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SUMMARY

We provide a theoretical framework that fits r ealistic c hallenges r elated t o s pacecraft f ormation with 

disturbances. We show that the input-to-state stability of such systems guarantees some robustness with 

respect to a class of signals with bounded average-energy, which encompasses the typical disturbances acting 

on spacecraft formations. Solutions are shown to converge to the desired formation, up to an offset which 

is somewhat proportional to the considered moving average of disturbances. In presence of fast peaking 

perturbations, the approach provides a tighter evaluation of the disturbances’ influence, which allows for the 

use of more parsimonious control gains. 
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1. INTRODUCTION

Spacecraft formation control is a relatively new and active field of research. Formations,

characterized by the ability to maintain relative positions without real-time ground commands, are

motivated by the aim of placing measuring equipment further apart than what is possible on a single

spacecraft. This is desirable as the resolution of measurements is often proportional to the baseline

length, meaning that either a large monolithic spacecraft or a formation of smaller, but accurately

controlled, spacecraft may be used. Monolithic spacecraft architecture that satisfy the demand of

resolution are often both impractical and costly to develop and to launch. On the other hand, smaller

spacecraft may be standardized and have lower development cost. In addition they may be of a

lower collective weight and/or of smaller collective size such that cheaper launch vehicles can be

used. There is also the possibility for them to share launch vehicle with other spacecraft. These

advantages come at the cost of an increased complexity. From a control design perspective, a crucial

challenge is to maintain a predefined relative trajectory, even in presence of disturbances. Most of

these disturbances are hard to model in a precise manner. Only statistical or averaged characteristics

of the perturbing signals (e.g. amplitude, energy, average energy, etc.) are typically available. These

perturbing signals may have diverse origins:

Intervehicle interference. In close formation or spacecraft rendezvous, thruster firings and exhaust

gases may influence other spacecraft [1].

Solar wind and radiation. Particles and radiation expelled from the sun influence the spacecraft and

are highly dependent on the solar activity [2], which is difficult to predict [3].

Small debris. While large debris would typically mean the end of the mission, some space trash,

including paint flakes, dust, coolant and even small needles†, is small enough to “only”

deteriorate the performance, see [5].

†Project West Ford was a test carried out in the early 1960s, where 480 million needles were placed in orbit, with the aim

to create an artificial ionosphere above the Earth to allow global radio communication, [4].
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Micrometeoroids. The damages caused by micrometeoroids may be limited due to their tiny size,

but constant high velocity impacts also degrade the performance of the spacecraft through

momentum transfer [6].

Gravitational disturbances. Even gravitational models including higher order zonal harmonics, can

only achieve a limited level of accuracy due to the shape and inhomogeneity of the Earth. In

addition comes the gravitational perturbation due to other gravitating bodies such as the Sun

and the Moon.

Actuator mismatch. There is commonly a mismatch between the actuation computed by the control

algorithm, and the actual actuation that the thrusters can provide. This mismatch is particularly

present if the control algorithm is based on continuous dynamics, without taking into account

the pulse-based functioning of thrusters.

Nonlinear control theory provides instruments to guarantee a prescribed precision in spite of these

disturbances. Input-to-state stability (ISS) is a concept introduced in [7], which has been thoroughly

treated in the literature: see for instance the survey [8] or the more recent survey [9] and references

therein. Roughly speaking, this robustness property ensures asymptotic stability, up to a term that is

“proportional” to the amplitude of the disturbing signal. Similarly, its integral extension, iISS [10],

links the convergence of the state to a measure of the energy that is fed by the disturbance into

the system. However, in the original works on ISS and iISS, both these notions require that these

indicators (amplitude or energy) be finite to guarantee some robustness. In particular, while this

concept has proved useful in many control applications, ISS may yield very conservative estimates

when the disturbing signals come with high amplitude even if their moving average is reasonable.

These limitations have already been pointed out and partially addressed in the literature. In [11], 

the notions of “Power ISS” and “Power iISS” were introduced to estimate more tightly the influence 

of the power or moving average of the exogenous input on the power of the state. Under the 

assumption of local stability for the zero-input system, these properties were shown to be actually 

equivalent to ISS and iISS respectively. Nonetheless, for a generic class of input signals, no hard 
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bound on the state norm can be derived for this work. Other works have focused on quantitative

aspects of ISS, such as [12], [13] and [14]. These three papers solve the problem by introducing

a “memory fading” effect in the input term of the ISS formulation. In [12] the perturbation is first

fed into a linear scalar system whose output then enters the right hand side of the ISS estimate. The

resulting property is referred to as exp-ISS and is shown to be equivalent to ISS. In [13] and [14]

the concept of input-to-state dynamical stability (ISDS) is introduced and exploited. In the ISDS

state estimate, the value of the perturbation at each time instant is used as the initial value of a one-

dimensional system, thus generalizing the original idea of [12]. The quantitative knowledge of how

past values of the input signal influence the system allows, in particular, to guarantee an explicit

decay rate of the state for vanishing perturbations.

Many papers have dealt with vanishing perturbations, and have defined appropriate classes to

investigate their stability properties, see for instance [15] and [16]. Notable work on persistent

perturbations, except for the above mentioned ISS type formulations, is [17] where they consider

a class of signals similar to ours. It can be shown that their class is strictly more general than the

one introduced in this paper . In [18, p. 101] stability with respect to persistent disturbances that

are bounded in the mean is defined. Said definition characterizes a local property, and does not give

an explicit bound on the solutions. Those are the key differences to the stability definitions of this

paper.

The new stability definitions introduced in this paper will be used to analyse the stability

properties of a spacecraft formation in leader-follower configuration. The ISS framework was first

used for formation control in [19], [20]. Since then their work has been extended in various ways, for

example to formation control of non-holonomic vehicles [21], [22], control of complex formation

topologies [23], and formation control under varying communication topologies and delay [24]. A

wide range of applications has been considered, for instance autonomous underwater vehicles [24],

spacecraft [25] and unmanned aerial vehicles [26].

