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Preface

This is a Master Thesis in Applied Computer Science carried out by Thomas Mellem-
seter during the spring semester of 2017 at NTNU Gjøvik. The idea of researching
Darkchess was brought up in a conversation with Associate Professor Simon Mc-
Callum, where the general topic was about the relevance in researching artificial
intelligence within traditional chess.

The reader should have a good understanding of probability theory as well as
about computer programming. The more chess knowledge the better, but should
not be necessary. However, knowing the basic rules and how to play traditional
chess is assumed.
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Abstract

Two player strategy games with partially observable environments face challenges
regarding reasoning under uncertainty. The aim of this thesis is to investigate dark-
chess with focus on searching and evaluating actions based on partial knowledge.
This has been approached by risk assessing threats within the unobservable part
of the environment. A working darkchess agent has been developed, where multi-
ple tests between different agents has been conducted, as well as a user test. The
results, based on statistical analysis, indicate that a modified alpha-beta search al-
gorithm with risk assessment and a simplified evaluation function approach semi-
decent playing strength.
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1 Introduction

Computers have become a vital tool in everyday life. They are installed in cars,
used for communication, and are placed in shops guiding business intelligence, e-
commerce, and enterprise asset management. Computers are great in calculating
and processing a large amount of data, often used to support people who face
difficult decision problems. They make it easier and faster to decide, and more
effectively, especially in situations which entail uncertainty.

1.1 Reasoning under uncertainty

Making decisions based on incomplete information happens often on a daily basis.
Teachers do not know exactly what each student understands, while doctors do
not know exactly what is wrong with a patient. Diagnosis, for instance, involves
uncertainty where it is unrealistic in knowing all possible factors that add up the
symptoms. This is known as the qualification problem, meaning one can never
know the exact outcome of an action in general. This is why reasoning under un-
certainty is important, as one can draw a conclusion of what is most common, or
more likely to happen based on previous knowledge and experience.

The best one can do is provide a degree of belief in these situations, in which
probability theory comes in handy. With it, one can outline the certainty (or un-
certainty) of outcomes and thereby the qualification problem diminishes. From the
perspective of a computer agent, uncertainty boils down to not knowing which
state it is currently in, or which state it might end up in after executing an ac-
tion. [1].

The qualification problem is a common feature where reasoning under uncer-
tainty is needed, and it is not only typical under the medical domain but applies to
other judgmental domains as well. This includes law, business, design, automobile
repair, gardening, dating, and not to forget computer games. [2, 1, 3].

1.2 Keywords

• Probability Theory
• Artificial Intelligence (AI)
• Chess AI
• Partial observable environment
• Imperfect-information games
• Decision making
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• Representing uncertainty
• Reasoning under uncertainty

1.3 Problem Description

All factors that can help a person decide on an action, whatever action it might be,
are rarely known in advance. This results in actions being based on what is already
known and assumptions made on uncertain information. Making decisions based
on partial knowledge increases the complexity of AI systems, because of the added
uncertainty. Knowing if a move is good or bad in darkchess is a non-trivial task,
more so, compared to traditional chess as it is a perfect information game.

Darkchess has an environment that is static, sequential, deterministic and par-
tially observable. A static environment means that nothing changes while the agent
decides what to do, in other words, since chess is turned based, the state will only
change based on the agent’s action. It is sequential since past actions determine
which actions become available as the game progress, and deterministic as a spe-
cific move in a specific state will always guarantee the same change of the board-
state. However, the entire board is only partially observable, meaning a player does
not see every piece on the board. The partial observability is also dynamic, meaning
available actions may affect the degree of observability.

As presented in Chapter 3, darkchess is a new research domain related to AI
and reasoning under uncertainty. Understanding more about the uncertainty of
darkchess will reveal challenges and possible solutions that can be generalized to
other similar complex domains and environments. More specifically aimed at 2
player strategy games.

The research boils down to reasoning about outcomes based on uncertain in-
formation. For darkchess it means finding moves that approach the agent’s goal
where the outcome does not entail high risk for the opposite to happen, moving
away from the goal. That being said, the uncertainty is about being unaware of
opponent’s moves. This, and darkchess in general, is further explained in Chapter
2 demonstrating the severity of not knowing all the information.

1.4 Research Questions

1. What design choices have the most impact on the AI decision making?
2. To what degree does the uncertain information affect the decision maker?
3. How stable is the applied evaluation function over the duration of a game?
4. How important is deep move searching in darkchess?
5. How does uncertainty affect traditional chess evaluation methods?

2
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The first research question above covers explicitly how the AI agent has been
developed, which is at the core of the following research questions. More specif-
ically, it will answer what techniques have the most impact on how the agent
searches and distinguishes between different moves. The second question focuses
on how much the uncertainty aspect will affect whether the agent chooses goal-
approaching moves or not, where the third address how stable the applied tech-
nique is over the duration of a game. The fourth research question focuses on the
impact for searching deeper for improving actions, and what effects it might have.
This is of course highly dependent on the design choices for the search algorithm.
The last question covers how the uncertainty affects traditional techniques for eval-
uating the state.

Darkchess is basically traditional chess with applied uncertainty. Overall, these
research questions will cover how uncertainty affects the traditional chess domain
indirectly, but more important address the challenges and possible solutions to
handle searching for actions within domains similar to darkchess.

3
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2 Darkchess

2.1 Origin

Figure 1: Illustrating observable and
unobservable squares

Darkchess was invented in 1989 by Jens
Bæk Nielsen and Torben Osted. The varia-
tion is inspired by another chess variant called
Kriegspiel chess where the goal is to simulate
real war. In Kriegspiel, neither player will never
see any of the opponent’s pieces during a game.
When an illegal move is attempted, feedback
is provided by a referee only to the player to
move. The referee is a necessary third player
which has complete knowledge of the game
which can communicate to one or both players.
In darkchess, a player has limited information
about the placement of the opponent’s pieces.
In other words, one is unable to see the entire
board, only their own pieces and the squares
these pieces can legally move to. This is the
main difference compared up against Kriegspiel, which includes showing oppo-
nents pieces if the player are able to capture it. This can be seen in Figure 1. It is
called darkchess because it feels like moving in the dark. Both Osted and Nielsen
played a correspondence game that lasted for little under 2 years and 7 months
from 1989 to 1992. The entire game is available online with comments from blacks
perspective [4]. They discarded the en-passant move rule as they claim it would
be difficult to handle and would not influence the game anyhow. This is a special
pawn rule; normally a pawn can only capture pieces that are one square diagonally
in front of it. However, there is an exception, which involves another special pawn
rule, the rule where pawns can move 2 squares forward from their initial position.
Capturing en-passant is available when a player moves a pawn 2 squares while it
passes an opponent pawn in either neighboring files. The opponent can in the next
move, and only in the next move, capture the passing pawn just as if it moved 1
square. [4]
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White Referee (Computer) Black
80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1SNAQJBMR

a b c d e f g h

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1SNAQJBMR

a b c d e f g h

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 2: Initial board state for each player

2.2 Rules

The rules of darkchess are mostly the same as traditional chess. The same pieces are
used and it is played on an 8x8 chess board. However, the goal is not to checkmate
the opponent’s king, but to capture it. Castling, for instance, is possible both into
and out of check, unlike traditional chess. This means the king can also move
through an attacked square when castling. As mentioned, the special en-passant
rule is omitted, although it is stated of being allowed according to wikipedia. Here,
it has been discarded, as it would only affect a small portion of states when playing,
agreeing that it would not influence most games in any decisive matter. To simplify
the game, squares directly in front of pawns is made observable, even though it
cannot attack it. This includes revealing pieces that are positioned two squares
away from pawns in their initial position. This conforms with the original idea of
the game but deviate from what is stated on wikipedia.

By preventing a player of knowing the entire board-state while playing, the envi-
ronment is partially observable. As traditional chess is a perfect-information game,
dark chess becomes an imperfect-information game. This means that each player
has their own board when playing, and in order to make this work, a third player
needs to be responsible for what each player can see, acting as a referee. Form
the correspondence game between the founders, the acting referee was Nielsens
wife. What each player see is illustrated in Figure 2. Unobservable squares in the
developed application are displayed with an X, also referred to as dark squares.
This is implemented to prevent confusing dark squares with observable but empty
squares. This is shown in Figure 1, which also show that a4 is visible due to the
pawn on a2. Because of this rule, it is possible for a player to make a move that
is unobservable for the other player (a dark move). This way, the referee needs to
inform each player when it is their turn to move. [4, 5]
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2.3 Strategy

Just as in traditional chess the white player start by making a move. Before any
move has been made, both player has complete knowledge of all pieces on the
board as the initial piece position is the same for both players. This makes whites
first move, whatever move it might be, involve no risk of being captured. Playing
as black, on the other hand, 5 of the 20 first moves involve a risk of losing a
piece. This feature grants white with a big advantage as it becomes easier to start
taking control over the center of the board. This is just as important in darkchess
as in traditional chess. Grandmaster (GM) John Ludvig Hammer and Norway’s
second best chess player (as of April 2017) [6], answered and discussed the game
of darkchess over a Skype conversation. He was unfamiliar with the Darkchess
variation, but knew about Kriegspiel, along having played numerous other chess
variations. He claimed white had a very big advantage as it is the first player to
move. He also pointed out that the game is not too much about taking chances,
but about playing more positional chess, which is to place pieces on good squares
helping in taking control over the board. By gradually gaining more space on the
board results in more move options which in turn increases the opportunity for an
attack.

In darkchess, there exist 4 different kinds of moves related to how much infor-
mation the other player can infer. The first is moving a piece which is visible to the
opponent and placing it on another visible square. These moves are simply referred
to as known moves. Another move, the exact opposite, is where the opponent does
not see either what piece is being moved or where it was placed. These are referred
to as dark moves, and one can only reason for what move happened. The other 2
move types reveal some information, reducing the number of possible moves that
might have happened. The easiest of the two is seeing what piece is being moved,
but not knowing where it was placed. The other is not knowing where or what
exact piece was picked, but knowing where it was placed. The latter makes it more
difficult to reason as the number of possible moves increases with the number of
possible pieces it could be. For instance, discovering a knight in a middle game,
it becomes more challenging knowing which knight it could be compared to see-
ing the knight disappear. These moves are referred to as retreat moves and surprise

From\To Visible Dark
Visible Known Moves Retreat Moves
Dark Surprise Moves Dark Moves

Table 1: The 4 different move types in Darkchess
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moves respectfully. These main move types are displayed in Table 1
In addition does it exists 2 special move types in darkchess which both relate

to losing an unprotected piece. The first special move is when the attacking piece
is known. All squares that are revealed by the unprotected piece becomes dark
squares, while the known attacking piece seems to have disappeared. However,
since only one move can occur at a time, this means, the known opponent piece
had to capture the unprotected piece making this in practice a known move. The
second special move is when the attacking piece comes from the dark space, thus
being unknown. In these scenarios, the unprotected piece only gets removed from
the board, and the player can only reason for which piece the opponent attacked
with. Both of these special moves are displayed in Figure 3. The latter is referred
to as adverse surprise moves.

(a) Unprotected pawn on e5 (b) The knight captured on e5.

(c) Unprotected pawn on e5 (d) No knowledge about the at-
tacking piece

Figure 3: Darkchess special moves: (a) and (b) shows a semi-retreat move, which in practise
become a known move, (c) and (d) show a similar scenario, only which piece captured the
pawn on e5 is unknown.

8
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Hammer believes that material values are the same as in traditional chess,
meaning queens are more valuable than rooks, rooks more valuable than bishop
& knight which again are more valuable than pawns. On the other hand, Nielsen
question having a material advantage being a decisive factor as in traditional chess.
This is stated in his analysis of the correspondence game online where he plays as
black, specifically on move 9 where he loses material. Nielsen’s chess knowledge is
unknown, but Hammer pointed out that blacks opening was horrible in this corre-
spondence game.

2.4 Uncertainty

The uncertainty in darkchess changes the concept of tactics compared to traditional
chess, such as pinning a piece for instance. In traditional chess, a pinned piece is a
piece that cannot move because otherwise the king would be exposed to an attack.
However, in dark chess there also exists dark pins, making a player unaware of such
scenarios. By moving the pinned piece means putting their own king open to being
captured, ending in a loss. This is demonstrated in Figure 4 which illustrates the
severity of only knowing part of the environment, and the uncertainty that follows.

