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Abstract

The field of Digital Forensics is always changing together with developments in computer hard-
ware and operating systems. In June of 2015 Windows 10 was released to consumers offering
numerous changes to the operating system. One of the most interesting features from the per-
spective of Digital Forensics is a feature known as Device Guard. Device Guard is said to offer
protection from advanced malware such as rootkits, polymorphic viruses and even zero day ex-
ploits. Device Guard accomplishes this by introducing VBS based security which introduces a new
secure kernel that is separate from the normal kernel. This thesis takes a look at the internals of
the secure kernel and the trustlets running within. This thesis also discusses different methods
on how to best acquire a full live memory dump as well as making a program that can analyze
it.
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Preface

Ever since discovering Mark Russinovich’ blog in 2005 I have always been interested in learning
more about Windows and how it worked internally. The idea that it was possible for an outsider
to understand how a complex proprietary system worked in great detail inspired me to learn
reverse engineering. I would like to thank Stephen Wolthusen for allowing me to take on this
master thesis on a subject that has interested me for years.
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1 Introduction and structure.

This thesis takes a look at the newly developed Windows 10 Isolated User Mode (IUM) as well as
the associated secure kernel. In order to realize IUM several software and hardware requirements
must be met. The background chapter gives an explanation of how all the necessary function-
ality works, as well as presenting some of the software that runs in IUM. As this thesis focuses
on forensics the next chapter will discuss the aspects of memory forensics relevant to the secure
kernel. It will also discuss different methods on how to obtain full memory dumps from the se-
cure kernel and IUM.

After obtaining the memory dump the next chapter takes a look at secure kernel internals. This
knowledge is obtained by investigating the memory dumps as well as reverse engineering pro-
gram binaries. The main focus is on obtaining information on potentially useful forensic artifacts
found in secure kernel memory. To accomplish all this, a set of tools called the Secure Kernel
Forensic Toolkit was built. The last section gives a brief description on how this tool works as
well as providing a overview of the available commands.

Since reverse engineering has been a important aspect in obtaining information, a final appendix
is provided to demonstrate how this was accomplished.

For actual testing a preview version of Windows 10 Enterprise was used, the kernel build number
was the following:

Windows 10 Kernel Vers ion 10586 MP (4 procs ) Free x64
Product : WinNt , s u i t e : TerminalServer SingleUserTS
B u i l t by : 10586.162. amd64fre . th2_ re l ea se_ sec .160223−1728

1
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2 Background

2.1 Isolated User Mode

Isolated User Mode (IUM) is a security feature introduced in Windows 10 Enterprise which en-
ables the execution of special applications in a context isolated from regular applications. To
achieve this isolation IUM relies on a secure kernel which handles basic operating system tasks
such as scheduling and memory management. As the secure kernel will only handle the mere
basics it will run in parallel with the regular Windows kernel which handles the main operation
of the machine. The main advantage of using a separate kernel to handle IUM is that the secure
kernel does not load any third party modules. This enables the secure kernel to operate without
the risk of interference from third party code, a problem still affecting the normal kernel. Ensur-
ing that the kernel itself is free from interference is a important first step in ensuring secure user
mode processes.

To achieve this isolation the secure kernel relies on the Windows hypervisor to manage both
the normal and secure kernel. This means that the hypervisor can set different memory permis-
sions for both kernels, making it impossible for the normal kernel to access memory belonging
to the secure kernel.

Figure 1: A diagram showing the high level architecture for a system where IUM has been activated.
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The applications that run in IUM are known as trustlets and there are currently only a few
trustlets implemented by Microsoft The reason for wanting these applications to run in a context
that is isolated from the rest of the operating system is mainly to prevent access from malicious
parties. This means that it is easier to keep secrets hidden such as in the case of credential guard
which stores user credentials which is important to keep hidden. In previous versions of Windows
a user with administrative privileges could extract these credentials in plaintext making it harder
to keep this information confidential. Another benefit of process isolation is that it would make
tampering more difficult. Tampering is particularly egregious for components that implement
security functionality since they have no way of guaranteeing that they will function properly.
This is the main motivation with moving code integrity verification into the secure kernel.

2.1.1 How IUM is realized

Most PC’s today use a processor that is built on the x86 architecture. Since the Intel 80286 pro-
cessor was released in 1982, all x86 processors have supported a operational mode known as
protected mode. This introduced several new features, one of which was the idea of privilege
levels. Although the x86 architecture supports 4 privilege levels, known as rings, Windows only
uses two rings. The reason why Windows uses only two rings is that originally Windows NT was
designed to run on the Intel i860 RISC processor[1]. This processor used only two protection lev-
els where the user level was intended for regular applications, and the supervisor level intended
for the operating system [2].

The kernel, along with third-party modules, occupy the most privileged ring at ring 0, while
regular applications run in ring 3. Instead of referring to them as rings, Microsoft most com-
monly uses the terminology kernel mode for executing in ring 0 and user mode for ring 3. As
mentioned before it would be beneficial for the operating system to operate in a mode where no
third-party modules can execute. To achieve this the operating system tries to isolate processes
further by using a hypervisor. This hypervisor can be informally thought to be running in "ring
-1" since it is considered more privileged than the kernel itself.

Windows own hypervisor, Hyper-V, was introduced in Windows Vista and was originally intended
to take advantage of new viritualization features in the x86 architecture introduced to increase
the performance of virtual machines. The most prolific x86 vendors have their own implementa-
tion of this viritualization technology known as Intel VT-x and AMD-V. Ultimately the job of the
hypervisor in the context of IUM is to control which parts of the operating system that can access
given parts of physical memory. Utilizing the hypervisor to provide process isolation is referred
to Virtualization Based Security (VBS) in Windows operating systems.

3
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To fully achieve memory isolation another piece of viritualization technology known as the
Second Layer Address Translation (SLAT) is used. SLAT technology was originally intended to
speed up translation of virtual addresses on virtual machines as these originally had to be trans-
lated twice (once on the guest machine and once on the host machine) before resolving the
actual physical address. SLAT implementations on the x86 architecture is known as Intel EPT or
AMD RVI depending on the make of the processor. SLAT provides its own set of page tables al-
lowing the hypervisor to set different access masks for the secure kernel and the "normal" kernel.
This means that the secure kernel can section off parts of memory that the normal kernel can not
access.

As an additional protection mechanism, IUM will also take advantage of the IOMMU on sys-
tems where this is present. An IOMMU is a piece of hardware that sits on any I/O bus capable of
DMA. The role of the IOMMU is to translate the device addresses of the devices on the bus into
physical addresses in main memory. This means that the IOMMU have its own set of page tables
to map these addresses, which again means that the IOMMU can choose to restrict DMA-access
to any device with insufficient access. This means that IOMMU’s can be used to prevent so called
DMA-attacks as the devices would be unable to access physical memory that has not been allo-
cated by the device itself. The actual implementations of IOMMU’s are known as VT-d for Intel
processors and AMD I/O Virtualization Technology[3] for AMD processors.

2.2 Device Guard

Device Guard is a set of services offered in the enterprise versions of Windows 10 [4]. The overall
goal of Device Guard is to ensure that only code that meets the requirements of the system poli-
cies will be executed. The main reason behind only executing code defined in the system policies
is to provide protection against malicious or unwanted code. Since Device Guard will deny any
code not described in the given policy this also ensures protection against future malware not yet
known. This also gives protection against malware that might use polymorphism or encryption
to escape detection from signature based anti-malware services. Previous versions of Windows
had some of this functionality already in place to provide basic verification of kernel mode code.
This meant verifying the main operating system files, kernel mode drivers and some user mode
verification [5]. Device guard improves on this verification process by moving code verification
into the secure kernel. This ensures that no third-party kernel drivers can influence how code
verification is performed.

One of the features that Device Guards adds is Hypervisor based code integrity (HVCI), allowing
the secure kernel to perform code integrity checks. HVCI offers improved KMCI and adds full
UMCI. The main benefit of performing integrity checks in the secure kernel is that the secure
kernel should in theory not load any third party extensions, meaning that the kernel is less easily
compromised. Remember that in order for the secure kernel to run Windows uses the hypervisor
as the most privileged component, giving full access to system memory.

4
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In addition to HVCI Device Guard offers full user mode integrity checks (UMCI). This allows
the administrator complete control of any code that is executed in user mode, performing the
same checks as done in kernel mode. In addition to allowing for greater control of code integrity,
Device Guard will also use new hardware enhancements to ensure that memory based attacks
are more difficult to perform.

2.2.1 Requirements

Device guard VBS has a set of hardware and software requirements that must be met before being
enabled. Note that this is the requirements for Device Guard VBS, enforcing the code integrity is
still possible although with no protection from various memory based attacks.

Requirement Classification
UEFI firmware at least
version 2.3.1

Absolute

Virtualization extensions Absolute
x64 Architecture Absolute
A VT-d or AMD-Vi IOMMU Recommended
Secure Boot enabled Absolute

Table 1: Overview of System Requirements for Device Guard. The recommended specifications are not
necessary to run Device Guard VBS, although necessary to offer full protection. The absolute requirements
must be met in order for Device Guard services to work.

UEFI Firmware at least version 2.3.1

To enable Secure Boot the system motherboard must boot using UEFI firmware system version
2.3.1. This means that legacy BIOS systems are not supported.

Virtualization extensions

The system must support hardware virtualization extensions such as Intel VT-x or AMD V tech-
nology. The system must also support SLAT technology to enable memory protection. These
requirements are in place because Device Guard VBS requires the Hyper-V hypervisor to be ac-
tive in order to work. Since a hypervisor is required for VBS to work, one can not run Device
Guard on a virtual machine directly, because then a hypervisor would already be running. The
only exception is on systems that support nested virtualization where more than one hypervisor
can be operational.

x64 Architecture

Device Guard is only available on 64-bit systems.
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VT-d or AMD-Vi

The IOMMU is a piece of hardware that allows for controlling the DMA access of DMA enabled
devices. On systems without an IOMMU, DMA capable devices would have full access to sys-
tem memory. The IOMMU adds memory management for DMA devices, opening up support for
memory protection. This essentially means that a DMA device usually only access memory that
it allocated for itself. On systems having a IOMMU one can enable DMA protection which gives
protection against DMA-attacks. DMA-attacks relies on using a DMA capable device to access
important memory structures. On Intel systems the IOMMU technology is known as VT-d, while
on AMD systems it is known as AMD-Vi.

Secure Boot

Secure Boot must be enabled for Device Guard VBS to work. During testing disabling Secure
Boot would disable VBS.

2.2.2 Function

Basic functionality to maintain code integrity has been present since Windows Vista. This part
of code integrity was aimed at ensuring that code that is executed in kernel mode met certain
standards. Before starting a driver Windows would ensure that the driver first had a valid digital
certificate before allowing it to run. When the driver had been executed, a cryptographic hash
would be created for each executable page in memory so that the integrity of the memory could
be verified. Code integrity in earlier Windows versions was implemented in a system dll, CI.dll
that would launch as a mandatory kernel mode module. If CI.dll is not present Windows will
simply refuse to start.

Similarly, Device Guard is implemented in a kernel mode module known as SKCI.dll and is a
mandatory part of the kernel. The main difference is that SKCI is loaded as part of the secure
kernel and not the normal kernel. Since the secure kernel cannot perform file I/O it has to rely
on the normal kernel to read the file for verification to begin. Although the normal kernel is
needed to read the file, one cannot simply bypass code integrity by hijacking the normal kernel
as it is ultimately the secure kernel which controls which part of memory that is executable.
Code integrity checks also includes ensuring that process memory does not change based on
hash signatures.

6
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2.2.3 Activation and Usage

When enabling Device Guard one can choose between using it only for ensuring code integrity
in kernel mode (KMCI), or also using it for ensuring user mode code integrity (UMCI).

Enabling VBS enforced KMCI

KMCI has been present since Windows Vista on 64-bit systems albeit with less features. The initial
implementation forced all kernel mode modules to be digitally signed as to improve the stability
and reduce the presence of kernel-mode malware, although this would not eliminate malware
completely. Device Guard improves on the KMCI functionality by introducing VBS, enabling the
code verification process to take place in the secure kernel.

To enable VBS one has to first make sure that both the hypervisor feature and the Isolated User
Mode feature is active on the system. These features are enabled using the control-panel. After

Figure 2: Make sure to enable IUM and the Hypervisor before enabling VBS.

enabling these features the system should be restarted. One can now enable VBS. The simplest
way of enabling VBS on a local machine is by using the group policy. Using the group policy mmc
snap-in one can navigate to the Device Guard settings and then selecting "Turn on virtualization
based security". To enable VBS enforced KMCI make sure to check "Enable Virtualization Based
Protection of Code Integrity". If the system is equipped with IOMMU technology the Secure Boot
with DMA protection can be enabled for defense against DMA-attacks. If no IOMMU is present
the Secure Boot setting can be selected. In order for the changes to take effect the system should
be restarted once again.

2.2.4 Device guard UMCI

In addition to providing improved verification of kernel mode modules, Device Guard also in-
troduces User Mode Code Integrity (UMCI) that ensures verification of user mode code. This
functionality was introduced to provide a better defense against zero-day exploits, as well as
allowing for better control over which code that can be executed on any given system.

7
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Figure 3: Using gpedit.msc one can enable VBS.

Figure 4: VBS GPO object.

UMCI allows a system administrator to establish a Code Integrity Policy (CIP) that will spec-
ify which code is allowed to execute. Any code that does not meet the requirements specified in
the policy is not allowed to run unless the system runs in audit mode. In kernel mode all modules
must be digitally signed when secure boot is enabled and so verifying images in kernel mode is
done by verifying that the digital certificate is correct.

8
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For regular user mode applications however, it is much more common that binaries are not
digitally signed, meaning that the CIP is not sufficient in this case. To address this problem,
Windows allows the administrator to create catalog files for unsigned binaries that contain the
information necessary to verify the binary. Together the CIP and the optional catalog files contain
all the information necessary to enforce UMCI.

Creating a CIP

When creating the CIP the system administrator can enable or disable numerous features. The
table below describes the most notable options:

Option Description
0 - UMCI Enables the UMCI feature

3 - Audit Mode

Instead of enforcing the policy, violations are logged and the code
is allowed to execute. This option is used for testing purposes
allowing the administrator to see which code violates the policy
without enforcing it. Enabled by default.

6 - Unsigned
System Integrity
Policy

Allows the policy file itself to be loaded unsigned. When this op-
tion is disabled the policy need to include a list of UpdatePoli-
cySigners to allow for further modification. Enabled by default.

