
Assuring trust in .NET assemblies by
instrumentation

Hans Oluf Hagen

Master in Information Security

Supervisor: Basel Katt, IIK

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology



 



Assuring trust in .NET assemblies by instrumentation

Preface

The master thesis took part during the spring semester in 2017 at NTNU. The
thesis was suggested by my employeer SuperOffice AS. SuperOffice develops and
sells SuperOffice CRM. The solution has been traditionally an onsite solution, but is
now available as a Software-as-a-Service-solution. Unfortunately, the move to the
cloud reduced the level of customization options available to the customers. Is it
possible that SuperOffice can trust assemblies written by partners adequately to be
executed in-process on the multi-tenant environment and if so, how?

The reader should be familiar with programming and especially .NET program-
ming. A short description of high level C# to Common Intermediate Language is
given.

01.06.2017

i





Assuring trust in .NET assemblies by instrumentation

Acknowledgment

I would like to thank SuperOffice AS for supporting me during the master’s pro-
gramme and for suggesting the thesis. SuperOffice partners contributed with sam-
ples of their real-world customizations so I could assess the applicability (and lim-
itations) of my thesis.

Finally, I wish to give a special thanks for ideas, discussions, quarrels and feed-
back to Jens Glattetre and Dr Marek Vokáč, both experienced architects and wiz-
ards at SuperOffice AS. Cake rights are hereby granted.

HOH.

iii





Assuring trust in .NET assemblies by instrumentation

Abstract

SuperOffice is a software company developing SuperOffice CRM software. The tra-
ditional hosting option is the on-site solution where the customer is responsible for
hosting and maintenance. SuperOffice CRM is quite extensible due to differences
between enterprises’ requirements and processes. The move from an on-site instal-
lation to an online installation reduces the level of customization available. Espe-
cially, executing custom code written by third parties in on-site solutions was the
customer’s responsibility. The shift to online moves this responsibility to SuperOf-
fice, resulting in unacceptable risk towards the installation, other installations and
the online environment. Is it possible to trust the custom code written by third-
parties? If so, how? This thesis looks at how instrumentation techniques can be
used for analyzing and instrumenting .NET assemblies in order to get assurance
they do behave in a predictable manner and with acceptable risk to the customer
installation, other installations and the environment. Analyzing the custom assem-
blies with static analysis techniques reveal the potential interactions between the
custom assembly, the .NET runtime and the rest of the system. Runtime enforcers
can be added to calls to methods which can only be conditionally executed.

However, there are several threats to an instrumentation engine such as this.
There are indeed many ways of fooling it; Platform Invoke, ForwardedTypes and
Mixed-Mode assemblies to mention a few.

v





Assuring trust in .NET assemblies by instrumentation

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Abbreviations and acronyms . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Microsoft .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 From high-level to Common Intermediate Language . . . . . 5
3.3 Reference monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Assurance and trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 SuperOffice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.2 Differences between on-site and online . . . . . . . . . . . . . 11

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 GuardiNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Extractors and evaluators . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 AssemblyReference . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 DigitalSignature . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.4 ExternalDelegate . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.5 ExternalField . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.6 ExternalMethodInvocation . . . . . . . . . . . . . . . . . . . . 17
4.2.7 ForwaredTypes . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.8 InternalCalls . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.9 MixedMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.10 ModuleInitializer . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.11 PInvoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.12 StaticField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



Assuring trust in .NET assemblies by instrumentation

4.2.13 String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.14 Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Dynamic instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Trust levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Custom assemblies for SuperOffice CRM . . . . . . . . . . . . . . . . 25
5.2 Analyzing popular NuGet packages . . . . . . . . . . . . . . . . . . . 25

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1 .NET analysis and instrumentation . . . . . . . . . . . . . . . . . . . 27

6.1.1 Security in .NET . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Security policies in legacy systems . . . . . . . . . . . . . . . . . . . 27
6.3 Choice of policy language/representation . . . . . . . . . . . . . . . 28
6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusion and further work . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

.1 Sample source code . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
.1.1 Source code for TypeTracker . . . . . . . . . . . . . . . . . . . 33
.1.2 Example of usage for TypeTracker . . . . . . . . . . . . . . . . 34
.1.3 Source code for InstanceTracker . . . . . . . . . . . . . . . . . 35
.1.4 Source code for CallSequenceTracker . . . . . . . . . . . . . . 35
.1.5 Source code for PolicyManager . . . . . . . . . . . . . . . . . 39
.1.6 Source code for RuntimeWeaver . . . . . . . . . . . . . . . . . 43

.2 Statistics from SuperOffice CRM . . . . . . . . . . . . . . . . . . . . . 44

.3 Example policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
.3.1 Classification policy . . . . . . . . . . . . . . . . . . . . . . . 45
.3.2 SoPartnerWebPolicy . . . . . . . . . . . . . . . . . . . . . . . 49

viii



Assuring trust in .NET assemblies by instrumentation

List of Figures

1 SuperOffice CRM Web client focused on the contact card. . . . . . . . 9
2 SuperOffice CRM architecture . . . . . . . . . . . . . . . . . . . . . . 10
3 GuardiNET analyzing HtmlAgilityPack . . . . . . . . . . . . . . . . . 26

ix





Assuring trust in .NET assemblies by instrumentation

List of Tables

1 Supported enforceable features . . . . . . . . . . . . . . . . . . . . . 19
2 Exported/accessible entities for partner code . . . . . . . . . . . . . . 44

xi





Assuring trust in .NET assemblies by instrumentation

1 Introduction

SuperOffice is a software company developing SuperOffice CRM software. The tra-
ditional hosting option is the on-site solution where the customer is responsible for
hosting and maintenance. SuperOffice CRM is quite extensible due to differences
between enterprises’ requirements and processes. The move from an on-site instal-
lation to an online installation reduces the level of customization available. Espe-
cially, executing custom code written by third parties in on-site solutions was the
customer’s responsibility. The shift to online moves this responsibility to SuperOf-
fice, resulting in unacceptable risk towards the installation, other installations and
the online environment. Is it possible to trust the custom code written by third-
parties? If so, how? This thesis looks at how instrumentation techniques can be
used for analyzing and instrumenting .NET assemblies in order to get assurance
they do behave in a predictable manner and with acceptable risk to the customer
installation, other installations and the environment.

Analyzing the Common Intermediate Language (CIL) generated by a compliant
compiler reveal which features, assemblies, types, methods, properties and fields
are being used by the custom assembly. Re-writing assemblies with inline reference
monitors are demonstrated in the thesis. An user-defined policy sets the rules for
what is allowed and what is denied including support for black- and white-listing.
Violations of the rules can lead to reduction of a trust score. The final trust score is
calculated when all rules have been evaluated. Unfortunately, we were unable to
validate how the trust score should be modified.

Sets of policies can be created by comparing real-world samples, collected from
SuperOffice partners and subsidiaries alongside with the API and the threats to the
system. Unfortunately, the API made available to partners is quite large, spanning
over almost 12 000 classes and over 64 000 methods. Creating policies by manually
inspecting types and methods is a daunting and time-consuming task yielding little
in return. Policies should be written with clear boundaries of what is accepted and
what is not.

1





Assuring trust in .NET assemblies by instrumentation

2 Methodology

The main research method is a qualitative exploratory case study with an exper-
iment. A case study is suitable when we want to examine data within a specified
limited context [1, 2].

In our project, we wish to see how instrumentation techniques can be used to
give assurance and trust to .NET assemblies. In the thesis we limit the scope to
assemblies created by SuperOffice partners and subsidiaries.

The project started with a literature review which formed the basis of the test
application GuardiNET. A focus group was assembled and a workshop was held.
The purpose of the workshop was to identify the security challenges of running
code from partners in SuperOffice CRM Online. The preliminary application was
demonstrated to the focus group for further input in the same workshop. This
preliminary application was capable of detecting only external method calls (ex-
plained in 4.2.6). It also included a trust evaluation model where violations would
decrease a trust score, and compliance could raise the trust score. However, the
group raised questions about HOW trust scores should be modified.

To validate the application, real world customizations from partners were col-
lected and analyzed. Identification of features which would break the requirements
for reference monitors were performed.

3





Assuring trust in .NET assemblies by instrumentation

3 Background

3.1 Abbreviations and acronyms

CIL Common Intermediate Language - part of ECMA-335
CLI Common Language Infrastructure - part of ECMA-335
CLS Common Language Specification - part of ECMA-335

CRM Customer Relationship Management
CTS Common Type System - part of ECMA-335
IRM Inline reference monitor

JSON JavaScript Object Notation
SaaS Software-as-a-Service - cloud computing delivery model
SuO SuperOffice AS
VES Virtual Execution System - abstract machine executing CLI compliant code

(ECMA-335)

3.2 Microsoft .NET

Microsoft .NET framework is an implementation of Common Language Infrastruc-
ture defined in ECMA-335[3]. High-level languages such as C#, Visual Basic and
F# are compiling their source code to CLI compliant assemblies. Assemblies written
in Visual Basic can therefore be used in C# source. The standard defines Common
Type System, Virtual Execution System and metadata1. The standard includes ver-
ification rules. Assemblies that are not verifiable according to CLI will result in a
runtime exception if executed. CLI is a managed framework which guarantees type
safety and garbage collection. A type can not be casted to a non-compatible type.
Vulnerabilities such as Use-After-Free is therefore not possible in this framework.

3.2.1 From high-level to Common Intermediate Language

Listing 3.1: Program which prints Hello to standard output

1 static class Program
2 {
3 static void Main(string [] args)
4 {
5 var name = args.FirstOrDefault ();
6 SayHello(name);
7 }
8

1Common Language Specification is also defined, but not applicable in this thesis.

