
A method for dynamic flux balance
analysis with global constraints

Emil Karlsen

Bioteknologi (5 årig)

Hovedveileder: Eivind Almaas, IBT

Institutt for bioteknologi og matvitenskap

Innlevert: mai 2017

Norges teknisk-naturvitenskapelige universitet



 



i

Acknowledgment

I am grateful towards my supervisor, Professor Eivind Almaas, who had an uncanny ability to

see when I wasn’t doing my best, and who wasn’t shy of pushing me harder when he did. I could

hardly have asked for a better captain at the helm.

I am grateful towards Pål Røynestad, whose hard work deciphering the MOMENT model and

formulating the easy-to-implement ircFBA model made this work possible.

Thanks to my parents, for instilling in me a great joy in reading, and for keeping my curiosity

alive by answering truthfully "I don’t know." when I asked difficult, and often silly, questions.

And thanks to them for instilling in me a sense that I can become anything I want to be, and for

letting me decide for myself what that is.

Thanks to my girlfriend Silje, who patiently listened as I rambled on about subjects she lacked

the background to understand, and to my friend Håvard, who patiently listened as I rambled on

about subjects I lacked the background to explain. And thanks to him for teaching me how to

write a report; this would be a far more byzantine mess of arcane ramblings without his trusty

advice and concise commentary. Self-deprecating quips aside, it would easily double my page

count if I were to express to all my friends the gratitude they so greatly deserve, and the NTNU

press is expensive. The people who welcomed me to Trondheim, the people who welcome me

at home, and the people who welcome me at the V&A office: thank you for bearing with me. You

all mean so very much to me, and I would not be where, what, or who I am today without you.

And I mean that as a compliment!

And last but not least I’d like to direct a big thanks to Marvin Rausand and the guys over at the

RAMS wiki for publically making available the latex template used to write this thesis. Without

it, I would surely have spent many more hours making a much uglier product.

E.K.



ii

Summary

The utility of modeling in biology is on the rise. Hardware and software is becoming more and

more sophisticated, and as the flood of data from high-throughput experimental techniques

grows, the necessity and potential sophistication of models grows with it. Flux balance anal-

ysis (FBA) has remained one of the most successful and popular methods for modeling cellu-

lar metabolism in systems biology for many years, and has spawned a range of offshoots and

derivatives.

In this project, two existing forms of FBA were combined into a new one. The first, dynamic

FBA (dFBA), allows the modeling of cellular metabolism over time, and how it reacts with its en-

vironment. It has proven useful in optimizing industrial batch conditions for microbial produc-

tion of biomolecules, and for probing the transients of cellular metabolism. The other method,

internally constrained FBA (ircFBA) has shown a remarkably accuracy in predicting cellular

metabolic behavior across a wide range of growth-media with less situation-specific knowledge

and tuning required than standard FBA.

These two methods were combined into a new framework, dubbed dynamic internally con-

strained FBA (dircFBA). This was done in an attempt at capturing the utility of dFBA and the

accuracy of ircFBA. The method, dircFBA, was applied to an extensive genome-scale model of

E. coli. After testing of the new model’s predictions against experimental data retrieved from lit-

erature, and analyzing the results, the attempt was deemed a success. The model’s predictions

improved upon those made by its predecessors, and permits further insight into the dynamics

of cell metabolism interacting with a changing environment.

Furthermore, dircFBA provides a solid framework for future expansion, promising even greater

fidelity in future extensions.
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Sammendrag

(summary in Norwegian)

Nytteverdien til modellering i biologi øker stadig. Maskinvare og programvare blir stadig mer

sofistikert, og i møte med den stadig voksende strømmen av data fra høy-volum eksperimentelle

teknikker vokser også modellers potensielle sofistikasjon og nødvendighet. Fluksbalanseanal-

yse (FBA) har vært en av de mest suksessfulle og populære metodene for modellering av cellulær

metabolisme i systembiologi i en årrekke, og har gitt opphav til en rekke avskudd og derivater.

I dette prosjektet har to eksisterende former for FBA blitt kombinert til en ny. Den første, dy-

namisk FBA (dFBA), tillater modelleringen av cellulær metabolisme over tid, og av hvordan

denne interagerer med sitt miljø. Denne metoden har vist seg nyttig i optimalisering av indus-

trielle forhold for mikrobiell produksjon av biomolekyler, og for å undersøke transientene i cel-

lulær metabolisme. Den andre metoden, internt begrenset FBA (ircFBA) har vist bemerkelsesverdig

treffsikkerhet i å forutse metabolsk adferd over en rekke vekstmedia med behov for mindre situ-

asjonsspesifikk kunnskap og justering enn standard FBA.

Disse to metodene ble kombinert til et nytt rammeverk, her kalt dynamisk internt begrenset

FBA (dircFBA). Dette ble gjort i et forsøk på å kombinere nytteverdien til dFBA med treffsikker-

heten til ircFBA. Metoden, dircFBA, ble applisert på en omfattende genom-skala modell av E.

coli. Etter testing av den nye modellens forutsigelser mot eksperimentelle data ervervet fra lit-

teraturen, og analyse av resulatene, ble forsøket vurdert som vellykket. Modellens forutsigelser

forbedret på de gjort av sine forgjengere, og tillot videre innsikt i dynamikken i cellemetabolisme

som interagerer med et endrende miljø.

Videre tilbyr dircFBA et solid rammeverk for fremtidig utvidning, med lovende prospekter for

enda bedre forutsigelser i fremtidige utvidninger av metoden.
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Chapter 1

Introduction

Advances in biology have accelerated in recent years, aided by great advances in technology.

New tools, methods, and an ever faster-growing knowledge base have propelled the science for-

ward, allowing the acquisition of biological data on an unprecedented scale [27, 10, 19]. How-

ever, with more data the task of sorting through it and extracting useful information becomes

harder [27, 12], with global stores of human genome data alone expected to enter the exabytes

range in the near future [37]. Therefore, some of the most important advances in biology in

recent years have been made possible not mainly due to innovations in the lab, but due to

innovations in computation. Automated methods are essential in penetrating the dense net-

works characterizing intracellular communication [10, 19]. Data mining, the automated smart

extraction of information, and computer-assisted refinement into usable knowledge, has en-

abled theory to almost keep up with high-throughput practice [9]. Likewise, modeling of bio-

logical systems has led to remarkable breakthroughs in the understanding of how, and by which

principles, they work. This includes insights into the importance of transient dynamics in cell

signaling [17], the optimization of metabolic networks in response to evolutionary pressure [5],

and by which principles genes are conserved [40].

Science, biology being no exception, has traditionally taken a reductionist approach to inves-

tigating natural phenomena, i.e. picking things apart into comfortably-sized pieces and dealing

with them individually. Over the past few decades, the interest of many scientists has increas-

ingly shifted from this reductionist approach to a systems-level integrative approach [9, 19]. The

2
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way the parts are organized and the interplay between them has proven to be, in many cases,

as important as the parts themselves. Biological systems have shown to be highly modular and

hierarchical in nature, with components grouped into functional elements whose interplay is

tightly regulated, and we have only just begun to untangle [9, 17].

A powerful tool for understanding biology on a systems-level has been network analysis, with

graph theory having been applied often and fruitfully in the elucidation of biological systems in

recent years [2, 28]. Features fundamental to their functioning and origins, such as the robust-

ness stemming from their scale-free nature [3], and the preferential attachment guiding their

formation [22], only come clearly to light when taking a network view. In the face of this, ex-

tensive work and thought has been put into building a rigorous theoretical infrastructure for

the description of biological models and networks, such as the popular systems biology markup

language (SBML) for describing biochemical reaction networks [16], and the establishment of

minimum quality standards in the construction of biochemical models; "Minimum information

requested in the annotation of biochemical models" (MIRIAM) [20].

Another tool which has shown remarkable versatility in its application within systems biology,

is optimization [5]. This is perhaps not surprising, as it has proven invaluable in many other

fields of engineering and research [31], and evolution can in many ways work as an optimizing

process itself. Nonetheless, it has proven invaluable in areas as diverse as more streamlining ex-

perimental design, making parameter estimation for large systems effective and efficient, and

helping model cellular metabolism by assuming evolution tuned biological mechanisms for op-

timality [5].

Among the most popular and successful modeling methods developed so far in systems biology

is flux balance analysis (FBA); an elegant method for modeling cell metabolism. FBA is based

on the topology of the metabolic network, the stoichiometry of the biochemical reactions that

make up an organism’s reactome, and optimization [32, 33]. Key to the success of this method

has been the formulation of whole-cell metabolism as a set of linear equations, subject to op-

timization of a goal function and certain constraints. When comparing the predictions based
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on such simple principles with experimental results, the accuracy is remarkable [38]. As such,

FBA methods have found application in science and industry for filling gaps in knowledge of

biochemical networks [32], optimizing batch conditions for the production of valuable com-

pounds, and aiding design in synthetic biology [33].

The same principles that make FBA relatively simple to implement are also the source of its key

weaknesses: the basic implementation does not incorporate kinetic parameters or regulatory

effects, and only predict fluxes at steady state [33]. This may in many cases lead to inaccurate

predictions and biologically infeasible behavior [33]. Work is being done, however, to bridge the

gap; adding kinetic parameters [1], adding regulatory functionality [7], and relaxing the steady-

state assumption [25].

Indeed, the FBA formulation is highly amenable to extensions and modifications, and as such, a

wide range of related methods and approaches have been devised [21]. Models have been made

with added constraints based on kinetic parameters; metabolic modeling with enzyme kinetics

(MOMENT) [1], and internally constrained FBA (ircFBA) [35]. Overlaid on the basic FBA frame-

work, this approach is based on the simple facts that 1) enzymes have mass and volume, 2) the

catalytic rate of enzymes is limited, and 3) per amount of cell, there can only be a certain amount

of enzyme. Thus, internal kinetic constraints impose upon the cell a biologically plausible lim-

itation as to what it can reasonably produce in any given environment, even independently of

uptake bounds [1]. These models have increased prediction accuracy on diverse media and have

helped explain observed metabolic flux rates by showing how cells can only reach a certain level

of productiveness per amount of mass [1, 35]. Despite its successes, the method remains ham-

pered by a relative lack of information available on enzyme kinetic parameters [1].

