
Autonomous Wind Blade Inspection

Hans Erik Heggem

Master of Science in Cybernetics and Robotics

Supervisor: Rune Storvold, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology

Autonomous Wind Blade Inspection

Hans Erik Heggem

June 2017

MASTER’S THESIS

Department of Engineering Cybernetics

Norwegian University of Science and Technology

Supervisor: Rune Storvold

i

Abstract

This report addresses autonomous inspection of wind blades using a UAV by proposing to use

computer vision combined with structured light to accurately segment and detect the wind

blade edges. It will be proven that this method is invariant to both rotation and scale, while

it is computationally efficient for use on real-time applications. The blade edges will be de-

tected according to the segmented area of the blade, and identified as Hough transformed lines

to easily develop a manouvering scheme which intends to follow the blade edges from root to

tip, while maximizing the view of the blade without loosing view of the respective edges. It will

also be shown that the method detects the blade tip, regardless of rotation and scale.

Furthermore, the structured light will be utilized to efficiently compute feature point matches

from a stereo vision system. These matches will be used to conduct 3D reconstruction of the re-

spective feature points using 2D triangulation. This will enable transformation of coordinates

between the image frame and camera frame, including a real-time estimate of the distance be-

tween the blade and drone.

Additionally, all relevant source code mentioned in this report may be found under MIT

license at the authors personal github repository, reachable at following web address.

• https://github.com/hansehe/Wind-Blade-Inspection

https://github.com/hansehe/Wind-Blade-Inspection

ii

Preface

This thesis was conducted during the spring of 2017, and concludes the final step of my studies

towards a M.Sc. degree in Engineering Cybernetics and Robotics at the Norwegian University of

Science and Technology (Trondheim, Norway).

Special thanks to Professor Rune Storvold for serving as my supervisor, and to Norut North-

ern Research Institute in Tromsø for providing equipment, hardware and technical assistance.

I would also like to pay my gratitude to Senior Scientist Agnar Sivertsen for challenging my

ideas while aiding with helpful advices, and most importantly I would like to pay my sincere

gratitude to my better half, Ingvild, and to my family for support and motivation throughout my

studies.

Tromsø, 2017-06-09

Hans Erik Heggem

Contents

Abstract . i

Preface . ii

1 Introduction 2

1.1 Background & Motivation . 2

1.2 Literature Survey . 3

1.3 Objectives . 3

1.4 Limitations . 4

1.5 Approach . 4

1.6 Structure of the Report . 5

2 Literature Review of Computer Vision 6

2.1 Camera Systems . 6

2.1.1 Depth of Field & the Thin Lens Model . 6

2.2 Image Manipulation . 9

2.2.1 Gaussian Filtering . 9

2.2.2 Gaussian Pyramid Downsampling . 10

2.3 Edge Processing . 11

2.3.1 Edge Detection . 11

2.3.2 The Hough Transform . 16

2.3.3 Harris Corner Detector . 21

2.4 Stereopsis . 23

2.4.1 Basic Theory of Stereopsis . 24

2.4.2 Extrinsic & Intrinsic Matrices . 26

iii

CONTENTS iv

2.4.3 Undistortion . 29

2.4.4 Appearance Based Matching . 31

2.4.5 Feature Based Matching . 34

2.4.6 Linear Triangulation . 40

2.5 Structured Light . 41

2.5.1 Blob Detection . 43

2.5.2 Test Results of Blob Detection . 47

2.5.3 Feature Matching . 48

2.5.4 Test Results of Feature Matching . 52

2.5.5 Test Results of 3D Reconstruction . 54

2.5.6 Concluding Remarks on 3D Reconstruction 56

3 Wind Blade Properties 58

3.1 HAWT Wind Blade Design . 59

3.1.1 Wind Blade Dimensions . 61

4 Detecting Blade Edges 62

4.1 Segmenting the Blade . 63

4.2 Detecting Blade Edges as Hough Lines . 66

4.3 Discussion & Comments . 69

5 Manouvering Plan 74

5.1 Coordinate Frames . 74

5.1.1 Body Frame . 75

5.1.2 Camera Frame . 75

5.1.3 Image Frame . 76

5.1.4 Windmill Frame . 76

5.2 Detecting the Wind Blades . 77

5.3 Initial Position . 79

5.4 Initialization of the UAV . 79

5.5 Rotating the Camera Frame . 83

5.6 Manouvering Along the Blade . 84

CONTENTS v

5.7 Detecting the Tip . 88

5.8 Manouvering Back To the Root . 89

5.9 Detecting the Root . 92

5.10 Collision Avoidance . 93

5.11 Simulations of the Manouvering Plan . 93

5.11.1 Simulations of Blade Manouvering . 94

5.11.2 Simulations of Blade Tip Detection . 99

5.11.3 Discussion & Comments . 101

6 Kalman Filter 102

6.1 Literature Review of the Kalman Filter . 102

7 Program Design & Hardware 104

7.1 Program Design . 104

7.2 Computational Delay . 107

7.3 Hardware Overview . 108

7.3.1 Microcontroller . 108

7.3.2 Camera . 109

7.3.3 Lens . 110

7.3.4 Laser . 110

7.4 Software Overview . 111

8 Summary 112

8.1 Summary and Conclusions . 112

8.2 Discussion . 113

8.2.1 Structured Light & Accuracy . 113

8.2.2 Guidance System . 113

8.2.3 Wind Blade Inspection . 114

8.2.4 Segmentation & Detection of Arbitrary Objects 116

8.3 Recommendations for Further Work . 116

A Acronyms 118

CONTENTS 1

B Glossaries 119

Bibliography 121

Chapter 1

Introduction

1.1 Background & Motivation

The global wind power industry is rapidly growing, and will play an essential role in supply-

ing the world with renewable energy. More demand for wind power requires larger wind farms

and larger windmills, which both generates the necessity for more cost efficent maintenance

solutions. In general, maintenance costs amounts to 1.5% to 2% of the original annual invest-

ment of a modern windmill [2], and most of the maintenance costs are due to regular servicing

such as conducting a rope descent to inspect exposed components for detecting defects on the

wind blades. In recent time, UAV investments are on the rise due to the vast possibilites within

surveillance, search and rescue and other fields where a UAV may assist workers to provide bet-

ter and more cost efficient solutions. Such a solution may assist workers to inspect windmills by

automatically inspecting the windmills using a UAV to provide high quality recordings, which

later are inspected in depth by the field engineers on the ground. This greatly cuts costs and

minimizes the risk of personal injury, and provides the ability for field engineers to focus their

time on repairing the windmills.

Some companies, such as Aibotix, offer solutions for autonomous windmill inspection using

industrial UAVs with various sensors, including video cameras and thermal imagers. Another

inspection technique is to use high-definition cameras based on the ground to conduct a remote

inspection of the windmill. This thesis will address autonomous inspection of wind blades using

a UAV equipped with video cameras and a laser for accurate manouvering along the wind blades.

2

https://www.aibotix.com/industries/industrial-inspection/wind-mill-inspection

CHAPTER 1. INTRODUCTION 3

1.2 Literature Survey

Research has been done during the recent years on automatic windmill inspection using UAVs,

and companies such as the Aerialtronics corporation [3] and the AutoCopter Corporation [1]

provide solutions using either a drone or an unmanned helicopter. Typical solutions commonly

uses infrared recordings [1] to detect heat signatures on the windmill or a GPS combined with a

LiDAR sensor [1] to create a 3D map of the windmill, and both methods are used to manouver

the UAV around the windmill. Another approach is to address the issue using computer vi-

sion, which gives the benefit of using the cameras for inspection as well as a tool for navigation.

A solution for targeting a windmill and manouvering towards it was proposed by Stokkeland

et al. [50], who used computer vision techniques such as the Canny edge detection and Hough

transform to detect features on the windmill. Moreover, Høglund [17] addressed the issue of

autonomous inspection of windmills and buildings using optical flow and Hough transform to

locally navigate a UAV. This thesis will continue addressing the issue of windmill inspection by

focusing on a manouvering solution along the wind blades using computer vision, including

two cameras to provide stereo vision. Moreover, the problem will be treated using structured

light, as projected by the laser, to segment the blade with high accuracy, and it will be shown

that this method will provide an easy way of manouvering the UAV at a given distance to the

blade.

1.3 Objectives

The main objectives of this report are as follows:

1. Literature review on relevant computer vision techniques for processing images to detect

and identify features on the wind blade.

2. Define a stereo vision technique suitable for reconstructing 3D feature points.

3. Define a method for segmenting the wind blade by detecting the blade edges.

4. Propose a manouvering plan along the wind blade, and conduct simulations.

CHAPTER 1. INTRODUCTION 4

1.4 Limitations

The report will do a thorough analysis on how to accurately segment a wind blade from its sur-

roundings and how to conduct 3D reconstruction using stereo vision. Additionally, the methods

are implemented so that necessary simulations of the respective methods could be conducted.

Moreover, the report includes a manouvering solution for following the edges of a wind blade,

where only the key manouvering methods are implemented and simulated. Some of the manou-

vering methods requires implementation of a Gimbal, GPS or sonar which could not be done

during the limited time this thesis was conducted.

1.5 Approach

The objectives will be addressed by first reviewing relevant computer vision techniques, includ-

ing techniques about edge processing, line detection, feature detection and stereopsis. These

techniques will constitute the basis for developing methods to solve the respective objectives.

The first objective will be met with a solution for detecting the projected feature points of the

structured light, whereas the respective feature points will be used to conduct 3D reconstruction

and wind blade segmentation. Finally, the wind blade segmentation will be used to accurately

detect the blade edges, where the coordinates of the blade edges will constitute the basis for the

manouvering plan.

CHAPTER 1. INTRODUCTION 5

1.6 Structure of the Report

This report continues the work of Heggem [16] who presents a theoretical solution on how to

manouver a UAV along a wind blade, so much of the literature review and manouvering solu-

tions are based upon this work. Moreover, the report is organized as follows. Chapter 2 reviews

relevant computer vision theories, including feature detection and the concept of stereopsis.

Moreover, this chapter will discuss and conduct tests to define a proper method to detect and

match feature points of the structured light, and continue with 3D reconstruction of the re-

spective feature points to verify the feasibility of using stereopsis to measure distance to a wind

blade. Chapter 3 will review design and dimensions of a conventional wind blade, before pre-

senting a method for detecting the blade edges in chapter 4 and proposing a manouvering plan

with simulations in chapter 5. Additionally, the kalman filter will be reviewed in chapter 6 to

present it as a suitable tool for fault recovery. Finally, chapter 7 presents the program flow of the

application used to simulate blade manouvering, including review of relevant hardware.

Chapter 2

Literature Review of Computer Vision

2.1 Camera Systems

2.1.1 Depth of Field & the Thin Lens Model

A simplified imaging device consist of an optical system, a sensor and an aperture. The optical

system is formely known as the lens and focuses light rays coming from one scene point to con-

verge at a point on the sensor, while the aperture controls the amount of light entering through

the lens. Moreover, the sensor detects the incoming light rays through photoreceptors such as a

CMOS sensor or a CCD sensor. Together, these devices constitute the depth of field which refers

to the focus point at where scene objects needs to be to remain in focus. Figure 2.1 illustrates

the thin lens model where all rays originating from a scene point P intersects at exactly the same

point p on the sensor, whereas f is the focal length, O is the lens center and F is the left and right

focal point.

Moreover, by using the thin lens model we can define the basic and fundamental equations

for a thin lens as follows in equation (2.1) and (2.2), respectively.

Y

Ẑ
= y

ẑ
(2.1)

1

Ẑ
+ 1

ẑ
= 1

f
(2.2)

6

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 7

Figure 2.1: The thin lens model [22].

The basic equation states that the height in an image is proportional to the height of the

object, while the fundamental equation states that an object point maps to the corresponding

image point. Additionally, from the thin lens model it is understood that the depth of field de-

pends on the focal length of the lens and the aperture size, which is illustrated in figure 2.2 where

several rays intersect at the same area b which causes a blurred image.

Figure 2.2: Depth of field [22].

The aperture d may be related to the blurred area b by geometry which is stated by equation

(2.3). Equation (2.4) rearranges equation (2.3) using the fundamental equation for thin lenses to

show that the focus depends solely on the aperture and focal length.

ẑ

d
= ẑ − f

b
(2.3)

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 8

b = d(ẑ − f)

ẑ

= d
(
1− 1

ẑ

)
= d

(
1− f

(1

f
− 1

Ẑ

))
= d

(
1+ f

Ẑ

)
= d f

Ẑ

(2.4)

Additionally, the field of view according to the focal length and sensor size is estimated by

considering the basic equation (2.1) of a thin lens model, and approximating that the focal

length is equal to the image distance ẑ, when considering that the working distance Ẑ is consid-

erably larger than the image distance. The field of view is then defined by the following equation

(2.5).

Y = Ẑ
y

f
(2.5)

Moreover, the fan angle according to the field of view is illustrated in figure 2.3, and may be

found using equation (2.6).

ϕ= 2arctan
(Y

Ẑ

)
(2.6)

Figure 2.3: Fan angle.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 9

2.2 Image Manipulation

Image manipulation is the first step towards image processing. This involves reducing the im-

age size for lighter computation and filtration of Gaussian noise for the purpose of removing

unwanted noise, before moving on with an image processing method such as detecting edges.

2.2.1 Gaussian Filtering

Noise in an image is usually considered Gaussian and may cause disruptions when the gradient

estimation of the gray-level pixels are computed. A linear spatial filter, such as a Gaussian filter,

is a common technique to smooth and remove Gaussian noise in an image. The technique

involves estimating a constant matrix, called a kernel, that is convolved with the original image

to compute a filtered image. The kernel expresses the weight of each neighboring pixel. As an

example, to compute a simple average filter, also called a box filter, then the kernel values will be

given equal average weight and the resulting pixel will be the average estimate of its neighboring

pixels.

In general, a linear spatial filtered image I A is computed by convolving the original image I

with a constant kernel matrix A defined by equation (2.7) [51, p. 55] .

I A(i , j) = I ∗ A =
m
2∑

h=−M
2

m
2∑

k=−M
2

A(h,k)I (i −h, j −k) (2.7)

The convolution of the original image I and kernel A is easily computed in the frequency

domain by the convolution theorem:

F {I ∗ A} =F {I }F {A} (2.8)

The filtered image is finally computed by estimating the inverse Fourier transform from the

result of equation (2.8).

The Gaussian filter is a linear spatial filter, where the kernel is estimated based on a 2D nor-

mal density function. The density function gives lower weight to pixels further away from the

center pixel, and will therefore be more able to preserve edges, compared to a simple box filter.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 10

The Gaussian kernel distribution in 2D has the form:

G(x, y) = 1

2πσ2
e− x2+y2

2σ2 (2.9)

The width of the kernel, usually of odd number, and σ, also called the standard deviation of

the kernel distribution, must be decided upon. A high standard deviation of the Gaussian σ

increases the weight of pixels closer to the central pixel in the kernel. Therefore, the σ should be

of higher value to preserve edges in a highly Gaussian noisy picture. There are no fixed solution

on how to estimate these values, but the width w and the standard deviation of the Gaussian σ

may follow a standard relation, as defined by equation (2.10) [51, p. 59].

σw = w/5 (2.10)

2.2.2 Gaussian Pyramid Downsampling

Modern cameras usually produce large images of high resolution that increases computation

cost when processing the images, and an image of high resolution may contain too many details

that will bee seen as noise when processing edge detection on the image.

The Gaussian pyramid method is used to downsample an image g0 by reducing spatial den-

sity and resolution by convolving image g0 with a symmetric weighted Gaussian kernel w(m,n)

and removing every even-numbered row and column. The resulting downsampled image g1

will be half the size of the original image, with proportionally lower resolution. Eventually, the

Gaussian pyramid generates a set of images, g0, g1, ..gn , with image gn having the lowest spatial

density and resolution.

The Gaussian pyramid process is presented by equation (2.11) [43] , and computed by con-

volution.

gn(i , j) =
2∑

n−2

2∑
m−2

(w(m,n)gn−1(2i +m,2 j +n) (2.11)

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 11

Figure 2.4: Gaussian pyramid [40]

Each level is of half the resolution computed by the level below.

2.3 Edge Processing

Edge processing is a fundamental tool when it comes to computer vision. In this section we will

discuss different edge detection tools, and proceeed on processing the detected edges for the

purpose of locating lines and corners on a wind blade.

2.3.1 Edge Detection

The concept of edge detection is to find a sequence of connected edge elements. Connected

edge elements, or edgels, are defined as series of connected pixels, where each pixel has a sharp

and locally maximum gray-level gradient in one direction with a low gray-level gradient in the

perpendicular direction.

An edge detection method usually involves three steps:

1. Noise smoothing

2. Edge enhancement

3. Edge localization

The first step is carried out to suppress as much noise as possible, while maintaining the

edges. Image noise is usually modelled by a white Gaussian zero-mean stochastic process [51,

p. 53], since the noise is thought to be random, and is usually suppressed by a Gaussian filter.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 12

Figure 2.5: Edgel [25]

Sharp, local maximum gray-level gradient in y direction, and low gray-level gradient in x direction.

The second step enhances possible edges by computing the gray-level gradient component and

the orientation of the edge normal. There are several methods on how to enhance edges from

an image, such as the Sobel filter method or the Gaussian edge filtering method. Edge localiza-

tion is the final step and involves filtering the resulting edge map by removing edges that are

caused by noise. This step is carried out by a non-maximal suppression method that suppresses

edged pixels if they are not the local maxima in the gradient direction, and a hysteresis threshold

method to remove noisy random edges.

All of the edge detection steps mentioned are carried out by a commonly used Canny edge

detection algorithm. The following sections will explain and discuss how to implement a Canny

edge detection algorithm to detect edges on a wind blade.

The next step after localizing the edges on a wind blade, will be to carry out an edgel linking

method to localize the direction of connected edgels, so that it will be possible to decide upon

a direction path to follow along a given wind blade. The Hough transform method for lines

is a commonly used edgel linking method, and is used to group straight edges that should be

connected, but are disconnected due to noise. Refer to section 2.3.2 for an explanation of the

Hough line transform.

Canny Edge Detector

The Canny edge detector is mainly carried out be four steps:

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 13

1. Noise smoothing

2. Edge enhancement

3. Non-maximal suppression

4. Hysteresis thresholding

The first step is usually carried out by a Gaussian filter, as mentioned in section 2.2.1, to re-

move Gaussian noise. The second step involves estimating edge strengths by using an edge en-

hancement algorithm, such as the Sobel or Gaussian edge filtering method, which are explained

in section 2.3.1 and 2.3.1.

The final two steps is carried out to suppress unnecessary non-maximal pixels and remove

noisy edges, which results in a clearer and more accurate edgel map.

The non-maximal suppression method helps to reduce broad filtered edges to single-pixel-

wide paths so that the edgel map becomes more clear. The algorithm works through each non-

zero edge pixel and finds the normal to each edge. If the edge pixel is smaller than one of its

neighbors in the normal direction, along the edgel direction, then that means it’s not a local

maxima and the edge pixel is suppressed to zero.

Figure 2.6: Non-maximal suppression [25]

Edgels are thinned by suppressing non-maximal edge points in the gradient direction.

The edgel map at this point will still contain noisy edges caused by Gaussian noise, and the

goal is to remove these disturbances without corrupting real edgels. This is solved by introduc-

ing hysteresis thresholding, which in contrast to normal thresholding with a single threshold

value, has a high and low threshold value. Edge pixels higher than the high threshold are set to

one. However, edge pixels with lower magnitude than the high threshold, but still higher than

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 14

the low threshold is set to one if the neighboring pixels in the normal direction of the edge gradi-

ent have been set to one previously, or it will be suppressed to zero. Edge pixels which are lower

than the low threshold value are automatically set to zero.

Figure 2.7: Hysteresis thresholding [25]

Blue values are set to one and yellow values are suppressed.

Gaussian Edge Filtering

The Gaussian edge filter is a an approximation of the 1st -order derivatives of a Gaussian. The

advantages of using a Gaussian edge filter is that the Gaussian filtration and edge enhancement

is computed simultaneously, since a Gaussian weighted kernel in the horizontal and vertical

direction is used.

The Gaussian edge filter creates a horizontal hx(x, y) and vertical hy (x, y) kernel. The result-

ing gradient magnitudes, Gx and Gy , in horizontal and vertical direction is found by convolving

the input image f (x, y) with the corresponding horizontal and vertical kernels [25].

h(x, y) = e− x2+y2

2σ2 (2.12)

hx(x, y) = ∂h

∂x
=− x

σ2
e− x2+y2

2σ2 (2.13)

hy (x, y) = ∂h

∂y
=− y

σ2
e− x2+y2

2σ2 (2.14)

Gx = f ∗hx (2.15)

Gy = f ∗hy (2.16)

Finally, the resulting edgel map is computed by combining the gradient magnitudes in ver-

tical Gx and horizontal Gy direction to approximate a resulting edgel map. As mentioned, the

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 15

Gaussian edge filter enables the possibility to approximate the gradient magnitude in all direc-

tions or in a specific angle, as defined by equation (2.17) and (2.18) [25].