10 - Boot Audit
on Failure

If any system drivers fails during boot the policy is reverted to
audit mode to allow for troubleshooting. Enabled by default.

To specify which files that can execute, the CIP allows for specifying different requirements
that must be fulfilled before UMCI will allow the file to execute. These requirements or rules
provides different levels of security based on how strict the system administrator wishes to be.
Strict policies such as cryptographic hashes offer great security, but are more difficult to manage
since the policy must be updated each time the hash changes. Some of the most notable rules
are:

Rule level Description

Hash
Stores the cryptographic hash for every binary that is allowed to
execute.

FileName
Stores the name of every binary that is allowed to execute. This is
significantly less secure, but easier to manage than using crypto-
graphic hashes.

PcaCertificate
The primary certificate authority (PCA) is the highest available
CA in the certificate chain. Typically this is the CA right below the
root.

LeafCertificate
Verifies the leaf certificate in the certificate chain. Leaf certificates
are more specific, but has a shorter validity than CA certificates.

Publisher
Verifies the PcaCertificate and the common name (CN) for the leaf
certificate.

9
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There are also additional rules pertaining to binaries signed by the Windows Hardware Quality
Labs (WHQL), only allowing execution of binaries that meet this requirement. What can be seen
is that most rules require the binary to be digitally signed, where only the hash and filename
rules applies to unsigned binaries.

Instead of manually creating rules for each individual file, Microsoft recommends that one starts
with a clean machine and use it as a basis for the CIP. The New-CIPolicy powershell command
will scan the machine and create a new CIP based on the currently available binaries. Unless oth-
erwise specified, this CIP will run in audit mode allowing the administrator to log any breaches
to the CIP and review them. New-CIPolicy will output a xml file which can be reviewed to make
sure that the generated policy is correct. Once the administrator is happy with the rules in the
xml file, one can then convert the xml file to a binary format which is the actual format used by
Device Guard. To convert the xml file one uses the ConvertFrom-CIPolicy powershell command.
Once any errors have been dealt with, a new policy can be created from the audit logs by us-
ing the -Audit switch when using New-CIPolicy. One can also merge existing policies using the
Merge-CIPolicy powershell command, allowing for easy unification of the audit policy with the
existing one.

Creating a Catalog file

If the system administrator have any unsigned binaries that are necessary to run under UMCI -
catalog files are needed. To create catalog files Microsoft has provided the Package Insepctor tool.
The tool works by monitoring modifications made by applications to the local drive. To monitor
drive C the Package Inspector can be started by using the following command:

PackageInspector . exe S t a r t c :

Once the package inspector is running one should install and run the application to the local drive
which is currently beeing monitored. Once this procedure has been repeated by all unsigned
applications one can stop package inspector by using the stop command:

PackageInspector . exe Stop C: −Name $CatFileName −cdfpath $CatDefName

This will output two files, a catalog file (cat) and a catalog definition (cdf) file. The system
administrator should then sign the catalog file and deploy it using either group policy or the
System Center Configuration manager. After signing the catalog file one must also remember to
add the signing certificate to the CIP.
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2.3 Credential Guard

Credential Guard is a trustlet that was introduced to prevent certain attacks against the Local
Security Authority Subsystem Service (LSASS). A user that had access to the memory of the lsass
process could dump the credentials or manipulate lsass memory in a so called pass-the-hash at-
tack . This attack can be easily performed using public tools such as Mimikatz or Metasploit[6].
Credential Guard introduces a new process LsaIso which stores the hash and credential data in
IUM to prevent access from regular applications. Lsass runs in parallel with LsaIso providing the
main cryptographic protocol services, the main difference is that cleartext information is moved
into LsaIso. Although isolated, LsaIso and Lsass can still communicate using RPC as needed.

Once credential guard is enabled the use of certain authentication protocols will also change.
This means that applications that use NTLMv1, MS-CHAPv2, Digest, or CredSSP cannot use the
sign in credentials for authentication. Applications that use NTLMv1 will no longer work once
Credential Guard is active. For systems that use Kerberos, further restrictions apply. This means
that unsafe Kerberos implementations, such as using only DES encryption, is no longer allowed.
Note that Credential Guard only supports the modern NTLM protocols as well as the Kerberos
protocol. It will not protect credentials provided using different protocols [7].

2.4 Hardware security mechanisms

To fully realize IUM the system has to rely on several hardware mechanisms for system security.
This section takes a deeper look at how these mechanisms work and what security enhance-
ments they offer. For simplicity only Intel architecture is considered, although AMD has similar
protection mechanisms on their architecture.

2.4.1 Intel Vt-x

To realize hardware virtualization Intel introduced a set of new processor instructions known as
the VMX set. This instruction set introduces commands to control virtualization such as entering
and exiting virtualization mode. To control the execution of virtual machines Intel allows the
operating system to register a piece of software called the Virtual-machine monitor (VMM) [8].
The VMM on Windows systems is also known as the hypervisor. To isolate the VMM from the rest
of the operating system virtualization mode features two modes of operation; non-root and root.
Generally the VMM executes in root mode, while guest operating systems operate in non-root
mode. Transitioning from root to non-root is known as a VM entry, while transitioning from non-
root to root is known as a VM exit. The difference between these modes of operation is that the
VMM will have full access to the VMX instructions while certain events and instructions called
by the guest automatically returns control to the VMM through an VM exit. Instructions that will
always cause an VM exit are the VMX instructions and special instructions such as CPUID and
XSETBV.
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To begin VMX operation, VMX is first enabled by enabling the VMXE bit (bit 13) in the CR4
register on the processor. Once the VMXE bit is set to 1 the system can enter VMX operation by
executing VMXON. After this instruction has been performed, the system can no longer change
the VMXE bit until VMX operation is turned off.

Virtual Machine Control Structures

To store the data needed to manage VMX operation at least one virtual machine control structure
(VMCS) is created and stored in a special memory region known as the VMCS region. To handle
multiple virtual machines the processor can create several VMCSs at a time, but only one of them
is considered current at any given time. The information in any given VMCS can be divided into
six main areas:

• The Guest-state Area
Stores information relating to the state of the guest which is updated each time the guest
performs an VM exit. This allows the processor to easily resume the state upon VM entry.

• The Host-state area
Stores state information used to initialize the host upon VM exits.

• VM-execution control
Controls which events and instructions causes an VM exit in non-root mode. This allows the
VMM to set more restrictions on what the guest can do.

• VM-exit control
Stores information related to controlling VM exits.

• VM-entry control
Stores information related to controlling VM entries.

• VM-exit information
Before performing an VM exit the processor will store information related to the cause of the
VM exit in this area. This information is used to determine what the VMM should do after the
VM exit has been performed.

Intel EPT

The Intel extended page-table (EPT) mechanism is Intels version of SLAT. Once EPT is enabled
by setting the VM-exectuion control to 1, the guest-physical addresses are translated using the
special EPT tables instead of performing "traditional" address translation. Just like regular virtual
address space EPT also allows for setting specific privileges of every page, meaning that one can
control which pages the guest can access. Attempting to access restricted memory will result
in an EPT violation causing an VM exit. On a Windows system that uses the secure kernel the
EPT paging structures is used to ensure that the normal kernel cannot access restricted pages
belonging to the secure kernel.
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Intel VT-d

Intel Virtualization Technology for Directed I/O (VT-d) is a set of technology components that
allows for greater control on how a guest communicates with physical hardware. On the earliest
virtual machines the host would emulate all the hardware accessible to the guest which meant
some performance loss. When running a VM Intel VT-d introduces the following capabilities:

• I/O device assignment
This allows the VMM to directly assign a physical I/O device to a VM. This means that the
driver for the device runs directly in the VM and allows for direct commnication with the
device.

• DMA remapping
Allows for address translation on DMA capable devices.

• Interrupt remapping
Adds support for isolation and routing of interrupts from different devices and interrupt
controllers to given VMs.

• Interrupt posting
Supports direct delivery of virtual interrupts to virtual processors.

• Reliability
Allows for logging and reporting DMA and interrupt errors to software.

The DMA remapping feature is the component that allows for protecting Windows device guard
against DMA-attacks by isolating DMA-capable hardware [9]. This isolation works by first assign-
ing every part of physical memory into one or more domains. Then every DMA-capable device is
assigned to at least one domain that it can access. If the device tries to access a domain that it
has not been assigned to, this access is denied.
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3 Memory Forensics on the Secure Kernel

3.1 Memory acquisition on IUM activated systems

One of the main challenges associated with memory forensics on IUM systems is how to capture
a complete memory dump of the system. This section will go through various methods for live
acquisition of memory and the advantages and disadvantages of these methods.

3.1.1 Software acquisition

Software acquisition means running software that will attempt to copy the live contents of the
main memory onto a file on disk. This process is known as a memory dump and the resulting file
is called a memory dump file. The idea is that the memory dump file should represent a perfect
snapshot of the state of the computer at the time of creation. In order to accomplish this the
software has to solve two main problems, it needs sufficient access and it needs to suspend the
system so that the state represents a uniform point in time.

Software that can accomplish these tasks require administrative access and will dump the system
memory onto a file that can later be analyzed with the appropriate software. For Windows there
are several tools that can accomplish this such as Memoryze, Mdd, DumpIt and FTK Imager. The
main advantage of this method is that is well described and should be quite reliable depending
upon the software. One the main disadvantages is that running any kind of software on a live
system will alter the state of the system which is important for the forensic analyst to consider.

Regarding IUM the main problem with software acquisition is that the software can only be
granted normal kernel mode access and as such can not necessarily access the secure kernel and
IUM memory. This means that one can no longer trust traditional memory acquisition to provide
full dumps of system memory.

3.1.2 Hardware acquisition

Hardware acquisition typically rely on a method known as a DMA-attack which means using
hardware that has DMA access to dump the system memory [10]. The advantage of using hard-
ware to dump memory is that there is no reliance on operating system API-calls. Hardware
acquisition can be performed either by using DMA capable systems such as firewire, or using
dedicated hardware such as CaptureGuard 1.

The problem with this method in regards to IUM is that the strictest configuration of IUM sup-
ports IOMMU protections which means that hardware devices no longer have full access to sys-
tem memory. IOMMU’s ensure that devices can only access memory that they themselves have
allocated. This means that hardware acquisition is not sufficient for complete memory dumps.

1https://www.bluerisc.com/captureguard/
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3.1.3 Cold boot attacks

In 2008 a group of researchers at Princeton showed that by cooling the RAM modules they could
recover the data even after the system was shut down [11]. This means that the system can
be turned off, the modules extracted and then inserted into another system while still having
a chance of retaining state. The advantage of this could be that the memory modules could be
inserted into a system without IOMMUs and so the memory could be extracted with full memory
access. The disadvantage of this method is that it appears very unreliable meaning that it will
work well for some systems while not being able to recover any data from other systems [12].
There are also several variables such as the temperature, the way the system was cooled, the
type of ram modules and how long the system was turned off that makes it difficult to asses the
forensic soundness of memory capturing using this method.

3.1.4 System management mode

System management mode (SMM) is a special processor operating mode introduced in the 386SL
line of processors[13]. The main purpose of SMM is to perform management functions such as
handling power management, system errors and TPM functionality. To do this SMM operates at
a high privilege operating mode which has full access to system memory - even hypervisor mem-
ory. If one could execute code at this level this could be quite beneficial for memory forensics
as it will allow blocking all other processor operations, meaning that one could ensure that the
system does not change state during the capturing of the memory dump. Another benefit is the
previously mentioned high privilege level which has full access to system memory. One drawback
of SMM however, is that by default it can only access the lowest 4gb of memory. This problem
can supposedly be solved by enabling physical address extensions (PAE) which can address up
to 64gb of memory [14].

The main problem with SMM is that the system must have a working system management han-
dler installed on the system BIOS in order to execute specific functionality. Since systems running
IUM must have secure boot enabled it means that changing the system BIOS is not trivial and
this makes using SMM to dump memory currently unfeasible.

3.1.5 Nested virtualization

Nested virtualization means running a hypervisor inside one or more hypervisors. The bene-
fit of this is that if hypervisor x runs inside hypervisor y, then from the context of hypervisor
y one would have complete memory access to hypervisor x. Nested virtualization is supported
on newer builds of Windows 10 and opens up for enabling IUM inside a virtual machine using
Hyper-V [15]. Although other virtualization packages support nested virtualization, only Hyper-
V currently supports secure boot in conjunction with nested virtualization. Keep in mind that
Secure Boot is required to fully enable all of Device Guards functionality.

Using nested virtualization is also an option for physical machines running IUM if one can man-
age to break secure boot and load another hypervisor before the Hyper-V hypervisor starts. Al-
though this was the same problem as with SMM, loading another hypervisor does not require
installing a SM-handler as well as triggering an SMI.
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3.2 The usefulness of full memory dumps

Since obtaining memory dumps that contain IUM and secure kernel memory is more technically
challenging, it is worth considering the benefits of acquiring a full memory dump in regards to
forensic investigations. Dumping memory is one of the techniques of live forensics which could
in and itself be considered a less traditional forensic technique. Most digital forensic books fo-
cus more on obtaining forensic artifacts from a disk rather than in depth analysis of live memory.
Live forensics are considered most useful in specific areas such as incident response and malware
analysis [16].

So when considering these two scenarios it is important to think about what information is
contained in IUM and the secure kernel that one excepts to be helpful to the investigation. Al-
though IUM should only contain Microsoft processes, it has been demonstrated that it is possible
to load third party applications in IUM [17]. If it is suspected that malware or other suspicious
processes are running in IUM then one might need to consider obtaining a full memory dump.

Another concern is if there is a suspicion that encrypted information found elsewhere might
be decrypted using information in the memory. Previously one could recover the credentials of
the user by dumping lsass memory to perform analysis. With credential guard the credentials
have been isolated to LsaIso so theoretically one might be able to recover the credentials given
full access to LsaIso memory. As mentioned before, live forensics is still not part of the "standard"
digital forensics procedure as often the disk would supply enough information or a live system is
not available.

3.3 Memory Descriptor Lists and Driver-locked memory

A fundamental aspect of the virtual memory model is that the translation of virtual addresses
will depend upon process context. This creates a problem if a process wishes to allocate memory
to contain a I/O buffer accessible from kernel mode. Since the driver responsible for filling the
I/O buffer can execute at any context, this means that the virtual address used by the process
might be pointing to a different physical address from the one used to fill the buffer. To solve this
problem Windows uses structures known as Memory Descriptor Lists (MDLs). The MDL structure
is defined in wdm.h as:

struct _MDL {

struct _MDL *Next;

CSHORT Size;

CSHORT MdlFlags;

struct _EPROCESS *Process; // Process context for the MDL.