Dynamic flux balance analysis (dFBA) has also shown promise of great utility [4]. This method

consists of solving many FBA problems sequentially, and letting the model interact with a sim-

ulated environment at each step. This effectively simulates a cell culture not only capable of

consuming nutrients and oxygen and secreting waste products such as ethanol, but also of ex-

hausting those nutrients and then turning to reuptake of earlier waste [38, 26]. As more accurate
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FBA models have been developed, dFBA has seen successful use for optimizing industrial batch

conditions to significantly increase production yield of valuable substances such as recombi-

nant biopharmaceutical proteins and biofuels [29, 14].

With more sophisticated behavior comes more risk of complications, and as such, dFBA has

a few key weaknesses. As the model is solved and re-solved over consecutive timesteps and the

solution is integrated, the process is prone to numerical complications that lead to an infeasible

(i.e. unsolvable) linear program [15, 14]. FBA problems also often have non-unique solutions,

which may also cause problems as consecutive solutions are integrated [15, 14]. Recent work

addresses these issues, but implementation remains complicated [15].

In this thesis is presented a merging of dynamic FBA with internally constrained FBA (ircFBA)

into a new method called dynamic internally constrained FBA (dircFBA). This merging serves

several purposes: it marries obvious utility with increased accuracy and biological plausibility,

allows further insights into the transients of metabolism in changing environments, and pro-

vides a sound framework for further development and sophistication of the FBA method. As a

side effect, it also circumvents the issue of non-unique solutions and most numerical complica-

tions by implicitly imposing a kind of parsimonious FBA (minimizing flux values subject to the

solution remaining optimal) [32]. As long as the internal kinetic constraint is what’s holding the

objective (usually growth rate) back, mass devoted to enzymes that are not essential to main-

taining the current objective will be reallocated to enzymes that will increase it.

The method developed, dircFBA, takes dFBA and places two layers of global internal kinetic

constraints on it: 1) the global fraction of cellular mass devoted to metabolic enzymes, in the

style of ircFBA [35] and 2) the global fraction of cellular mass that can be reallocated per unit of

time. It thereby places constraints on: 1) how productive the model can be on a given medium,

and 2) how quickly the cell can adjust to a changed og changing medium to increase or maintain

its productivity.

After being implemented on the iAF1260b E. coli model [13], the method is tested in several
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simulated dynamic environments and compared to experimental results [38], before the conse-

quences of the internal constraints are discussed. The dircFBA method is found to predict cell

density and environmental concentrations of nutrients with a high level of accuracy, especially

considering the size of the model and the low level of manual tuning. The second layer of global

internal constraints, limiting the rate at which the cell can reallocate resources, is not found to

impact the results to a large extent, but proves useful at pinpointing where flux changes and cel-

lular reallocation of resources occurs during the simulation run. It seems plausible that further

extensions upon the dircFBA framework, especially in the vein of regulatory mechanisms, could

improve accuracy even further, and make for a powerful tool both in batch optimization and in

probing the transients of cellular metabolism.



Chapter 2

Theory

2.1 Cellular metabolism

Central to metabolism are enzymes: proteins, i.e. biological macromolecules, that catalyze

chemical reactions, by lowering the activation energy of highly specific reactions, and thereby

increasing the rate at which they happen. Thus they take one or several substrate molecules,

and turn them into one or several products far faster than the process would otherwise take.

In biochemical terms, both substrate and product are referred to as metabolites. The chemical

reactions that transform metabolites are what we call metabolism [30, 39].

And so metabolites take turns being the products and substrates of different enzyme-catalyzed

reactions, turning various nutrients into energy and proteins filling a myriad of functions. Al-

though this process occurs at a massive scale, with the number of reactions occurring per sec-

ond in a cell ranging from 106 to 109 depending on species and activity, it is far from indecipher-

able or impossible to describe (Section 2.3).

Enzymes catalyze biochemical reactions by binding the substrate to its active site, forming an

enzyme-substrate complex. This complex may break apart back into its constituent compo-

nents, enzyme and substrate, or the enzyme may induce a conformational change in the sub-

strate, causing it to fuse with another molecule, break apart into several molecules, or otherwise

alter its structure, in which case the complex will break apart into enzyme and product instead.

7
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The enzyme is then ready repeat the process, again and again, until it runs out of substrate to

bind, or is broken down [30].

Besides allowing reactions to occur at much greater rates than they otherwise would, enzymes

enable great control over metabolic processes. They can be activated and deactivated by the

addition or removal of chemical groups, such as phosphoryl or methyl groups. These alter the

shape of the enzyme’s active site, which is where the reaction takes place, or otherwise alter the

conformation of the enzyme such that it becomes able or unable to perform its task. Rather

than switching them strictly on or off, such addition or removal of chemical groups can make

the enzymes work faster or slower. Other attributes in the cell’s internal environment, or the en-

vironment of one of its compartments, can also affect the speed at which enzymes operate, such

as temperature, pH, the availability of "energy currency" molecules such as ATP, and the concen-

tration of substrate [30]. In addition to allowing for tight regulation of its biochemical processes

by the cell, it also makes measuring the catalytic rate of an enzyme a difficult task. Measuring

the rate at which it catalyzes reactions in vivo, that is, inside the organism itself, is near impossi-

ble to do accurately using currently available methods [11]. Therefore, such measurements are

usually performed in vitro instead; that is, in the lab outside their natural biological context.

Since the catalytic rate of enzymes depend on the amount of substrate present in the environ-

ment, a simple flat metric for the catalytic rate does not suffice to describe the process, and a

model that allows meaningful parameters to be derived from measurements is required. The

most common model of enzyme kinetics is called Michaelis-Menten kinetics, which describes

an enzyme’s reaction rate v using three parameters: the maximum catalytic rate of the enzyme

when saturated with substrate (denoted Vmax), the concentration of substrate (denoted [S]), and

the concentration of substrate for which the catalytic rate is half the maximum catalytic rate (de-

noted KM ). [30]

v = d [P ]

d t
= Vmax[S]

KM + [S]
(2.1)

The Michaelis-Menten equation, seen in Equation 2.1, expresses how these parameters com-

bine to give the reaction rate. The maximum number of substrate molecules that are converted
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into product molecules per enzyme molecule per second is called turnover number, denoted

kcat [30].

2.2 Linear optimization

Optimization has become an indispensable tool in many fields of science and engineering, car-

ried on by a coevolution with computer science. At its most basic, optimization consists of find-

ing the "best" solution to a given problem. What qualifies a solution as being the "best" one is

not always obvious however, and determining this objective can be a challenge in and of itself.

[31] As such, optimization is better defined as: "given precisely defined problem, a precisely

defined set of tools to solve it, and precisely defined objective, what is the best solution?". Of

course, "best" solutions need not be good, or unique. As such, any "best" solution is, in techni-

cal terms, simply designated as "optimal".

Also known as linear programming, linear optimization1 is performed by constructing an opti-

mization problem with a linear objective function and linear constraints [31]. Linear optimiza-

tion is well suited for computation, and these kinds of problems have been studied thoroughly

for many decades. Current implementations and hardware allow large problems with hundreds

of thousands of variables subject to constraints to be solved swiftly and efficiently. The standard

form of a linear program is given in Equation 2.2 [31].

minimize cT v

subject to Sv = b

v ≥ 0

(2.2)

In Equation 2.2, v is a vector containing the variables to be determined, while c is a vector de-

1The presentation of linear optimization here leans heavily on the pedagogical approach from the book Nu-
merical Optimization by Nocedal and Wright [31], as this is the primary source of the author’s knowledge on the
subject.
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termining the objective function, a linear weighting of the different variables’ utility, as it were.

The matrix S and the vector b impose equality constraints on the variables, while the last line

impose the constraint that the variables must take on positive values. While this standard form

may appear rigid, various reformulations allow for the solution of different problems, such as

the introduction of slack variables (usually denoted z) to allow for inequality constraints, and

the splitting of v into nonnegative and nonpositive parts to allow the variables to take on "neg-

ative" values. If a maximization rather than a minimization is desired, negative weights can be

added to the objective function [31].

0
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0.5

0.5 2

1v3
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1.5
0.5

2 0

Figure 2.1: An example of a three-dimensional convex polytope. Created in Matlab. Plainly, any point within
the polytope can be connected to any other point within the polytope, without the connecting line going outside
it. This feature generalizes to arbitrary dimensions; as long as the constraints are linear, i.e. form lines, planes or
hyperplanes, the bounded space within will form a convex polytope.

Linear programming is popular in large part because it is guaranteed to arrive at a global opti-

mum, as opposed to non-linear optimization, which risks trapped in a local optimum. Adding

to that, solution algorithms exist that allow swift arrival at this global optimum. This stems from

the fact that the linear constraints guarantee a quality known as a convex solution space. The

solution space is also known as the feasible set, i.e. the set of all points that do not violate a

constraint. An example of a 3-dimensional convex polytope can be seen in Figure 2.1. A convex

space is one in which any point in that space can be connected to any other point in the space

by a straight line, without that line passing through any point which does not lie in the space.
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This is combined with a linear objective function, which ensures that the optimal point(s) will

lie on the surface of the convex solution space. This is illustrated in Figure 2.2. At any point in

the solution space, the gradient of the objective function will unambiguously reveal which di-

rections are favorable. Therefore, when a solution algorithm arrives at a point from which any

and all favorable directions entail the violation of a constraint, a locally optimal point has been

found. Due to the convex nature of the solution space in a linear program, a local optimum can

also unambiguously be claimed to be a global optimum [31].

