat system will be prevented
from playing competitively in any of the games tied to the cheaters account. The
intention of this is to make the risk of being caught and having to replenish and
buy all the users games over again in some cases being enough to prevent players
from cheating in the first place.

There have unfortunately been incidents where these third party anti cheat-
ing have proved less than trustworthy, and news broke that a developers in a large
competitive gaming network had included malware used for Bitcoin Mining in their
anti cheat software[6]. A general issue with the current approach to anti cheating
is that in order to prevent cheating anyone playing a competitive game have to
provide this third party anti cheat software with access and privileges to scan and
trace all the system calls made while a game is running, as well as the rights to
send the information gathered to the Anti-Cheat companies servers for analysis.

Considering that most machines used for video games are private home com-
puters, and the information scanned and gathered not necessarily being related to
the video game the user have installer, this can be viewed as rather large breach
of privacy, as information sent to the anti cheating server may contain personal
information and files. This have in some cases been getting a lot of attention on
community forums[7] and is generally giving bad press to the companies that im-
plements these cheating countermeasures. This is costing companies potential sales
from people who wont allow this anti cheat software to run on their computer mak-
ing game developers having to choose between anti cheat security or the potential

10

Information security as a countermeasure against cheating in video games

sale loss.

2.2 Current Information security used in video games and game
engines

The current technology used to add security to video games currently, mostly fo-
cused around preventing illegal downloads and protecting assets used in the game
from theft. This security is implemented differently dependent on how and what
the aim is to protect. A lot of games use account based access systems to make sure
that the game is played by a someone who have acquired the game legally. An for
these account authentication systems the general information security guidelines
is are implemented and followed with encrypted connection between the client
machine and the game companies account server as to not transfer information in
plain text over the network. Package encryption to protect the art assets as well as
the program files for video games are also something that is used in some cases.

Security for the run time information on the game however is rarely used, the
same goes for securing the continuous data stream transferred over the network
between the host game server and the client. There is starting to show up network
encryption in some areas and game engines[8], This typically implements a com-
bination of RSA for key exchange and AES encryption to contiguously protect the
game data and effectively limiting the some potential attack vectors used in cheat-
ing software. These technologies are not activated by default but can be used by
the game developer if they choose.

For other game engines such as the Unreal engine there are community devel-
oped network encryption plugins[9] [10] that can be attached to specific variable
types so with some vigilant use a game developer can secure the most confidential
information against being openly available on the network. and by doing so they
will be sacrificing some potential performance for security.

2.3 Hiding techniques for cheating software

Since most anti-cheating approaches used for games currently are based around
searching for software and files on the players computer that are recognized as
known cheating software it has become necessary for cheating software to hide
their influence and presence on the cheating players system. It is also a priority to
make cheating software obscure in order to make reverse engineering harder in
order to make it harder for an anti cheat company to break apart the cheat and
learn their scanners to recognize them.

11

Information security as a countermeasure against cheating in video games

To avoid being detected and to work cheating software will usually go through
the operating systems kernel mode directly accessing a computer systems memory
and influencing system interrupts and service hooks in order to make a game eas-
ier for the cheater. The cheating software itself will usually utilize virtual address
descriptor hiding, by hooking their memory into other legitimate system services
or applications or the game itself in order to not be detected by a anti-cheat scanner.

Advanced and expensive private cheats will often also implement a back end
system observing and logging the usage of a cheat, aimed to detect suspicious
activity such as if a cheat have been ran 3 times consecutively, is shared and run
simultaneously on several systems or if there is a debugger running simultaneously
on the system running the cheat. This is done in part in order to be able to lock
down the cheating software in case someone is trying to reverse engineer it, but
also to protect the hackers and providers creating these cheats from users sharing
their software for free to people who have not payed for the software.

2.4 Other approaches currently used to prevent cheating

There are no perfect way to protect and deal with cheating in video games. Typical
anti cheat approaches makes cheating harder but not impossible and if the poten-
tial reward in doing so cheats will be developed. There are a number of decisions
and limitations placed on the game developer in order to prevent cheating in their
game. The approaches that have proved the most efficient does not rely on addi-
tional security to work but rather designing the game around making cheats less
valuable or possible.

The main part of these approaches is by having a trusted server making a num-
ber of decisions, such as the server making the decisions about whether or not two
players can see each other, and then only sharing the information about other play-
ers positions when the server decides that they should be able to see each other.
This will limit the usefulness of cheats such as radar/map hacks where enemies
will be visible on the cheating players map, and could also potentially help prevent
wall hacks.

The issue with having the server making all decisions such as this is firstly that it
requires a secure trusted server. Another is that this server needs to be substantially
more powerful as it needs to do all the calculations required for the game to run.
The biggest challenge with using this approach however is the connection speed,
all the information need to travel through the network and will in some cases cause

12

Information security as a countermeasure against cheating in video games

fast paced and particularly VR games feel slow and unnatural and therefore a com-
pletely authoritative server is not always a viable solution.

There are also some other options for cheat detection that can be implemented
by a game developer that makes cheating more difficult and might catch out some
of the more casual cheaters using basic cheating software that have not been tar-
geted towards one game in particular. This can be done by implementing code and
variable obfuscation, changing the standardized variables used to store important
information such as integers, floats and Boolean variables into proprietary vari-
ables that are not recognized easily by a cheater. This will require the cheaters to
obtain more inn depth knowledge about how the game works before they are able
to cheat.

Other approaches include creating so called "Mouse Trap" variables, this will
be variables that store information that seemingly is relevant to gameplay such as
having an extra variable tracking a players health as a standard integer value while
having a different obscured value that is the real variable tracking the same infor-
mation. Then implementing regular checks to make sure this mouse trap variable
matches the actual variable and if a change of the trap variable is detected you are
able to label the player as a cheater and react accordingly. There are typicaly plug-
ins for easy implementation for these solutions available for popular game engines
such as Unity[11] and Unreal Engine[12] as some examples.

13

Information security as a countermeasure against cheating in video games

3 Methods

3.1 Cheating software, How it works

This section is partially based on the research and testing done in a specialization
project conducted before this one. The paper on this has been included in this paper
as Appendix A: Finding insecurities that can be used for cheating in online games.
Further information on the testing and research behind this section can be found
there, however this section will summarize the most important aspects that is used
as a basis for this paper. Some further testing focused on the networking side and
what information is available through listening to network communications was
conducted as a part of this paper and will also be covered here.

For this section the focus is on technical cheats that works by accessing or chang-
ing information used running the game, rather than the exploitation of bugs that
are left in game by developer. Automation where a player uses keyboard shortcuts
and macros to preform functions not directly connected to a game or game engine
is also not a focus, as this kind of automation is generally accepted within the game
community. Therefore the priority of this paper is looking at ways to prevent other
more damaging types of cheating.

3.1.1 Overlays

Overlays is as mentioned in the introduction a way for a cheater to be shown more
information in a game than what was intended by the game developers, the im-
plementations can work in a couple different ways depending on the kind of game
but generally the information gathered by the cheating software will shown over-
laid onto the screen over the video game graphics or by manipulating the game
graphics themselves into showing more information than normal. The most com-
mon information this aims to provide is the position of the enemy players, either
overlaid on a map or making them visible through walls.

The information used to be displayed with overlay cheats are gathered from
the memory used by the running game application. Full information on how this
is typically done can be found in Appendix A, but in short the cheater will launch
the game through a cheat application hooking it into the game’s running processes
and by going through kernel mode gain access to the random access memory used
by the application. Then the cheat software will narrow down the memory used

15

Information security as a countermeasure against cheating in video games

by the application in order to find the variables containing interesting information
such as player positions, health amount and so on by doing a number of searches
based on whats happening within the game.