PVOID MappedSystemVa; // Kernel address

PVOID StartVa; // User mode address (if applicable), else equal to MappedSystemVa

ULONG ByteCount; // Total size of the allocation.

ULONG ByteOffset; // Offset into the first page of the allocation.

} MDL , *PMDL;

The MDL structure allows for locking physical memory to allow for consistent access regardless
of context. This allows the kernel module to write directly to physical memory while also sup-
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plying a valid user mode address for the relevant process [18].

The actual size of the MDL structure is 48 bytes, and following the MDL is a list of page frame
numbers (PFNs) of the physical pages described by the MDL. The reason MDLs are important in
the context of virtual machines is that they are used to describe driverlocked memory. Driver-
locked memory is used to guarantee that the physical memory used by the virtual machine is
not paged out by the memory manager on the host machine. During virtual machine creation
the host machine will allocate MDLs using IoAllocateMdl, and locks the pages using MmProbe-
AndLock meaning that data is not paged out before MmUnlockPages is called. One can see how
many pages that is locked in memory at any time by looking at the output produced by the !vm
extension in WinDbg:

Available Pages: 600868 ( 2403472 Kb)

ResAvail Pages: 853568 ( 3414272 Kb)

Locked IO Pages: 0 ( 0 Kb)

Free System PTEs: 4294984542 (17179938168 Kb)

Modified Pages: 15745 ( 62980 Kb)

Modified PF Pages: 15736 ( 62944 Kb)

Modified No Write Pages: 0 ( 0 Kb)

NonPagedPool Usage: 212 ( 848 Kb)

NonPagedPoolNx Usage: 20853 ( 83412 Kb)

NonPagedPool Max: 4294967296 (17179869184 Kb)

PagedPool 0 Usage: 29958 ( 119832 Kb)

PagedPool 1 Usage: 16609 ( 66436 Kb)

PagedPool 2 Usage: 263 ( 1052 Kb)

PagedPool 3 Usage: 259 ( 1036 Kb)

PagedPool 4 Usage: 315 ( 1260 Kb)

PagedPool Usage: 47404 ( 189616 Kb)

PagedPool Maximum: 4160749568 (16642998272 Kb)

Session Commit: 3501 ( 14004 Kb)

Shared Commit: 28186 ( 112744 Kb)

Special Pool: 0 ( 0 Kb)

Shared Process: 8096 ( 32384 Kb)

Pages For MDLs: 1074101 ( 4296404 Kb)

Pages For AWE: 0 ( 0 Kb)

NonPagedPool Commit: 21632 ( 86528 Kb)

PagedPool Commit: 47404 ( 189616 Kb)

Driver Commit: 12014 ( 48056 Kb)

Boot Commit: 25653 ( 102612 Kb)

System PageTables: 418 ( 1672 Kb)

VAD/PageTable Bitmaps: 4502 ( 18008 Kb)

ProcessLockedFilePages: 253 ( 1012 Kb)

Pagefile Hash Pages: 0 ( 0 Kb)

Sum System Commit: 1225760 ( 4903040 Kb)

Total Private: 241513 ( 966052 Kb)

Misc/Transient Commit: 1681 ( 6724 Kb)

Committed pages: 1468954 ( 5875816 Kb)

Commit limit: 4288847 ( 17155388 Kb)

The section denoted "Pages for MDLs" shows driver-locked memory and in this example one can
see that 1074101 physical pages are currently locked. This output is from a system having 8GB
of system memory where 4GB is reserved for running a virtual machine. One can see that the
physical page count for MDLs is a little over 4GB which is what you would expect running a vir-
tual machine which commits 4GB of memory. Although Windows can use driver-locked memory
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for other purposes, usually high use is due to running virtual machines.

Another tool that can be used to display driverlocked memory usage is RAMMAP. RAMMAP
is a tool that divides physical memory usage into several section, having a separate section for
driverlocked memory. The main problem with these tools is that neither tool can tell you which
module is responsible for locking memory. Knowing which module that is responsible for locking
the memory could would make it easier to obtain some idea of what the driverlocked memory
is used for. It is for example reasonable to assume that memory locked by the virtual machine
driver is used for purposes related to handling virtual machines. In this case one is interested in
driverlocked memory that is used to provide physical memory for the virtual machine running
on the system.

When studying driverlocked memory for this project, a somewhat obscure function was dis-
covered that appeared to be tracking per process locked page use.
By setting the DWORD key found at \HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager \Memory Management\TrackLockedPages to 1 this enables more extensive track-
ing of locked memory on a per process basis [19].

Theoretically one should then be able to use the !lockedpages WinDbg extension to reveal this
information. Upon using this command it became apparent that this functionality was no longer
working:

0: kd> !lockedpages ffffe001b547e840

Process: ffffe001b547e840

35 locked pages ...

Unable to get BalancedRoot.RightChild at ffffe001b43810d0

Although the function is no longer working, it appears to still be able to access some infor-
mation related to the number of locked pages. To see if the rest of this information could be
reconstructed manually, the first step is to figure out where it is stored. Since the locked pages
tracker works by tracking information on a per-process level it is perhaps natural that a pointer
to some relevant structure might be found in the EPROCESS block. At offset 0x4b0 the following
promising member can be found:

+0x4b0 LockedPagesList : 0xffffe001 `b43810d0 Void

Dumping the contents of the pointer reveals the following:

0: kd> dq 0xffffe001 `b43810d0

ffffe001 `b43810d0 ffffe001 `b51203a0 00000000 `00000023

ffffe001 `b43810e0 00000000 `00000000 00000000 `00000001

ffffe001 `b43810f0 6e496d4d `021 c0003 00200074 `0065006e

ffffe001 `b4381100 ffffe001 `b43fc010 ffffe001 `b44b53f8

ffffe001 `b4381110 ffffe001 `b4381110 ffffe001 `b4381110

ffffe001 `b4381120 00000000 `00060000 ffffe001 `b4381128

ffffe001 `b4381130 ffffe001 `b4381128 00000000 `00060000

ffffe001 `b4381140 ffffe001 `b4381140 ffffe001 `b4381140

At address ffffe001‘b43810d8 one finds the hexadecimal number 0x23 which corresponds to
the number of locked pages (35) given by the !lockedpages command. Verifying that this holds
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true for all processes, the LockedPagesList appears to be the place where the information on
locked pages is found. Locating a pointer to some structure is a good starting point for further
investigation, now one need to understand which members are part of this structure. Fortunately
Microsoft provides symbol information for several structures, and so a decent start is to search
for structures having the keyword "LOCK" somewhere in it’s name.

0: kd> dt nt!*LOCK*

ntkrnlmp!_KSPIN_LOCK_QUEUE

ntkrnlmp!_IO_STATUS_BLOCK

ntkrnlmp!_IO_STATUS_BLOCK

ntkrnlmp!_WHEAP_INFO_BLOCK

ntkrnlmp!_MI_CONTROL_AREA_WAIT_BLOCK

ntkrnlmp!_OB_HANDLE_REVOCATION_BLOCK

ntkrnlmp!IRPLOCK

ntkrnlmp!_KWAIT_BLOCK

ntkrnlmp!_CM_NOTIFY_BLOCK

ntkrnlmp!_MI_VAD_EVENT_BLOCK

ntkrnlmp!_CM_KEY_CONTROL_BLOCK

ntkrnlmp!_KLOCK_ENTRY

ntkrnlmp!_CM_INTENT_LOCK

ntkrnlmp!_UMS_CONTROL_BLOCK

ntkrnlmp!_LOCK_TRACKER

ntkrnlmp!_EX_PUSH_LOCK_AUTO_EXPAND_STATE

ntkrnlmp!_PLUGPLAY_EVENT_BLOCK

ntkrnlmp!_ETW_REF_CLOCK

ntkrnlmp!_KLOCK_ENTRY_LOCK_STATE

ntkrnlmp!_WAIT_CONTEXT_BLOCK

ntkrnlmp!_CM_NAME_CONTROL_BLOCK

ntkrnlmp!_HBASE_BLOCK

ntkrnlmp!_INTERLOCKED_RESULT

ntkrnlmp!_CM_CELL_REMAP_BLOCK

ntkrnlmp!_RTL_SRWLOCK

ntkrnlmp!_LOCK_HEADER

In this listing one can see several datastructures related to synchronization, there are however
two promising structures that deserves further investigation. The first interesting structure is the
LOCK_HEADER which has the following members:

0: kd> dt _LOCK_HEADER

nt!_LOCK_HEADER

+0x000 LockTree : _RTL_AVL_TREE

+0x008 Count : Uint8B

+0x010 Lock : Uint8B

+0x018 Valid : Uint4B

The Count refers to the number of pages locked by the process, while the LockTree is a binary
search tree containing LOCK_TRACKER nodes. By checking all the processes one can see that the
LockedPagesList member fits nicely with the LOCK_HEADER structure. Next one can take a look
at the LOCK_TRACKER structure:

0: kd> dt _LOCK_TRACKER ffffe001 `b51203a0

nt!_LOCK_TRACKER

+0x000 LockTrackerNode : _RTL_BALANCED_NODE

+0x018 Mdl : 0xffffe001 `b4767c60 _MDL

+0x020 StartVa : 0x0000013a `d1042000 Void

+0x028 Count : 3

+0x030 Offset : 0xf98

+0x034 Length : 0x201a

+0x038 Page : 0x12faa9
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+0x040 StackTrace : [8] 0xfffff801 `be85b04c Void

+0x080 Who : 3

+0x088 Process : 0xffffe001 `b547e840 _EPROCESS

To verify that one is indeed looking at a valid LOCK_TRACKER structure one should be able
to trace the process EPROCESS block back to the process that contained the LockedPagesList.
Working from these assumptions it is easy to verify that indeed the locked pages used by a process
is tracked by the LOCK_TRACKER and LOCK_HEADER structures. The entire LockedPagesList
structure is an AVL tree consisting of several LOCK_TRACKER nodes. By traversing the AVL tree
one should be able to get a complete overview of the pages locked by the process. To see which
processes that uses this lock tracking functionality a WinDBG extension was built to locate every
process that had locked pages listed in the LockedPagesList:

0: kd> !findlockedpages

Listing all processes that have locked pages ...

Process: ffffe001b18a2700 [System] ,locked pages: 3874

Process: ffffe001b4679080 [csrss.exe] ,locked pages: 4368

Process: ffffe001b4675080 [wininit.exe] ,locked pages: 2

Process: ffffe001b46fe840 [services.exe] ,locked pages: 2

Process: ffffe001b462d840 [lsass.exe] ,locked pages: 3

Process: ffffe001b476e300 [svchost.exe] ,locked pages: 2

Process: ffffe001b4820080 [dwm.exe] ,locked pages: 16386

Process: ffffe001b478c600 [svchost.exe] ,locked pages: 5

Process: ffffe001b4786840 [svchost.exe] ,locked pages: 4

Process: ffffe001b4a69740 [spoolsv.exe] ,locked pages: 2

Process: ffffe001b5138840 [NisSrv.exe] ,locked pages: 898

Process: ffffe001b3fa9840 [explorer.exe] ,locked pages: 69

Process: ffffe001b376a840 [ShellExperienc] ,locked pages: 2034

Process: ffffe001b43fe440 [SearchIndexer .] ,locked pages: 1

Process: ffffe001b5249080 [SearchUI.exe] ,locked pages: 269

Process: ffffe001b547e840 [vmwp.exe] ,locked pages: 35

WinDBG support extensions as dlls and these extensions can be loaded at any time by using
the .load command. Once loaded one can simply type the name of the function that you want to
execute. The !findlockedpages function works by traversing the active process list and looking
for a process that has a locked pages count larger than 0. What was interesting was to compare
the result when you wanted to compare the number of locked pages in use on a system that has
an active VM versus a system with no VM. What was apparent is that the number of locked pages
did not go up significantly when the virtual machine was active, meaning that these locked pages
is not tracked by this structure.

After studying these structures for some time it became apparent that the pages locked in use by
a VM could not be found by tracking pages using this method. The focus thus shifted to studying
the actual PFNs themselves to see if they could reveal any significant pattern.
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3.4 PFNs and the PFN database

Every physical page in system memory is associated with a physical frame number (PFN). Each
PFN is implemented by a MMPFN structure having the following format:

nt!_MMPFN

+0x000 ListEntry : _LIST_ENTRY

+0x000 TreeNode : _RTL_BALANCED_NODE

+0x000 u1 : <unnamed -tag >

+0x008 PteAddress : Ptr64 _MMPTE

+0x008 VolatilePteAddress : Ptr64 Void

+0x008 PteLong : Uint8B

+0x010 OriginalPte : _MMPTE

+0x018 u2 : _MIPFNBLINK

+0x020 u3 : <unnamed -tag >

+0x024 NodeBlinkLow : Uint2B

+0x026 Unused : Pos 0, 4 Bits

+0x026 VaType : Pos 4, 4 Bits

+0x027 ViewCount : UChar

+0x027 NodeFlinkLow : UChar

+0x028 u4 : <unnamed -tag >

Although not fully documented, the PFN structure contains information regarding page state and
page attributes. To contain every MMPFN structure Windows reserves the 512GB memory range
between 0xfffffa80‘00000000 and 0xfffffaff‘ffffffff [20]. This memory range is also known as the
PFN database.

To output the contents of the PFN database one can use the WinDbg command !address -p
which also presents the state of the associated page. Below follows example output of the 11
inital pages found in the PFN database.

PFN Address PageLocation Attributes Ref Cach Usage

================================================================================

1 fffffa8000000030 6: ActiveAndValid -M---------- 1 1:C Private

Process ffffe001b18a2700 [System]

2 fffffa8000000060 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

3 fffffa8000000090 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

4 fffffa80000000c0 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

5 fffffa80000000f0 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

6 fffffa8000000120 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

7 fffffa8000000150 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

8 fffffa8000000180 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

9 fffffa80000001b0 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

a fffffa80000001e0 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]

b fffffa8000000210 6: ActiveAndValid ------------ 2 1:C DriverLocked

Process fffff801bea1fa40 [Idle]
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Useful elements of the PFN includes its page location, usage as well as the additional information
relating it to the associated process. The page location refers to the current state of the page. In
Windows 10 a page can exist in one of 8 states where the state describes gives some information
on the use of the page. Windows maintains lists over all the pages in every state allowing the
kernel to keep track of available memory. Below follows a table containing all the valid memory
states, as well as a description on what the state means.