0 0.5 1 1.5 2 2.5 3

x

0

0.5

1

1.5

2

2.5

3

y

Objective function: f = 2y + x
Linear constraints
Surface of solution space
Optimal point

Figure 2.2: A simple example of a 2-dimensional linear optimization problem. Created in Matlab. Here, a
maximization of the objective function f is sought. As the objective is linear, it points straight forwards in one
direction, and does not curve. This ensures that the optimal point must lie on the surface of the convex polytope
created by the linear constraints.

Since any sound algorithm whose step-size does not decrease too rapidly is guaranteed to ter-

minate at a global optimum, the best measure of what makes a good algorithm for solving linear

programs is usually speed. More sophisticated algorithms exploit certain known fact about lin-

ear programs, such as the shape of the solution space, to take shortcuts. This enables far more

swift traversal of the solution space, and thus termination at an optimal point, than naive im-

plementations. One example of a popular algorithm for solving linear programs is the simplex

method, which bases itself on the fact that the solution to a linear program will lie on the sur-

face of its solution space. A convex polytope has vertices, i.e. "corners" in arbitrary dimensions.
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While the surface of the solution space consists of an infinite number of points, as any non-

zero-dimensional shape does, it only contains a finite number of vertices. The simplex method

iterates through the vertices of the feasible polytope, getting closer to the global optimum with

each step. Once no further step can be taken that improves the solution, optimality is achieved,

and the algorithm terminates [31].

0 0.5 1 1.5 2 2.5 3
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2

2.5
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Objective function: f = x+y
Linear constraints
Surface of solution space
Optimal points
Possible simplex solutions

Figure 2.3: A simple example of a 2-dimensional linear optimization problem without a single unique solu-
tion. Created in Matlab. Here, a maximization of the objective function f is sought. As the objective is linear, it
points straight forwards in one direction, and does not curve. However, multiple solutions are possible; there are
an infinite number of points along the green line. Marked with green X-es are the optimal vertices, one of which
the simplex algorithm would terminate at; of these there are only two.

While solutions to linear programs are relatively easy to find, they are not guaranteed to be

unique. Any number of vertices, and consequently the lines between these vertices, might com-

prise a global optimum, and this range of possible optimal solutions might not always make

logical sense when applied to real-world problems. An example of a linear program with no sin-

gle unique solution can be seen in Figure 2.3. Discrepancies such as this may arise particularly

in cases where non-linear phenomena have been linearized to simplify computation. Fortu-

nately, algorithms also exist to find all of the optimal solutions; that is, the breadth of space

within which the solution remains optimal. This may in turn help an operator make better de-

cisions when applying the results of the optimization to the real world [31].
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In many real-world applications of optimization, knowing the change in the value of the ob-

jective function resulting from a change in a constraint is both useful and important. This is

called the shadow price. The shadow price is the marginal change in the objective function per

unit step of change in the constraint. In other terms, it’s basically the directional derivative of

the objective function in the solution point, orthogonally onto the constraint in question. Using

shadow prices, it is possible to determine which constraints can be relaxed to provide the great-

est gain in utility. In an environment with limited resources, this can help an operator determine

where to allocate resources to relax constraints in order to gain the greatest benefit [31]. A simple

example illustrating the usefulness of shadow prices would be a transport company, which nat-

urally earn money by transporting goods. Management may be looking to invest a surplus, and

wondering whether to buy more trucks or hire more drivers. Comparing the shadow prices for

the constraints imposed by lack of personnel with the shadow prices imposed by lack of vehicles

can help management make a more informed decision.

2.3 Metabolic modeling

Certain creatures, like some bacteria and yeast, are akin to tiny molecular factories. They con-

sume nutrients, such as sugars and nitrogen-rich compounds, and produce waste products,

such as ethanol and carbon dioxide, and are constantly building more copies of themselves.

As the main business of these creatures mostly consists of balancing tiny internal production

budgets, they lend themselves exceedingly well to computer modeling: construct the metabolic

network, simulate the environment, and use that to define a solvable problem, to which you try

to find the optimal solution. If your model, method and parameters are all correct, along with

the assumption about what the organism optimizes for, the result will carry an almost uncanny

resemblance to what the organism would do under the same conditions in the lab [32].

Systems biology integrates knowledge of biological systems into predictive mathematical mod-

els, in an attempt to root out errors in their understanding, and thus aid in the formulation of

new hypotheses. A great variety of models have sprung up in recent years, differing in detail,

complexity, and core working principles. Especially popular are constraint-based reconstruc-
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tion and analysis (COBRA) methods [21]. An illustrative overview of these and their interrela-

tions can be seen in Figure 2.4.

Figure 2.4: The ‘phylogeny’ of constraint-based modelling methods." [21]. Figure 2 from the paper "Constrain-
ing the metabolic genotype–phenotype relationship using a phylogeny of in silico methods" by Lewis et al. [21]. It
shows an overview of the various COBRA methods and their relationships, per 2012.

Constraint-based optimization [32] of genome-scale models (GEMs) has shown a remarkably

accurate ability to predict cellular behavior at the steady state while adhering to a relatively

simple set of rules. A complete genome-scale model is intended to fully describe a metabolic

network. The process of building of such a metabolic network is called "metabolic reconstruc-

tion". The metabolic network consists of a number of reactions. These reactions consume a

certain amount of substrate, creates a corresponding amount of product, may or may not be

reversible, and take place at a given compartment of the cell. An environment is also defined for

the cell, giving it access to a set of nutrients. Given this information, it is possible to formulate
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constraints, which limit the flux values that the various reactions can take on. This is combined

with a clearly defined goal for the cell, such as the production of as much biomass as possible.

All this allows for the clear formulation of a mathematical model. This process allows a CO-

BRA program to determine the flux through the system’s reactions and pathways through flux

balance analysis (FBA) [34][33].

2.4 Flux Balance Analysis

Flux balance analysis is the most common method for constraint-based analysis of metabolic

models. It is intended to simulate steady-state metabolism in a living cell for a given nutritional

environment [33], finding the steady-state flux through each biochemical reaction. Key to this

simulation is the quasi-steady state assumption (QSSA) which posits that the metabolic network

has reached equilibrium with the environment, and all metabolites within the network are be-

ing produced and consumed at an identical rate, so that nothing except biomass is accumulated

within the organism.

The simulation is performed by formulating a linear program in which the flux through the var-

ious reactions are represented as variables, and reaction stoichiometry and uptake bounds are

represented as equality and inequality constraints, respectively. The objective function is usu-

ally chosen to be the maximization of a "biomass dummy function", which takes in metabolic

precursors required for cell growth and proliferation, such as lipids for making more cell mem-

brane. When the FBA problem is formulated in such a way (as seen in Equation 2.3), the (rea-

sonable) assumption is made that evolution has optimized cell metabolism for maximization of

growth rate. The various flux values are given as millimoles per gram of dry weight per hour;

"[ mmol
g DW h ]", and the biomass function is formulated so that the flux through it corresponds di-

rectly to growth rate in terms of "number of divisions per hour".
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maximize cT v

subject to Sv = b(= 0)

lb ≤ v ≤ ub

(2.3)

(Above, the " = ", " ≤ ", and ≥ operators are meant in an element-wise fashion.)

More explicitly, in its implementation the problem will have the following form (Equation 2.4):
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 (2.4)

Where n is the number of reactions, and m is the number of metabolites. The columns of the

S matrix will give the stoichiometrics of the corresponding element in the v vector (that is, the

corresponding reaction flux) with a positive number on a given row signifying that the corre-

sponding reaction produces that number of the metabolite corresponding to that row, and vice

versa for negative numbers. Unless errors have been made in the assembly of the model, these

reactions are mass-balanced. The b vector will be all zeros so that every metabolite produced

by a reaction must be consumed by another, which ensures steady-state.

A standard FBA solution returns the flux distribution within the cell, including the flux through

the biomass function which represents the growth rate. For a given bound on uptake fluxes, the

FBA solution will, assuming growth is the objective, return the flux values corresponding to the

highest possible growth rate it can achieve in that environment without violating stoichiometry

or other imposed bounds. That is, the flux vector v, lying in the null-space of the stoichiometric

matrix S that maximizes the value of cT · v. This is usually equivalent to vbiomass, i.e. the flux

through the biomass function, i.e. the growth rate [33]. As with linear programs in general, so-
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lutions need not be unique. There are multiple ways of dealing with this issue, e.g. running

parsimonious FBA (pFBA), which minimizes the sum of fluxes, subject to maintaining the ob-

jective at an optimal value. Another is to find the range of different steady-state fluxes for which

the solution remains optimal. This is performed through flux variability analysis (FVA). When

performing FVA, the objective is bounded from below, only allowing solutions that keep it at

least that high. Each flux is then minimized and maximized in turn to find the upper and lower

steady-state bound at which they still allow the objective to remain at the set value [33].

2.4.1 Dynamic Flux Balance Analysis

Regular FBA seeks a steady-state solution to the problem of optimal growth. Dynamic flux

balance analysis (dFBA) is an attempt to extend this modeling framework to help model how

metabolic states change over time and interact with their environment, useful for optimizing

batch conditions in industrial bioprocessing [29, 14] and for helping to understand the tempo-

ral dynamics of metabolic systems [4].

A single "run" of dFBA consists of solving many FBA problems, meant to represent the metabolic

states at different times throughout the run. Therefore, dFBA necessarily has a certain "resolu-

tion", in that every solved FBA problem is claimed to represent cellular metabolism for an en-

tire subinterval. The shorter these subintervals are, the finer this resolution becomes. Between

each interval, the environment, the cellular metabolism, and other model parameters such as

accumulated biomass and the availability of environmental nutrients, interact with one another

according to the rules posited in the overall dFBA model, and are updated. [26] While not an ab-

solute requirement for a dFBA formulation, dynamic constraints may be placed on how rapidly

the cell can adjust its metabolism in response to changes in the environment [26].