5



Assuring trust in .NET assemblies by instrumentation

9 static void SayHello(string name)
10 {
11
12 Console.WriteLine($"Hello {name}");
13 }
14 }

Listing 3.2: 3.1 after compilation

1 .class private abstract auto ansi sealed beforefieldinit Hello.Program
2 extends [mscorlib]System.Object
3 {
4 .method private hidebysig static void Main(string [] args) cil

managed
5 {
6 .entrypoint
7 // Code size 16 (0x10)
8 .maxstack 1
9 .locals init ([0] string name)

10 IL_0000: nop
11 IL_0001: ldarg.0
12 IL_0002: call !!0 [System.Core]System.Linq.Enumerable ::

FirstOrDefault <string >(class [mscorlib]System.Collections.
Generic.IEnumerable ‘1<!!0>)

13 IL_0007: stloc.0
14 IL_0008: ldloc.0
15 IL_0009: call void Hello.Program :: SayHello(string)
16 IL_000e: nop
17 IL_000f: ret
18 } // end of method Program ::Main
19
20 .method private hidebysig static void SayHello(string name) cil

managed
21 {
22 // Code size 19 (0x13)
23 .maxstack 8
24 IL_0000: nop
25 IL_0001: ldstr "Hello {0}"
26 IL_0006: ldarg.0
27 IL_0007: call string [mscorlib]System.String :: Format(string

,
28 object

)
29 IL_000c: call void [mscorlib]System.Console :: WriteLine(

string)
30 IL_0011: nop
31 IL_0012: ret
32 } // end of method Program :: SayHello
33
34 } // end of class Hello.Program

Listing 3.1 lists the source for a program writing Hello and the first argument
given to the program. Upon execution of the program, it will call the method Say-
Hello with the first argument as parameter. The result after compilation can be
seen in a human-readable IL format in listing 3.2. Readers familiar with assembly

6



Assuring trust in .NET assemblies by instrumentation

will see many differences between assembly and CIL. Assembly have registers for
general use and stack registers. Registers do not exists in CIL. Stacks do exist, but in
another form than assembly. Every methods have their own evaluation stacks with
an optional limit. As we can see from the listing, SayHello has a maxstack value
set to 8 and Main has 1. Pushing more values to the stack in these methods will
result in a runtime exception. The instructions "ldarg.0", "ldloc.0" and "ldstr" push
a value onto the evaluation stack. Arguments and local variables are not part of the
evaluation stack unless their values are pushed onto the stack. ldarg.index pushes
the argument with index onto the stack. "ldloc.index" pushes the value of the local
variable at index onto the stack. In this example, ldloc.0, is the variable "name".
Arguments to methods are pushed from left to right order. Looking at SayHello, we
can see the first push is the "Hello 0" string followed up by the first argument to
SayHello. Calling methods are quite declarative in CIL. The call to "string [mscor-
lib]System.String::Format(string, object)" is decomposed to:

• ReturnType: string
• Assembly: mscorlib
• Type: System.String
• Method: Format
• Arguments: string, object

Upon return, the arguments are popped from the evaluation stack, and the re-
turn value is pushed onto the evaluation stack of the calling method. The stack
transition for calling the format function is: ..., "Hello 0", name → ..., "Hello name"
(where the rightmost element is the top of the stack). Calls to instance methods
(non-static methods) pushes the instance object as the first argument.

An assembly contains metadata describing it. The metadata includes informa-
tion about which assembly references are used, which external types are referenced
and which methods are used. We will, in this thesis, be using Mono.Cecil designed
with an easy to use API for reading and writing .NET assemblies.

3.3 Reference monitors

Reference monitors is a model where an abstract machine mediates access deci-
sions between subjects and objects. Anderson [4] formulated three requirements
for a reference monitor:

1. Complete mediation - All access must be through the reference monitor
2. Tamper resilient
3. Verifiable - The RM must be small enough for proper inspection and tests to

ensure correctness

7



Assuring trust in .NET assemblies by instrumentation

3.4 Assurance and trust

The proliferation and adoption of software library repositories such as NPM, RubyGems,
Cargo and NuGet have made third party software repositories an integral part
of the tool box to any modern software developer today. Historically, software
developers have been re-inventing the wheel instead of re-using other technolo-
gies/methodologies. Collaboration across companies, teams and projects have be-
come a part of the workflow. In some cases, maybe even unintentionally. Stack-
Overflow and StackExchange are rallying points for developers where questions
are asked and answered with varying degree of quality. Sample code from these
sources are even promoted to production code without transformation. With these
changes, software assurance or due dilligence of the third-party libraries are lack-
ing behind. NuGet, which is the main repository used for .NET libraries, have few
or no support for publisher verification or ensuring the integrity and provenance of
packages. The NuGet team has indeed identified these gaps in security and started
implementing better verification system in Spring 2017 [5].

How do developers do due dilligence or software assurance on third-party li-
braries? After interviewing and browsing the web for answers, the main answer is
clear: Developers are positive trusters, looking for traits increasing or confirming
trust. By looking at the reputation and popularity given by other developers, de-
velopers decide to trust a package. The same application of reputation-based trust
can be found in other areas of the Internet, for instance reviews on market places
and even on StackOverflow. Evidence-based trust for instance by decompiling and
manually inspecting packages are rarely performed by the focus group.

3.5 SuperOffice

SuperOffice is a Norwegian-based software company specializing in Customer Re-
lationship Management (CRM) software. The main solution, SuperOffice CRM, is
facilitating marketing, sales and service processes. SuperOffice CRM is highly ex-
tensible to align the software to the companies’ requirements and processes.

Traditionally, SuperOffice CRM was installed on servers on customer premises
(onsite installation) and maintained by the customer. With the introduction of
cloud computing, SuperOffice made it’s CRM solution available as a Software-as-a-
Service (online installation) solution where SuperOffice is maintaining hardware,
operating system and SuperOffice CRM.

Figure 1 shows a SuperOffice CRM application without any customizations as
presented to the end-user.

8



Assuring trust in .NET assemblies by instrumentation

Figure 1: SuperOffice CRM Web client focused on the contact card.

9



Assuring trust in .NET assemblies by instrumentation

Figure 2: SuperOffice CRM architecture

10



Assuring trust in .NET assemblies by instrumentation

3.5.1 Architecture

The SuperOffice CRM application is a multi-tiered web application running on IIS
and developed in .NET. Figure 2 depicts a simplified model of the architecture. At
the top, you have the frond-end client, SuperOffice CRM Web. The front-end client
can be customized, but this is out of scope for this thesis. The client contains only
front-end specific logic. The next layer is NetServer Services. This layer contains
facades called agents which are used to further communicate down the stack. For
instance, the agent called ContactAgent can be used for fetching and updating the
contacts (companies) in the installation. In this layer there are also support for
event-based scripting where scripts can be triggered on events. NetServer core is
the main component and holds all business logic and persistence.

The architecture makes extensive use of a plugin-based system called ClassFac-
tory. ClassFactory is an implementation of the Service Locator pattern where the
implementation asks for an instance of a type or abstraction/interface, but can
get a derived instance of the type. Adding new document-plugins give the cus-
tomer the ability to store and get documents from other sources than the built-in
typem, for instance through Microsoft Azure, Google or Office 365. Adding faulty
authentication plugins may result in missing access checks. All loaded assemblies
are registered in the ClassFactory (including assemblies from partners).

3.5.2 Differences between on-site and online

On-site installations have no restrictions in what partners can customize in the
solution. They are free to add code to any layer in the architecture from top to bot-
tom. Customizations in Online-installations, called Online apps, can only commu-
nicate with SuperOffice through Netserver Service Proxies, which are HTTP-based
services. All online apps require registration in SuperOffice AppStore and have
restrictions in which agents they are allowed to use. Registrations require infor-
mation about the partner and application. Before online apps are published to the
AppStore, they must be certified. The certification process includes a security check
from a third-party security firm. Finally, the online apps also require the consent
from the customer to be accessible from the SuperOffice CRM client.

3.6 Related work

Instrumentation has been widely used in software engineering to verify the cor-
rectness of the software, performance measurements or tracing. It has addition-
ally been used to protect against typical programming errors such as poor mem-
ory management which lead up to buffer overflows or Use-After-Free vulnerabil-
ities [6, 7] which again result in remote-code-executions. Instrumentation tech-
niques such as Code-Flow-Integrity/Control-Flow-Guard analyzes the call-graphs

11



Assuring trust in .NET assemblies by instrumentation

in the binaries to see which methods are allowed to call a method, and then en-
force this policy during run-time execution. The program terminates if there are
a policy violation [8]. The focus on instrumenting native binaries is protecting
against these memory corruptions.

Instrumentation can be approached as statically or dynamically. Static instru-
mentation analyzes the binaries or assemblies on disk. Dynamic instrumentation
analyzes the assemblies/binaries during execution. Both approaches are compli-
mentary to each other. The static instrumentation approach is not precise, but does
not have the performance degradation imposed by dynamic instrumentation[6, 7].
Dynamic instrumentation is known to be more precise than static approaches, es-
pecially towards obfuscation techniques.

Java and .NET are not susceptible to memory corruption bugs (except when
p/invoking or using unsafe methods). These are managed platforms with built-
in memory management. Instrumentation on these platforms are not focused on
memory corruption, but rather on access policies.

Research on instrumentation techniques on Android and iOS are popular in the
academic community. [9] has created "AspectDroid". The system use both static and
dynamic instrumentation to prevent the android apps for accessing sensitive APIs.
[10] created an enterprise-enforcing policy layer to Android, giving enterprises bet-
ter control over the security policies through a central policy center for all devices.
The approach required however the devices to be rooted. Apps in Android and iOS
are given access to resources based on the permissions in the manifest (which the
user need to give consent too). However, many of the apps might get more priv-
ilege access than they need, or they can consume third-party libraries which then
inherit the same permissions as the app. As explained by [11], the main revenue for
app-developers are by ads. Unfortunately, many of the ad-libraries do not respect
the privacy of the user, and misuse the permissions granted to the original app,
to collect and send information to their own servers. [11] focused the research on
how to de-privilege the ad-libraries to either deny the API calls, or to return false
information. One example of false information is to return an incorrect location
than the correct on the location services.

The concepts used on Android and iOS can be used to determine what type of
policies are applicable for .NET assemblies.

Instrumentation techniques on .NET have received little attention from the aca-
demic community. There are however, two papers which stand out. [12] designed
and implemented a library called RAIL for analyzing and weaving code into an as-
sembly. [13] designed "Mobile", an inline reference monitor. Policies in Mobile are
expressed by w-regular expressions representing the call graph both on global and
object level. This allows for policies such as "you can call downloadFile, but you

12



Assuring trust in .NET assemblies by instrumentation

can’t call uploadFile afterwards). The expressions did not inspect the parameters
to the methods.