G =
√

G2
x +G2

y (2.17)

G(θ) = |Gx cos(θ)−Gy sin(θ)| (2.18)

Equation (2.18) is derived by considering a rotation around angle θ to compute a desired

angle for the kernel in equation (2.12). The rotated kernel hθ(x ′, y ′) is found by replacing (x, y)

with the rotated values (x ′, y ′), as stated in equation (2.19) and (2.20).

x ′

y ′

= R

x

y

=
cos(θ) −sin(θ)

sin(θ) cos(θ)

x

y

 (2.19)

x ′ = x cos(θ)− y sin(θ)

y ′ = x sin(θ)+ y cos(θ)
(2.20)

The rotated gradient kernels, hθx (x ′, y ′) and hθy (x ′, y ′) (2.21), is derived by the same method

in equation (2.13) and (2.14), and we can see that equation (2.18) is a simplification of comput-

ing the same result.

hθx (x ′, y ′) =−x cos(θ)− y sin(θ)

σ2
e− x2+y2

2σ2

hθy (x ′, y ′) =−x sin(θ)+ y cos(θ)

σ2
e− x2+y2

2σ2

(2.21)

Sobel Edge Filtering

The Sobel edge filter is a fairly simple edge filtering method. In contrast to the Gaussian edge

filter, the horizontal and vertical kernel is fixed with greater weight on pixels closer to the centre

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 16

pixel, as defined by equation (2.22) [51, p. 80].

hx =

−1 −2 −1

0 0 0

1 2 1

 (2.22)

hx =

−1 0 1

−2 0 2

−1 0 1

 (2.23)

The horizontal Gx and vertical Gy gradient magnitude is approximated by convolving the

original image with the corresponding kernels as stated in equation (2.14) and (2.15). The final

absolute gradient magnitude is approximated by equation (2.16). However, the Sobel kernel

cannot be adjusted to filter edges in a specific angle due to that it is fixed in horizontal and

vertical direction.

The absolute gradient magnitude may also be approximated to reduce computation time, as

defined by equation (2.24) [25].

G = |Gx |+ |Gy | (2.24)

Concluding Remarks on the Canny Edge Detector

The Canny edge detection function provided by openCV is using the Sobel edge filter method to

find the gradient intensity of an image, due to that it is so easily implemented and gives decent

results for detecting edges. This function is therefore used in the final solution to compute an

edgel map of the image containing the wind blade.

2.3.2 The Hough Transform

The Hough transformation is used to detect complex patterns of points in an edge enhanced

binary image, such as lines and curves disconnected due to noise. The edge enhanced image is

usually generated by the Canny edge detector. For example, patterns of a line in an image never

follows a straight path, but the goal is to present the pattern as a line following the mathematical

model for a straight line by equation (2.25) [51, p. 96].

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 17

a>x = ax +by + c = 0 (2.25)

.

The parameter vector a0 must be found to represent equation (2.25), but this involves find-

ing the least squared distance to each point following that line pattern, which implies a least

squared problem.

The Hough transform solves this pattern detection problem by converting the problem into a

simple peak detection problem in parameter space. The parameter space maps all possible lines

or curves in the binary image as a single point, simplifying the search process for a connected

line or curve.

Standard Hough Line Transform

The first step in the standard hough line transform algorithm is to represent all edge points

in P = {(xp ,up), p = 1, .., M } as a sinusoidal curve in polar parameter space, called the voting

stage. A sinusoidal curve is approximated by considering all lines originating from an edge point

(xp , yp) to any other edge point, where each line is represented by its angle θ and perpendicular

distance ρ to origin. The polar parametrization (ρ,θ) of a line is computed by equation (2.26).

ρ = xp cos(θ)+ yp sin(θ) =
√

x2
p + y2

p sin
(
θ+ tan−1 (xp

yp

))
(2.26)

Figure 2.8 shows the polar parametrization and mapping of (ρ,θ) in polar parameter space.

Figure 2.8: Lines in polar space [25]

The resulting polar points of all lines originating from edge point (xp , yp) results in a ’one-to-

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 18

many’ sinusoidal representation of all possible line patterns originating from that edge point, as

illustrated in figure 2.9.

Figure 2.9: Sinusoidal of lines intersecting point (xp , yp) [25]

One or more edge points in parameter space will intersect at a common point, called a peak

point, if the lines in the original binary image are on the same common line, as illustrated in

figure 2.10. A peak point increases depending on how many lines that intersect that point in

parameter space.

Figure 2.10: Sinusoidal representation of edges [25]

Finally, the Hugh transform searches for a given number of the highest peak points in the

parameter space, while lower peaks are ignored to remove small and noisy lines. The resulting

peak points are represented as (ρ,θ), and may be drawn as straight lines in Cartesian coordinates

by rearranging equation (2.26) to derive equation (2.27).

y =−x cot(θ)+ρ csc(θ) (2.27)

Moreover, it should be noted that an implementation of the Hough transform usually con-

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 19

siders the origin to be taken at the centre of the image, instead of the (0,0) pixel coordinate at the

top left corner of the image. Additionally, the line angle θ is restricted between a range of 0 ↔π

or −π
2 ↔ π

2 radians, which means that an implementation must consider a distance parameter ρ

that covers both positive and negative values. However, a simple solution to this approach is to

rotate the line angle θ byπ radians if the distance parameter ρ is negated, while proceeding with

the absolute value of the distance parameter as |ρ|. This consideration will be used throughout

the thesis, and is defined by equation (2.28).

θ =

θ+π, if ρ < 0

θ, else

ρ = |ρ|

(2.28)

Hough Curve Transform

The hough curve transform algorithm is very similar to the Hough line transformation algorithm

since it also includes a voting and search stage. The first step involves finding a suitable curve

parametrization, such as the line parametrization in section 2.3.2, as y = f (x,P), where P =
[p1, ..., pM]>. In short, the Hough curve transform is processed as in section 2.3.2, but requires

additional computation since a curve parametrization is represented in a three-dimensional

parameter space. A circle parametrization is presented in equation (2.29). The search stage

will look for peak points in the three-dimensional parameter space where radius r and circle

parameters (a,b) intersect.

r 2 = (xp −a)2 + (yp −b)2 (2.29)

However, this method will only be briefly explained since this method most likely will not be

possible to use due to the conditions in this project. Reason is that the targeted wind blade will

be in close range, which will make it difficult to detect it as a closed circle. Additionally, it will

probably be unnecessary to search for circles on the wind blade.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 20

Concluding Remarks on the Standard Hough Transform

The Hough transform proves to be robust against noise since noisy edges will contribute ran-

domly to other lines, which most likely will be ignored in the search stage. Furthermore, it proves

to handle occlusion well since it handles all edge points independently and searches for inter-

section points in polar coordinates instead of matching all line possibilities in Cartesian coor-

dinates. In addition, HT detects multiple pattern matches simultaneously when detecting the

intersection points in polar coordinates [51, p. 100].

However, the limitations of HT is the rapid increase of computation time during the voting

stage according to number of edge points M to process. The voting stage requires O(M · Nθ)

operations, where the polar parameter space is of Np ×Nθ. M is known to be of much larger size

than Np and Nθ, and the computation time will therefore greatly depend on how many edge

points to process. Several approaches on how to reduce computation time of the HT, such as

the fast HT, adaptive HT, randomized HT and progessive probabilistic HT, have been developed

and proven to be efficient.

Progressive Probabilistic Hough Line Transform

A simple solution to reduce time consumption was proposed by Kiryati et al. [23], which simply

picks a random subset m from M edge points, decreasing computation time from O(M , Nθ) to

O(m, Nθ), where m < M . The subset m will give an estimation of all features and noise of all

edge points M since it is randomly distributed. Some articles allege that a subset of only 2% was

enough to give good results [32], however, a subset of 5% - 15% is a common subset ratio [12].

The progressive probabilistic Hough transform [34] is a development of the probabilistic HT.

The method works by randomly selecting a new point for voting. For each line detected, then

all remaining points supporting that line will be denied voting rights, thus automatically reduc-

ing subset m. Furthermore, the algorithm continuously selects a random point and reducing

subset m until each point in M have either voted or been denied voting rights. This drastically

reduces computation time, since only a subset m < M is considered, while the rest is denied

their voting rights. In addition, this simplifies the use of the probabilistic HT since the subset

ratio is automatically detected.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 21

2.3.3 Harris Corner Detector

Corner detection involves finding high gradients in different directions on an edge enhanced

image, indicating a corner. The Harris corner detector considers an intensity structure C ac-

cording to the image gradient E of a local neighborhood Q defined by equation (2.30) [51, p. 82].

[Ex ,Ey]> is the spatial image gradient on neighborhood Q where Ex = ∂E
∂x and Ey = ∂E

∂y .

C =
 ∑

E 2
x

∑
ExEy∑

ExEy
∑

E 2
y

 (2.30)

This equation is derived from the auto-correlation function, defined by equation (2.31) [8].

Further explanation on how to derive the equation is clearly explained by referring to article [8].

c(x, y) =∑
Q

[I (xi , yi)− I (xi +4x, yi +4y)]2 =
[
4x 4y

]
C (x, y)

4x

4y

 (2.31)

The intensity structure is recognized as a semi-positive definite matrix, hence the eigenval-

ues of C , λ1 and λ2, is non-negative. The eigenvalues of matrix C forms a description of the

gradient neighborhood in Q, which can be explained by examining three particular cases when

searching for a corner.

• λ1, λ2 ≈ 0, means that the intensity structure C is close to zero, indicating that the neigh-

borhood Q is uniform and no edge or corner is present.

• λ1 > λ2, λ2 ≈ 0, means that there is a gradient change in one direction, parallel with the

eigenvector associated with λ1, indicating an edge. Either one of the eigenvalues may be

big and the other low to indicate an edge.

• λ1, λ2 > 0, means that there is two gradients in different directions, parallel with the eigen-

vector associated with corresponding λ, indicating a corner.

Finally, the Harris corner detector truncates the different cases to a score response, R, as

stated in equation (2.31). By intuition, a large score response occurs if both eigenvalues are

high which indicates a corner, while small or different eigenvalues results in a low or negative

score response. As mentioned, different eigenvalues indicate an edge, while small eigenvalues

indicate a uniform neighborhood.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 22

R =λ1λ2 −k(λ1 +λ2)2

(0.04 ≤ k ≤ 0.06) [27]
(2.32)

Figure 2.11: Classification of score response R in regard to λ1 & λ2 [27].

Properties of the Harris Corner Detector

The properties of the Harris corner detector is defined by its use of eigenvalues, based on the

change of intensity for the shift in the neighborhood surrounding a point in the image. This

means that the use of eigenvalues offers the property of rotational invariance, which means that

an object can be rotated without affecting the response of the Harris corner detector. Further-

more, the use of change in intensity, or derivatives, makes the Harris corner detector invariant to

any intensity shift, I → I +b, and intensity scale, I → aI , of image I . These invariant properties

are illustrated in figure 2.12.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 23

(a) Rotational invariant [27]. (b) Invariant to intensity shift & intensity scale [27].

Figure 2.12: Invariant properties of the Harris corner detector.

However, an obstacle to the Harris corner detector is its non-invariance to image scale. The

score response R of the neighborhood surrounding a point is estimated using a kernel of a cer-

tain size, which means that the kernel size defines the corner scales to be detected. A small

kernel size will be able to detect corners of small scale, while corners of larger scale will remain

undetected. On the other hand, a larger kernel size will detect corners of proportionally larger

scale. This non-invariance to image scale is illustrated in figure 2.13.

Figure 2.13: Non-invariant property to image scale [27].

2.4 Stereopsis

Stereo vision refers to the ability to infer information on the 3D structure and distance of a scene

from two or more images taken from different viewpoints [51, p. 140]. Stereopsis refers to depth

perception, computed by a stereo vision system, and this section will give an introduction to the

aspect of stereo vision.

The stereo vision system must be able to solve two main problems known as the correspon-

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 24

dence and reconstruction problem. First approach involves solving the correspondence prob-

lem, by correlating items present in both images. However, occlusion is a difficulty since some

elements may be present in one image, but not the other, which implies that the stereo vision

system must be able to ignore elements that cannot be matched. The second approach involves

reconstructing the disparity between corresponding elements into a 3D perception of the real

world. Disparity is referred to as the difference in retinal position between corresponding ele-

ments in two images, which results in a disparity map when all possible elements in the images

are matched. The disparity map is commonly shown as an intensity image, where high intensity

implies elements in close range.

2.4.1 Basic Theory of Stereopsis

The change in relative angular displacement of correlated image points across different camera

frames is called the parallax, which implies that it is the depth difference. The parallax is depen-

dent on the relative angle between camera views, where a zero difference in relative view angle

results in an empty parallax, and hence it will be impossible to reconstruct a 3D map. There-

fore, the relative view angle between the camera frames must be different, which is achieved

by translating a single camera or use two or more cameras in different locations. The standard

stereo vision system of two cameras in parallel will be discussed in this chapter and used in the

final solution.

Figure 2.14: Simple 2D triangulation [24]

The basic theories of stereopsis are easier understood by considering a simple 2D triangu-

lation constructed from two 1D pin-hole cameras, as illustrated in figure 2.14 where Ol and Or

are the centers of projection. The motivation is to find the depth Z from fixation point P to

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 25

baseline T indicating a triangulation from two known positions in 1D to map the fixation point

in 2D. The relation between retinal position x and position of fixation point X is concluded by

geometry and stated by equation (2.33) and (2.34) for left and right camera frame, respectively.

Equation (2.33) and (2.34) follows the simple relation between known focal length f with retinal

position x, and depth Z with fixation point X .

xl

f
= Xl

Z
(2.33)

xr

f
= Xr

Z
(2.34)

Depth Z is found by considering the difference in retinal position between the left and right

camera, called the disparity. The disparity d is computed by rearranging equation (2.33) and

(2.34) to obtain a relation between the right and left camera frame as stated in equation (2.35).

Note that the retinal position and fixation position from the right camera frame is in opposite

direction to the left camera frame, hence negated.

d = xl + (−xr) = f
Xl

Z
+ (− f

Xr

Z
) = f

Xl −Xr

Z
(2.35)

Moreover, by geometry we see that the baseline T is related to the difference in fixation po-

sition between the left and right camera frame as stated in equation (2.36). Finally, we obtain

solution (2.37) which relates depth Z to the camera frames.

T = Xl + (−Xr) = Xl −Xr (2.36)

Z = f
T

d
(2.37)

This further proves why distant objects seems to move slower than closer objects, due to

that the disparity decreases inversely with the distance to the object. More importantly, this

also proves why the depth to objects outside of a measurable fixation point cannot be measured

since the disparity will be approximately zero for distant objects leading to an immeasurable

distance, as stated by equation (2.38).

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 26

lim
d→0

Z →∞ (2.38)

The disparity map is proved to be inversely proportional to the depth map, which yields

that a stereo vision system doesn’t need to know the focal length and baseline to visualize the

difference in depth between objects in the image. Instead, the difference in debt is visualized by

computing a disparity map. However, the focal length and baseline must be known to measure

the real distance to an object in the image, which is essentially important for measuring the

distance between the UAV and the wind blade.

The stereopsis theory represented in this section might give the assumption that stereo vi-

sion is a straight forward triangulation of point matches in pixel coordinates, however, the method

introduced so far assumes that the triangulated points matched with the same fixation points

are known. This leads to the problem of detecting matching points from an image frame to

the other related image frame, which might be impossible due to occlusion, distortion and

noise. This problem is referred to as the correspondence problem, and there are mainly two

approaches to solve this problem which are the appearance based matching method and fea-

ture based matching method, which will be discussed in section 2.4.4 and 2.4.5, respectively.

The parameters of a stereo vision system, such as focal lenght, baseline and effective pixel

size, are essential to find for calibrating the stereo vision system, and are characterized as in-

trinsic or extrinsic parameters. The baseline is referred to as a part of the extrinsic parameters

in the stereo system, while the focal length and effective pixel size are referred to as parts of the

intrinsic parameters. The extrinsic parameters are therefore concluded as the parameters that

describe the mapping from the world frame to the camera frame, while the intrinsic parame-

ters characterize the transformation mapping from the camera frame to the image frame [51, p.

144].

2.4.2 Extrinsic & Intrinsic Matrices

A camera projects a 3D world frame into a 2D image frame, hence the goal of stereopsis is to re-

cover the 3D coordinates from a 2D image frame. This transformation mapping involves defin-

ing the intrinsic matrix and extrinsic matrix, which relates the transformation mapping from the

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 27

world frame to the image frame.

By assuming a simplified pin-hole camera system so that all objects in the image are in focus,

means we can compute the fundamental equation of perspective cameras, as stated in equation

(2.39).

x = f
X

Z
y = f

Y

Z
(2.39)

The fundamental equation of perspective cameras relates the 2D mapping to 3D mapping

in the camera frame, which is linearized to a 3D transformation mapping in the camera frame

as follows in equation (2.40).

kx

k y

k

=

f 0 0

0 f 0

0 0 1

X

Y

Z

 (2.40)

Moreover, any object is measured in the image frame, meaning the camera frame must be

transformed to the image frame. This transformation is achieved by considering the effective

physical size of a pixel and that the origin of the image frame is in the top left corner of the

image, at pixel coordinate (0,0). Furthermore, by considering the conventional right-hand rule

for the camera frame, we derive the transformation from the image frame to the camera frame

as follows in equation (2.41). The effective physical pixel size is defined as (Sx ,Sy), and the pixel

coordinates of the image center as (Ox ,Oy).

x =−(xi m −Ox)Sx y =−(yi m −Oy)Sy (2.41)

We obtain the transformation matrix from a 2D point in the camera frame to a 2D point in

the image frame by rearranging equation (2.41), which yields equation (2.42).

xi m

yi m

1

=

− 1

Sx
0 Ox

0 − 1
Sy

Oy

0 0 1

x

y

1

 (2.42)

Furhtermore, the intrinsic matrix is derived by combining the perspective projection in the

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 28

camera frame from equation (2.40), with the transformation mapping from the camera frame to

the image frame given by equation (2.42), which yields the intrinsic matrix as stated by equation

(2.43).

kxi m

k yi m

k

=

− f

Sx
0 Ox

0 − f
Sy

Oy

0 0 1

X

Y

Z

 (2.43)

The transformation mapping from the world frame to the camera frame is defined by the

extrinsic parameters, which is defined by a rotation from the world frame to the camera frame

followed by a translation, defined by equation (2.44).

Pc = Rc
w Pw +T (2.44)

Equation (2.44) is expressed in matrix form by equation (2.45), which constitutes the extrin-

sic matrix.

X

Y

Z

=

r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

Xw

Yw

Zw

1

 (2.45)

Finally, we obtain the projective matrix from the world frame to the image frame by combin-

ing the intrinsic matrix with the extrinsic matrix, as derived by equation (2.46).

kxi m

k yi m

k

=

− f

Sx
0 Ox

0 − f
Sy

Oy

0 0 1

r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

Xw

Yw

Zw

1

= Mi nt Mext

Pw

1

 (2.46)

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 29

2.4.3 Undistortion

The intrinsic matrix described in the previous chapter 2.4.2 assumes that the mapping from

3D-space to 2D-space is a linear transformation, however, this is only valid if there is no lens

distortion. Radial lens distortion is defined as the symmetric distortion caused by imperfec-

tions in the curvature of the lens, which causes bending of straight lines from world to image

transformations. This effect will drastically reduce the accuracy of a stereo vision system, if it is

not accounted for. Undistortion is referred to as determining world to image correspondence

by relating sufficiantly many 3D points to its corresponding image point to determine a camera

matrix which accounts for radial lens distortion.