Page state Description

Zeroed

A page in this state has previously been in use by another pro-
cess before returning to the standby list. The zero page writer has
overwritten the contents with zeroes to ensure that the page is
ready to be allocated by another process.

Free A page that has never been used. Ready to be used by any process.

Standby

A page that has previously existed in the working set of another
process. The contents of the page is still present and the page must
be zeroed before allowing another process to allocate it. Standby
pages can be used again by the same process without zeroing, a
situation known as a soft page fault.

Modified
Similar to the standby state. The only difference is that this page
contains modified data that has not been written to disk.

ModifiedNoWrite
Similar to the modified state, only in this situation the data does
not need to be written to disk.

Bad

Windows maintains a list over all the physically defective pages in
system memory. This list is maintained by monitoring bad mem-
ory writes or reads. This state can also be used internally by the
kernel to handle state transitions [21]

ActiveAndValid A page currently in the working set of an active process.

Transition
A temporary state denoting a page in the process of performing
an I/O operation.

The memory state gives a basic understanding on what the page is currently used for. Know-
ing that a page is in the Active state does not tell you more on what it is used for, only that it is
in active use. Fortunately WinDbg is able to determine more on the page usage which allows for
understanding page usage further. By reverse engineering how WinDbg determines the usage,
one can find that there are 25 different page usages. The page usage is determined in the KmPfn-
StrPageType function in the general ext.dll WinDbg extension. Each page usage is determined by
returning a specific integer value.
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In the context of this project the most interesting usage types are the pages marked MDL or
DRIVERLOCKED. The way that WinDbg determines if a page is MDL or driverlocked is by looking
at the unnamed u4 member in the MMPFN structure. The u4 member is in fact a substructure
containing the following members:

+0x000 PteFrame : Pos 0, 36 Bits

+0x000 Channel : Pos 36, 2 Bits

+0x000 Unused1 : Pos 38, 1 Bit

+0x000 Unused2 : Pos 39, 1 Bit

+0x000 Partition : Pos 40, 10 Bits

+0x000 Spare : Pos 50, 2 Bits

+0x000 FileOnly : Pos 52, 1 Bit

+0x000 PfnExists : Pos 53, 1 Bit

+0x000 PageIdentity : Pos 54, 3 Bits

+0x000 PrototypePte : Pos 57, 1 Bit

+0x000 PageColor : Pos 58, 6 Bits

+0x000 EntireField : Uint8B

The way that WinDbg determines whether or not a PFN is MDL or driverlocked is by looking at
the PteFrame. Any PteFrame having the following bitmask:

00001111 11111111 11111111 01101000 0000

Will be either MDL or Driverlocked memory. The final test to determine whether the usage type
is driverlocked or MDL is done by looking at the owning process.

Since we are interested in knowing which pages are used in the context of driverlocked memory
it is interesting that there is a separate type that denotes driverlocked memory. What is also in-
teresting is that the process that "owns" the page is also known. This means that we can separate
driverlocked memory on the process level, making it easier to focus on driverlocked memory
related to our interests. One thing that can be somewhat confusing is that the output separates
between the driverlocked and MDL types. The only difference between the two types is whether
the owning process is the idle process or not. Driverlocked memory owned by the Idle process
is marked as driverlocked, while driverlocked memory owned by any other process is marked
as MDL. In the end we want to focus on driverlocked memory allocated by the virtual machine,
so we focus on driverlocked memory owned by vmwp.exe, the virtual machine worker process.
Upon searching the entire PFN database for all driverlocked pages owned by vmwp one finds
that the total pages are enough to describe the virtual machine, albeit slightly larger. Thus sim-
ply searching the PFN database is both slow, since it has to search the entire 512GB memory
area, and not specific enough to only contain pages strictly owned by the virtual machine.

3.5 Recreating the virtual machine

At the beginning of this chapter several methods for obtaining a memory dump containing every
page used by the secure kernel and IUM were discussed. For this thesis the nested-virtualization
approach is used. The reason for choosing this method is that it makes it easy to obtain consistent
results and it also does not require tampering with Windows or firmware. This approach requires
us to recreate the complete memory space of the virtual machine based on a dump of the host
physical machine. The end goal is to recreate the virtual machine from the host memory dump
in order to analyze it.
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Remember that the host has unrestricted access to the hypervisor running in the VM rendering
all pages in the VM fully accessible. Remember that the software responsible for acquiring the
VM-memory is ultimately responsible for releasing it, meaning that it is reasonable to expect this
information to be stored somewhere.

A reasonable first guess is that this information is stored somewhere in the system heaps, so
one can first take a look at the non-paged pool allocations:

NonPaged

Tag Allocs Used

EtwB 252 13918240 Etw Buffer , Binary: nt!etw

VdMm 36 9707776 VM-VID , Binary: Vid.sys

MmPb 3 2621440 Paging file bitmaps , Binary: nt!mm

KDNF 1537 2385424 Network Kernel Debug Adapter ,Binary: kdnic.sys

Thre 1050 2225888 Thread objects , Binary: nt!ps

VoSm 32 1903824 Bitmap allocations , Binary: volsnap.sys

Pool 6 1726016 Pool tables , etc.

File 4562 1660256 File objects

Ntfx 3684 1241696 General Allocation , Binary: ntfs.sys

VsRD 1034 1164800 VM -NS(RNDIS device) , Binary: vmswitch.sys

AmlH 2 1048576 ACPI AMLI Pooltags

One of the highest consumers of non-paged pool is tagged by the VdMm pool tag which is owned
by the Virtualization Infrastructure Driver (Vid.sys). Another thing that is interesting to note is
that the pooltag is suffixed by Mm which often is an abbreviation for memory management in
the Windows API. These two factors means that it would be interesting to take a closer look at
the allocations done by this pool tag.

Scanning only the large pool allocation table, one finds the following allocations with the VdMm
tag:

ffffe001b57ea000 : tag VdMm , size 0xc000 , Nonpaged pool

ffffe001b6400000 : tag VdMm , size 0x400000 , Nonpaged pool

ffffe001b55a8000 : tag VdMm , size 0x4030 , Nonpaged pool

ffffe001b55ad000 : tag VdMm , size 0x4000 , Nonpaged pool

ffffe001b6000000 : tag VdMm , size 0x400000 , Nonpaged pool

ffffe001b55f1000 : tag VdMm , size 0x10000 , Nonpaged pool

ffffe001b5a63000 : tag VdMm , size 0x80000 , Nonpaged pool

ffffe001b5ae3000 : tag VdMm , size 0xc000 , Nonpaged pool

ffffe001b59ef000 : tag VdMm , size 0x10000 , Nonpaged pool

ffffe001b5ea5000 : tag VdMm , size 0x80000 , Nonpaged pool
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Most noteworthy is the two largest allocations, each 4 194 304 bytes (0x400000). Looking at
the contents reveals the following:

ffffe001 `b6400000 10400000 `001 c2200 10400000 `001 c2201

ffffe001 `b6400010 10400000 `001 c2202 10400000 `001 c2203

ffffe001 `b6400020 10400000 `001 c2204 10400000 `001 c2205

ffffe001 `b6400030 10400000 `001 c2206 10400000 `001 c2207

ffffe001 `b6400040 10400000 `001 c2208 10400000 `001 c2209

ffffe001 `b6400050 10400000 `001 c220a 10400000 `001 c220b

ffffe001 `b6400060 10400000 `001 c220c 10400000 `001 c220d

ffffe001 `b6400070 10400000 `001 c220e 10400000 `001 c220f

What is interesting about the data is that the low 32 bits appear to be sequential and they fit the
size of an PFN. One can test this assertion by checking if the data correspond to a valid PFN:

Page Frame Number: 1c2200 , at address: fffffa8005466000

Page Location: 6 (ActiveAndValid)

PTE Frame: 0000000 ffffffffd

Attributes: Cached

Usage: MDL; Process ffffe001b547e840 [vmwp.exe]

After some testing it becomes apparent that these addresses all correspond to valid PFNs used
for driverlocked memory owned by the virtual machine worker process (wmwp). In this example
the virtual machine in question had 4GB of reserved physical memory. Given that a page is 4kb
then the number of pages required to map this address space would be:

Pages =
addressSpace

pageSize
=

4294967296

4096
= 1048576 (3.1)

With two allocations, each 4 194 304 bytes, in which every entry is 8 bytes the total number of
pages one can describe is:

Pages =
allocSize

entrySize
=

2 · 4194304
8

= 1048576 (3.2)

Which is the exact size needed to map a 4GB address space. Testing with virtual machines of dif-
ferent sizes confirms that this changes the size of the allocations accordingly which once again
confirms our suspicions that these PFNs are used to map virtual machine memory.

At this point one should dump these PFNs to disk so that further analysis can be performed.

3.5.1 Recreating the virtual address space

Having acquired a memory dump of the VM, a new problem surfaces. We now have a raw
memory dump that has none of the virtual address space structure implemented by the operating
system. Since pointers used by the operating system will also use virtual addresses it is highly
important to understand how these are translated properly in order to understand what the
operating system is doing. To explain virtual address translation the following definitions are
useful:

Definition 3.5.1. The logical address space is a continuous address space that describes every
address in the main computer memory. These means that a machine having 4GB of RAM has a
4GB logical address space numbered sequentially.
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Definition 3.5.2. The physical address space is the address space used by Windows to refer to
physical memory. The physical address space includes memory from all available devices, not
just main memory. For this reason one cannot assume that a address in the logical address space
directly translates to a physical address. From the Windows perspective the logical address space
is divided into n partitions that can be defined by the vector x = (x1, x2, ...xn). To map any
logical address into the physical address one can define a vector y = (y1, y2, ...yn) that tracks
starting offsets. The physical address space is then defined by the vector z = x+ y.

Definition 3.5.3. The virtual address space is the main address space used by Windows processes
and the Windows kernel. As such, most pointers will refer to virtual addresses and every process
will have their own virtual address space. Translating a physical address into a virtual address is
done through a set of lookup tables known as page tables. To start translation each process keeps
track of the physical address of the initial page table, after a context switch this address is loaded
into the CR3 register for the current processor. For Intel x86-64 architecture the translation
process consists of four page tables laid out like this:

(CR3) → PXE → PPE → PDE → PTE (3.3)

With these definitions in place it is clear that we need to find the linear map from logical to
physical address space and then find the page tables necessary for virtual address space trans-
lation. The easiest way of finding the physical address space layout is by using the SysInternals
tool RAMMAP.

Figure 5: Showing how the physical ranges are laid out on a virtual machine with 4GB of physical memory.

To perform virtual address translation one need to find the page directory of a valid KPRO-
CESS block since this will contain the physical address to begin translation. The simplest way
of achieving this is by searching the memory dump for valid pool allocations with the pool tag
"Proc". Pool allocations less than the size of a page is allocated with a pool header containing the
pool tag. Note that the pool header itself takes up 16 bytes so the allocation can not be exactly
the size of a page.
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The pool header is laid out like this:

nt!_POOL_HEADER

+0x000 PreviousSize : Pos 0, 8 Bits

+0x000 PoolIndex : Pos 8, 8 Bits

+0x000 BlockSize : Pos 16, 8 Bits

+0x000 PoolType : Pos 24, 8 Bits

+0x000 Ulong1 : Uint4B

+0x004 PoolTag : Uint4B

+0x008 ProcessBilled : Ptr64 _EPROCESS

+0x008 AllocatorBackTraceIndex : Uint2B

+0x00a PoolTagHash : Uint2B

Since the EPROCESS and KPROCESS block is always allocated in the non-paged pool one can
also specify that the pool type should be 2, and further that the index should be 0. The block
size can be determined empirically, but it needs to be at least the size of the OBJECT HEADER +
POOL HEADER and EPROCESS block[22]. This allows us to make ballpark estimations on block
sizes thus allowing us to reject blocksizes that are either too small or too large. After having
found a viable EPROCESS block, the page directory can be retrieved and virtual addresses can be
translated. The kernel address space is shared by all processes meaning that any kernel address
can be translated using the page directory of any process.

3.5.2 Recreating the secure kernel address space

The description given above works well for recreating the normal kernel address space, but since
the secure kernel operates in its own address space one need to recreate this as well. Since
the secure kernel does not implement the traditional EPROCESS blocks nor uses pool headers
one can not simply follow the same technique, meaning that a different strategy is required.
The first thing one need to start virtual address translation in the address of the page directory.
A promising candidate can be found by searching for any variables that reference the word
"pagedirectory".

0:000 > x /d /N securekernel !* pagedirectory*

00000001 `40059038 securekernel!SkmiLoaderPageDirectoryBase

00000001 `40059118 securekernel!ShvlpPageDirectoryBase

The most interesting candidate is the ShvlpPageDirectoryBase, located at offset 0x59118 from the
base. To find the base of the secure kernel one can simply do a brute force search using the 16
first opcodes from the secure kernel entry point. In this example the assembly translates into the
following string of opcodes: "48 83 ec 48 48 8b 05 6d 4b 05 00 48 33 c4 48 89". Searching for
this pattern gives one hit at physical address 0x024AF150. Knowing that the entrypoint is offset
by 0x1150 one can compute where ShvlpPageDirectoryBase is located:

physAdrVar = (physAddr− entryOffset) + pageDirOffset (3.4)

Once the correct context is set, one can finally translate virtual addresses in the secure kernel ad-
dress space. Secure processes still retain their own address space in user mode, so it is important
to remember to change the context for user mode addresses.

27



Live Forensics on the Windows 10 secure kernel.

4 Secure Kernel Internals

4.1 Secure Kernel Architecture

The secure kernel is likely based on the normal Windows 10 kernel, albeit a much simpler version
of it. The secure kernel is built to provide only basic functionality such as virtual memory and
thread dispatching. Compared to the normal kernel it lacks several executive components such
as the I/O manager, the configuration manager, the security reference monitor, the PnP manager
and the power manager. This means that the secure kernel can not function on its own, but has
to rely on functionality found in the normal kernel to operate. The advantages of this simplified
architecture is that it reduces the possible attack surface and allows the secure kernel to focus
on providing process isolation. The secure kernel can also load kernel extensions which extends
the basic functionality as needed.

To begin investigating the secure kernel it is useful to understand the naming conventions used
when naming functions and global variables. The Windows API naming convention generally
starts with a prefix describing the component responsible for the routine. As an example, the
normal kernel uses the "Pp" prefix to denote functionality related to the Plug and Play manager.
To denote internal functions one either modifies the last letter in the prefix to include an "i" or
adds the letter "p" at the end of the prefix. The main prefixes used in the secure kernel can be
found in the table below. Since the secure kernel has no way of accessing the registry or files

Prefix Description
Skps Process support functions.
Skob Object manager functionality.