[14] tested naive malware samples written in .NET on popular anti-virus pro-
grams. The malware took screenshots, received binaries from Command & Control
servers and executed programs locally. The malware were configured to startup
when the user logged-in. The majority of anti-virus programs failed to detect even
the simplest samples. Obfuscation or any anti-detection techniques were not em-
ployed.

13





Assuring trust in .NET assemblies by instrumentation

4 GuardiNET

GuardiNET is the instrumentation tool developed during the thesis. The tool has
both static and dynamic instrumentation capabilities. The core engine uses extrac-
tors to find relevant features from the assembly. One example of extractors is the
ExternalMethodInvocation extractor. EMI locates all calls to external .NET methods
from within the assembly. The decision whether the extracted feature is violating
the policy or not, is decided by evaluators configured by the security policy.

4.1 Policies

GuardiNET is configured by a user-defined policy file describing the name, descrip-
tion, default access and rule definitions. Default access determines in which order
the rules will be evaluated. If default access is set to Deny, all rules where access is
set to deny, will be evaluated first, before any allow-rules are evaluated. Each eval-
uator type may create a default rule depending on the default access. For instance,
EMI will create a default deny rule denying all external method invocations if de-
fault access is set to deny. This is therefore black- and white-listing respectively.
The policy in listing 4.1 only allows external method calls to the String class in
the mscorlib assembly. Since the default access is set to "Deny", all other extracted
features where the evaluator creates a default deny rule, will result in a policy
violation.

Access levels are defined to be Allow, Deny and DontCare. Severity is of the
ordinal scale: Critical, High, Medium, Low and None with decreasing severity.

Listing 4.1: String only policy (Trust section omitted)
numbers

{
"Name": "StringOps only",
"Description": "Allow only string methods",
"DefaultAccess": "Deny",
"Rules": [

{
"Name": "Allow all System.String",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
// GenerateEnforcers: true,
"Properties": {

"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.String .*",
"IsRegex": true

15



Assuring trust in .NET assemblies by instrumentation

}
}

]
}

4.2 Extractors and evaluators

Table 1 shows a summary of all supported extractors and evaluators including
default allow and deny rules.

Evaluators decide whether a feature is matching the rule or not. The decision
consists of a severity level, access verdict and a comment. If the feature is matching
the criteria set, the evaluator must return the access and severity set in the policy.
Non-matched features will return DontCare as access.

An allow rule have access set to allow and severity set to none. Deny rules have
access set to deny and severity set to an appropriate severity level. By convention,
default deny rules have severity set to critical.

4.2.1 AssemblyReference

Extractor extracts all assembly references from the assembly file. Evaluator is con-
figured with a regular expression of the assembly name.

4.2.2 Attribute

Extractor extracts all custom attributes on assembly, modules, classes and meth-
ods in the assembly. Evaluator can be configured based on the attribute full type
name and target. Custom attributes are typically used in IoC1-containers and/or
reflection-based type invocations. SuperOffice CRM uses custom attributes in class-
, plugin and injection factories. Assemblies using custom attributes can therefore
change intended behaviour depending on context.

4.2.3 DigitalSignature

Extractor extracts if the assembly is signed or not. The evaluator can be config-
ured to accept or reject signed/non-signed assemblies. Digital signatures are used
for verifying the provenance and integrity of assemblies. AppLocker and Microsoft
SmartScreen may deny or warn the user of unsigned applications.

4.2.4 ExternalDelegate

Extractor extracts all usage of external delegates. External delegates are identified
by the CIL instructions ldsd* and ldf*. Evaluator has the same criteria as EMI.

1Inversion-of-Control

16



Assuring trust in .NET assemblies by instrumentation

4.2.5 ExternalField

Extractor extracts all usage of fields in external assemblies. External fields are iden-
tified by the CIL instructions "Ldfld", "Ldsfld", Stfld", "Stsfld" with a field reference
to an external assembly. Evaluator can be configured with the name of the assembly
and the type name of the field.

4.2.6 ExternalMethodInvocation

Extractor extracts all calls to external assemblies. External calls are identified by
the CIL instructions (call, calli and callvirt) with a method specifier to an external
assembly. Evaluator can be configured with the external assembly name and the
type name including the method signature.

4.2.7 ForwaredTypes

Extractor extracts exported types marked as forwarders in an assembly. Evaluator
evaluates the forwarded assembly and type name. Malicious assemblies may for-
ward critical types to other assemblies trying to circumvent any naive EMI rules.
Default rule is to deny this functionality.

4.2.8 InternalCalls

Extractor extracts all internal calls to the runtime. Evaluator evaluates the name of
the internal runtime call. Based on experiments, the runtime only accepts internal
calls from system libraries. However, the method on how the runtime verifies the
origin of the call has not been determined. It may be possible to spoof this origin.

4.2.9 MixedMode

Extractor extracts non-managed code from the assembly. Evaluator evaluates if
mixed mode is acceptable or not. Accepting mixed mode will effectively bypassing
any security controls imposed by GuardiNET. A mixed-mode assembly may have a
DllMain method which will be executed when the assembly is loaded.

4.2.10 ModuleInitializer

Extractor extracts module initializers from the assembly. Module initializers are
identified by the module name "<Module>" and a static constructor named ".cc-
tor" and the flags special name and runtime special name. Evaluator has no criteria
except for access and severity. Since high level languages such as C#, F# and Vi-
sual Basic do not support module initializers, any presence of these markers can
be interpreted as unwanted behaviour. Presence of module initializers has to be
explicitly approved by the operator.

17



Assuring trust in .NET assemblies by instrumentation

4.2.11 PInvoke

Extractor extracts methods marked with PInvokeImpl. Evaluator evaluates the mod-
ule name and the entry point of the platform invocation. Module name is a dynamic
loadable library (DLL) and the entry point is a function in this DLL. For instance,
..::.. Platform invocations is the lowest type (hierarchically) of method invocations
possible in .NET. Failure to adequately control platform invocations may lead to
total loss of security.

4.2.12 StaticField

Extractor extracts all static non-constant and non-compiler generated fields in the
assembly. Evaluator can use the assembly name, type name, and the declaring type
name to evaluate whether the static field is accepted or not. Static fields can leak
information in a multi-tenant environment.

4.2.13 String

Extractor extracts all ldstr instructions. Evaluator can use base64decode and use
regular expressions on the strings. Strings may reveal secrets or intentions to use
communication, file access or encryption. There are however no default allow nor
deny policies of this type.

4.2.14 Type

The type feature allows the policy writer to have a specific policy for a type. The
evaluators available in for rules in this policy are a subset of the standard ones,
except those who are only checking assemblies. ExternalMethodInvocations, static
fields, attributes and so on can be used in this type of policy.

Extractor extracts all types in the assembly. Evaluator can be configured to apply
a specific policy for type belonging to an assembly, inheriting from a given type, im-
plements an interface or have certain custom attributes. The idea behind this rule
type is that not all interactions goes from the untrusted assembly to the trusted as-
semblies, but the interactions can be bidirectional. The trusted API may call into the
untrusted assembly, for instance through Inversion-of-Control/Dependency Injec-
tion/Service Locator patterns. The plugin-based architecture in SuperOffice CRM
will call into other assemblies as described in 3.5.1. For instance types marked
with the SoCredentialPluginAttribute and implementing ISoCredentialPlugin can
circumvent the authentication process in SuperOffice. When a ExternalMethodEx-
tractor is running in this mode, it will try to find all candidates matching any calls
if the opcode callvirt to an external assembly is found.

4.3 Dynamic instrumentation

18



Assuring trust in .NET assemblies by instrumentation

Name Description Default deny Default allow
AssemblyReference References to external assemblies Deny All Allow all
Attribute Custom attributes Deny all Allow all
DigitalSignature Verification of any digital signature NA NA
ExternalDelegate Delegate targeting external methods Deny all Allow all
ExternalField Reference to external fields Deny all Allow all
ExternalMethodInvocation Invocations to methods in external assemblies Deny all Allow all
ForwardedTypes Usage of forwarded types Deny all Allow all
InternalCalls Calls to internal methods in runtime Deny all Allow all
MixedMode Mixing native and managed assemblies Deny all Allow all
ModuleInitializer Module initializer code Deny all Deny all
PInvoke Platform method invocations Deny all Allow all
StaticField Detection of static fields in assembly Deny all Allow all
String String detection NA NA
Type Enforce specific policy for given type NA NA

Table 1: Supported enforceable features

Listing 4.2: Generated enforcer source file

1 using System;
2 using System.Linq;
3 namespace GuardiNet.Instrumentation
4 {
5
6 internal class GuardEnforcerAttribute : Attribute
7 {
8 public string AssemblyName { get; set; }
9 public string MethodName { get; set; }

10 public bool WarnOnSimilar { get; set; }
11
12 public GuardEnforcerAttribute(string assemblyName , string

methodName , bool warnOnSimilar)
13 {
14 AssemblyName = assemblyName;
15 MethodName = methodName;
16 WarnOnSimilar = warnOnSimilar;
17 }
18 }
19
20 public static class Enforcer
21 {
22 [GuardEnforcer("System , Version =4.0.0.0 , Culture=neutral ,

PublicKeyToken=b77a5c561934e089", "System.Net.WebRequest
System.Net.WebRequest :: Create(System.String)", true)]

23 public static System.Net.WebRequest Guard_WebRequest_Create(System
.String p0)

24 {
25 //TODO: Add check and call the original method here
26 throw new NotImplementedException ();
27 }
28

19



Assuring trust in .NET assemblies by instrumentation

29
30 [GuardEnforcer("System , Version =4.0.0.0 , Culture=neutral ,

PublicKeyToken=b77a5c561934e089", "System.Net.WebResponse
System.Net.WebRequest :: GetResponse ()", true)]

31 public static System.Net.WebResponse Guard_WebRequest_GetResponse(
System.Net.WebRequest originalObject)

32 {
33 //TODO: Add check and call the original method here
34 throw new NotImplementedException ();
35 }
36
37
38 [GuardEnforcer("System , Version =4.0.0.0 , Culture=neutral ,