As with FBA, the quasi-steady state assumption (QSSA) is key. The intracellular dynamics of

the cell metabolism must act on a rapid timescale compared to the extracellular environmental

dynamics, so that the metabolic network can reach equilibrium for a given set of uptake fluxes

[4].
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The method was first used by Varma and Palsson [38] to predict the behavior of E. coli dur-

ing several batch runs. In a later article, Mahadevan et al. [26] formalized the method, and

presented two different approaches to dynamic flux balance analysis, called the dynamic opti-

mization approach (DOA) and the static optimization approach (SOA) [26].

In both cases, a given time period over which the optimization is meant to occur is determined.

A set of initial environmental conditions are then, defined along with a function determining

how the cell culture interacts with this environment. Additionally, constraints are imposed upon

how fast the different fluxes within the cell are allowed to change. This time period is then di-

vided up into a number of discrete intervals [26].

In their DOA formulation, the entire optimization run is combined into a single non-linear pro-

gramming problem (NLP), which returns the solution fluxes at every time interval for the whole

run [26]. Compared to linear programs, discussed in Section 2.2, non-linear programs are not

as easy to solve, and numerical solvers are not necessarily guaranteed to arrive at a global opti-

mum [31].

In the SOA formulation, a linear program (LP) is reformulated and solved much in the way of

regular FBA at each distinct time interval, with environmental conditions determined by those

of the previous interval and the cells’ interaction with them [26].

Dynamic flux balance analysis has seen widespread use and is today part of standard constraint-

based modeling toolkits for cellular metabolism [6].

2.4.2 Internally Constrained Flux Balance Analysis

All FBA is based on constrained optimization, but in the standard formulation of FBA, the con-

straints lie solely in the stoichiometry and the upper bounds on the uptake fluxes. Internally

constrained FBA (ircFBA) on the other hand, contains additional internal constraints, in the

form of how large a proportion of the cell mass can be occupied by enzymes, and these enzymes’

catalytic rates. If optimal enzyme composition and metabolite concentration is assumed, the
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rates of the different cell fluxes will be equal to the amount of the corresponding enzymes times

their maximum catalytic rates. Thus, ircFBA integrates genome-scale metabolic modeling with

kinetic parameters by placing kinetic constraints on the FBA problem [1]. In assembling the

model, the mass and maximum catalytic rate of the enzyme corresponding to each reaction is

gathered and coupled within the model. As FBA works on a "per gram of dry weight"-basis,

constraining the proportion of the cell mass available for enzymes is a relatively simple matter

through a reformulation of the FBA linear program [35].

maximize cT v

subject to Sv = b

lb ≤ v ≤ ub

−kCat ·g ≤ v ≤ kCat ·g

gT ·eM ≤ Mc

g ≥ 0

(2.5)

(Above, ¯ means "elementwise multiplication", and the " = ", " ≤ ", and ≥ operators are meant

in an element-wise fashion.)

Equation 2.5 shows how the reformulation of the FBA problem applies the internal constraints.

In it, g is a length n (n being the number of reactions in the original FBA model, i.e. the breadth

of the S matrix) vector describing the amount per gram of cell devoted to the corresponding

enzyme, kCat is an n-by-n diagonal matrix describing the catalytic rates of the corresponding

enzymes, and the vector eM is a length n vector describing the mass of the corresponding en-

zymes. Mc is the mass constraint, given as the proportion of its mass the cell can devote to

metabolic enzymes. The "corresponding enzyme" above refers to the enzyme catalyzing the re-

action which flux is given in the corresponding element of v. So the flux of reaction vi is limited

by the amount of enzyme given by gi times its catalytic rate given by the corresponding turnover

number kC ati . This amount of enzyme takes up a proportion of total cell mass equal to gi times

eMi [35].
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Seen below in Equation 2.6 is the concrete implementation used by Røynestad [35]. It is an

expansion of the standard FBA formulation seen in Equation 2.4.



S 0

eRx -kCat

eRx kCat

0 eM


v

g

=



b

≤ 0

≥ 0

≤ Mc

 (2.6)

Equation 2.6, shows a matrix of sub-matrices, and two vectors of sub-vectors. The super-matrix

is a (m+2n+1)-by(2n) matrix where n is the number of reactions in the original FBA problem,

and m is the number of metabolites. In the super-vector following it, the vector g contains the

amount of the enzymes corresponding to the reactions that v gives the fluxes of. The eRx ma-

trices in the super-matrix ties the values of the v vector to the values of the g vector. They are

n-by-n matrices, where n is still the number of reactions in the model. It contains a single el-

ement of 1 on each row/column, and could therefore be turned into an n-by-n identity matrix

with an appropriate interchanging of rows/columns. The matrix kCat contains one non-zero

element in each column, which gives the kcat value of the corresponding enzyme. Likewise, the

length n vector eM contains the masses of the corresponding enzymes.

The "equality" constraints in this case are not all strict equality constraints, but a mixture of the

equality constraints from the original FBA formulation and a set of new (non-strict) inequality

constraints, signified by the usage of "≤" and "≥" in front of the entries in the right-hand vector

of subvectors.

As can be seen from Equation 2.6, when the S-matrix is multiplied with the vector containing the

fluxes v and the enzyme amounts g, the eRx matrices and inequality constraints will limit the

reaction fluxes to the catalytic capacity of the amount of corresponding enzyme present, which

in turn will be limited by the proportion of its mass the cell can devote to metabolic enzymes
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[1, 35]. This cell mass proportion can vary between organisms, and a mix of investigation into

the proportion of cellular protein devoted to metabolism and trial-and-error seems to be the

best approach for now [1].

While it requires far more knowledge about the metabolome, i.e. the mass and kinetic param-

eters, than regular FBA, ircFBA can help predict metabolic behavior in media without detailed

measurements of uptake fluxes in those media. Its success in predicting growth rates on a di-

verse set of media also points to physical constraints on the concentration of enzymes within

cells being an important bound on microbial growth rates [1].

Key weaknesses of the method as it currently stands is the relatively low proportion of metabolic

enzymes whose mass and/or turnover numbers are known and the uncertainty tied to their in

vivo catalytic rate versus the in vitro measurements. This can be dealt with by, for instance, as-

suming the unknown values are all equal to the median of the known ones, which introduces its

own set of problems, as few of these values will be correct. Methods do exist that help ameliorate

or circumvent this issue, however, with one such method being presented below in Section 2.5

[1, 35]. Furthermore, it seems reasonable to assume that the accuracy of such methods will in-

crease as better techniques for measurement and approximation of microbial in vivo catalytic

rates are developed [11].

2.5 SP algorithm

Many different factors can affect the behavior of enzymes in vivo [30]. When seeking to build

models that incorporate the catalytic rates of enzymes, it can therefore be difficult to lean on in

vitro measurement data alone. The quality of assays may vary, and some may have been per-

formed under physiologically unreasonable conditions. While kcat values in the cell and in the

lab certainly appear to correlate [11], a relative deviance of an order of magnitude or more can

needless to say have a great impact on model predictions. Due to the scarcity of enzyme kinetic

data available [11], retrieving known kcat values from the same enzyme in related organisms may

be the best option, further compounding the issue of accuracy [11].
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One method created to help improve the accuracy of models using kinetic parameters in lieu

of accurate data is the SP algorithm, developed by Røynestad and Almaas [35]. This algorithm

is based on the titular SP, or shadow prices (briefly touched upon in Section 2.2), found for the

various constraints as part of the standard FBA solution. As internally constrained FBA tends

to produce lower growth rates than those seen in experimental setups, it seems reasonable to

assume that at least some of the kinetic constraints introduced are too strict. The SP algorithm

takes in the ircFBA model, the regular FBA model it’s derived from, and the experimentally-

observed growth rate of the organism in the relevant medium. It then iteratively solves the ir-

cFBA problem, looks at the growth rate and the shadow prices of the kinetic constraints, and

uses this to increase the turnover number of a single enzyme at a time. The turnover number to

be increased is chosen based on which one will have to be increased the least to increase the ob-

jective the most. The goal is to achieve the target growth rate by changing the the set of turnover

numbers as little as possible [35].
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Methods and Software

3.1 Matlab

All programming, computation, and plotting in this project was performed within Matlab (ver-

sion R2015b), a proprietary computing environment and programming language, developed by

MathWorks.

3.2 COBRA Toolbox

The COBRA Toolbox is the Matlab implementation of the open-source community-developed

code base for COnstraint-Based Reconstruction and Analysis. It provides tools for managing

and solving FBA models, and version 2.0.6 was used for solving the FBA problems in this project

[36].

3.3 Webplotdigitizer

The experimental data from the article "Stoichiometric flux balance models quantitatively pre-

dict growth and metabolic by-product secretion in wild-type Escherichia coli W3110" by Varma

and Palsson [38] was key in assessing the accuracy of the dircFBA model’s predictions. It was,

however, not listed explicitly except in the form of points on plots, and so needed to be read

off of them. Used for this was the Webplotdigitizer software, available in browser-based format

23
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online. The model predictions by Mahadevan et al. [26] was also retrieved this way.

Below is listed the citation information from the website. It is listed here as the bibliography

format used in this thesis is not well suited for it.

