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Summary

Studies have shown that neurons in a mouse’s anterior lateral motor cortex (ALM),
which is a part of the brain related to the planning and the execution of tongue
movements, predict certain movements seconds before they occur (Li et al., [2015)).
This raises the question: how does this so-called preparatory activity in the ALM
translate into commands in other motor-related parts of the brain that eventually
trigger a body movement? To investigate this, we fit lasso penalized logistic regres-
sion models that relate the activity of a neuron to the activity of all other neurons
(in the data set). In addition, the regression models include the effect of a certain
type of stimulus that is given to the mouse, as part of the experiment in which the
data is collected. The estimated regression parameters are then used to estimate a
network of neurons that shows how the neurons are connected to each other, and
hence in effect, visualize the underlying information flow in the ALM. Additionally,
the estimated parameters also show the so-called tuning of a neuron, that is, the
relation between the activity of a neuron and the given stimulus.

The analyses are based on the so-called alm-1 data set, which contains extracel-
lular recordings of neurons of 19 adult mice. The lasso penalized logistic regression
models are fit to data from a single mouse, which revealed that each neuron is
seemingly tuned to a different stimuli. Additionally, in the estimated network of
neurons, constructed by evaluating (family-wise error rate) adjusted p-values con-
trolled at significance level 5%, the so-called fast spiking (FS) neurons seem to be
a central part of the underlying network, as these neurons have the highest amount
of connections compared to so-called pyramidial neurons.
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Glossary

GoodTrials

ALM

correct lick left trials

correct lick right trials

delay epoch

excitatory connection

inhibitory connection

photostimulation

response epoch

sample epoch

session time

A set of trials where the mouse was performing. According
to the documentation (http://crcns.org/files/data/
alm-1/crcns_alm-1_data_description.pdf) of the alm-1
data set, these trials are fit to be analyzed.

Anterior lateral motor cortex. The ALM in a mouse brain
is related to planning directional tongue movements, that
is, left or right licks.

A subset of GoodTrials, where the mouse correctly licked
left.

A subset of GoodTrials, where the mouse correctly licked
right.

The interval in trial time, following the sample epoch, where
the mouse retains/remembers its decision to lick left or
right. A delay epoch lasts on average about 1.5s.

A signal from neuron a to neuron b that increases the
chance of neuron b to fire.

A signal from neuron a to neuron b that decreases the
chance of neuron b to fire.

A method used to inactive targeted types of neurons in the
brain. See|Li et al.| (2015, Methods).

The interval in trial time, following the delay epoch, where
the mouse licks left /right. A response epoch lasts on aver-
age a little over 1s.

The interval in trial time where a stimulus is provided to
the mouse. A sample epoch lasts on average a little over
2s.

The time interval in which the experiment with a single
mouse is conducted, lasting between 1 to 2 h.
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spike train A sequence of event times where a neuron fired during a
finite time interval (0, 7], denoted s1, S2, ..., Sm.

trial time The time interval in which the mouse is provided a stimu-
lus, and its decision to lick left/right is monitored. There
are hundreds of trials in a session, each lasting 5s.
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Chapter 1

Introduction

We begin this chapter with a problem description, explaining why the work in this
thesis is interesting, both from a neuroscientific and a statistical point of view. The
remaining parts of this chapter elaborate on the neuroscientific context relevant for
the analyses in this thesis.

1.1 Problem Description

This thesis focuses on analyzing neural activity in a specific part of the brain
in mice, called the anterior lateral motor cortex (ALM), which is related to the
planning and the execution of movements. Studies have shown that the activity
of neurons in the ALM predicts certain movements seconds before they occur (Li
et al., |2015). A central research question in neuroscience is then how this so-called
preparatory activity in the ALM, translates into movement commands. That is, we
can imagine there is a network of neurons in the ALM were the activity originates,
and then travels to other parts of the brain.

The main goal of our analyses is to estimate this underlying network of neurons.
Simply put, this can be done by modelling the activity of neuron j by the activity
of all the other neurons k # j (in the data set). Additionally, we aim to analyze
the activity of neuron j by a certain type of stimulus that is related to the mouse’s
tongue movements. This will reveal how the neurons in the ALM relate to this
motor-related stimulus. And hopefully, this activity-stimulus analysis will also
show the aforementioned preparatory activity.

Influenced by the work of |Stevenson et al.| (2012) and |Pillow et al.| (2008), we
employ regression models to relate the activity of neuron j to the activity of all
the other neurons k # j, in addition to the effects of the stimulus. Furthermore,
it’s known that the activity of neuron j at time t; is dependent on neuron j’s
own past activity at time ¢, where ¢; < t5. This is not unique to neurons in
the ALM, but rather, a consequence of a neurons anatomy. Hence, the regression
models considered in this thesis relate the activity of neuron j by accounting for
the history of neuron j, the connectivity of neurons k # j, and the motor-related



stimulus. Specifically, we intend to fit lasso penalized logistic regression models.