PublicKeyToken=b77a5c561934e089", "System.Net.HttpStatusCode
System.Net.HttpWebResponse :: get_StatusCode ()", true)]

39 public static System.Net.HttpStatusCode
Guard_HttpWebResponse_get_StatusCode(System.Net.
HttpWebResponse originalObject)

40 {
41 //TODO: Add check and call the original method here
42 throw new NotImplementedException ();
43 }
44
45
46 [GuardEnforcer("System , Version =4.0.0.0 , Culture=neutral ,

PublicKeyToken=b77a5c561934e089", "System.Threading.Tasks.Task
‘1<System.Net.WebResponse > System.Net.WebRequest ::
GetResponseAsync ()", true)]

47 public static System.Threading.Tasks.Task ‘1<System.Net.WebResponse
> Guard_WebRequest_GetResponseAsync(System.Net.WebRequest
originalObject)

48 {
49 //TODO: Add check and call the original method here
50 throw new NotImplementedException ();
51 }
52 }
53 }

Listing 4.3: Manually added enforcer code

1 using System;
2 using System.Linq;
3 namespace GuardiNet.Instrumentation
4 {
5
6 internal class GuardEnforcerAttribute : Attribute
7 {
8 public string AssemblyName { get; set; }
9 public string MethodName { get; set; }

10 public bool WarnOnSimilar { get; set; }
11
12 public GuardEnforcerAttribute(string assemblyName , string

methodName , bool warnOnSimilar)
13 {
14 AssemblyName = assemblyName;
15 MethodName = methodName;
16 WarnOnSimilar = warnOnSimilar;

20



Assuring trust in .NET assemblies by instrumentation

17 }
18 }
19
20 public static class Enforcer
21 {
22 [GuardEnforcer("System , Version =4.0.0.0 , Culture=neutral ,

PublicKeyToken=b77a5c561934e089", "System.Net.WebRequest
System.Net.WebRequest :: Create(System.String)", true)]

23 public static System.Net.WebRequest Guard_WebRequest_Create(System
.String p0)

24 {
25 if (! string.IsNullOrWhitespace(p0) && p0.StartsWith("https ://

www.ntnu.no"))
26 {
27 return System.Net.WebRequest.Create(p0);
28 }
29
30 throw new SecurityException("Not allowed to call " + p0);
31 }
32 }
33 }

GuardiNET has the capability of rewriting assemblies to add runtime enforcers
to calls specified by the policy. Listing 4.2 shows the generated source file after us-
ing GuardiNET with a policy set to generate enforcers on System.Net.WebRequest
methods and an assembly file using these methods. The policy writer may now add
any runtime checks to the source file in hers/his favorite IDE. Listing 4.3 shows the
modified source file. Only web request calls to https://www.ntnu.no is allowed,
other arguments result in a SecurityException. GuardiNET is now executed again
with the policy file, assembly and the source file containing any enforcement code.
The enforcer source file is compiled into an assembly. All method calls matching
the assembly and method name from the GuardEnforcerAttribute will be replaced
with the call to the enforcer code. The enforcer code will call the original method2.
The code for the runtime weaver is available in appendix .1.6.

IRMs listed in [13, 15, 16] are based on traces of method calls and these traces
may violate the policy. For instance, the program is not allowed to send data after
reading sensitive data or the program is just allowed to use a method n times.
GuardiNETs CallSequenceTracker has the same functionality. First, the tracker is
initialized with the sequence/trace according to policy. The tracker creates a sim-
plified deterministic finite automaton where the states are the instrumented calls
and the edges are the allowed calls from that state including the number of allowed
calls to this method. The code for CallSequenceTracker is listed in appendix .1.4.

Type- and InstanceTracker can be used instead of a CallSequenceTracker in situ-
ations where only method-invocations to one specific type or instance are interest-
ing. Code is listed in the appendix. Example of usage where only five invocations

2which is actually up to the policy writer

21



Assuring trust in .NET assemblies by instrumentation

of System.Net.WebRequest.Create is allowed, is listed in appendix .1.2.
One problem with tracking instances and the methods they are using is the

circular ownership preventing the garbage collector to release this memory when
the instance is no longer used (due to the reference from the TypeTracker). By using
weak references (ConditionalWeakTable) instead of standard references, there are
no longer cyclic ownership issue with the tracking.

4.4 Trust levels

The concept of trust levels was added to GuardiNET. The policy can be config-
ured with trust levels and modifiers. The assembly starts with an initial trust score.
Matching rules will lead to the addition of trust score and the match modifier for
that severity. For no-matching rules, the no-match modifier is used. The levels,
modifiers and scoring mechanism stand as unvalidated in the thesis. It is based on
the notion that negative actions have greater negative impact, than positive actions
have a positive impact.

Listing 4.4: Trust level section in policy file)
numbers

"Trust": {
"Levels": {

"Untrusted": {
"From": 0,
"To": 10

},
"Low": {

"From": 10,
"To": 40

},
"Medium": {

"From": 40,
"To": 80

},
"High": {

"From": 80,
"To": 100

}
},
"InitialScore": 100,
"Modifiers": {

"None": {
"MatchModifier": 0,
"NoMatchModifier": 0

},
"Low": {

"MatchModifier": -5,
"NoMatchModifier": 0

},
"Medium": {

"MatchModifier": -10,
"NoMatchModifier": 0

22



Assuring trust in .NET assemblies by instrumentation

},
"High": {

"MatchModifier": -50,
"NoMatchModifier": 0

},
"Critical": {

"MatchModifier": -100,
"NoMatchModifier": 0

}
}

}

23





Assuring trust in .NET assemblies by instrumentation

5 Results

5.1 Custom assemblies for SuperOffice CRM

The results are based on evaluation of the samples collected from the SuperOffice
partners and subsidiaries. The sample size is too small to make any significant
conclusions.

The samples range from quite simplistic to complex customizations. Most of the
invocations to external assemblies were to APIs in SuperOffice. Some samples com-
municated with external web services over known .NET HTTP and WCF1 classes.
Any needs of persistence were solved by adding database tables to the existing
database using the SuperOffice APIs. Compared with online applications which
use the NetServer proxies, the samples tend to use APIs found in a lower layer.

Reflection was used on most of the samples.
SuperOffice CRM exports close to 12000 classes which are accessible to partner

code. Together, these types exports close to 64 000 methods. The complete statistics
are listed in appendix 2

5.2 Analyzing popular NuGet packages

60 NuGet packages were downloaded and analyzed to see if the known features
that could be used for circumventing the detection mechanism in GuardiNET are
prevalent. There were no occurences of neither module initializer nor mixed mode
assemblies. Reflection were used in almost all of the assemblies in varying degree.
Few samples emitted code dynamically using the classes in the System.Reflection.Emit2.
These samples were creating dynamic proxies for types and the existence of emit
was expected in these cases.

Assemblies from open-source projects tend to be unsigned unless they come
from Microsoft.

Figure 3 shows GuardiNET executing the classification policy listed in appendix
.3.1. The intention of HtmlAgilityPack is to parse a DOM tree. As we can see, it has
code for accessing registry, file and network operations.

1Window Communication Foundation
2This is advanced use of .NET. Were no occurences of this in SuperOffice assemblies

25



Assuring trust in .NET assemblies by instrumentation

Figure 3: GuardiNET analyzing HtmlAgilityPack

26



Assuring trust in .NET assemblies by instrumentation

6 Discussion

6.1 .NET analysis and instrumentation

Static analysis combined with runtime instrumentation will detect violations of
the known features in the security policy. .NET may have other features, which
hides in the darkest corner in the runtime, for circumventing the reference monitor.
Reflection-based programming is used heavily in .NET programming as the analysis
of NuGet-packages and SuperOffice CRM SDK show. What are the consequences for
prohibiting the use of reflection on code written by third-parties?

Rewriting assemblies adding reference monitors in the assembly will invalidate
any prior testing done by the partner on their local installations. Improper rewriting
will introduce bug and runtime errors.

A common pattern used in .NET programming is Dependency Injection, which
is often accompanied by Inversion-of-Control containers, such as Autofac, nHiber-
nate, nInject and StructureMap. Many IoC-containers use reflection for finding type
candidates.

6.1.1 Security in .NET

A trend can be extrapolated based on the removal or deprecation of security fea-
tures in .NET. New features will be added, but they will unlikely be adding features
for securing execution of untrusted code. As mentioned in the background chapter,
.NET core is currently not adding support for AppDomains, Security-Transparent
or Code-Access-Policy. The recommendation from the .NET core team is to use op-
erating system security primitives or other means of process isolation 1.

6.2 Security policies in legacy systems

Defining adequate security policies was one of the biggest challenges in the thesis
due to the size and organization of the SDK. Table 2 shows the number of exported
types, properties (with setters) and fields from a typical SuperOffice CRM instal-
lation. Manually considering whether an exported feature is a security property
or not, is a time-consuming and daunting task. Imagine going through over 18
000 entities to assess whether access by custom code should be allowed, denied or
conditionally allowed/denied.

As development of a product continues, new APIs are added as a natural part of
development. Using this approach requires a well-organized API, with delineations

1https://blogs.msdn.microsoft.com/dotnet/2016/02/10/porting-to-net-core/

27

https://blogs.msdn.microsoft.com/dotnet/2016/02/10/porting-to-net-core/


Assuring trust in .NET assemblies by instrumentation

based on the security threats and trust levels on third parties. Guidelines must be
known to the developers and should be enforced as part of automation tests.

6.3 Choice of policy language/representation

The combined use of JSON and C# source file was selected due to the familiarity
for the intended audience and the context. Developers and architects in SuperOf-
fice are used to both JSON and C#. Using another language would require devel-
opment on an implementation that would have to properly concretize an abstract
specification into CIL or another intermediate language before compilation to CIL.

6.4 Limitations

Inserting runtime enforcers when the opcode callvirt or a delegate is being used
proved to be challenging. This has been resolved by others researchers [16]. In-
stead of inserting a call to an external assembly, they are inserting the checks di-
rectly into the calling method.