To narrow down the available memory variables the cheater will have to ma-
nipulate the game, an example would be record all available variables while not
moving in the game, then narrow it down by removing all variables that changed
while players are standing still. Then when players start moving narrow it down
again by removing variables not changing and continuing to do so until the de-
sired variables are found. This can be done with multipurpose cheating software
and made to work for a lot of different video games. Other more advanced cheats
made for a game in particular will be able to recognize the important variables
based on knowledge about the game itself removing a lot of trial and error but
ultimately will work the same way with reading the variables used by the game.

Another slightly less used way of gathering information for an overlay cheat is
through listening to networking packages received as these will contain updated
information on how other players are moving and where they are within a game
arena. This approach is harder to detect by anti cheat measures that look for un-
known software tied into the game processes as with this approach the cheat re-
quires no direct interaction with the game itself.

When the cheating software have found the information required it will typi-
cally overlay it directly onto the screen of the cheater and draw enemies at the
correct position either on a in game map or make the game drawn enemies in
the game world even when there are walls separating the cheater and the other
players.

3.1.2 Automation

Automation depends on the same basic approach to accessing information from
a video game process. For these cheats it is typically gathered from scanning net-
work packets for information or for packages containing a particular pieces of in-
formation. This can also be implemented to used information from the application
memory as explained in the Overlays section, the difference being that rather than
showing the cheating player the information for the player to act on automation
cheats will simulate keyboard or mouse input to the game on the cheaters behalf.
This can be again by reading enemy player positions from memory or a network-
ing package, then it will provide the mouse input required to target any enemies
within range and click the shoot button.

16

Information security as a countermeasure against cheating in video games

Some automation cheats will also use screen recording as a way to gather in-
formation, an example of how this works would be to search for the color of an
enemy player on screen and use where it is detected on screen to provide sim-
ulated mouse input to target and shoot at an enemy player. This will generally
react way faster than any honest player would be able to react. To get this to work
some cheats require game resources and textures to be edited, such as making the
textures of enemy player completely red in order for them to stand out from the
surroundings[13].

3.1.3 State Manipulation

While the other cheats covered here are mainly focused on reading information
about the game and use this information to give a player an unfair advantage they
don’t change the game or how the game is played. Sate manipulation however is
where the cheater accesses the information similar to the previously mentioned
ways either through accessing network packages or directly in the memory of the
cheating players application. This can be done with different goals in mind, if a
player wants to become invincible finding the variable for the players health points
and simply locking this will prevent it from being updated when the player takes
damage. Due to this being too easy for a cheater however a lot of the more impor-
tant variables is handled by the server.

Other more relevant cases where state manipulation is used to cheat is for
games where the developers will leave debugging or spectating game modes in
the game code with a simple activation check at the start of the game, deciding
if they are supposed to be active or not. Manipulating this after a cheating player
have connected to a server however can allow the cheater to make his game run
in one of these modes mid game giving him access to flying or making him able to
view all players though walls similar to how someone spectating the game would
view it. Therefore in popular Esport focused games where the viewer experience
is a focus there is a possibility that they can be abused by a cheater providing him
with a nice already polished way of cheating using the code already within the
game.

Other ways of cheating using state manipulation is by redirecting system calls
that a game will use to either external libraries or to the operating system as a way
to implement their own code into the game. This will in theory allow the cheater
to send custom information to the game server or make other feature rich cheats
where he can get his game client to change most rules not enforced and validated

17

Information security as a countermeasure against cheating in video games

by the server.

3.2 Concept game

Previously in the pre-project for this paper a concept game was developed in Unity,
as this is one of the most popular game engines in use today. However in the
time between the pre-project and the research for this paper began Unreal Engine
another popular game engine made its source code open source. As this would
be a big advantage for the researched planned for this project a new and basic
multiplayer concept game was developed. This was in part to do more analysis of
what security measures where implemented and again to see what information was
available both through the application memory as well as capturing and analyzing
network packages. The other reason for developing this concept game again in an
open source engine was in order to be able to implement potential information
security measures directly on an engine level and use this concept game to test the
effectiveness of potential solutions as well as measuring performance loss caused
by added security.

The concept game included shared variables and texture files for different player
characters that would be replicated between server and client as well as variables
for player positioning around in a game world. A player selected user image was
also implemented as a way of testing how files would be communicated over the
network. An in game text chat was also added into the concept game in order
to test how these messages shared within the game would appear going over the
network between server and client. These last tests would be interesting in order
to see how viable a the basic chat solution of a game engine would be in cases
where security would be more a concern such as a virtual reality business meeting.
And what precautions that would be required in order to make this communication
secure from potential man in the middle attacks.

3.3 Exploring the information channels exploited by Cheating
software

From the research on how cheats generally work and where they get the infor-
mation they use in order to function it is clearly two approaches that are being
used. That is the information stored in the application memory, and the informa-
tion transferred over the network between clients and the game server. A more in
depth view of how information is accessed from the application memory can be
found in Appendix A where a concept game was created and the commonly used
Cheat Engine is used to locate, lock and edit the application memory while the
concept game is running to show how a potential cheater might manipulate the

18

Information security as a countermeasure against cheating in video games

game through this approach.

As we already have the results from the memory manipulation from the Unity
test project the focus this time was to analyze what information that was openly
available through the networking packages sent between client and server. The new
Unreal Engine based concept game was used for the analysis and network packages
was captured on both the server and client in order to see what information was
available using the open source packet analyzer Wireshark. The information found
on both clients and the server was similar so only one of the logs where analyzed
deeper for information

When analyzing the networking packages a challenge was the fact that unreal
engine uses non primitive data types for a lot if its operations rather than the typ-
ically recognized integers and strings, making recognizing messages and informa-
tion stored in these using wire shark non trivial. However other information such
as file paths and names for the player images and character textures was openly
transferred as String variables as shown in bottom right of the Wireshark Capture.

e e Sowce oestnton Protec gt o
27711.674 192.168.1.24 192.168.1.55 uop 550 49877 > 61421 Len=508
27811.675 192.168.1.24 192.168.1.55 uoP 484 49877 > 61421 Len=242
27911.754 192.168.1.55 192.168.1.24 uop 447 61421 > 49877 Len=405
28011.756 192.168.1.24 192.168.1.55 uop 503 49877 > 61421 Len=461
28111.756 192.168.1.24 192.168.1.55 uop 360 49877 > 61421 Len=318
28211.761 192.168.1.24 192.168.1.55 uop 54 49877 > 61421 Len=12
28411.783 192.168.1.55 192.168.1.24 uop 102 61421 > 49877 Len=60
28511.787 192.168.1.24 192.168.1.55 uop 102 49877 > 61421 Len=60
28611.788 192.168.1.55 192.168.1.24 uoP 60 61421 > 49877 Len=18
28811.793 192.168.1.24 192.168.1.55 uop 57 49877 > 61421 Len=15
28911.799 192.168.1.24 192.168.1.55 uoP 54 49877 > 61421 Len=12
29011.808 192.168.1.55 192.168.1.24 uop 75 61421 > 49877 Len=33