In this paper, our objective is to guarantee hard bound on the state norm for ISS systems in

presence of signals with possibly unbounded amplitude and/or energy. We enlarge the class of
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signals to which ISS systems are robust, by simply conducting a tighter analysis on these systems.

In the spirit of [11], and in contrast to most previous works on ISS and iISS, the considered class

of disturbances is defined based on their moving average. We show that any ISS system is robust

to such a class of perturbations. When an explicitly Lyapunov function is known, we explicitly

estimate the maximum disturbances’ moving average that can be tolerated for a given precision.

These results are presented in Section 2. We then apply this new analysis result to the control of

spacecraft formations. To this end, we exploit the Lyapunov function available for such systems

to identify the class of signals to which the formation is robust. This class includes all kind of

perturbing effects described above. This study is detailed, and illustrated by simulations, in Section

3.

Notation and terminology

A continuous function α : R≥ → R≥0 is of class K (α ∈ K ), if it is strictly increasing and

α(0) = 0. If, in addition, α(s)→∞ as s→∞, then α is of class K∞ (α ∈K∞). A continuous function

σ : R≥0→R≥0 is of class L if it is non-increasing and tends to zero as its argument tends to infinity.

A continuous function β : R≥0×R≥0→ R≥0 is said to be of class K L if, β(·, t) ∈ K for any fixed

t ∈ R≥0, and β(s, ·) ∈ L for any fixed s ∈ R≥0. The solutions of the differential equation ẋ = f (x,u)

with initial condition x0 ∈ Rn is denoted by x(·;x0,u). We use an arrow, e.g. ~a, to distinguish

geometric vectors from coordinate vectors. We use | · | for the Euclidean norm of vectors and the

induced norm of matrices. The closed ball in Rn of radius δ≥ 0 centered at the origin is denoted by

Bδ, i.e. Bδ := {x∈Rn : |x| ≤ δ}. | · |
δ

denotes the distance to the ball Bδ, that is |x|
δ

:= infz∈Bδ
|x− z|.

U denotes the set of all measurable locally essentially bounded signals u : R≥0→ Rp. For a signal

u ∈U, ‖u‖∞ := ess supt≥0|u(t)|. The maximum and minimum eigenvalues of a symmetric matrix A

are denoted by λmax(A) and λmin(A), respectively. In and 0n denote the identity and null matrices of

Rn×n respectively.
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2. ISS SYSTEMS AND SIGNALS WITH LOW MOVING AVERAGE

2.1. Preliminaries

We start by recalling some classical definitions related to the stability and robustness of nonlinear

systems of the form

ẋ = f (x,u), (1)

where x ∈ Rn, u ∈U and f : Rn×Rp→ Rn is locally Lipschitz and satisfies f (0,0) = 0.

Definition 1

Let δ be a nonnegative constant. The ball Bδ is said to be globally asymptotically stable (GAS) for

(1) if there exists a class K L function β such that the solution of (1), from any initial state x0 ∈ Rn

and with any input u ∈U ⊂U, satisfies

|x(t;x0,u)| ≤ δ+β(|x0|, t), ∀t ≥ 0. (2)

The ball Bδ is said to be globally exponentially stable (GES) for (1) if the conditions hold with

β(r,s) = k1re−k2s for some positive constants k1 and k2.

The set U used in the above definition will typically be made of signals whose amplitude or

energy is below a given value. When constructing the class of considered input, the function β in (2)

will thus be the same for all input, u ∈U . We next recall the definition of ISS, originally introduced

in [7].

Definition 2

The system ẋ = f (x,u) is said to be input-to-state stable (ISS) if there exist β ∈ K L and γ ∈ K∞

such that, for all x0 ∈ Rn and all u ∈U, the solution of (1) satisfies

|x(t;x0,u)| ≤ β(|x0|, t)+ γ(‖u‖∞) , ∀t ≥ 0 . (3)

ISS thus imposes an asymptotic decay of the norm of the state up to a function of the amplitude

‖u‖∞ of the input signal.

We also recall the following well-known Lyapunov characterization of ISS, originally established 

in [12] and thus extending the original characterization proposed by Sontag in [27].
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Proposition 1

The system (1) is ISS if and only if there exist α,α,γ ∈ K∞ and κ > 0 such that, for all x ∈ Rn and

all u ∈ Rp,

α(|x|)≤V (x)≤ α(|x|) (4)

∂V
∂x (x) f (x,u)≤−κV (x)+ γ(|u|) . (5)

γ is then called a supply rate for (1).

Remark 1

Since ISS implies iISS (cf. [10]), it can be shown that the solutions of any ISS system with supply

rate γ satisfy, for all x0 ∈ Rn,

|x(t;x0,u)| ≤ β(|x0|, t)+η

(∫ t

0
γ(|u(τ)|)dτ

)
, ∀t ≥ 0 , (6)

where β ∈ K L and η ∈ K∞. The above integral can be seen as a measure, through the function γ,

of the energy of the input signal u over the whole time interval [0; t]. Notice that, while ‖u‖∞ in

(3) should be finite in order to provide any information about bounds on the state norm, a stronger

assumption (namely the boundedness of the integral of γ(|u|)) is required in order for (6) to provide

a meaningful estimate of the state norm.

The above remark establishes a link between a measure of the energy fed into the system and

the norm of the state: for ISS (and iISS) systems, if this input energy is small, then the state

will eventually be small. However, Inequalities (3) and (6) do not provide any information on the

behavior of the system when the amplitude (for (3)) and/or the energy (for (6)) of the input signal is

not finite.

From an applicative viewpoint, the precision guaranteed by (3) and (6) involve the maximum 

value and the total energy of the input. These estimates may be conservative and thus lead to the 

design of greedy control laws, with negative consequences on the energy consumption and actuators 

solicitation. This issue is particularly relevant for spacecraft formations in view of the inherent fuel 

limitation and limited power of the thrusters.
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As mentioned in the introduction, [11] has started to tackle this problem by introducing ISS and

iISS-like properties for input signals with limited power, thus not necessarily bounded in amplitude

nor in energy. For systems that are stable when no input is applied, the authors show that ISS (resp.

iISS) is equivalent to “power ISS” (resp. “power iISS”) and “moving average ISS” (resp. “moving

average iISS”). In general terms, these properties evaluate the influence of the amplitude (resp. the

energy) of the input signal on the power or moving average of the state. However, as stressed by the

authors themselves, these estimates do not guarantee in general any hard bound on the state norm.