Hartley and Zisserman [15] defines a solution by minimizing the geometric error between

image point correspondences between a point in the world frame and its corresponding point

in the image frame. A solution for computing an initial estimate of the camera matrix is also

presented, however, the focal length and sensor size of the cameras are known, so the initial

camera matrix will be defined using these parameters. Defining the camera matrix as P , and

the corresponding image points in the world frame and camera frame as Xi and xi , respectively,

then Hartley and Zisserman [15] defines the solution of determining a calibrated camera ma-

trix as finding the Maximum Likelihood estimate of the camera matrix P which minimizes the

geometric error defined by equation (2.47).

min
P

∑
i

d(xi ,P Xi)2 (2.47)

Moreover, Hartley and Zisserman [15] also defines a method for finding point correspon-

dences using a checkerboard pattern which is a known straight line pattern. The steps are de-

fined as computing an edgel map using the Canny edge detection method, then computing

straight line fitting to the detected linked edges following an intersection of the computed lines

to obtain the checkerboard corners. The final step is to compute an optimized camera ma-

trix using equation (2.47) which contains the distortion parameters. The new camera matrix is

then used to compute rectification vectors to be used in a rectification transformation on im-

ages taken by the respective camera to compute undistorted transformations between the world

frame and the image frame.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 30

The opencv library offers extensive solutions for calibrating a camera using the method

mentioned above, which is built into a CameraCalibration module to relate distortion coeffi-

cients to a specific camera. An example of intersecting lines to detect the checkerboard corners

is shown in figure 2.15a, and the result of undistorting the respective image is shown in figure

2.15b.

(a) Detection of checkerboard corners to conduct camera calibration.

(b) Undistortion of the respective image.

Figure 2.15: Camera calibration and undistortion of the respective image.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 31

It should be mentioned that it is necessary to take multiple images of the checkerboard from

different angles to achieve good results, since the distortion coefficients needs to be computed

for the whole lens. The extrinsic parameters, such as translation and rotational displacement

between the cameras, are accounted for when computing the perspective transformation of

the stereopsis system in a module called StereoCalibration, which merges two modules of the

CameraCalibration module, representing two perfectly aligned cameras. The rectification vec-

tors for the stereopsis system is computed on the same basis as computing the rectification

vectors on a single camera, but accounting for the translational and rotational displacement

between the cameras as well.

Additionally, it is only necessary to compute the rectification vectors once, as long as the

intrinsic and extrinsic parameters are kept unchanged, since they are invariant to scale, mean-

ing the process may be speeded up by downscaling a frame before undistorting the respective

frame.

2.4.4 Appearance Based Matching

A simpel approach to a stereo vision system is to compute a disparity map, recall section 2.4.1,

which assumes that the stereo system have prior knowledge of the matching points in the im-

age frames. The appearance based matching method simplifies the correspondence problem

by assuming that there is a correlation between corresponding subsets of the image frames, as-

suming that the pixel points in one image have minor displacement in the other image. The

displacement are relative to the baseline, and from equation (2.37) we proved that the dispar-

ity is inversely proportional to the distance from the fixation point. However, this also leads to

that it will be impossible to find a correlation between image subsets if the displacement is too

far apart, which means the appearance based method limits the baseline, thus limits the depth

range that can be detected. This is proved by considering equation (2.37) and introducing an es-

timation error for the measured distance and disparity, δZ and δd , as stated in equation (2.48)

[24].

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 32

Z +δZ = f
T

d +δd

f
T

d
+δZ = f

T

d +δd

(2.48)

Equation (2.48) is derived according to δZ , which results in equation (2.49).

δZ =− f T
δd

d 2 +dδd

d 2 À dδd

δZ ≈− f
T

d 2
δd

(2.49)

By considering the absolute value of the distance error and using equation (2.37) to replace

disparity d , as shown in equation (2.50), we find that the distance error is squared proportional

to the distance measured. We also note that a longer baseline decreases the distance error.

|δZ | ≈ | f T

(f T
Z)2

δd | = | Z 2

f T
δd | (2.50)

This proves that a long baseline is beneficial for an accurate stereo vision system, but the

appearance based method limits the baseline since the disparity error increases with the dis-

placement of the matching image points. Additionally, the appearance based method assumes

that there is a consistent surface reflectance of the elements in the image, called the Lambertian

reflectance model. The Lambertian reflectance model assumes that each surface point on an

element appears equally bright from any view point.

The appearance based method is carried out by correlating windows of size N within a

search region in the image frames Il and Ir . Instead of directly computing the displacement

of the pixel, the method finds the displacement of a neigbouring pixel in the right window with

the highest window correlation in the search region. This method is computed for every pixel in

the left image pl = [i , j]>, which results in a disparity map representing the differences in depth,

recall section 2.4.1. The correlation between the two window patches is defined by equation

(2.51) [51, p. 147], where d = [d1,d2]> is the displacement in the search region R. Each pixel

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 33

in the disparity map D is computed by the displacement of pixel pl = [i , j]> in the right image

according to the window with the highest correlation, as stated in equation (2.52).

c(d) =
N∑

k=−N

N∑
l=−N

ψ(Il (i +k, j + l), Ir (i +k −d1, j + l −d2)) (2.51)

d̄ = arg max
d∈R

{c(d)} (2.52)

The function ψ is the method used to find the window correlation, and the most com-

mon method is the sum-of-squared differences method (SSD), also called the block matching

method.

Sum of Squares Differences

The sum-of-squares differences (SSD) method is a correlation method of window I in the left

image frame and the window patch T in the right image frame, as stated in equation (2.53).

ψ(I ,T) =ψ(Il (i +k, j + l), Ir (i +k −d1, j + l −d2))

ψ= (I −T)2

arg min
d∈R

{
N∑

k=−N

N∑
l=−N

(I −T)2}

(2.53)

Equation (2.53) shows that the SSD method minimizes the correlation between the window

patches, which means that it must be negated to find the maximal correlation. Equation (2.52)

is derived using the SSD method which results in equation (2.54).

d̄ = arg max
d∈R

{−
N∑

k=−N

N∑
l=−N

(I −T)2} (2.54)

This method is an efficient appearance based method to compute a disparity map, and

solves the problem with changing intensity values in the image frame which would bias a simple

cross-correlation method.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 34

2.4.5 Feature Based Matching

Feature based matching limits the correspondence problem to a set of recognisable feature

points, that are invariant to changes in view. These feature points are recognized by feature de-

scriptors in the other image, and matched based on a heuristic technique since multiple points

might be recognized as possible matches. The rule of thumb heuristic technique is a simple

approach, and works by choosing the matching point with minimilized displacement to the

original feature point. Other heuristic methods can be that a fixed pattern must be recognized

in the same order for it to be recognized as a matched pattern, which can be useful when rec-

ognizing fixed edge patterns. A great deal of the problem is therefore to decide upen a set of

feature points to match, which can be circles, curves or any invariant pattern, including fixed

edge patterns.

The 3D reconstruction of the matched feature points is more difficult to compute than the

appearance based method, since the feature points can have a large difference in view point.

However, this means that the cameras can also have large differences in view point and still

reconstruct a 3D map. A large baseline leads to large differences in view point, but makes it

also possible to reconstruct the depth of feature points further away, recall equation (2.50). The

most common approach to reconstruct a 3D map of matched feature points is based on epipolar

geometry, and is essential for the understanding of stereopsis.

Epipolar Geometry

Section 2.4.1 introduced the basic theories of stereo vision by simplifying the 3D depth recon-

struction to a 2D reconstruction problem. To understand the principles of 3D reconstruction,

we must first of all understand the geometry of stereo, known as epipolar geometry.

The basics of epipolar geometry are illustrated in figure 2.16, where the OL and OR repre-

sents the corresponding left and right center point of projection from two pin-hole cameras

with their corresponding image planes, Il and Ir . Point, P (X ,Y , Z), refers to the 3D point to be

estimated, which is referred to by vectors Pl = [Xl ,Yl , Zl]> and Pr = [Xr ,Yr , Zr]>. These vectors

are related by the extrinsic parameters, such as the baseline and angle of projection, and are

therefore related by a rotation matrix R as stated by equation (2.57). Vectors pl = [xl , yl , zl]> and

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 35

Figure 2.16: Epipolar geometry

pr = [xr , yr , zr]> refer to the projection of the fixation point onto their respective image plane.

The relation between the projection points and the real points in the 3D plane, can be stated

by the same geometrical principle as stated by equation (2.33) and (2.34), leading to equation

(2.55) and (2.56). The depth parameter z onto the image plane equals the focal length f since

the depth value onto the image plane is equal for all projection points.

pl

f
= Pl

Zl
(2.55)

pr

f
= Pr

Zr
(2.56)

Pr = R(Pl −T) (2.57)

Figure 2.17: Epipolar geometry [38]

The epipole lines, El and Er , are the representations of point P on the image plane, which

is the intersection of the epipolar plane (P,Ol ,Or) on the image. This leads to a 1D intersection

problem of triangulating point P on the epipolar line in accordance with the opposite epipolar

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 36

line known as the epipolar constraint, as illustrated in figure 2.17. This fact can also be used

to handle occlusion and noise by rejecting false points that cannot be matched on the epipolar

lines. The epipoles, el and er , are defined as the line intersection on the image planes, thus

representing the image of the opposite camera. The centers of projection are usually in parallel,

which means that the epipole points are placed in infinity on the epipole lines.

Finally, the obvious problem is to compute the epipolar geometry. The epipolar geometry

is represented by the essential matrix E and the fundamental matrix F . These matrices also

constitute a 3D reconstruction technique that can be computed without any prior knowledge of

the extrinsic or intrinsic parameters.

The Essential Matrix

The essential matrix E defines a link between the epipolar constraint and the extrinsic parame-

ters, which means it describes the location of the other camera relative to the associated camera.

To derive the essential matrix, we start by defining the coplanarity condition of vectors Pl ,

T and (Pl −T), as stated by equation (2.58) [51, p. 153]. Coplanar vectors are defined as vectors

parallel to the same plane, or lie on the same plane. The coplanarity condition of 3D vectors

is verified if the vectors are linearly dependent, thus satisfying A · [B×C] = 0. Equation (2.58) is

derived using equation (2.57), and defines the cross product of equation (2.60) as a multiplica-

tion of the skew-symmetrical matrix of T, stated by equation (2.61). This leads to equation (2.62)

and (2.63), which shows that the essential matrix E defines the link between the epipolar con-

straint and the extrinsic parameters. The extrinsic parameters are defined as the relative angle

and baseline between the cameras.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 37

(Pl −T)>[T×Pl] = 0 (2.58)

(R>Pr)>[T×Pl] = 0 (2.59)

T×Pl = S(T)Pl (2.60)

S(T) =

0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

 (2.61)

P>
r RS(T)Pl = 0 (2.62)

E = RS(T) (2.63)

Furthermore, we continue to derive a solution based on the coordinates in the image plane

by rearranging equation (2.55) and (2.56) to derive equation (2.64). This concludes that the es-

sential matrix is the mapping between points and epipolar lines, since the epipolar lines are de-

fined as the projection of the epipolar plane (P,Ol ,Or) on the image. As an example, the epipolar

line in the right image plane is represented as the essential matrix multiplied by vector pl in the

left image plane, stated by equation (2.65).

p>
r Epl = 0 (2.64)

Er = Epl (2.65)

In conclusion, the essential matrix offers the possibility to find desired points on the epipo-

lar lines. However, these coordinates are mapped by the extrinsic parameters, as camera coordi-

nates, while the coordinates in the image plane are in pixels, defined by the intrinsic parameters,

which means we must find a transformation between intrinsic and extrinsic parameters. This

transformation is solved using the fundamental matrix.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 38

The Fundamental Matrix

The fundamental matrix is a representation of the mapping between points and epipolar lines

in pixel coordinates, which means it offers the possibility to reconstruct a 3D depth map without

any prior knowledge of the stereo vision system. Recall section 2.4.2, the intrinsic parameters is

represented by an intrinsic matrix Mi nt , which transforms pixel coordinates p̄ to camera coor-

dinates p as stated by equation (2.66).

pr = M−1
i ntr

p̄r

pl = M−1
i ntl

p̄l

(2.66)

From section 2.4.5, we concluded that the essential matrix is defined in terms of camera co-

ordinates. This problem is solved using the intrinsic matrix to transform the camera coordinates

in equation (2.62) to pixel coordinates, which constitutes the fundamental matrix F as stated in

equation (2.67).

p>
r Epl = p̄>

r F p̄l = 0

F = M−>
i ntr

E M−1
i ntl

(2.67)

Equation (2.67) shows that it is possible to reconstruct the epipolar geometry, and thus re-

construct a 3D depth map without any prior knowledge of the intrinsic or extrinsic parameters.

The reason to this is that the fundamental matrix is computed by the intrinsic and extrinsic con-

stant parameters, which means the fundamental matrix can be estimated from point matches

in pixel coordinates found in the corresponding images. However, estimating the fundamen-

tal matrix without any prior knowledge of the intrinsic and extrinsic parameters comes with a

cost of less accuracy. It should therefore be noted that prior knowledge of the stereo system is

beneficial.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 39

3D Reconstruction Based on Epipolar Geometry

From section 2.4.5, we introduced the basics of feature based stereo vision and mentioned that

matched feature points can be reconstructed in a 3D map using epipolar lines. The first step is

therefore to locate the epipolar lines according to the matched feature points. From equation

(2.65), we stated that the epipolar line is related to the essential matrix and the opposite point

vector, which is rewritten using the fundamental matrix to relate the epipolar lines with pixel

coordinates, as stated in equation (2.68).

Ēr = F p̄l (2.68)

Furthermore, all the epipolar lines for each feature point lies on the corresponding epipolar

line, ēl and ēr , which intersect the image planes. This means we can rewrite equation (2.67) to

derive equation (2.69).

p̄>
r F ēl = 0

ē>r F p̄l = 0
(2.69)

The epipoles are located knowing that the fundamental matrix is not zero, which means that

the epipolar lines are the null space of the fundamental matrix, as stated in equation (2.70).

F ēl = 0

F>ēr = 0
(2.70)

If we know the extrinsic and intrinsic parameters of the stereo system, then the vectors pl

and pr are computed directly using the epipolar lines, and the 3D map can be reconstructed

using triangulation. However, the triangulation is not straightforward since the vectors pl and

pr doesn’t necessarily intersect, meaning we must find the point of minimum distance between

the vectors, which will be the depth point in 3D space. A simple linear triangulation method is

discussed in chapter 2.4.6.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 40

2.4.6 Linear Triangulation

A simple linear triangulation method is described by Hartley and Zisserman [15][p. 312], and

is defined by combining the measurements of corresponding feature points and their image to

world transformation into a form as AX = 0, and solved using a least square method.

The transformation of a point x in the image frame to the point in the world frame X is com-

puted using the projection matrix P, defined by equation (2.71).

x = PX (2.71)

The cross product of equation (2.71) results in three equations, whereas two are linearly in-

dependent, and is defined as x× (PX) and written out in equation (2.72) [15, p. 312] where Pi>

are the rows of the projection matrix P.

x(P3>X)− (P1>X) = 0

y(P3>X)− (P2>X) = 0

x(P2>X)− y(P1>X) = 0

(2.72)

The linear components of equation (2.72) from the cross product of matched feature points

are used to compose the equation of the form AX = 0, and written out in equation (2.73) where

X and X′ are denoted as the matched feature points.

A =

xP3>−P1>

yP3>−P2>

x ′P′3>−P′1>

y ′P′3>−P′2>

 (2.73)

Matrix A gives a total of four equations with four unkowns which means a solution can be

found using a least square solution. Hartley and Zisserman [15] solves the least square problem

by finding the singular value decomposition of A.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 41

2.5 Structured Light

Traditional cameras provide only 2D images of a complex 3D physical world, which greatly in-

creases the difficulty of recovering an accurate 3D model of real-world objects. Common issues

of computer vision is to segment different objects in the image, which in this case is to segment

a wind blade from the cluttered background. The Canny edge detection method, mentioned in

chapter 2.3.1, is able to extract the blade edges, but the result will be greatly disturbed by edgel

features in the background and on the blade. Therefore, segmenting the blade based on the

edgels alone will not be feasible. An another option is to use region processing methods, such

as the Otsu method [26] or more advanced texture-based region segmentation algorithms such

as the iterative K-means clustering method [26]. However, the conditions in the real-world will

make it increasingly difficult to segment the blade from either a cluttered earth background or,

in some cases, a clear blue sky.

Structured light refers to illumination of known light patterns on the area in focus by the

camera, used to simplify the 3D reconstruction of a 3D object from 2D images that lack depth

information. Known light patterns greatly reduces the complexity of real-world conditions since

a computer vision algorithm has a fixed pattern to search for when reconstructing a 3D object.

A simple example of utilizing structured light to reconstruct depth information is to scatter de-

tectable points on a planar surface and compute the depth based on the relationship between

the structured light projector and the camera, illustrated by figure 2.18.

Figure 2.18: Theoretical example of structured light projection [13].

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 42

The geometric relationship between the camera and the structured light projector is found

by triangulation, much like the concept of stereopsis as mentioned in chapter 2.4.1, and defined

by equation (2.74) [13]. The depth from the camera to the illuminated point on the object is

defined as R, while the baseline between the structured light projector and the camera is defined

as B with projector angle θ and camera angle α.

R = B
sin(θ)

sin(α+θ)
(2.74)

Another benefit of using structured light is that the projected feature points are non-scaling

as seen by the camera. The scaling is only affected by the lense distortion of the structured light

projector and the physical displacement to the camera, which both are fixed parameters during

operation, meaning the feature points are of a fixed scale at any distance.

A major difficulty with structured light is to differentiate the structured light pattern from the

real-world objects in the image, and it must be noted that the real-world surface is non-planar

which will distort the projected structured light pattern.

This article proposes a very simple solution to the problem of differentiating the structured

light pattern from the real-world objects, by simple taking two images of the same surface with

and without projecting the structured light pattern. Segmentation of the structured light pat-

tern will simply be the pixel change between the two images, as follows in equation (2.75). A

simulation of segmenting the structured light pattern on a wind blade is realized in figure 2.19.

∆i mg = |i mg − i mgsl | (2.75)

Figure 2.19: Result of equation (2.75) to segment the structured light pattern on a blade.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 43

Another benefit of using structured light is that the segmented area of the structured light

pattern effectively shows the area of interest to detect the blade. This assumption is taken since

the projected illumination will not be visible on a distant background while inspecting the wind

blade, effectively segmenting the area of interest. The structured light pattern therefore works

as an efficient basis for computing points of interest to use in a feature based stereopsis method,

as well as a basis for segmenting the blade to detect the blade edges.

The structured light pattern was chosen as a dot matrix pattern, as shown in figure 2.19, since

grid points are easily detected as blobs using a feature detection method. These blobs are used

as matchable feature points between the two cameras in the stereo vision system, and will be

used as a basis for segmenting the blade and detecting the blade edges which will be described

in detail in chapter 4.

2.5.1 Blob Detection

This chapter reviews different feature detection methods which are usefull for detecting the grid

points, commonly known as blobs. Chapter 2.5.2 concludes upon a feature detection method

that detects the blobs with high accuracy while keeping the computation delay at a minimum.

Blob Detection

Lindeberg [28] defines a blob as a region associated with at least one local extremum for either a

dark or bright blob as a local minimum or maximum within a saddle point. Detecting a blob in a

2D image domain requires an image intensity function that identifies the extremum within the

area limited by the saddle point [18]. Template matching is a fast and simple approach for de-

tecting blobs, and works by finding matches in the image using a template. However, real-world

conditions limits the use of template matching primarily due to its non-invariance to scale. The

majority of blob detection methods have therefore been based on Lindeberg [29] method for

analysing structures at different scales, as a scale-space representation. The scale-space rep-

resentation is derived by applying a Gaussian smoothing kernel at different levels to create a

pyramid of different scale-spaces. Blobs at different scales is then found by detecting local ex-

tremums in the scale-space at different scales, and matching blobs with linked extremas over

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 44

scales to identify the characteristics and position of the blob. Efficient and powerfull feature de-

tection methods have been proposed during the recent years, such as the SIFT Lowe [31], SURF

Bay et al. [5] and ORB Rublee et al. [45] method. These methods have proven to be invariant

to scale, rotation and translation while keeping computation cost at a minimum and automat-

ically detecting feature points of interest. The Scale Invariant Feature Transform (SIFT) will be

desribed in detail to review the theory in which the SURF and ORB method is based upon.

SIFT

The Scale Invariant Feature Transform (SIFT) was first introduced by Lowe [31] who presented

a new method for identifying features invariant to image scaling, translation, rotation, and par-

tially invariant to illumination changes and moderate perspective transformations [30]. Due to

these properties, the SIFT method has become extensively popular for local feature generation

related to object recognition and point matching between different view points of a 3D scene.

Prior methods, such as the Harris corner detector, have struggled with non-invariance to scaling

and partial occlusion, including other characteristics of a cluttered real-world scene.

The first step of the SIFT method involves identifying scale-invariant features obtained by

scale-space filtering and localization of maxima or minima of a difference-of-Gaussian (DoG)

function within a difference-of-Gaussian pyramid. The difference-of-Gaussian pyramid is con-

structed by computing the difference between the adjacent levels in the Guassian pyramid, and

the Gaussian pyramid is computed by smoothing and resampling of the image.