Author: Ankit Rohatgi

Title: WebPlotDigitizer

Website: http://arohatgi.info/WebPlotDigitizer

Version: 3.11

Date: January, 2017

E-Mail: ankitrohatgi@hotmail.com

Location: Austin, Texas, USA

3.4 Retrieval of turnover numbers and enzyme masses

The turnover numbers used in this project were retrieved from the supplementary materials

of the article "Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Net-

work with Kinetic Parameters" by Adadi et al. [1]. Using the EC numbers also listed for the

enzymes here, the masses of the enzymes were retrieved from a dataset on E. coli downloaded

from BRENDA (The Comprehensive Enzyme Information System) on the 8th of September 2016.

The missing values for turnover numbers and masses were assumed to be equal to the aver-

age of the ones available. This accounted to 1933 (80.95%) of the turnover numbers, and 2023

(84.72%) of the mass numbers.

http://arohatgi.info/WebPlotDigitizer
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3.5 Preparing a genome-scale model for dFBA

In their original implementation of dFBA, Mahadevan et al. [26] operated with a metabolic net-

work of E. coli consisting of 85 reactions and 54 metabolites. This was further simplified into

a model containing four reactions and three metabolites (not counting the biomass objective)

in order to demonstrate the principles of the method [26]. When attempting to implement this

method for the complete iAF1260b E. coli model [13], consisting of 2388 reactions (including

the biomass dummy function) and 1668 metabolites [13] as part of this project, some additional

considerations had to be made even before the internal constraints were added.

The first, and most obvious hurdle, was the sheer size of the model. Finding suitable v̇max values

for 2388 reactions is no simple task, and would likely require an extensive literature review fol-

lowed by rigorous and exhaustive experimentation. Of course, an attempt could be made to find

logical "bottlenecks" and only constrain the v̇max of these, but this would still require extensive

research, and quite some trial-and-error. However, since internal constraints were to be imple-

mented already, this problem was circumvented by simply setting an upper bound on how large

a proportion of its mass the cell could alter per unit of time, called ∆g (the implementation is

thoroughly explained below, in Section 3.6). This makes the assumption that every enzyme can

be produced and degraded at roughly the same rate, which is generally not the case [30]. Still,

it reduces the number of tuning variables to one, which arguably makes it better for modeling

purposes, at least in the case of this project.

Another hurdle was the ATP maintenance function. Several interesting situations to analyze

with dFBA involves an environment starved for particular nutrients, for example due to envi-

ronmental fluctuations or exhaustive uptake by the model organism. As the ATP maintenance

function is an energy-consuming reaction with a positive lower bound, meant to force a cer-

tain level of flux through it and simulate the energetic requirements of metabolism and biomass

production, it risks making the FBA problem infeasible at certain frames where the organism

starves. In some cases, as when the environment is fully depleted, simply setting the growth

rate to 0 for the rest of the program’s runtime, allowing the cumulative biomass production and
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composition to literally flatline, produces a satisfactory solution. However, when the organism

starves temporarily as it attempts to adjust to a rapidly changing environment, this is not the

case. In order to handle these cases, functionality was implemented to find a lower value for the

ATP maintenance bound. This was implemented as a binary search going for 10 steps, finding

the highest value between zero and the original ATP maintenance requirement that would still

allow the problem to be feasible, down to an accuracy of 1
210 or "1/1024th" of the original value.

Of course, there are other possible ways of finding permissible lower bounds on this reaction,

but this one seemed the easiest to implement, is scalable to an arbitrary level of accuracy, and is

not obviously slower than any other method that was considered.

3.6 dircFBA

Based on the methods of dFBA (static optimization-based) [38, 26] and ircFBA (Røynestad’s im-

plementation) [1, 35], dynamic internally constrained FBA attempts to capture the dynamic be-

havior of a genome-scale metabolic model with internal constraints; that is, a dynamic model

in a changing environment where both its metabolism and the changes in its metabolism are

constrained by the efficiency of its enzymes relative to their mass. Used for the project is the

iAF1260b model of E. coli [13].

3.6.1 Mathematical formulation

The model formulation is based on that presented by Røynestad in his master thesis [35], which

in turn is based on the work of Adadi et al. with their MOMENT method [1]. The model has been

expanded with additional variables, filling two vectors dubbed ∆g+ and ∆g−. They are both of

length n, n being the number of reactions present in the original FBA model, and they repre-

sent the increase and decrease (respectively) in the amount of corresponding enzyme. These

variables are subject to mass constraints in the same way the variables of the g vector are in the

ircFBA problem, but these constrain them to a far smaller value, being equal to the amount of

enzyme the cell is allowed to replace each hour, multiplied by the fraction an interval makes up

of an hour.
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At each interval, the solution from the last interval needs to be propagated onwards. This is

done by constraining the vector containing enzyme amounts to being equal to the same vector

at the last interval, plus the vector containing increases in enzyme amounts, minus the vector

containing decreases in enzyme amounts. That is, g(t ) = g(t −1)+∆g+(t −1)−∆g−(t −1).

maximize cT v

subject to Sv = b

lb ≤ v ≤ ub

−kcat ·g−kcat ·∆g++kcat ·∆g− ≤ v ≤ kcat ·g+kcat ·∆g+−kcat ·∆g−
gT eM+∆g+

T
eM−∆g−

T
eM ≤ Mc

∆g+
T

eM ≤ M∆c

∆g−
T

eM ≤ M∆c

g(t ) = g(t −1)+∆g+(t −1)−∆g−(t −1)

g ≥ 0

∆g+ ≥ 0

∆g− ≥ 0

(3.1)

(Above, ¯ means "elementwise multiplication", and the " = ", " ≤ ", and ≥ operators are meant

in an element-wise fashion.)

3.6.2 Computational implementation

In the implementation itself, seen in Equation 3.2, elements have been added to the "stoichio-

metric" matrix tying the new flux variables to the old ones and representing these enzymes’

mass, in a way much similar to the way the ircFBA model is constructed. The change in enzy-

matic composition within the cell is then limited by a similar fractional less-than-or-equal-to

constraint, while the vector denoting enzyme amounts is constrained to be equal to the same

vector from the last interval, plus the changes found in the last interval.
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≤ M∆c

≤ M∆c



(3.2)

On solution, at each time interval, as explained above and shown in Equation 3.2, the new en-

zyme composition (that is, g+∆g+−∆g−) is checked against the normal mass proportion con-

straint, while the g vector giving "starting" enzyme composition is constrained to be equal to the

sum from the last interval. This essentially updates and locks g at each interval, before finding

the change in enzyme composition that will maximize growth. In order to minimize "noise" in

the ∆g terms when no composition change is needed (noise in the form of ∆g+,i =∆g−,i > 0), a

tiny negative weighting term was added to the ∆g+ values in the optimization objective.

3.6.3 Environment

The simulation environment is constructed similarly to the static optimization approach used

by Mahadevan et al. in [26], with the entire simulation (a 10 hour period by default) run being

divided into a number of intervals (10,000 by default), with the problem being re-formulated

and re-solved at each interval. The cumulative biomass production is summed up over these

intervals, with the concentration of biomass per liter being increased by the current biomass

times the growth rate times the duration of the interval. The mathematical formulation is given

below in 3.3, where X (t ) is the accumulated biomass (dry weight) at time t .

X (t ) = X (t −1)cT v∆t (3.3)

The availability of oxygen is modeled. It is consumed by the growing cell population, and re-

stored by being absorbed into the liquid medium at a rate proportional to the differing con-
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centration between the solution Osol the gas phase Oambient (i.e. surrounding air) and the mass

transfer coefficient kLa. That gives Equation 3.4 seen below for updating the amount of oxygen

in solution.

Osol(t ) =Osol(t −1)−∆t · vox ·X (t −1)+7.5 ·∆t (Oambient −Osol(t −1)) (3.4)

All oxygen in the solution is assumed to be freely available (i.e. no Michaelis-Menten dynamics),

as it was assumed in the dFBA article [26]. The upper bound on the oxygen uptake (i.e. the lower

bound on the export reaction) is set to be the smallest of the absolute oxygen uptake limit and

the amount of oxygen remaining in solution divided by the amount of cell dry weight times the

duration of the interval. Shown in Equation 3.5.

Oavailable(t ) = min(vox
max,

Osol(t )

X (t ) ·∆t
) (3.5)

Carbon sources in the environment are also depleted from (and excreted into, in the case of ac-

etate) it as the model organism grows, though micronutrients are assumed to be in abundance.

Their uptake is subject to, and therefore constrained by, Michaelis-Menten dynamics. In Equa-

tion 3.6, vmax(t ) is the upper bound on the uptake reaction at interval t . Vmax is the maximum

allowed rate of the reaction. KM is the concentration of substrate at which the reaction rate is

half its maximum rate. And [S]t is the concentration of the relevant metabolite in the solution

at time t . To avoid negative nutrient concentrations, a physical impossibility, the minimum is

taken between the value suggested by the Michaelis-Menten dynamics and the concentration

of nutrient available divided by the biomass (which is treated as gDW/l) times the duration of

the time interval.

vmax(t ) = min(Vmax
[S]t

KM + [S]t
,

[S]t

X (t ) ·∆t
) (3.6)
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Results and Discussion

4.1 Implementing and tuning dircFBA for aerobic batch growth

on glucose

In this section, the environmental parameters from Varma and Palsson’s original experiments

are retrieved and estimated. The model then attempts to predict the results of their aerobic

batch run on 10.8 mM glucose. The dircFBA model is first run without internal global con-

straints, then the Mc and M∆c constraints are added in turn, and the ensuing results are pre-

sented and discussed. Comparisons are made with the predictions of dFBA as separately im-

plemented by Mahadevan et al. [26] and Varma and Palsson [38]. Running dircFBA on a model

the size of the iAF1260b E. coli model, with 2388 reactions and 1668 metabolites, for 10000 time-

steps corresponding to 10 hours total, took a little less than an hour on a low-end personal lap-

top computer.