Here, we consider a slightly more restrictive class of input signals under which such a hard bound

can be guaranteed. Namely, we consider input signals with bounded moving average.

Definition 3

Given some constants E,T > 0 and some function γ ∈ K∞, the set Wγ(E,T ) denotes the set of all

signals u ∈U satisfying

∫ t+T

t
γ(|u(s)|)ds≤ E , ∀t ∈ R≥0 .

As anticipated in the introduction, it can easily be shown that the above property is strictly more

conservative than [17, A.2]. The main concern here is the measure E of the maximum energy that

can be fed into the system over a moving time window of given length T . These quantities are the

only information on the disturbances that will be taken into account in the control design. More

parsimonious control laws than those based on the disturbances’ amplitude or energy can therefore

be expected. We stress that signals of this class are not necessarily globally essentially bounded, nor

are they required to have a finite energy, as illustrated by the following examples. Robustness to this

class of signals thus constitutes an extension of the typical properties of ISS systems.

Example 1
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Figure 1. An example of unbounded signal with bounded moving average.

i) Unbounded signals: given any T > 0 and any γ∈K∞, the following signal belongs to Wγ(1,T )

and satisfies limsupt→∞ |u(t)|=+∞:

u(t) :=


2k if t ∈ [2kT ;2kT + 1

2k ] , k ∈ N

0 otherwise.

The signal for T = 1 is illustrated in Figure 1.

ii) Essentially bounded signals: given any T > 0 and any γ ∈ K∞, if ‖u‖∞ is finite then it holds

that u ∈Wγ(T γ(‖u‖∞),T ). We stress that this includes signals with infinite energy (think for

instance of constant non-zero signals).

2.2. Robustness of ISS systems to signals in the class W

The following result establishes that the impact of an exogenous signal on the qualitative behavior

of an ISS systems is negligible if the moving average of this signal is sufficiently low.

Theorem 1

Assume that the system ẋ = f (x,u) is ISS. Then there exists a function γ ∈ K∞ and, given any

precision δ > 0 and any time window T > 0, there exists a positive average energy E(T,δ) such that

the ball Bδ ⊂ Rn is GAS for any u ∈ Wγ(E,T ). 



10 GRØTLI, ET AL.

The above result, proved in Section 4.1, adds another brick in the wall of nice properties induced

by ISS, cf. [8], [9] and references therein. It ensures that, provided that a steady-state error δ can

be tolerated, every ISS system is robust to a class of disturbances with sufficiently small moving

average.

If an ISS Lyapunov function is known for the system, then an explicit bound on the tolerable

average excitation can be provided based on the proof lines of Theorem 1. More precisely, we state

the following result.

Corollary 1

Assume there exists a continuously differentiable function V : Rn → R≥0, class K∞ functions γ, α

and α and a positive constant κ such that (4) and (5) hold for all x ∈ Rn and all u ∈ Rp. Given any

precision δ > 0 and any time window T > 0, let E denote any average energy satisfying

E(T,δ)≤ α(δ)

2
eκT −1
2eκT −1

. (7)

Then the ball Bδ ⊂ Rn is GAS for ẋ = f (x,u) for any u ∈Wγ(E,T ).

The above statement shows that, by knowing a Lyapunov function associated to the ISS of a

system, and in particular its dissipation rate γ, one is able to explicitly identify the class Wγ(E,T ) to

which it is robust up to the prescribed precision δ. The proof of Theorem 1, provided in Section 4.1,

consists in first generating a Lyapunov function satisfying the assumptions of Corollary 1 (namely

an exponential decay along the system’s solutions: see (47)) and to use it to estimate the tolerable

average energy (see (51)). Consequently, the proof of Corollary 1 follows directly along the lines of

that of Theorem 1.

In a similar way, we can state sufficient conditions for global exponential stability of some

neighborhood of the origin. This result follows also trivially from the proof of Theorem 1.

Corollary 2

If the conditions of Corollary 1 are satisfied with α(s) = csp and α(s) = csp, with c,c, p positive

constants, then, given any T,δ > 0, the ball Bδ ⊂ Rn is GES for (1) with any signal u ∈ Wγ (E,T )  
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provided that

E(T,δ)≤ cδp

2
eκT −1
2eκT −1

. (8)

This result is an immediate consequence of Corollary 1 for the case when the lower and upper

bounds on the Lyapunov function (α and α) are monomial functions of degree p.

3. APPLICATION TO SPACECRAFT FORMATION CONTROL

We now exploit the results developed in Section 2 to demonstrate the robustness of a formation

control for spacecraft in leader-follower configuration, when only position is measured. Results

presented below are formulated for formation of two spacecraft only, but can easily be extended to

formations involving more spacecraft. For instance, the results presented here can immediately be

applied to any number of follower spacecraft in a parallel formation, that is when all the followers

follow the same leader. A cascaded formation where the spacecraft make up a directed acyclic

graph can also be handled although the analysis become more cumbersome. For extensions to more

complex formation topologies the interested reader is referred to for instance [20] or [23]. In [20]

the notion of leader-to-formation stability is introduced, which is based on ISS and its invariance

properties under cascading. A more general results on formation stability is given in [23], where

an ISS small-gain result is used to allow for cycles in the interconnection graph of the ISS error

dynamics.

The spacecraft model that we use is similar to the one derived in [28], with some small

modifications to the representation, see [29] for details. The dynamics of the spacecraft is described

with respect to an elliptic reference orbit which is defined in the following way: the unit vector

~o1 points anti-nadir, the unit vector ~o3 points in the direction of the orbit normal, and finally

~o2 := ~o3×~o1 completes the right-handed orthogonal frame. Location of the origin of the orbital

frame (relative to the center of Earth), denoted~ro, is an elliptic solution to the following two-body

problem with Earth as the central body:

~̈ro =−
µ

|~ro|3
~ro ,
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where µ is the gravitational constant of Earth. We denote by νo the true-anomaly of this reference

frame and make the following assumption which is naturally satisfied when the reference frame

follows a Keplerian orbit.