Figure 2.20: DoG pyramid [36].

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 45

Moreover, the key points of interest are computed by localization of maxima or minima

which are determined by comparing each pixel in the DoG pyramid with eight of its neighbors.

If the pixel is a local extrema at the current level, then the closest pixel is calculated at the next

level of the pyramid, which is used to repeat the process.

Figure 2.21: Detection of local extremas in different scale levels [36].

Another important process is to suppress interest points along edges since these interest

points are less useful for matching. This problem is solved using a concept quite similar to

the Harris corner detector by formulating a criterion of the ratio between the eigenvalues of a

Hessian matrix computed at the position and scale of the interest point [30] to detect strong

interest points.

Next step is to compute image descriptors based on the key interest points invariant to scale

and rotation. The scale invariance is obtained by normalizing the local neighborhood of the de-

scriptor according to the scale level of the interest point. The orientation invariance is obtained

by accumulating a histogram of the gradient directions of the local neighborhood with the area

of the accumulation window proportional to the scale level. The orientation is determined by

peak detection in the accumulated orientation histogram, and multiple peaks are detected if the

secondary peak is above 80% of the height of the highest peak. In the case of multiple peaks, a

new image descriptor is then computed using the detected peaks.

The SIFT descriptor is computed using a rectangular grid centered at the interest point which

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 46

is oriented according to the detected peaks in the histogram and scaled proportionally accord-

ing to the detection scales of the interest point. All of the points in the grid are accumulated

into orientation histograms summarizing the contents over the subregions. The length of each

arrow is computed using the sum of the gradient magnitudes near that direction within the re-

gion. Lowe [31] found that a 4× 4 grid with 8 quantized directions usually gives good results,

which means that an image descriptor has 4× 4× 8 = 128 dimensions for each interest point,

and this resulting image descriptor is referred to as the SIFT descriptor.

Figure 2.22: Image descriptor computed using a 2×2 grid. Lowe [31] found that a 4×4 grid is
normally a good choice [30].

The final step of the SIFT method is to match nearest neighbors of local image descriptors,

by finding the point in the other image domain that minimizes the Euclidean distance between

the descriptors. However, some matches are very close to one another, so Lowe [31] found that

a ratio of closest distance to second closest distance is taken by asserting that the ratio is lower

than 0.8.

Simple Blob Detector

The ORB and SURF method are efficient tools for detecting feature points with lower computa-

tion cost and matching performance to the SIFT method. However, the structured light pattern

is structured as a matrix with uniformly distributed grid points which are easily detected using a

very simple blob detector provided by OpenCV [42] and accessed using the SimpleBlobDetector

class reference in the OpenCV library. The algorithm does not use scale-space representation

to detect interest points, but simplifies the problem by converting the image to multiple binary

images with each binary image representing a pixel treshold. The blobs are detected by finding

saddle points and their extremas to calculate their centers, which is used to group centers from

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 47

several binary images. The groups are then merged to one blob if the distance is closer than a

given treshold. Finally, the blob centers, radiuses, sizes and locations are returned as keypoints,

as it would have been using either the SIFT, SURF or ORB method. Moreover, the algorithm pro-

vides intuitive filtration criterias such as filtration by color, area, circularity, inertia, convexity

and minium distance to neighboring blobs which makes this tool very convenient for detecting

the grid points. It should also be noted that the algorithm is computationally fast since it does

not use scale-space smoothing.

2.5.2 Test Results of Blob Detection

A test was conducted to verify the feasibility of using the simple blob detector, SIFT, SURF or

ORB method, and all of the algorithms are found in the opencv or opencv_contrib library. De-

tection of feature points will be the first step of the computer vision process, so downsampling

and undistortion of frames are included in the beginning of this step, and the step is imple-

mented as a GetPoi ntLi st (..) function in the Bl obDetector module. The test was conducted

on the blade as seen in figure 2.19 to detect and localize the structured light patterns as blobs.

Unfortunately, the SURF algorithm failed to detect any blobs for almost any dataset so it was

discharged as a possible solution. However, the results from using the simple blob detector,

SIFT and ORB algorithms are shown in figure 2.23, and the computational delay for the respec-

tive algorithms are shown in table 2.1. Note that the test was conducted on an Odroid-XU4, as

specificed by section 7.3.1, with a frame of height and width of 512×612, and the computational

delays are approximations from conducting several similar tests.

Table 2.1: Approximate computational delay for the respective feature detection algorithms.

≈Delay (seconds)
Simple Blob Detector 0.13
ORB 0.03
SIFT 0.60

By the test, it is shown that the simple blob detector and the SIFT detector performed bet-

ter than the ORB detector since they localized the feature points with better accuracy. This is

easily seen by the centered image in figure 2.23 where multiple blobs are detected on a single

blob, and the blob sizes are very inaccurate. The SIFT and simple blob detector both proved

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 48

Figure 2.23: Result of using the simple blob detector, SIFT and ORB method to detect feature
points. Detected blobs are highlighted as keypoints by the red circles, with radius given by the
respective blob size.

to detect the feature points with high accuracy, however, the simple blob detector was more

efficient. This was expected since the simple blob detector does not use scale-space smooth-

ing and is therefore non-invariant to scale, whereas the SIFT and ORB descriptor is invariant to

scale. Moreover, the filtration criterias of the simple blob detector made it very convenient for

detecting these types of feature points, since the scale of the structured light is fixed according to

the relative position between the camera and the laser. By conclusion, it was therefore decided

to continue with the simple blob detector as the preferred feature detector since it computed ac-

curate keypoints of the respective blobs, and since it was computationally faster than the SIFT

algorithm.

2.5.3 Feature Matching

The stereo vision system requires matching correct features between the left and right image.

The grid points will provide necessary feature points which are possible to match between the

images, however, issues such as occlusion may cause a lack of matching points, or even mis-

matches. Two different approaches to solving an approximate nearest neighbors search will be

discussed to decide upon the most optimal solution.

Fast Approximate Nearest Neighbors Search

Matching feature points are commonly known as solving a nearest-neighbor search problem

of some datasets. An optimal nearest-neighbor solution between two sets of points as P =

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 49

{p0, .., pn} and Q = {q0, .., qn} is to do a linear search between the datasets to find the points

in P that are nearest to the points in Q, however, this approach will be increasingly time con-

suming with large datasets. Muja and Lowe [35] mentions that there are no known exact algo-

rithms for providing an optimal nearest-neighbor matching that are faster than linear search,

so solutions that provide large speedups are approximate nearest-neighbor solutions. There

have been published many solutions to the approximate nearest-neighbor problem with mi-

nor loss in accuracy and significant efficiency boosts. Muja and Lowe [35] introduces a solution

for approximate nearest-neigbor matching that can be applied to almost any dataset with fully

automated parameter selections. The solution was found by considering many known meth-

ods for clustering and matching features, and Muja and Lowe [35] found that two algorithms

proved to give the best performance, depending on the dataset and desired precision. The first

algorithm combines two previously known methods, known as the hierarchical k-means trees

search method and the priority search order method, while the second method uses a previ-

ously known method called the multiple randomized kd-trees introduced by Silpa-Anan and

Hartley [48]. The algorithms are released as public domain in a library called the Fast Library for

Approximate Nearest Neighbors (FLANN) and may be accessed using the opencv library.

Block Search & Feature Points

The concept of block matching was introduced in chapter 2.4.4, and describes a solution for

matching blocks of pixels in the left frame with correlated blocks in the right frame, and comput-

ing the disparity between the blocks with highest correlation. This chapter utilizes that concept

and simplifies the nearest-neighbor problem to a search for finding the closest feature points

within a given block radius, and finding the optimal match with the lowest disparity.

From section 2.5, it was discussed that the structured light projects feature points of a fixed

scale due to the fixed alignment between the laser and the cameras, meaning the scaling dis-

tance between the feature points from the same image will be fixed. It is therefore possible

to compute a block radius that limits the search to a given scale according to the known scale

distance between the feature points. Another benefit of this concept is that the search radius

is limited to an area where possible matches should be, efficiently constraining the search for

finding mismatches that may be located on the next column in the grid.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 50

The concept first rebuilds the left and right images with known feature point positions and

sizes, then a block search for each respective feature point from the left image is computed to

find possible matches in the right image. The camera alignments are considered to be trans-

lated without any rotation, meaning the correct matches in the right image will be displaced to

the left of the feature points from the left image. It is also considered that the images from the

left and right image will not give perfectly aligned feature points due to errors such as imperfect

camera alignment or distortion, so it is necessary to expand the search radius along the y-axis

to some degree, while mainly searching along the x-axis for possible matches. The block search

is illustrated in figure 2.24 where the left feature point is matched with the right feature point

inside the block radius, seen as a rectangle due to a wider search along the x-axis and a shorter

search along the y-axis. This block search is conducted for each feature point in the left image

to find an approximation of optimal matches in the right image. Moreover, a simple threshold

filter is added to constrain matched feature points to be fairly of the same size. The algorithm

is implemented in the module Featur eSter eopsi s as Poi ntBlockM atch(..) which is summa-

rized in an activity diagram illustrated in figure 2.25. Moreover, the algorithm is considered to

perform relatively fast due to extensive use of the numpy library and a fairly low set of feature

points. Additionally, only a single tuning parameter needs to be set once, which decreases or

increases the search area relative to the fixed scaling distance.

Figure 2.24: Block Search Method

The matched feature points from left and right image are shown in green. Note that the right feature
point is shifted to the left according to the disparity distance, d .

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 51

Figure 2.25: Activity diagram of the block search method.

The block matching method utilizes the benefit of a fixed scaling distance between the grid

points of the structured light, so a calibration method to approximate the scaling distance be-

tween the feature points is implemented. This calibration method is much similar to the block

matching method, but searches for the closest neighbor for each respective feature point in a

single frame, thus approximating a standard scaling distance by calculating the average closest

neighbor distance of all closest neighbor distances. Additionally, drastic neighbor mismatches

is removed by filtrating neighbor distances outside of the standard deviation. The calibration

method is implemented in the module Bl obScal eDetector as C ali br ateSt and ar dScal i ng (..).

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 52

2.5.4 Test Results of Feature Matching

A test was conducted to verify wether to use the FLANN library or the block matching method

for feature points. First of all, it is necessary to calibrate the stereopsis system as mentioned

in section 2.4.3, and this was conducted by placing the cameras in front of a checkerboard as

seen in figure 2.26, and running the implemented calibration session. It should be noted that

several calibration sessions should be commenced until distortion is properly adjusted for, since

a miscalibrated stereopsis system will lead to inaccurate 3D reconstruction.

Figure 2.26: Calibration of the stereopsis system.

The test was conducted by targeting the stereopsis system at a wall as seen in figure 2.27.

Moreover, during the rest of this thesis, all tests were conducted with a baseline of 5 cm and the

frames were downsampled from a height and width of 2048×2448 to a shape of 512×614, using

the gaussian pyramid downsampling method as discussed in section 2.2.2.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 53

Figure 2.27: Structured light on wall, as seen from the left and right camera.

The benefit of using the FLANN library is that it is easily implemented, and the following test

was commenced to verify the feasibility of using this method. The library requires a training set

to build a binary tree for multi-dimension vectors, better referred to as the feature descriptors,

and a query set to find the approximate nearest neighbors to the training set, so the left feature

points was set as the training set while the right feature points was set as the query set. However,

the result was shown to be very inaccurate, as seen in figure 2.28, although the computational

delay was close to negligible (≈ 0.004 seconds).

Figure 2.28: Result of using the FLANN library for feature point matching.

Lines between respective matches are drawn, whereas correct matches would be seen as horizontally
straight lines due to the the horizontal alignment of the cameras.

The FLANN library failed matching correct feature points mainly since it computes matches

using feature descriptors, which in this case is not feasible since the grid point descriptors are

too similar, so this method was quickly abolished.

Testing the block matching method was conducted using the same data as when testing the

FLANN library, and the result is shown in figure 2.29.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 54

Figure 2.29: Result of using the block matching method for feature point matching.

Lines between respective matches are drawn, whereas correct matches are seen as horizontally straight
lines.

First of all, this method was considerably slower than the FLANN library, which was expected

since the FLANN library is heavily focused on high efficiency for large data sets, but the block

matching method was estimated to spend a maximum of ≈ 0.03 seconds on computing matches

and corresponding 3D points due to an extensive use of the numpy library and a fairly low set

of feature points. It is also seen that the method computes a very accurate set of matches, so it

is easy to conclude that this method is the best option compared to using the FLANN library in

these conditions.

2.5.5 Test Results of 3D Reconstruction

3D reconstruction of matched feature points may be conducted using the linear triangulation

method by Hartley and Zisserman [15], as presented in section 2.4.6, or by simple 2D trian-

gulation defined by equation (2.37) in section 2.4.1, and both of the methods are found in the

Ster eoV i si on module as Tr i ang ul atePoi nt s(..) and Compute3DPoi nt sF r omDi spar i t y(..),

respectively. The tests were conducted at a distance of 125 cm and 164 cm to the wall shown in

figure 2.27, and the results are shown in tabel 2.2 and 2.3. It should be noted that both of the

algorithms are implemented so that they return the 3D points in metric coordinates, which is

computed by implementing the theory revised in section 2.4.2. The average distance vector

along the Z-axis of all 3D points is presented to verify the accuracy to the real distance, and the

standard deviation informs wether the 3D points are approximately uniform along the Z-axis,

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 55

which they should be when estimating the distance to a flat surface.

Table 2.2: Estimating a distance of 125 cm to a flat wall.

Distance: 125 cm Mean Dist. (cm) Dist. Error (cm) STD Dist. (cm)
Linear Triangulation 168.08 -43.08 12.55
2D Triangulation 122.70 2.30 6.55

Table 2.3: Estimating a distance of 164 cm to a flat wall.

Distance: 164 cm Mean Dist. (cm) Dist. Error (cm) STD Dist. (cm)
Linear Triangulation 114.70 49.30 10.48
2D Triangulation 181.62 -17.62 14.60

Moreover, more tests were conducted to verify the accuracy of conducting 3D reconstruction

and it was found that the simple 2D triangulation method outperforms the linear triangulation

method, which is also proven by table 2.2 and 2.3. The test results of using the simple 2D tri-

angulation to reconstruct 3D points are illustrated in figure 2.30, which shows the relation of

increasing inaccuracy in response to increased distance to the object.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 56

Figure 2.30: Plot showing error of estimated distance relative to the real distance.

The distances were estimated using the simple 2D triangulation method at the real distances marked by
the red points. Each point includes an error bar to show the standard deviation of estimated 3D points

at the respective distance.

2.5.6 Concluding Remarks on 3D Reconstruction

It was easy to conclude that the FLANN library was not a feasible solution for computing matches,

since the descriptors of the feature points were too similar. The solution therefore was to con-

duct a block matching method solely on finding the closest matching feature points, which was

shown to provide good results. As mentioned, the block matching method will work on any dis-

tance since the feature points are scale-invariant due to the fixed relative position between the

laser and the camera. The simplicity of this method also makes it easy to implement, and it is

proven that the algorithm is relatively fast due to an extensive use of the numpy library and a

fairly small set of keypoints. Moreover, a possible upgrade may be to give weight to the descrip-

tors of the feature points when finding the optimal match, where only a simple difference in size

threshold of the matching keypoints is a part of the current solution. However, a consequence

to this upgrade is that the simple blob detector algorithm only computes keypoints, and not de-

scriptors of the respective feature points since it does not use scale-space smoothing, meaning

either the SIFT or ORB method would have to be used.

CHAPTER 2. LITERATURE REVIEW OF COMPUTER VISION 57

3D reconstruction is easily computed when the feature point matches are found, however,

from table 2.2 and 2.3 it is seen that the simple 2D triangulation method outperforms the linear

triangulation method. Hartley and Zisserman [15] mentions that the linear triangulation is a

non-optimal solution, although it is easily implemented, especially for 3D reconstruction from

several views of the feature point. On the other hand, the simple 2D triangulation considers that

the cameras are perfectly aligned, in which case it is an optimal solution, which most likely is the

reason why the simple 2D triangulation outperforms the linear triangulation method. However,

Hartley and Zisserman [15] also proposes an optimal triangulation solution [15][p. 315] that

finds the global minimum of a geometric error cost function using a non-iterative algorithm,

but it was decided not to implement this method due to its complexity and since the simple 2D

triangulation provides notably good results due to the horizontal alignment of the cameras.

It is proven that the accuracy of the stereo vision system decreases with an increasing dis-

tance to the respective object, and this will pose a problem for accurately manouvering a UAV

at a fixed distance of more then two to three meters with the given baseline of five centime-

ters. However, the stereo vision system is more flexible on increasing the baseline since feature

point matching is used to reconstruct the respective feature points, meaning the baseline may

be increased to give better accuracy to the stereo vision system. On the other hand, the base-

line is also constrained by the fixed scaling distance between the laser projected feature points

since matching feature points will cross if the disparity is higher than the fixed scaling distance.

This issue will occur if the baseline is too large and the object is too close, so there should be a

tradeoff when selecting the baseline to prevent this occurence while maximizing accuracy.

Camera calibration was found to be the most difficult obstacle, since the 3D reconstruction

considers a perfectly undistorted set of feature points. It was found that the stereo vision system

had to be recalibrated until an approximately correct set of 3D points were estimated. Addition-

ally, some of the estimated 3D points may be incorrectly estimated either due to a mismatch or

inaccurate camera calibration, so simple filtration that removes 3D points outside of the stan-

dard deviation along the depth axis of all 3D points were implemented. This type of filtration is

considered as a simple solution when it is considered that the main objective is to measure the

distance to a relatively flat blade.

Chapter 3

Wind Blade Properties

The dominating wind turbine design follows the horizontal axis wind turbine (HAWT) design,

which is conventionally known as a turbine with the shaft mounted horizontally parallel to the

ground, as illustrated in figure 3.1. This chapter will introduce basic concepts of the HAWT

blade design to review basic characteristics of a modern wind blade, and will briefly review the

materials that the wind blades are made of.

Figure 3.1: HAWT designed wind turbine.

(https://www.poweredbymothernature.com/what-is-wind-energy/)

58

https://www.poweredbymothernature.com/what-is-wind-energy/

CHAPTER 3. WIND BLADE PROPERTIES 59

3.1 HAWT Wind Blade Design

A conventional wind blade design follows the concept of creating a lift that pulls the blade up-

wards. This lift is created by a curved blade design which forces the air sliding along the upper

side of the wing to move faster than the air sliding on the lower surface, thus creating an upward

pulling force. Figure 3.2 represents a cross section of a typical modern wind blade.

Figure 3.2: Cross section of a wind blade.

(https://en.wikipedia.org/wiki/Blade_solidity)

The curvature of the blade is described by the camber line which characterizes the asymme-

try between the top and bottom surface of the blade. Moreover, the angle of attack characterizes

the angle of the blade relative to the general direction of the airflow towards the leading side. A

steep angle of attack will cause the airflow on the upper side of the blade to whirl which leads

to a sudden pressure increase on the upper side of the blade, meaning the lift effect suddenly

disappears. This phenonemon is known as stall, and the geometry of the wind blades are de-

signed to minimize the risk of stall. The wind blades are also twisted from root to tip due to that

the wind flows increasingly faster along the blade closer to the tip, since the rotational speed is

proportionally faster at the tip than closer to the root. Modern wind turbines take advantage of

the stall phenomenon to regulate the rotational speed of the wind turbine, and is achieved by

simply pitching the blade according to the wind direction [7].

Furthermore, modern wind blade designs are unanimously based upon Betz’s law about

ideal breaking of the wind. Betz’ Law states that a maximum of 59% of the kinetic energy in

the wind can be converted to mechanical energy using a wind turbine [7], and this theorem is

https://en.wikipedia.org/wiki/Blade_solidity

CHAPTER 3. WIND BLADE PROPERTIES 60

the basis for different methods for calculating an ideal geometrical form of a HAWT wind blade.

A simple method for calculating the chord length at a radial distance from the hub is defined by

equation 3.1 [47].

Copt = 2πr

n

8

9CL

Uwd

λVr
(3.1)

where:

Copt = Optimum chord length

r = Radius(m)

n = Number of blades

CL = Lift coefficient

Vw = Local windspeed

U = Windspeed

Uwd = Design windspeed (m/s)

Ω = Rotational velocity (rad/s)

λ= Ωr
Vw

= Local tip speed ratio

Vr =
√

W 2
w +U 2 = Local resultant air velocity (m/s)

A typical blade design is presented in figure 3.3. The tip speed is the foremost important

parameter, where a higher tip speed demands reduced chord lengths due to wind blade aerody-

namics, which means that the chord length is increasingly more narrow closer to the tip.