Skmm Memory manager functionality.
Sk, Ski, Skp, Ske Secure kernel functionality.

Ium, Iump Isolated user mode functionality.
Nk Alternate prefix for functionality imported from the normal kernel.

directly, its configuration has to be loaded by the normal kernel. Once read into memory, the se-
cure kernel will map the memory into its own address-space by creating section objects to store
the data. Before the section object is successfully created the secure kernel will verify the image
to make sure that no malicious or corrupt images are loaded.

4.1.1 Secure kernel extensions

The secure kernel on its own does provide only basic functionality needed to create virtual ad-
dress spaces and handle threads and process objects. The secure kernel can also load kernel
extensions, just like the normal kernel, that will introduce new functionality that allows the
kernel to do more advanced tasks. What kernel extensions are loaded will depend upon the
configuration of the secure kernel. The currently supported kernel extensions are:
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• Skci.dll - Secure Kernel code integrity

• cng.sys - Next Generation Cryptography

Skci is the module responsible for implementing Device Guard, while cng provides cryptographic
functions. The kernel keeps track of all the currently loaded modules in the global variable
SkLoadedModuleList. This variable is a pointer to a doubly linked list containing information
about all the loaded modules. Each entry in the list consists of a _KLDR_DATA_TABLE_ENTRY
structure containing the following information:

3: kd> dt ntkrnlmp!_KLDR_DATA_TABLE_ENTRY

+0x000 InLoadOrderLinks : _LIST_ENTRY

+0x010 ExceptionTable : Ptr64 Void

+0x018 ExceptionTableSize : Uint4B

+0x020 GpValue : Ptr64 Void

+0x028 NonPagedDebugInfo : Ptr64 _NON_PAGED_DEBUG_INFO

+0x030 DllBase : Ptr64 Void

+0x038 EntryPoint : Ptr64 Void

+0x040 SizeOfImage : Uint4B

+0x048 FullDllName : _UNICODE_STRING

+0x058 BaseDllName : _UNICODE_STRING

+0x068 Flags : Uint4B

+0x06c LoadCount : Uint2B

+0x06e u1 : <unnamed -tag >

+0x070 SectionPointer : Ptr64 Void

+0x078 CheckSum : Uint4B

+0x07c CoverageSectionSize : Uint4B

+0x080 CoverageSection : Ptr64 Void

+0x088 LoadedImports : Ptr64 Void

+0x090 Spare : Ptr64 Void

+0x098 SizeOfImageNotRounded : Uint4B

+0x09c TimeDateStamp : Uint4B

For forensic purposes the most interesting entries is the DllBase pointing to the base virtual
address where the modules is loaded, as well as the BaseDllName containing the name of the
loaded module. The forensic toolkit contains the !sklm command to easily display all the cur-
rently loaded modules:

>!sklm 0xFFFFF8024AE4CFC0

Number of arguments: 1

Command: !sklm.

Input string 0xFFFFF8024AE4CFC0 , output number FFFFF8024AE4CFC0

--------------Loaded modules ------------------

Starting Address: Ending Address: Name:

FFFFF8024AE9D000 FFFFF8024AF35000 cng.sys

FFFFF8024AE70000 FFFFF8024AE9D000 skci.dll

FFFFF8024ADF5000 FFFFF8024AE70000 securekernel.exe

As can be seen from the output the secure kernel also references itself as a loaded module. As
the cng module is also found in the normal kernel the most interesting extension is skci.dll. The
next section will cover how this module is actually implemented.

4.1.2 Device Guard implementation

As previously mentioned the device guard portion of the secure kernel is implemented in a
separate module, skci.dll. When loading the module it works the way a regular WDM driver
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would, the kernel verifies the module and then calls the DriverEntry function when loaded. Once
loaded, the kernel routine SkmmInitalizeCodeIntegrity calls SkciInitalize which will enable device
guard verification. Successful completion of SkciInitalize includes the following steps:

1. Testing the encryption system. (CiFipsCheck)

2. Loads the active CIP policy by calling CiInitalizePolicyFromPolicies. This function will perform
a series of substeps. The first of these substeps includes initializing several global variables,
reading active policies from the secure boot firmware and finally reading the actual CIP binary
by calling CipInitalizeSiPolicy.

3. Sets up the encryption system used to verify images. (MinCrypK_Initalize)

4. Activates the encryption system.

5. If catalog files are available, these files are loaded and verified.

As with the secure kernel skci also uses several prefixes to name the functions and variables. The
most notable prefixes are:

Prefix Description
Ci Main device guard functionality for enforcing code integrity in the secure kernel.
g_ Global variable.

SymCrypt Symmetric encryption and hashing functionality
SIPolicy Functionality specific to parsing and enforcing the CIP.

Min The minimal encryption system
Skci General device guard functionality

It is important to keep in mind these prefixes as they explain the context that the operation is
taking place in. As an example SIPolicyValidateImage and SkciValidateImageData performs oper-
ations in a different context although their names are quite similar. The first function validates
any image launched in the normal kernel, while the second is related to validating secure kernel
images.

4.2 Secure Kernel Objects

Secure Kernel objects (SKOs) are objects unique to the secure kernel. The object concept has
existed since the beginning of Windows NT and offers a way for the operating system to keep
track of the resources available to the system. The specific component of the operating system
that is responsible for creating, deleting, protecting and tracking objects is known as the object
manager. In Windows 7 the number of different object types governed by the object manager had
grown to 4242[23], meaning that the operating system uses objects quite extensively. The secure
kernel also has an object manager, but supports fewer objects and a different object structure.
Since the object structure is quite different this section will provide an overview of the details on
the secure objects. For a forensic investigator it is useful to understand secure objects since they
give a good insight into what resources the operating system was using at the time.

30



Live Forensics on the Windows 10 secure kernel.

All SKOs are created by calling SkobCreateObject and destroyed once the number of references
reaches zero, similar to how objects are handled in the normal kernel. Unlike traditional objects,
each SKO starts with a 16 byte header having the following structure:

SKO_HEADER:

+0x000 Tag: UInt4B , (Always 0x534B4F42)

+0x004 NoReferences: UInt4B

+0x008 ObjectType: OBJECT_TYPE (Pointer)

The object tag translates to the ASCII string "BOKS" and is the same for every object. This means
that it would be easy to locate every SKO by searching for this tag. The second entry in the SKO
header keeps track of the number of references, this is always initalized to 1 by SkobCreateObject
and can be increased and decreased using SkobReferenceObject and SkobDereferenceObject. Finally
the object header contains a 64 bit pointer to a OBJECT_TYPE structure that is specific to the
object that is created. The OBJECT_TYPE structure itself has the following general layout:

OBJECT_TYPE:

+0x000 Destructor: UInt8b

+0x008 Size: (Low 32 bits)

The destructor member is a pointer to the routine responsible for cleanup when the reference
count reaches 0. The objects currently supported by the secure kernel are the following:

Object name Destructor Size (in bytes) Implementation module
Image Section SkmiDeleteImage 96 securekernel.exe
Process SkiDeleteProcess 320 securekernel.exe
Thread N/A 168 securekernel.exe
Secure Allocation SkmiDeleteSecureAllocation 32 securekernel.exe
Worker Factory IumRemoveWorkerFactory 64 securekernel.exe
Event N/A 64 securekernel.exe
Catalog SkciDeleteCatalog 8 skci.dll

4.2.1 Image Section Objects

Section Objects are created by calling SkmmCreateSecureImageSection to map the desired image
file into memory. The OBJECT_TYPE for these objects is the SkmiImageType. Although section
objects are created for any mapped file in the context of the normal Windows kernel, trustlets
cannot do file I/O so the only type of mapped files appear to be images. As a consequence of
the secure kernel beeing unable to do file I/O the normal kernel has to read the image into
memory before the secure kernel maps this view by calling SkmmMapDataTransfer. To ensure
that the image is valid the loaded image section is verified, if verification fails SKMI_BAD_IMAGE
is called. The standard size for section objects are 96 bytes and although their structure has
not been mapped out entirely, the most interesting data is two pointers right at the start of the
structure. These pointers point to starting and ending address of the page table entries of the
mapped data.
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4.2.2 Processes

Processes are created by calling IumInvokeSecureService. The OBJECT_TYPE for processes is the
SkeProcessType. As understanding processes is important from an forensic perspective they will
be covered in greater detail in the next section.

4.2.3 Threads

Threads are created by the SkiCreateThread internal function which is used by both SkCre-
ateThread and SkeInitalizeThreadPool to create threads. The OBJECT_TYPE for threads is SkeThread-
Type. More information about threads can be found in the next section.

4.2.4 Secure Allocations

Created by calling SkmmCreateSecureAllocation. The object type is the SkmiSecureAllocationType
and the default size is 32 bytes. During memory forensics of a machine running the secure kernel
no secure allocations could be located, meaning that this is not the preferred way of allocating
memory. One possible use for secure allocations is to allocate catalog files used by HVCI. The way
that catalog files are created is by first allocating a Secure allocation object and then converting it
by using SkmmConvertSecureAllocationToCatalog. This creates a catalog object that contains the
verification data necessary for ensuring code integrity.

4.2.5 Worker Factories

Worker factories is a mechanism that allows for implementing user-mode thread pools in Win-
dows. This thread-pool consists of one or more worker threads that are dynamically allocated as
needed by the kernel. The secure kernel imports NtCreateWorkerFactory from the normal kernel
meaning that is ultimately the normal kernel that is responsible for creating the Worker Factory
object. The OBJECT_TYPE for the worker factory object is SkeWorkerFactoryObjectType and the
size of the object is 64 bytes.

4.2.6 Events

Event objects in the secure kernel offer a seemingly reduced version of the event functionality
available to the normal kernel. In fact the secure kernel do not have functionality to create events
directly and have to rely on the normal kernel to create the actual object. This event object is
represented in the secure kernel as the SkeShadowSyncObjectType.

4.2.7 Catalogs

The catalog type is not directly supported by the secure kernel itself, but added by the skci
module. All catalog objects is referenced in a table pointed to by g_CatalogTable, where the
OBJECT_TYPE for each object is SkciCatalogType. Catalog objects contain the actual information
contained in the catalog files on disk. Since the secure kernel cannot access files directly, the file
has to be opened by the normal kernel and the memory copied into the catalog object. Catalog
objects are used to verify images that has no digital signature. For more information on catalogs
see section 2.2.4.
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4.2.8 Using the SKFT to locate secure kernel objects

The SKFT can use the !skob command to do a brute force scan of the memory dump for SKOs that
has a valid header. The !skob command will among other things, output the resulting statistic of
the search.

Statistics:

Number of processes: 2

Number of images: 110

Number of events: 11

Number of threads: 11

Number of Secure Allocations: 0

Number of Worker Factories: 1

Number of Catalogs: 30

Number of Unknowns: 2

This is the output produced from the test machine running device guard and credential guard.
The two processes is the secure kernel process and the credential guard process. One of the most
prevailent objects are image section objects, totaling 110 instances. The unknowns are false
positives that matches the search pattern, but are not valid SKOs.

4.3 Secure processes and threads

Just like the normal kernel, the secure kernel facilitate a simple system to manage processes
and threads. For every process or thread created, the kernel will create a object that contains
information specific to the entity. The size of each process object is 320 bytes, while the thread
object is 168 bytes. The data in the objects contain some of the same information found in the
normal kernel objects, but the structure is different. As the structures are not documented this
section will provide information on some of the members of each respective object.

4.3.1 Secure processes and trustlets

Processes that run in IUM are known as trustlets and they are handled by the secure kernel
similar to the familiar processes in the normal kernel. As in the regular kernel the kernel is also
responsible for maintaining data structures for each process, containing information specific to
the process. A brief overview of how these structures are laid out will be given later in this
section, but the first thing to focus on is how processes are created.

Trustlet creation

After creating the initial process object, the kernel calls SkeInitalizeProcess which will first initial-
ize the attributes related to the Trustlet. These attributes are read from the actual file on disk
meaning that the executable must be read by the normal kernel and read by calling SkRead-
NtosMemory. Once the initial attributes have been read, the kernel will attempt to execute the
executable by calling IumInitalizeProcess.
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IumInitalizeProcess must perform several steps to load the executable and start the process.
These basic steps are:

1. Create a image section object that will contain the process image.

2. Create the Handle Table

3. Map the process image into memory

4. Read policy metadata

5. Create the process environment block (PEB).

6. Create the memory heap used by the process.

Once IumInitalizeProcess finishes, the process object is added to the process list - SkiProcessList.
The SkiProcessList is a doubly linked datastructure containing the addresses of every SKPROCESS
structure active in IUM. Using the secure kernel forensic toolkit one can see how to get this
listing:

>!dv 0xFFFFF8024AE4F3F0

Number of arguments: 1

Command: !dv.

Input string 0xFFFFF8024AE4F3F0 , output number FFFFF8024AE4F3F0

FFFFF8024AE4F3F0: FFFF908000090218 FFFF908000090218 . . . . . . . . . . . . .

. . .

FFFFF8024AE4F400: 0000000000000000 0000000000000000 . . . . . . . . . . . . .

. . .

FFFFF8024AE4F410: 0000000000000000 0000000000000000 . . . . . . . . . . . . .

. . .

FFFFF8024AE4F420: 0000000000000000 0000000000000000 . . . . . . . . . . . . .

. . .

FFFFF8024AE4F430: 0000000000000000 0000000000000000 . . . . . . . . . . . . .

. . .

FFFFF8024AE4F440: 0000000000000000 0000000000000000 . . . . . . . . . . . . .

. . .

FFFFF8024AE4F450: 0000000000000000 0000000000000000 . . . . . . . . . . . . .

. . .

FFFFF8024AE4F460: 0000000000000000 0000000000000000 . . . . . . . . . . . . .

. . .
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Here the process list is located at 0xFFFFF8024AE4F3F0 and in this example only a single pro-
cess run in IUM meaning that the flink and blink is the same. The SkiProcessList pointer is offset
at 0x28 in the SKPROCESS structure and it is this offset that is referenced in the SkiProcessList.
To read the start of SKPROCESS structure we simply subtract by 0x28.

>!sub 0xFFFF908000090218 0x28

Number of arguments: 2

Command: !sub.

Input string 0xFFFF908000090218 , output number FFFF908000090218

Input string 0x28 , output number 0000000000000028

Result: 0xFFFF9080000901F0

>!dv 0x0xFFFF9080000901F0

Number of arguments: 1

Command: !dv.