4.1.1 Environmental and exchange parameters

Before applying and experimenting with any kind of internal constraints, a starting point for

the other model parameters had to be established: the initial population density X0, the oxygen

mass transfer coefficient kLa , and uptake bounds on glucose and oxygen. As Varma and Palsson

[38] only provided the initial cell density implicitly in a plot, and this value is too small to be

accurately read off of it, it requires some estimations to unveil. The initial cell density used by

30
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Mahadevan et al. [26], i.e. X0 = 0.001 was considered, but did not produce satisfactory results

with the other model parameters as stated by Varma and Palsson [38]. Specifically, it appeared

too low, as prediction plots are all shifted to the right relative to the experimental ones.

An estimate therefore had to be found for the starting cell density. To achieve this, the orig-

inal results from the aerobic batch run performed by Varma and Palsson [38] were reverse-

engineered. Figure 2 from their paper ("Stoichiometric Flux Balance Models Quantitatively

Predict Growth and Metabolic By-Product Secretion in Wild-Type Escherichia coli W3110" [38])

contains a description citing a growth rate of µ = 0.68 h−1 on glucose (with an uptake bound of

10.5 mMgDW−1 h−1) under aerobic conditions (uptake bound on oxygen of 15 mMgDW−1 h−1).

This coincides well with aerobic growth rates on glucose for E. coli cited in other literature [1].

The exponential growth curve X0eµt was fitted to the experimental cell densities in the main

glucose-utilizing exponential growth phase, as seen in Figure 4.1. The curve was fitted by mini-

mizing the mean distance though a 100-step binary search though values for X0 on the interval

[0,0.01], yielding an estimate for a starting population density of X0 = 0.0043.
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Figure 4.1: Fitted curve, exponential population growth. The curve X0eµt is fitted to experimental data from
aerobic batch run of Varma and Palsson [38] for a growth rate of µ = 0.682. Seen above is the fitted curve, with a
X0 ≈ 0.0043.
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As stated in Section 3.6.3, a simple environmental model was constructed, similar to that used

by Mahadevan et al. [26]. However, their assumed kLa value of 7.5 h−1 [26] cannot be correct

according to the following claim from Varma and Palsson’s article [38]: "A small bubble size

that helped keep dissolved oxygen above 50% saturation in aerobic experiments was obtained.";

meanwhile, in the dFBA simulation by Mahadevan et al., oxygen levels in solution drop to 0 at

around 4 hours in [26]. A new estimate for the kLa parameter therefore had to be found. This

was fairly straightforward, as the batch maintains an exponential growth rate appearing to fully

utilize glucose and oxygen up to around a population density of 0.7 gDWl−1, and the saturation

of oxygen lies at around 0.21 mM. From this, a value for the kLa can be approximated according

to Equation 4.1 by assuming a stationary point for oxygen in solution at 50% at that cell density.

Therefore a kLa of 100 was used in the environmental model.

kL a(0.21− 0.21

2
) = 0.7 ·15 ⇒ kL a = 0.7 ·15

0.105
= 100 (4.1)

For the uptake bound on oxygen, Varma and Palsson [38] and Mahadevan et al. [26] agree, but

there is a small discrepancy seen in the bound on glucose uptake. This is a fairly minor differ-

ence, with the former determining it to be 10.5 mmolgDW−1 h−1 and the latter 10 mmolgDW−1 h−1.

While both of these are higher than implied in some literature [24], the number from Varma and

Palsson [38] was chosen, as their data was considered more reliable as they performed the actual

experiment.

With sound estimates for the X0 and kLa parameters determined, and uptake bounds on glu-

cose and oxygen set, the model was run without internal or dynamic constraints. A significant

secretion and later reuptake of pyruvate was observed, but was not mentioned in the original

article by Varma and Palsson [38], and pyruvate is not thought to be secreted when feeding on

glucose [18]. Therefore pyruvate secretion was turned off in the model before proceeding.

For all the plots comparing model predictions to experimental data for the aerobic batch run

from Varma and Palsson [38], both "full-length" and "exponential phase" mean error values are

included. The "full-length" mean error value gives the mean error between the prediction and

all experimental data points. The "exponential phase" mean error value, however, gives the
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mean error between the prediction and the experimental data only during the phase of expo-

nential growth. The mean error values listed by Varma and Palsson [38] are all of the "exponen-

tial phase"-kind.
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Figure 4.2: dircFBA without internal constraints or acetate bounds (overestimates rates of acetate exchange).
Predictions of the concentrations of biomass, glucose, acetate, and oxygen in the medium for the dircFBA model.
Here run with an uptake bound of 15 and 10.5 mmolgDW−1 h−1 for oxygen and glucose respectively, without in-
ternal constraints (Mc = 100 and M∆c = ∞). Mean error of prediction is given both for "exponential phase" points
compared to exponential data (PCED) and full-length run.

Plainly, Figure 4.2 shows a qualitative similarity between predictions and experimental data.

The biomass curve, i.e. the cell density, increases much too fast, however, indicating that the

growth rate is too high. The environmental acetate concentration spikes too early and then

plummets, while glucose is also consumed too rapidly. The oxygen plot is included, showing

that the concentration of oxygen dissolved in the simulated environment clearly dips well be-
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low 50% for around an hour, which it blatantly was stated not to do in the experiment. The mean

error values are included, both for the full-length run and for the "exponential phase" only, but

their high values need not be considered to judge this a poor prediction.
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Figure 4.3: dircFBA without internal constraints but with empirical acetate bounds (reasonably predicts ac-
etate exchange). Predictions of the concentrations of biomass, glucose, acetate, and oxygen in the medium for the
dircFBA model. Here run with an uptake bound of 15 and 10.5 mmolgDW−1 h−1 for oxygen and glucose respec-
tively, and an uptake and secretion bound of 3.1 mmolgDW−1 h−1 on acetate without internal global constraints
(Mc = 100 and M∆c = ∞). Mean error of prediction given both for "exponential phase" points compared to expo-
nential data (PCED) and full-length run.

Noting that acetate was both produced and consumed far too rapidly compared to experimental

data, a likely bound on these values were retrieved from literature ( 0.183 ggDW−1 h−1

59.04 gmol−1 ≈ 3.1 mmolgDW−1 h−1)

[24] and applied to the model. This resulted in a better prediction, which can be seen in Fig-

ure 4.3. Here, the growth rate still appears too high, but the acetate concentration in the medium

peaks at a height similar to that seen in the experimental data. Glucose is still consumed too
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rapidly, and oxygen still dips below 50% for short duration. While slightly better than the

4.1.2 Adding internal and dynamic constraints

With the environment and basic FBA parameters set, the global internal constraint Mc , deter-

mining the total proportion of cell mass allocated to metabolic enzymes, was applied and tested.

It was tested for values ranging from 0.4 to 0.1, and the kcat set was tuned to a growth rate of

µ = 0.68 for each value. No dynamic constraint was added yet; i.e. the parameter M∆c was not

enabled (effectively set to ∞).

The model did not appear particularly sensitive to the internal constraint Mc , as can be seen

in Table 4.1; the range of values tested produced quite similar mean error values. The fact that it

was present did markedly improve the model predictions, however, and so Mc was set to 0.3, as

experimental evidence points to this number [1]. Also seen in Table 4.1 are the ∆maxkcat values,

a term here used to describe the largest relative increase in turnover number resulting from the

tuning. That is, the kcat value after tuning divided by the kcat value before tuning. Interestingly,

in each case, only one kcat value received an increase in the order of magnitude listed for the

different ∆maxkcat in the table, and in each case this ketol-acid reductoisomerase. This was not

assumed average during the retrieval of kinetic parameters, and thus the value listed in litera-

ture for this enzyme may be particularly inaccurate with respect to its catalytic rate in vivo. Plots

showing the relative changes to turnover numbers can be seen in Appendix B, Figure B.1.

Table 4.1: Comparison of mean error values for Mc values. The mean error values for different values of mass
proportion devoted to enzymes, and the biggest relative increase in kcat values required during tuning, denoted
∆maxkcat. No dynamic constraints are applied (i.e. M∆c =∞).

Mc EGluc
exp EGluc

all EBiomass
exp EBiomass

all EAcet
exp EAcet

all ∆maxkcat

0.4 0.2817 0.1804 0.0058 0.0106 0.3383 0.4695 67.02

0.3 0.2817 0.1804 0.0058 0.0106 0.3383 0.4696 149.03

0.2 0.2817 0.1803 0.0058 0.0106 0.3382 0.4695 185.94

0.1 0.2816 0.1803 0.0058 0.0105 0.3382 0.4694 473.54
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Figure 4.4: dircFBA run with Mc = 0.3 and M∆c = ∞. Predictions of the concentrations of biomass, glu-
cose, acetate and oxygen in the medium for the dircFBA model. Here run with an uptake bound of 15 and 10.5
mmolgDW−1 h−1 for oxygen and glucose respectively, and an uptake and secretion bound of 3.1 mmolgDW−1 h−1

on acetate. Internal global constraint on total mass proportion devoted to metabolic enzymes, i.e. Mc is set to 0.3,
but no dynamic internal constraints are applied (M∆c =∞). Mean error of prediction given both for "exponential
phase" points compared to exponential data (PCED) and full-length run.

Plots showing dircFBA model predictions with Mc = 0.3 and M∆c =∞ can be seen in Figure 4.4,

and the predictions appear quite good. The biomass barely deviates from experimental mea-

surements during the exponential growth phase on glucose, with a mean error for this region

(EBiomass
exp ) of only 0.0058, versus Varma and Palsson’s 0.024 [38]. The prediction for terminal

biomass is also remarkably close. The prediction of acetate concentration is not quite as good,

but remains close to experimental measurements throughout most of the run’s length, peaking

at a similar place and with a similar height. The mean error during the exponential phase (EAcet
exp )

is also 0.3383, a marginal improvement on Varma and Palsson’s 0.36 [38]. Predictions of glucose

concentration appears to follow experimental results nicely, with a mean error of 0.2817 for the
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exponential growth phase (EGluc
exp ); this is not quite as good as Varma and Palsson’s model’s 0.27

[38]. Finally, solution levels of oxygen do not appear to dip below 50%.