28



Assuring trust in .NET assemblies by instrumentation

7 Conclusion and further work

GuardiNET can not be used as a standalone utility for assuring trust in .NET assem-
blies. Untrusted assemblies may contain malicious code using .NET/CLI features
not detected by the analysis tool.

SuperOffice partners delivering solutions on the online platform, must already
be registered and have a frequent communication including certification with the
AppStore-team. GuardiNET can be added to the certification process to analyze
assemblies from known third-parties.

This tool can be used for allowing trusted partners to run their code in Su-
perOffice Online, if adequate policies can be created and accepted. Currently, the
existing layering in SuperOffice CRM can define the security boundaries defining
the security policy. This leaves partners with a reduced API, which have proven to
be enough in some of the collected samples from partners.

7.1 Further work

An appropriate trust model for SuperOffice partners should be developed and com-
bined with GuardiNET for deciding whether the assembly is accepted to be exe-
cuted in the environment.

29





Assuring trust in .NET assemblies by instrumentation

Bibliography

[1] Zainal, Z. & Malaysia, U. T. 2007. Case study as a research method. Jurnal
Kemanusiaan, 1–6.

[2] Yin, R. K. 2013. Case study research: Design and methods. Sage publications.

[3] International, E. 2017. Standard ecma-335. https://www.
ecma-international.org/publications/standards/Ecma-335.htm. Ac-
cessed: 2017-02-17.

[4] Anderson, J. P. Computer Security Technology Planning Study. Technical
Report ESD-TR-73-51, U.S. Air Force Electronic Systems Division, 10 1972.

[5] NuGet. 2017. Nuget package identity and trust. http://blog.nuget.org/
20170417/Package-identity-and-trust.html. Accessed: 2017-04-20.

[6] Gosain, A. & Sharma, G. Static Analysis: A Survey of Techniques and Tools,
581–591. Springer India, New Delhi, 2015. URL: http://dx.doi.org/10.
1007/978-81-322-2268-2_59, doi:10.1007/978-81-322-2268-2_59.

[7] Gosain, A. & Sharma, G. A Survey of Dynamic Program Analysis Tech-
niques and Tools, 113–122. Springer International Publishing, Cham,
2015. URL: http://dx.doi.org/10.1007/978-3-319-11933-5_13, doi:
10.1007/978-3-319-11933-5_13.

[8] Microsoft. 2016. Control Flow Guard. https://msdn.microsoft.com/
en-us/library/windows/desktop/mt637065(v=vs.85).aspx. [Online; ac-
cessed 01-december-2016].

[9] Ali-Gombe, A., Ahmed, I., Richard, III, G. G., & Roussev, V. 2016. Aspectdroid:
Android app analysis system. In Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, CODASPY ’16, 145–147, New York,
NY, USA. ACM. URL: http://doi.acm.org/10.1145/2857705.2857739,
doi:10.1145/2857705.2857739.

[10] Wang, X., Sun, K., Wang, Y., & Jing, J. 2015. Deepdroid: Dynamically enforc-
ing enterprise policy on android devices. In NDSS.

31

https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/standards/Ecma-335.htm
http://blog.nuget.org/20170417/Package-identity-and-trust.html
http://blog.nuget.org/20170417/Package-identity-and-trust.html
http://dx.doi.org/10.1007/978-81-322-2268-2_59
http://dx.doi.org/10.1007/978-81-322-2268-2_59
http://dx.doi.org/10.1007/978-81-322-2268-2_59
http://dx.doi.org/10.1007/978-3-319-11933-5_13
http://dx.doi.org/10.1007/978-3-319-11933-5_13
http://dx.doi.org/10.1007/978-3-319-11933-5_13
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
http://doi.acm.org/10.1145/2857705.2857739
http://dx.doi.org/10.1145/2857705.2857739


Assuring trust in .NET assemblies by instrumentation

[11] Liu, B., Liu, B., Jin, H., & Govindan, R. 2015. Efficient privilege de-escalation
for ad libraries in mobile apps. In Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys ’15,
89–103, New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/
2742647.2742668, doi:10.1145/2742647.2742668.

[12] Cabral, B., Marques, P., & Silva, L. 2004. Rail: Code instrumentation for .net.
In Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA ’04, 210–211,
New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/1028664.
1028754, doi:10.1145/1028664.1028754.

[13] Hamlen, K. W., Morrisett, G., & Schneider, F. B. 2006. Certified in-lined
reference monitoring on .net. In Proceedings of the 2006 Workshop on Pro-
gramming Languages and Analysis for Security, PLAS ’06, 7–16, New York,
NY, USA. ACM. URL: http://doi.acm.org/10.1145/1134744.1134748,
doi:10.1145/1134744.1134748.

[14] Thamsirarak, N., Seethongchuen, T., & Ratanaworabhan, P. June 2015. A
case for malware that make antivirus irrelevant. In Electrical Engineering/-
Electronics, Computer, Telecommunications and Information Technology (ECTI-
CON), 2015 12th International Conference on, 1–6. doi:10.1109/ECTICon.
2015.7206972.

[15] Vanoverberghe, D. & Piessens, F. 2008. A caller-side inline reference monitor
for an object-oriented intermediate language. In International Conference on
Formal Methods for Open Object-Based Distributed Systems, 240–258. Springer.

[16] Vanoverberghe, D. & Piessens, F. 2015. Policy ignorant caller-side inline
reference monitoring. International Journal on Software Tools for Technology
Transfer, 17(3), 291–303.

32

http://doi.acm.org/10.1145/2742647.2742668
http://doi.acm.org/10.1145/2742647.2742668
http://dx.doi.org/10.1145/2742647.2742668
http://doi.acm.org/10.1145/1028664.1028754
http://doi.acm.org/10.1145/1028664.1028754
http://dx.doi.org/10.1145/1028664.1028754
http://doi.acm.org/10.1145/1134744.1134748
http://dx.doi.org/10.1145/1134744.1134748
http://dx.doi.org/10.1109/ECTICon.2015.7206972
http://dx.doi.org/10.1109/ECTICon.2015.7206972


Assuring trust in .NET assemblies by instrumentation

Appendix

.1 Sample source code

.1.1 Source code for TypeTracker

1 public class TypeTracker
2 {
3 private static Dictionary <string , TypeTracker > _entityMappings

= new Dictionary <string , TypeTracker >();
4
5 public static TypeTracker <TType > GetTypeTracker <TType >()
6 where TType : class
7 {
8 var typeTracker = GetOrCreateTypeTracker <TType >();
9 return typeTracker;

10 }
11
12 public static int Increment <TType >( string methodName)
13 where TType : class
14 {
15 var typeTracker = GetOrCreateTypeTracker <TType >();
16 return typeTracker.Increment(methodName);
17 }
18
19 public static InstanceTracker <TEntity > GetTrackInstance <

TEntity >()
20 where TEntity : class
21 {
22 // Get the dictionary with entitites
23 var typeTracker = GetTypeTracker <TEntity >();
24 return typeTracker.InstanceTracker;
25 }
26
27
28 private static TypeTracker <TType > GetOrCreateTypeTracker <TType

>()
29 where TType : class
30 {
31 var typeName = typeof(TType).FullName;
32
33 lock (_entityMappings)
34 {
35 TypeTracker <TType > typeTracker = null;
36 if (_entityMappings.ContainsKey(typeName))
37 {
38 typeTracker = _entityMappings[typeName] as

TypeTracker <TType >;
39 }
40 else
41 {

33



Assuring trust in .NET assemblies by instrumentation

42 typeTracker = new TypeTracker <TType >();
43 _entityMappings[typeName] = typeTracker;
44 }
45
46 return typeTracker;
47 }
48 }
49 }
50
51 public class TypeTracker <TType > : TypeTracker
52 where TType : class
53 {
54
55 private MethodData _methodData = new MethodData ();
56
57 public TypeTracker ()
58 {
59 InstanceTracker = new InstanceTracker <TType >();
60 }
61
62 public InstanceTracker <TType > InstanceTracker { get; }
63
64 public int Increment(string methodName)
65 {
66 return _methodData.Increment(methodName);
67 }
68 }

.1.2 Example of usage for TypeTracker

1 using System;
2 using System.Linq;
3 namespace GuardiNet.Instrumentation
4 {
5
6 internal class GuardEnforcerAttribute : Attribute
7 {
8 public string AssemblyName { get; set; }
9 public string MethodName { get; set; }

10 public bool WarnOnSimilar { get; set; }
11
12 public GuardEnforcerAttribute(string assemblyName , string

methodName , bool warnOnSimilar)
13 {
14 AssemblyName = assemblyName;
15 MethodName = methodName;
16 WarnOnSimilar = warnOnSimilar;
17 }
18 }
19
20 public static class Enforcer
21 {
22 [GuardEnforcer("System , Version =4.0.0.0 , Culture=neutral ,

PublicKeyToken=b77a5c561934e089", "System.Net.WebRequest
System.Net.WebRequest :: Create(System.String)", true)]

23 public static System.Net.WebRequest Guard_WebRequest_Create(System
.String p0)

34



Assuring trust in .NET assemblies by instrumentation

24 {
25 var result = TypeTracker.Increment <System.Net.WebRequest >("

Create");
26 if (result == 5)
27 {
28 throw new SecurityException("Called web request too many

times");
29 }
30
31 if (! string.IsNullOrWhitespace(p0) && p0.StartsWith("https ://

www.ntnu.no"))
32 {
33 return System.Net.WebRequest.Create(p0);
34 }
35
36 throw new SecurityException("Not allowed to call " + p0);
37 }
38 }
39 }

.1.3 Source code for InstanceTracker

1 public class InstanceTracker <TEntity >
2 where TEntity : class
3 {
4 private readonly ConditionalWeakTable <TEntity , MethodData >

_instanceMapping = new ConditionalWeakTable <TEntity ,
MethodData >();

5
6 /// <summary >
7 /// Increment the method count and return the current method

count
8 /// </summary >
9 /// <param name=" entity"></param >

10 /// <param name=" methodName"></param >
11 /// <returns ></returns >
12 public int Increment(TEntity entity , string methodName)
13 {
14 var methodData = _instanceMapping.GetOrCreateValue(entity)

;
15 return methodData.Increment(methodName);
16 }
17 }

.1.4 Source code for CallSequenceTracker

1 public class CallSequenceTracker
2 {
3 private static readonly Dictionary <string , CallSequenceTracker >

SequenceTrackers = new Dictionary <string , CallSequenceTracker
>();

4 public static CallSequenceTracker GetSequenceTracker(string
ruleName)

5 {
6 return SequenceTrackers.GetOrCreate(ruleName , () => new

CallSequenceTracker(ruleName));

35



Assuring trust in .NET assemblies by instrumentation

7 }
8
9 private readonly string _ruleName;

10 private List <CallSequenceSpec > _sequence = new List <
CallSequenceSpec >();

11
12 public CallSequenceTracker(string ruleName)
13 {
14 _ruleName = ruleName;
15
16 // Add a default non -empty sequence.
17 _sequence.Add(new CallSequenceSpec(false , 0, ".*", ".*", ".*")

);
18 }
19
20 public void AddSpecification(string assemblyName , string typeName ,

string methodName , bool isRequired = true , int maxInvocations
= 0)

21 {
22 var spec = new CallSequenceSpec(isRequired , maxInvocations ,

assemblyName , typeName , methodName);
23 _sequence.Add(spec);
24 }
25
26 private int [][] _dag; // First dimension is the state we are

currently in , secondary dimension is the edges to other states
.