Input string 0x0xFFFF9080000901F0 , output number FFFF9080000901F0

FFFF9080000901F0: 00000000000000 A3 0000000000000000 . . . . . . . . . . . . .

. . .

FFFF908000090200: 0000000000000001 6A57644D872835AC . . . . . . . . . 5 ( . M

d W j

FFFF908000090210: 87 F370584B4F92E0 FFFFF8024AE4F3F0 . . O K X p . . . . . J .

. . .

FFFF908000090220: FFFFF8024AE4F3F0 FFFF9080000B2D00 . . . J . . . . . - . . .

. . .

FFFF908000090230: FFFF9080000C4260 FFFFE001823CE080 ` B . . . . . . . . < . .

. . .

FFFF908000090240: 00000000000001 F4 000000000535 E000 . . . . . . . . . . 5 . .

. . .

FFFF908000090250: 0000000000000009 FFFF9080000903E0 . . . . . . . . . . . . .

. . .

FFFF908000090260: 0000000000000000 00000000000001 A7 . . . . . . . . . . . . .

. . .

The layout of the SKRPROCESS structure will be given later in this section, but for now we can
notice that this is the LsaIso process judging by the Trustlet ID of 1 located at 0x10.

Trustlet data structures

The process object is a 320 byte data structure consisting of a 16 byte SKO_HEADER followed by
the 304 byte SKPROCESS structure. The SKPROCESS structure contains similar information to
what is found in the EPROCESS structure in the normal kernel, but the offsets are often different.
Although not all members of the structure are known, here follows a overview of some important
offsets:

SKRPOCESS:

+0x010 - Trustlet ID (Integer , 8 byte)

+0x028 - ProcessList (Pointer , 8 byte)

+0x030 - Next Thread Object (Pointer , 8 byte)

+0x038 - Previous Thread Object (Pointer , 8 byte)

+0x050 - Process Id (Integer , 8 byte)

+0x058 - PageDirectory (Physical pointer , 8 byte)

+0x080 - VadRoot (Pointer , 8 byte)

+0x0A8 - PEB (Pointer , 8 byte)

+0x0B0 - Handle Table (Pointer , 8 byte)

+0x0B8 - Trustlet Image Object (Pointer , 8 byte)

+0x130 - Worker Factory Object (Pointer , 8 byte)

+0x138 - Worker Factory Object (Pointer , 8 byte)
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The trustlet ID is a unique, non-random ID that identifies which kind of trustlet the process
object belongs to. The following trustlet IDs are known [17]:

• ID 0 - Secure kernel process

• ID 1 - LSAISO, Credential Guard

• ID 2 - VMSP. Hosts the Virtual TPM(vTPM) on the host

• ID 3 - vTPM provisioning tool.

The thread object pointers references the first and last thread object given in the global thread
table. The process ID is the ID used by the normal kernel to reference the process. This ID is
generated each time the process is run by the normal kernel and can not be used to identify
the process. The page directory points to the physical address of the inital page table used to
translate virtual addresses in the context of the given process. Once the appropriate context has
been set, one can then look at the Process Environement Block for the particular process. The
VadRoot points to the starting node of the VAD tree. A VAD or Virtual Address Descriptor is a ker-
nel structure used to give detailed information on the virtual address space of a given process.
The VAD structures follows the same MMVAD structure found in the normal kernel.

The PEB structure is a datastructure that can be referenced from user mode containing informa-
tion about the operating environment for the given process. The PEB follows the same structure
as the PEB specified in ntdll meaning that this datastructure is already defined in the public sym-
bols.

A final thing to keep in mind is that the secure kernel also has a process object of its own
running in kernel mode. This object is not referenced in the SkiProcessList, but one can find the
address for this object by looking at the PsIumSystemProcess variable. The process object follows
the same structure, but several of the members are just set to null.

4.3.2 Virtual Address Descriptors

Virtual Address Descriptors (VADs) are kernel data structures that provide additional information
about the organization of the virtual address space of the given trustlet. Every virtual address
reservation is organized into an AVL-tree which can be traversed from the root node in order to
enumerate all the virtual addresses currently reserved by the trustlet. VAD trees have been used
in previous versions of Windows, but in Windows 10 the implementation is slightly different so
this is why this section provides some further insight into VADs on Windows 10.
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From a forensic perspective the VAD structure is useful since it greatly limits the address space
that must be searched for forensic artifacts. For a user mode address space the available address
space is 48 1 bit, where half of the address space is reserved by the kernel. This means that there
is still a 128TB address space where the trustlet could store information. The VAD tree stores
every virtual address space reservation which are the only virtual addresses the trustlet actually
uses. Since the reserved address space is often a small subset of the full virtual address space this
greatly minimizes the relevant search area.

The root node address is found at offset 0x80 where every node is a node in a binary AVL
tree with the following structure:

SKVAD:

+0x000 - Left node (Pointer , 8 byte)

+0x008 - Right node (Pointer , 8 byte)

+0x010 - Parent node (Pointer , 8 byte)

+0x018 - StartVPN (UINT , 4 byte)

+0x01C - EndVPN (UINT , 4 byte)

+0x020 - StartingVPNHigh (UChar , 1 byte)

+0x021 - EndingVpnHigh (UChar ,1 byte)

The StartVPN and EndVPN members represents the starting and ending virtual address of every
section of virtual memory. By traversing the entire VAD tree one can obtain the full layout of
the virtual address space of the trustlet. The SKFT features the built-in !vad command that can
traverse the entire VAD tree to show the various sections. Below features example output of the
virtual address space of the credential guard trustlet:

Vad: Start: End:

FFFF9080000BEF60 7ff9905a0 7ff9905ab

FFFF9080000BEF60 7ff9905a0 7ff9905ab

FFFF9080000A3E60 0239 da6a0 0239 da6af

FFFF9080000B2C70 0239 da390 0239 da40f

FFFF90800009B270 0239 da2f0 0239 da302

FFFF908000092250 0239 da2d0 0239 da2e4

FFFF90800008F9D0 07ffe0 07ffe0

FFFF90800008A9A0 0239 da320 0239 da38f

FFFF908000056390 0239 da310 0239 da316

FFFF9080000B2DB0 0239 da440 0239 da53f

FFFF9080000C23A0 0239 da410 0239 da416

FFFF9080000C21C0 0239 da540 0239 da5bf

FFFF9080000C3EC0 0239 da5c0 0239 da63f

FFFF908000033C50 7ff65f240 7ff65f240

FFFF9080000C2240 7ff65f220 7ff65f221

FFFF9080000C4070 7ff65f200 7ff65f201

FFFF9080000C4030 0239 da6b0 0239 da72f

FFFF9080000C3F00 7ff65f210 7ff65f211

FFFF9080000B2CB0 7ff65f230 7ff65f231

FFFF9080000AD1F0 7ff990540 7ff990546

FFFF908000090390 7ff65fd90 7ff65fdd1

FFFF9080000C3DB0 7ff990530 7ff99053a

FFFF9080000C1230 7ff990570 7ff990584

FFFF9080000B0310 7ff990550 7ff990566

FFFF9080000AFC50 7ff990590 7ff990596

FFFF9080000AA840 7ff990e20 7ff991007

FFFF9080000C0B60 7ff990920 7ff990948

---TRUNCATED OUTPUT ---

1Modern 64-bit processors limit the address space to 48 bits.
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Remember to add the high bits to the VPNs to get the actual VPN. Also remember that the
VPN only represent the Virtual Page Number and so has to be multiplied with the given pa-
gesize to resolve into a valid address. As an example the starting VPN for the VAD located at
0xFFFF9080000BEF60 is 0x7ff9905a0 and so the virtual address is 0x7ff9905a0000.

4.3.3 Secure threads

As in the regular kernel, the secure kernel provides thread objects that perform the actual work
done by the process. After the thread object is created it is added to the SkiThreadTable that
contains pointers to the thread objects of all processes. Each thread object is 168 bytes consisting
of a SKOB_HEADER and a SKTHREAD structure. The SKTHREAD structure has the following
layout:

SKTHREAD:

+0x000 - Flink , next thread object (Pointer , 8 byte)

+0x008 - Blink , previous thread object (Pointer , 8 byte)

+0x010 - Owning process (Pointer , 8 byte)

+0x018 - Owning process (Pointer , 8 byte)

+0x020 - Thread ID (Integer , 8 byte)

+0x030 - Owning trustlet ID (Integer , 8 byte)

+0x070 - Thread Environment Block (Pointer , 8 byte)

By using the SKFT one can take a look at all active threads using the !dv command:

>!skvars

(Truncated Output)

SkiThreadTable: 0xFFFF900001102000

>!dv 0xFFFF900001102000

FFFF900001102000: 0000000000000000 FFFFF8024AE4F2E0 . . . . . . . . . . . J .

FFFF900001102010: FFFF908000000890 FFFF908000000950 . . . . . . . . P . . . .

FFFF900001102020: FFFF908000000A10 FFFF908000000AD0 . . . . . . . . . . . . .

FFFF900001102030: FFFF908000000B90 FFFF908000000C50 . . . . . . . . P . . . .

FFFF900001102040: FFFF908000000D10 FFFF9080000B2D00 . . . . . . . . . - . . .

FFFF900001102050: FFFF9080000C3E10 FFFF9080000C3F50 . > . . . . . . P ? . . .

FFFF900001102060: FFFF9080000C4260 00000000000000 E0 ` B . . . . . . . . . . .

FFFF900001102070: 00000000000000 F0 0000000000000100 . . . . . . . . . . . . .

All the valid thread objects begin with 0xFFFF908 addresses, and here we can currently see 11
objects which is the same number of thread objects found by the !skob command. If one wishes
to find all the thread objects belonging to a particular process one can simply traverse the next
or previous thread pointers until one returns to the starting object. Using the owning trustlet ID
it is also easy to identify which process the thread belongs to.
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5 Conclusion and summary

This conclusion is dedicated to discussing three important aspects regarding the secure kernel
and device guard in regards to digital forensics. This means understanding the security, the
forensic artifacts as well as how to best aquire forensic information from the secure kernel.

5.1 Security

What is apparent when studying how a secure implementation of Device Guard is implemented,
is that Device Guard relies on several security components that has to work together to ensure
system security. It has to rely on several hardware mechanisms such as Intel Vt-d and the UEFI
BIOS, as well as relying on several software components both in the secure and normal kernel to
ensure code integrity. This means that a single bug in one of these components might cause code
verification to fail. One example can be found in CVE-2017-0007 where a bug in wintrust.dll
caused a powershell script without a valid signature to still be executed by device guard [24].
Wintrust.dll is not part of device guard directly, but rather a dll that exists in the normal kernel.
This means that an attacker that wishes to break device guard has a larger attack surface that
just the device guard components, making it hard to ensure that every component is secure.

Another challenge comes from creating the CIP itself, since a CIP that is not restrictive enough
could allow unintended code to be executed. Ultimately the system administrator needs to find
a good tradeoff between how strict the policy should be, and convenience. Using the crypto-
graphic hashes for every executable is obviously the most secure, but difficult to maintain and
keep up to date. Even executables signed by Microsoft might be a problem since some verified
programs allows for code execution within the running process. One such example is WinDbg
or CDB which are powerful debuggers that also allows for executing code through the debugger
[25]. There are also examples of malware such as stuxnet that steals digital certificates from
otherwise trusted retailers so it is important that the administrator does not accept certificates
from too many providers.

In theory the secure kernel design itself should be quite secure as it is a kernel greatly reduced
in functionality. Reducing the functionality of the secure kernel means that the attack surface is
smaller and even if the kernel is compromised it can not perform many actions anyway. The main
challenges lies in making a secure CIP as well as making sure that all components necessary to
realize Device Guard is up to date.
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5.2 Forensic Artifacts

Since the secure kernel aims to keep it self as simple as possible it also greatly reduces the num-
ber of objects tracked by the kernel in comparison to the normal kernel. Another thing that makes
tracking these objects easier is the fact that they are all tracked by a single ASCII tag, "BOKS",
making it easy to spot where secure kernel objects are located. If one wanted to find all normal
kernel objects one had to know the tag that belonged to the specific object, for example the "Proc"
tag is used for the process objects. This also means that it is easy to track new additional objects
if the secure kernel is updated to support them. The secure kernel toolkit allows for a brute force
search of secure objects by using the !skob command.

Once a forensic researcher has an overview of all the secure kernel objects it becomes easier
to see what kind of configuration the secure kernel is running. As soon as the secure objects
are known, then the researcher has a full overview of the running processes, the loaded images,
the active threads as well as the catalog files present. This means that if the secure kernel is
running any malicious processes it should become apparent based on the secure objects present
in the kernel. In the end a good start for any forensic analysis of IUM or the secure kernel is
enumerating all the secure objects.

5.3 Live Forensics

The strategy used to obtain full memory dumps of the secure kernel was to use nested virtual-
ization and then capture a full memory dump of the host. The virtual machine memory manager
provided kernel structures that kept track of the pages used by the virtual machine, making it
easy to extract all the pages from the virtual machine from the full memory dump of the host.
Once the dump had been extracted the virtual address space could be extracted by finding the
entry point of the secure kernel binary and then using the ShvlpPageDirectoryBase variable to
obtain the physical address of the initial page directory.

When dealing with a physical machine that is using device guard as well as DMA remapping
one likely need to find another solution. Further research needs to be done to see whether using
a hardware based approach or a software approach is the best course if a full memory dump is
desirable. As mentioned previously a full memory dump might not always be needed as most
information is still located in the normal kernel.
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6 Documenting the Secure Kernel Forensic Toolkit (SKFT)

The SKFT is a demonstration tool to perform memory forensics on memory dumps of machines
running the secure kernel. The tool provides functionality to analyze secure kernel artifacts so
that these artifacts can be explored for future reference. This section provides documentation on
how to use the tool.

The first thing that happens when the tool executes is that it tries to open the memory dump
files that is used for analysis. If this fails the tool will exit. If this succeeds, you are greeted by a
command line that allows you to enter the desired command.

6.1 Commands

Each command supported by the tool is prefixed by "!". If the command takes any parameters
they will be specified in brackets. The type of the parameters is either a number (NUM) or string
(STRING), where the number type can be specified either as a hexadecimal or decimal number.
Hexadecimal numbers must be prefixed by "0x" to be interpreted correctly. Some parameters are
optional and will be marked as such. The tool can be used to perform memory forensics on both
the normal and secure kernel. Since these two kernels differ in their structure certain commands
are only meaningful in the context of a given kernel. If a command is not universal (working as
intended for both types of kernels), this will be specified.