A B C D
80Z0Z0Z0Z
7o0Z0Z0Z0
60ZnZ0Z0Z
5Z0Z0Z0Z0
4QZ0O0Z0Z
3Z0O0Z0Z0
2PO0ZPOPO
1SNA0JBMR

a b c d e f g h

8rZblkans
7opo0opop
60Zno0Z0Z
5Z0Z0Z0Z0
40Z0O0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

80Z0ZkZ0Z
7o0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
4QZ0m0Z0Z
3Z0O0Z0Z0
2PO0ZPOPO
1SNA0JBMR

a b c d e f g h

8rZblQans
7opo0opop
60Z0o0Z0Z
5Z0Z0Z0Z0
40Z0m0Z0Z
3Z0Z0Z0Z0
20Z0ZPZ0Z
1Z0Z0Z0Z0

a b c d e f g h

Hoping for a pin A dark pin King exposed Black lost

Figure 4: Showing the idea behind a dark pin

In Figure 4 A, White has moved 1.c3 ? 2.d4 ? 3. Qa4 where a question mark
indicate a dark move by black. After white’s last move Qa4 reveals that one of the
dark moves is Nc6, and black has not moved their a pawn. However, white does
not know if the knight is in a pin since no information is given whether black has
moved their d pawn, or more specifically d6. Since white’s second move was d4
they know black has not played d5. The position of black’s king is known in this
position since both players start with the same piece placement and the fact that
the quickest sequence in order to move the king is by first moving one of the pawns
in front of it followed by the king. This has not happened since white know of the
Nc6 move.

Figure 4 B show the same position as in A but from blacks perspective. Since
black is unaware of the queen on a4, and black has in fact moved d6 the knight is in
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a dark pin. Black does not consider this possibility and instead risks the chance that
white is not protecting the pawn. This is obviously a huge blunder, ending black to
lose the game, but keep in mind this continuation is to demonstrate the severity of
these types of positions. Thinking the pawn on d4 is unprotected means white had
moved their queen away from the d file. This requires another pawn move, either c
or e, and in order to prevent them to protect on d4 it has to be specifically c4 or e4.
Black has no information of this. Although black is right that the white’s queen has
moved, unfortunately, it continues to protect on d4. That being said, it is obvious
why taking on d4 is a blunder. In C, white is happy to see blacks king in a position
where it is white to move, making it fairly easy to win the game. This is shown in
D from blacks perspective.

2.5 Game complexity

Measuring game complexity gives an insight of its state-space size and game-tree
size. The former refers to the amount of different states allowed by the game rules
while the latter refers to a number of different games that can be played. It is well
known that solving chess by brute force is highly impractical. [7] Considering all
permutations of all 32 pieces being able to be placed on all 64 squares add up to

64P32 ≈ 1054 possible states [8]. However, this includes states with illegal piece
placement such as white pawns on the first rank and both kings in check. It would
also be wrong stating this number being an upper bound as it does not consider
pawns being promoted. A lower bound of the state-space complexity was calculated
in 1950 by Claude Shannon of being roughly 1043. He also estimated the game-tree
complexity to be 10120. Since then, these numbers have been re-estimated to 1047

and 10123 respectfully. In other words, the decision problem in chess grows expo-
nential, meaning chess is EXPTIME classified based on computational complexity
theory. [7, 9, 10]

Considering darkchess from the referees perspective, one might think these
numbers would be accurate. However, the average number of legal moves in dark-
chess is larger since one are able to move in and out of check. Nevertheless, these
numbers do not make much sense from either player’s perspective. Their view of
the complexity is much higher when considering their belief state. To simplify, lets
round the space complexity to an exponent of 50 instead of 43. Then imagine all
piece placements for white being 1025 where each has on average 1025 positions
of black pieces. This means the number of unique belief states is more closer to
1025×21025

. These calculations were done for the similar chess variation Kriegspiel.
In this variation, one is unable to observe any of opponent’s pieces at all and has to
rely on a referee knowing if a move is legal or not. That being said, as darkchess are
able to observe a portion of the opponent’s pieces, limiting the belief-state-space
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complexity. However, how much a player are able to observe of the opponent highly
depends on both players piece placement and would, therefore, vary in each game.
This makes the belief-state complexity being dynamic. Having an option making
people play against each other could collect data about the average belief-state
for each game which is again averaged across many games, getting a closer ap-
proximation. This also concerns the number moves that is executed in the average
darkchess game. For Kriegspiel, this has been calculated of being 52. Unfortunately,
this is outside of the scope of this thesis. However, one observation worth mention-
ing is that the belief state complexity of darkchess can not be any worse than that
in Kriegspiel, which has an upper bound of the belief state not exceeding 10130. [8]
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3 Related Work

Searching the Internet for Dark Chess will provide with results referred to as Banqi,
also known as Chinese dark chess, or even Half chess as it only uses half of a chess
board. This is a very different variation than what is referred in this paper. However,
both games share the uncertainty element which makes this field slightly relevant.

No academic research projects have been found that looks into darkchess. This
indicates a new microcosm for uncertainty with AI, although there exist similar
research projects in the area [11, 12, 13]. The closest chess variant seems to be
Kriegspiel chess where players never see any of their opponent’s pieces during a
game. This variation has been mentioned in Chapter 2. One main difference is that
the referee in Kriegspiel also has to give feedback to each player if an illegal move
is attempted. In such scenarios, it is a good guess that there is an opponent piece
blocking its path. However, as soon as a move is legal, it is played right away, mean-
ing a player needs to commit to any move. In other words, it is considered risky
wishing for illegal moves in order to gain more knowledge of the environment. This
also makes the information asynchronous, meaning a player does not know what
information the other player has obtained. This element is exactly what darkchess
prevents by revealing the squares the pieces can move to and/or attack.

3.1 Kriegspiel Chess

A Ph.D conducted by Favini in 2010 [8] has been looking at Kriegspiel focusing on
abstracting the belief state, a method referred to the use of metapositions. The goal
is to transform Kriegspiel over to a perfect-information game such that minimax
search algorithm can be applied. With metapositions, the problem size decrease,
which is achieved by merging multiple game states into a data structure which is
more manageable. What kind of states to merge depends on the moves that are
possible from the current state. In other words, the state after performing similar
moves gets merged to a single state. The main goal of the approach is to provide
players with the illusion of perfect information, making it possible to utilize an
evaluation function. Because of the partial observable environment in Kriegspiel,
states which might not be compatible with a game history could be merged, making
metapositions able to represent states in a very compact form. This is claimed to
make it easier to develop evaluation functions for the entire metaposition. This
concept also introduces pseudolegal moves, and pseudo pieces, since metapositions
can contain unreachable states, these will also contain illegal moves. Pseudo pieces
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can duplicate themselves and also be placed on squares which are already occupied
by another pseudo piece. These move only on the opponent’s turn, imagining that
each piece gets duplicated and moved to a legal square based on the feedback
from the referee. For each move by a pseudo piece their uncertainty increases,
but by moving own pieces over squares which have one or more pseudo piece
gets removed, and their uncertainty decrease. Each square on the board is also
linked with an aging value. This is increased as the game progress and no inference
happens on consecutive moves for every square. This is used to encourage visiting
aged squares. [8]

One aspect of the game, makes it asymmetrical, meaning a player does not know
what information the other player has gained from the referee, such as illegal move
attempts. Extracting such information is therefore deemed extremely important.

Favini look into improving strategies in the end game, but also compare differ-
ent MCTS approaches to Kriegspiel. The game is noted to be a difficult game for
computers to master, although the gap between human strength is reduced, with
a developed program being among the top 20 players over at the Internet Chess
Club. [8]

3.2 Monte Carlo Tree Search

Favini acknowledges MCTS for being appropriate in environments which struggle
with the use of a minimax approach, specifically mentioning Go. Here MCTS is
described being merely a framework for which one can experiment with different
strategies for each step that is MCTS. These are selection, expansion, simulation,
and backpropagation. Selection finds the most visited leaf node of a game tree
to expand further before simulating the rest of a game. In the end, it propagates
its result back to the root node. These steps are performed multiple times, where
a move is selected based on the number of visits a node gets. 3 different MCTS
methods have been compared, one being based on previous research using random
sampling. The other two methods is very similar, only simulating the referees mes-
sages, avoiding randomness which was a factor for performing inaccurate moves.
Simulating full games in the first approach were too detrimental making the other
approaches only simulate a portion of a game, determined by the number of moves
to be played. This is also the difference between the last approach, which only sim-
ulates games by one move. However, this includes quiesce search, and the smaller
the game length the more simulations are generated.

This first method failed, with a win ratio below 2%, barely winning over a
random agent. This reason was mainly due to depending on randomness itself.
The last approach performed best, which is argued because of basically being UCT
selection. Overall, Favini conclude that an MCTS algorithm can do good within a
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reasonable amount of time in a domain like Kriegspiel.
Research conducted by Yen, Chou, Chen, Wu, and Kao look into how MCTS can

be applied to Chinese Dark Chess (CDC) programs. Most CDC programs use alpha-
beta search with chance nodes to handle the uncertainty. This results in a massive
increase in the branching factor, even bigger than Go, making alpha-beta unable
to search deeply. The use of MCTS with chance nodes is researched with random
nodes for dealing with a partially observable environment. Variations of this ap-
proach has been shown possible for other games such as Backgammon, Kriegspiel,
and Poker. [11]

One important difference between CDC and darkchess are that in the Chinese
variation both players see the same board where all pieces are shaped as a flat
cylinder only showing the type of the piece on one side. In the opening, all pieces
are faced down and randomly placed on the board. The game starts when a player
flips a piece, revealing its color and type. This is the uncertainty of the game,
where players can flip pieces that belong to the opponent. To handle this during a
search, the MinMax game tree structure has been modified adding chance nodes
in order to deal with flipping moves. The child nodes of a flipping move represent
the likelihood of which piece it might be.

The paper contributes with successfully implementing a nondeterministic MCTS
(NMCTS) to a Chinese Dark Chess program named DIABLO. It won 4 gold medals
in computer CDC tournaments as well as a silver medal in Computer Olympiad in
2013. [11]

Another research by Jouandeau and Cazenave in this field experiment on both
group- and chance-nodes, where group-nodes consider all revealing moves from a
given position. This is to reduce the branching factor created by flipping moves.
Other than that, they show various experiments to reveal the most promising po-
lices. The four basic policies are Random, Capture, Avoid, and Trap which corre-
sponds to their respective goal. For instance, Avoid means avoiding opponents cap-
ture, while Trap means minimizing opponents moves. Their experiments show that
some polices are slow, namely Avoid and Trap. Further, only the best policies are
picked checking their ability to reduce the number of drawn endgames [12]. This
part is not as relevant since draw rules for CDC are slightly different from dark-
chess.

3.3 Alpha Beta Search Alternatives

There has been numerous research on game tree search, where Junghanns pro-
vided in 1998 a survey of the field [14]. The focus is on zero-sum 2 player games,
where alpha-beta pruning has shown to be a successful search method, especially in
perfect-information games. The survey acknowledges the limitations of alpha beta
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pruning and describes and assesses alternative game tree search methods which do
not share the same problems. When searching for solutions, it is ideal to reach the
leaf nodes which contain the game theoretic values, meaning typically win, loss,
or possible draw. For games with huge branching factors, it is impractical to search
down to the leaf nodes as it would be too time-consuming, or require an unreason-
able amount of memory while searching. That being said, alpha-beta pruning faces
a depth limit which again losses the game theoretic value as its gets replaced by
an estimate calculated by an evaluation function. This, in turn, raises other issues
as well. It should also be mentioned that alpha beta is a significant improvement
to minimax search as it eliminates searching big portions of a game tree, making
it plausible to search even deeper. Nonetheless, the most notable are these issues:
scalar value, stopping, expand next, and opponent. As evaluation functions com-
press the knowledge to a single scalar value, it could potentially lose information
that could be useful during a search. In cases where the search suggests one of
the many successor nodes, the best is the most appropriate to select which is de-
termined by the evaluation function. The expand next issue is about the fact that
alpha-beta pruning follows a depth-first search strategy, which depends on the or-
der that the successors expand next. The last issue, opponent, is about the agent
assuming the opponent is using the same heuristics. With different heuristics im-
ply that one agent is better, and when an agent thinks the opponent evaluates the
position equally makes it hopeless for the weaker agent. [14, 15, 16]

The are also alpha beta enhancements which partially solve some of the issues.
Iterative deepening for instance, in practice, addresses the stopping issue by instead
of setting a fixed depth, increasing the depth by one until a time limit has reached.
According to the chess-programming wiki, it is the basic time management ap-
proach for Depth First Search (DFS) algorithms. It allows for storing information
from earlier iterations which can be used in later iterations. However, this is not
claimed to be an optimal solution. Move ordering is another enhancement which
potentially can increase the number of cut-offs, focusing on good moves. How to
sort moves, could be used by information obtained by previous iterations, which
addresses the issue of expand next. It also claims that capturing moves are usually
good, as well as, good moves in sibling positions could be prioritized, given they
are legal. [14, 17, 16]

The notable alpha-beta alternatives discussed are a product-propagation proce-
dure, B*, Bayesian game tree search, speculative play, and opponent modeling. The
general idea of the product-propagation procedure is that the evaluation function
does not return either a game theoretic value or a scalar value, but instead return
a probability of the position to be a forced win. This is calculated by multiplying
the probability of child nodes having a forced win. Unfortunately, this assumes sib-
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ling nodes are independent which is claimed to be unrealistic in general. B* is a
best-first search, meaning it finds the best child node by separation, which allows
for expanding the most relevant node. This is said to be a natural way to solve the
issue of stopping, as well as addressing the expand next issue. [14]

By using a bayesian game tree search, the returned score by the evaluation is
a probability distribution. It represents the expected change in score if the corre-
sponding node has been expanded during a search. With this method, there are
possibilities for training the evaluation function to return probability functions.