27 private int _currentIndex;
28
29
30 public const int FinishedState = -1;
31
32 public void CreateDFA ()
33 {
34 // int -> [ints]
35 // -1 = final (accept)
36 // no edges = []
37 var edges = new List <int[]>();
38 for (var index = 0; index < _sequence.Count; index ++)
39 {
40 var indexEdges = new List <int >();
41 var leftovers = _sequence.Count - index - 1;
42 var current = _sequence[index ];
43
44 if (leftovers > 0)
45 {
46 for (var next = 0; next < leftovers; next ++)
47 {
48 var nextIndex = index + next + 1;
49 var nextSequence = _sequence[nextIndex ];
50 indexEdges.Add(nextIndex);
51
52 if (nextSequence.IsRequired)
53 break;
54 }
55 }
56 else

36



Assuring trust in .NET assemblies by instrumentation

57 {
58 indexEdges.Add(FinishedState);
59 }
60
61 if (current.MaxInvocations >= 0)
62 {
63 indexEdges.Add(index);
64 }
65
66 edges.Add(indexEdges.ToArray ());
67 }
68
69 _dag = edges.ToArray ();
70 _currentIndex = 0;
71 }
72
73
74 public bool Allow(string assemblyName , string typeName , string

methodName)
75 {
76 var edges = _dag[_currentIndex ];
77
78 foreach (var edgeIndex in edges)
79 {
80 // Check if we can move to this node
81 if (edgeIndex == -1)
82 {
83 // Accepted state
84 _currentIndex = 0;
85 return true;
86 }
87
88 if (edgeIndex >= 0)
89 {
90 var invocation = _sequence[edgeIndex ];
91 var decision = invocation.Decide(assemblyName ,

typeName , methodName);
92 if (decision == CallSequenceSpec.Decision.Deny)
93 {
94 return false;
95 }
96
97 if (decision == CallSequenceSpec.Decision.Allow)
98 {
99 // Successful traversal to next

100 _currentIndex = edgeIndex;
101 return true;
102 }
103 }
104 }
105 return false;
106 }
107
108 private class CallSequenceSpec
109 {
110 public bool IsRequired { get; }
111

37



Assuring trust in .NET assemblies by instrumentation

112 public int MaxInvocations { get; }
113
114 private readonly Matcher _assemblyMatcher;
115
116 private readonly Matcher _typeMatcher;
117
118 private readonly Matcher _methodMatcher;
119
120 private int _currentInvocationCount;
121 public CallSequenceSpec(bool isRequired , int maxInvocations ,

string assemblyName , string typeName ,
122 string methodName)
123 {
124 IsRequired = isRequired;
125 MaxInvocations = maxInvocations;
126
127 _assemblyMatcher = new Matcher(assemblyName);
128 _typeMatcher = new Matcher(typeName);
129 _methodMatcher = new Matcher(methodName);
130 _currentInvocationCount = 0;
131
132 }
133
134 public Decision Decide(string assemblyName , string typeName ,

string methodName)
135 {
136 var isMatch = _assemblyMatcher.IsMatch(assemblyName) &&

_typeMatcher.IsMatch(typeName) &&
137 _methodMatcher.IsMatch(methodName)

;
138
139 if (isMatch == false)
140 return Decision.DontCare;
141
142 _currentInvocationCount ++;
143
144 if (MaxInvocations == -1 || (MaxInvocations > 0 &&

_currentInvocationCount >= MaxInvocations))
145 {
146 return Decision.Deny;
147 }
148
149 return Decision.Allow;
150 }
151
152 public enum Decision
153 {
154 DontCare ,
155 Deny ,
156 Allow ,
157 }
158
159 }
160
161 }

38



Assuring trust in .NET assemblies by instrumentation

.1.5 Source code for PolicyManager

1 public class RuleResult
2 {
3 public Rule Rule { get; set; }
4
5 public Decision Decision { get; set; }
6 }
7
8 public class PolicyResult
9 {

10 public RuleResult [] Results { get; set; }
11 public string EnforcerFile { get; set; }
12
13 public int Score { get; set; }
14
15 public string FinalTrust { get; set; }
16 }
17
18 public class PolicyManager : PolicyManagerBase
19 {
20 class LastResult
21 {
22 public Rule Rule;
23 public Decision Decision;
24
25
26 public void Set(Rule rule , Decision decision)
27 {
28 Rule = rule;
29 Decision = decision;
30 }
31 };
32
33 public bool ReportFirstDenyOnly { get; set; }
34
35 private readonly string _outputDirectory;
36 public PolicyManager(string policy , bool isFileName , string

outputDirectory)
37 : base(policy , isFileName)
38 {
39 _outputDirectory = outputDirectory;
40 }
41
42
43
44 public PolicyResult AnalyzeAssembly(string assemblyFileName)
45 {
46 var assemblyDefinition = AssemblyDefinition.ReadAssembly(

assemblyFileName);
47 var result = new PolicyResult ();
48 var ruleResults = new List <RuleResult >();
49 var generator = new RuntimeEnforcerStubGenerator ();
50
51 foreach (var rule in OrderedRules)
52 {
53 var evaluators = CreateEvaluators(rule.Value);

39



Assuring trust in .NET assemblies by instrumentation

54 var extractor = _featureExtractorManager.Create(rule.Key ,
null);

55 Logging.LogInformation(LogCategory.Policy , $"Created
extractor for {rule.Key}");

56
57 foreach (var feature in extractor.Extract(assemblyFileName

, assemblyDefinition))
58 {
59 var lastResult = new LastResult ();
60 Logging.LogInformation(LogCategory.Extractor , $"

Extracting new feature ...");
61 for (var index = 0; index < evaluators.Count (); index

++)
62 {
63 var evaluator = evaluators[index];
64 var decision = evaluator.Decide(feature);
65 var currentRule = rule.Value[index];
66 Logging.LogInformation(LogCategory.Evaluator , $"’{

currentRule.Name}’ => ’{decision}’");
67
68 if (decision.Access != Access.DontCare)
69 {
70 lastResult.Set(currentRule , decision);
71 if (currentRule.GenerateEnforcers)
72 {
73 // Convert it to an analyzer which

potentially can generate weaver code
74 var dynamicEnforcer = evaluator as

IRuleEnforcer;
75 if (dynamicEnforcer == null)
76 {
77 throw new

InvalidAnalyzerOperationException(
evaluator.GetType ().Name , "does
not support generating enforcers")
;

78 }
79
80 Logging.LogInformation(LogCategory.

Evaluator , $"Creating enforcers ...");
81 var invocations = dynamicEnforcer.

GetEnforcers(feature);
82 foreach (var invocation in invocations)
83 {
84 var calledMethod = invocation.

CallInstruction.Operand as
MethodReference;

85 generator.Add(calledMethod);
86 }
87 }
88 }
89 }
90
91 if (lastResult.Decision == null)
92 {
93 Logging.LogInformation(LogCategory.Policy , "No

decision was made for feature --> ignoring.");

40



Assuring trust in .NET assemblies by instrumentation

94 continue;
95 }
96
97 Logging.LogInformation(LogCategory.Policy , $" ’{feature

}’ was finally evaluated to ’{lastResult.Decision
}’");

98
99 var severityName = lastResult ?.Rule?. Severity.ToString

();
100 // Update the score.
101 if (! string.IsNullOrWhiteSpace(severityName) &&

_policy.Trust.Modifiers.ContainsKey(severityName))
102 {
103 var modifiers = _policy.Trust.Modifiers[

severityName ];
104 result.Score += lastResult.Decision.Access ==

Access.Deny ? modifiers.MatchModifier :
modifiers.NoMatchModifier;

105 }
106
107 ruleResults.Add(
108 new RuleResult
109 {
110 Decision = lastResult.Decision ,
111 Rule = lastResult.Rule
112 });
113
114 if (ReportFirstDenyOnly && lastResult.Decision.Access

== Access.Deny)
115 break;
116 }
117 }
118
119 result.Results = ruleResults.ToArray ();
120
121 var dynamicSource = generator.ToString ();
122 if (dynamicSource.Length > 0)
123 {
124 var assemblyFileNameWithoutPath = Path.GetFileName(

assemblyFileName);
125
126 var enforcerPath = Path.Combine(_outputDirectory ,

assemblyFileNameWithoutPath + ".cs");
127 DirectoryHelper.EnsureOutputDirExists(_outputDirectory);
128 result.EnforcerFile = enforcerPath;
129 File.WriteAllText(enforcerPath , dynamicSource);
130 }
131
132 // Generate the final description.
133 result.FinalTrust = GenerateDescription(result);
134
135 return result;
136 }
137
138 public void CompileEnforcers(string assemblyFile , string []

sourceFiles)
139 {

41



Assuring trust in .NET assemblies by instrumentation

140 var runtimePolicyCompiler = new RuntimePolicyEnforcerCompiler
();

141 var assemblyDefinition = AssemblyDefinition.ReadAssembly(
assemblyFile);

142
143
144 var compiledBytes = runtimePolicyCompiler.Compile(sourceFiles ,

assemblyDefinition);
145 using (var ms = new MemoryStream(compiledBytes))
146 {
147 var weaverAssembly = AssemblyDefinition.ReadAssembly(ms);
148 RuntimeWeaver.Weave(assemblyDefinition , weaverAssembly);
149
150 assemblyDefinition.MainModule.AssemblyReferences.Add(

weaverAssembly.Name);
151
152 weaverAssembly.Write(Path.Combine(_outputDirectory ,

weaverAssembly.Name.Name + ".dll"));
153 assemblyDefinition.Write(Path.Combine(_outputDirectory ,

assemblyDefinition.Name.Name + ".dll"));
154 }
155 }
156
157 private string GenerateDescription(PolicyResult result)
158 {
159 var trustLevel = _policy.Trust.Levels.Where(l => l.Value.From

<= result.Score && l.Value.To >= result.Score).Select(l =>
new

160 {
161 Level = l.Key
162 }).FirstOrDefault ();
163
164 if (trustLevel == null)
165 {
166 // Check min
167 // Find the lowest min:
168 var minRule = _policy.Trust.Levels.OrderBy(l => l.Value.