Contrary to the work of [Stevenson et al.| (2012) and [Pillow et al.| (2008)), we aim
to estimate the underlying network of neurons by finding significant connections
between neurons j and k, by evaluating familiy-wise error rate (FWER) adjusted
p-values. From a statistical point of view, this is an interesting endeavour, since it
is difficult to find the distribution (and hence p-values) of the estimated parameters
from a lasso model. Hence, we look towards a pragmatic solution, called multi-
sample splitting, which is proven by Buhlmann and van de Geer| (2011)) to control
the FWER at a pre-specified level.

1.2 Background in Neuroscience

Neuroscience focuses on studying the nervous system. In this section we give a brief
introduction to some aspects of the nervous system, of which the brain is a central
part. In Section we focus on a specific area of the brain related to movements
of the body. In Sections [1.2.2] [1.2.3] and[1.2.4] we define the neuron, what it means
for a neuron to be active, and how to record that activity, respectively.

1.2.1 Motor cortex

The majority of the processing in the brain takes place on its outermost layer called
the cerebral cortex, which is the familiar wrinkly folded surface. The cerebral cortex
can be divided into roughly four major areas, called lobes. In our case, we focus
on the frontal lobe, which includes (among others) the motor cortex. The motor
cortex is involved in planning and executing voluntary movements
p. 51). Figure shows where the motor cortex is located in the brain, and some
of its important components.

Premotor Primary motor cortex
cortex
g

Primary somatosensory
cortex

Posterior
parietal
cortex

Figure 1.1: The sensorimotor cortex (a combination of motor cortex and somatosen-
sory cortex) in the human brain. The motor cortex is made up of the primary
motor cortex (red), the premotor cortex (orange) and the supplementary motor
area (SMA) (brown). The remaining (green and purple) areas are parts of the
somatosensory cortex. This sketch shows the left hemisphere of the brain.

Source: https://en.wikipedia.org/wiki/Motor_cortex


https://en.wikipedia.org/wiki/Motor_cortex

1.2.2 Neurons

The nervous system is a vast communication network found throughout the whole
body in humans and other vertebrates. The main functional units of the nervous
system are the neurons. These are cells that propagate information by generating
electrical signals, depending on what input signals they receive. That is, the func-
tionality of a neuron is to (i) receive signals, (ii) process these signals, and decide
whether or not this information should be passed along, and (iii) communicate
the resulting signal (if any) to target cells, which could be neighbouring neurons
or some other type of cells such as muscle cells. This functionality is reflected in
the anatomy of a neuron, which is illustrated in Figure The dendrites are the
many branches where a neuron receives input signals. The soma is the body of
the neuron, and this is where the input signals from the dendrites are processed.
The axon is a cable-like structure that carries the signal away from the soma, and
towards the axon terminal, where the signal is eventually communicated to other
cells. Whenever a neuron transmits a signal through its axon, we say that the
neuron fires.

Dendrite

Axon terminal

Nucleus

Figure 1.2: Anatomy of a neuron. The information flow travels from the dendrites
to the axon terminals.

Source: https://en.wikipedia.org/wiki/Neuron

1.2.3 Action Potential and Neural Connections

In animal cells, there’s usually a surplus of negative electrical charge inside the cell,
and a surplus of positive electrical charge outside the cell. This voltage difference
across the cell membrane is called a membrane potential (and has a typical value of
—70mV). For electrically charged cells, such as neurons, this membrane potential
fluctuates over time, as shown in Figure [1.3] First off, this figure shows two im-
portant levels of the membrane potential: a resting potential (shown at —70mV),
which is a baseline potential, and a higher threshold potential (at —55mV). If
enough stimulus is provided to the neuron (at its dendrites), the membrane po-
tential rises above the threshold potential. This causes a chemical chain reaction,
which further raises the membrane potential (depolarization), eventually leading
to an action potential (peak). Overfly simplified, an action potential in the soma
of a neuron causes it to generate and transmit an electrical signal through its
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axon. That is, a neuron is said to fire whenever an action potential (in the soma)
is reached. Right after the action potential is reached, the membrane potential
quickly drops (repolarization), and often undershoots to a value below the resting
potential. During this period, known as the refractory period (which generally lasts
1ms), the proteins in the neuron actively try to recover the membrane potential
back to its resting state. Any stimulus provided to the neuron during this period
will generally not lead to a new action potential.