Junghanns describes several methods for addressing the opponent issue, two
of which are opponent model search and speculative play. The idea of the former is
that the agent can model the opponent making it able to predict where it might do
mistakes. This introduces two values in each node representing what each player
believes the node values are. In short, two evaluation functions are used, making
it possible to exploit mistakes by the opponent. Ideally, this assumes that the agent
knows the opponent’s evaluation function and search-depth. Mannen agrees with
this statement but also states that the agent needs to have better chess knowledge
than the opponent. In short, opponent model search is about finding the best move
in respect to the chess knowledge of the opponent. This approach has also been
researched in other domains, such as in the game of tic-tac-toe [18]. It is believed
that agents can benefit from modeling the opponent and then adapt their strategy
accordingly, by basing their decisions on the opponent’s weaknesses. The idea of
the latter approach (speculative play) is to select a move which is not necessarily
the best, but one which provides the opponent with the smallest relative number of
optimal replies. [14, 16, 18]

Junghanns concludes that there is no practical alternative to the alpha-beta
search method for computer chess, but also concludes that there were promising
ideas with potential in the future. As of 2017, this statement is almost 20 years old.
Looking at one of the top open source chess engines, namely Stockfish, alpha-beta
seems to continue being the popular approach. This was checked in their source
code hosted at github [19] where the search.cpp file shows the use of iterative
deepening with alpha beta values, although with the complexity of multithreading.

Quiesce search is a method that dates back to 1950 a research conducted by
Shannon [7]. This solves the issue of evaluating tense positions, meaning positions
where pieces can be captured and exchanged. The problem arises when evaluating
a position after, for instance, a queen captures a pawn, making the player believe
it is a pawn up. Having searched deeper the agent would have discovered that
the queen could be recaptured, having the player exchanged a queen for a pawn.
Quiesce search can be executed when the ordinary search reaches the desired depth
or makes the depth count increase until the position has no more capturing moves.
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This technique ensures more accurate evaluations. [7, 16, 20]

3.4 Belief state

Dealing with problems in environments that are partially observable, a belief state
is required. Agent in these environments does not know exactly which state they
are in, and thus, needs a form of belief. An agent’s belief state is its current belief
about what state it might be in, this also means that after performing actions the
exact outcome might be unknown. The belief state space refers to all possible actual
states an agent could be in. After performing actions the environment can generate
percepts to the agents, as long it has sensors to perceive them. What these percepts
are, depends on the domain and what information that can be useful from the en-
vironment. The agent also has to maintain its belief state after performing actions
and receiving percepts. This is at the core for any intelligent systems. [21]

Sequential decision problems are those when the utility after performing an ac-
tion depends on previous actions. A transition model can provide information re-
garding the outcome for each action of each state. It follows the Markovian prop-
erty when the next state depends only on the current state. When actions have
stochastic outcomes means there are probabilities linked to what exactly might
happen. That being said, there is a probability P(s ′ | s, a) for reaching state s ′ when
performing action a in current state s. When the environment is fully observable
these problems can be addressed using Markov Decision Processes or (MDP). Since
the outcome of an action is probabilistic there is a need to specify what the agent
should do in any state. This is referred to as the policy, denoted π(s), which return
the recommended action in state s. A policy is generated from the initial state,
meaning the history might be different each time it is calculated, which is why a
policy is measured by what is expected given all possible states. A policy which
yields the highest expected utility is referred to as the optimal policy, denoted π∗.
In short, and since the agent knows its state, it can execute action π∗s. However,
when the environment is partially observable it becomes more challenging. In ad-
dition to the transition model, a sensor model is needed, that being P(e | s). It
provides with the probability of perceiving evidence e in state s. A key concept
with partially observable MDP, more commonly referred to as POMDP, is that the
belief state becomes a probability distribution over all possible states the agent can
currently be in. [21]

Research conducted by Rodriguez, Parr, and Koller [22] looks at reinforcement
learning with approximate belief state related to POMDP problems. They state that
finding the optimal policy is PSPACE-hard when it comes to the underlying states,
and as of 1999, solving POMDPs are most relevant to relatively small problems,
problems which are not trivial when it comes to computing or representing a full
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belief state. Having an exact belief state to maintain is impractical for large prob-
lems. Instead, they use the concept of approximate belief state which is not well
described other then it is fairly close to the true belief state. The research compares
3 different approaches for belief state reinforcement learning, 2 with the use of
Neural Network (NN) where one uses full belief states, while the other uses an
approximate belief state. The third uses a SPOVA method, a method which uses a
function approximator customized for POMDP problems. According to the results,
SPOVA learned faster compared to full belief state NN, which nonetheless, catches
up eventually. Another test suggests that the NN with approximate belief state can
search much more efficiently since it requires fewer parameters. In general, the
paper concludes that, for medium sized problems, approximate belief state rein-
forcement learning can outperform the alternatives when it comes to fewer training
iterations and faster training. [16, 22]

Another research by Mannen trained evaluation functions within the domain of
chess. He stated that reinforcement learning is a technique suited for solving MDP
problems. The research focused on using NN in order to train an evaluation func-
tion using multiple games played by experts. The 2 experiments conducted within
the chess domain were material balance, and evaluating chess positions. The for-
mer tests showed that the networks had a higher expectation of winning when the
player have one more bishop rather then a knight compared to the opponent. For
the second test focused on material, mobility, central control, and positional pawn
structures. 7 different evaluation functions were trained based on 50000 games. All
using different networks for the 3 phases of chess, that being the opening, middle
game, and end game. The paper concludes that it is useful to divide the train-
ing sets into different categories since having different networks for the different
phases of the game gained better results compared to only using one network. [16]

3.5 Evaluation function

Material is a big part of the evaluation function, being materially better has been a
common indicator of which player is better. This is the sum of each piece from both
sides, where each piece type is associated with a base value. The most common
values for each piece are pawns being worth 1, knights and bishop 3, rook 5, and
queen 9. The king gets usually a big score, such as 200, making the agents discover
king captures obvious, discouraging it to be captured by any means.

An evaluation function usually incorporates pawn structure weakness and mo-
bility. Weakness in pawn structure is double, backward, and isolated pawns. Double
pawns make it impossible making one protect the other, at the same time one of
them are blocked. Backward pawns are not able to advance safely, as no neighbor-
ing pawns protect it. Isolated pawns are pawns which have lost their neighbouring
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pawns, making them vulnerable. Mobility on the other hand, is basically the num-
ber of legal moves a player has in a position, meaning the player with most moves
has a slight advantage. [23, 7, 16]

Even though each piece type has a base value it’s strength also depends on
where it is placed on the board. This usually depends on how many important
squares a piece protects. One technique to encourage placing pieces on good squares
are with piece-square tables. A table here contains information about additional
points for each square on a chess board. Since each piece type is unique on how
they move on the board, they all get a different table. This means that squares that
are good for a rook, not necessarily are good for a bishop and vice versa. These
tables also reflect what color is being played. For instance, pawns get a higher
value the longer it moves to the other side, getting closer to be promoted. This
table would only be relevant when played as white, meaning each table needs to
be transformed accordingly to get the same effect when playing as black. [24]

The awarded master thesis conducted by Michniewski, looked at generic algo-
rithms, heuristic searching, and machine learning. Unfortunately, the thesis is writ-
ten in Polish. This made it necessary for an Associate Professor at NTNU Gjøvik to
assure its content is legit. He suggested making contact with the author to get more
insight if there has been any further research in the field. After exchanging emails
with the author, a more general idea of the work was obtained, also referring to
the chess-programming wiki for further information.

The thesis focus on investigating how chess engines perform when mainly re-
lying on piece square tables. An evaluation function was developed with designed
piece-square tables, and numerous chess engines were compared, including his
own named Tytan. The experiments showed that strong programs became weaker
without their original evaluation function. For instance, the engine Crafty, which is
originally stronger than Tytan, became weaker in comparison. The conclusion was
that the evaluation function is the key to success, and not only relying on piece-
square table. Other engines also use the piece square table approach such as Gerbill
and Rebel. However, as stated on the wiki "Material and piece-square tables alone
are enough for a program to play a semi-decent chess". [25, 24]

3.6 Chess Rating Systems

Chess rating systems have been an important factor to promote chess, making tour-
nament chess more popular. The official rating system as of 2017 is a variation of
the ELO system which was developed in the 1950s. According to a research paper
conducted by Glickman and Jones [26], the system has been adopted and mod-
ified by numerous national chess federations ever since. It is believed that each
chess player possesses an unknown current playing strength, which is an assump-
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tion the ELO system is based on. This strength is estimated based on the ratings of
the competing players. There are numerous practical uses for a chess rating system
such as tournament pairing, tournament sectioning, and prize eligibility, as well as
in qualifying systems for elite tournaments and, not to forget, the ability to monitor
one’s own progress as they play chess. [26]

Unfortunately, the ELO system has its flaws. After USCF converted to this system
multiple modifications have been tested. One issue is dealing with new players as
the ratings are only based on a few games. These are referred to as provisional
ratings. Glickman and Jones describes an issue with the provisional ratings were
winning a game against a lower rated player can result in losing rating. This is
an issue since winning a game is never evidence that a player is overrated. This is
addressed by a adding a condition to these scenarios. [26]

How much rating is taken depends on a development coefficient, also referred
to as the K-factor which is provided in the Equation 3.1. It represents the maximum
change in rating, which depends on the outcome of a game, but also each player’s
current rating.

NewRating = Rating+ K× (Result− Estimate) (3.1)

The Result is 1 if the game ends in a win, 0.5 if drawn, and 0 if lost. The estimate
represents what outcome to expect based on the agents current rating, which is
displayed in Equation 3.2. With two agents having the same rating, the estimate
becomes 0.5, meaning that an agent is expected to win 50% of the time. Rounding
the estimate and adding it to the current rating of the player gives the expected
rating.

Estimate =
10Rating/400

10Rating/400 + 10Opponent Rating/400 (3.2)

Players with a rating of 2400 or higher get a lower K-factor since their skills
are not believed to change as much as new players. In other words, their rating is
more stable. However, this is purely based on players rating. According to World
Chess Federation (FIDE), new players to the rating list gets a K-factor of 40 until 30
games have been completed in events. From that point on the player gets a K-factor
of 20 until they reach a rating of 2400 from which it will settle on 10 [27]. One
paper acknowledges the issue with determining a proper K-factor and suggests the
number of games played could influence this decision. [26]

Another research paper by Bester and Maltitz [28], suggests adding the con-
cept of momentum into the ELO system. They acknowledge its usefulness in two
player games, including team-based games and games with score outcomes. Three
different systems are tested and experimented, namely the Buffer, Switching Mo-
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mentum, and Deficit system. The Buffer system builds up momentum which is
later used to offset the rating. The Switching Momentum system adds a momen-
tum value of 1, 0 or -1 to each player depending on whether they are on a winning
streak, broken streak, or losing streak. The last system, adds a deficit condition
when a streak is broken; the player’s rating will not change until the deficit is re-
covered.

Each system is compared against the original ELO system based on two play-
ers with different initial ratings. In the first 2 systems mentioned, the true ratings
are obtained faster. The deficit system was almost in line with the original system,
suggesting it could be a more effective system as it does not have all the same
weaknesses. It is concluded that momentum can be included making the ELO sys-
tem more effective. [28]

The chess-programming wiki page describes different methods for comparing
the strength between chess engines. The suggested tests are t-tests and likelihood
of superiority (LOS). The former can tell whether two chess engines are different in
strength by comparing their ratings after played games. One can also test whether
one is stronger than the other, by using a one-tailed test. The latter is a simple
calculation according to the source which refers to work done by Remi Coulm, a
French associate professor in computer science, and Kai Laskos, a computer chess
and Go theorist. The provided, and simplified LOS equation is:

LOS =
1

2
×
[
1+ erf(

wins − losses√
2× (wins + losses)

)

]
(3.3)

The erf is referred to the standard C/C++ library, namely the error function
std::erf, which is defined as:

erf(x) =
2√
π
×
∫x
0

e−t2 (3.4)

Both ELO rating and the LOS calculation seem to be an approach for distin-
guishing between the strength of chess engines. The second best chess engine (as
of May 2017) is also open source [29]. This is Stockfish 8 where the community
has provided a testing framework for simulating games between different versions
in order to distinguish between their strength. This framework is called fishtest
where anyone can contribute and view results. The community provides with re-
gression tests displaying the increase in ELO rating points between different tests.
The site which provides the top chess engines, also refers to the LOS value, along
with rating to indicate which engine is superior.
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4 Implementation

In order to investigate the game of darkchess and how the uncertainty affects the
domain a working application was needed, able to perform both AI vs AI testing,
but also to conduct user testing. The focus of the latter was intended in under-
standing how people think and act when trying to solve the problems that dark-
chess present. There exist no database of darkchess games, or any open source
web projects at the time that could help and guide the starting point of this re-
search. This led to the decision of developing a working web application mostly
from scratch.