• !quit - (No parameters)
Exits the program.

• !dv - (NUM VirtualAddress, NUM NumBytes (Optional))
Display virtual memory. Will display the memory contents at the specified virtual address, the
optional second parameter specifies how many bytes of memory to display.

• !setcontext - (NUM PhysicalAddress)
Changes the current virtual memory context. The first parameter will be the physical address
of the page directory for the new context. Setting the appropriate context is important for
virtual memory translation to work. All commands that require virtual address translation
will use the new context set by this command.

• !dp - (NUM PhysicalAddress, NUM NumBytes (Optional))
Display contents of physical memory address.

• !translate - (NUM VirtualAddress)
Translates the specified virtual address into a physical address.
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• !processlist - (No parameters)
List the currently running processes by traversing the ActiveProcessList. (Only used in the
context of the normal kernel).

• !peb - (NUM VirtualAddress)
Outputs a selection of the data in the process environment block (PEB), residing at the spec-
ified virtual address. Since the peb resides in user mode it is important to set the appropriate
context before dumping the information.

• !process - (NUM VirtualAddress)
Outputs a selection of the data in the EPROCESS block. Note that the EPROCESS block is
only used by the normal kernel. The secure kernel uses a similar, but different structure for
managing processes.

• !skvars - (No parameters)
Outputs a selection of thel global variables used by the secure kernel. Since this is only mean-
ingful for the secure kernel one should only use this command in this context.

• !skvar - (NUM Offset)
Outputs the data of the global variable at the specified offset. This offset can be found in the
symbol information for the secure kernel.

• !add - (NUM firstNumber, NUM secondNumber)
Outputs the sum of two numbers.

• !sub - (NUM firstNumber, NUM secondNumber)
Outputs the result of the operation n1− n2.

• !skob - (NUM VirtAddress)
Searches the entire memory space for secure kernel objects. This is done by searching for
the secure kernel tag that identifies the allocation. The output is sorted into different known
types of objects. The first parameter specifies the base virtual address of the secure kernel
(SkImageBase).

• !sklm - (NUM VirtAddress)
Outputs the currently loaded modules used by the secure kernel. The first parameter specifies
the address where the list of loaded modules is found. This address is pointed to by the
SkLoadedModuleList variable.

• !vad - (NUM VirtAddress)
Traverses the vad structure and outputs the starting and ending address of every virtual
address section. Requires a valid vad root address.
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6.2 Architecture

The SKFT is written in C++ and compiled using the Visual Studio 2010 compiler. The program is
written as a native CLI program using the Win32 API to interact with the operating system. The
project is divided into 11 classes, this section gives a overview of how each class is partitioned.
Each class is sectioned into a C++ header (.h) file and a C++ source file (.cpp), each using the
same name.

Classname Description

ConsoleFunc
Contains functionality related to implementing the commandline
interface. This includes recording keystrokes, repainting the com-
mandline window and interpreting commands.

DLIST
Implements the doubly linked list datastructure. Contains generic
functions for creating and traversing double linked lists.

ForensicTool Contains the main entry point for the program.

MemoryFunc
Contains functionality for reading memory from dump files files
on disk. This includes virtual address translation and reading
physical and virtual memory contents.

MiscFunc
Generic functionality related to reading and converting data. This
includes reading and manipulating strings, converting raw data
into well defined types and reading pointers.

PageEntry
Implements a PageEntry datastructure used in virtual address
translation.

PEB
Implements the Process Environment Block datastructure defined
in ntdll.

PoolHeader Not used

SecureKernelFunc
Contains functionality that is related to reading information from
the secure kernel memory area.

SupportFunc

Contains various functions related to various memory forensic
functionality. This includes searching for patterns, reading data
from memory dump files and traversing various structures in the
memory dump.
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6.3 The custom debugger extension

To dump the required pages from the memory dump a custom debugger extension was built.
Microsoft provides a Debugger Engine and Extension API 1that allows anyone to write their own
extensions that extends the already existing functionality. The extension is written in C++ and
compiled using Visual Studio 2010 where the finished extension results in a dll file. This exten-
sion was also built to explore features such as driverlocked pages which can be seen in action in
section 3.3 on driverlocked memory.

The dll provides the following exports:

• driverlocked

• findlockedpages

• findfield

• findmdl

• writemdl

• writemem

• poolheader

• findmdlheaders

Some extensions are used just for testing purposes, the most relevant ones are writemem, find-
lockedpages and driverlocked. Writemem will write all memory from the virtual machine from
the structures allocated by the Virtual Machine memory manager. See section 3.5 for more in-
formation. The writemem requires the virtual starting address for the VdMm structure, the size
of the structure as well as a valid filename. The findlockedpages and driverlocked extensions are
demonstrated in section 3.3. The dll can be loaded by the debugger by using the .load command.

1https://msdn.microsoft.com/en-us/library/windows/hardware/ff540525(v=vs.85).aspx
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A An introduction to reverse engineering using WinDBG

Since a good amount of the information about the secure kernel is achieved by means of studying
the program binaries, this section will provide some insight into how to go about obtaining
information from these files. Since it is difficult to perform live debugging of the secure kernel
most of this information has been obtained by static analysis. Since the program binaries are
64-bit there is a reduced set of static analysis tools to choose from. This appendix takes a look at
how to best use WinDbg, a part of the Debugging Tools for Windows, to perform static analysis.
To open a program binary without executing it one can start WinDbg using the -z switch:

windbg -z securekernel.exe

This will load the securekernel binary so that one can dissasemble program functions as well as
study symbol information.

A.1 Using symbol information

Microsoft provides a symbol server1 that provides public symbols for several Microsoft binaries.
Public symbols provide useful information such as the names of global variables and functions
as well as providing the structure of some of the data structures. Studying the symbols provides
a good starting point when one wants to learn the capabilities of any program binary. To see the
available symbols one can use the x command to dump all symbol information:

0:000 > x securekernel !*

00000001 `4003 bf90 securekernel!ZwCreateTimer2 (<no parameter info >)

00000001 `4000 f11c securekernel!SkmiTallyBootPtes (<no parameter info >)

00000001 `4003 c2a0 securekernel!NkUnmapViewOfSection (<no parameter info >)

00000001 `4000 be24 securekernel!SkDecryptTrustletData (<no parameter info >)

00000001 `40041 bd0 securekernel! ?? :: FNODOBFM::`string (<no parameter info >)

00000001 `40049830 securekernel!_newclmap = <no type information >

---Truncated ---

The ’*’ symbol acts as a wildcard telling the system to print out all the available symbol informa-
tion for the specific binary. The above is just a short list of the symbols provided for the secure
kernel, showing both global variables and the available functions. It is easy to differentiate be-
tween a function and a variable as the function names will specify no parameter info, while the
variables will specify no type information. The full list of symbols provides the names of a total
of 1413 variables or functions so it is useful to know how to narrow down the information further.

The first trick is to sort symbols into groups by looking at the prefixes of the symbol names.
Generally Microsoft will assign prefixes that designate the general component of the system that
the variable or function operates under. For example the Mm prefix specifies the Memory man-
ager meaning that any symbol that starts with Mm generally belongs under memory manager

1http://msdl.microsoft.com/download/symbols
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functionality. To sort the output by symbol names one can use the /N switch which makes it easy
to see groups of prefixes.

x /N securekernel !*

---TRUNCATED ---

00000001 `400293 cc securekernel!HvlSetupLiveDumpBuffer ()

00000001 `40033928 securekernel!HviIsHypervisorMicrosoftCompatible ()

00000001 `400338 c0 securekernel!HviGetHypervisorInterface ()

00000001 `40033968 securekernel!HviGetHypervisorFeatures ()

---TRUNCATED ---

Here one can see a group of functions using the Hv prefix, presumably related to the Windows
hypervisor. One should also note that prefixes might come in several variants, for example using
the "i" suffix to specify an internal function.

To further narrow down the information displayed one can use the /d and /f switches to only
output symbol information related to variables or functions. Underneath one can see example
output of a symbol search that finds all variables having the word "page" in the name.

0:000 > x /d /N securekernel !*page*

00000001 `400490 c0 securekernel!_imp_SkciValidateDynamicCodePages

00000001 `40058 d10 securekernel!SkmiUnprotectedPageCount

00000001 `40059030 securekernel!SkmiReservedPagesStart

00000001 `40059028 securekernel!SkmiReservedPagesRemaining

00000001 `40058 ce8 securekernel!SkmiReservedImagePageLock

00000001 `40058 cf0 securekernel!SkmiReservedImagePage

00000001 `40058 d40 securekernel!SkmiPartialIntegrityPages

00000001 `40058 d60 securekernel!SkmiPageEncryptionContext

---TRUNCATED ---

A.2 Reversing secure kernel objects

One of the important new artifacts created by the secure kernel are Secure Kernel Objects (SKOs)
which are unique to the secure kernel. Since the symbol information for the secure kernel does
not include any data structures, one needs to reconstruct the structures from scratch. This section
will provide a description on how to use WinDbg to reconstruct these structures.

After constructing a simple version of the SKFT the ASCII string "BOKS" kept appearing in several
places when investigating secure kernel memory. Since this was seen several times, it seemed ev-
ident that this was not due to random memory patterns, but a deliberate pattern created by the
secure kernel. It appeared similar to how pool tagging works in the normal kernel. Pool tags
are used to mark the start of kernel heap allocations that are less than the size of a page+pool
header size. In this model the tags are 4 byte ASCII strings that identifies the component that
allocated the memory. In WinDbg one can find more descriptive information for each pool tag in
the pooltag.txt file. Since the "BOKS" tag was not found in the pooltag file it was presumably a
new tag unique to the secure kernel.
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Listing A.1: "Some example pooltags taken from pooltag.txt"

BTMO - bthmodem.sys - Bluetooth modem

CcBm - nt!cc - Cache Manager Bitmap

PnpF - nt!pnp - PNPMGR eject data

ObjT - nt!ob - object type objects

If the ASCII string is indeed some sort of tag then judging by how pooltags are named it seems
reasonable that the tag itself would be descriptive in some way. A decent guess is that the tag
is in fact backwards and should be SKOB, meaning Secure Kernel Object. One possible reason
for why the tag is backwards could be because the endianness of the x86 architecture. The x86
architecture is little-endian which means that the least significant bytes are stored first effectively
reversing the order of the characters in a ASCII string. This confusion might have led this tag to
be accidentally created backwards.

Given the hypothesis that the BOKS tagged allocation is created deliberately by the secure ker-
nel, the next question is what function is responsible for the allocation. A simple way of seeing
where this ASCII string is used (if at all) is by searching the program binary using the s command
in Windbg:

0:000 > s -a 0000000140000000 000000014007 b000 "BOKS"

00000001 `4001 d19a 42 4f 4b 53 c7 40 04 01-00 00 00 48 89 58 08 48 BOKS.@

The ASCII string is found exactly once at address 0x000000014001d19a, to see which function
is closest to this address one can use the "ln" command.

0:000 > ln 00000001 `4001 d19a

(00000001 `4001 d170) securekernel!SkobCreateObject +0x2a

The address resides inside the space of SkobCreateObject strengtening the assertion that BOKS
actually refers to secure kernel objects. To see where in the function the tag is used one can
dissassemble the function by using the "uf" command:

securekernel!SkobCreateObject:

00000001 `4001 d170 48895 c2408 mov qword ptr [rsp+8],rbx

00000001 `4001 d175 57 push rdi

00000001 `4001 d176 4883 ec20 sub rsp ,20h

00000001 `4001 d17a 488 bd9 mov rbx ,rcx

00000001 `4001 d17d 488 bfa mov rdi ,rdx

00000001 `4001 d180 8b4908 mov ecx ,dword ptr [rcx +8]

00000001 `4001 d183 4883 c110 add rcx ,10h

00000001 `4001 d187 e888910000 call securekernel!IumAllocateSystemHeap

00000001 `4001 d18c 4885c0 test rax ,rax

00000001 `4001 d18f 7507 jne securekernel!SkobCreateObject +0x28

securekernel!SkobCreateObject +0x21:

00000001 `4001 d191 b89a0000c0 mov eax ,0 C000009Ah

00000001 `4001 d196 eb1a jmp securekernel!SkobCreateObject +0x42

securekernel!SkobCreateObject +0x28:

00000001 `4001 d198 c700424f4b53 mov dword ptr [rax],534 B4F42h

00000001 `4001 d19e c7400401000000 mov dword ptr [rax+4],1

00000001 `4001 d1a5 48895808 mov qword ptr [rax+8],rbx

00000001 `4001 d1a9 4883 c010 add rax ,10h

00000001 `4001 d1ad 488907 mov qword ptr [rdi],rax

00000001 `4001 d1b0 33c0 xor eax ,eax
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securekernel!SkobCreateObject +0x42:

00000001 `4001 d1b2 488 b5c2430 mov rbx ,qword ptr [rsp+30h]

00000001 `4001 d1b7 4883 c420 add rsp ,20h

00000001 `4001 d1bb 5f pop rdi

00000001 `4001 d1bc c3 ret

As can be seen from the disassembly the ASCII string "53 4b 4f 42" (BOKS) is moved into the
memory address pointed to by rax. We can also see that the memory address originates from the
call to IumAllocateSystemHeap which presumably allocates the memory. We can also see that
the rax register is used in later instructions to add the hardcoded value 1 as well as some value
passed by rbx. The rbx register gets its value from rcx which is used for passing the first param-
eter in the fastcall calling convention. Finally, the rax pointer is increased by 16 and is stored in
the rdi pointer before zeroing eax.

To better keep track of what happens in SkobCreateObject+0x28 it can be useful to convert
the assembly instruction into pseudocode based on the observations that can be made from the
assembly code. If one can assume that IumAllocateSystemHeap should return a pointer into valid
memory upon successful completion then it is reasonable that the rax variable is some sort of
memorybuffer making the pseudocode like this:

returnvalue = 0;

pMemoryBuffer = IumAllocateSystemHeap (?)

if(* pMemoryBuffer != 0)

{

pMemoryBuffer ->tag = "BOKS"; (0x0)

pMemoryBuffer ->?1 = 1; (0x4)

pMemoryBuffer ->?2 = rbx; (0x8)

pMemoryBuffer += 0x10;

}

else

{

returnvalue = 0x0C000009A;

}

The returnvalue variable refers to the eax register which can be either 0 or 0x0C000009A upon
returning. Since Windows functions often return error codes if anything goes wrong a decent
guess would be that 0x0C000009A refers to some errorcode. It is simple to look up Windows
error codes using the !error extension in WinDbg:

0:000 > !error 0x0C000009A

Error code: (NTSTATUS) 0xc000009a (3221225626) - Insufficient system resources

exist to complete the API.