Assumption 1

The true anomaly rate ν̇o and true anomaly rate-of-change ν̈o of the reference frame satisfy

‖ν̇o‖∞ ≤ βν̇o and ‖ν̈o‖∞ ≤ βν̈o , for some positive constants βν̇o and βν̈o .

In this reference frame the dynamics of a spacecraft is given by the following equation [29]

p̈+C (ν̇o) ṗ+D(ν̇o, ν̈o) p+n(ro, p) =
1
m
(u+d) , (9)

where p and ṗ are the coordinate vectors describing the position and velocity of the spacecraft, m

is the spacecraft’ mass, u and d are the control inputs and exogenous perturbations respectively,

C (ν̇o) := 2ν̇oC , D(ν̇o, ν̈o) := ν̇2
oD + ν̈oC , with

C :=


0 −1 0

1 0 0

0 0 0

 , D := diag(−1,−1,0),

and n(ro, p) := µ
(

ro+p
|ro+p|3 −

ro
|ro|3

)
. For notational compactness we will in the following write D =

D(ν̇o, ν̈o) and C = C(ν̇o), i.e. leave out the arguments of the matrices as they remain the same

(although time-varying) throughout the document.

We assume that only position measurements are available for the spacecraft and their control

objectives are different in the following sense: the leader spacecraft‡ has to follow a given trajectory

pdl : R≥0→ R3 relative to the reference frame, while the follower spacecraft has to track a desired

trajectory ρd f : R≥0→ R3 relative to the leader.

We remark that even though the dynamics of the spacecraft is nonlinear in terms of positions, it

is linear in terms of the velocities. In the next section we exploit this property to design an observer

that ensures global convergence properties of the velocity estimates. Next we appeal to the same

‡In the sequel we will use subscripts ”l” and ”f” to distinguish leader and follower coordinates and dynamics
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property for the controller design using a separation principle; that is, first we design controllers

using full state measurements (both positions and velocities of the spacecraft) and then implement

these controllers using estimates obtained by the observers. Global exponential stability (in absence

of external disturbances) and ISS of the overall system are ensured under mild assumptions on the

observer and controller gains. Finally we show that our controller also guarantees robustness of the

closed loop system in the presence of disturbances with limited moving average.

3.1. Observer design

The nonlinear observation scheme proposed in this section will be used later to estimate velocities

for both spacecraft. Similar to the observer design approach of [30] we define the observer

estimation error as p̃ = p− p̂, introduce the “sliding” observation error ([31, 30] ) so = ˙̃p+ λo p̃,

where λo > 0 is a constant, and define our observer in the form similar to that of [30]

˙̂p = z+ kd p̃ (10)

ż =
u
m
−C( ˙̂p−λo p̃)−Dp−n(ro, p)+ kp p̃, (11)

where kp, kd , are positive constants. The observer error dynamics can be easily obtained from (9),

(10), (11) and is given by

ṡo +Cso + c1so + c2 p̃ =
d
m
, (12)

where c1 = kd−λo and c2 = kp−λoc1.

The linearity property in terms of velocities ensures exponential convergence of the observation

errors in absence of external disturbances, and in particular the following result:

Proposition 2

Consider the spacecraft dynamics (9) together with the observer (10), (11) and assume that the

observer gains satisfy kd > λo, kp > λo(kd−λo). Then the observer error dynamics (12) is ISS and

it is GES in the absence of external disturbances (i.e. d ≡ 0).

Proof.
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Consider Lyapunov function Vo(so, p̃) = 1
2 s>o so +

c2
2 p̃> p̃, which satisfies the following quadratic

bounds

αo1|xo|2 ≤Vo(so, p̃)≤ αo2|xo|2, (13)

where x>o = (s>o , p̃>), αo1 = 1
2 min{1,c2} and αo2 = 1

2 max{1,c2}. Taking its derivative along

trajectories of the system (12) we obtain that

V̇o(so, p̃) = −s>o (Cso + c1so + c2 p̃− 1
m

d)+ c2 p̃>(so−λo p̃)

≤ −c1|so|2− c2λo|p̃|2 +
1
m

s>o d ≤−c1

2
|so|2− c2λo|p̃|2 +

1
2c1m2 |d|

2,

≤ −αo3|xo|2 + γo|d|2, (14)

where αo3 = min{ c1
2 , c2λo}, γo =

1
2c1m2 and we have used the skew symmetric property of C in the

first inequality. ISS of (12) follows immediately, and in absence of disturbances GES of the origin

follows trivially since both Vo(so, p̃) and its derivative are quadratic forms of xo.

By Corollary 2 we can establish the following result stating that in case of perturbations with

limited moving average the observation errors p̃, ˙̃p are bounded.

Corollary 3

Given any T,δ > 0, the ball Bδ ⊂ R6 is GES for (12) with any external disturbance d ∈Wγ(E,T )

with γ = γos2, provided that kd > λo, kp > λo(kd−λo), and that

E(T,δ)≤ αo1δ2

2
e

αo3
αo2

T −1

2e
αo3
αo2

T −1
.

Proof. We consider the Lyapunov function Vo(so, p̃) = 1
2 s>o so +

c2
2 p̃> p̃ just as in the proof of

Proposition 2. From (13) and (14) we see that the conditions of Corollary 2 are satisfied with p = 2,

c = αo1, c = αo2 and κ = αo3
αo2

.