Action
potential

+
IS
S

Voltage (mV)
)

Jonezuelodad

Failed
initiations!

55 Threshold

70 Resting state

stimulus? Refractory,

period

0 1 2 3 4 5
Time (ms)
Figure 1.3: An illustration of the various stages of the membrane potential, leading

to an action potential (peak). The vertical axis shows the value of the membrane
potential.

Source: https://en.wikipedia.org/wiki/Action_potential

The stimulus provided to a neuron can be signals from other neurons. This type
of signal can either be excitatory or inhibitory. Given that the membrane potential
is at its resting state, an excitatory signal can raise the membrane potential. That
is, if the excitatory signal is strong enough, the membrane potential will rise over
the threshold potential, eventually resulting in the neuron (that received the signal)
to fire. On the other hand, an inhibitory signal will further decrease the membrane
potential (from its resting state), which will lower the chance of the neuron to fire.

Neurons that provide excitatory signals are called principle neurons, while those
that provide inhibitory signals are called interneurons. There are studies that have
tried to estimate the number of connections one would expect between principle
neurons in a given part of the brain (Schroter et al., [2017). (The same is difficult
to study for interneurons, which are smaller in size than principle neurons). An
operating estimate is 5% of the total number of possible (directed) connections.
That is, say there are 10 (principle) neurons in a network. Then, there are 102 —
10 = 90 possible directed connections among these neurons, and we can expect
there to be about 90 - 0.05 = 4.5 directed connections in the underlying network.

Connections between neurons can reveal how the information flows in the un-
derlying physical network of neurons. Consider neurons a and b, where neuron a
transmits signals towards neuron b. However, the signal from neuron a does not
necessary travel straight from neuron a’s axon terminal to neuron b’s dendrites. It
is possible that the signal from a might travel through one or several other neurons
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before it reaches neuron b. Imagine there was a way of monitoring the activity of
both neurons a and b simultaneously. Then, for example, we could observe that
when neuron a fires, so does neuron b, and it does so rather immediately. That is,
neuron a seems to provide an excitatory signal to neuron b, since neuron b fires al-
most immediately after neuron a has fired. Figure shows conceptually how the
activity of neuron a can affect the activity of neuron b, where the z-axis shows the
time since neuron a fired, called lag. This figure illustrates an example where the
most recent activity of neuron a excites neuron b, while earlier activity of neuron
a inhibits neuron b. Moreover, Figure [I.4] shows that the lag can be divided into
three intervals, where the numbers on the lag-axis are based on a consensus in the
neuroscience community. These intervals describe the underlying physical pathway
on which the signal from neuron a travels to reach neuron b.

common connection The effect in the interval from 0 to 3ms can be at-
tributed to a third (unobserved) neuron, say neuron ¢, which may have a phys-
ical connection to both neurons a and b. That is, the so-called connectivity
effect seen in this interval may actually originate from neuron ¢, which excites
both neurons a and b simultaneously.

direct connection The effect from 3 to 15ms can be understood as a direct
path between neurons a and b in the traditional sense. That is, the effect seen
in this interval actually originated in neuron a and reach neuron b directly.

indirect connection The effect from 15 to 100 ms is usually understood as
activity that originated at neuron a, that traveled through one (or several)
other neuron(s) before reaching neuron b.

Directed connection from neuron a to neuron b

Firing rate common
neuron b m direct
m indirect
baseline —{ 15
3 lag (ms)

Figure 1.4: A conceptual plot of a so-called connectivity effect. The effect in the
three intervals 0 to 3ms, 3 to 15ms and 15 to 100 ms is attributed to a common,
direct and indirect connection from neuron a to neuron b, respectively. The y-axis
is the so-called firing rate of neuron b, which represents how often neuron b fires.
The baseline represents neurons b’s average background firing rate. The z-axis is
the time since neuron a fired.



1.2.4 Recording Neural Activity

In general, the activity of neurons can be recorded by so-called multielectrode
arrays (MEAs), which are devices that contain multiple electrodes/channels from
which neural activity can be detected. Essentially, whenever a neuron transmits an
electrical signal through its axon, there is a change in voltage in its extracellular
(meaning “outside the cell”) environment. An MEA is able to detect this voltage
change, and hence, making it possible to detect when a neuron fires.

There are two classes of MAEs: implantable and non-implantable. Using im-
plantable MAEs, it is possible to conduct so-called in vivo experiments, that is,
experiments on living animals. An example of such an implantable MAE is shown
in Figure This MAE has dimension 8 x 4, that is, there are 32 electrodes/chan-
nels that can record the neural activity in the area where this MAE is implanted.

[

TIP DETAIL

(max

4200 pm?