Figure 3.3: Typical HAWT blade design [47].

Moreover, the wind blades are usually made of fiber reinforced composite materials and re-

inforced with an outer layer made of epoxy prepreg materials of E-glass and carbon fibre. Dam-

ages on the wind blade is usually caused by wear and tear on the leading edge which will be

visible as small cracks or erosion. More severe types of damages may be caused by falling ice

from the wing above, or even lightning.

CHAPTER 3. WIND BLADE PROPERTIES 61

3.1.1 Wind Blade Dimensions

It is important to review the dimensions for a typical modern wind turbine to get an aspect

of which camera specifiations are necessary and to decide upon a proper inspection distance

between the UAV drone and the blade surface. Wind blade dimensions for a V80-2MW wind

turbine [52] provided by the leading wind turbine provider Vestas is considered and presented

in table 3.1.

Table 3.1: V80-2MW Blade Dimensions

Length 39m
Max. chord 3.5m

Chapter 4

Detecting Blade Edges

The manouvering plan which will be presented in chapter 5 requires that the blade edges are

localized and identified as straight lines. The Hough line transformation, discussed in section

2.3.2, computes straight lines as (ρ,θ) in an edgel map. However, it will be very difficult and

computationally time consuming to differentiate the blade from a cluttered or smooth back-

ground, making it very difficult to accurately segment the blade and localize the blade edges.

A solution to this problem will be presented in this chapter, which will be shown to drastically

reduce computation time while improving accuracy of localizing the blade edges.

Assuming that the structured light presented in section 2.5 is detected as a grid of feature

points, then the method may be summarized as follows

1. Structure the feature points as a matrix by computing horizontal and vertical Hough lines

along the rows and columns of the grid.

2. Detect correlated feature points along each vertical and horizontal Hough line to com-

pute a set of bounded lines along the respective row or column. The bounded lines are

computed by interpolating the respective feature points.

3. Compute the edgel map of the original frame and localize the edgels of interest by starting

a search from the start and end position of the bounded lines, as detected in the previous

step, to find the most significant edgel along that row or column, efficiently segmenting

the blade.

62

CHAPTER 4. DETECTING BLADE EDGES 63

4. Compute four Hough lines along the top, bottom, left and right side of the segmented area

using the edgels detected in the previous step, which represents the blade edges.

The final step results in four Houg lines along the top, bottom, left and right side of the seg-

mented blade area, which can be used to compute a heading following the blade, as discussed in

chapter 5. A more descriptive explanation with examples of the method is discussed in section

4.1 and 4.2.

4.1 Segmenting the Blade

The method works be segmenting the blade using the detected feature points which are struc-

tured as a grid with approximately straight columns and rows. As mentioned in the previous

section, the first step of the method is therefore to structure the feature points as a matrix by

computing horizontal and vertical Hough lines, which is easily done by limiting the Hough line

transformation to [0, π2] radian degrees. Note that the horizontal Hough lines are computed by

considering either 0 or π radian degrees. Computation time and the amount of possible Hough

lines are drastically reduced since the parameter space is limited to only two different degrees

and a fairly low set of feature points, so all possible peak points in the Hough parameter space

are considered. A concatenation of the respective Hough lines is then commenced, which is

done by sorting the Hough lines according to the respective degrees, which is followed by com-

puting the median ρ of Hough line matches that are considered as representing the same row

or column. Finding correct Hough line matches are solved by considering a threshold distance

which is scaled by reffering to the fixed scale distance between the feature points and a tuning

parameter. The concatenation of Hough lines is repeated until the change in amount of Hough

lines stabilizes, meaning there are no more Hough lines to be matched, and finally the resulting

matrix of Hough lines is returned. Figure 4.1 shows an example of a resulting Hough line matrix

computed using feature points on a blade.

CHAPTER 4. DETECTING BLADE EDGES 64

Figure 4.1: Hough line matrix

The frames on the first row shows the original images of the blade with and without structured light.
Next row shows the detected feature points and the resulting Hough line matrix, computed using the

respective feature points.

The algorithm for computing a Hough line matrix is implemented in the detectLi nes mod-

ule as Houg hLi nesPoi nt M atr i x(..).

Step two of the method searches for feature points along each vertical and horizontal Hough

line to compute lines limited to the area of the blade. The algorithm considers each vertical and

horizontal Hough line in the Hough line matrix to represent a line of correlated feature points,

however, the difficulty is to search for the correct feature points along the respective line. As in

step one, this is solved by reffering to the fixed scale distance distance between the feature points

and a given tuning parameter to create a search area along the respective vertical or horizontal

Hough line. Furthermore, the detected feature points along the respective Hough line are then

sorted with respect to frame positions, and interpolated to compute a bounded straight line

CHAPTER 4. DETECTING BLADE EDGES 65

along those feature points. The bounded straight lines gives an indication of the blade area in

the frame, as shown in figure 4.2, which will be used in step three to segment the blade. Step two

of the method is implemented in the detectLi nes module as F i ndLi neLi mi t s(..).

Figure 4.2: Bounded lines

This figure represents step two of the method, and shows the bounded lines as a result of interpolating
correlated feature points along the horizontal and vertical Hough lines of the Hough line matrix.

CHAPTER 4. DETECTING BLADE EDGES 66

4.2 Detecting Blade Edges as Hough Lines

Step three of the method aims at segmenting the blade with accuracy. The algorithm starts

off by computing the edgel map of the original frame without structured light using the Canny

edge detection method, as seen by the left image in figure 4.3. Moreover, the motivation is to

segment the blade by localizing the blade edgels, so the algorithm considers the bounded lines

as an indication on where to start a greedy search for the respective edgels. The greedy search

starts at the end point of each bounded line and is conducted by detecting the first edgel in the

horizontal or vertical direction, as illustrated by the arrows in figure 4.3.

Figure 4.3: Edgel search using bounded lines.

Right image shows how the greedy search starts off at the end points of each bounded line to detect the
most significant blade edgels in the edgel map to the left.

CHAPTER 4. DETECTING BLADE EDGES 67

Step three results in a set of edgels along the four possible edges of the blade. However,

some edgels may be wrongly detected as blade edgels, so simple filtration of the edgel points is

commenced. The filtration simply removes edgels that are outside of the standard deviation of

edgel points along the respective edge, and the result after filtration is seen in the left image in

figure 4.4, which shows that the edgels are balanced around the highest concentration of edgel

points.

Figure 4.4: Edgel points

Left image shows the result of blade edge detection method with filtrated edgel points, while the right
image shows the result with unfiltered edgel points.

The final step computes Hough line representations of the blade edges which is essential for

finding a heading to follow, as discussed in chapter 5. Moreover, the Hough line transformation

for each of the four edges is efficiently computed since only a few edgel points are parameter-

ized during each transformation, and only horizontal or vertical degrees are considered for each

horizontal or vertical blade edge, respectively. The horizontal degrees are limited to a range of

radian degrees between [0, .., π4] and [3π
4 , ..,π], while the vertical degrees are limited to a range

between [π4 , .., 3π
4] radian degrees.

It was actually found that there were in many cases too few edgel points to give enough

votes in the Hough parameter space, which could lead to strong areas of votes instead of a no-

table strong vote. This issue was solved by first dilating the acculumator of the Hough parameter

space to expand strong votes, followed by smoothening the dilated accumulator using Gaussian

CHAPTER 4. DETECTING BLADE EDGES 68

filtering to highlight the strongest vote in the strongest areas. Finally, both of the updated accu-

mulators are summarized to compute a Gaussian strengthened accumulator.

Moreover, a given percent of the highest peaks in the Hough parameter space is chosen to

represent the Hough lines along the respective blade edge, and the final Hough line is then com-

puted by calculating the mean (ρ,θ) of those Hough lines. Step three and four of the method is

implemented in the module detectE d g es as DetectBound ar yE d g es(..). Additionally, the re-

sult is illustrated in figure 4.5, with filtered edgel points in the left image and unfiltered edgel

points in the right image.

Figure 4.5: Edgel lines

Left image shows the result of blade edge detection method with filtrated edgel points, while the right
image shows the result with unfiltered edgel points.

All of the steps are merged into a single function which is found in the Poi ntDetecti on

module as GetBound ar y Houg hLi nes(..), and the computational delay for processing all of

the respective steps was found to be approximately 0.10 seconds on a 512× 612 sized frame.

This is achieved by an extensive use of the numpy library and the OpenCV library to conduct

efficient matrix operations.

CHAPTER 4. DETECTING BLADE EDGES 69

4.3 Discussion & Comments

The blade detection method presented in this chapter efficiently segments the area of interest

and detects the blade edges with good accuracy. Moreover, an important benefit of using this

method is that the blade will be detected with acceptable accuracy in almost any circumstances,

even if the Canny edge detector produces a highly disturbed edgel map, since the algorithm

segments the area of interest using the feature points to minimize the edgel search along the

respective blade edge. It is actually recommended to set the hysteresis thresholding low on the

Canny edge detector, so that the blade edges are easily detected, although all else will become

increasingly cluttered. An extreme example of this is illustrated in figure 4.6.

Figure 4.6: Edgel lines on a cluttered edgel map.

An extreme example of setting the hysteresis thresholding at minimum. The result from a badly tuned
Canny edge detector is notably worse than when it is properly configured as seen in figure 4.5, although

the result is acceptable.

CHAPTER 4. DETECTING BLADE EDGES 70

As mentioned, the detected edgel points along the respective edge is filtrated by removing

edgel points outside of the standard deviation of edgel points. This type of filtration is selected

since it is easily implemented when considering filtration of two dimensional positions. The

benefit of using this filtration method is that strong deviations are removed, since only the cen-

tered points remains. However, this also means that correct outliers also will be removed, which

decreases accuracy of the final Hough line representation. A blade edge detection example is

illustrated in figure 4.7, where it is seen that correct outliers are removed by the filtration, and

that the centered edgel points remains.

Figure 4.7: Unsuccessfull filtration of edgel points.

The unfiltered result is shown to give better result than the filtered result, due to that the filtration
removes correct outliers.

CHAPTER 4. DETECTING BLADE EDGES 71

However, it was considered that the benefits of using the filtration method outweighs the

consequences, which was verified by testing the method in different circumstances. An example

of this testing is presented in figure 4.8, where it is seen that some of the incorrect edgel points

are removed, thus leading to a better result.

Figure 4.8: Successfull filtration of edgel points.

Some edgels along the blade edge, marked in purple, was not correctly detected. However, the filtration
removed these edgel points since they are outside of the standard deviation of connected edgel points.

CHAPTER 4. DETECTING BLADE EDGES 72

This method is proven to be an efficient blade edge detector, and it may also be used to detect

a wide range of different objects such as road signs, building corners or even flag poles. The

concept could also be adopted to detect other shapes, instead of a rectangular shape, as defined

by the horizontal and vertical lines. This could be done by redefining the final step of the method

to detect any shape that can be transformed to the Hough parameter space, such as circles or

ellipses. As an example, the Hough curve transform, see section 2.3.2, will find circles using the

detected edgel points, which will be more efficient than considering all possible edgels in the

edgel map. Additionally, the detected object will be easy to work with in an arbitrary application

since it is represented by the given shape. As in this case, the manouvering system will use the

Hough line representations of the blade edges to estimate a heading along the respective blade.

Finally, some additional samples of using the edge detection method on arbitrary objects are

shown in figure 4.9.

CHAPTER 4. DETECTING BLADE EDGES 73

Figure 4.9: Edge detection on arbitrary objects.

Chapter 5

Manouvering Plan for Wind Blade

Inspection

The previous chapters presented machine vision theories, which will be used to manouver the

UAV along a wind blade. The edge processing methods discussed in chapter 2.3 estimates the

edges of the blades as straight lines represented by angle θ and distance ρ according to a clock-

wise orientation from the image center. This chapter will address the issue of manouvering

the UAV drone along the wind blades on the basis of the computer vision system, and the im-

plemented version may be accessed through the Headi ng module. Moreover, manouvering

simulations of the essential manouvering propositions discussed in this is chapter will be pre-

sented in section 5.11. However, the implementation following this thesis does not include a

Gimbal solution, although it is a part of the solution presented in this chapter.

5.1 Coordinate Frames

The coordinate frames according to the UAV body frame, the camera frame, the image frame

and the windmill frame are referred to as b, c, i and W , respectively. The coordinate frame of

the UAV drone is modelled by Kristian Klaussen, and the windmill is modelled by Torjus Sveier

Ottemo [49], as illustrated in figure 5.1

74

CHAPTER 5. MANOUVERING PLAN 75

Figure 5.1: Coordinate frames

(Courtesy of Martin Stokkeland, Kristian Klaussen & Torjus Sveier Ottemo [49])

5.1.1 Body Frame

The body frame is centered at the centre of the geometrical centre of the UAV, and follows the

standard 6 DOF, defined by the conventional surge, sway, heave, roll, pitch and yaw motion

components as u, v , w , φ, θ and ψ, respectively. The surge, sway and heave corresponds to the

translational motion along the longitudinal axis, X b , the latitudinal axis, Y b , and the altitudinal

axis, Z b .

5.1.2 Camera Frame

The parallel cameras will be mounted underneath the UAV on a gimbal which can move the

pitch and yaw angle of the camera frames. The camera frames must therefore be rotated around

the latitudinal and altitudinal axis according to the pitch and yaw angle of the camera frames,

respectively, to relate it to the body frame. Furthermore, the left camera is chosen as the main

camera frame related to the body frame and will be positioned close to the geometrical centre of

CHAPTER 5. MANOUVERING PLAN 76

the UAV, so that the translational displacement between the body frame and the camera frame is

negligible. Both cameras frames will therefore be referred to as a single camera frame, according

to the left camera.

5.1.3 Image Frame

The image frame is the 2D projection of the corresponding camera, and will be centered in the

centre of the image due to simplicity. The latitudinal and altitudinal axes of the image frame

is parallel with the latitudinal and altitudinal axes of the corresponding camera frame. These

statements contradicts the common image frame, as presented in section 2.4.2, where the origin

is placed in the top left corner with axes defined according to the conventional right-hand rule.

However, this image frame simplifies the transformation mapping from the camera frame by

eliminating the difference in origin and direction of the axes. The transformation mapping from

the image frame to the camera frame will then be defined by the effective pixel size only, defined

by equation (5.1), where (Sz ,Sy) are defined as the effective pixel sizes in the altitudinal and

latitudinal axis respectively.

z = zi mSz y = yi mSy (5.1)

Due to this simplification we neglect the effective pixel size throughout the rest of this chap-

ter so that the perspective projection of 2D points to 3D points in the camera frame can be

directly related to pixel coordinates. However, the implementation must consider that the ori-

gin of the image coordinates will initially be given in the top left corner and a transformation to

the camera frame must include the effective pixel sizes.

5.1.4 Windmill Frame

The windmill frame is centered at the hub center of the wind turbine as seen from the direction

of the windmill, with the longitudinal, latitudinal and altitudinal axes pointing from front to

back, from right to left and from top to bottom, respectively. This is chosen so that it corresponds

with the alignment of the body frame when the UAV is facing the windmill.

CHAPTER 5. MANOUVERING PLAN 77

5.2 Detecting the Wind Blades

The initial position of the UAV will be directly in front of the windmill so that the body frame and

windmill frame alignes. From that position, the UAV can detect the angle of each wind blade

according to the hub center of the wind turbine, and sort out which blades have been inspected

and which blade to do next. However, detecting the blades must be done from a distance where

the turbine and blades are in view, and then proceed towards the chosen blade. This thesis will

focus on the issue regarding manouvering along the chosen wind blade, thus there will only be

a brief discussion regarding the issues with manouvering towards the selected wind blade.

The blades can be detected using the Hough transform, exploiting the straight lines of the

blades when they are viewed from a distance. The angle of each blade can then be approxi-

mated according to the latitudinal axis of the windmill frame Y W with a clockwise orientation

as illustrated in figure 5.2. The clockwise orientation is chosen due to that the Hough transform

measures the angles of the blade lines in the image frame according to a clockwise orientation,

which will be usefull when manouvering along the wind blade. Approaching a selected wind

blade can be managed by manouvering the UAV towards a fixed position at the beginning of the

wind blade until the UAV is close enough for the stereo vision system to reconstruct valid 3D

points from the structured light projected onto the blade, as well as using the structured light to

detect the blade edges.

CHAPTER 5. MANOUVERING PLAN 78

Figure 5.2: Angle, ωi , of a wind blade according to the latitudinal axis Y W .

The sway and heave of the body frame is found be decomposing the direction of heading V

according to the blade angle ωi as stated in equation (5.2), while the surge should be fixed so

that the UAV drone slowly approaches the initial position of the wind blade. The initial position

of the wind blade should be positioned at a fixed distance from the wind turbine, along the blade

angle. Note that the latitudinal and altitudinal position according to a position along the wind

blade follows the same decomposition as stated in equation (5.2).

vb =V cos(ωi)

w b =V sin(ωi)
(5.2)

CHAPTER 5. MANOUVERING PLAN 79

5.3 Initial Position

As discussed in chapter 3, a typical blade design indicates that the initial position of the UAV

drone should be in the root region of the blade, as close as possible to the turbine to be able

to inspect most of the blade. Furthermore, both sides of the blade can be inspected by the

UAV when manouvering from the front of the windmill, due to the geometry of the blades. A

blade inspection should start off by manouvering to the initial position on the top or bottom

side of the blade, according to which side is chosen to inspect. The UAV will then proceed with

manouvering along the side of the blade which is in view by the camera.

It is essentially important for the UAV to keep the yaw angle of the body frame in the same

yaw angle as of the windmill frame. This statement simplifies the manouvering of the UAV, since

it will know which direction is heading towards the tip or root region of the blade. The yaw angle

of the windmill is fixed, and can therefore be related to by a compass course registered when the

UAV is directly facing the turbine hub. Yaw angle τψ is found by measuring the present compass

course of the UAV, representing the present yaw angle of the body, and proceed with a standard

PID-regulator, as stated in equation (5.3).

τψ = Kp (ψW −ψb)+Ki

∫ t

0
(ψW −ψb)d t −Kd ψ̇b (5.3)

5.4 Initialization of the UAV

Manouvering along the blade is not a straightforward approach due to the differing chord length

and oval blade design, and the problem should therefore be kept as simple as possible. The first

simplification will be to consider that the UAV will start at the initial position in the root region

of the blade, with the longitudinal axis of the body frame parallel with the longitudinal axis of

the windmill. The camera frame is initially focused at a fixation point on the blade by regulating

the pitch and yaw of the gimbal, which will be described in section 5.5, so that the longitudinal

axis of the camera frame is normal on the blade surface. Figure 5.3 illustrates a simplification of

this approach, where the body frame starts at the initial position with the camera frame facing

the blade. The blade will then be inspected in two sequences, first by inspecting the leading side

of the blade when the UAV is moving towards the tip, and then inspecting the trailing side on the

CHAPTER 5. MANOUVERING PLAN 80

way back to the root region of the blade. This approach is chosen since the oval design of the

blade restricts the camera from inspecting the whole surface of the blade if it were to manouver

straight above it.

The manouvering along the leading side will start by manouvering the UAV towards the lead-

ing side and then regulating the yaw and pitch angle of the camera frame so that the longitudinal

axis of the camera are normal on the blade surface. A proposed fixation point on the leading side

is chosen as the closest area of 3D points, while accounting for keeping the leading edge in view

to the cameras. Furthermore, the yaw and pitch of the camera frame will then be fixed in respect

to the windmill frame during the navigation towards the tip, and back to the root region. The

camera frame needs to be regulated in response to the movements of the body frame during the

navigation along the leading- and trailing side, to keep a steady angle according to the windmill

frame. This solution will keep the longitudinal axis of the camera normal to the blade during the

navigation along the edges, even though the body frame tilts when the UAV is moving or is tilted

due to strong winds.

Figure 5.3: Relation between camera frame and body frame when positioning the UAV for blade
inspection.

(This simplification neglects the translation along the Y-axis.)

Figure 5.4 illustrates a simplification on the issue of manouvering the UAV from the initial

position to the leading side, or back from the trailing side to the root region. By considering that

the camera frame is facing the blade at the initial position, the stereo vision system will be able

to detect the edges following the leading and trailing side using the structured light, and esti-

mate the distance to the blade by reconstructing corresponding 3D points. Note that the UAV

might need to be positioned at an additional distance away from the blade at the initial position

CHAPTER 5. MANOUVERING PLAN 81

to detect the leading and trailing edge in the same image. This additional minimum distance to

the blade is decreased when the UAV is moving towards the leading edge. We assume an ideal

situation, and the edge detection algorithm computes a straight line following the leading side

and trailing side, respectively, using the method presented in chapter 4. The Hough transform

of the blade edges provides the angle θ and distance from origin ρ in the image frame, which

essentially is the heading direction towards the respective line. Thus, the Hough transform pro-

vides the heading direction towards the leading side according to angle θl s and distance ρl s .