3.2. Control design

We recall that the leader spacecraft control objective is to follow a given reference trajectory

pdl : R≥0→ R3 relative to the reference frame, while the follower spacecraft has to track a desired

trajectory ρdl : R≥0 → R3 relative to the leader. 
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The dynamics of the leader is described be equation (9), and we use subscript l in all parameters

of the model to underline this fact

p̈l +Cṗl +Dpl +n(ro, pl) =
1

ml
(ul +dl) . (15)

We propose a full state feedback controller ul = usf
l that ensures convergence to zero of tracking

errors el = pl− pdl and ėl = ṗl− ṗdl , where

usf
l := ml (p̈dl +C (ṗdl−λclel)+Dpl +n(ro, pl)−Kdl ėl−Kplel) , (16)

Kpl , Kdl are positive constants, and the superscript ”sf” stands for state feedback. Substituting this

controller in the equation for the dynamics for the leader spacecraft (15) and using the “sliding”

tracking error scl = ėl +λclel , we obtain closed loop dynamics

ṡcl +Cscl +K1lscl +K2lel =
1

ml
dl , (17)

where K1l = Kdl−λcl , K2l = Kpl−λclKdl +λ2
cl . It is easy to show that with the proper choice of the

gains Kpl , Kdl controller (16) ensures ISS of the closed loop system and also GES of the origin in

the absence of external disturbances.

Claim 1

Consider the spacecraft dynamics (9) in closed loop with the controller (16), where controller gains

Kp, Kd , λcl > 0 satisfy inequalities K1l = Kdl −λcl > 0 and K2l = Kpl −λclKdl +λ2
cl > 0. Then the

dynamics of the closed loop system (17) is ISS and it is GES in absence of external disturbances.

Proof of the claim follows along the lines of the proof of Proposition 2. Consider a Lyapunov

function Vcl(scl ,el) =
1
2 s>clscl +

K2l
2 e>l el which satisfies the following quadratic bounds

αcl1|xcl |2 ≤Vcl(scl ,el)≤ αcl2|xcl |2, (18)

where x>cl = (s>cl ,e
>
l ), αcl1 = 1

2 min{1,K2l} and αcl2 = 1
2 max{1,K2l}. Taking its derivative along

trajectories of the system (17) we obtain

V̇cl(scl ,el)= s>cl

(
−Cscl−K1lscl−K2lel +

1
ml

dl

)
+K2le>l ėl ≤−K1l |scl |2−λclK2l |el |2

+
1

ml
|scl | |dl | ≤ −

K1l

2
|scl |2−λclK2l |el |2 + γcl |dl |2 ≤−αc3|xcl |2 + γcl |dl |2, (19)
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where αcl3 = min{K1l
2 , λclK2l}, γcl = 1/2m2

l K1l . ISS and GES of the system in absence of

disturbances follow trivially from (18) and (19).

Next we show that the separation principle can be applied for the controller design without

velocity measurements. We propose to use the same controller, except that the velocity

measurements are replaced by their estimates delivered by the observer (10), (11). The controller

ul = uof
l , where

uof
l :=ml

(
p̈dl+C(ṗdl−λclel)+Dpl +n(ro, pl)−Kplel−Kdl( ˙̂pl− ṗdl)

)
(20)

˙̂pl = zl + kd p̃l (21)

żl =
1
m

ul−C( ˙̂pl−λol p̃l)−Dpl−n(ro, pl)+ kp p̃l , (22)

with zl , p̃l as defined before, and where the superscript ”of” stands for output feedback.

The following theorem shows that the designed controller preserves the stability and input/output

properties of the system that it had in the closed loop with the full state controller.

Proposition 3

Consider the dynamics of the leader spacecraft given by (15) together with the observer-based

controller (20)-(22). Let controller and observer gains Kdl , Kpl , kdl , kpl , λol satisfy the same bounds

as in Proposition 2 and Claim 1. Then the closed loop system is ISS, and in absence of external

disturbances both tacking errors el , ėl and observation errors p̃l , ˙̃pl go to zero exponentially fast.

Proof.

The proof is based on the construction of a composite Lyapunov function in the form of a weighted

sum of Lyapunov functions Vcl and Vol designed separately for the state feedback controller and

velocity estimation. We choose it in the form

Vl(xcl ,xol) =Vcl(scl ,el)+
2acl

αol3
Vol(sol , p̃l) =

1
2
|scl |2 +

K2l

2
|el |2 +

acl

αol3
|sol |2 +

aclc2l

αol3
|p̃l |2, (23)

where acl = max{1,λ2
ol}

K2
dl

K1l
, αol3 = min{ c1l

2 ,c2lλol}, c1l = kdl − λol , c2l = kpl − λolc1l and x>ol =

(s>ol , p̃>l ). It satisfies the following quadratic bounds

αl1|xl |2 ≤ Vl (xcl ,xol ) ≤ αl2|xl |2, (24)
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where x>l = (x>cl ,x
>
ol), αl1 = min

{
1
2 ,

K2l
2 , acl

αol3
, αclc2l

αol3

}
and αl2 = max

{
1
2 ,

K2l
2 , acl

αol3
, αclc2l

αol3

}
.

Next, note that the controller (20) is essentially the same as (16) and can be rewritten in the form

uof
l = usf

l +mlKdl(ṗl− ˙̂pl) = usf
l +mlKdlsol−mlλolKdl p̃l , (25)

where we recall that sol = ˙̃pl + λol p̃l . Then similar to (19) we obtain that derivative of Vcl(scl ,el)

taken along trajectories of the closed loop system can be bounded in the following way

V̇cl(scl ,el) ≤ −K1l

2
|scl |2−λclK2l |el |2 +Kdl |scl ||sol |+λolKdl |scl ||p̃l |+ γcl |dl |2

≤ −K1l

4
|scl |2−

λcl

2
K2l |el |2 +

1
K1l

λ
2
olK

2
dl |p̃l |2 +

1
K1l

K2
dl |sol |2 + γcl |dl |2

≤ −αcl3

2
|xcl |2 +acl |xol |2 + γcl |dl |2, (26)

where αcl3 and γcl are the same as in the Claim 1. Now taking the derivative of the composite

Lyapunov function Vl(xcl ,xol) and using (14) and (26) we obtain that

V̇l(xcl ,xol) ≤ −αcl3

2
|xcl |2 +acl |xol |2 + γcl |dl |2 +

2acl

αol3

(
−αol3|xol |2 + γol |dl |2

)
≤ −αcl3

2
|xcl |2−acl |xol |2 +(γcl +

2acl

αol3
γol)|dl |2

≤ −αl3|xl |2 + γl |dl |2 , (27)

where αl3 = min{ 1
2 αcl3,acl} and γl = γcl +

2acl
αol3

γol .. ISS of (15) together with the observer-based

controller (20)-(22) follows immediately, and in absence of disturbances GES of the origin follows

trivially since both Vl(xxl ,xol) and its derivative are quadratic forms of xl .