5mm

1000 pm

-

Adx8-5mm-100-400-177

\ 400 pm
' 1200 pm

Figure 1.5: An implantable MAE. This is a silicon probe of type
A4x8-5mm-100-200-177 manufactured by NeuroNexus. The white dots are the
electrodes/channels that record the neural activity.

Source: NeuroNexus’ 2016 product catalog page 106. http://neuronexus.com/images/
Catalogs/2016_NeuroNexusCatalog_Web_20160115.pdf
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1.3 The alm-1 Data Set

In this section we describe the so-called alm-1 data setE| underlying the analyses
in this thesis. This data set contains extracellular recordings from anterior lateral
motor cortex (ALM) neurons of adult mice performing a tactile decision behaviour.
There are two dimensions to the alm-1 data set, a behavioural dimension and a
neural dimension, both of which are described in Section Section [1.3.2] gives
a quick overview of the data set. However, we begin with Section with some
background on why this type of data is interesting. For more details than provided
in this section, see Li et al.| (2015, Methods).

1.3.1 Motivation

As mentioned in Section[I.2.1] the motor cortex is crucial for planning and execut-
ing movements. |Li et al.| (2015]) report that neurons in the premotor cortex display
preparatory activity that predict specific movements. That is, neurons in the pre-
motor cortex are seen to be active long before a specific movement actually occurs.
A central research question is then how this preparatory activity translates into
commands in the motor centers that eventually trigger a movement. Furthermore,
the authors mention that studies have shown that damage to the premotor cortex
on one side of the brain causes a disruption in movements in the contra-lateral
space. That is, there is some relation between which hemisphere of the brain dis-
plays activity in the premotor cortex, and which side of the body the movement
occurs.

The ALM in a mouse brain is related to planning directional tongue movements,
that is, left or right licks. Similar to the premotor cortex, a large proportion of neu-
rons in the ALM display preparatory activity predicting movements. Furthermore,
inactivating the ALM (through so-called photostimulation) on one hemisphere dur-
ing movement planning, causes disruption in upcoming events in the contra-lateral
space. Hence, the ALM in mouse brains can roughly be understood as the premotor
cortex in human brains.

Focusing on how the information flows in the ALM, two types of neurons were
recorded in these experiments: intratelencephalic neurons and pyramidial tract
neurons. The former type of neuron projects to (that is, sends signals to) other
cortical areas in the brain, while the latter projects out of the cortex and into
motor-related areas in the brainstem. Thus, pyramidial tract neurons are at the
output end of the network of neurons in the ALM.

1.3.2 Data Structure

The complete data set contains behavioural and neural data from 19 mice. Ex-
periments on each of these 19 mice are done independently. However, each mouse
undergoes the same experimental procedure over 3-8 consecutive days, called ses-
stons. Each session lasts between 1 to 2 hours, and consists of several trials. In each

IThe alm-1 data set is provided by Nuo Li, from the lab of Karel Svaboda at Jalia Farm, and
is available for download at http://crcns.org/data-sets/motor-cortex/alm-1.


http://crcns.org/data-sets/motor-cortex/alm-1

trial, the mouse is instructed to carry out some tactile decision (explained in more
detail in Section . These trial-wise decisions are recorded, along with the
mouse’s neural activity over the entire session. This neural activity is represented
as time stamps (in session time) whenever each identified neuron in the ALM is
active (that is, whenever it fires).

This data structure is conceptualized in Figure This figure shows that the
trials are of fixed length (each trial lasts 5, which we’ve seen in the data set), and
that between successive trials, there is a gap of several seconds (perhaps used by
the experimenter to initialize any experimental conditions). Since the activity of
the neurons is recorded during the whole session time, some of the activity happens
during a trial, while some happens in-between trials. We’ve chosen to ignore the
activity that happens in-between trials. That is, our analyses are based on activity
that falls within the 5s long trials, which correspond to the time-stamps illustrated
by the thick vertical lines in Figure [I.0]

See Appendix for a summary of the number of sessions, trials and neurons
for each of the 19 mice in the alm-1 data set.

‘ Session 1 ‘ ‘ Session 2 ‘ ‘ Session 3 ‘

Newon1 Il | L L

Neuron N | I I I I ‘ ‘

Trials o | | | |

Session time |

Figure 1.6: Structure of the alm-1 data set. In this scenario, Mouse 1 has three
sessions, in which there are recordings of N neurons (a different number in each
session). The vertical lines for each neuron represent the time-stamp (in session
time) when that neuron was active. The thicker time-stamps represents activity
that happens during trials (included in our analyses), while the thinner time-stamps
represents activity outside trials (ignored in our analyses).