From).FirstOrDefault ();
169 var maxRule = _policy.Trust.Levels.OrderByDescending(l =>

l.Value.To).FirstOrDefault ();
170
171
172 if (result.Score < minRule.Value.From)
173 {
174 return $"Trust has been set to {minRule.Key}, but the

value was lower. ";
175 }
176 else
177 {
178 return $"Trust has been set to {maxRule.Key}, but the

value was higher.";
179 }
180 }
181
182 return $"Trust has been set to: {trustLevel.Level}";
183 }
184 }

42



Assuring trust in .NET assemblies by instrumentation

.1.6 Source code for RuntimeWeaver

1 public class RuntimeWeaver
2 {
3
4 public static void Weave(AssemblyDefinition originalAssembly ,

AssemblyDefinition weaverAssembly)
5 {
6 // Find all the usage of GuardEnforceAttribute in

weaverAssembly
7 var typeWalker = new TypeWalker(weaverAssembly);
8 var rtEnforcerList = new Dictionary <AssemblyAndMethodData ,

MethodDefinition >();
9

10
11 foreach (var type in typeWalker)
12 {
13 foreach(var method in type.Methods)
14 {
15 var enforcerAttribute = method.CustomAttributes.Where(

c => c.AttributeType.FullName == "GuardiNet.
Instrumentation.GuardEnforcerAttribute").
FirstOrDefault ();

16 if (enforcerAttribute != null)
17 {
18 // we need to take a closer look at the

constructor arguments
19 var assemblyName = enforcerAttribute.

ConstructorArguments [0]. Value as string;
20 var methodName = enforcerAttribute.

ConstructorArguments [1]. Value as string;
21 var warnOnSimilar = (bool) enforcerAttribute.

ConstructorArguments [2]. Value;
22
23 var entry = new AssemblyAndMethodData
24 {
25 AssemblyName = assemblyName ,
26 MethodName = methodName
27 };
28
29 rtEnforcerList.Add(entry , method);
30 }
31 }
32 }
33
34 var externalInvocationExtractor = new ExternalMethodExtractor

();
35 var invokes = externalInvocationExtractor.Extract(string.Empty

, originalAssembly).ToArray ();
36
37 foreach (var inv in invokes)
38 {
39 var invocation = TypeHelper.Cast <

ExternalMethodCallInstructionFeature , IFeature >(inv);
40
41 // Check if this is on our list
42

43



Assuring trust in .NET assemblies by instrumentation

43 // Replace the call instruction with our own
44 var reference = AssemblyAndMethodData.CreateReference(

invocation.CallInstruction);
45
46 if (rtEnforcerList.ContainsKey(reference))
47 {
48 var enforcer = rtEnforcerList[reference ];
49 var methodReference = invocation.Method.Resolve ();
50
51 // Weave in the reference and replace the call
52 var processor = methodReference.Body.GetILProcessor ();
53 var importedReference = originalAssembly.MainModule.

Import(enforcer);
54 processor.Replace(invocation.CallInstruction ,

CreateCallInstruction(importedReference));
55
56 }
57 }
58 }
59
60 private static Instruction CreateCallInstruction(MethodReference

method)
61 {
62 var instruction = Instruction.Create(OpCodes.Call , method);
63 return instruction;
64 }
65 }

.2 Statistics from SuperOffice CRM

Table 2: The table shows all exported classes/types with methods, properties (with setters)
and fields.

AssemblyName Namespaces Types Methods Properties Fields
SOCore 36 475 1455 237 53
SoDataBase 58 4896 29683 6635 5819
SuperOffice.Services 4 378 2911 2106 0
SuperOffice.Services.Implementation 12 224 2307 32 0
SuperOffice.DCFWeb 25 183 688 350 18
SuperOffice.CRMWeb 23 673 2302 933 111
SuperOffice.Plugins 12 161 528 334 20
SoLicense 2 6 30 0 0
SuperOffice.Contracts 5 61 90 141 67
SuperOffice.DCF.Services 1 21 130 22 0
SuperOffice.DCF.Services.Implementation 4 30 143 13 0
SuperOffice.Mime 4 76 340 85 0
SuperOffice.Services.Versioned.Contract 6 2346 8135 13562 0
SuperOffice.Services.Versioned 12 2220 14846 0 0
SoLicense 2 6 30 0 0
Total 206 11756 63618 24450 6088

44



Assuring trust in .NET assemblies by instrumentation

.3 Example policies

.3.1 Classification policy

numbers
{

"Name": "Classification of capabilities",
"Description": "",
"DefaultAccess": "Allow",
"Trust": {

"Levels": {
"Untrusted": {

"From": 0,
"To": 10

},
"Low": {

"From": 10,
"To": 40

},
"Medium": {

"From": 40,
"To": 80

},
"High": {

"From": 80,
"To": 100

}
},
"InitialScore": 100,
"Modifiers": {

"None": {
"MatchModifier": 0,
"NoMatchModifier": 0

},
"Low": {

"MatchModifier": -5,
"NoMatchModifier": 0

},
"Medium": {

"MatchModifier": -10,
"NoMatchModifier": 0

},
"High": {

"MatchModifier": -50,
"NoMatchModifier": 0

},
"Critical": {

"MatchModifier": -100,
"NoMatchModifier": 0

}
}

},
"Rules": [

{
"Name": "Uses File.IO",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",

45



Assuring trust in .NET assemblies by instrumentation

"Properties": {
"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.IO.File .*",
"IsRegex": true

}
},
{

"Name": "Uses Stream.IO",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.IO.Stream .*",
"IsRegex": true

}
},
{

"Name": "Emitting code",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System.Reflection .*",
"ExternalMethodName": "System.Reflection.Emit .*",
"IsRegex": true

}
},
{

"Name": "Loading assemblies",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System.Reflection .*",
"ExternalMethodName": "System.Reflection.Assembly::Load .*",
"IsRegex": true

}
},
{

"Name": "Invoking methods dynamically",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System.Reflection .*",
"ExternalMethodName": "System.Reflection.[^<>]*::Invoke .*|

System.Reflection.PropertyInfo::setValue .*",
"IsRegex": true

}
},
{

"Name": "Using WPF/WinForms",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

46



Assuring trust in .NET assemblies by instrumentation

"ExternalAssemblyName": "mscorlib .*| System .*",
"ExternalMethodName": "System.Windows .*| System.Drawing .*",
"IsRegex": true

}
},
{

"Name": "Using DirectoryServices",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System .*",
"ExternalMethodName": "System.DirectoryServices .*",
"IsRegex": true

}
},
{

"Name": "Using Process",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System .*",
"ExternalMethodName": "System.Diagnostics.Process .*",
"IsRegex": true

}
},
{

"Name": "Using Registry",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System .*",
"ExternalMethodName": "Microsoft.Win32.Registry .*",
"IsRegex": true

}
},

{
"Name": "Is not signed",
"Type": "DigitalSignature",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"Signed": false

}
},

{
"Name": "Uses Threads",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System.Reflection .*",

47



Assuring trust in .NET assemblies by instrumentation

"ExternalMethodName": "System.Threading.Thread .*",
"IsRegex": true

}
},
{

"Name": "Uses Crypto",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.Security.Cryptography .*",
"IsRegex": true

}
},
{

"Name": "Uses Networking",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System .*",
"ExternalMethodName": "System.Net .*| System.ServiceModel.

ChannelFactory .*",
"IsRegex": true

}
},
{

"Name": "Uses PInvoke",
"Type": "PInvoke",
"Access": "Deny",
"Severity": "Critical",

"Properties": {
"Import": ".*",
"IsRegex": true

}
},

{
"Name": "Uses Module initializer",
"Type": "ModuleInitializer",
"Access": "Deny",
"Severity": "Critical"

},

{
"Name": "Is mixed mode",
"Type": "MixedMode",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"IsMixedMode": "true"
}

},

{

48



Assuring trust in .NET assemblies by instrumentation

"Name": "Internal/runtime calls",
"Type": "InternalCall",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"InternalCallPattern": ".*"
}

}

]
}

.3.2 SoPartnerWebPolicy

numbers
{

"Name": "SuperOffice Online Partner Policy",
"Description": "Policy for analyzing and instrumenting partner code

.",
"DefaultAccess": "Deny",
"Trust": {

"Levels": {
"Untrusted": {

"From": 0,
"To": 10

},
"Low": {

"From": 10,
"To": 40

},
"Medium": {

"From": 40,
"To": 80

},
"High": {

"From": 80,
"To": 100

}
},
"InitialScore": 100,
"Modifiers": {

"None": {
"MatchModifier": 0,
"NoMatchModifier": 0

},
"Low": {

"MatchModifier": -5,
"NoMatchModifier": 0

},
"Medium": {

"MatchModifier": -10,
"NoMatchModifier": 0

},
"High": {

"MatchModifier": -50,
"NoMatchModifier": 0

49



Assuring trust in .NET assemblies by instrumentation

},
"Critical": {

"MatchModifier": -100,
"NoMatchModifier": 0

}
}

},
"Rules": [

{
"Name": "Allow all System.Object",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
"Properties": {

"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.Object .*| System.