Corollary 4

Given any T,δ > 0, the ball Bδ ⊂ R12 is GES for (15) together with the observer-based controller

(20)-(22) with any external disturbance dl ∈Wγ(E,T ) with γ(s) = γls2, provided that the controller

and observer gains Kdl , Kpl , kdl , kpl , λol satisfy the same bounds as in Proposition 2 and Claim 1,

and that

E(T,δ)≤ αl1δ2

2
e

αl3
αl2

T−1

2e
αl3
αl2

T−1
. (28)

Proof. We consider the Lyapunov function Vl(xcl ,xol) just as in the proof of Proposition 3. From

(24) and (27) we see that the conditions of Corollary 2 are satisfied with p = 2, c = αl1, c = αl2 and

κ = α
α

l

l

3

2 
.
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We next propose a controller to make the follower spacecraft track a desired trajectory and

velocity ρd , ρ̇d : R≥0→ R3 relative to the leader. We use the follower dynamics rewritten in terms

of relative coordinates ρ f = p f − pl namely

ρ̈ f +Cρ̇ f +Dρ f +nr f (ro, p f , pl) = ur f +dr f (29)

where nr f (ro, p f , pl) = n(ro, p f )−n(ro, pl), ur f =
1

m f
u f − 1

ml
ul and dr f =

1
m f

d f − 1
ml

dl .

Similar as for the leader spacecraft in (20) we choose a state feedback controller ur f = usf
r f for the

follower spacecraft in the form

usf
r f := ρ̈d f +C(ρ̇d f −λc f e f )+Dρ f +nr f (ro, p f , pl)−Kp f e f−Kd f ( ˙̂ρ f − ρ̇d f )

˙̂ρ f = z f + kd ρ̃ f (30)

ż f = ur f −C( ˙̂ρ f −λo f ρ̃ f )−Dρ f −nr f (ro, p f , pl)+ kpρ̃ f , (31)

where e f = ρ f − ρd f . Notice that with this choice of the controller the closed loop system for

the follower spacecraft will have exactly the same form as the one for the leader spacecraft, and

therefore the system will have exactly the same stability and robustness properties. However,

realizing this controller using u f requires knowledge of ul or estimates of the leaders’ velocities

since u f = m f ur f +
m f

ml
ul . Hence, this would either require the leader spacecraft to broadcast its

control inputs or its estimated velocity to the follower, or that the follower has a dedicated observer

for the state of the leader spacecraft. In order to avoid this extra communications or calculations we

propose a pure output feedback controller u f = uof
f in the following form:

uof
f :=m f

(
ρ̈d f +C(ρ̇d f −λc f e f )+Dρ f +nr f (ro, p f , pl)−Kp f e f−Kd f ( ˙̂p f − ρ̇d f − ṗdl)

)
+

m f

ml
(p̈dl +C (ṗdl−λclel)+Dpl +n(ro, pl)−Kplel) (32)

˙̂p f = z f + kd p̃ f (33)

ż f = u f −C( ˙̂p f −λo f p̃ f )−Dp f −nr f (ro, p f , pl)+ kp p̃ f , (34)

where none of the terms in the controller depends on the leaders estimated velocity, and we estimate

the actual velocity of the follower spacecraft instead of the relative velocity.
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We are now ready to state the following result, which establishes stability and robustness of the

overall controlled formation.

Proposition 4

Consider the dynamics of the formation given by (15), (29) together with the observer-based

controllers (20)-(22), and (32)-(34). Let the controller and observer gains λoi, λci, Kdi, Kpi, kdi, kpi,

(i ∈ {l, f}) satisfy the same bounds as in Proposition 2 and Claim 1. Then the closed loop system

is ISS, and in the absence of external disturbances all tracking errors ei, ėi and observation errors

p̃i, ˙̃pi go to zero exponentially fast.

Proof.

As in the proof of Proposition 3 we construct a composite Lyapunov function in the form of a

weighted sum of Lyapunov functions Vl and Vf designed separately for stability analysis of the

leader and the follower spacecraft. We choose it in the form

V (xl ,x f ) =Vf (xc f ,xo f )+
2b f

αl3
Vl(xcl ,xol), (35)

where x>l = (x>cl ,x
>
ol), x>f = (x>c f ,x

>
o f ) = (s>c f ,e

>
f ,s
>
o f , p̃>f ), αl3 = min{αcl3

2 ,acl}, b f =

max{K2
dl ,K

2
dlλ

2
ol ,K

2
d f +K2

dl ,(K
2
d f +K2

dl)λ
2
cl} 3

K1l
, Vl(xcl ,xol) was defined in (23) and

Vf (xc f ,xo f ) = Vc f (sc f ,e f )+
2ac f

αo f 3
Vo f (so f , p̃ f ) (36)

=
1
2
|sc f |2 +

K2 f

2
|e f |2 +

ac f

αo f 3
|so f |2 +

ac f c2l

αo f 3
|p̃ f |2, (37)

where ac f = max{1,λ2
o f }

3K2
d f

K1 f
. It can be noted that the Lyapunov function satisfies

α1|x|2 ≤V (xl ,x f )≤ α2|x|2, (38)

where α1 = min
{

1
2 ,

K2l
2 , acl

αol3
, aclc2l

αol3

}
+

2b f

αl3
min

{
1
2 ,

K2 f

2 ,
ac f

αo f 3
,

ac f c2 f

αo f 3

}
and α2 =

max
{

1
2 ,

K2l
2 , acl

αol3
, aclc2l

αol3

}
+

2b f

αl3
max

{
1
2 ,

K2 f

2 ,
ac f

αo f 3
,

ac f c2 f

αo f 3

}
.