1.3.3 Experimental Methods

Behavioural Dimension Each trial has a fixed structure, composed of a so-
called sample epoch, a delay epoch and a response epoch. A stimulus is provided
to the mouse in the sample epoch, in the form of a metal pole, which the mouse



can feel with its whiskers. This pole can appear at two locations, and the mouse is
trained (prior to the experiment) to give a physical response depending on the pole’s
location. This physical response is in the form of two distinct tongue movements:
a left lick and a right lick, each corresponding to a specific pole location. That is,
the mouse receives a distinct stimulus in the sample epoch, and makes a decision
whether to lick left or to lick right. Right before the delay epoch, the pole is
retracted, and the mouse is supposed to remember its decision (to lick left or right).
An auditory cue marks the start of the response epoch, which informs the mouse
that it’s time to give a response based on the stimulus provided earlier. That is, the
left or right lick happens during the response epoch. This trial structure is shown
in Figure In addition, this figure shows that the sample and the delay epochs
last 1.3s each. We’ve observed that this varies somewhat across trials, however,
the total length of the trial is exactly 5s (for all trials).

Trials are distinguished based on the mouse’s performance. According to the
documentationﬂ accompanying the data set, only trials where the mouse is perform-
ing should be analyzed. These trials are termed GoodTrials. In these so-called
GoodTrials, there is a subset of trials where the mouse gives a correct response.
That is, this subset of correct trials are trials where the pole was at a location
corresponding to, say, a left lick, and the mouse in fact responded with a left lick.
Hence, these correct trials can be divided into two disjoint sets, called correct lick
left trials and correct lick right trials.

Sample Delay Response

Pole .
Position ; : :
Cue : : H

1.3s 1.3s

Figure 1.7: Trial structure. This figure is copied from [Li et al. (2015, p. 52).

Neural Dimension The neural activity is recorded using the 8 x 4 silicon probe
shown earlier in Figure [I.5] This probe was implanted in the ALM by performing
a craniotomy (a surgical operation that removes a part of the scull to access the
brain) on the mouse one day before the first session. An actual example of the 8 x 4
grid of electrodes/channels on which the neurons are recorded is shown in Figure
1.8l Whenever a neuron fires, the change in electrical charge in its extracellular
environment is measured at the blue dots of this figure, as described in Section
This activity is then stored as a time-stamp (illustrated as vertical lines in
Figure .

Furthermore, the plots in Figure [I.8 show how the neurons are located relative
to each other in two-dimensional space in the ALM, which might be of importance

2 Available at http://crcns.org/files/data/alm-1/crcns_alm—1_data_description.pdf!
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when we aim to estimate the underlying network of neurons in Chapter[7} Note that
several neurons have been recorded on the same electrode/channel. The numbers
displayed in these plots are arbitrary labels used to distinguish between neurons
within a session. That is, neuron j in session 1 is not the same as neuron j in
session 2. Also, it is not a given that an electrode/channel records the same neuron
over several sessions. For example, although neurons 12, 3 and 10 in sessions 1, 2
and 3 appear to be at the same location, they might not represent the same neuron.
This is because the implanted probe might have moved between sessions. Finally,
we note that neuron 15 in session 2 has been recorded at two different locations
(both at top row at third column, and at third row at second column). It is unclear
why this is the case.

Session 1 Session 2 Session 3
14+ 16 e1l 344 ol .9 .4 2415 . .12 .8
.19 .12 .5 . . .3 . . 10 . . 10
134 15 «6 20425 .6 1e15 . . . . e+ 15467
21430 . 709 . . 57 .14 . 209 11
17+ 18 . 8410 2642728 . . . .11 3.4
2242324 . . 2429 .8 . .16 .12

.13

Figure 1.8: The recorded neurons on the 8 x 4 silicon probe. These are sessions
20130701, 20130702 and 20130703 from mouse ANM210861, where there were iden-
tified a total of 30, 16 and 12 neurons, respectively. Each blue dot represents an
electrode/channel on the probe where neural activity can be detected. The num-
bers are neuron labels, chosen arbitrary to distinguish neurons within a session.

1.4 Outline

In Chapter [2[ we present the generalized linear model (GLM) framework, which
lays the foundation for the regularized regression models, specifically the lasso,
presented in Chapter @] Chapter [3]discusses challenges related to multiple hypoth-
esis testing, which is relevant for the multi-sample splitting procedure explained in
Section [4.6] which is the main method of inference considered for the parameters
of the lasso penalized regression model. In Chapter [5| we present additive mod-
els, which enables us to model non-linear effects in the predictors, central to our
analyses. Chapters [ and 5] complete Part [[] of this thesis.

Part [[I] of this thesis begins with Chapter [0 where we specify the regression
models considered in our analyses. The main results are presented in Chapter [7}
Chapter [8] concludes this thesis with a discussion and a conclusion.