20111.812 192.168.1.24 192.168.1.55 uop 98 49877 > 61421 Len=56

Frame 280; 503 bytes on wire (4024 bits), 503 bytes captured || 0020 0000001 00110111
Ethernet II, Src: AsustekC_55:39:d5 (70:8b:cd:55:39:d5), Dst:|| 0028 [CLIAIRSUIIIIEL 00000000 00000001 01100001 00011110 00000000 00000000
T o) Crf o 7 £ ST P, (o EoT, (0100000 00000000 00010160 00000600 11001010 01060000 01601010 00100111
e e e e Care s T Y] (0000100 06000000 00000000 00000600 00110010 00OGO1G1 00G0CE0 00110001

~ Data (461 bytes)

Data: ©001611e000020001400Ca404a2704000000320500310000. . .
[Length: 461]

a
00000000 00GE0000 00000000 00101111 01000111 01100001 01101101 01100101 . ../Game
00101111 1001101 01100001 01161110 @1101110 01100101 01110601 01110101 /Mannequ
61101001 01101110 00101111 01666011 01101000 01100001 01116610 01100001 in/Chara
091100011 01110100 01100101 91110010 00101111 01010100 01100101 01111000 cter/Tex
01110100 01110101 01110010 01160101 01110011 00101111 01010101 01000101 tures/UE

00110100 01011111 01001100 01001111 01090111 01091111 01011111 01000011 4_L0GO_C
01000001 01010010 01000100 000GRE00 0GRAG000 GAAE0000 GO000GEO 0000DE00
00101110 00000101 00110010 0000R100 00GR1110 GAG00000 GO000GR0 0000GE00
61010101 01000101 00110100 01011111 01001100 01001111 61000111 01001111 ¥
01011111 01000011 01000001 01010010 01000100 CAAA0G0 G00OOGE0 0000PAEO _CARD..
00000000 0P0E0V0 00101010 00PEE101 0VOEEEEE 00100011 00VOEEES V0EOREEE PR
00000000 00101111 01000111 01100001 01101101 01100101 00101111 01000010 . /Game/8
01101100 01110101 01100101 01110000 01110010 01101001 01101110 01110100 lueprint
01110011 00101111 01000011 01101000 01100001 01110010 01100001 01100011 5/Chara
91110100 01100101 01110010 91110011 00101111 00116000 01011111 01000010 ters/o_B
01100001 01110011 01100101 0GGEGE0 0GRAAO0O GAAAO00 GPAOOGEO 0000DRRD ase.....
00100110 00000101 00101010 00PEE100 00PO1001 000EEEE0 0OVOEEES VOEOREEE &L
00110000 01011111 01000010 01100001 01110011 01100101 01011111 01000011 ©_Base C
00000000 00001011 00111100 00101011 10100101 00101000 G0000000 10110000
60000001 01100101 00000110 11160010 11000110 10011100 00001601 00000010
00000000 00000000 0OEOE0O0 P0RVO100 VOOBREO VVREOEO 0OVR0R0 10001000
01110010 00000000 11000000 000RRG00 0GRAGO10 GAAGO00 GOO10100 0000PRRD
11100000 10000000 11000110 01000001 10911000 10910011 01000100 00010000
01110001 01100011 11001110 00100000 0GRAG001 GAG00000 GE000GR0 00000000
00000010 00000000 0000000 000GRG00 01000100 01010001 00110100 01100001
60000001 00000000 00000000 10000000 00000101 00AO0000 G0000B00 00000000
060101000 00000000 11110100 10000001 00910100 01110000 00000110 0000PAE0
00000000 00000000 00111100 000P1010 01000100 GARA1010 G0A0GR0 01010000
00000000 00000000 00000000 01011110 10091110 11000010 11011010 11001010

O 7 e Dty Protocl), Sytes Packes 15619 - Displayed: 14045 55.3%) Lood e 00,202 Profe:Defot

Figure 1: Capture from wireshark showing file information in clear text sent between server
and clients. In our case the "UE 4 LOGO CARD" being the user image selected by a client
and the "0 Base" being the player character selected.

19

Information security as a countermeasure against cheating in video games

In the Wireshark capture you can see references to the image files and file paths
transmitted in clear text over the network. Therefore it is reasonable to believe that
by default there are no encryption used for the network layer of Unreal Engine, The
information shared through the in game text chat is also likely available in these
packages but are not as easily as easily read using wire shark as this only recognizes
the primitive data types. Software specifically searching for the data types used by
the unreal engine however would likely be able to find and read the information
shared by client and server openly.

3.4 Areas of focus

From the research on cheats and the software used for cheating there is generally
two vulnerabilities that are abused to make the majority of cheats work. Therefore
information security solutions who handle networking security and who secure ap-
plication memory will be the main area of research. The goal is finding how security
in these areas have been dealt with in business markets where security have been
a major concern from the ground up. These solutions will be reviewed based on
how they are implemented, what additional security they provide in a video game
setting, as well as what requirements they need to be effective. This is required in
order to judge whether or not they can be of use in an environment where per-
formance and the responsiveness of the software is vital, and where any sort of
delay and required processing time will be a trade off from the more marketable
graphics, gameplay and system requirements for a video game.

3.5 Memory Focused security

Memory protection was the area that received the most focus while working on
this project as this is the vulnerability that are most easily and commonly used by
cheaters while also being the area where there are less options available for current
game developers to protect their games. This focus did however prove a challenge
as there where no simple ways of implementing and testing potential solutions.
And the solutions commonly used to provide memory security to applications relies
on functionality provided by the operating system or hardware support to work.
Some approaches that have been considered however might prove useful if a game
engine where to be developed around them, something that potentially could lead
to significantly higher resistance against cheating than any other engine on the
market.

3.5.1 Sandboxing

In computer security a sandbox is a mechanism used for separating running soft-
ware from the rest of a computer system. The goal here is typically to be able to run

20

Information security as a countermeasure against cheating in video games

unverified and therefore not trusted software with a layer of protection to make it
unable to access processes outside of the sandbox, and that way prevent the op-
erating system or other applications becoming infected. This is not directly useful
in preventing cheating in video games as running a game within a sandbox wont
protect it from the outside as the cheater have control of the operating system.

However in commercialized cloud computing there have been research done
Two-Way Sandboxing where both the application is protected from the untrusted
platform running it, while at the same time the operating system and other ap-
plications on the host system is protected from untrusted applications[14]. The
approach discussed for two way sandboxing is by using the virtualization hypervi-
sor to encrypt and isolate the application memory. Working at a lower level than
the host operating system all the information that will be passed through the oper-
ating system will be encrypted thus significantly reducing the attack surface of any
game running within this sandbox.

The difficulty with implementing this solution is with providing a game running
within the sandbox access to necessary graphical driver for supporting some of the
more advanced technologies while still keeping the interfacing between operating
system and game code to a minimal and manageable level. This might require
game developers or the game engine to manage these interfaces together with
hardware developers to make the necessary calls available without them having to
interact in clear text through the operating system, without sacrificing too much of
the systems performance.

3.5.2 Hardware assisted virtualization

Most modern computers have hardware to assist with virtualization built in, that
being especially the virtualization hypervisor, made to provide virtual operating
systems a more direct and efficient access to the hardware without having to route
all system calls through the host operating system on the machine. The previously
suggested sandboxing approach was also based around using the hypervisor both
to provide application security from the host operating system as well as protect-
ing the host from anything running within the sandbox making up two layers of
security.

As performance is important it might be sufficient from a game developers per-
spective to only focus the protection on the video game itself with outward facing
security. There have been a number of papers and research done in the area, fo-
cused on protecting a virtual machine typically running a web server from the

21

Information security as a countermeasure against cheating in video games

system running it, as in shared systems there will typically be several untrusted
virtual machines running on he same hardware it is a priority to protect each indi-
vidual virtual machine from potential infections on the others.