4.1 Development setup & tools

With a web application, one can potentially reach out and collect more games from
people enjoying chess. However, this approach also implies concerns related to ex-
ploits, leading to the decision of having the AI logic on a server, assuring more
trustworthy results. The reason why the AI and the web application was not on the
same server was mainly that of already owning a web hotel at one.com. By using
their tools would save time compared to setting up a web server, and at the time of
development one.com only offered PHP server-side development. Since javascript
were more a familiar programming language than PHP, learning Node.js appealed
more, and thus became the technology of the application. With that in mind, the
working application was developed in two parts, a web application and a Node.js
server for the AI implementation. The web application was only the front end, using
Bootstrap 4 for graphical components, Font Awesome for icons, and chessboard.js for
displaying and interacting with a chess board. The latter had to be modified in or-
der to support darkchess FEN notation. The AI was developed using Node.js which
is hosted on an Ubuntu server. For communicating between the web application
and the AI, web socket was used, where the npm library ws helped in setting up
a messaging system. The entire project is under one repository and open source,
hosted on GitLab following this link https://gitlab.com/tmellemseter/darkchess.

The server-side consists of mainly the 4 files: server.js, darkchess.js, agent2.js,
and alphabeta2.js. The server file contains setting up a web socket server and
handling different messages being passed from clients, such as START_GAME and
ON_DROP. The former is passed when a player has selected a color to play and
pressed start. When the message is received, a game of darkchess is initialized
along with the AI opponent. In other words, the server defines a darkchess object
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from darkchess.js and the agent from agent2.js. The latter is passed each time the
player drops a piece from one square to another. If an illegal move is attempted, the
server returns the correct board position along with a feedback message. Thus the
server also acts as the referee with the game state being the darkchess object. The
darkchess library provides an API to verify, make and undo moves, along with eval-
uating material on the board and retrieving information about the current state of
the game. The agent also has a darkchess object which represents its belief state.
In addition, the agent also contain an evaluation function, a random generator,
an alpha-beta search function, and information regarding opponent’s pieces, and
boolean values for enabling and disabling certain features. The agent instantiates
an alpha-beta object (from alphabeta2.js) which can define how to search. For in-
stance, the agent’s evaluation function is passed to the alpha-beta object. When the
agent searches, it makes and undo moves on its belief state. However, this is not
an accurate representation, as all opponent moves are registered in this state, even
those it should not know about. Before searching, the agent’s current information
about which squares are visible and hidden is provided which does not change
during a search. This way, the agent only searches within its visible space, making
sure it does not observe hidden pieces. That being said, it is the opponent piece
information which is more accurately the agent’s belief state. This is the number of
visible and hidden pieces for every piece type which is needed to be distinguished
when evaluating the material on the board.

4.2 Evaluation function

In traditional chess, the evaluation function looks at the current board position
and compare different aspects on the board between the white and black player. It
returns a value representing which player is better where a positive value means
white while a negative number means black. Some aspects are material, positional
weakness, and mobility. Material is the value of all pieces where each piece type is
linked to a base value which represents its strength. There are no standard values,
but the chess community seems to agree on pawns being worth 100, knights and
bishop being worth 300, rooks 500, and queen 900 [23, 7]. In this application, the
values selected follows Tomasz Michniewski’s idea which is to prevent exchanging
minor pieces (bishop and knight) for 3 pawns, encourage the agent to keep the
bishop pair and avoid exchanging two minor pieces for a rook and a pawn [30].
Following this guideline the pawns are still worth 100, knights changed to 320
and bishop to 330, while rook and queen keep their values of 500 and 900. There
is also another reason for choosing these values as they relate to the use of piece
square tables, a technique that rewards pieces being positioned on good squares,
and punishing them for being positioned on bad squares. For instance, a knight is
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better at the center of the board as it will control more squares, and according to
the same source, a knight at the center is worth 320+20 = 350while one in a corner
is worth 320+−50 = 270. In other words, this technique encourages moving pieces
to good squares. Positional weakness relates to the pawn structure, specifically the
number of double, backward or isolated pawns, and mobility is simply the number
of legal moves.

4.2.1 Material

In darkchess, the opponent’s material is known, although not necessarily their po-
sitional strength, while pawn structure and mobility becomes challenging to calcu-
late. Not knowing the exact position of the opponent’s pieces, the average of their
possible square values was used. Unfortunately, pawn structure weakness, and mo-
bility were omitted, meaning the evaluation function only considers material. The
evaluation function is defined as:

Score = α×

(
n=6∑
i=0

(TotalValue(W, i) − TotalValue(B, i))

)
×whoToMove (4.1)

Where α = 0.01, the centipawn constant. The value is scaled down such that
a pawn with the base value of 100 becomes 1, which translate to white being up
one pawn. whoToMove is 1 if the player to move is white, and -1 if black. This
is important when using the alpha-beta negamax framework, returning the score
relative to the player in turn. The TotalValue(p, t) returns the total value of all
pieces of piece type t for player p where t is either pawn, knight, bishop, rook,
queen, or king. This is also the list that is summed in Equation 4.1, hence n=6.
TotalValue is the sum of the visible pieces and the average of the hidden pieces,
getting TotalValue(p, t) = VisibleValue(p, t)+HiddenValue(p, t). Both of these
functions are defined as follows:

VisibleValue(p, t) = N× BaseValue(t) +
N∑
i=1

SquareValue(p, t, i) (4.2)

HiddenValue(p, t) = N×

(
BaseValue(t) +

∑N
i=1 SquareValue(p, t, i)

N

)
(4.3)

Note that, N = |t|, the number of the respective piece type, either hidden or
visible, making the summation over N the average positional score per hidden
piece. Bishop is however treated differently as they can only move on light or dark
squares. In short, the summation is relative to the game state and piece type.
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4.2.2 Board Representation & Piece-Square Tables

The SquareValue(p, t, i) represent the piece square table of piece type t from
player p’s perspective. The i is used to get the table index of the ith piece p on
the board. All 6 piece square tables are stored as static 2-dimensional arrays in the
agent2.js file from white’s perspective. For black, the tables has to be transformed
by flipping it horizontally and vertically as not all tables are symmetrical. Also note
that, if the agent play as white, and is calculating its own material, HiddenValue
should return 0 as the agent will always have full knowledge about its pieces.

The board is represented as an array of size 128, twice as long as the number
of squares on an 8x8 chessboard. Only half of the array are valid squares, starting
at index 0 which represent square a8 and h8 would be at index 7. The next square
in the array, however, being a7, is not at index 8, but 16. In other words, every sec-
ond row (8 indices) are empty. This square-centric board representation is called
0x88 [31]. The reason behind this is that detecting off the board squares when
generating legal moves become cheaper and faster, due to bitwise operations. This
method is used in the chess.js library which darkchess.js is heavily based on. That
being said, the summations illustrated in the equations are in code iterating over
the entire board and then filters what information that is important. For instance,
for only considering visible squares, the in view information is used. It has the same
data type as the board, but with a true or false value for whether the correspond-
ing square is visible, which is updated every time the agent does a move. When
iterating, the current square is checked against the in-view information, if it is not
in view, a continue is triggered, meaning it immediately jumps to the beginning of
the loop and starts checking the next square. For the piece square tables, it means
they need to be converted to the 0x88 data structure.

4.2.3 Searching

When considering what move to do the agent searches in a MiniMax fashion. The
algorithm used is a modification to the alpha-beta pruning, which works such that
the agent considers all of its own moves to begin with, before considering all of the
opponent’s responses. This is a search with 2 in depth. After picking two moves,
the board is evaluated and given a score indicating whether the position favors one
of the players. After analyzing every response by the opponent the agent can con-
clude, based on the score, that the best the opponent can achieve, is for instance,
an equal position. The next move the agent considers, one of the opponent’s move
is winning a rook, meaning no further opponent moves need to be considered,
as the first move resulted in an equal position. Analyzing the first move creates a
lower bound, meaning anything worse can be rejected. When going deeper then 2,
both players can affect the outcome resulting in an upper bound. In other words,
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a player’s lower bound is the opponents upper bound. It is these bounds that are
referred to as Alpha and Beta.

There are different approaches in implementing alpha-beta pruning, where it
seems that a recursive solution is popular. One can implement it having one recur-
sive function, but having two distinct indirect recursive functions for the max and
min player is also possible. With the negamax framework, one simplifies this by
merging those two into a single function. This is possible due to the mathematical
relation max(a, b) = −min(−a,−b). The main reason for the negamax frame-
work was used is mainly because the chess programming community provides with
pseudo code on how it is done in addition to the Quiesce search. [15, 32]

The modification is to continue searching when the list of possible opponent
moves are empty. This is shown in Algorithm 1, when the move list is empty, one
simply swap the player to move and go directly to the next depth. Another change
is that a depth of 0 is passed when starting the search, instead of the desired depth.
The max depth value can be set from the agent’s object, which is then passed down
to the alphabeta object. A search is started by calling

alphaBeta(−Infinity, Infinity, 0, principalLine)

The last parameter is an empty array which will contain the principal line when
the search has finished. The array contains the list of moves by both players the
agent believe are the best, where the best move to do is at index 0. This array
is updated each time a better alpha is detected. However, when different agents
play against each other, another array stores multiple move variations to consider.
This is shown at the bottom of the algorithm when the recursion has return to its
first instance, meaning back to when depth is equal to zero. Remember that, when
using the negamax framework, the evaluation function needs to returned the score
from the players perspective, which is shown in the Equation 4.1. The agent object
provides a move function where no parameters are needed, it gets a list of moves
with their corresponding score from the alpha-beta search and selecting a move is
based on a distribution which is calculated from their score. This distribution is the
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score normalized ensuring that good moves are more likely to be selected.

Algorithm 1: AlphaBeta
Input: Alpha, Beta, Depth, PLine
Output: Score

Line = EmptyArray

if Depth reached || Game finished then
Score = Quiece(Alpha, Beta, PLine)
Score = (Score−GetRisk())
return Score

end

Moves = GetMoves()

if Movesareempty then
Swapplayer
Score = −AlphaBeta(−Beta,−Alpha, depth+ 1, PLine)
Swapplayer

end

for Move in Moves do

DoMove(Move)
Score = −AlphaBeta(−Beta,−Alpha,Depth+ 1, Line)
UndoMove(Move)

if Score >= Beta then
returnAlpha

end

if Score > Alpha then
Alpha = Score

PLine[0] =Move
for i = 1 to Line.length do

PLine[i] = Line[i− 1]
end

if Depth == 0 then
PrincipalVariations.push(move, score)

end
end

end

return Alpha
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Quiescence search is applied to make sure the position to be evaluated does
not include any tactical moves. That is moves which immediately change the ma-
terial balance, such as captures and promotions. The reason is to avoid evaluating
at the desired depth since the last considered move can, for instance, be a queen
capturing a pawn, which will grant a +1 to the score (if white). However, has the
search gone one step deeper, it could see that the queen gets recaptured, making
the score -8, a benefit for black. Thus, quiescence search is applied when the or-
dinary search reaches its desired depth. In a case of no captures, the position is
evaluated and the score returned. the implemented function is very similar to the
alpha-beta method, using the same pruning technique. After evaluating the posi-
tion, the method checks whether there is a beta cutoff where the beta is returned,
or possible updating alpha. Note that there is no checking against any depth limit,
meaning it could potentially run undesirably long. However, the number of captur-
ing moves is usually a fraction of all possible moves, especially in the opening and
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endgame.

Algorithm 2: Quiesce
Input: Alpha, Beta, PLine
Output: Score

Line = EmptyArray
StandPat = Evaluate()

if StandPat >= Beta then
return Beta

end

if Alpha < StandPat then
Alpha = StandPat

end

CapturingMoves = GetCapturingMoves()

for Move in CapturingMoves do

DoMove(Move)
Score = −Quiesce(−Beta,−Alpha, Line)
UndoMove(Move)

if Score >= Beta then
return Beta

end

if Score > Alpha then
Alpha = Score

PLine.push(Move)

PLine[0] =Move
for i = 1 to Line.length do

PLine[i] = Line[i− 1]
end

end
end

return Alpha
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4.3 Belief state

Making the agent able to evaluate its position it needs to know which state it
is in. This is not trivial in partially observable environments, as it cannot know
for sure what the reality is within the unobservable space. This means the agent
needs to consider the state it believes it is in. Before any move has happened, the
agent’s belief state is the actual state, a copy of the initial board position. The
information in the state is a board representation, which squares are visible and
not, king placement, the player to move, castling rights for both sides, number of
half-moves, the move number, and a list of all moves that has happened so far in a
game. This is referred to the game state, and the referee has the exact same game
state structure. In addition, specifically for the agent, the agent needs to keep track
of the opponent’s pieces, meaning how many of each piece type are visible and
hidden.