10



Part 1

Statistical Models and
Methods

11



Chapter 2

The Generalized Linear
Model

In this chapter we introduce the generalized linear model (GLM), of which logistic
regression is a special case. We also present the iteratively re-weighted least squares
(IWLS) algorithm, which is a method to find the maximum likelihood estimates
(MLEs) of a GLM. Furthermore, we briefly discuss aspects of model selection such
as the deviance, the Akaike information criterion (AIC) and deviance residuals.
We also consider hypothesis tests for the regression parameters such as the Wald
test and the likelihood ratio (LR) test.

2.1 The GLM-framework

In short, the GLM consists of three elements (i) a probability distribution from the
exponential family (ii) a linear predictor 7 (iii) and a link function g that connects
the mean of the probability distribution to the linear predictor. In the following
we elaborate on each of these elements.

Consider n independent observations v, ..., yn, where y; is treated as a realisa-
tion of a random variable Y;. Assume that Y; has a probability distribution from
the exponential family, that is

where 6; is the (one dimensional) parameter of the family, and ¢ is called the dis-

persion parameter. These parameters are essentially location and scale parameters,

respectively. The probability distribution function can be expressed as (McCullagh
and Nelder;, [1989] p. 28)

Oiyi — b(6s)

fv: (i3 0i, ¢) = exp (7

a(¢)
where a(¢), b(6;) and c(y;, ¢) are known functions. If ¢ is known, 6; is called the
canonical parameter. Furthermore, 6; is related to the mean and the variance of

+ ey 9) ) (2.1)
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the distribution through

=E(Y;) ='(6:)
Var(Yi) =b"(6;)a(¢)

—~ —
o o
W

=

The linear predictor can be written as

n = X0, (2.4)

where n = (11, ...,m,)7, X is an n x p design matrix and 3 is a p x 1 vector of the
unknown parameters. These unknown parameters can be estimated by maximizing
the likelihood function, as will be discussed in Section For models with an
intercept term, the first column of the design matrix X is a column of ones.

The link function g connects the mean of the distribution to the linear predictor
by

i = g(u). (2.5)

Whenever 6; is a canonical parameter in (2.1]), the link function g is the function
that expresses 6; in terms of u;, that is

0; = g(1i)- (2.6)

In this setting g is referred to as the canonical link function. It is possible to
use non-canonical link functions, but then consideration should be made such that
the domain of the link function matches the range of the mean of the probability
distribution.

2.1.1 Linear Model for Continuous Data

Consider n independent observations yy, ..., y, where y; € R is treated as a realiza-
tion of a normally distributed random variable Y;. That is

Y; ~ N (s, 02)
1 (yi — pa)?
f (yw 7,7¢) \/ﬁexp< 2 0_2 )
1 2 2
5 i Yi _ } 2
i — 5 log(2m0 )). (2.7)

Comparing (2.7)) to , we see that a((;S) = ¢ = 02, that is 9 isa canonical pa-
rameter. We also note that b(6;) = 2/% which, accordmg to (2.2) and (2.3)), verifies
that p; and o2 are the mean and the variance of Y;, respectlvely Furthermore we
identify 6; as p; which, according to , leads to the canonical link function

g(pi) = i,

i.e. the identity function. Hence, by combining (2.4)) and (2.5]), we get the familiar
linear regression model

Hi = Xiﬂa (28)

where x; is the ith row of the design matrix X.

13



2.1.2 Binomial Model for Binary Data

Consider that the n independent observations v, ..., y, are such that each y; is the
number of successes in n; independent Bernoulli trials. That is, y; € {0,...,n;}.
The result of one single Bernoulli trial is a random variable Z such that (Dobson
and Barnett| 2008, p. 123)

1 ith P(Z=1)=
7oL wi ( )=p (2.9)
0, with P(Z=0)=1-p,

where z = 1 is considered a success. That is, each y; is a realization of a random
variable
T4
5/1' = E Zi,j7
J

where P(Z; ; = 1) = p; for all j’s. The distribution of Y; is then given by

Y; ~ binomial(n;, p;)

Iyvi (yi3 65, 0) = (Zf)ﬁi(l )i

= exp (log<1 ﬁip.>yi + n;log(l — p;) + log (Z’)) (2.10)

When n; = 1, the distribution of Y; reduces to the Bernoulli distribution of Z.