When looking at performance metrics done on implementations of hypervisor
protected virtual machines tasks requiring processing power but limited memory
usage the performance hit of this security measure is near inconsequential[15].
However for tasks where transferring and processing large amount of data is re-
quired the resource consumption is significantly higher to upwards of a 50% re-
duction in performance for a pure file transfer tasks[16].

A large benefit of a virtualization approach is that it could be able to run most
software without modification of either the host operating system or the game ap-
plication itself, its entire development would be focused on a virutalization layer.
In the references found[17] this layer, referred to as a "Shim" is responsible for
managing all the interactions between the clacked application and the operating
system. This allows for relatively complex OS specific system calls and operations
to be handled without the need of entering kernel mode through the host operating
system, and provides a convenient place to add custom or OS-specific functionality
without modifying the host operating system.

The shim memory consists of both encrypted and unencrypted memory regions
providing the potential for increased performance if implemented in a way where
a video games heavier files such as sound and textures are stored and handled
outside of the protected memory while keeping program critical memory protected
against access from the the outside. This have the potential of making such an ap-
proach viable in the performance heavy environment as it can keep the size of the
allocated protected memory to a minimum and thus avoiding unnecessary encryp-
tion and decryption of the larger files required in modern video games.

In the Overshadow[17] project the shim are made to handle nearly all system
calls supported by the Linux 2.6 kernel interface, and thus was able to run a large
amount of Linux software without requiring the applications to be modified. How
an implementation developing such and implementation for windows based appli-
cations however could prove a challenge, but in today’s market would be necessary
to reach the majority of video game developers. However in the future this market
could potentially change to where Linux will increase in popularity, with big video
game companies such as Valve known for the dominant Steam gaming platform
investing big in making Linux a free and more openly available gaming platform

22

Information security as a countermeasure against cheating in video games

through the development of Steam OS[18].

For an implementation of such a system to be deployed together with a video
game however would place a lot of additional development time for a developer as
it would essentially be shipping a video game bundled together with a virtual ma-
chine manager as well as a proprietary operating system to handle the communica-
tion between the application and the client computer hardware. This is not realistic
from the view of a game developer, however it could be a potential approach and
motivation to develop a game engine that offer easy game development similar to
that of Unreal engine or the Unity engine but bundled with the proprietary operat-
ing system and virtualization manager. This even just being an option for deploying
the finished product with the benefit of added security. Leaving the only decisions
the game developer have to consider during the game development being what
information should be placed in the secured and encrypted part of memory and
what can be safely used directly in order to maintain performance at a reasonable
level.

Another alternative for developing and deploying such a solution could be in
the form of a game distribution platform, so that rather than just being a library,
storefront, and community hub it would also provide a virtualization layer for run-
ning the games sold on the platform. This would be a benefit for both game de-
velopers and customers on the platform being able to ensure increased resistance
against cheaters being a large potential selling point both for players looking for a
fair game and developers who would rather focus on improving their games than
dealing with anti cheating measures after deployment.

3.6 Network security approaches

As the second most common vulnerability used for cheating in video games being
the ability to capture and read networking packages, this would also be an impor-
tant area of focus in order to make video games more resilient against cheating.
This is an area that have received a lot more attention generally when discussing
security outside of the game industry, this is due to the system running an applica-
tion and the user with access to that system is generally considered to be trusted
while potential attackers will have to attack from the outside.

After starting research on the topic of networking security in video games there
are actually some networking security available for use in video games in the most
common game engines. Most of witch is focused around account management and
for transferring user passwords and account information between different sign inn

23

Information security as a countermeasure against cheating in video games

systems and the account server rather than use for the game information between
clients and the game server.

The way this is implemented is so that the game designer can assign certain
information to be handled securely typically through the HTTPS standard for com-
munication with web servers. There are also implementations that use RSA for
asymmetric key exchange and then AES either as a block cipher or a deviation of
AES used as a stream cipher. In the closed source unity engine it is available for use
by any game developers who chose to activate full network security for their game
covering all network communications by default and functionality for turning it of
for specific packages if desired. This solution does however not preform any kind
of authentication of the server.

As for the unreal Game engine there are code for encryption within the engine
that according to the limited information available on the subject are used by some
online subsystems but are not currently available for use by game developers out
of the box. The engine source code does currently contain code both for asymmet-
ric encryption using RSA, as well as symmetric encryption through AES, BlowFish,
TwoFish as well as an XOR based stream and block encryption[19]. It is however
only recently other game engines have began implementing network encryption
as a standard and this could potentially be a work in progress to soon be able to
provide for game developers.

In addition to encryption network encryption supported by default by game en-
gines there are third party plugin solutions offered for the most common game
engines. This will give game developers options and the possibility to help pro-
tect their games against certain approaches to cheating. And this trend is hopefully
something that only will gain more support and features going forwards, and mak-
ing game engines more suitable for potential the business solutions making use of
Virtual reality features, where network encryption is the major concern to protect
the information shared in virtual business meetings from being vulnerable to man
in the middle attacks.

24

Information security as a countermeasure against cheating in video games

4 Results

The results found in researching security solutions for a video game environment
is that the challenge of protecting against a cheating players differs fundamentally
from most other security concerned applications in that malicious user already
have the full access to both the hardware and administrator privileges within the
operating system. This would be comparable to a root kit on the operating system
level. Most information security is aimed at stopping malicious software before it
can reach such a critical access level within a system, preferably to keep hostile
code from running on a system altogether, but a few potential and applicable solu-
tions have been found.

The problem of video games being vulnerable to cheating is mainly due to two
different attack vectors for extracting and modifying information, the first being
the application run time memory, the other being through capturing network pack-
ets. The later of which with security measures being implemented and made more
easily accessible to game developers using popular engines. However without se-
curing the application memory video games will still be left vulnerable to certain
kinds of attacks.

Implementing application memory protection will require a major change in
how video games are run on a system, and is likely not something that can be han-
dled by a game developer alone. In order for the potential solutions suggested in
this paper to be implemented it will need to be approached from a game engine
perspective or that of a game distribution platform, and in this way create a vir-
tual machine environment where video games can run separated off from the host
operating system in order to achieve a higher level of security.

25

Information security as a countermeasure against cheating in video games

5 Discussion

The original goal of this paper was to experiment and test different security im-
plementations in order to provide statistics about different solutions and their
performance. Then test common cheating software to figure out how the differ-
ent solutions preform against attacks and how they would be helpful in the video
game concept game developed in the pre-project. However during the course of the
project researching cheating and how security concerned software handled similar
situations there currently are no technology that are directly transferable.

The way that cheating in video games become a different challenge to that of
other security sensitive application is the environment surrounding the application
as well as where the attacks are originating. Typically a system would be considered
compromised if the adversary gains physical or root access to a system. However
when considering a cheater in a video game in most cases will be using a private
home computer with admin privileges the challenge becomes quite different.

In typical cases where the user of a system is not trusted a hierarchy of trust is
implemented and enforced on the operating system level. This will typically be a
computer in an office environment where there are trusted system administrators
who have access to the root system of the operating system, while regular users are
limited into only having access to the system components they require to do their
job. As soon as the untrusted user owns the system and is able to run as the admin-
istrator the same level of security becomes impossible to uphold without limiting
the user in the use of their own privately owned computer.