The heading direction is decomposed according to the latitudinal and altitudinal axis, as stated

by equation (5.4), and provides the desired position Pi = [p i
x , p i

y , p i
z]> in pixels according to the

image frame.

Figure 5.4: Heading direction to approach the leading side.

p i
y = ρl s cos(θl s)

p i
z = ρl s sin(θl s)

(5.4)

The stereo vision system provides the longitudinal distance to the blade in real coordinates

according to the camera frame, recall equation (2.37). Furthermore, the fundamental equations

of perspective cameras, recall equation (2.39), relates the longitudinal position in the camera

frame with camera coordinates in the same position, according to the focal length and pixel

coordinates. The fundamental equations of perspective cameras, as stated by equation (5.5), is

CHAPTER 5. MANOUVERING PLAN 82

rearranged with known longitudinal position, X = f T
dx

, which yields equation (5.6).

p i
y

pc
y
= f

X

p i
z

pc
z
= f

X

(5.5)

pc
y =

T

dx
p i

y

pc
z =

T

dx
p i

z

(5.6)

This relation is rearranged using equation (5.4), which yields equation (5.7). This equation

relates the latitudinal and altitudinal position in the image frame with the corresponding posi-

tion in the camera frame, according to the disparity dx in that position.

pc
y =

T

dx
ρl s cos(θl s)

pc
z =

T

dx
ρl s sin(θl s)

(5.7)

However, the longitudinal distance may also be estimated by considering that the blade is

flat, when viewed by the camera, meaning the reconstructed 3D points of the respective feature

points, as discussed in chapter 2.5, can be used to compute an estimate of the longitudinal

distance close to the respective position. Desired position Pi may then be found by utilizing the

fundamental equation of perspective cameras, as stated by equation (5.5).

Furthermore, the UAV should follow a fixed distance Dd to the blade according to the dis-

tance, Dx = f T
d , measured by the stereo vision system. By accounting for the relative error be-

tween the fixed distance and measured distancy, we derive the position along the longitudinal

axis according to the camera frame to follow, which yields equation (5.8).

pc
x = Dx −Dd = f

T

d
−Dd (5.8)

CHAPTER 5. MANOUVERING PLAN 83

By combining equation (5.7) and (5.8), we derive the position vector by equation (5.9) ac-

cording to the camera frame.

Pc =

pc

x

pc
y

pc
z

=

f T

d −Dd

T
dx
ρl s cos(θl s)

T
dx
ρl s sin(θl s)

 (5.9)

The positioning of the UAV according to a desired destination aquired from the camera

frame is found by a rotation matrix around the latitudinal and altitudinal axis, as stated by

equation (5.10). Recall that the translational displacement between the camera frame and body

frame is negligible.

Pb = Rb
c (Θc)Pc (5.10)

Rb
c (Θc) = Rz,ψc Ry,θc =

cosψc −sinψc 0

sinψc cosψc 0

0 0 1

cosθc 0 sinθc

0 1 0

−sinθc 0 cosθc

 (5.11)

5.5 Rotating the Camera Frame

As mentioned in section 5.4, the camera frame needs to be tilted to focus the image projection

to a fixation point on the wind blade. This is achieved by rotating the camera frame accord-

ing to a yaw and pitch angle as ψr e f and θr e f , respectively, which are derived by focusing the

longitudinal axis towards the fixation point. The fixation point is decomposed according to the

latitudinal and altitudinal axis and derived using the fundamental equation of perspective cam-

eras, recall equation (5.6). Furthermore, the longitudinal position of the fixation point is known

by the stereo vision system as X = f T
dx

. By this, we can derive the yaw and pitch angle accord-

ing to the pixel position in latitudinal axis and altitudinal axis from the image center as p i
y and

p i
z , respectively, and the longitudinal position X according to the camera frame, which derives

equation (5.12).

CHAPTER 5. MANOUVERING PLAN 84

tan(θr e f) = pc
z

X
=

p i
z

T
dx

f T
dx

= p i
z

f

tan(ψr e f) =
pc

y

X
=

p i
y

T
dx

f T
dx

=
p i

y

f

(5.12)

The gimbal is then regulated using a PD-regulator according to the estimated yaw and pitch

reference angle, as stated in equation (5.13). A PD regulator is chosen since the gimbal is as-

sumed to be very responsive.

τθ
τψ

= Kp

∫ t

0

 θr e f −θc

ψr e f −ψc

−Kd

 θ̇c

ψ̇c

 (5.13)

5.6 Manouvering Along the Blade

The next step after approaching the start position on the blade is to follow the angle of the wind

blade until the blade tip is detected, or the root region of the blade on the way back is detected.

The basic approach of following the blade is to measure the angle ω of the blade to follow. By

simplifying the issue, we consider that the edge processing algorithm has detected two straight

lines, representing the edges of the blade as illustrated in figure 5.5.

Figure 5.5: Heading direction ω according to the blade edges.

CHAPTER 5. MANOUVERING PLAN 85

The direction of heading towards the tip is then measured by finding the angle of the blade

ωt i p by simply deriving the average angle of the straight lines, as stated in equation (5.14). The

angle back to the root region of the blade is found be rotating the heading angle towards the tip

by π radians. However, it should be noted that this method is feasible only if the lines are on

each side of the image center, thus in the opposite quadrant regions of the polar space.

ωt i p = θa +θb

2

ωr oot =ωt i p +π
(5.14)

The UAV might occasionally drift away from the direction of heading, resulting in that the

view of either one of the edges is lost, as illustrated in figure 5.6.

Figure 5.6: Heading direction ω when only the top edge is in view.

In such a case, the UAV will consider the angle θ and distance ρ f , according to the edge in

view, to estimate the heading angle ω. The distance ρ f is the measured distance from the line

to the image edge, and is found by considering the distance ρ to the line according to the length

and width of the image as Il and Iw , respectively. Distance ρ f from the line to the image edge

is found by subtracting ρ with the distance to the image edge from origin, as stated by equation

(5.15). It should be noted that the image edge is referred to as an elliptical boundary of the image

from the center, which is easier to consider and implement.

CHAPTER 5. MANOUVERING PLAN 86

ρ f =
1

2

√
I 2

w cos2(θ)+ I 2
l sin2(θ)−ρ (5.15)

The heading angle is then estimated by minimizing the distance ρ f , while manouvering the

UAV towards the tip or root region of the blade. Moreover, it should be noted that it is essentially

important to restrict the UAV from loosing the edge which is still in view, so the UAV will be

restricted from searching for the lost edge according to the minimum distance ρmi n , meaning

ρmi n ≤ ρ f . Furthermore, ρmi n may be defined as a fixed percent of the diagonal distance from

center to the image edge, as defined by equation (5.16).

ρmi n = k
1

2

√
I 2

w cos2(θ)+ I 2
l sin2(θ), 0 ≤ k ≤ 1 (5.16)

Furthermore, the heading angle towards the respective tip or root region of the blade is esti-

mated by rotating the line angle θ by ±π
2 radians, according to which direction the UAV is head-

ing. Additionally, the rotation of the line angle will be a weigthed rotation to counteract the lost

edge while not loosing the edge in view. The weighted rotation parameter W f is an estimate of

the proportional relation between the distance ρ and minimum distance ρmi n . By conclusion,

the heading angle is stated by equation (5.17) while the weighted rotation parameter is stated

by equation (5.18). As an example, the weighted rotation will move the heading angle closer to

θ f if ρmi n ≤ ρ f , thus the drone will be navigated to get more of the blade in view. On the other

hand, it will move the heading angle closer to the line angle θ if ρmi n > ρ f , which navigates the

drone to get less view of the blade.

ω= θ± π

2
W f (5.17)

W f =

2− ρmi n

ρ f
, ρmi n ≤ ρ f

ρ f

ρmi n
, ρmi n > ρ f

(5.18)

It should be noted that this manouvering solution considers that the image center is focused

on the blade, which means that the blade edge is in the correct quadrants of the polar space.

The respective edge will be located in the wrong quadrant if the blade is not localized at the

CHAPTER 5. MANOUVERING PLAN 87

image center. However, a simple solution to this issue is to redefine equation (5.15) and (5.16)

to estimate the distance ρ f and ρmi n in the opposite direction, as follows in equation (5.19) and

(5.20), to estimate a heading that relocates the blade at the image center.

ρ f =
1

2

√
I 2

w cos2(θ+π)+ I 2
l sin2(θ+π)+ρ (5.19)

ρmi n =k
1

2

√
I 2

w cos2(θ+π)+ I 2
l sin2(θ+π), 0 ≤ k ≤ 1 (5.20)

Moreover, this issue will also result in redefiniton of equation (5.17) and (5.18), whereas the

problem is mirrored as defined by the following equations of (5.21) and (5.22). The equation for

estimating the weighted rotation parameter W f is simplified since this issue will cause ρmi n to

always be shorter than ρ f .

ω= θ∓ π

2
W f (5.21)

W f =
ρmi n

ρ f
(5.22)

Moreover, the UAV will counteract the issue of having lost both edges by manouvering to-

wards the leading or trailing side according to either that the UAV is heading towards the tip or

root region of the blade, respectively. The response of locating the lost edge along the leading

or trailing side is found by registering the last measured angle θ of the line following the leading

or trailing side, and counteracting the manouvering accordingly. An alternative approach, is to

manouver the UAV back to the last known position of the blade edge, however, a solution may

be a combination of both approaches.

The proposed manouvering plan requires a fixed velocity for the UAV to follow in the angle

of direction, and it should be noted that a slow UAV is safer to manouver along the blade due to

response delay from the guidance system. Moreover, the camera frame will be tilted according

to the pitch and roll of the body frame which is proportional to the velocity along the latitudinal

and longitudinal axes. It is therefore essential that the velocity of the UAV is kept at a minimum,

in order to minimize the tilt of the camera frame.

CHAPTER 5. MANOUVERING PLAN 88

Finally, the direction of heading towards the tip or root region of the blade is computed by

the same principle as stated in equation (5.9). Accordingly, the heading angle ω, respectively

towards the tip or root region, and a fixed step distance Dm in meters yields equation (5.23). As

noted, the fixed step distance Dm should be kept at a minimum to minimize the velocity of the

UAV. The guidance of the UAV according to the body frame is derived from equation (5.10).

Pc =

pc

x

pc
y

pc
z

=

f T

d −Dd

Dm cos(ω)

Dm sin(ω)

 (5.23)

5.7 Detecting the Tip

The UAV must continue to manouver towards the tip region of the blade until the tip is detected.

From the design properties of the wind blade, as presented in chapter 3, we can distinguish a

small curved edge at each side of the tip which might resemble a corner following the leading

and trailing side of the blade. This assumption means that the tip can be detected by searching

for a corner along the leading edge and trailing edge using the Harris corner detector. A sim-

plified illustration of the corners Ca and Cb at the blade tip is shown in figure 5.7. Additionally,

the machine vision system will also match the corners with an infinite background distance in

the region following the blade edges and next to the corners to verify that the tip is detected.

As mentioned, the structured light will provide information on where the blade is located in the

image, meaning the detected feature points of the structured light may be used as a basis for de-

tecting the blade corners, as well as the edges. As mentioned in section 2.3.3, the Harris corner

detector is non-invariant to image scale meaning the distinct corners along the tip might be left

undetected if the kernel size of the Harris corner detector is too small to detect the corners. This

issue is resolved by considering the fixed scale distance between the structured light points, so

that the kernel size can be adapted to the estimated corner scale according to the feature points.

CHAPTER 5. MANOUVERING PLAN 89

Figure 5.7: Corner detection at the blade tip.

Another approach is to consider that only a maximum of two edges should be detected when

manouvering along the blade, while a third edge, approximately vertical to the leading and trail-

ing edges, will be detected when the drone is at the tip of the blade. Both approaches was tested

to verify if the respective method is feasible, and the result is presented and discussed in section

5.11.2.

5.8 Manouvering Back To the Root

The next movement of the UAV will be to inspect the trailing side of the blade on the way back to

the root region, as mentioned in section 5.4. This movement involves positioning the UAV and

camera frame according to the trailing side of the blade, so that the UAV will inspect the trailing

side on the way back to the root. First of all, the UAV knows which side of the blade relates

the leading edge and trailing edge, which means that the UAV can manouver the body frame

towards the trailing edge. A proposed manouvering of the body frame to position the UAV on

the trailing side of the blade is managed by two steps. The first step involves manouvering the

body frame towards the detected edge on the trailing side, as illustrated in figure 5.8. Moreover,

the second step involves repositioning the camera frame towards the leading side so that the

camera projection is focused towards the blade.

This movement is managed by utilizing equation (5.15), where distance ρ f , according to

CHAPTER 5. MANOUVERING PLAN 90

Figure 5.8: Repositioning of the UAV according to the trailing side.

the leading side, will be minimized by the minimal distance ρmi n to compute the measured

difference ρd given in equation (5.24) and illustrated in figure 5.9.

ρd =

ρ f −ρmi n , ρmi n ≤ ρ f

0, ρmi n > ρ f

(5.24)

Figure 5.9: Repositiong of the UAV according to distance ρd .

The measured distance ρd concludes the distance towards the trailing side to move the UAV,

CHAPTER 5. MANOUVERING PLAN 91

without loosing the view of the leading edge. Furthermore, the manouvering is given by the

position in the camera frame, yielded by equation (5.25), and rotated according to equation

(5.10) to relate the manouvering to the body frame.

Pc =

pc

x

pc
y

pc
z

=

f T

d −Dd

T
dx
ρd cos(θt s)

T
dx
ρd sin(θt s)

 (5.25)

As mentioned, the second step involves repositioning the camera frame such that the im-

age projection is focused towards the blade. This rotation of the camera frame is managed by

the same principle as manouvering the body frame from the leading side to the trailing side.

However, the camera frame will be rotated towards the leading side, minimizing the view of the

trailing edge. Therefore, equation (5.24) is utilized by measuring the distance ρ f according to

the trailing edge, to find a fixation point towards the leading side as illustrated in figure 5.10.

Figure 5.10: Rotation of the camera frame according to distance ρd .

CHAPTER 5. MANOUVERING PLAN 92

The fixation point is given in pixel coordinates as stated by equation (5.26), while the camera

frame is rotated according to section 5.5. The UAV will then be ready to continue the inspection

along the trailing side.

p i
y

p i
z

= ρd

cos(θl s)

sin(θl s)

 (5.26)

5.9 Detecting the Root

The final step of inspecting the wind blade is to detect the root region of the blade, where the

UAV will consider the inspection of the blade as finalized. It is essentially important for the UAV

to stop the manouvering towards the root region before it is too close to the wind turbine.

By studying the HAWT design of a wind blade, recall figure 3.2, we recognize an increasing

chord length as seen from the tip to the root region. However, the chord length drops in the root

region, which can be utilized by the machine vision system to detect the root region when the

UAV is manouvering along the trailing side. Therefore, a simple approach to this issue is to con-

sider that the chord length will increase when the UAV is moving towards the root region, and

a sudden drop of the chord length will signal that the root region is reached. This is, however,

a simplification of the issue due to that the measured chord length cannot be correctly esti-

mated when the UAV is manouvering along the trailing side since the camera does not project

the whole surface of the blade. Moreover, the camera projection of the trailing side will change

when the UAV is moving, meaning that the measured chord length can only be a filtrated esti-

mate. So, a solution will be to measure a continuous estimate of the chord length, as seen from

the trailing side by the camera projection, during the manouvering towards the root region. Fi-

nally, the root region is detected when there is a continuous decrease of the chord length, which

means that the UAV has finished inspecting the wind blade.

Additionally, this solution can be improved by introducing a GPS on the UAV, which keeps

track of how far away the UAV is from the wind turbine hub. The GPS is considered to be too

inaccurate for the UAV to locate the root region solely on a GPS location, however, it may assist

the machine vision system on wether the UAV is close to the root region.

Another approach may also be considered, which utilizes a sonar to detect the distance to

CHAPTER 5. MANOUVERING PLAN 93

neighboring close objects, such as the root region of the windmill. This solution may be more

reliable, and should be easily implemented, however, it was not possible to install and test such

a device during the time this thesis was conducted.

5.10 Collision Avoidance

The distance from the UAV to the blade is measured by the stereo vision system, and the main

motivation is to restrict the UAV from colliding with the blade by measuring the closest and

most critical distance to it. Secondly, the UAV is also suppossed to keep a fixed distance to the

blade according to a given reference distance Dd , recall section 5.4. The relative position of the

blade to the camera is found by 3D reconstruction of feature points on the blade, as discussed in

section 2.5, so an average distance Dx to the blade may be computed using these 3D points. The

drone will then be set to follow a steady blade distance given by the referance distance Dd , which

may be regulated using a common PID regulater. Moreover, the reference distance Dd should

be set according to the maximal chord length of the blade, while accounting for the distance

error δZ which is proportional to an increasing distance to the blade, recall section 2.4.4.

Moreover, a solution for avoiding a collision with the turbine hub is to utilize the proposed

solution with detecting the root, recall section 5.9. The UAV may register its current GPS position

or detect the turbine hub using a sonar to keep a minimum distance to the turbine hub.

5.11 Simulations of the Manouvering Plan

The essential manouvering methods presented in this chapter is implemented in the Headi ng

module which mainly considers simple manouvering along an arbitrary blade and how to detect

the blade tip, as discussed in section 5.6 and 5.7, respectively. Unfortunately, it was decided that

the other manouvering solutions was too complex to implement during the limited time this

thesis was conducted, and it would have required acquiring and implementing a Gimbal for

rotating the camera frame.

CHAPTER 5. MANOUVERING PLAN 94

5.11.1 Simulations of Blade Manouvering

Section 5.6 presents two methods for manouvering along a wind blade. The first method is

defined by equation (5.14) and presents a simple solution for following a wind blade when the

trailing edge and leading edge of the wind blade is in view by the camera.

First of all, the implementation considers that the virtual drone follows a path along the hor-

izontal or vertical edges of the blade, relative to the image frame, thus simplifiying the problem

of selecting which of the detected edges are the leading and trailing blade edges.

The simulation was conducted on a broken wind blade of a drone and some simulation sam-

ples are illustrated in figure 5.11. The estimated heading is represented in radian degrees accord-

ing to the image frame and is drawn as an orange arrow, which points in the estimated heading

direction. Moreover, each of the vertical and horizontal boundary lines are colored with a dif-

ferent color, and marked with an open circle to mark the perpendicular point from the image

center. Furthermore, only the lines along the trailing and leading side of the blade is detected as

possible edges, thus marked by the yellow arrows, and used to estimate the respective heading

according to equation (5.14). The simulation samples shows that the method estimates accurate

heading directions, and the benefit is that it is very simple to conduct when considering that the

blade edges are detected as Hough lines according to the image center.

CHAPTER 5. MANOUVERING PLAN 95

Figure 5.11: Simulation samples of manouvering along a wind blade when the leading and trail-
ing edge is in view.

Boundary lines are colored with the respective color, and marked with an open circle to mark the
perpendicular point from the image center. The heading direction is drawn as a orange arrow, and

estimated according to the Hough line coordinates of the blade edges, which is marked by the yellow
arrows.

CHAPTER 5. MANOUVERING PLAN 96

Another consideration is that equation (5.14) is feasible only if the trailing and leading edge

are on each side of the image center, thus in the opposite quadrant regions of the polar space.

However, this problem was solved by selecting the closest edge of the trailing or leading edge and

using the method for following a single edge to estimate a heading. The solution of following a

single edge is defined by equation (5.15) to (5.18), which defines a simple regulation scheme

designed to follow the respective edge while maximizing the view of the blade, whereas three

simulations of the respective manouvering schemes are illustrated in figure 5.12. The simula-

tions illustrated in figure 5.12a shows how the manouvering scheme of following a single edge

estimates a heading which follows the blade edge while bringing more of the blade in view to

the camera. Moreover, the simulation illustrated in 5.12b, shows how the heading is estimated

when the respective blade edge is localized in the wrong quadrant area of the polar space, thus

utilizing equation (5.19) to (5.22) to estimate a heading which also aims at bringing more of the

blade in view.

CHAPTER 5. MANOUVERING PLAN 97

(a) Simulations of manouvering along a blade edge which is too close to the image center, thus the head-
ing is estimated to get more of the blade in view to the camera.

(b) Simulation of manouvering along a blade edge which is localized in the wrong quadrant of the polar
space, thus informing that the blade is drifting out of view.