It turns out that the error code is a NTSTATUS value that is returned whenever the system has
insufficient resources to complete the request. This would be a reasonable error code to expect
since we are trying to allocate memory using IumAllocateSystemHeap, and if this function returns
0 (a NULL pointer) we branch into the error braching code at SkobCreateObject+0x21. Based
on these observations we can assume that SkobCreateObject returns a NTSTATUS code which
returns 0 upon successful completion of the function. If IumAllocateSystemHeap returns a valid
memory address one can see that the first four 4 bytes are tagged using the hardcoded "BOKS"
tag. After tagging the memory allocation SkobCreateObject initializes two additional variables
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using the memoryBuffer offset. In total the size of all three variables is 16 bytes, and we can see
that memoryBuffer pointer is changed by the same amount. This suggest that the three variables
might be part of a single datastructure having three members.

Given that we now have some notion of what the return type of the function is, it would be useful
to understand what parameters are used when calling SkobCreateObject. In the fastcall calling
convention the four first parameters are found in the processor registers (RCX,RDX,R8,R9). As
seen in the function prologue only the RCX and RDX registers are referenced specifically, suggest-
ing that SkobCreateObject has only two parameters. To understand what type of data is passed
in the two parameters it is useful to know which functions calls SkobCreateObject directly. For
this purpose WinDbg falls short as it has no functionality to cross reference which functions calls
another function. Another useful thing by listing the cross references is that it also gives one an

Figure 6: Showing all cross references to SkobCreateObject.

idea of what objects can be created. Selecting one of the functions at random one can see how
rdx and rcx are initalized before calling SkobCreateObject:

securekernel!SkiCreateThread:

00000001 `40002860 48895 c2408 mov qword ptr [rsp+8],rbx

00000001 `40002865 57 push rdi

00000001 `40002866 4883 ec20 sub rsp ,20h

00000001 `4000286a 8bf9 mov edi ,ecx

00000001 `4000286c 488 d542438 lea rdx ,[rsp+38h]

00000001 `40002871 488 d0d60750400 lea rcx ,[ securekernel!SkeThreadType

00000001 `40002878 e8f3a80100 call securekernel!SkobCreateObject

The most notable thing is the rcx register which contains the address of the global variable
SkeThreadType. Checking the other functions that calls SkobCreateObject one can see that rcx
always contains the type of object that is created. One can infact use the x command in WinDbg
to search for all Global Variables that end in type:

0:000 > x /d /N securekernel !*Type

00000001 `40051000 securekernel!pctype

00000001 `40049530 securekernel!_newctype

00000001 `40049 bd8 securekernel!SkmiSecureAllocationType

00000001 `40049 be8 securekernel!SkmiImageType

00000001 `40049 c60 securekernel!SkeWorkerFactoryObjectType
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00000001 `40049 dd8 securekernel!SkeThreadType

00000001 `4004 a5f8 securekernel!SkeShadowSyncObjectType

00000001 `40049 bc8 securekernel!SkeProcessType

Except for the first two variables, all variables on the list actually reference the type of object that
can be created. One can check that this is indeed true by seeing where these variables are used
and confirm that are always used to initialize the rcx register before calling SkobCreateObject.
This means that the secure kernel can directly create 6 types of objects (Device Guard implements
an additional catalog object), which reveals that the secure kernel only keeps track of a few
objects. Compare this to the over 4000 types used by the normal kernel and it is clear that the
secure kernel is a more bare bones implementation of the NT-kernel. With this information in
place lets update our view of the SkobCreateObject function:

NTSTATUS SkobCreateObject(OBJECT_TYPE* objType , PVOID* buffer)

{

NTSTATUS errorCode = 0;

PVOID* pMemoryBuffer = IumAllocateSystemHeap (?)

if(* pMemoryBuffer != 0)

{

OBJECT_HEADER *header = pMemoryBuffer;

header ->tag = "BOKS";

header ->unknownDword = 1;

header ->objectType = objType;

pMemoryBuffer += 0x10;

buffer = pMemoryBuffer;

}

else

{

errorCode = 0x0C000009A;

}

return errorCode;

}

Note that the second parameter is a pointer to the memory allocation allocated by IumAllo-
cateSystemHeap. This becomes clear from the assembly where we can see that the rdi register
holds the address pointed to by rdx. The next question unanswered question is how IumAllo-
cateSystemHeap really works.

Looking at the diassembly of IumAllocateSystemHeap reveals that it only seems to refer to a single
parameter in the rcx register. Let’s see how the rcx register is used before IumAllocateSystemHeap
is called:

securekernel!SkobCreateObject +0x10

00000001 `4001 d180 8b4908 mov ecx ,dword ptr [rcx +8]

00000001 `4001 d183 4883 c110 add rcx ,10h

00000001 `4001 d187 e888910000 call securekernel!IumAllocateSystemHeap

Remember that we found that the rcx register is in reality the object type specific to the object
that is created. Since we do not know much about this datatype yet it can be useful to study
these object type variables further.
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0:000 > dq securekernel!SkeThreadType

00000001 `40049 dd8 00000000 `00000000 00000000 `000000 a8

00000001 `40049 de8 731a0100 `13000016 e0b34782 `89 cf4f50

00000001 `40049 df8 0000ba76 `04 c9e8dc 00001000 `31415352

00000001 `40049 e08 00000200 `00000003 00000000 `00000000

00000001 `40049 e18 1919ddcd `bf010001 ee5df445 `b9df65b5

00000001 `40049 e28 7e90245b `727 f4dc9 9d5475a4 `ff40d430

00000001 `40049 e38 b1ffba4d `909 a348c 08d76f8c `aa1b00d1

00000001 `40049 e48 73c45373 `4 bf372ac 446d3e40 `38 fb9cfb

0:000> dq securekernel!SkeShadowSyncObjectType

00000001 `4004 a5f8 00000000 `00000000 00000000 `00000010

00000001 `4004 a608 00000000 `00000000 00000000 ` c0000002

00000001 `4004 a618 00000000 `00000000 00000000 ` c0000002

00000001 `4004 a628 00000000 `80000011 c0000002 `c0000002

00000001 `4004 a638 00000000 `80000011 37363534 `33323130

00000001 `4004 a648 46454443 `42413938 00000000 ` c0000002

00000001 `4004 a658 c000009a `c000009a 5632d174 `00000000

00000001 `4004 a668 00000002 `00000000 0004a828 `00000029

0:000> dq securekernel!SkeProcessType

00000001 `40049 bc8 00000001 `40001 d30 00000001 `00000140

00000001 `40049 bd8 00000001 `4000 e7b0 00000001 `00000020

00000001 `40049 be8 00000001 `4001 b2b0 00000001 `00000060

00000001 `40049 bf8 00000001 `40027 fd0 00000001 `40020580

00000001 `40049 c08 00000000 `00000000 00000001 `40027 dd0

00000001 `40049 c18 00000001 `40027880 00000001 `40027 b40

00000001 `40049 c28 00000001 `40027650 00000001 `400277 a0

00000001 `40049 c38 00000001 `40027 c70 00000001 `40027 c50

0:000> dq securekernel!SkmiSecureAllocationType

00000001 `40049 bd8 00000001 `4000 e7b0 00000001 `00000020

00000001 `40049 be8 00000001 `4001 b2b0 00000001 `00000060

00000001 `40049 bf8 00000001 `40027 fd0 00000001 `40020580

00000001 `40049 c08 00000000 `00000000 00000001 `40027 dd0

00000001 `40049 c18 00000001 `40027880 00000001 `40027 b40

00000001 `40049 c28 00000001 `40027650 00000001 `400277 a0

00000001 `40049 c38 00000001 `40027 c70 00000001 `40027 c50

00000001 `40049 c48 00000001 `40027 d70 00000001 `40027990

0:000> dq securekernel!SkmiImageType

00000001 `40049 be8 00000001 `4001 b2b0 00000001 `00000060

00000001 `40049 bf8 00000001 `40027 fd0 00000001 `40020580

00000001 `40049 c08 00000000 `00000000 00000001 `40027 dd0

00000001 `40049 c18 00000001 `40027880 00000001 `40027 b40

00000001 `40049 c28 00000001 `40027650 00000001 `400277 a0

00000001 `40049 c38 00000001 `40027 c70 00000001 `40027 c50

00000001 `40049 c48 00000001 `40027 d70 00000001 `40027990

00000001 `40049 c58 00000001 `40027 c50 00000001 `40028910

0:000> dq securekernel!SkeWorkerFactoryObjectType

00000001 `40049 c60 00000001 `40028910 00000000 `00000040

00000001 `40049 c70 00430067 `00750042 006b0063 `00650068

00000001 `40049 c80 0067006f `00720050 00730073 `00650072

00000001 `40049 c90 00000000 `00000000 00430067 `00750042

00000001 `40049 ca0 006b0063 `00650068 00650064 `006 f0043

00000001 `40049 cb0 00000000 `00000000 00430067 `00750042

00000001 `40049 cc0 006b0063 `00650068 00610072 `00610050

00000001 `40049 cd0 00650074 `0065006d 00000000 `00310072
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After studying all the global variables certain things should be apparent. The first is that the
OBJECT_TYPE for every object is a 16 byte structure since we can see some of the variables in
sequential order meaning that the OBJECT_TYPE cannot be any larger than 16 bytes. The next
thing is that the first 8 bytes either refers to another address in the secure kernel or is null. We
can use the "ln" command once again to see what functions the first 8 bytes of the OBJECT_TYPE
refers to:

• SkeProcessType points to SkiDeleteProcess

• SkeWorkerFactoryObjectType points to IumRemoveWorkerFactory

• SkmiImageType points to securekernel!SkmiDeleteImage

• SkmiSecureAllocationType points to SkmiDeleteSecureAllocation

The common theme here is that first 8 bytes appears to point to the destructor routine for the ob-
ject given. SkeThreadType and SkeShadowSyncObjectType either do not have a destructor routine
or it gets initialized during kernel startup. With the first 8 bytes accounted for one can now study
the last 8 bytes of the OBJECT_TYPE structure. Looking specifically at the low 32 bits one can
see that they are all integer values between 0x10 and 0x140. If we remember the previous dis-
assembly of SkobCreateObject this was the parameter used to call IumAllocateSystemHeap. Given
that we are allocating memory it would be reasonable to expect that this is the number of bytes
needed for each object. Thus the second member of the OBJECT_TYPE structure is the objectSize.
Given this new information we can once again update our pseudocode for SkobCreateObject:

NTSTATUS SkobCreateObject(OBJECT_TYPE* objType , PVOID* buffer)

{

NTSTATUS errorCode = 0;

PVOID* pMemoryBuffer = IumAllocateSystemHeap(objType ->size + 0x10)

if(* pMemoryBuffer != 0)

{

OBJECT_HEADER *header = pMemoryBuffer;

header ->tag = "BOKS";

header ->references = 1;

header ->objectType = objType;

pMemoryBuffer += 0x10;

buffer = pMemoryBuffer;

}

else

{

errorCode = 0x0C000009A;

}

return errorCode;

}

Note that we allocate an additional 16 bytes to make space for the OBJECT_HEADER. Also note
that the mysterious second DWORD in the header is actually the number of references to the
object. This reference count is implemented in the normal kernel and when this drops to 0 the
object is deleted. It would make sense that when a object is created this reference is initialized to
1 as this is the minimum number of references for a valid object. To confirm this hypothesis one
should see that the functions SkobReferenceObject and SkobpDereferenceObject actually increases
and decreased this count as expected.
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This means that we know the complete workings of SkobCreateObject, including knowing the
structure of all the parameters and variables. This entire process was accomplished by mostly
using WinDbg as well as IDA for cross referencing. This process can be followed for other parts
of the secure kernel to uncover how they work. The key idea is to make educated guesses and
then test these guesses to see if they make sense. For example the guess that one of the members
in the OBJECT_HEADER structure is the number of references could be confirmed by looking
if this counter was increased and decreased in the expected way. A good starting point when
reversing functions in the secure kernel is to start with understanding what parameters are used
by the function as well as understanding the return type. By knowing the function name, the
parameters and the return type one should be able to have at least a general understanding
of what the purpose of the function is. One should also notice that in this process of reversing
SkobCreateObject it was not sufficient to study just the assembly of this specific function. Only by
studying the assembly of the functions that referenced SkobCreateObject as well as studying the
functions called by SkobCreateObject can you get a full understanding of how the function work.
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B Glossary

CIP - Code Integrity Policy.
Specifies which code can be executed under UMCI. Also contains the UMCI settings.

Credential Guard
A special trustlet that leverages the new security features of IUM to keep the credentials and
hashes of a given user safe.

Device Guard
A set of security features that is meant to guard against various attacks on a system.

HVCI
Hypervisor based Code integrity. Leveraging the secure kernel to perform code integrity checks.

Hyper-V
The hypervisor provided by Microsoft for use on Windows systems.

IOMMU - I/O Memory Management Unit
Used to control the memory access that DMA enabled devices has.

IUM - Isolated User Mode.
Refers to the new mode of execution that special applications known as trustlets can be executed
in.

KMCI - Kernel Mode Code Integrity.
Refers to verifying kernel mode modules.

MDL - Memory Descriptor List
Allows Windows to describe a virtual memory buffer by way of physical memory. By using phys-
ical addresses this ensures that the memory contents are the same regardless of context.

PFN - Page Frame Number
Windows designates a page frame number for every page in physical memory. This allows Win-
dows to keep track of every physical page by referring to its PFN.

Secure Kernel
A new minimal Windows kernel that runs in parallel with the normal kernel. The secure kernel
is considered more secure because it does not load any third party modules.
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SKFT - Secure Kernel Forensic Toolkit
Refers to the software made for this thesis to perform forensic analysis on the secue kernel.

SLAT - Second Level Address Translation
Generic name for technology that is meant to speed up address translation for virtual machines.

Trustlets
Software that execute in Isolated User Mode.

UMCI - User Mode Code Integrity
The user mode portion of device guard. Allows a administrator control over which software that
can execute on a given machine.

VAD - Virtual Address Descriptor
VADs are used by Windows to give more information on the layout of the process virtual address
space.

VBS - Virtualization Based Security
Using virtualization features on a CPU to provide new security contexts. This can be used to
expand on the old two-ring security model introduced in Windows NT.
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