When a game has started and as moves happen over the board, the agent reg-
ister all move types as specified in Table 1, even the unknown ones. This might
sound like cheating, but this information is never used when evaluating the po-
sition or is revealed during a search. This method makes updating the piece type
information trivial as it boils down to increasing and decreasing how many are vis-
ible and hidden. For example, imagine the opponent has done an unknown knight
move which becomes registered in the agents game state. After the agent responds,
having chosen a move which reveals the unknown piece, it simply decreases the
number of hidden knights by 1 and increases the number of visible knights by the
same amount. This happens for all pieces that get revealed, which can maximum
be 7 pieces.

4.4 Assessing Risk

In traditional chess, one can never be 100% sure of what move the opponent might
do. Even when a player allows the opponent to win a pawn. This is known as a
gambit in chess. Take for instance the opening 1. e4 e5, 2. d4 exd4. 3. c3 where
white allows black to capture 2 pawns. In other terms, White sacrifices 2 pawns
in order to achieve rapid development with attacking possibilities. However, one
cannot know for certain whether black will accept this line known as the Danish
Gambit or decline it. That being said, there exists some probability whether the
opponent attacks a piece given a position where it is possible to attack. This is
defined as:

P(Attacks | Can attack) = P(A | C)

Unfortunately, this is challenging to calculate as it depends on who is playing. The
probability P(C) in standard chess is always known and is therefore either true or
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false. This is because one has complete knowledge over the board, but in darkchess
this is not the case. However, knowing the probability of the opponent can attack a
certain square on the board is not that helpful, since attacks can be both good and
bad. To determine the difference between good and bad attacks depends on both
the attacking and captured pieces. Exchanging a piece by a less valued piece will
lead the attacker being up in material. This is preferred, although there exist excep-
tions where a piece can be positionally stronger than a higher valued piece. There
are also discovered attacks. Those occur when a piece moves out of the way for
another piece which then attacks. This means that the discovered move can almost
allow any capture, being it good or bad materialistically, as long as the discov-
ered attack threatens a more valuable piece. Regardless, a more useful probability
is P(Can attack piece x with a less valued piece y) = P(Cx>y). In traditional chess,
losing a quality can be considered a blunder, meaning a huge mistake that can end
in a loss. Here, losing a quality is defined by exchanging a high valued piece against
a lower valued piece. This should not be confused with losing material as that in-
clude sacrificing pawns which might have its advantages as described above. In
short, since the material is such an important factor when evaluating which player
is stronger, one should always exchange any low valued pieces against any higher
valued pieces. This defines the assumption:

Assumption. In a position where the opponent can capture a piece with a lower
valued piece, the attack will happen.

P(Ax>y | Cx>y) = 1 and P(Ax<y) = P(Cx<y)

That being said, the point of assessing the risk is to manipulate the evaluation
score based on how much risk of losing quality is present in the position. This risk
is calculated when the ordinary search algorithm has reached the desired depth.
This means that risk assessment is done after the agent has made (depth/2) num-
ber of moves where depth is an even number. This becomes inaccurate for depth
greater than 2 as the risk will be evaluated after multiple moves have been made,
disregarding the risk of the position after the first move. However, since the prior-
ity has been looking with a search depth of 2, this implementation did not become
an issue. That being said, this is also the reason risk assessment is not considered
when doing quiesce search. The other reason for not going beyond a depth of 2 is
due to the lack of optimization, meaning at greater depth the search time increase
exponentially.

When assessing the risk, the agent looks at its own pieces and calculate the
probability of being lost by a less valued piece. Some pieces have multiple less
valued pieces to consider such as the bishop having both pawns and knights being
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less valued. Table 2 shows this relation for all piece types.

Piece type Less valued pieces
Pawn
Knight Pawn
Bishop Pawn Knight
Rook Pawn Knight Bishop

Queen Pawn Knight Bishop Rook
King Pawn Knight Bishop Rook Queen

Table 2: Less valued pieces

The total risk in a given position is calculated as follows:

TotalRisk =

n∑
i=m

(α× BaseValue(m)× PieceRisk(m)) (4.4)

Where n is the number of own pieces on the board, where m is the first piece. As
the equation shows, the risk is weighted against the base value of the given piece
and scaled by the centipawn value α. The evaluation score is decreased by the
this TotalRisk. Since, the king has a base value of 20000, even a small percentage
grants a big decrease in the score, making the agent scared by exposing the king.
The risk assessment for any piece is defined by the probability of at least one less
valued piece captures said piece. The equation is as follows:

PieceRisk(m) = 1−

|l|∏
i=t

|t|∏
j=0

(
total− possible− j

total− j

)
where total is > 0 (4.5)

Note that, l is the list of less valued piece types in relation to m, where t is the first
piece type in the list. The inner product notation represent the probability of no
pieces of piece type t that can attack m. Total and possible represent the number
of dark squares where possible depend on piece type t and what square piece m is
placed on. This is based on the Assumption 4.4, which makes it possible to calculate
the probability of losing quality, specifically meaning P(Cx>y) = possible/total.
Note that, for bishops, the denominator is not the total number of dark squares,
since a bishop can only move on either light or dark squares. In other words, total
depends on piece type y.
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5 Method

5.1 Comparing different AI implementations

A node script was developed in order to make 2 agents play darkchess against each
other. The script can be found under the generate folder in the repository, with
the file name generate2.js. It takes two arguments, a number for how many games
the agents will play, and a file name to save the test. After executing the script
and the test has finished, the result is stored in a CSV formatted file, able to be
opened by other programs such as R. The first line in the file, however, is a random
seed used in the random number generator for the agents, where the second is the
header information, namely the column names. There are a total of 9 columns: an
id (which specifies the game number), a score (given by the referee), the agent’s
name (labeled player), which color it played as, the result of the game, the ELO
estimate, and current ELO rating, and at the end, a boolean whether the agent
started to miscalculate the position (labeled error). In a case of a draw, information
is also provided for what triggered it (labeled comment). A draw can be reached in
two ways either by the 50 move rule or insufficient material which occur when only
the kings are left on the board. A row represents one agent’s data, meaning one
game adds two rows. Table 3 show an example of this structure.

By passing a filename as the first argument instead of a number will repeat the
test of the passed file, making each test repeatable. Unfortunately, the settings for
each agent is not stored in each file and thus has to be manually changed before
repeating a test.

To begin with, each agent is assigned an ELO rating, which indicates their
strength, and for all tests, these are set to 500 for both agents. This is to observe
whether one of the agents will increase in rating, indicating a better agent. Since

id score player color result estimate rating error comment
187 -218 agent1 w 0 565 537 false
187 -218 agent2 b 1 436 463 false
188 9 agent1 b 0.5 538 533 false 50 move rule
188 9 agent2 w 0.5 463 467 false 50 move rule

Table 3: An excerpt of a .csv file generated by the generate2.js script
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chess is a zero-sum game, when one agent wins a game, it will take a few rating
points from the losing agent, meaning the total rating will always be 1000.

The LOS is also calculated between each test, getting a sense if any agent is
superior. This is calculated using the Equation 3.3. However, Equation 3.4 is not
supported directly in R, instead an equivalent error function is used, being Equation
5.1, where pnorm is a distribution function already available in R:

erf(x) = 2× pnorm(x× sqrt(2)) − 1 (5.1)

A total of 12 different tests have been conducted, each with different settings
between the agents. For each test, a 1000 independent games have been played
between the agents, in order to observe trends and analyze their difference. All
tests look at the same data, which is, any advantage of playing a specific color and
looking at rating trends over the duration of games.

The different main features an agent can enable are risk assessment and move
ordering. There have also been experimented with different search depth and re-
ducing the severity of risk. This leaves a total of 10 main tests, where each agent’s
setting is specified in Table 4.

Filename
Agent 1 Agent 2

Risk Move Ordering Risk Move Ordering
nvsn.csv FALSE FALSE FALSE FALSE
rvsr.csv TRUE FALSE TRUE FALSE

mvsm.csv FALSE TRUE FALSE TRUE
mrvsmr.csv TRUE TRUE TRUE TRUE

rvsn.csv TRUE FALSE FALSE FALSE
mvsn.csv FALSE TRUE FALSE FALSE
mvsr.csv FALSE TRUE TRUE FALSE

mrvsn.csv TRUE TRUE FALSE FALSE
mrvsr.csv TRUE TRUE TRUE FALSE

mrvsm.csv TRUE TRUE FALSE TRUE

Table 4: Agent settings for each main test, all searching at a depth of 2

An R script has been created in order to plot the data of the .csv files to present
the results graphically. This makes it fairly easy to reproduce the graphs for both old
and new tests. After loading the tests.R script into an R console, all plot functions
becomes available, including a loadFile function for loading one csv file by passing
its name. It will return a data frame which can be given as input for most plot
functions.

First of all, the data is checked if they follow a normal distribution. This was
done using the Shapiro-Wilk normality test in R against an agent’s change in rating.

36



Reasoning under Uncertainty in Darkchess

File Name Shapiro-Wilk Anderson Darling H0

nvsn.csv 0.02715 0.1355 Contradiction

rvsr.csv 0.0006014 0.001721 Reject

mvsm.csv 4.8× 10−5 0.0003627 Reject

mrvsmr.csv 0.08866 0.3862 Fail to reject

rvsn.csv 0.06964 0.2416 Fail to reject

mvsn.csv 0.001735 0.04311 Reject

mvsr.csv 2.2× 10−16 4.7× 10−12 Reject

mrvsn.csv 0.002038 0.002055 Reject

mrvsr.csv 1.4× 10−12 7.4× 10−11 Reject

mrvsm.csv 0.01021 0.11714 Contradiction

Table 5: Normality test based on rating change over games for Agent1

The other agent’s result would be symmetrical because of the zero-sum property of
the game. Another method is also provided for comparisons, namely the Anderson-
Darling test which is provided with the nortest package in R. This introduces the
following hypothesis, both reject H0 when the p-value is less than 0.05.

H0: The data is normally distributed

H1: The data is not normally distributed

The results for each test are shown in Table 5, including both normality methods
with their corresponding p-value. The last column provides with the result, reject-
ing or fail to reject H0. A third alternative is also possible when the two methods
disagree. These are labeled contradiction.

The result shows different assumptions about the distribution in rating for Agent-
1. Most tests reject H0, suggesting the distribution is not normal. Two tests fail
to reject H0, in which a normal distribution can be assumed, while in two other
tests the p-values contradict each other. To further analyze the distribution qq-plots
are provided in order to graphically interpret the data. This has been provided by
the qqnorm function in R. The Figure 5 shows the first 4 tests in Table 5 where
all agents are similar when it comes to enabled features. The remaining tests are
shown in Figure 6.
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Figure 5: QQ plots for all tests where the agents share the same features

Looking at the QQ plots in Figure 5, the lines all leans towards a light tailed
distribution. However, they look close to a normal distribution. The Move Order-
ing and Risk Assessment suggested a normal distribution since both normality tests
failed to reject H0. Considering the p-value from Shapirov-Wilk, the p-value were
only slightly above 0.05, which might suggest a type II error; wrongly retain the
possible false null hypothesis. Based on the contradiction for the No features set test
and the QQ plot, it looks like the Anderson Darling is also a type II error.
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Figure 6: QQ plots for all tests where each agent are different

The first QQ plot in Figure 6 has a slight light tailed distribution characteristic
based on the endpoints. The p-value provided by the Shapirov-Wilk test is slightly
above the threshold 0.05, suggesting another type II error. Both Move Ordering - No
features and Move Ordering & Risk - Risk seem to have a slight left skew distribution.
Based on the graph of the Move Ordering & Risk - Move Ordering test and the con-
tradiction between the normality tests, made it difficult to assess any characteristic
of its distribution.

What can be concluded of these tests are that most seem to follow a non-normal
distribution. Because of this claim, future tests should not assume a normal distri-
bution. Testing for independence the chi-square test is appropriate, first of all since
the data set is large, but also because the data set is synchronous, meaning if any
dependent variables exist would also indicate an advantage. For regression analy-
sis, it means a nonparametric regression test is needed.

The Pearson’s chi square test of independence is used to observe if two vari-
ables are statistically independent. This has been checked between game results
and player color, observing if there is any advantage playing as either white or
black. The same method is used between game results and agent, observing if there
is any difference between the agent’s strength. This is possible to infer as the re-
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sults are symmetrical. Note that, there are 4 different tests which compare agents
with the same features enabled, these are: no features, only assess risk, only enable
move ordering, and both enabled. In general, the null and alternative hypotheses
for all tests with variable X and Y become:

H0: X and Y are statistically independent

H1: X and Y are statistically dependent

The remaining 2 experiments, both increasing depth and adjusting the severity
of the risk assessment has been investigated. The risk can be scaled with a factor,
meaning a 1.0 keeps the calculated risk while 0.0 is equivalent of not enabling risk
assessment, apart from doing unnecessary calculations. Two experiments were con-
ducted on risk sensitivity, where one agent only enables risk assessment with the
default 1.0 in severity. The other agent had 0.5 and 0.1 in the respective tests. Only
one test was conducted for checking whether increasing the search depth for one
agent would improve the results. Here, both agents have only enabled move order-
ing where one agent searches with a depth of 4, while the other with 2. The reason
both has move ordering enabled is to increase the number of cutoffs, making each
agent spend less time searching since with an increase in depth the amount of time
searching would increase exponentially nonetheless. The limit for a draw accord-
ing to the 50 move rule was also decreased to 8 to speed up the process, and made
it possible to generate 1000 games within a reasonable timeframe. This does not
have any impact on the result since whenever both agents start repeating moves,
it does not matter how many times they repeat the position before it becomes a
draw.