In most current approaches to prevent cheating it is mainly focused around
making the potential reward for cheating less valuable than the effort required
to cheat. This is done either through obfuscation of application memory requiring
a cheater to reverse engineer the application or preform a large amount of trial
and error to find the information necessary. This will cause most casual cheaters
to be deterred from attempting to cheat, but if a games audience grows and there
becomes a higher and more competitive community around a game the value of
cheat software will increase to a point where someone will go through the trouble
of doing the research and providing cheating software to those willing to pay for

27

Information security as a countermeasure against cheating in video games

it.

Other approaches to anti cheating being the more proactive anti cheat scan-
ners require high system privileges of the private computer systems they need to
scan to the point of being considered a threat to privacy[7], and have proven to
be potential way for malware to enter a computer system[6] if a developer proves
to be untrustworthy. Both of which are good reason for the video game market to
consider other approaches cheat prevention.

The approaches suggested in this paper concerning application memory protec-
tion will require a different approach to that of a traditional game development.
To implement the approaches suggested here would require the development of
virtualization technologies together with a proprietary operating system to act as a
layer between the host system that are potentially managed by the cheating player
and the game application itself. A solution such as this would likely also not be
completely cheat proof but it could help significantly by being able to secure the
information channels past the level of the operating system will significantly re-
duce potential for cheats to be created as they would have to be run within the
same virtual machine and proprietary operating system as the game to gain access
to confidential information.

With the creation of a virtualized run time environment for video games it have
the potential of being created in a way that already excising video games could
be ported and run within the environment without requiring changes to be made.
However some optimization could potentially be necessary in order to direct what
element of the memory that would require this protection and what could be left
outside for the sake of the performance of the game.

28

Information security as a countermeasure against cheating in video games

6 Conclusion

The approach suggested to prevent cheating in video games in this paper could
have potential to greatly reducing the most commonly abused vulnerabilities. It
does however require a virtualization layer to be developed with its own functions
for handling system interactions commonly sent to the operating system to pre-
vent information leakage. This layer will then manage application memory access
as well as encryption and decryption of the memory used by the game application
during run time. This approach would also be able to increase the effectiveness
of the networking encryption used when the application can be able to store keys
securely within the virtual environment rather than it being openly accessible in
system memory.

I also believe this increased security could be a good marketing point for a game
engines or distribution platforms to be able to claim increased application security
and protection against cheating that does not pose a threat to their users privacy.
Together with the potential for easy portability of excising game titles it could be
a worthwhile investment. Adding to that the potential for business solutions using
this protection for Virtual reality business meeting or other not gaming related
application in need of this kind of security it is an interesting area for development
and further research.

29

Information security as a countermeasure against cheating in video games

7 Further work

For future work on information security in video games the suggested solution
from this paper would require a lot of work in order to get to a functional level.
Further testing would be required to know whether or not the solution holds any
real merit for use in a video game environment. It is however a promising and if
not potentially a bit overly complex to undertaken easily. Potential driver support
for graphics and other process intensive tasks could prove a challenge within a vir-
tual environment leaving multiple areas of potential failure for such a solution that
would be interesting topics for further testing and development.

7.1 Neural network game logic

A completely different approach that was considered shortly when looking into
obfuscation during this project was the idea of using neural networks to handle
parts of the video game logic. The general though of which being that developing
the game normally but then having a game engine able to train a neural network
to preforming parts of the game logic provide some unknown complexity to the
game logic that would be difficult for a potential cheater to predict and modify
in a predictable and beneficial way. This however was not an approach that was
deeply researched during this project but could potentially be an area of further
investigation.

31

Information security as a countermeasure against cheating in video games

Bibliography
[1] SACCO, D. 2016. Superdata’s 2016 report’s top
6. http://www.esports-news.co.uk/2016/12/21/

esports-market-size-2016-superdata/. Accessed: 2017-04-20.

[2] Lahti, E. 2014. Cs:go competitive scene
in hacking scandal. http://www.pcgamer . com/
csgo-competitive-scene-embroiled-in-hacking-scandal-as-three-players-are-

Accessed: 2017-04-20.

[3] Lahti, E. 2015. After drug scandal, esl says ‘es-
ports needs to mature". http://www.pcgamer. com/
after-drug-scandal-esl-says-esports-needs-to-mature/. Accessed:
2017-04-20.

[4] Zakrzewski, C. 2016. Wall street journal: Virtual reality takes
on the video conference. https://wuw.wsj.com/articles/
virtual-reality-takes-on-the-videoconference-1474250761. Ac-
cessed: 2017-05-18.

[5] Simon Al-laeys, A. R. 2016. Steam dev days: Anti-cheat for multiplayer
games. https://www.youtube.com/watch?v=hI7V60r7Jco. Accessed: 2017-
02-8.

[6] Savage, P. 2013. Esea release malware into public client,
forcing users to farm bitcoins. http://www.pcgamer.com/
esea-accidentally-release-malware-into-public-client-causing-users-to-fa:
Accessed: 2017-05-20.

[7] Reddit:Douggem. 2015. Battleye is sending files from your hard
drive to its master server. https://www.reddit.com/r/arma/comments/
2750n0/battleye_is_sending_files_from_your_hard_drive_to/. Ac-
cessed: 2017-05-20.

[8] UnityTechnologies. 2017. Unity documentation: Network se-
curity. https://docs.unity3d.com/ScriptReference/Network.
InitializeSecurity.html. Accessed: 2017-05-20.

33

http://www.esports-news.co.uk/2016/12/21/esports-market-size-2016-superdata/
http://www.esports-news.co.uk/2016/12/21/esports-market-size-2016-superdata/
http://www.pcgamer.com/csgo-competitive-scene-embroiled-in-hacking-scandal-as-three-players-are-banned/
http://www.pcgamer.com/csgo-competitive-scene-embroiled-in-hacking-scandal-as-three-players-are-banned/
http://www.pcgamer.com/after-drug-scandal-esl-says-esports-needs-to-mature/
http://www.pcgamer.com/after-drug-scandal-esl-says-esports-needs-to-mature/
https://www.wsj.com/articles/virtual-reality-takes-on-the-videoconference-1474250761
https://www.wsj.com/articles/virtual-reality-takes-on-the-videoconference-1474250761
https://www.youtube.com/watch?v=hI7V60r7Jco
http://www.pcgamer.com/esea-accidentally-release-malware-into-public-client-causing-users-to-farm-bitcoins/
http://www.pcgamer.com/esea-accidentally-release-malware-into-public-client-causing-users-to-farm-bitcoins/
https://www.reddit.com/r/arma/comments/2750n0/battleye_is_sending_files_from_your_hard_drive_to/
https://www.reddit.com/r/arma/comments/2750n0/battleye_is_sending_files_from_your_hard_drive_to/
https://docs.unity3d.com/ScriptReference/Network.InitializeSecurity.html
https://docs.unity3d.com/ScriptReference/Network.InitializeSecurity.html

Information security as a countermeasure against cheating in video games

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Github:Maxenko & SalihBalkan. 2016. Sodiumue4: public and private cryp-
tography plugin for unreal engine 4 based on libsodium. https://github.
com/maxenko/SodiumUE4. Accessed: 2017-05-20.

http://lowentry.com/. 2016. Le encryption. https://www.unrealengine.
com/marketplace/low-entry-encryption. Accessed: 2017-05-20.

Yukhanov, D. 2017. Code stage: Anti-cheat toolkit plugin. https://forum.
unity3d.com/threads/anti-cheat-toolkit-stop-cheaters-easily.
196578/. Accessed: 2017-05-17.