Substituting the controller (32) in the equation for the dynamics of the follower spacecraft, (29),

and using the “sliding” tracking error s f = ė f +λc f e f , we obtain the closed loop dynamics

ṡc f +Csc f +K1sc f +K2e f = Kd f (so f −λo f p̃ f )−Kdl(sol−λol p̃l)

+(Kd f +Kdl )(scl − λcl el ) + dr f . (39) 
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We find that the derivative of Vc f (sc f ,e f ) taken along trajectories of the closed loop system can be

bounded in the following way

V̇c f (sc f ,e f ) ≤ −
K1 f

2
|sc f |2−λc f K2 f |e f |2

+Kd f |sc f |(|so f |+λo f |p̃ f |+ |scl |+λcl |el |)

+Kdl |sc f |(|sol |+λol |p̃l |+ |scl |+λcl |el |)+ |sc f |
(
|dl |
ml

+
|d f |
m f

)
≤ −

K1 f

4
|sc f |2−

λc f

2
K2 f |e f |2

+
10K2

d f

K1 f

(
|so f |2 +λ

2
o f |p̃ f |2 + |scl |2 +λ

2
cl |el |2

)
+

10K2
dl

K1 f

(
|sol |2 +λ

2
ol |p̃l |2 + |scl |2 +λ

2
cl |el |2

)
+ γc f (|dl |2 + |d f |2)

≤ −
αc f 3

2
|xc f |2 +ac f |xo f |2 +b f |xl |2 + γc f (|dl |2 + |d f |2), (40)

where αc f 3 = min{K1 f

2 , λc f K2 f }, γc f = max{ 1
m2

f
, 1

m2
l
} 10

K1 f
. Now taking the derivative of the composite

Lyapunov function Vf (xcl ,xol) and using (14) and (40) we obtain that

V̇f (xc f ,xo f ) ≤ −
αc f 3

2
|xc f |2 +ac f |xo f |2 +b f |xl |2 + γc f (|dl |2 + |d f |2)

+
2ac f

αo f 3

(
−αo f 3|xo f |2 + γo f |d f |2

)
≤ −α f 3|x f |2 +b f |xl |2 + γc f |dl |2 +

(
γc f +

2ac f

αo f 3
γo f

)
|d f |2 , (41)

where α f 3 = min{αc f 3

2 , ac f }. Finally, taking the time derivative of V (xl ,x f ), and using (41) and (27)

with αl3 = min{αcl3
2 ,acl}, we find that

V̇ (xl ,x f ) ≤ −α f 3|x f |2 +b f |xl |2 + γc f |dl |2 +(γc f +
2ac f

αo f 3
γo f )|d f |2

+
2b f

αl3

(
−αl3|xl |2 +(γcl +

2acl

αol3
γol)|dl |2

)
≤ −α f 3|x f |2−b f |xl |2 +(γc f +

2ac f

αo f 3
γo f )|d f |2

+ (γc f +
2b f

αl3
(γcl +

2acl

αol3
γol))|dl |2

≤ −α3|x|2 + γ̃|d|2 , (42)

where α3 = min{α f 3,b f } and γ̃ = γc f +max{ 2ac f

αo f 3
γo f ,

2b f

αl3
(γcl +

2acl
αol3

γol)}. ISS of (15), (29) together

with the observer-based controllers (20)-(22), and (32)-(34) follows immediately, and in absence of
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disturbances GES of the origin follows trivially since both V (xl ,x f ) and its derivative are quadratic

forms of x.

By the above proof and Corollary 2 we can establish an explicit bound on the tolerable average

excitation:

Corollary 5

Consider the dynamics given by (15), (29) together with the observer-based controllers (20)-(22),

and (32)-(34). Let the controller and observer gains λoi, λci, Kdi, Kpi, kdi, kpi, (i ∈ {l, f}) satisfy the

same bounds as in Proposition 2 and Claim 1. Then the ball Bδ ⊂ R24 is GES with any external

disturbance d ∈Wγ(E,T ) with γ(s) = γ̃s2, provided that

E(T,δ)≤ α1δ2

2
e

α3
α2

T−1

2e
α3
α2

T−1
. (43)

Proof. We consider the Lyapunov function V (xl ,x f ) just as in the proof of Proposition 4. From

(38) and (42) we see that the conditions of Corollary 2 are satisfied with p = 2, c = α1, c = α2 and

κ = α3
α2

.

3.3. Simulations

Let the reference orbit be an eccentric orbit with radius of perigee rp = 107m and radius of apogee

ra = 3×107m, which can be generated by numerical integration of

r̈o =−
µ

|ro|3
ro, (44)

with ro (0) = (rp,0,0) and ṙo (0) = (0,vp,0), and where

vp =

√
2µ
(

1
rp
− 1

(rp + ra)

)
.

The true anomaly νo of the reference frame can be obtained by numerical integration of the equation

ν̈o (t) =
−2µeo (1+ eo cosνo (t))

3 sinνo (t)( 1
2

)3 .
(rp + ra)(1 − e2

o)

From this expression, and the eccentricity which can be calculated from ra and rp to be eo = 0.5, 

we see that the constant β¨νo in Assumption 1 can be chosen as β¨νo = 4 × 10−7. From the analytical 
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equivalent for ν̇o,

ν̇o (t) =
√

µ(1+ eo cosνo (t))
2( 1

2(ra + rp)(1− e2
o)
)3/2 ,

we see that the constant βν̇o in Assumption 1 can be chosen as βν̇o = 8×10−4. Since the reference

frame is initially at perigee, νo (0) = 0 and ν̇o (0) = vp/rp. For simplicity, we choose the desired

trajectory of the leader spacecraft to coincide with the reference orbit, i.e. pdl(t)≡ (0,0,0)>∀t ≥ 0.

The initial values of the leader spacecraft are p(0) = (2,−2,3)> and ṗ(0) = (0.4,−0.8,−0.2)>.

The initial values of the observer are chosen as p̂(0) = (0,0,0)> and zl (0) = (0,0,0)>.