Next, the dynamic constraint, implemented in the same style as the internal constraints (as

described in Section 3.6), was turned on. No average value for the speed of protein mass real-

location could be retrieved from literature, and so values ranging over four orders of magnitude

were tried, to evaluate how the effects on the model differed. As can be seen in Table 4.2, the ef-

fects of the M∆c constraint on the glucose mean error are negligible. This is likely due to fact that

the glucose uptake remains constrained only by the Mc constraint thoughout the initial period

of exponential growth where glucose is utilized. Only when the metabolism switches away from

glucose as its primary carbon source does the dynamic constraint come into effect. Smaller

values of M∆c result in a smaller mean error for the full run for the biomass (EGluc
all ), with a con-

straint of 0.001 h−1 resulting in the smallest mean error for biomass for the tested values. Likely,

this stems from the fact that it reduces overall biomass production by allowing less efficient uti-

lization of resources, meaning more time passes during which a larger proportion of absorbed

nutrients go towards upkeep of non-growth associated maintenance. This in turn means a lower

amount of biomass produced overall, and therefore a more "accurate" prediction during the lag

phase, where experimentally there is hardly any growth happening at all. The same trend is seen

for the acetate mean error, for similar reasons; the chosen bound for acetate uptake appears a

bit on the high side, so a slower adjustment to uptake of acetate will lead to a smaller prediction

error overall.

Table 4.2: Comparison of mean error values for values of M∆c. The mean error values for different values of
dynamic internal constraints, i.e. M∆c, and the mean error values for the same plots as given in Varma and Palsson
[38]. Global internal constraint on mass fraction occupied by metabolic enzymes, i.e. Mc , is 0.3

M∆c EGluc
exp EGluc

all EBiomass
exp EBiomass

all EAcet
exp EAcet

all

1 0.2817 0.1804 0.0058 0.0106 0.3382 0.4694

0.1 0.2817 0.1804 0.0058 0.0105 0.3375 0.4699

0.01 0.2817 0.1804 0.0059 0.0104 0.3363 0.4675

0.001 0.2817 0.1804 0.0061 0.0092 0.3343 0.4610

V&P 0.27 N/A 0.024 N/A 0.36 N/A
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Therefore, while prediction errors drop monotonically for smaller and smaller values of M∆c,

none of the four values tested and shown in Table 4.2 truly appear to dominate the others.

The value of 0.01 h−1 was selected for closer inspection and usage for the rest of the runs, as

it provided a good scaling of the composition change plots (discussed below and seen in Fig-

ure 4.7). The population density and environmental concentrations for the aerobic batch run

with Mc = 03 and M∆c = 001 h−1 can be seen in Figure 4.5.
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Figure 4.5: dircFBA run with Mc = 0.3 and M∆c = 0.01 h−1. Predictions of the concentrations of biomass, glu-
cose, acetate, and oxygen in the medium for the dircFBA model. Here run with an uptake bound of 15 and 10.5
mmolgDW−1 h−1 for oxygen and glucose respectively, and an uptake and secretion bound of 3.1 mmolgDW−1 h−1

on acetate. Global internal constraint on total mass proportion devoted to metabolic enzymes, i.e. Mc, is set to 0.3,
and dynamic constraints M∆c allow replacement of 0.01, that is 1%, per hour. Mean error of prediction given both
for "exponential phase" points compared to exponential data (PCED) and full-length run. Included are also the
predictions made by dFBA as implemented by Varma and Palsson [38] and Mahadevan et al. [26] in their respective
articles.
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Simple inspection of Figure 4.5 makes it evident that the implementation of dircFBA here offers

a far better prediction than the implementation of dFBA by Mahadevan et al. [26], and a slightly

better prediction that the implementation by Varma and Palsson [38]. The prediction by dircFBA

matches the experimental results more accurately overall, and is the only method that comes

close in predicting terminal biomass concentration. The comparisons with Varma and Palsson

[38] in Table 4.2 shows the mean error values for their implementation of dFBA and those for the

implementation of dircFBA used in this project. The overall lower mean error values for dircFBA

supports the notion that it offers an increase in prediction accuracy.
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Figure 4.6: Uptakes predicted by dircFBA with Mc = 0.3 and M∆c = 0.01 h−1 Uptakes of glucose, oxygen, and
acetate, with constraints imposed by kinetics and availability marked. Model parameters are the same as in Fig-
ure 4.5.

.

Plotted in Figure 4.6 are the uptake rates for glucose, oxygen, and acetate for the dircFBA model

with Mc = 0.3 and M∆c = 0.01, along with the bounds on their uptakes. The amount of avail-

able glucose can be seen to be growth-limiting throughout the duration of the batch run. The

amount of available oxygen is growth-limiting while there is glucose available. Acetate availabil-

ity is only limiting towards the end of the run, when it becomes the primary source of carbon

and energy.
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Figure 4.7: Composition change with M∆c constraint The fraction of total mass worth of en-
zyme being replaced at each interval in the dFBA model for the aerobic batch run with Mc = 0.3
and M∆c = 0.01, with the M∆c bound seen at the top. Along with the mass composition change is
plotted the scaled-down cell density and growth rate to help illustrate at which point during the
batch run the enzymatical reallocation takes place, and the M∆c constraint becomes limiting.
Model parameters are the same as in Figure 4.5.

In order to investigate how the cell must adjust and reallocate its enzyme composition in the

face of a changing environment, a bar plot was made showing the fraction of total mass worth

of enzyme mass being replaced at each interval, and the constraint placed on this fraction. This

can be seen in Figure 4.7 During most of the run, the model appears to be making some low

numerical noise. Towards the end of the run, however, the cell model needs to rapidly adjust to

the sinking availability of glucose, the rising availability of oxygen and the utilization of acetate,

and the model can be seen to be constantly pushing against the constraint on change in mass

composition for a duration of about half an hour. The growth rate and cell density are plotted

along with the bar plots showing mass reallocation to help illustrate at which points during the
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growth curve there is significant reallocation activity and the constraint is limiting.

As glucose availability becomes acutely limiting, the growth rate can be seen to take a steep

dive, before rising slightly as the metabolic rearrangement allows for utilization of acetate. The

growth rate then remains steady until the acetate is exhausted, at which point another spike in

enzymatical rearrangement signals a complete flatline in growth rate.

4.1.3 Simple bounding of growth rate

While dircFBA appears to predict the experimental results fairly accurately, a consideration must

be made:. The SP algorithm, developed by Røynestad and Almaas [35] and described in Sec-

tion 2.5, tunes kcat values to permit higher growth rates than the in vitro values reported in

literature allow. This is its express purpose, and one could potentially conceive of many dif-

ferent algorithms that could be used to achieve similar results, another one of which has also

been formulated and implemented in Røynestad’s thesis [35]. When a model’s kcat set is tuned

for a given environment, the upper bound on growth in that environment will reach precisely

the value it’s tuned for, given that the availability of nutrients can actually support it. This im-

plies that removing internal constraints and simply setting an upper bound on the growth rate µ

should provide, at least superficially, similar results. And so indeed it does, as seen in Figure 4.8.

This is further illustrated in Table 4.3 by the relatively small difference in mean errors for the

tuned dircFBA model without dynamic constraints and the model without internal or dynamic

constraint and an upper bound on growth rate µ, dubbed the "µb-model".
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Figure 4.8: dircFBA run with Mc = 100, M∆c = ∞, and µb = 0.68 Results for the model run with an uptake bound
of 15 and 10.5 mmolgDW−1 h−1 for oxygen and glucose respectively, and an uptake and secretion bound of 3.1
mmolgDW−1 h−1 on acetate. There are no dynamic or internal constraints active, but growth rate is bounded at
0.68. Mean error of prediction given both for "exponential phase" points compared to exponential data (PCED)
and full-length run.

The uptake of glucose (in Figure 4.8), and the growth curve during exponential growth on glu-

cose, are both very accurate. However, once acetate becomes the primary carbon and energy

source, the µb model’s ability to predict the experimental results is greatly diminished. There-

fore, while it might be tempting to suggest that tuning kcat sets for a given environment is equiv-

alent to bounding the growth rate for that environment, this is not the case. Tuning kcat sets for

multiple environments allows several implicit bounds with a sound physical explanation. And

the way the internal constraints are implemented can serve several other important functions.

Firstly, a kcat set tuned for sufficiently diverse media might be able to make accurate predictions

for new combinations of diverse media, which simple upper bounds on growth rates would not.

Secondly, the elegant formulation of ircFBA lends itself exceedingly well to adding simple dy-



CHAPTER 4. RESULTS AND DISCUSSION 43

namic constraints, in the style of dircFBA, which may become quite useful as more knowledge

is gained about rates of protein synthesis and degradation. Thirdly, it is relatively easy to con-

ceive of ways in which the framework presented by ircFBA could allow for the implementation of

further elements involving regulation and optimization that could increase prediction accuracy.

Fourthly, as mentioned above, and in the paper by Adadi et al. [1], internal global constraints

offer a physical and biological explanation for the limit on the upper bound on growth rate.

Table 4.3: Comparison of mean error values for dircFBA, dircFBA with M∆c =∞, dFBA with µb = 0.68, and
Varma and Palsson’s model. The mean error values for dircFBA with Mc = 03 and M∆c = 001 h−1, dircFBA with
Mc = 03 and M∆c =∞, dFBA with µb = 0.68, and Varma and Palsson’s model predictions [38]

.