Leite, B. X. 2016. Scue4 anti-cheat solution plugin. https://www.

unrealengine.com/marketplace/scue4-anti-cheat-solution. Accessed:
2017-05-17.

Mpgh.net:NeSucks. 2015. Color aimbot. http://www.mpgh.net/forum/
showthread.php?t=792406. Accessed: 2017-05-20.

Li, Y., McCune, J. M., Newsome, J., Perrig, A., Baker, B., & Drewry, W. 2014.
Minibox: A two-way sandbox for x86 native code. In USENIX Annual Technical
Conference, 409-420.

Dewan, P., Durham, D., Khosravi, H., Long, M., & Nagabhushan, G. 2008.
A hypervisor-based system for protecting software runtime memory and per-
sistent storage. In Proceedings of the 2008 Spring Simulation Multiconference,
SpringSim ’08, 828-835, San Diego, CA, USA. Society for Computer Simula-
tion International. URL: http://dl.acm.org/citation.cfm?id=1400549.
1400685.

Silakov, D. V. 2012. Using virtualization to protect application address space
inside untrusted environment. Programming and Computer Software, 38(1),
24-33. URL: http://dx.doi.org/10.1134/50361768812010069, doi:10.
1134/50361768812010069.

Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P., Waldspurger, C. A.,
Boneh, D., Dwoskin, J., & Ports, D. R. 2008. Overshadow: A virtualization-
based approach to retrofitting protection in commodity operating systems.
In Proceedings of the 13th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS XIII, 2-13,
New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/1346281.
1346284, doi:10.1145/1346281.1346284.

ValveCorporation. 2013. Steam o0s. http://store.steampowered.com/
steamos/. Accessed: 2017-05-20.

34

https://github.com/maxenko/SodiumUE4
https://github.com/maxenko/SodiumUE4
https://www.unrealengine.com/marketplace/low-entry-encryption
https://www.unrealengine.com/marketplace/low-entry-encryption
https://forum.unity3d.com/threads/anti-cheat-toolkit-stop-cheaters-easily.196578/
https://forum.unity3d.com/threads/anti-cheat-toolkit-stop-cheaters-easily.196578/
https://forum.unity3d.com/threads/anti-cheat-toolkit-stop-cheaters-easily.196578/
https://www.unrealengine.com/marketplace/scue4-anti-cheat-solution
https://www.unrealengine.com/marketplace/scue4-anti-cheat-solution
http://www.mpgh.net/forum/showthread.php?t=792406
http://www.mpgh.net/forum/showthread.php?t=792406
http://dl.acm.org/citation.cfm?id=1400549.1400685
http://dl.acm.org/citation.cfm?id=1400549.1400685
http://dx.doi.org/10.1134/S0361768812010069
http://dx.doi.org/10.1134/S0361768812010069
http://dx.doi.org/10.1134/S0361768812010069
http://doi.acm.org/10.1145/1346281.1346284
http://doi.acm.org/10.1145/1346281.1346284
http://dx.doi.org/10.1145/1346281.1346284
http://store.steampowered.com/steamos/
http://store.steampowered.com/steamos/

Information security as a countermeasure against cheating in video games

[19] EpicGames. 2017. Unreal engine - encryption components.
https://github.com/EpicGames/UnrealEngine/tree/release/Engine/
Source/Runtime/PacketHandlers/EncryptionComponents. Accessed:
2017-05-20.

35

https://github.com/EpicGames/UnrealEngine/tree/release/Engine/Source/Runtime/PacketHandlers/EncryptionComponents
https://github.com/EpicGames/UnrealEngine/tree/release/Engine/Source/Runtime/PacketHandlers/EncryptionComponents

Information security as a countermeasure against cheating in video games

Appendix A: Finding insecurities that can be used for
cheating in online games

37

Information security as a countermeasure against cheating in video games

Finding insecurities that can be used for cheating in online games

Student nr: 100889, Gjgvik University College - Supervisor: Simon McCallum

This paper will take a look at a recommended basic approach to networking for real time multiplayer games
in the Unity game engine. A concept game is developed in order to test how secure these recommended
approaches are against players giving themselves an unfair advantage through cheating/hacking. This
basic implementation uses the Unity Networking library and in the test implementation no additional care
was taken with concerns to security and cheat prevention.

The second part of this research project was to gain basic knowledge on how cheating works, and to what
extent cheating software can be effective against multiplayer games. In the case of this research project
Cheat Engine was chosen for the tests. This is a all purpose cheating software running only on the cheating
players computer with a focus on altering the memory used by the game as well as the speed the game that
is running on the system. This was chosen due to it being the most common approach to cheating.
Categories and Subject Descriptors: 0.0.0 [Cheating / Hacking in video games]

General Terms: Cheating / Hacking in video games

Additional Key Words and Phrases: Cheating, Hacking, Video, Computer, games, Multiplayer, Online, Unity,
Networking

1. INTRODUCTION

This project began with researching cheating in video games in general, what was
common in different genres, and what parts of the client - server architecture is
targeted by cheaters. What was found was that most common was cheating entirely
based on the cheating clients system. Some exceptions was found where proxies
where used to preform a "Man in the middle” attacks in order to manipulate network
packets[McGraw and Hoglund 2007].

Some other articles was also found where the server was directly attacked by a
client. As information about these cases are limited and no well known commercial
or open source software that are based around this approach was found. Therefore in
this project it server targeted cheats was considered rare cases that probably targeted
specific weaknesses in a specific game’s servers rather than a widespread issue and
will not be a focus of this project.

1.1. Multiplayer concept game

The other and main part of this project is to use the information gathered from this
research to make a concept game based on the commonly recommended approaches
to networking in multiplayer games. Unity was chosen due to its popularity and ease
of access, making research here valuable to a high amount of developers. Then by
following popular guides and approaches using the included networking tools in unity,
the concept was made to be a realistic implementation of a basic multiplayer game.
Another priority for the concept game was keeping it simple and modular enough to
use in future testing of Cheating countermeasures.

2. CHEATING IN MULTIPLAYER GAMES

From the research done the different kinds of common cheats was separated up into
different categories based on what advantage a cheating player can gain from using
them. This information was then used to figure out what the concept game should

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

38

Information security as a countermeasure against cheating in video games

1:2 100889

contain in order to test some of the more common kinds of cheating in a high number
of genres.

2.1. Value manipulation

One of the most common way of cheating is based around manipulating the different
variables used by a game to gain an unfair advantage. Commonly this can be by
increasing or locking the players values for their health, ammunition or speed, making
them more powerful or immortal. This is typically done by targeting the memory of the
client with software such as Cheat Engine. A different less common approach is also
targeting the network transmitted data between the server and client to manipulate
such values.

Another common use for this is to enable debugging parameters within a game
where that you know have them, allowing for a simple way of enabling visual cues
that the player is intended to have available during a fair multiplayer game. When
connecting to a server the debugging variables will typically be turned off and not ac-
cessible through the game client, however accessing these directly in the memory of
the clients computer and changing them works for certain multiplayer games.

2.2. Speed manipulation

Another way of cheating is by the tick speed of the clients game and that way making
it run at a faster or slower speed than the other players. This can give the cheating
player increased speed in the game by increasing the tick speed or alternately more
time to react to things happening within the game by lowering their games tick speed.