When testing for normality, all three data sets rejects H0. The one which shows
a contradiction when comparing the p-value between Shapiro-Wilk and Anderson-
Darling For this, a QQ-plot is provided, suggesting a slight light tailed distribution
as displayed in Figure 7.

Regression tests were conducted in order to find trends in the change in ELO
rating of the different agents. Only the no feature test and move ordering vs risk has
been analyzed. Since the data related to rating change and played games suggest
a non-normal distribution, nonparametric regression analyses have been chosen,
specifically the Nadaraya–Watson kernel regression. Different bandwidth has been
tested in order to avoid overfitting. In addition, the R’s stat_smooth function pro-
vided in the ggplot2 package uses a Generalized Additive Model (GAM) as default
when the dataset is equal or larger than 1000.

In the end, 12 games were more closely examined in order to better interpret
the results. This regarded specifically color win-ratio for no features enabled, only
risk enabled, and one with move ordering against no features enabled. The games
can be found in Figurine algebraic notation (FAN) in Appendix A.
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5.2 User Testing

Figure 7: QQ plot for risk vs risk with
0.5 in severity

One of the main reasons for conducting the
user tests were to get a better understanding
on how the agent played against people. An-
other reason was to cover how people perceive
the game of Darkchess, answering questions re-
lated to their thought processes, and how they
played the game with a focus on risk assess-
ment.

One requirement for the participants was
that they already had knowledge about chess.
This was met with all 6 people that partic-
ipated, which were mainly from school who
showed an interest in chess. The agent’s set-
tings had enabled risk assessment and move
ordering, as well as, only selecting the best
move. Each participant played two games, one
as white and one as black. Move ordering has been proved important when testing
different agents against each other. Enabling risk, on the other hand, suggested
the opposite. However, the idea was to analyze if any dark pins or possible dou-
ble attacks were made, which makes the risk assessment important. Since each
participant only played two games the agent could just as well perform at its best
knowledge, since the participant would not get familiar with its play style. This
concerns especially in the opening, as the agent is not influenced by any opponent
moves.

Each test was conducted locally and thus separately. The effort to upload it
online was not deemed important as the goal was to perform a qualitative study,
analyzing each game more closely, than collecting more data and analyze the sam-
ple in relation to draw conclusions about the population. Having it locally also
means the ability to observe the participants on how they perform, and can more
easily answer questions they might have.

After having gone through the formalities and explaining the rules of Dark-
chess, the participant answered a pre-questionnaire about their traditional chess
knowledge. This covered how much chess they have played during the last month,
how much knowledge they had on chess openings, chess tactics, and playing posi-
tional chess. A 7 point scale were used to the last three questions indicating their
knowledge from none to expert.

Each participant got a unique ID to link their answers and games, but also to
identify their results anonymously. Every participant with an odd numbered ID

41



Reasoning under Uncertainty in Darkchess

played white in their first game and black in their second, while the other played
black first and then as white. This was done to prevent biased results in case any
comparison between games and color were to be conducted.

Starting a game for user testing, the node.js server script was used. However,
in order to save games, it was extended with the ability to access the file system
using the npm package fs. This was achieved by passing two arguments before
starting the script. The first argument is the folder name for which all games by the
participant will be saved, basically naming it using the participant ID. The second
argument is the file name of the game to be played. The convention that was used
was specifying the game number followed by what color the participant played
as. For instance, the file name game02white indicate that the participant played
as white in the second game. When a game is finished a .pgn file gets created in
the specified test folder. A backup file is also created in an already created backup
folder in case any error should occur. The backup files require a unique file name
which ended in containing the participant id, game number, and color, followed
by a unique string created using the npm package uuid. The needed information is
also logged in the CLI should there be any errors in creating either of the files.

The PGN format is a standard format for storing all moves from both sides, mak-
ing it possible to be read from other programs such as Tarrasch, a chess program
for windows. Unfortunately, that means no information about what squares are
visible and not from both sides and on every move, are stored. Developing the ap-
plication to load these games became more work than anticipated, and thus down
prioritized. First of all, the client side chessboard.js library did not support loading
PGN content directly, only loading the board by passing a FEN string. This meant
that the correct FEN was needed to be passed from the server each time the board
should be updated by either moving back or forward in the game history. Secondly,
the algebraic move notation that is used in the PGN needs to be disambiguated.
For instance, the move Rf1 or Ne4 does not say which rook or knight it is, which
has to be specified when both rooks or knights can move to f1 or e4 respectfully.
The disambiguation was omitted to prevent revealing too much information when
passing the observed moves in the application when playing. In other words, a
form of conversion needed to be done.

Before going through each game, the summary of both the pre and post ques-
tionnaires were analyzed. Getting a notion of the participants believed chess knowl-
edge regarding chess openings, tactics, and on playing positional chess. The sum-
mary of the post questionnaire would cover how the participants played, and which
phase of the game they found most challenging and easy, and why.

To analyze the data, Tarrasch was used going through each game, move by
move. Unfortunately, Tarrasch does not allow stepping through illegal moves ac-
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cording to traditional chess rules. This was, however, only the last couple of moves,
except from one game. This was analyzed using the tool available at nextchess-
move.com, which also supports loading PGN files. Any interesting positions were
noted, like positions where the agent blunders, but also where it acts well.

43





Reasoning under Uncertainty in Darkchess

6 Results

6.1 Agent vs Agent

6.1.1 Test for independence

In the first test, both agents do not have any features enabled. The win ratio con-
ditioned on player color and agent including the error in evaluation is displayed in
all tests starting with Figure 8. This also applies to the error bars, showing a con-
fidence interval of 0.999. Similar results are shown when both agents have only
risk assessment enabled, which is displayed in Figure 9. The corresponding LOS
calculations for Agent1 for these two tests show 0.39 and 0.73 respectfully, using
the Equation 3.3. This suggests that Agent2 is more likely superior in the first test,
while the opposite can be said for the second test.

Figure 8: Both agents with no feature enabled, showing error bars with a 0.999 confidence
interval

Based on the Pearson’s chi-square test, the p-value for color win-ratio is 2.2 ×
10−16. It strongly suggests that game results and player color are dependent, mean-
ing the H0 is rejected. In other words, an agent playing as white is more likely to
win, given both agents have no features enabled. However, for the next graph in
the figure (agent win ratio), the test returns a p-value of 0.92, and H0 fails to be
rejected as it is not smaller than the confidence interval. This suggests that there is
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no difference between these two agents. One can also observe that the number of
games in which an agent starts to miss evaluate a position is small, this is shown
for all tests.

Figure 9: Both agents enabled risk assessment only, showing error bars with a 0.999 confi-
dence interval

In the next test, both agents have enabled move ordering only. This test is dis-
played in Figure 10 with the same graphs. The result, however, shows a change
in the color win ratio. The p-value shows the same 2.2 × 10−16 with a confidence
interval of 0.999, which also suggests a strong relationship between player color
and game results, thus H0 is rejected. Although, with only enabled move ordering,
black is more likely to win. For agent win ratio the test returns a p-value of 0.33,
which fails to reject H0. This has a probability of 0.001 for being wrong. On another
note, the LOS calculation shows 0.15 for Agent1, suggesting that Agent2 is almost
superior. Similar results can also be observed when both risk and move ordering
are enabled for both agents. This is displayed in Figure 11. A difference to notice is
the p-value for color win ratio is increased to 6.4×10−6. However, the H0 continues
to be rejected. The same conclusion is made for agent win ratio with a p-value of
0.48, continuing in failing to reject H0. The LOS, in this case, show 0.80, similar to
the previous test, although, here it is Agent1 which is almost superior.
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Figure 10: Both agents with only move order enabled, showing error bars with a 0.999
confidence interval

Figure 11: Both agents with risk assessment and move ordering enabled, showing error bars
with a 0.999 confidence interval
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Testing different settings for each agent’s, it is expected to see more difference
in agent win ratio. Risk only (Agent1) versus no featured enabled (Agent2) is dis-
played in Figure 12. Here, both color win-ratio and agent win-ratio return the
same p-value of 2.2 × 10−16, rejecting H0 in both cases. This highly suggests that
risk assessment makes the agent perform more poorly. According to LOS, Agent2 is
superior over Agent1 as it returns 1.0.

Only enabled move ordering (Agent1) against no feature enabled (Agent2) is
displayed in Figure 13. The chi-square test returns a p-value of 0.43 for color win-
ratio, which fails to reject H0. For agent win-ratio on the other hand, gives a p-
value of 2.2 × 10−16 with a confidence interval of 0.999. Thus, H0 gets rejected,
suggesting a strong relationship between move ordering and game results. Having
move ordering enabled gives higher winning chances when the opposing agent has
no features enabled. Agent1 is 100% superior over Agent2, the same can be said
for the next test as well.

The test for only move ordering enabled (Agent1) up against only risk enabled
(Agent2) is displayed in Figure 14. This shows very similar results compared to
the previous test, thus drawing the same conclusions regarding rejecting or fail to
reject H0.

Figure 12: Agent1 with only risk assessment enabled and Agent2 with no features enabled,
showing error bars with a 0.999 confidence interval
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Figure 13: Agent1 with only move ordering enabled and Agent2 with no features enabled,
showing error bars with a 0.999 confidence interval

Figure 14: Agent1 with only move ordering enabled and Agent2 with only risk assessment
enabled, showing error bars with a 0.999 confidence interval
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The last 3 tests, Agent1 has the same features enabled. That is both risk assess-
ment and move ordering. Agent2 has no features enabled, only risk enabled, and
only move ordering enabled . These are displayed in Figures 15 16 17 respectfully.
The first two tests show a similarity in results as color win-ratio fails H0 to be re-
jected due to a p-value of 0.13 and 0.77. The same goes for agent win-ratio, having
the same p-values 2.2 × 10−16, rejecting H0 and suggesting a strong relation be-
tween game results and move ordering, even with or without the risk assessment.
These also share the same LOS outcome, Agent1 being 100% more likely superior
over Agent2. The remaining test shows different results. For color win-ratio the Chi-
square p-value is 2.5 × 10−6 which strongly suggests that game results and player
color are dependent variables. The same conclusion is drawn between game results
and agent, returning a p-value of 3.0× 10−8. The LOS for this last test returns the
value 1.5× 10−5 strongly suggest Agent2 of being superior over Agent1.

Figure 15: Agent1 with risk assessment and move ordering enabled and Agent2 with no
features enabled, showing error bars with a 0.999 confidence interval
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Figure 16: Agent1 with risk assessment and move ordering enabled and Agent2 with only
risk assessment enabled, showing error bars with a 0.999 confidence interval

Figure 17: Agent1 with risk assessment and move ordering enabled and Agent2 with only
move ordering enabled, showing error bars with a 0.999 confidence interval
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Both results from the risk severity tests are displayed in Figure 18 and Figure
19. All Chi-square p-values show 2.2×10−16, apart from win-ratio and agent in the
first test, returning 1.5 × 10−10. All tests strongly indicate dependent variables as
H0 gets rejected. The LOS value indicate that Agent2 is superior over Agent1 with
the values 0.0 and 1.0× 10−6

Figure 18: Agent1 with only risk assessment and Agent2 with risk assessment with a severity
of 0.5. Error bars is displayed with a 0.999 confidence interval

Figure 19: Agent1 with only risk assessment and Agent2 with risk assessment with a severity
of 0.1. Error bars is displayed with a 0.999 confidence interval
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In the depth test (displayed in Figure 20), the Chi-square p-values for both color
win-ratio and agent win-ratio show 1.9 × 10−9 and 1.8 × 10−8 respectfully. This
means H0 gets rejected. This is different when compared to Figure 11 where both
agents have only move ordering enabled. However, it is the agent who searches
with a depth of 2 which gives a LOS value of 0.99.