The reference trajectory of the follower spacecraft are chosen as the solutions of a special case of

the Clohessy-Wiltshire equations, cf. [35]. We use

ρd f (t) =


10cosνo (t)

−20sinνo (t)

0

 . (45)

This choice imposes that the two spacecraft evolve in the same orbital plane, and that the follower 

spacecraft makes a full rotation about the leader spacecraft at each orbit around the Earth. The 

initial values of the follower spacecraft are p f (0) = (13,−1,2)> and ṗ f (0) = (0.5,0.2,0.6)>. The 

initial values of the observer are chosen to be p̂ f (0) = (15,0,0)> and z f (0) = (0,0,0)>. The 

controller parameters are Kpl = Kp f = 1.2, Kdl = Kd f = 1 and λcl = λc f = 0.3, and the observer 

parameters are kpl = kp f = 8, kdl = kd f = 10 and λol = λo f = 0.5. We use m f = ml = 25 kg both 

in the model and the control structure. Over a 10 second interval (i.e. T=10), the average excitation 

must satisfy E(T,δ) ≤ 0.043δ2, based on the above chosen controller and observer gains, according 

to (4). We consider two types of disturbances acting on the spacecraft: “impacts” and continuous 

disturbances. The “impacts” have random amplitude, but with maximum of 1.5 N in each direction 

of the Cartesian frame. For simplicity, we assume that at most one impact can occur over each 10 

second interval, and we assume that the duration of each impact is at most 0.1s. The continuous 

disturbances are taken as sinusoids, also acting in each direction of the Cartesian frame, and are 

chosen to be (0.1sin0.01t,0.25sin0.03t,0.3sin0.04t)> for both spacecraft. It can easily be shown 
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that the disturbances satisfy the following:

∫ t+10

t
|d(τ)|2dτ≤ 1.42 , ∀t ≥ 0 .
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Figure 2. Leader spacecraft.

Figure 2(a), 2(b) and 2(c) show the position tracking error, position estimation error and control 

history of the leader spacecraft, whereas Figure 3(a), 3(b) and 3(c) are the equivalent figures for the 

follower spacecraft. Figure 2(d) and 3(d) show the effect of dl and d f acting on the formation. Since 

E = 1.42, and should satisfy E ≤ 0.043δ2 based on (8) and our choice of controller- and observer 

gains, this gives a very large tolerance δ. As can be seen from Figure 2(a), 2(b), 3(a), 3(b) the actual 

precision reached, is much better than the theoretical expectations. The control gains have been 

chosen based on the Lyapunov analysis. This yields in general very conservative constraints on the 

choice of control gains, and also conservative estimates of the disturbances the control system is able 

to handle. As shown in Figure 2(c) and Figure 3(c), this leads to large transients in the actuation. 

However, we stress that the control gains proposed by this approach are still much smaller that 
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Figure 3. Follower spacecraft.

those obtained through a classical ISS approach (i.e. relying on the disturbance magnitude rather

than its moving average). Tighter gains could possibly have been achieved by choosing them based

on some optimization problem that maximizes the average energy of the disturbance signal, while

maintaining the constraints on the gains from the Lyapunov analysis, [36].

4. PROOFS

4.1. Proof of Theorem 1

In view of [12, Lemma 11] and [37, Remark 2.4], there exists a continuously differentiable function

V : Rn→ R≥0, class K∞ functions α,α and γ, and a positive constant κ such that, for all x ∈ Rn and

all u ∈ Rm,

α(|x|)≤V (x)≤ α(|x|) (46)
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∂V
∂x

(x) f (x,u)≤−κV (x)+ γ(|u|) . (47)

Let w(t) :=V (x(t;x0,u)). Then it holds in view of (47) that

ẇ(t) = V̇ (x(t;x0,u))

≤ −κV (x(t;x0,u))+ γ(|u(t)|)

≤ −κw(t)+ γ(|u(t)|) .

In particular, it holds that, for all t ≥ 0,

w(t)≤ w(0)e−κt +
∫ t

0
γ(|u(s)|)ds . (48)

Assuming that u belongs to the class Wγ(E,T ), for some arbitrary constants E,T > 0, it follows

that

w(T )≤ w(0)e−κT +
∫ T

0
γ(|u(s)|)ds≤ w(0)e−κT +E .

Considering this inequality recursively, it follows that, for each ` ∈ N≥1,

w(`T ) ≤ w(0)e−`κT +E
`−1

∑
j=0

e− jκT

≤ w(0)e−`κT +E ∑
j≥0

e− jκT

≤ w(0)e−`κT +E
eκT

eκT −1
. (49)

Given any t ≥ 0, pick ` as bt/Tc and define t ′ := t− `T . Note that t ′ ∈ [0,T ]. It follows from (48)

that

w(t)≤ w(`T )e−κt ′ +
∫ t

`T
γ(|u(s)|)ds≤ w(`T )e−κt ′ +E ,

which, in view of (49), implies that

w(t) ≤
(

w(0)e−`κT +E
eκT

eκT −1

)
e−t ′ +E

≤ w(0)e−k(`T+t ′)+E
(

1+
eκT

eκT −1

)
≤ w(0)e−κt +

2eκT −1
eκT −1

E .

Recalling that w(t) =V (x(t;x0,u)), it follows that

V (x(t;x0,u))≤V (x0)e−κt +
2eκT −1
eκT −1

E ,
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which implies, in view of (46), that

α(|x(t;x0,u)|)≤ α(|x0|)e−κt +
2eκT −1
eκT −1

E ,

Recalling that α−1(a+b)≤α−1(2a)+α−1(2b) as α∈K∞, we finally obtain that, given any x0 ∈Rn,

any u ∈Wγ(E,T ) and any t ≥ 0,

|x(t;x0,u)| ≤ α
−1 (2α(|x0|)e−κt)+α

−1
(

2E
2eκT −1
eκT −1

)
. (50)

Given any T,δ≥ 0, the following choice of E:

E(T,δ)≤ α(δ)

2
eκT −1
2eκT −1

, (51)

ensures that

α
−1
(

2E
2eκT −1
eκT −1

)
≤ δ

and the conclusion follows in view of (50) with the K L function

β(s, t) := α
−1 (2α(s)e−κt) , ∀s, t ≥ 0 .
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