2.3. Information visualisation

This category of cheating is based around all cheats that aims to give the cheating
player access to more information than what was intended by the developer. This is
typically done by accessing the game clients memory and then using the information
found there to visualize it for the cheating players in beneficial ways, this can be by
marking important items or enemy players on a map or showing where other players
and items are through walls. In some cases this require additional HUD elements to
be created and used by the player and overlaid onto the game or using this information
on a map on a second monitor.

2.4. Predicting the future

Randomness in an important element in a wide range of video games and informa-
tion security in general, In certain games predictable randomness have been used
and in some cases where either the source code was accessed a cheater could use this
predictable randomness to gain an unfair advantage. This is however not the most
common way of cheating, but made this list as it was a big problem in a case for on-
line poker where actual money was made by cheaters abusing this issue in the game
code[McGraw and Hoglund 2007].

2.5. Automating gameplay

This last category covers cheating that aims to automate the actions required by
the player. This is especially common for games such as MMORPG’s where play-
ers can make progress by repeating an action many times. This kind of cheating
generally does not rely on abusing the game client but rather automating key and
mouse clicks with timings and delays allowing tasks to be preformed automatically.
Other uses for this can be in cases where a certain combination of buttons must be
combined potentially with a set timing for optimal play, such automation can be used

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

39

Information security as a countermeasure against cheating in video games

Specialization Course 1:3

to continue the combination whenever the players starts it. Cheating such as this
however is much more of a gameplay development challenge than something that can
be solved using information security, and as such wont be a priority within this project.

A different part of the automating gameplay category is cheats seeking to automate
aiming and potentially shooting, and that way give the cheating player potentially in-
human reaction times and accuracy. The way these are implemented are many, the
most common is using information gathered from the client systems memory and that
way knowing where enemies are located and that way automatically target them.
Other ways is targeting based on color or patterns, where a third party software scans
the screen for a set color or pattern and then automatically target it. The last option
have become less useful on its own since graphics with lighting and reflections now are
more difficult to distinguish, as well as how prone this approach was to errors where
it would automatically target dead enemies or patterns in the environment, combined
with modifications to the game however where the color of the environment to be easily
distinguished it can be both useful and hard to detect.[TCQ-Review 2009]

3. AREAS OF FOCUS

With an overview of the most common areas targeted by cheating it is clear that there
are several areas of game development that need to be secure in order to be resistant
to cheaters. Too many to all be covered by this paper, and as this paper will act as
a basis for further research on information security solutions to counteract cheating
some categories are more relevant than others.

The main parts that was interesting from a information security stand point is
the area of memory manipulation as well as network based man in the middle base
cheating. The other one that was chosen for further testing in this paper is the tick
speed changing cheats. Memory manipulation was chosen as a focus for our concept
game and for the tests preformed in this paper due to the large amount of cheats
where this is the part of the system exploited. A tick speed test was also preformed
as well as this is an easily accessible way of cheating that is easily exploited without
having to tailor third party software towards a particular game.

4. CONCEPT GAME

As the main reason for doing this project was to create a concept game where both
cheating and potential countermeasures could be tested the research into creating
as well as the implementation of this game took the major part of this project.
This part started up by looking into how a general unity networking multiplayer
implementation was done. After looking into a couple alternatives i ended up using
guide for creating a ”Simple multiplayer example[Unity3d 2016]”.

This was a simple and clean implementation of basic multiplayer functionality
that works great as a basis for the cheating tests that was required for this project.
Offering the most basic functionality for testing health, movement and and shooting
that need to be synchronised between all the connected clients.

How the different parts of this test concept works is that the health variables for
both player and non player characters was managed by the server, and that way be
difficult for a client to interact with and change. Movement is implemented in the
recommended way where it is managed by each individual client and then reported
back to the server and other clients. This is commonly recommended to keep games

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

40

Information security as a countermeasure against cheating in video games

1:4 100889

responsive and avoid issues where the networking connection makes movement
feel sluggish for the player. Another reason for this is to allow the client to handle
collisions to take that strain of the server. This last part was not part of the concept
test but could be an area of future research

The shooting for the concept game works so that the client notifies the server about
its gun being fired and the trajectory of the shot and it is then handled by each indi-
vidual game client to calculate what the bullet hits and does. This part of the gives the
possibility for some additional tests but was not used for the tests conducted in this
paper.

5. CHEAT ENGINE

Cheat engine was chosen to test our concept game, this tool was chosen because it is
a fairly flexible multipurpose open source tool. Cheat engine works by bundling it to
a running process and that way gaining access to the processes memory. The main
part of the cheat engine software is a powerful search and compare engine to help you
locate the interesting variables of a running game.

To find interesting variables you can search for variables based on variable type,
initial value or just simply search for a variable with no prior knowledge. After the
first search is conducted you can filter out variables by sorting out variables that have
increased, decreased or remained the same, or simply changed between searches. This
can help you locate variables such as health easily by finding all variables, then loose
some health, search up all variables that have decreased, or avoid loosing health and
search for the variables that have remained the same. After a number of such searches
the correct variable is probably found and this allows cheat engine to either lock the
variable so it wont change, and that way making a player invincible. or change it to
am unnaturally high number and that way gaining an unfair advantage.

Another possibility with cheat engine is its basic included ”speed hack” where you
can simply change the tick speed of the bundled process and making it run either
faster or slower than intended. Cheat engine also contains several far more advanced
features that can allow for code insertion or disabling or changing certain commands
a game is using to make it behave differently. These more advanced features was not
necessary for our test however so these wont be relevant for this project.

6. CHEAT TEST

For the cheat testing in this paper a focus was put on the memory, and tick speed
based cheats. For this cheat engine was used as this is a good multipurpose and open
source tool commonly used by cheaters. I tested the concept game twice, once where
cheat engine was only connected to the client, and then tested again with cheat engine
connected to the host. This was done to see what differences this made and what kind
of cheating was accessible where.

A selection of 3 different kinds of cheating was chosen for our tests

— Find the health variable of the cheating player and lock it so that it wont change and
that way making the cheater invincible.

— Finding the other players connected to the servers positions and that way always
know where they are in the game world, even when not visible on the screen.

— Changing the position of the cheating player, and that way allow the player to in-
stantly change the position of the player.

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

41

Information security as a countermeasure against cheating in video games

Specialization Course 1:5

— Changing the run speed of the game to gain increased speed compared to the other
clients.

6.1. Client side cheating

For the first test i wanted to test the most common setup for a multiplayer game,
where there is a host and then several common clients that play fair and as intended,
and then there is the cheater witch is connecting to the host with cheats locally on his
client.

6.1.1. Memory editing / Locking memory values. The first client side test failed, the
variable was found in memory and could be locked, witch caused the health bar of the
client to stay at a fixed position, however this turned out to only be the variable used
by the players user interface as the server registered the health of the cheating player
changing when shoot and when the server registered that the player died it caused
the cheating player to die and respawn like intended.

This behaviour was predicted, as was mentioned in the concept game section of this
paper this variable is a server managed variable, and therefore all changes to this
variable was done on the server, and the server was was managing the calls for a
player dying and re spawning.

6.1.2. Changing the cheating players position instantly. For this test i located the places in
memory that stored the position of the cheating players character, and then changed
this value to a different one. What this did was causing the player to change its
position instantly, this worked and the cheating players appeared to be teleporting
around on both the server and the for the other clients.

This was another expected outcome due to the way player movement is implemented
in the test client, the issue here being that the server trusts the players position that
are reported by the client and reports this change of position to all the other connected
clients.