Figure 20: Both agents with only move ordering enabled, but with Agent1 searching at a
depth of 4. Error bars is displayed with a 0.999 confidence interval
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6.1.2 Regression

The first regression test is looking at two identical agents, both having no features
enabled. This is shown in Figure 21, and note it has been zoomed in on the y-axis.
This has been done in order to make the different regression lines observable. Also,
note that there are two lines for each color, these indicate the two different agents.
This is also why the two groups of lines are symmetrical. Since both agents are
equal, it is expected that the rating would not change as much. However, this is
also related to the K-factor described in Chapter 3. For all tests, this was arbitrarily
set to 20 which is the maximum amount of points one of the agents can take from
the opponent in one game. In the graph, the faded line shows the actual rating after
each game. This goes multiple times across ±50 from its initial rating of 500, which
indicates that an agent consecutively wins or loses. The thick faded line shows the
confidence interval of 0.999 around the moving average. Since all three methods
overlap, the other confidence intervals were left out, making the lines themselves
stand more out. Since all three methods show close to identical trends, arguing for
which is more accurate becomes difficult. Each line shows most difference in the
beginning and end of the test, and judging by the beginning, where the rating is
known, it is the GAM method which deviates most from approximating 500. The
main trend of these two group of lines shows that they are continuously crossing
each other.

In Figure 22 no lines starts to cross. Here Agent1 has enabled risk assessment
while Agent2 has no features enabled. There is a clear difference in their strength,
which can be shown in the corresponding test for independence in Figure 12. The
lines become even more separated in the beginning compared to the last test. There
is also a change in which line more accurately approximate 500, being the GAM
method. The mean rating of the more superior agent is 551, this is obtained after
playing around 130 games, from which the line starts to stabilize. The next test
show very similar trends.

Figure 23 shows 2 very distinct agents. Here Agent1 has enabled move order-
ing while Agent2 has enabled risk assessment. Comparing against the last test,
this does not show any lines crossing, which indicate a superior agent. This is also
shown in the corresponding independence test (Figure 14). Looking at the begin-
ning, each line is even more separable, making GAM the one which approximates
the real initial value more closely. The mean of the superior agent, show a mean of
663 in rating, this is obtained after around 130 games have been played. From that
point on, the trend seems to stabilize.
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Figure
22:
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6.2 User Testing

6.2.1 Participants

Based on the answers from the 6 participants in the pre-questionnaire, the group
was familiar with the rules of chess. However, their understanding of the game
leaned more towards novice level. This is based on the fact that 3 of 6 have not
played any traditional chess during the last month before the user test, and none
have played more than 10 hours. Not only that, but 3 of 6 also answer they did
not know how to play positional chess at all, while 2 of 6 did not have any knowl-
edge about chess openings. Nevertheless, 2 participants seemed to be confident in
their chess knowledge, selecting average or above when it came to chess openings,
tactics, and playing positional chess.

In the post-questionnaire 5 of 6 believed the middle and end game were most
challenging to play. The main arguments were that it became tougher to anticipate
the moves done by the agent and to find good moves for themselves. Therefore,
when asked which phase of the game was the easiest to play 5 of 6 answered
the opening. Before making a move the participants considered between 2 and 4
alternatives on average. When considering moves and responses by the agent, 3 of
6 answered that they only considered the move to make. The deepest a participant
thought were 4 consecutive moves before deciding what to play. When it came to
how risky they played on average, all participants answered average or above. One
stated selecting only risky moves, while another did more risky moves then safe.

6.2.2 Games

After going through all 12 games, move by move, the Assumption 4.4 provided in
Chapter 4, seem to be correct. In every position where the participant could capture
a higher valued piece, they did in fact, capture it. Dark pins did not occur for either
the participants or the agent in any of the games. However, one participant manage
to be put in checkmate. This is shown in Figure 24. The agent has captured the
dark-squared bishop meaning it is not afraid of a bishop being on a1, b2, or c3,
which could potentially have lost the queen when moving the rook. Instead, the
king is revealed in a position where the participant knows it is in checkmate.

Another game the agent manage to make a discovered attack with a separate
attack, resulting in winning the game. This is illustrated in Figure 25, where the
agent play with white pieces, and moves the bishop to c4, making a discovered
threat against the opponent’s queen on d8, but also attacking the king on e6. Note
that the bishop is not observable for black after the move. The participant decided
to save the queen by moving it to a safer position. Unfortunately, it loses the king
due to the hidden bishop on c4.

58



Reasoning under Uncertainty in Darkchess

(a) Black to move (b) White is in checkmate

(c) Black to move (d) White is in checkmate

Figure 24: Check Mate: (a) and (b) shows it from white’s perspective, before and after black
moves its rook to d2, while (c) and (d) shows the same, but from black’s perspective
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(a) White to move (b) Queen and king is un-
der attack!

(c) White to move (d) "Only" the queen is un-
der attack

Figure 25: Double Attack: (a) and (b) show it from white’s perspective, before and after the
attack, while (c) and (d) shows the same, but from black’s perspective

One of the mistakes the agent does is sacrificing bishops and knights for pawns
on the second rank. This makes sense, as there is no risk of being captured by
a pawn on the first rank as that is not possible. This leaves the knight being the
only less valued piece for the bishop, but when both knights are visible the agent
believes the capture will end being a pawn up. This happened in multiple games
and was also mentioned by one of the participants, stating the agent became very
aggressive around the middle game. In one game, the participant did not play po-
sitionally, meaning most pieces were lost because they were not protected. Overall,
the agent managed to win 50% of the games, 3 by white and 3 by black. It should
be noted that in one of the games the participant did not seem interested in win-
ning as all pieces got lost, ending in moving the king to the center to be captured.

In one of the games, the participant seems to have a good position materially,
after a couple of moves. Unfortunately, the queen gets lost because of a hidden
knight. In the end, the participant loses the game because of an open file, providing
with dangerous attacking opportunities with a rook. After losing more material and
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not considering possible threats to the king resulted in losing the game.
Another game shows that the agent is afraid of exposing the queen for rooks,

which result in sacrificing a knight for a pawn. In a separate game, the agent man-
ages to win a lot of material, leaving the participant with only 3 pawns and a king,
where the agent is up 2 rooks and a bishop. The participant manages to win by get-
ting a pawn promoted to a queen. The agent could have stopped the promotion,
but did not because of a potential risk of being captured by another pawn, both if
capturing on c7 or by stopping it, moving to c8. This is illustrated in Figure 26.

In two of the games, the agent gets in repeat mode, meaning it moves the same
piece back and forth. This is usually the rook or the queen, and it happens because
other moves might expose them. This, in turn, prevent the agent in castling, which
make these scenarios a weakness for the agent.

8 0Z0j0a0s
7 o0O0Z0o0
6 0Z0O0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0O0Z0
2 0Z0Z0s0o
1 Z0ZKZ0Z0

a b c d e f g h

Figure 26: Agent allows pawn promotion since b7 is unknown and therefore might contain
an enemy pawn, f7 is however visible due to the rook on f2
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7 Discussion

7.1 User Tests

Seeing how the agent behaves against people have gained more insight of its weak-
nesses and strength. Even though the participant group was relatively small, each
played 2 games resulting in a total of 12 different games that has been examined.

The fact that the agent manages to win 50% of the time both as white and
black should not be taken too much into consideration. The games themselves
confirm their chess knowledge as covered in the pre-questionnaire of being at a
novice level, which is also backed up by observing a difference in intentions over
the board. Most participants played above average risky moves, where one, in par-
ticular, did not seem interested in winning, as all pieces became sacrificed from the
opening. Hammer pointed out that Darkchess is more about playing positional than
taking chances, and the goal in the opening is very similar to traditional chess. Get-
ting pieces developed while taking control of the center, but also play prophylactic
moves, prevent the opponent from utilizing possible weaknesses by playing defen-
sive. He also pointed out that it is more important to keep one’s own king safe then
locating and attacking the opponent’s king. Unfortunately, half of the participants
had no knowledge about playing positional chess.

Nonetheless, based on the games the agent performs reasonable moves in the
opening, getting pieces developed and starts taking control over the center. How-
ever, the agent does not consider moving pieces to unprotected squares, which
results in sacrificing bishops and knights for pawns. This start to occur after the
opening, where the agent starts attacking pawns on the second rank. Another rea-
son could also be that the risk is low for losing a knight or bishop for a lower valued
piece on the second rank. This makes sense as it is not possible to have pawns on
the first rank.

The main weakness of the agent is when the agent starts repeating moves. This
occurs when the agent itself is down in material, and become too afraid of exposing
the pieces it considers to move. There could be different reasons for this, first of
all, the agent might consider the best move first which will result in only one move
alternative. Another reason could be that among the move alternatives, one stands
out, having a bigger chance of being selected. How risk assessment is implemented
has also an impact on this, as the probabilities assume a uniform distribution. One
could normalize the piece square tables, using it as a distribution for where pieces
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are more likely to be placed.
Based on the independent tests, risk assessment alone show poor results com-

pared to when no risk assessment is enabled. Knowing if this applies to people
is unknown. However, based on the assumption (which the data indicate being
true) suggest it is more likely. Apart from not observing any dark pins, double at-
tack seems to be relatively dangerous, especially since it provided a victory for
the agent. This suggests long attacks, which is provided by bishops and rooks, can
provide tactical strategies. This also mean that the agent should exploit open di-
agonals and files. However, in order to accomplish that, the agent needs to obtain
knowledge about the opponents pawn structure. This is also an important and
well-known evaluation technique as it includes positional weakness.

7.2 AI Features

The fact that playing as white shows to be, in most cases, an advantage, keep
in mind that both agents use the same evaluation function. This means that they
evaluate each position in a similar manner, considering risk and material in the
same way. This especially limits the opening, as long as no information is shared,
both agents consider very similar moves. This makes sense though, as their goal at
this point is to develop pieces to better squares, which help in taking control of the
center.

In the games where no features are set, it seems that the default move ordering
has an effect on the outcome. The default move ordering is different from white
and black since move generating scans the board from a8 to h1 for both players.
This makes the rook blacks first piece being checked for legal moves, but for white
it becomes the a2 pawn. From the examined games in Appendix A. The first game
illustrates this disadvantage for black as black are more likely to start repeating
moves. White, on the other hand, gets its central pieces being selected first, getting
a more varied move order. White seem to be more likely to attack as well, and when
this affect the king, it gets more vulnerable when making sub-optimal moves.

This argumentation seems plausible for when risk is enabled as well. However,
the risk assessment also affects the move selection when the king becomes too
exposed. In these scenarios, the agent prioritizes moving the king back and forth
in an attempt to save the king from possible threats, completely ignoring whether
the opponent gets pawns promoted to queens.

When move ordering is enabled against no features, black is more likely to win.
According to the examined games, this reason seems to be of prioritizing captures,
making black recapture whenever white attacks. This result in white ending up
with fewer pieces and an exposed king, making it more likely for black to capture
it.
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The reason why no risk seems to be a better strategy then applied risk is because
recapturing pieces might oppose certain risk, for which it gets prevented. In other
words, the agent which does not consider risk acts more aggressively and starts
exchanging pieces for less valued pieces. The opponent can become too afraid to
recapture as it might expose other more valuable pieces. This has been indicated in
numerous tests, where scaling the severity of risk assessment from 0.5 to 0.1 only
approximate the results of not assessing risk at all. This becomes clear when com-
paring Figure 18 and 19 against Figure 12. The main reason behind this weakness
is that the agent does not consider opponent pieces being unprotected. As related
work suggest, move ordering improves the evaluation function in terms of select-
ing better moves first, which in turn also optimizes searching as more alpha-beta
cutoffs occur, limiting the search on unnecessary moves.

With added risk assessment, the first to win material reduces the risk consid-
erably, especially when capturing lower valued pieces, such as bishops or knights.
Since a bishop is restricted to move on a specific colored square, capturing one
makes all moves to the same colored square reduce in risk. This was shown in the
checkmate scenario, displayed in Figure 24, where no risk is applied for moving
the rook, which "exposes" the queen on the diagonal.

When it comes to known evaluation methods in traditional chess, the mate-
rial has been shown to be manageable as it has been implemented to a working
darkchess agent, only slightly being affected by the applied uncertainty. For posi-
tional weakness, more knowledge is required about the opponents pawn structure,
making it possible to reason for how many double, backward, or isolated pawns
the opponent have. The uncertainty makes obtaining this information non-trivial
due to adverse surprise moves as displayed in Figure 3. Even though the agent
should avoid letting the opponent perform these moves, it needs to have a strat-
egy nonetheless. For instance, it should be safe to exclude the king, especially the
opposite colored bishop. Further, it is the observable space which determines other
possibilities such as possible knight attacks. Because of this special move, which
one would like to avoid, prevents knowing exactly when pawns change files.

Interestingly, without these moves, the agent can more easily reason about the
opponents pawn structure, along with more accurately calculating the risk for
pawn threats. Since pawns cannot move backward, observing the initial square
for pawns will reveal useful information. Observing for instance that the pawn has
moved will limit the number of possible dark squares it can be positioned in (re-
gardless whether you lose sight of the square), simply because it is approaching the
visible space. Unfortunately, because of adverse surprise moves, knowing whether a
pawn has captured an unprotected piece makes it more challenging as there could
be two pawns in a file. An alternative could be to calculate risk in this manner then
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fall back with the current solution when an adverse surprise move occur where the
attacking piece could potentially be a pawn.

Mobility is also difficult to obtain in darkchess. This relates of course to how
many pieces the opponent have, meaning it is possible to argue that a player with
more pieces also are the player with more move options. However, there are ex-
ceptions if one have blocked pieces such as the rooks, bishops, queen and king in
the initial position.