NotImplementedException .*| System.Enum .*",
"IsRegex": true

}
},
{

"Name": "Deny unsigned assemblies",
"Type": "DigitalSignature",
"Access": "Deny",
"Severity": "Critical"

},
{

"Name": "Allow inheritance from System.Object",
"Type": "Inheritance",
"Access": "Allow",
"Severity": "None",
"Properties": {

"InheritsFromAssemblyName": "mscorlib .*",
"InheritsFromTypeName": "System.Object .*| System.

NotImplementedException .*| System.Enum .*",
"IsRegex": true

}
},
{

"Name": "Allow inheritance from SuperOffice.IPlugin",
"Type": "Inheritance",
"Access": "Allow",
"Severity": "None",
"Properties": {

"InheritsFromAssemblyName": "SuperOffice.Plugins .*",
"InheritsFromTypeName": "SuperOffice.Factory.IPlugin .*",
"IsRegex": true

}
},
{

"Name": "Allow inheritance from SuperOffice.DCF",
"Type": "Inheritance",
"Access": "Allow",
"Severity": "None",
"Properties": {

"InheritsFromAssemblyName": "SuperOffice.DCFWeb .*",
"InheritsFromTypeName": "SuperOffice.DCF.Web.UI.Validations.

50



Assuring trust in .NET assemblies by instrumentation

ValidationBase .*| SuperOffice.DCF.Web.Factory.IWebObject .*|
SuperOffice.DCF.Web.Data.DataHandlerBase .*",

"IsRegex": true
}

},
{

"Name": "Allow inheritance from SuperOffice.CRMWeb",
"Type": "Inheritance",
"Access": "Allow",
"Severity": "None",
"Properties": {

"InheritsFromAssemblyName": "SuperOffice.CRMWeb .*",
"InheritsFromTypeName": "SuperOffice.CRM.Web.UI.Controls.

IArchiveControlDataFetcher .*| SuperOffice.CRM.Web.UI.
Controls.SoArchiveFetcherBase .*",

"IsRegex": true
}

},
{

"Name": "Allow inheritance from SoDatabase",
"Type": "Inheritance",
"Access": "Allow",
"Severity": "None",
"Properties": {

"InheritsFromAssemblyName": "SoDatabase .*",
"InheritsFromTypeName": "SuperOffice.CRM.ArchiveLists.

IArchiveProvider .*| SuperOffice.CRM.Tooltips.
TooltipPluginBase .*| SuperOffice.CRM.Lists.LiteralsOnlyBase
.*| SuperOffice.CRM.ArchiveLists.TableExtenderBase .*",

"IsRegex": true
}

},
{

"Name": "Allow inheriting from common collections and patterns",
"Type": "Inheritance",
"Access": "Allow",
"Severity": "None",
"Properties": {

"InheritsFromAssemblyName": "mscorlib .*",
"InheritsFromTypeName": "System.Collections .*| System.

IDisposable .*",
"IsRegex": true

}
},
{

"Name": "Allow common .NET calls",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System .*",
"ExternalMethodName": "System.Collections .*| System.String .*|

System.Array .*| System.Comparison .*| System.Boolean .*| System
.Int16.*| System.Int32.*| System.Int64.*| System.Double .*|
System.Exception .*| System.NotSupportedException .*| System.
Argument(Null)?Exception .*| System.IDisposable .*| System.
Decimal .*| System.Linq .*| System.DateTime .*| System.

51



Assuring trust in .NET assemblies by instrumentation

Globalization .( CultureInfo|Calendar).*| System.
Globalization.DateTimeFormatInfo .*| System.Text.
RegularExpressions .*| System.Text.StringBuilder .*| System.
Convert .*| System.Text.Encoding .*| System.Predicate .*| System
.Func .*| System.Environment::get_NewLine",

"IsRegex": true
}

},
{

"Name": "Allow data dispatcher calls",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
"Properties": {

"ExternalAssemblyName": "SuperOffice.DCFWeb .*",
"ExternalMethodName": "SuperOffice.DCF.Web.DataDispatcher .*|

SuperOffice.Data.DataDispatcher .*",
"IsRegex": true

}
},
{

"Name": "Allow control and datahandler calls",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
"Properties": {

"ExternalAssemblyName": "SuperOffice.DCFWeb .*",
"ExternalMethodName": "SuperOffice.DCF.Web.UI.Controls .*|

SuperOffice.DCF.Web.Data.DataHandler .*",
"IsRegex": true

}
},
{

"Name": "Allow archiverestriction info calls",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
"Properties": {

"ExternalAssemblyName": "SoDataBase .*| SoCore .*| SuperOffice.
Services .*",

"ExternalMethodName": "SuperOffice.CRM.ArchiveLists .*|
SuperOffice.CRM.Services.ArchiveList(Result|Item).*|
SuperOffice.Data.QueryExecutionHelper .*",

"IsRegex": true
}

},
{

"Name": "Allow access to Rows and Services",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
"Properties": {

"ExternalAssemblyName": "SoDataBase .*| SoCore .*| SuperOffice.
Services .*",

"ExternalMethodName": "SuperOffice.Data.SoDataReader .*|
SuperOffice.Data.SQL.*| SuperOffice.Data.TablesInfo .*|
SuperOffice.CRM.Security.TableRight .*| SuperOffice.CRM.Rows

52



Assuring trust in .NET assemblies by instrumentation

.*| SuperOffice.CRM.Services .( Person|Contact|Sale|Project|
List|MDO|Associate|Appointment|Batch)(Agent)?.*|
SuperOffice.CRM.Services .* Entity .*| SuperOffice.CRM.Data.(
Phone|Person|Email|Sale|SaleStakeholder|
SaleStakeholderRole|StakeholderRole|Contact|Associate|
UDPersonSmall|ForeignDevice|ForeignApp|ForeignKey)
TableInfo .*| SuperOffice.Data.S::Parameter .*| SuperOffice.
Data.S::NewSelect|SuperOffice.CRM.Services.Carrier .*|
SuperOffice.CRM.Services.ColumnDataDictionary .*|
SuperOffice.Data.NestedCollectionPersist .*| SuperOffice.CRM
.Lists.LiteralsOnlyBase .*| SuperOffice.CRM.Tooltips.
TooltipPluginBase .*| SuperOffice.Util.ParameterBuilder .*|
SuperOffice.CRM.Lists.I?SoListItem .*| SuperOffice.Data.
Dictionary.SoTable .*",

"IsRegex": true
}

},
{

"Name": "Allow calls to SuperOffice.Globalization",
"Type": "ExternalMethod",
"Access": "Allow",
"Severity": "None",
"Properties": {

"ExternalAssemblyName": "SoDataBase .*| SoCore .*| SuperOffice.
Services .*| SuperOffice.Plugins .*",

"ExternalMethodName": "SuperOffice.CRM.Globalization .*",
"IsRegex": true

}
},
{

"Name": "Uses File.IO",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.IO.File .*",
"IsRegex": true

}
},
{

"Name": "Uses Reflection",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System.Reflection .*",
"ExternalMethodName": "System.Reflection .*| System.Type .*",
"IsRegex": true

}
},
{

"Name": "Uses threads or locking mechanisms",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

53



Assuring trust in .NET assemblies by instrumentation

"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.Threading.Thread .*| System.

Threading.Monitor .*",
"IsRegex": true

}
},
{

"Name": "Uses crypto",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
"Properties": {

"ExternalAssemblyName": "mscorlib .*",
"ExternalMethodName": "System.Security.Cryptography .*",
"IsRegex": true

}
},
{

"Name": "Uses Networking",
"Type": "ExternalMethod",
"Access": "Deny",
"Severity": "Critical",
//" GenerateEnforcers": true,
"Properties": {

"ExternalAssemblyName": "mscorlib .*| System .*| System.
ServiceModel .*",

"ExternalMethodName": "System.Net .*| System.ServiceModel.
Channel .*",

"IsRegex": true
}

},
{

"Name": "Allow common .NET attributes",
"Type": "Attribute",
"Access": "Allow",
"Severity": "None",

"Properties": {
"AttributeTarget": "All",
"AttributePartialName": "System.Runtime.CompilerServices.

CompilerGeneratedAttribute|System.Reflection.Assembly .*
Attribute",

"IsRegex": true
}

},
{

"Name": "Add instrumentation to ClassFactory.Create",
"Type": "ExternalMethod",
"Access": "Allow",
"GenerateEnforcers": true,
"Severity": "Low",
"Properties": {

"ExternalAssemblyName": "SoDataBase .*| SoCore .*| SuperOffice.
Services .*",

"ExternalMethodName": "SuperOffice.Factory.ClassFactory .*",
"IsRegex": true

}

54



Assuring trust in .NET assemblies by instrumentation

}

]
}

55


	Preface
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Methodology
	Background
	Abbreviations and acronyms
	Microsoft .NET
	From high-level to Common Intermediate Language

	Reference monitors
	Assurance and trust
	SuperOffice
	Architecture
	Differences between on-site and online

	Related work

	GuardiNET
	Policies
	Extractors and evaluators
	AssemblyReference
	Attribute
	DigitalSignature
	ExternalDelegate
	ExternalField
	ExternalMethodInvocation
	ForwaredTypes
	InternalCalls
	MixedMode
	ModuleInitializer
	PInvoke
	StaticField
	String
	Type

	Dynamic instrumentation
	Trust levels

	Results
	Custom assemblies for SuperOffice CRM
	Analyzing popular NuGet packages

	Discussion
	.NET analysis and instrumentation
	Security in .NET

	Security policies in legacy systems
	Choice of policy language/representation
	Limitations

	Conclusion and further work
	Further work

	Bibliography
	Appendix
	Sample source code
	Source code for TypeTracker
	Example of usage for TypeTracker
	Source code for InstanceTracker
	Source code for CallSequenceTracker
	Source code for PolicyManager
	Source code for RuntimeWeaver

	Statistics from SuperOffice CRM
	Example policies
	Classification policy
	SoPartnerWebPolicy