6.1.3. Get information on other players positions. The information that was accessed by
this test is the basis for a wide range of cheats, this being wall hacks, map hacks or au-
tomated aiming. As creating a full fledged cheat that utilizes this information require
work that are not directly relevant to this project this test only aimed to find the in-
formation about the other players positions without doing anything in particular with
the information. From this test the position information was found and was updated
in real time as other clients moved around and that way proving that this information
could be very useful to a potential cheater.

6.1.4. Speed hack. For the client side speed change this seemed to work for a while,
the cheating player was able to move considerably faster than the other clients
connected to host. However the player got disconnected from the server after a while.
The reason for this is however unknown. When making the new speed only slightly
faster it took longer before this disconnect happened but the cheating client was still
disconnected after a while.

6.2. Host side cheating

For the host side test cheat engine was connected to the client that hosted the game,
this is probably not as true to life as the client side test. But for certain games where
one of the players are selected to act as the host of a multiplayer games this can make

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

42

Information security as a countermeasure against cheating in video games

16 100889

a difference in what cheats are available.

The results for the testing done on the host player was for most cases the same as
when conducted on the client. The only exceptions being that when running on the
host it was possible to lock the health variable, making this player truly invincible.
The other difference from the client side test was that in the speed manipulation test
it worked for a longer period, but after a while all the other clients connected to the
host was disconnected while the host could keep playing with increased speed.

7. AVAILABLE CHEATING COUNTERMEASURES

For the last part of this project research was done on what cheating countermeasures
are currently available to Unity game developers, i found some tools and recommenda-
tions that potentially have the ability to help. For this project i have not conducted any
tests with these suggested solutions, or looked deeply into how they work but they aim
to cover some of the holes that a cheating player would use so these solutions would
definitely make cheating more difficult.

7.1. Authoritative Networking

One suggested solution to counteract cheating is basing the game design on Authori-
tative Networking this described in the now legacy Unity manual[Unity3d a]. The way
this works is by only having the server control the game, while limiting the players
interaction with the game world to watching and sending the host information about
their button clicks. This is a solution that does have the potential to be effective as
proven by the our test that showed us that the cheating client was not able to modify
and abuse this variable.

There are however some downsides to consider with this approach in that it would
require a very powerful server, and the network response times could become an issue
for certain genres of games and cause them to feel unresponsive. However for slower
paced games without the need for quick response times this can be a viable solution
for increased resistance towards cheating.

7.2. Secure connections

Unity provides an option network layer security for developers who wish to use them.
This is done through the use of AES encryption, and aims to prevent unauthorized read
and prevents "man in the middle” replay attacks. It Adds CRCs(Redundancy checks)
so that data tampering can be detected. Adds randomized, encrypted SYNCookies to
prevent unauthorized logins and uses RSA encryption to protect the AES key. Most
games will want to use secure connections[Unity3d b]. However they do add up to 15
bytes per packet and take time to compute will be effective at countering networking
attacks towards a game.

7.3. Anti-Cheat Toolkit

The last and maybe most relevant to this project is the Anti-Cheat Toolkit, available
for purchase in the Unity Asset store[focus 2016]. In the words of the developer this
toolkit aims to:

Anti-Cheat Toolkit (ACTk) designed to let you add some extra pain to the
guys who cheat / hack / crack something in your game.

This toolkit claims to add security to several different areas of a game, memory pro-
tection being one of them by adding "Obscured” variables to replace standard and some

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

43

Information security as a countermeasure against cheating in video games

Specialization Course 1.7

unity variables. For our research however we were unable to find any good explana-
tions on how these variables where obscured, how much of a performance impact this
would have on the application or how much security this would add to the application.
This might be grounds for further research however to see how good of a solution this
toolkit offers in regards to memory protection.

8. DISCUSSION

Cheating in video games clearly target many different areas of the client-server struc-
ture, there if security is important to a multiplayer game it needs to be considered
throughout development to be effective. There are some offerings that aims to prevent
cheating, or at the very least make it more difficult.

From the research done for this paper it seems most of the counter cheating options
aims to obscure the information needed by the cheating software. Outside of the com-
munication layer of security there does not seem to be many solutions using proven
techniques based on encryption and cryptography, at least not where the approach is
openly shared. What exact approach solutions such as the Anti Cheat Toolkit includes
have not been researched thoroughly in this paper however so the efficiency of this
solutions is unknown.

9. CONCLUSION

Based on the tests conducted in this paper it is clear that in order to prevent cheat-
ing special care is required during development. The most common and suggested
solutions does not take this security into consideration, and therefore it would be up
to each developer to put the required effort into securing their game if they wish to
prevent cheating.

As all of the cheat prevention approaches found researching this paper does require
additional system resources and development time it should be considered on a case
by case basis, how important countering cheating is for a particular game. Offering
proven and good security options however could be an important step in order to make
developers consider security from an early stage of game development.

10. FURTHER WORK

The focus of this project was to gain a deeper understating of how cheating in video
games is done, and how cheating software is able to alter how the rules of a game
for one player so that it differs from those of the other players connected to the same
server. This project was mostly focused on how client side memory editing is done and
works. For further research there are other areas of video game cheating that could be
an interesting area of focus.

The other major part of this project was the development of a basic concept game
where cheating software could be tested, this will be useful for my further work on my
master’s thesis where the focus will be on how to prevent such cheats. This concept
game will be the base for implementing and testing potential solutions. This concept
is developed to be clean and modular and easily edited, changed and tested during
further work in this area.

REFERENCES

focus. 2016. Anti-Cheat Toolkit (ACTKk). (2016). https://www.assetstore.unity3d.com/en/#!/content/10395
[Online; accessed 15-March-2016].

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

44

Information security as a countermeasure against cheating in video games

18 100889

Gary McGraw and Greg Hoglund. 2007. Game Hacking 101. (2007). http://www.informit.com/articles/article.
aspx?p=1074291&seqNum=3 [Online; accessed 20-Mai-2016].

TCQ-Review. 2009. What are aimbots and how do they work? (2009). https:/tlawlessca.wordpress.com/
what-are-aimbots-and-how-do-they-work/ [Online; accessed 26-Mai-2016].

Unity3d. High Level Networking Concepts. (????). http://docs.unity3d.com/Manual/net-HighLevelOverview.
html [Online; accessed 28-March-2016].

Unity3d. Network.InitializeSecurity. (?7777). http:/docs.unity3d.com/ScriptReference/Network.
InitializeSecurity.html [Online; accessed 28-March-2016].

Unity3d. 2016. Creating a simple multiplayer example. (2016). http:/unity3d.com/learn/tutorials/topics/
multiplayer-networking [Online; accessed 15-March-2016].

Cheating / Hacking in video games, Vol. 1, No. 1, Article 1, Publication date: May 2016.

45

	Preface
	Acknowledgment
	Abstract
	Contents
	List of Figures
	Introduction
	The problem, and cheating as a business market
	Cheaters
	Hackers
	Providers

	Forms of cheating
	Exploits
	Automation
	Overlays
	State Manipulation

	Literature Review
	Third party anti-cheat software
	Current Information security used in video games and game engines
	Hiding techniques for cheating software
	Other approaches currently used to prevent cheating

	Methods
	Cheating software, How it works
	Overlays
	Automation
	State Manipulation

	Concept game
	Exploring the information channels exploited by Cheating software
	Areas of focus
	Memory Focused security
	Sandboxing
	Hardware assisted virtualization

	Network security approaches

	Results
	Discussion
	Conclusion
	Further work
	Neural network game logic

	Bibliography
	Appendix A: Finding insecurities that can be used for cheating in online games