That being said, uncertainty affects traditionally evaluation methods differently,
but nonetheless, makes it more challenging to reason about what the real state
is. However, note that by addressing the pawn structure problem one can more
accurately reason about pawn threats but also other evaluation methods such as
king safety. These are related as the pawns in front of the king should not move as
it could expose it to threats.

Overall, most results show there is a clear difference between agents. This is
both indicated by independent tests and the likely hood of superiority. However,
relying on the LOS value alone can provide width inaccurate claims as it suggests
one of the equal agents are superior. This indicates the provided LOS equation is
very sensitive to game results.

The regression tests show clearly whether an agent is more superior. Comparing
the 3 regression methods, it is difficult to distinguish between them. This seems to
strongly indicate a clear trend, and knowing exactly which are more accurate does
not become as important. From the last two tests, both indicate that if there is any
difference, it becomes clear after about 130 games.

7.3 Evaluation & Belief State

In darkchess, one has full knowledge about material on the board. This information
has been utilized and is used when evaluating any position. Unfortunately, the use
of piece square tables provided with challenges as the exact position of each oppo-
nent piece are unknown. The implementation assumes that each piece is equally
likely to be positioned in any square, given it is legal. This is, of course, inaccurate
to assume, first of all this approach does not consider the number of moves that has
been made from the opening. For instance, only after 1 move, a knight is not possi-
ble to be located on every square. This includes all pieces, for instance, both rooks
are blocked, meaning it requires multiple moves before one can assume a rook can
be positioned in any squares within the unobservable space. Secondly, piece place-
ment also depends on different factors such as a player’s current goal, and current
knowledge of the opponent. The former might be playing positional or aggressively
if the position allows both, while the latter highly depend on the move history of
a game. This argument, however, depends on who is playing, making it difficult to
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observe any general distribution. Nonetheless, the results of the user testing sug-
gest a uniform distribution provided with relatively challenging play against novice
players. An alternative approach could be to normalize each piece square table and
used it as a distribution for where pieces are more likely to be placed. This assumes
that the opponent is more likely to place pieces on good squares.

Piece square tables provide the agent to distinguish between better squares for
each piece type. According to related work, this provides with semi-decent chess
play, which the outcome of the user tests confirm, even when only evaluating ma-
terial and avoiding losing quality.

With this approach, the belief-state is basically numbers for how many of each
piece type is visible and hidden. One might think these values are always known
and to be 100% accurate. However, because of promotions (and only promotion),
material can change without one knowing. On another note, it is more specifi-
cally the hidden number which represent the belief state. When risk assessment
included, the belief state in total becomes the combination of a uniform distribu-
tion of the dark space with the hidden piece type numbers. With this implementa-
tion and with the search performed only within the visible space, alpha-beta search
becomes possible. The related work, provide with numerous alternative for search
methods, although alpha-beta seem to be the popular approach, especially in chess.
For partially observable chess domains, both MCTS and metaposition have shown
applicable solutions where the latter showed more promising results. The belief
state can also be a distribution over all possible states which is the case when
following a POMDP approach. How exactly this is adopted to a chess domain is
unknown, as most examples where POMDP has been applied, actions are stochas-
tic, meaning the exact outcome of an action is not known in advance. POMDP is
also claimed of being most relevant for relatively small problems. Pseudo pieces in
metaposition can be viewed as a probability distribution for where one can expect
certain piece types on which squares. This approach also takes move order into
account. Based on this, POMDP can be appropriate.
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7.4 Search

Figure 27: A dangerous knight peek-
ing into black’s position

Increasing the search depth for one agent
showed that it influenced the game results neg-
atively. One of the factors here is the search is
limited to only consider visible moves for the
opponent. Meaning, the agent does not con-
sider moving an opponent piece to the unob-
servable space. In fact, if there is only one vis-
ible piece by the opponent, the agent does not
consider this piece to not move. This can result
in considering inaccurate responses, and note
that this applies to search with a depth of 2 or
more. Take for instance the position in Figure
27. Here, when the agent considers moving away from the knight on c6, the only
responses by the opponent (given that it has to move) result in a worse position. In
other words, every respond loses the knight immediately. This indicates that pre-
venting the opponent to capture the knight on c6 will lead to a better position. In
reality, the knight is strongest in the center, and thus, as long as there are unobserv-
able alternative moves, not moving any visible pieces should also be considered.

As mentioned in Chapter 4, the risk is only applied to the first move the agent
considers. If risk assessment has been implemented similar to how evaluation
works, the risk would only have been applied to the deepest state. Imagine the
agent is starting to search from the position displayed in Figure 27, where the first
move it considers is knight to b4. This exposes the king from a potential bishop
or queen on a4. White’s best responds (when it has to move the knight) becomes
knight captures pawn on f7 which gets lost after king recaptures. Now the desired
depth has been reached, and assessing the risk in this position would indicate the
king being completely safe on its new square. The drawback is that this method
does not account the risk of the first move. Ideally, risk should be applied after
each agent move and passed down as the search goes deeper. How the risk from
agents first move should be incorporated with its second move (a depth of at least
3) has not been discussed as the focus of this research have mainly been on search
with depth 2. Nonetheless, this is why risk assessment is not performed in quiesce
search.

Even though with a simplified evaluation function, alpha-beta seems be work
relatively reasonable with applied risk to deal with the uncertainty. That relates to
searching with a depth of 2. Although, searching deeper requires enhancements
such as move ordering, the relevance of applied alpha-beta search at a deeper level
is unknown and needs further investigation.
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According to user tests, move searching seem to be better in the openings then
middle and end game. As one participant commented, the agent becomes very ag-
gressive from the middle game as it starts sacrificing bishop and knights. User tests
have also shown that the agent evaluates threats inaccurate in the end game be-
cause of the risk assessment. This suggests that the evaluation becomes less stable
from the middle game. This indicate that different evaluation strategies could be
selected depending on the phase of the game.

According to the user tests, searching at a depth of 2 might suggest that deeper
move search is not that relevant according to novice players. One possible expla-
nation could be that the middle and end game phase were more challenging as is
it were more difficult to reason about what moves the agent performed. As such,
more considerations has to be made for each depth, making it more demanding to
think deeper. Knowing how relevant this applies for professional chess players is
unknown.

7.5 Limitations

For gathering participants for the user tests, Gjøvik Sjakklubb were contacted on
Facebook. Unfortunately, their respond was too late in order to gather experienced
chess players. Contacting the club could have been done earlier, having scheduled
the user tests. However, getting a chess agent play reasonable were higher priori-
tized at the time, fixing decisive bugs.
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8 Conclusion

Darkchess has been an untouched domain regarding artificial intelligence and rea-
soning under uncertainty. It has been obtained a considerable amount of knowl-
edge and an insight into the challenges of darkchess, along with gathered an ex-
perts opinion on the matter. In addition, a working as agent has been developed,
able to play darkchess seemingly at a novice level according to user testing.

Multiple tests have also been conducted between different agents, able to ob-
serve if any agent is more likely superior over another. It has mainly been focused
on risk assessment and move ordering, but searching with different depth has also
been tested. The results are discussed with respect to the applied belief state, eval-
uation methods, risk assessment and search algorithm. This includes how stable
the applied evaluation function is over the duration of a game.

It has been shown that searching only within the visible space of a partially
observable environment, where actions can affect the observability can achieve an
agent leaning towards semi-decent playing strength. The main factors for this in-
clude the use of piece square tables, a simplified evaluation method which only
includes material balance. This also includes assessing the risk to prevent worst
case actions. Risk assessment has shown to have relatively small impact on the
decision process compared to move ordering. The results also suggest that the im-
plemented solution perform best in the opening phase of the game from which it
gets too aggressive. However, from that point, it also becomes more challenging
for people to find good moves which again has affected the game results. The chal-
lenges in applying traditional evaluation methods have shown different impacts,
where material evaluation has been successfully applied. That being said, the un-
certainty in darkchess affects the decision maker depends on the material and risk
assessment. This includes the position of the king and how exposed it it as well. In
short, it becomes about taking chances preventing a worse position, or accepting a
known but slightly worse position.

When considering the performance of the evaluation function over a duration
of a game, it has been shown to start sacrificing pieces, thus selecting moves which
weaken its position. At the same time, risk assessment in certain cases affects the
evaluation at a level which obscure other move alternatives.

Apart from a working darkchess agent, this research has contributed to opening
up a new domain for investigating reasoning under uncertainty. With it, a modified
alpha-beta pruning algorithm is provided in order to make search possible in a
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partially observable environment, which can be applied to other similar domains.
The developed solution is also open sourced using node.js, not limiting any OS
platforms, making further work possible for any researcher.

By further investigating this field of research will provide the AI community with
more knowledge on different approaches dealing with uncertainty, specifically in
complex domains such as darkchess, and more generally towards 2 player turn-
based strategy games.

8.1 Further Work

In order to pursue the approach covered in this thesis, a natural next step would be
to investigate how to apply more evaluation methods, such as positional weakness
and mobility. Another natural next step would be to investigating whether normal-
ized piece-square tables could replace the uniform distribution in risk assessment.
These have been briefly mentioned.

Other further work, with improved search flow, could investigate search im-
provements, allowing for deeper search with applied risk. With assessing pawn
structure, one can also start applying other evaluation methods such as king safety.
One could argue that by observing the opponent’s pawn structure, one can infer
where the opponents king is positioned since moving pawns in front of the king ex-
poses it to threats. Other possibilities are looking into different search algorithms
such as MCTS, or apply different techniques such as metapositions, or looking into
POMDP as a possible approach.
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A Agent vs Agent Games

A.1 No Features

1 Nc3 Nc6 2 Nf3 Nf6 3 d4 d5 4 e3 Be6 5 Nb5 Qd7 6 NXa7 NXd4 7 Nb5
NXf3 8 NXc7 QXc7 9 gXf3 Rd8 10 Bd3 Kd7 11 Be4 NXe4 12 QXd5 Kc8 13
QXd8 KXd8 14 fXe4 QXh2 15 Bd2 Qg3 16 fXg3 Ke8 17 Bc3 Kd7 18 BXg7
BXg7 19 O-O-O Re8 20 RXd7

1 Nc3 Nc6 2 Nb5 Nh6 3 d3 d6 4 BXh6 e5 5 BXg7 Bd7 6 BXf8 KXf8 7 Nf3
Qc8 8 NXd6 cXd6 9 NXe5 NXe5 10 e4 Qc4 11 dXc4 Rd8 12 Qh5 Kg8 13
QXh7 KXh7 14 h3 BXh3 15 RXh3 Kg8 16 RXh8 Re8 17 RXg8

A.2 Risk Assessment

1 Nc3 Nc6 2 d4 Nf6 3 Bd2 d5 4 a3 e6 5 Nf3 Bd6 6 a4 O-O 7 e3 Bd7 8 Be2
Qe7 9 Bd3 Rad8 10 O-O Rfe8 11 BXh7 Rf8 12 BXg8

1 Nc3 Nc6 2 d4 Nh6 3 f3 d5 4 BXh6 Bd7 5 BXg7 BXg7 6 f4 O-O 7 f5 Re8 8
f6 eXf6 9 Nf3 Qe7 10 e3 Qd6 11 e4 dXe4 12 Qe2 Ne7 13 Nd2 Be6 14 O-O-O
Rf8 15 Ncb1 f5 16 Qe1 Rad8 17 d5 Rc8 18 dXe6 f6 19 a3 Qe5 20 h3 Rcd8
21 a4 RXd2 22 RXd2 Rd8 23 Bc4 RXd2 24 NXd2 Bf8 25 Kb1 Kh8 26 Nb3 a6
27 a5 b5 28 Bf1 Nd5 29 Nd2 Kg7 30 e7 Kg8 31 e8Q Kh8 32 QXf8 Qe8 33
QXh8

A.3 Move ordering vs No Features

1 Nc3 d6 2 Nf3 Nf6 3 Nd5 NXd5 4 d4 Nc6 5 a3 NXd4 6 NXd4 Be6 7 e3
NXe3 8 BXe3 d5 9 NXe6 fXe6 10 BXa7 RXa7 11 Be2 e5 12 O-O e6 13 Bb5
c6 14 BXc6 bXc6 15 QXd5 cXd5 16 h3 Qd6 17 Rad1 RXa3 18 bXa3 Qc6 19
RXd5 eXd5 20 Re1 BXa3 21 f3 O-O 22 c4 QXc4 23 Rf1 QXf1 24 KXf1 d4 25
f4 RXf4 26 h4 RXf1

1 Nc3 Nc6 2 d4 NXd4 3 QXd4 Nf6 4 QXf6 eXf6 5 Nd5 Bd6 6 e4 O-O 7 NXc7
QXc7 8 Nf3 QXc2 9 Be3 QXb2 10 O-O-O QXa2 11 RXd6 Rd8 12 RXd7 BXd7
13 Nd4 Be6 14 NXe6 fXe6 15 Kb1 QXb1
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