Figure 5.12: Simulations of manouvering along a wind blade when only a single edge is in view.

Boundary lines are colored with the respective color, and marked with an open circle to mark the
perpendicular point from the image center. The heading direction is drawn as a orange arrow, and
estimated according to the Hough line coordinate of the blade edge, which is marked by the yellow

arrow.

CHAPTER 5. MANOUVERING PLAN 98

Moreover, following simulations, illustrated in figure 5.13, shows examples of heading esti-

mates which aims at following the respective edge while reserving that the edge will still be in

view to the camera.

Figure 5.13: Simulations of manouvering along a blade edge which is too far away to the image
center, thus the heading is estimated to get less of the blade in view to the camera.

Boundary lines are colored with the respective color, and marked with an open circle to mark the
perpendicular point from the image center. The heading direction is drawn as a orange arrow, and
estimated according to the Hough line coordinate of the blade edge, which is marked by the yellow

arrow.

CHAPTER 5. MANOUVERING PLAN 99

5.11.2 Simulations of Blade Tip Detection

Detecting the tip was found to more difficult then anticipated, and it was concluded that the

corner detection method was not a feasible method for detecting the blade tip. It was found that

the feature points could not provide the corner structure necessary in the area of an aribtrary

corner tip, and the distance between the feature points was too big to create a feasible Harris

corner detector for the respective scale.

The second approach was found to be a feasible and simple solution, whereas a possible

perpendicular edge to the trailing and leading edges of the blade would be considered as the tip.

The consequences of using this method is that the the scale of the tip must be big enough to be

detected by multiple boundary points for beeing accurately detected as a line in the Hough pa-

rameter space, but it does not change the outcome of a detected tip since at least one boundary

point will be detected at the tip, regardless of scale. As mentioned, the implementation consid-

ers that the virtual drone follows a path along the horizontal or vertical edges of the blade, which

then makes it simple to decide that the third edge in the perpendicular direction of the chosen

direction is the edge tip, as shown by the simulations in figure 5.14. Notice that the scale of the

tip is big enough for multiple boundary points to be detected, thus the tip is accurately detected

as a line in the Hough parameter space.

CHAPTER 5. MANOUVERING PLAN 100

(a) Simulations of reversing the heading when the tip is detected.

(b) Simulation of detecting the tip while following a single edge.

Figure 5.14: Simulations of reversing the heading when the tip is detected.

Boundary lines are colored with the respective color, and marked with an open circle to mark the
perpendicular point from the image center. The heading direction is drawn as a orange arrow, and
estimated according to the Hough line coordinate of the blade edge, which is marked by the yellow

arrow. The tip edge is marked by a red arrow, which flags that the blade tip is reached, thus the heading
is flipped to manouver the virtual drone back to the root.

CHAPTER 5. MANOUVERING PLAN 101

5.11.3 Discussion & Comments

The simulations conducted and presented intends to show the feasibility of using the proposed

manouvering solution, and it is shown that the heading is accurately estimated to follow the di-

rection of the blade, regardless of orientation, scale or wether one or more edges of the blade is

detected. Moreover, the proposed regulation scheme of following a single edge solves the issue

of keeping a maximized portion of the blade in view, which is beneficial for both inspection pur-

poses and the manouvering scheme. Finally, simulations of blade tip detection were conducted

and presented to show how the tip is easily detected by considering that the tip edge is detected

in the perpendicular direction of heading. The simulations shows that the tip may be accurately

detected when it is big enough to be detected by multiple boundary points. Additionally, it was

mentioned that the consequences of detecting a spiked tip is that only one boundary point will

be detected at the tip, thus the Hough line representation of the tip will be invalid. However,

such an issue does not change the outcome of signalling that the tip is detected, so the drone

will be manouvered back to the root of the blade, regardless of the tip scale. It should also be

noted that the HAWT blade design, as discussed in chapter 3, illustrates a round tip which is

notably similar to the blade tip used in the simulations.

Chapter 6

Kalman Filter

The Kalman filter is a recursive filtration algorithm which aims to remove white noise and col-

ored noise of a linear or nonlinear system [11, p. 296], while estimating a least-square optimal

estimate of the present state vector [6, p. 141]. The computer vision system may fail occasionally

on estimating a navigation path due to unexpected loss of features which can lead to inaccurate

detection of blade edges. The Kalman filter is therefore a suitable tool for fault recovery by pre-

dicting a navigation path based on prior path estimations. Moreover, the Kalman filter solves the

issue of inconsistent path estimation, which may be a result of disturbances to the movements

of the drone. The Kalman filter is therefore briefly reviewed by considering a linear discrete-time

Kalman filter [6, p. 143], although it is not implemented in the program following this thesis.

6.1 Literature Review of the Kalman Filter

First of all, the Kalman filter considers a linear system as follows in equation (6.1). xk is the

system state vector with corresponding state transition matrixΦk , uk is the control input vector

with corresponding control input model Gk and wk is the process noise.

xk+1 =Φk xk +Gk uk +wk (6.1)

Moreover, the observation of the system is modelled by the linear model in equation (6.2),

where zk is the measurement vector. Hk is the matrix connecting the state vector to the mea-

102

CHAPTER 6. KALMAN FILTER 103

surement vector, while vk is the measurement noise.

zk = Hk +vk (6.2)

The measurement noise and process noise are considered as independent white noise, and

modelled by the process covariance matrix Qk and measurement covariance matrix Rk , respec-

tively.

The Kalman filter computes the following steps in sequence, as depicted by equation (6.3)

to (6.7) [6, p. 147], during each iteration. An estimate is depicted with a hat, and with a possible

"super minus" noting that this is the best estimate so far [6, p. 144]. Moreover, the first iteration

starts with initial prior state estimate x̂−
0 with corresponding error covariance P̂−

0 .

1. Compute Kalman gain:

Kk = P−
k H>

k (Hk P−
k H>

k +Rk)−1 (6.3)

2. Update estimate with measurement zk :

x̂k = x̂−
k +Kk (zk −Hk x̂−

k) (6.4)

3. Compute error covariance for updated estimate:

Pk = (I−Kk Hk)P−
k (6.5)

4. Compute predictions of states and error covariance:

x̂−
k+1 =Φk x̂k (6.6)

P−
k+1 =Φk PkΦ

>
k +Qk (6.7)

It should be noted that the Kalman filter estimate may have to be ignored when the UAV

must follow a path which deviates strongly from prior estimates, such as following a path to

locate a lost blade edge.

Chapter 7

Program Design & Hardware

This chapter reviews program design and selected hardware for implementing the methods dis-

cussed in the previous chapters.

7.1 Program Design

The program is designed as a master/slave system, whereas the master is connected to the left

camera and the slave is connected to the right camera. In general, the master controls all as-

pects of the program, such as triggering the cameras to capture new frames and commanding

slave to retrieve a captured frame from its respective camera. Moreover, master and slave will

be given static IP addresses so that they may be connected using TCP on a local ethernet net-

work connected through a switch. The Transmission Control Protocol (TCP) was chosen due

to its reliability, which is critical for sustaining a reliable master/slave communication. Figure

7.1 illustrates necessary hardware and how they are connected, whereas the trigger wires for the

laser and cameras are connected to the master device so that the cameras are triggered simulta-

neously, and with or without the laser turned on. The laser contains a diffractive lens that splits

the laser beam into laser spots, creating a dot matrix designed structured light.

104

CHAPTER 7. PROGRAM DESIGN & HARDWARE 105

Figure 7.1: Hardware connections. Trigger wires to the cameras are blue colored, while the trig-
ger wire to the laser is yellow.

The main objective of the program is to handle the master/slave system and compute an es-

timated distance to the object in view, as well as detecting the edges of the object to estimate a

heading to follow. Figure 7.2 illustrates the program flow between the master and slave, whereas

the master follows a sequential flow while the slave interactively acts on requests from master.

As an example, the master starts the main program flow by requesting slave to capture two new

frames, with and without structured light patterns. The slave acts on the request and initiates

a separate flow to capture frames from its respective camera. However, the slave will be wait-

ing for the camera to capture a frame, which is triggered by the master, forcing the cameras to

capture the frames simultaneously. The master continues to trigger the cameras, and captures a

frame from its respective camera, until it continues to turn on the laser to capture the next frame

with structured light patterns. Next step involves processing the frames to compute keypoints,

as mentioned in section 2.5, which is done simultaneously by both the slave and master. The

slave saves the keypoints locally so that the master may request the keypoints when it is ready.

However, the master will receive a wait response if the slave is not finished computing the key-

points, or even a failure response if it failed detecting any keypoints. The benefit of this program

flow is that the master and slave shares some of the work load by computing keypoints simulta-

neously. Additionally, it is drastically more efficient to send a payload of keypoints instead of a

CHAPTER 7. PROGRAM DESIGN & HARDWARE 106

frame.

Figure 7.2: Activity diagram of the program flow.

CHAPTER 7. PROGRAM DESIGN & HARDWARE 107

Table 7.1: Approximate delay for the respective processing steps.

Process ≈Delay (seconds)

Convert to grayscale 0.05

Downscale 0.05

Undistort 0.05

Compute feature points 0.15

Detect blade edges 0.10

Reconstruct 3D points 0.03

Estimate heading 0.001

Estimated processing delay 0.431

7.2 Computational Delay

It is important to address the computational delay of conducting the main image processing

steps necessary to detect the blade edges, and finally to estimate a heading. Only the image pro-

cessing delays will be considered, thus the time it takes for the camera to capture a frame will

not be considered. Table 7.1 lists the approximate delay for each of the respective processes nec-

essary to estimate a heading according to the blade in view, and the processes were conducted

on an Odroid-XU4 microcontroller, as specified in chapter 7.3.1. It should be noted that the

raw frames are given as colored images with an original shape of 2048×2448, so it is therefore

necessary to first convert the frames to grayscale before downscaling the frames to the standard

shape of 512×612.

CHAPTER 7. PROGRAM DESIGN & HARDWARE 108

7.3 Hardware Overview

This section introduces selected hardware, whereas figure 7.3 shows the resulting implementa-

tion. Moreover, the implementation was built on a simple rig and powered by a 14.8V battery to

make it portable, and the cameras and laser were fixed on a sliding ruler for easily beeing able to

adjust the baseline between the cameras. The laser was positioned next to the cameras due to

lack of space between the cameras, however, it does not change the outcome since the position

of the laser is fixed relative to the cameras.

Figure 7.3: Connected hardware, including a battery and a sliding ruler for testing the stereo
vision system on different baselines.

7.3.1 Microcontroller

The Odroid-XU4 was selected as a suitable microcontroller due to its USB 3.0 and GPU (Graph-

ics Processing Unit) capabilites, which is essential since the cameras are connected through a

USB 3.0 interface and since the GPU drastically accelerates image processing. Moreover, multi-

ple GPIO pin options are accessible for triggering the laser and cameras, and the hardkernel was

installed with the latest Ubuntu 16.04 arm version for Odroid-XU4. More technical details are

summarized in figure 7.4.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825&tab_idx=1

CHAPTER 7. PROGRAM DESIGN & HARDWARE 109

Figure 7.4: Technical details about Odroid-XU4.

7.3.2 Camera

It is especially important that the selected camera has triggering capabilities since frame cap-

turing will be manually controlled. Moreover, it is preferred that the camera provides colored

frames with high resolution so that small cracks may be detected and identified during inspec-

tion. The Chameleon3 camera, supplied by PtGrey, was the appropriate choice since it is de-

signed for computer vision systems and fulfills all the mentioned criterias. Technical details are

summarized in table 7.2.

Table 7.2: Technical details about the Chameleon3 camera.

Chameleon3
Resolution 2448×2048
Pixel size 3.45µm
Optical format 2/3
Sensor size 8.8×6.6mm
Sensor type Color, global shutter, CMOS
Lens mount CS-mount
FPS 35
Interface USB 3.0
Power 5-24V via GPIO or USB 3.0
Dimensions 44×35×19.5mm (case enclosed)
Weight 54.9g

https://www.ptgrey.com/

CHAPTER 7. PROGRAM DESIGN & HARDWARE 110

7.3.3 Lens

A suitable lens must provide a field of view that covers most of a standard HAWT wind blade,

specified by table 3.1, at an appropriate distance. A distance of 3 meters between the blade and

the drone was concluded to be a suitable standard distance. Furthermore, it is important that

the optical format of the lens is bigger, or preferrably equal, to the optical format of the camera,

or else the frames will be cropped accordingly. From the theories presented in section 2.1 and

a maximal blade chord length of 3.5 meters, it was concluded that a 8.5mm fixed focal length

lens is appropriate. The field of view is estimated to be 3105× 2329mm at a focus depth of 3

meters, with the given lens, which should cover most of the respective wind blade. It was also

decided to use a manual iris since it is easy to configure when calibrating the camera. Technical

specifications for the selected lens are summarized in table 7.3. Note that the lens is a C-mount

so it is necessary to use a CS to C mount 5mm spacer adapter to fit it on the Chameleon3 camera.

Table 7.3: Technical details about the 8.5mm Fixed Focal Length Lens.

8.5mm Fixed Focal Length Lens
Focal Length (f) 8.5mm
Aperture f/1.3 - f/16
Min working distance 186mm
Working distance 200mm - inf
Optical format 2/3
Lens mount C-mount
Iris Manual

7.3.4 Laser

The main objective of the laser is to project structured light as a dot matrix of feature points.

Moreover, it is important that the fan angle of the laser is big enough for the dot matrix to cover

the field of view of the cameras. Given the specifications, it was decided to use the 3D PRO Laser

Mini Green supplied by prophotonix. A fan angle of 60◦ was found to be optimal, however, it

was not possible to combine this fan angle with a dot matrix diffraction option, so a laser with

an 11×11 dot matrix diffraction option and a 28.2◦ fan angle had to be selected. Additionally, the

laser is supplied with TTL modulation which means it is controlled by a digital high/low GPIO

pin.

https://www.edmundoptics.com/imaging-lenses/fixed-focal-length-lenses/8.5mm-fixed-focal-length-lens/
https://www.edmundoptics.com/imaging-lenses/fixed-focal-length-lenses/8.5mm-fixed-focal-length-lens/
https://eu.ptgrey.com/cs-to-c-mount-5mm-spacer-adapter-3-eu
http://www.prophotonix.com/products/laser-structured-light/greenstructuredlightlaser.aspx
http://www.prophotonix.com/products/laser-structured-light/greenstructuredlightlaser.aspx
http://www.prophotonix.com/

CHAPTER 7. PROGRAM DESIGN & HARDWARE 111

7.4 Software Overview

The program is written in python, which is a widely used high-level programming language.

It was chosen due to its simplicity and its many open-source package extensions, such as the

numpy package for scientific computation in which the program heavily relies on. Another es-

sential tool is the open-source computer vision library OpenCV. The OpenCV library is written

in optimized c/c++ with a strong focus on real-time applications, and has capabilites of enabling

OpenCL for enabling the GPU to accelerate computation. Additionally, it comes with python

bindings and may be installed on Linux, Mac OS, iOS, Windows and Android.

https://www.python.org/
http://www.numpy.org/
http://opencv.org/

Chapter 8

Summary & Recommendations for Further

Work

8.1 Summary and Conclusions

This report reviews computer vision techniques used to develop a method for segmenting and

detecting wind blade edges, as well as conducting 3D reconstruction of the segmented area.

Additionally, the method is proven to be accurate and computationally efficient for use on real-

time applications. The method represents the blade edges as Hough lines which is utilized to

propose a manouvering solution for following the blade edges from root to tip, and the solution

is proven to be invariant to both rotation and scale while it follows a manouvering scheme to

maximize the blade area in view. Moreover, a simple block matching method is developed to

accurately match corresponding feature points for 3D reconstruction, and all of the methods

are developed using structured light which is of a fixed scale and orientation due to the fixed

relative position of the camera and laser.

The proposed manouvering solution includes solutions for collision avoidance, manouver-

ing of the UAV back to the root region of the blade, and proposes to use the blade design com-

bined with a GPS or sonar to detect the turbine hub. However, these solutions remains to be

implemented and simulated since it was found that they were too complex to implement during

the limited time this thesis was conducted. Moreover, the solution also reviews how to include a

Gimbal to inspect a wind turbine blade from all angles, including how to transform coordinates

112

CHAPTER 8. SUMMARY 113

in the image frame to the body frame.

Finally, the algorithms for the respective methods discussed and developed in this report

are included in the program mentioned in chapter 7, whereas review of relevant hardware is

included.

8.2 Discussion

8.2.1 Structured Light & Accuracy

As mentioned, the methods are developed using structured light designed as a dot matrix, which

enables accurate object segmentation and feature matching. Therefore, it is important to ad-

dress that the structure of the dot matrix determines the accuracy of the respective methods

developed in this report. Given that the laser projects a dot matrix with a fixed fan angle, then

an increasing number of dots in the dot matrix will increase accuracy since neighboring dots will

be closer, thus the accuracy of the segmentation method will improve. However, this comes at

a cost of 3D reconstruction accuracy, as mentioned in the concluding section 2.5.6 about 3D re-

construction, where the baseline is constrained according to the fixed scaling between the dots

in the dot matrix. In short, matching dots in the dot matrix will cross if the object is too close

relative to the baseline length, which will make it nearly impossible to accurately match correct

dots from the left and right dot matrix. It is therefore necessary to consider a tradeoff between

accuracy of object segmentation and 3D reconstruction. Moreover, the optimal tradeoff may

be found by considering a minimum baseline for an acceptable 3D reconstruction error esti-

mate at a given depth range, and then maximizing the number of dots in the dot matrix relative

to the fan angle of the laser projection and the estimated baseline. Additionally, the minimum

distance that can be estimated is found by considering that the maximum disparity will be the

distance between neighboring dots.

8.2.2 Guidance System

The proposed manouvering solution does not fully implement a guidance system, however, it

works as a basis for manouvering along a wind blade. Further development towards a guidance

CHAPTER 8. SUMMARY 114

system may be to use the manouvering solution as a model combined with a Lyapunov designed

controller and integrater backstepping, see Fossen [11, p. 457], or a PID controller to stabilize the

navigation. Additionally, the guidance system will need to address real-time decision making on

several issues that will occur during the navigation along the respective wind blade. First of all,

the manouvering system offers a solution for accurately estimating a heading towards either the

tip or root of the blade, but the guidance system needs know in which direction the tip is relative

to the turbine hub, thus deciding which way to rotate the heading.

8.2.3 Wind Blade Inspection

The purpose of this report is to address the issue of autonomous inspection of wind turbines,

with a focus on inspecting the wind blades. It is therefore essential that the camera captures

images of highest possible resolution and quality, to ensure that all details of the blade are cap-

tured. It should also be noted that the manouvering solution maximizes the view of the blade

if only a single edge of the blade is in view, which is crucial for beeing able to record the whole

area of the blade. However, it will be impossible to get recordings of the whole blade if the drone

is too close, thus the guidance system must be set to keep a distance to the blade so that at

least half the blade will be in view during the whole inspection. This distance may be found by

considering the maximum chord length of the respective blade.

Depth of Field

As described in section 2.1.1, the depth of field depends on the aperture and focal length, which

means the lens must be adjusted to the respective distance to the blade to avoid blurred images.

However, the distortion coefficients changes relative to the intrinsic values of the camera, thus it

also depends on the aperture and focal length. This report uses a fixed focal length lens and the

aperture was fixed close to the pin hole model to avoid blurring regardless of depth of field, so

the calibration had to be commenced ones for the fixed intrinsic parameters. Implementing a

lens with auto-iris, which enables automatic control of the aperture, requires a set of calibration

samples in response to the aperture size to conduct undistortion according to the changing

intrinsic parameters. However, it is recommended to avoid this issue by using a manual iris,

as this report does, and to adjust the aperture close to the pin hole model. Additionally, it is

CHAPTER 8. SUMMARY 115

considered that it will be quite bright when inspecting a windmill during the day, thus a small

aperture should not pose a problem since required exposure time will be low.

Localizing Cracks & Defects

Cracks and defects on the blade should be located according to where they are detected on

the blade, meaning it would be preferable to map current position of the UAV with each image

frame. Unfortunately, the approach proposed in this report infer that the system will navigate in

real-time by estimating next manouver from each image frame until next goal is reached, which

is either the tip or root region of the blade, without considering the current position of the UAV

on the blade. In practice, this means that it will be difficult to map the location on the blade to

each image, since the system only considers the current image frame. An alternative approach

is to consider a model of the blade, which the UAV follows, hence knowing its current location

on the blade at all times. However, this requires an exact model of the blade so that the guidance

system is able to compute the direction to follow along the blade. Moreover, the blade does not

have distinct feature points, except from a decreasing chord length proportionally closer to the

tip region, which is necessary if the guidance system follows a model of the blade. Therefore, it

is considerably easier to follow the blade edges until a simple and fixed goal is reached, which in

this case is the tip- and root region of the blade. Still, localizing an image frame to an estimated

position on the blade can be achieved by estimating the travelled distance using a GPS or simply

deriving the distance based on known elapsed time and travel speed. The latter approach is

feasible since the blade is considerably straight from root to tip.