Comparing (2.10) to (2.1]), we see that a(¢) = ¢ = 1, that is, 6; is a canonical
parameter. Furthermore, we have that

0; = log(lﬁip_)

b(6:) = a6 + log(1 + exp(—6,)),

and

where we’ve used

pi = (1 +exp(—0;))~! (2.11)
in the expression for b(6;). Hence, from (2.2]) and (2.3]) we get
Uz
,=EY)= —— =np; 2.12
I (Vi) T op(—8) P (2.12)
Var(;) = ——————— = nip;(1 - py).

(14 exp(—0;))?
And according to ([2.6]), the canonical link function is

9(pi) = 10g<1 fip)
= logit(p;) (2.13)

where the last step is the definition of the logit-function. Hence, combining (|2.4))
and (2.5)) gives the binomial regression model

logit(p;) = x; 3. (2.14)

14



2.2 Parameter Estimation

As mentioned, the unknown parameters 3 in can be estimated by maximizing
the likelihood function. These estimates are called maximum likelihood estimates
(MLEs), and are denoted ,@ Except in the case of linear regression, calculation
of the MLEs require iterative methods. In our analysis we’ve used the built-in
function glm in R to obtain an estimate for 3. The glm function uses a method
called iteratively re-weighted least squares (IWLS). The following is an overview
of the IWLS algorithm.

2.2.1 The Log-Likelihood Function

The log-likelihood function for a single observation y; is given by

log L;(0:, 5 yi) = log fv, (yi; 0, @)
O5y; — b(0;)

=T ) + c(yi, ¢), (2.15)

where we’ve used (2.1). And the log-likelihood for the set of independent observa-
tions y = (Y1, ..., yn)? is simply

log L(8, ;) = > _log Li(6i, ¢ ys)- (2.16)
i=1

Note that 6; is related to the mean of the distribution p; in (2.2]), which itself
is related to the linear predictor n; in (2.5). And 7; is again related to the un-
known parameters B through (2.4). This is relevant because it shows that the

log-likelihood function in (2.15), and hence in (2.16)), are functions of 3.
A formal definition of the MLE 3 is given by (Rodriguez, 2007, Appendix A,

p. 1) R

log L(B;y) > log L(B;y) forall g. (2.17)

2.2.2 Fisher’s Score Function and the Information Matrix

The first derivative of the log-likelihood is called Fisher’s score function, and is
given by (Rodriguez, 2007, Appendix A, p. 3)

_ Olog L(By)
= e ,
where u is a p x 1 vector whenever 3 is a p x 1 vector, as in . In general
the score function can be written as a function of both the parameters 3 and the
random vector Y = (Y7,...,Y,,)T, where observation y; is considered a realisation
of the random variable Y;. Hence u(3,Y) is a random vector. In that case, its
mean and covariance are given by (Rodriguez, 2007, Appendix A, p. 3)

E(u(3,Y)) =0
Var(u(8,Y)) = E(u(8,Y)u(8,Y)") =1(8), (2.19)

u(s) (2.18)
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where I is a p X p matrix, called the information matrix.

If the log-likelihood is a concave function, we can find the MLE by setting the
first derivative of the log-likelihood equal to zero (Rodriguezl 2007, Appendix A,
p. 3). That is, we need to solve the system of equations

u(s3) =0. (2.20)

Using a first order Taylor series, we can expand the score function evaluated at the
MLE B3 around an arbitrary value 3,

du(p)

uB) B+ 5| (B s
and using , we can solve for ,@, such that
B =B, —H ' (By)u(By), (2.21)

where H(8) = du(8)/98 is a px p matrix called the Hessian. This expression forms
the basis of an iterative technique called the Newton-Raphson method 'Rodrl’guezL
Appendix A, p. 5), where a given trial value is updated using @ until con-
vergence. An alternative method, known as Fisher scoring, is given by :@L

2007, Appendix A, p. 5)

B =B, +1I 1 (By)ulBy), (2.22)

where the Hessian in (2.21)) is approximated by the information matrix I using

(Rodriguez, 2007, Appendix A, p. 4)

d*log L(B;y)
088"

To find expressions for the score function u(3) and the information matrix I(3),

we differentiate the log-likelihood in (2.15]) using the chain rule (McCullagh and
1989, p. 41)

1(8) = —B( ) = —E@®H(8)). (2:23)

oB;  00; du;dn; 0B;°

Using (2.2)) and (2.3) we derive that du,;/d8; = Var(Y;)/a(¢), and from (2.4) we
get that On; /0B, = x;;, such that

Olog Ly _ (yi —pu) dui
9B, Var(Y;) dn;~ "