Model EGluc
exp EGluc

all EBiomass
exp EBiomass

all EAcet
exp EAcet

all

dirc 0.01 0.2817 0.1804 0.0059 0.0104 0.3363 0.4675

irc 0.3 0.2817 0.1804 0.0058 0.0106 0.3383 0.4696

µb 0.2826 0.1807 0.0102 0.0413 0.4164 0.5171

V&P 0.27 N/A 0.024 N/A 0.36 N/A

While the current results and their accuracy are quite similar during part of the batch run for the

approaches, methods with global internal kinetic constraints offer a plausible explanation for

this upper bound. They also provide a framework for further additions and expansions allowing

for more knowledge to be integrated into the model. This in turn can be expected to further

increase prediction accuracy in the future. As such, the dircFBA approach is both more accurate

and shows more promise for future work than the simple µb approach.

4.1.4 Diauxic growth, lag phase

Out of all the methods (meaning dFBA [26], dircFBA, and Varma and Palsson’s original modeling

work [38]), none appear to accurately portray the period of arrested growth observed after the

exhaustion of glucose in the medium, though dircFBA comes close. More sophisticated mod-

els will likely be required to accurately portray the lag phase [8]. Expanding the dircFBA model

further with gene-regulatory functionality (implying some kind of built-in delays in response

to change), specific rates of production and breakdown for different protein, and energetic and
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component costs associated with a change in biomass composition could likely markedly im-

prove accuracy in predictions on this kind of behavior, and indeed, metabolic behavior in gen-

eral.

4.2 Fed-batch runs

Finally, the model is tested on two further sets of conditions and compared with experimental

data to see how well it can predict metabolic behavior across different environmental situations.

Enzyme mass reallocations are then analyzed to gain insight into the demands these situations

place upon the cell.

The experimental data from two of the fed-batch runs from Varma and Palsson’s paper were ex-

tracted. In one, glucose was added at rates of 0.16 and 0.32 gl−1 h−1 before and after the 2-hour

mark, respectively. This will be referred to as the "variably-fed" or VF run. In the other, glucose

was added at a constant rate of 0.2 gl−1 h−1, and it will be referred to as the "constantly-fed" or

CF run. Once again, explicit information on initial conditions was sparse, but this time, most

of the values could be read off the plots with sufficient accuracy for decent simulations to be

run. That is, except in the case of the initial biomass concentration in the CF run. As the curve

here was less suited for fitting than in the batch growth run, some simple trial-and-error was

conducted instead. The readings taken off the plot in Varma and Palsson’s article [38] seemed

to indicate a value in the area of X0 = 0.03; This appeared too high when the simulation was

run, as the plots were shifted to the left. X0 = 0.02 was tried next, but seemed a little too low, as

the plots were shifted to the right. X0 = 0.025 seemed to provide decent results, and the model

predictions using this value are listed below.
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Figure 4.9: dircFBA predictions for aerobic variably-fed (VF) batch The internal global constraints are set as
Mc = 0.3 and M∆c = 0.01. The initial population X0 is equal to 0.025 gDWl−1, the initial concentration of glucose at
zero, and glucose is being fed into the medium at rates of 0.16 and 0.32 gl−1 h−1 before and after the 2-hour mark,
respectively. Experimental measurements and mean error values relative to these are shown for the full run.

Seen in Figures 4.9 and 4.10 comparing the model predictions with the experimental data (E-

mean values provided), the predictions are at least qualitatively quite similar to the experimen-

tal results, though they are not as accurate as those made in the original paper by Varma and

Palsson [38]. Whether this stems from some weakness in the model, or is due to some faulty

parameter estimate is difficult to tell.
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Figure 4.10: dircFBA predictions for aerobic constantly-fed (CF) batch The internal global constraints are set
as Mc = 0.3 and M∆c = 0.01. The initial concentration of glucose is at 0.82 mM, and glucose is being fed into the
medium at a constant rate of 0.2 gl−1 h−1. Experimental measurements and mean error values relative to these are
shown for the full run.

More interesting are the plots showing how the changes in enzyme composition coincide with

changes in growth rate, as this is a more complex environment than the aerobic batch encoun-
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tered earlier. In Figure 4.11, there are four main stages of enzymatical rearrangement. During

the first phase, glucose is extremely sparse, but there is an initial concentration of acetate, and

the cell begins feeding on acetate. With an influx of glucose, the cell alters its enzyme compo-

sition to accommodate this change in available nutrients, electing to excrete acetate in favor of

absorbing glucose. Then comes a second, calm phase, where minor readjustments are made to

the enzyme composition. Towards the end of this, likely due to a slight drop in the availability of

glucose, the composition change per interval begins to rise, reaching its bound as the third stage

sets in, slightly before the growth rate starts to dip. As the availability of glucose drops further,

and the cell begins to burn acetate as well, the growth rate steadily declines. When the stored-up

acetate is exhausted, the growth rate takes a steep dive, before continuing its steady decline in a

fourth phase. At this point, the change in enzyme composition drops to a low-level background

noise. This because the composition is already optimized for sub-saturation of glucose, and no

further changes can improve the objective. As the growth rate sinks with lower glucose avail-

ability, slowing the decline, the growth rate curve can be projected to asymptotically approach

zero.
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Figure 4.11: Simulated composition change for VF run with constraints The fraction of total mass worth of
enzyme being replaced at each interval, with the bound seen at the top. Along with the mass composition change
is plotted the scaled cell density and growth rate to illustrate at which points during the run the cell composition is
altered. Plotted from the same simulation run as Figure 4.9.
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Figure 4.12 showing the mass reallocation of enzymes for the CF run tells a similar story to Fig-

ure 4.11, showing this for the VF run. Here, the initial population is smaller, and the initial

glucose injection is greater, meaning that the population is saturated for glucose from the very

beginning. A long phase with a constant high growth rate passes, before the growth rate drops

suddenly and the change in enzyme spikes, as glucose becomes in short supply, and acetate

is consumed to supplement. A short period with no metabolic rearrangement passes, before a

short spike signals the exhaustion of acetate, and the growth rate settles into the same asymp-

totic decline as seen at the end of the VF simulation in Figure 4.11.
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Figure 4.12: Simulated composition change for CF run with constraints The bar plot shows the fraction of total
mass worth of enzyme being replaced at each interval, with the bound M∆c seen at the top. This illustrates how the
cell must reallocate enzyme mass to deal with the changing environment. Along with the mass composition change
is plotted the scaled-down cell density and growth rate. Plotted from the same simulation run as Figure 4.10.

The prediction accuracy offered here by dircFBA is lower than that of the original model pre-

diction by Mahadevan and Palsson [26], especially for the VF run. However, they are not awful

considering that no further tuning was performed between the batch run and the VF and CF

runs. Additionally, being able to look at how the changes in enzyme composition interplays

with the growth rate and the availability of nutrients provides an easy-to-interpret and intuitive

display of how complex and changing environment affects the demands placed upon the cell’s

metabolism.



Chapter 5

Conclusion and Outlook

Internal global kinetic constraints were successfully merged with dynamic flux balance analysis

and implemented for an extensive E. coli model. This allowed accurate predictions of time-

series data for cell density and medium nutrient concentrations for several different environ-

mental time-series. Considering the size of the model and the low level of manual tuning nec-

essary, the result was considered impressive. Dynamic constraints were successfully applied as

well, but did not markedly improve prediction accuracy as the model currently stands. They

did however allow the extraction of useful and intuitive insights into the transients of metabolic

states in changing environments. This modeling framework was dubbed dircFBA - dynamic in-

ternally constrained flux balance analysis.

The model does not predict the lag-phase, nor could it without gene-regulatory functionality,

but it does quite accurately estimate terminal cell density for aerobic batch-growth on glucose.

The model treats all enzymes equally at present, assuming a universal speed of synthesis and

breakdown of enzymes. This is rather naive, but it is a consequence of lacking knowledge, and

not a fault inherent in the modeling approach itself. The framework could easily be extended

to allow individual rates of synthesis and breakdown for for each individual enzyme. Moreover,

the framework could conceivably be extended with further sophistications for increased predic-

tion fidelity. These include, but are not limited to, gene-regulatory functionality, material and

energetic cost of composition change, and better modeling of the availability of nutrients in the

48
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medium.

Due to the exponential nature of growth, the model is highly sensitive to initial conditions, such

as starting population density. This means highly accurate data about these initial conditions

are necessary for accurate simulations. Such initial conditions can be reverse-engineered from

time-series data, however, using a mix of mathematical and computational modeling, as illus-

trated in this project. As more knowledge about enzymes and cell metabolism is gathered, and

more sophisticated methods for parameter estimation are developed [23], future refinements

and extensions of the dircFBA modeling framework hold great promise both as an investigative

and a predictive tool.



Appendix A

Acronyms

COBRA Constraint-based reconstruction and analysis

dFBA Dynamic flux balance analysis

dircFBA Dynamic internally constrained flux balance analysis

DOA Dynamic-optimization approach

FBA Flux balance analysis

ircFBA Internally constrained flux balance analysis

LP Linear program

MOMENT MetabOlic Modeling with ENzyme kineTics

NLP Non-linear program

RMSD Root-mean-square deviation

SOA Static-optimization approach

SP Shadow price
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Appendix B

Turnover number tuning results
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Figure B.1: Relative changes in turnover numbers These plots show the relative change in turnover numbers for
the different enzymes in the iAF1260b E. coli model, after being extended into a dircFBA model according to Sec-
tion 3.6 and tuned with the SP algorithm [35]. The plots are ordered left-to-right, top-to-bottom, and correspond
to metabolic enzyme fractions, i.e. Mc values, of 0.4, 0.3, 0.2, and 0.1. As can be seen, very few changes are made to
the kcat set overall, with ketol-acid reductoisomerase being decidedly tuned the most. Note that knew

cat /kold
cat is meant

in the sense of "divided by", and that the arrowhead has the same height in terms of the y-axis in each plot.
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