Moreover, automatic identification of cracks and defects may drastically decrease inspection

time, instead of manually going through the recordings. This is also beneficial for beeing able

to automatically detect wether a crack has changed during a given period of time. Cracks and

defects may be detected using rotational- and scale invariant feature detection methods, such as

SIFT, or by conducting line detection with an edge linking method. Moreover, machine learning

is essential for identifying different types of cracks and defects, whereas a typical solution would

be the ’bag-of-words’ model [27] which quantizises a set of feature points by clustering to match

the features with words or keys. A machine learning approach was proposed by Zhang [53] to

recognize and classify cracks and defects on wind blades. The report concludes on using a line

CHAPTER 8. SUMMARY 116

detection method and edge linking techniques to recognize cracks, while using a self-learning

mechanism to identify and classify the cracks automatically.

8.2.4 Segmentation & Detection of Arbitrary Objects

As mentioned in section 4.3, the blade detection method developed in this report may also be

used to detect a wide range of different objects, such as the windmill tower or the turbine hub.

Moreover, the turbine hub will be detected by the segmentation method as presented in this

report, although it will be represented as a rectangle of Hough transformed lines. As mentioned

in section 4.3, the segmentation method may be adjusted to detect any type of shape which can

be represented in the Hough parameter space, whereas the turbine hub can be detected as an

ellipse using an elliptical Hough transformation, see Ballard [4, p. 113]. Moreover, the benefits

of using this segmentation method is that the object is efficiently segmented using a small set of

boundary points which minimizes the computational delay of the Hough transformation, while

improving accuracy since the voting stage is limited to the peak points of the respective bound-

ary points. Additionally, this method can be used to detect road signs, flag poles or building

corners, whereas the manouvering solution also can be adopted to follow the respective struc-

tures.

8.3 Recommendations for Further Work

Short-term

This report concludes on a blade detecting and manouvering solution, without implementing

a Gimbal, GPS or possibly a sonar. These devices are necessary to implement to continue sim-

ulations for rotating the camera frame according to the manouvering, and to test wether it is

possible to detect the root region of the blade by recognizing a rapidly decreasing chord length

or by using a GPS or sonar to detect the distance to the turbine hub, as discussed in section 5.9.

Moreover, it is important to address the response of the proposed collision avoidance system,

as discussed in section 5.10, which depends on accurate 3D reconstruction of feature points.

CHAPTER 8. SUMMARY 117

Medium-term

Recommendations for future work in the medium-term is to develop a guidance system that

utilizes the manouvering solution developed in this report combined with a suitable controller

to stabilize the navigation. Moreover, each recorded frame must be mapped according to the

time and position of the respective recording to address the issue of localizing cracks and defects

along the blade.

Long-term

Future work in the long term should address a solution of inspecting the whole windmill. This

includes combining the work of Stokkeland et al. [50] with this solution, and developing a solu-

tion for inspecting the turbine hub and navigating towards the initial position in the root region

of the wind blade. Additionally, more research and development on how the UAV will manouver

towards the next blade needs to be addressed.

Appendix A

Acronyms

UAV Unmanned Aerial Vehicle

HT Hough Transform

PPHT Progessive Probabilistic Hough Transform

SSD Sum Of Squares Difference

HAWT Horizontal Axis Wind Turbines

FLANN Fast Library for Approximate Nearest Neighbors

SIFT Scale Invariant Feature Transform

DoG Difference-of-Gaussian

118

Appendix B

Glossaries

Occlusion Occlusion occurs when some elements cannot be shown due to some error. In the

terms of stereopsis, occlusion occurs when an element is present in the first image, but

not in the second.

Image features Image features are local, meaningful and detectable parts of the image [51, p.

68].

Focal length Focal length of a lens is the distance between the lens and image sensor.

Disparity Difference in retinal position between corresponding elements in two images.

Baseline distance Displacement between the center of projection of two cameras.

Stereopsis Depth perception, computed by a stereo vision system.

Stereo vision The ability to infer information on the 3-D structure and distance of a scene from

two or more images taken from different viewpoints [51, p. 140]

Parallax Change in relative angular displacement of correlated image points across different

camera frames.

Epipolar Geometry Geometry of stereo.

Extrinsic parameters The parameters that describe the relative position and orientation of two

cameras.

119

APPENDIX B. GLOSSARIES 120

Intrinsic parameters The transformation mapping from an image point to pixel coordinates.

Coplanar vectors Vectors parallel to the same plane, or lie on the same plane.

Lambertian reflectance Surface points appear equally bright from any view point.

Bibliography

[1] (2011). Automated Turbine Inspection. http://www.windsystemsmag.com/media/pdfs/

Articles/2011_Oct/1011_AutoCopter.pdf. Last accessed: 2016-12-07.

[2] (2016). Operational and Maintenance Costs for Wind Turbines. http://www.

windmeasurementinternational.com/wind-turbines/om-turbines.php. Last accessed:

2016-12-07.

[3] (2016). Wind Turbine Inspection (Aerialtronics). http://www.aerialtronics.com/

applications/inspection/wind-turbine-inspection/. Last accessed: 2016-12-07.

[4] Ballard, D. H. (1981). Generalizing The Hough Transform To detect Arbitrary Shapes.

Pattern Recognition, 13:111–122. http://comp-eng.binus.ac.id/files/2012/04/D.H.

-Ballard-Generalizing-the-Hough-Transform-to-Detect-Arbitrary-Shapes1.pdf.

Last accessed: 2016-10-11.

[5] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded Up Robust Features. Proc.

9th European Conference on Computer Vision (ECCV’06) Springer Lecture Notes in Computer

Science 3951, pages 404–417.

[6] Brown, R. G. and Hwang, P. Y. (2012). Introduction to random signals and applied kalman

filtering: with matlab exercises. John Wiley & Sons Ltd.

[7] Danish Wind Industry Association. Rotor aerodynamics. http://xn--drmstrre-64ad.

dk/wp-content/wind/miller/windpower%20web/en/tour/wtrb/rotor.htm. Last ac-

cessed: 2017-01-18.

121

http://www.windsystemsmag.com/media/pdfs/Articles/2011_Oct/1011_AutoCopter.pdf
http://www.windsystemsmag.com/media/pdfs/Articles/2011_Oct/1011_AutoCopter.pdf
http://www.windmeasurementinternational.com/wind-turbines/om-turbines.php
http://www.windmeasurementinternational.com/wind-turbines/om-turbines.php
http://www.aerialtronics.com/applications/inspection/wind-turbine-inspection/
http://www.aerialtronics.com/applications/inspection/wind-turbine-inspection/
http://comp-eng.binus.ac.id/files/2012/04/D.H.-Ballard-Generalizing-the-Hough-Transform-to-Detect-Arbitrary-Shapes1.pdf
http://comp-eng.binus.ac.id/files/2012/04/D.H.-Ballard-Generalizing-the-Hough-Transform-to-Detect-Arbitrary-Shapes1.pdf
http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/wtrb/rotor.htm
http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/wtrb/rotor.htm

BIBLIOGRAPHY 122

[8] Derpanis, K. G. and Hart, P. E. (2004). The Harris Corner Detector. http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.482.1724&rep=rep1&type=pdf. Last accessed:

2016-10-11.

[9] Duda, R. O. and Hart, P. E. (1971). Use Of The Hough Transformation To Detect Lines And

Curves In Pictures. Comm. ACM., 15:11–15. http://www.dtic.mil/dtic/tr/fulltext/

u2/a457992.pdf. Last accessed: 2016-10-11.

[10] Fisher, R., Perkins, S., Walker, A., and Wolfart, E. (2003). Gaussian Smoothing. http://

homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth_htm. Last accessed: 2016-10-11.

[11] Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John

Wiley & Sons Ltd.

[12] Frank (2006). Probabilistic Hough Transform. http://phdfb1.free.fr/robot/

mscthesis/node14.html. Last accessed: 2016-10-11.

[13] Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in Optics and

Photonics, 3:128–160.)doi:10.1364/AOP.3.0001281943-8206/11/020128-33. Last ac-

cessed: 2017-03-28.

[14] Harris, C. and Stephens, M. (1988). A Combined Corner And Edge Detec-

tor. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.4816&rep=

rep1&type=pdf. Last accessed: 2016-10-11.

[15] Hartley, R. and Zisserman, A. (2004). Multiple View Geometry.

[16] Heggem, H. E. (2016). Autonomous Wind Blade Inspection - Project Thesis.

[17] Høglund, S. (2014). Autonomous Inspection of Wind Turbines and Buildings using an UAV.

https://brage.bibsys.no/xmlui/handle/11250/261286. Last accessed: 2016-10-21.

[18] Kaspers, A. Blob Detection. Biomedical Image Sciences, Image Sciences Institute, UMC

Utrecht.

[19] Kemao, Q. (2016a). Image Enhancement In The Frequency Domain, Course slides - com-

puter vision CZ4003, NTU.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.482.1724&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.482.1724&rep=rep1&type=pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a457992.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a457992.pdf
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth_htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth_htm
http://phdfb1.free.fr/robot/mscthesis/node14.html
http://phdfb1.free.fr/robot/mscthesis/node14.html
) doi:10.1364/AOP.3.000128 1943-8206/11/020128-33
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.4816&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.4816&rep=rep1&type=pdf
https://brage.bibsys.no/xmlui/handle/11250/261286

BIBLIOGRAPHY 123

[20] Kemao, Q. (2016b). Image Enhancement In The Spatial Domain, Course slides - computer

vision CZ4003, NTU.

[21] Kemao, Q. (2016c). Imaging and Camera Systems, Course slides - computer vision CZ4003,

NTU.

[22] Kemao, Q. (2016d). Imaging Geometry, Course slides - computer vision CZ4003, NTU.

[23] Kiryati, N., Eldar, Y., and Bruckstein, A. M. (1991). A Probabilistic Hough Transform. Pattern

Recognition, 24:303–316. http://www.cs.technion.ac.il/FREDDY/papers/39.pdf. Last

accessed: 2016-10-11.

[24] Kong, W.-K. A. (2016a). 3D Stereo Vision, Course slides - computer vision CZ4003, NTU.

[25] Kong, W.-K. A. (2016b). Image Edge Processing, Course slides - computer vision CZ4003,

NTU.

[26] Kong, W.-K. A. (2016c). Image Region Processing, Course slides - computer vision CZ4003,

NTU.

[27] Kong, W.-K. A. (2016d). Object Recognition - Part II, Course slides - computer vision

CZ4003, NTU.

[28] Lindeberg, T. (1993). Detecting salient blob-like image structures and their scales with a

scale-space primal sketch: A method for focus-of-attention.

[29] Lindeberg, T. (1994). Scale-space theory: A basic tool for analysing structures at different

scales.

[30] Lindeberg, T. (2012). Scale Invariant Feature Transform. 7(5):10491. revision #153939.

[31] Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proc. of the

International Conference on Computer Vision, Corfu (Sept. 1999), pages 1150–1157.

[32] Macdonald, I. (2016). Probabilistic Hough Transform. http://homepages.inf.ed.ac.

uk/rbf/CVonline/LOCAL_COPIES/AV1011/macdonald.pdf. Last accessed: 2016-10-11.

http://www.cs.technion.ac.il/FREDDY/papers/39.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/macdonald.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/macdonald.pdf

BIBLIOGRAPHY 124

[33] Marghany, M., Tahar, M. R. B. M., and Hashim, M. (2011). 3D Stereo Reconstruc-

tion Using Sum Square Of Difference Matching Algorithm. Academic Journals, 6:6404–

6423. http://www.academicjournals.org/article/article1380810673_Marghany%

20et%20al.pdf. Last accessed: 2016-10-12.

[34] Matas, J., Galambos, C., and Kittler, J. (1998). Progressive Probabilistic Hough Transform.

ftp://147.32.84.2/pub/cvl/articles/matas/matas-bmvc98.pdf. Last accessed: 2016-

10-11.

[35] Muja, M. and Lowe, D. G. (2009). Fast Approximate Nearest Neighbors with Automatic

Algorithm Configuration. pages 331–340.

[36] OpenCV, D. T. (2015). Introduction to SIFT (Scale-Invariant Feature Transform). http://

docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html. Last accessed: 2017-

03-23.

[37] OpenCV, D. T. (2016a). Depth Map From Stereo Images. http://

opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/

py_depthmap/py_depthmap.html#py-depthmap. Last accessed: 2016-10-12.

[38] OpenCV, D. T. (2016b). Epipolar Geometry. http://opencv-python-tutroals.

readthedocs.io/en/latest/py_tutorials/py_calib3d/py_epipolar_geometry/py_

epipolar_geometry.html. Last accessed: 2016-10-12.

[39] OpenCV, D. T. (2016c). Harris Corner Detector. http://docs.opencv.org/2.4/doc/

tutorials/features2d/trackingmotion/harris_detector/harris_detector.html.

Last accessed: 2016-10-11.

[40] OpenCV, D. T. (2016d). Image Pyramids. http://docs.opencv.org/2.4/doc/

tutorials/imgproc/pyramids/pyramids.html. Last accessed: 2016-10-11.

[41] OpenCV, D. T. (2016e). openCV. http://opencv.org/. Last accessed: 2016-12-14.

[42] OpenCV, D. T. (2017). Simple Blob Detector. http://docs.opencv.org/trunk/d0/d7a/

classcv_1_1SimpleBlobDetector.html#details. Last accessed: 2017-03-29.

http://www.academicjournals.org/article/article1380810673_Marghany%20et%20al.pdf
http://www.academicjournals.org/article/article1380810673_Marghany%20et%20al.pdf
ftp://147.32.84.2/pub/cvl/articles/matas/matas-bmvc98.pdf
http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html#py-depthmap
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html#py-depthmap
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html#py-depthmap
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_epipolar_geometry/py_epipolar_geometry.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_epipolar_geometry/py_epipolar_geometry.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_epipolar_geometry/py_epipolar_geometry.html
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/pyramids/pyramids.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/pyramids/pyramids.html
http://opencv.org/
http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleBlobDetector.html#details
http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleBlobDetector.html#details

BIBLIOGRAPHY 125

[43] Project, S. E. (2006). Gaussian Pyramid Generation. http://sepwww.stanford.edu/

data/media/public/docs/sep124/ssen1/paper_html/node3.html. Last accessed: 2016-

10-11.

[44] Reinforced Plastics (2012). Wind turbine blade production – new products keep pace

as scale increases. Elsevier Ltd, 12:22–29. http://www.materialstoday.com/download/

79552/. Last accessed: 2017-05-30.

[45] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient alternative to

SIFT or SURF . Computer Vision (ICCV), 2011 IEEE International Conference on.

[46] Schäfer, B. E., Picchi, D., Engelhardt, T., and Abel, D. (2016). Multicopter unmanned

aerial vehicle for automated inspection of wind turbines. Pattern Recognition. http://

ieeexplore.ieee.org/abstract/document/7536055/. Last accessed: 2016-12-07.

[47] Schubel, P. J. and Crossley, R. J. (2012). Wind Turbine Blade Design. Energies, 5:3425–3449.

http://www.mdpi.com/1996-1073/5/9/3425/htm. Last accessed: 2017-01-19.

[48] Silpa-Anan, C. and Hartley, R. (2008). Optimised KD-trees for fast image descriptor match-

ing.

[49] Stokkeland, M. (2014). A Computer Vision Approach for Autonomous Wind Turbine In-

spection using a Multicopter. http://www.diva-portal.org/smash/get/diva2:744160/

FULLTEXT01.pdf. Last accessed: 2016-10-21.

[50] Stokkeland, M., Klausen, K., and Johansen, T. A. (2014). Autonomous visual navigation

of unmanned aerial vehicle for wind turbine inspection. http://folk.ntnu.no/torarnj/

inspec.pdf. Last accessed: 2016-10-21.

[51] Trucco, E. and Verri, A. (1998). Introductory Techniques for 3-D Computer Vision. Pearson.

[52] Vestas. Vestas V90 - 2MW. https://www.ledsjovind.se/tolvmanstegen/Vestas%

20V90-2MW.pdf. Last accessed: 2017-01-19.

[53] Zhang, H. (2016). Reducing Uncertainty in Wind Turbine Blade Health Inspection

with Image Processing Techniques. http://www.imse.iastate.edu/files/2014/03/

http://sepwww.stanford.edu/data/media/public/docs/sep124/ssen1/paper_html/node3.html
http://sepwww.stanford.edu/data/media/public/docs/sep124/ssen1/paper_html/node3.html
http://www.materialstoday.com/download/79552/
http://www.materialstoday.com/download/79552/
http://ieeexplore.ieee.org/abstract/document/7536055/
http://ieeexplore.ieee.org/abstract/document/7536055/
http://www.mdpi.com/1996-1073/5/9/3425/htm
http://www.diva-portal.org/smash/get/diva2:744160/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:744160/FULLTEXT01.pdf
http://folk.ntnu.no/torarnj/inspec.pdf
http://folk.ntnu.no/torarnj/inspec.pdf
https://www.ledsjovind.se/tolvmanstegen/Vestas%20V90-2MW.pdf
https://www.ledsjovind.se/tolvmanstegen/Vestas%20V90-2MW.pdf
http://www.imse.iastate.edu/files/2014/03/Zhang-Huiyi-Reducing-Uncertainty-in-Wind-Turbine-Blade-Health-Inspection-with-Image-Processing-Techniques.pdf

BIBLIOGRAPHY 126

Zhang-Huiyi-Reducing-Uncertainty-in-Wind-Turbine-Blade-Health-Inspection-with-Image-Processing-Techniques.

pdf. Last accessed: 2016-12-15.

http://www.imse.iastate.edu/files/2014/03/Zhang-Huiyi-Reducing-Uncertainty-in-Wind-Turbine-Blade-Health-Inspection-with-Image-Processing-Techniques.pdf
http://www.imse.iastate.edu/files/2014/03/Zhang-Huiyi-Reducing-Uncertainty-in-Wind-Turbine-Blade-Health-Inspection-with-Image-Processing-Techniques.pdf
http://www.imse.iastate.edu/files/2014/03/Zhang-Huiyi-Reducing-Uncertainty-in-Wind-Turbine-Blade-Health-Inspection-with-Image-Processing-Techniques.pdf

	Abstract
	Preface
	Introduction
	Background & Motivation
	Literature Survey
	Objectives
	Limitations
	Approach
	Structure of the Report

	Literature Review of Computer Vision
	Camera Systems
	Depth of Field & the Thin Lens Model

	Image Manipulation
	Gaussian Filtering
	Gaussian Pyramid Downsampling

	Edge Processing
	Edge Detection
	The Hough Transform
	Harris Corner Detector

	Stereopsis
	Basic Theory of Stereopsis
	Extrinsic & Intrinsic Matrices
	Undistortion
	Appearance Based Matching
	Feature Based Matching
	Linear Triangulation

	Structured Light
	Blob Detection
	Test Results of Blob Detection
	Feature Matching
	Test Results of Feature Matching
	Test Results of 3D Reconstruction
	Concluding Remarks on 3D Reconstruction

	Wind Blade Properties
	HAWT Wind Blade Design
	Wind Blade Dimensions

	Detecting Blade Edges
	Segmenting the Blade
	Detecting Blade Edges as Hough Lines
	Discussion & Comments

	Manouvering Plan
	Coordinate Frames
	Body Frame
	Camera Frame
	Image Frame
	Windmill Frame

	Detecting the Wind Blades
	Initial Position
	Initialization of the UAV
	Rotating the Camera Frame
	Manouvering Along the Blade
	Detecting the Tip
	Manouvering Back To the Root
	Detecting the Root
	Collision Avoidance
	Simulations of the Manouvering Plan
	Simulations of Blade Manouvering
	Simulations of Blade Tip Detection
	Discussion & Comments

	Kalman Filter
	Literature Review of the Kalman Filter

	Program Design & Hardware
	Program Design
	Computational Delay
	Hardware Overview
	Microcontroller
	Camera
	Lens
	Laser

	Software Overview

	Summary
	Summary and Conclusions
	Discussion
	Structured Light & Accuracy
	Guidance System
	Wind Blade Inspection
	Segmentation & Detection of Arbitrary Objects

	Recommendations for Further Work

	Acronyms
	Glossaries
	Bibliography