This gives that each component of the score function in (2.18)) is given by (Dobsonl
land Barnett, 2008, p. 65)

n

(yi — /Li) dp;
.= —_ 2.24
Y ; Var(Y;) dn; (2.24)
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And using (2.19)), we get that the elements of the information matrix I(3) are given
by (Dobson and Barnett], [2008] p. 65)

ik = B(ujug)
— (Yi — ) dpi — ) dpy
:E x; —_—
(; Var(Y;) dn; JZ Var(Y;) dn ”“)
. n E(Y; xzszk (dlh)
N P (Var )2 dn;

since E((Y; — u3)(Y; — 1)) = 0 for i # [ because the random variables Y; are in-
dependent, since the observations themselves y; are assumed independent (Dobson
and Barnett), 2008, p. 65). And by using E(Y; — u;)? = Var(Y;) we get that

N Tk (2
Ijk_;Vai(Yi)(dn) ' (2.25)

Finally, we can write the information matrix as (Dobson and Barnett| 2008, p. 66)
I(8) = X"W(B)X, (2.26)

where we define W(3) as an n x n diagonal matrix with elements

1 dp;\2
i = ) 2.2
v Var(Y;) (dm ) (2.27)

where dpu;/dn; is evaluated at 3.

2.2.3 The Iteratively Re-Weighted Least Squares (IWLS)
Algorithm.

Consider now the expression in (2.22)) as an iterative algorithm (Dobson and Bar-
nett} [2008, p.65) such that

b™ = bm—l + I—l(bm—l)u(bm—1>7

where b is a vector of estimates of the parameters 3 at the mth iteration. Mul-
tiplying both sides of this expression with the information matrix I, we get

I(b™ H)b™ =I(b™ Hb™ ! +u(b™!), (2.28)
Using (2.24)) and (2.25)), we see that the right-hand side of this expression is

2 TijTak (A m— _,Uz d,uz
Z Vai" ( ) Ok 1 +Z Var(Y; dm

k=11i=1

which can be written as
XTW(b™ Hz(b™™1), (2.29)
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where we've defined z(b™~1) with components

P
m— dn;
zi = E xikb](g Yt (i - N’i)dZZ_' (2.30)
k=1 ¢

Using (2.26)) and (2.29), we can rewrite (2.28) as
XTW(b" HXb™ = XTW(b™ 1)z(b™™ 1), (2.31)

Note that for a normal linear model, the so called normal equations have the form
(Dobson and Barnett, |2008, p. 89)

ATAb = ATy, (2.32)

where A is the design matrix, b is the estimate of the MLE (called the least
square estimator) and y are the data. Comparing and , we see that
they have the same form, except for the weights W in (2.31)). Furthermore, the
equations in need to be solved iteratively, contrary to (2.32), since both z and
W are dependent on b(™~1 . Hence, the iterative method of [2.31) is called the
iteratively re-weighted least squares (IWLS) algorithm. This algorithm is said to
converge whenever the difference between b(™ and b(™~1 becomes small, relative
to a tolerance. Then, b("™) is taken to be an estimate of the MLE B (Dobson and
Barnett], 2008 p. 66).

2.3 Model Adequacy

In this section we discuss model adequacy, and define the deviance and the de-
viance residuals. The deviance is later used in Section 2.4.2] to construct likelihood
ratio tests. Furthermore, we discuss Akaike’s information criterion (AIC) as an
approximation to the Kullback-Leibler (K-L) information.

2.3.1 Log-Likelihood Ratio Statistic

To assess the adequacy of a model, say w, we compare it with the so called saturated
model 2. The two models have the same distribution and the same link function,
but the saturated model €2 is more general than w, since it has the maximum
number of parameters, say m, usually one for each observation. We now define the
likelihood ratio (Dobson and Barnett, [2008, p. 79)

)\:L(AQ%}’)’

L(B.;y)

where BQ is the MLE of 8 under the saturated model 2, and similarly Bw is the
MLE of B under the model of interest w. Generally, the saturated model € is
considered a perfect fit to a given set of data y. That is, under the same assumed
distribution and link function, no other model will fit the data better than model
Q, such that A > 1 (Dobson and Barnett], 2008, p. 79).
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The log-likelihood ratio is simply
log A = log L(Bg) — log L(B,,) (2.33)

2.3.2 The Deviance
The deviance is defined as (Dobson and Barnett), 2008} p. 80)

D =2log ), (2.34)

and in the following we derive its sampling distribution.

The log-likelihood function evaluated at B can be approximated by a Taylor
series expansion around an arbitrary value B, as (Dobson and Barnett] 2008, p.
77)

tog L(3) = og L(By) + (8 — B0) " u(8y) — 5(8 — B0)"T(B,)(8 ~ B, (2:35)

where we’ve approximated the Hessian by its expected value —I(8,), as defined
in (2.23). If we move the first term on the right-hand side of this equation to the
left-hand side, and set 3, equal to the MLE of 3, we get

log L(8) ~ log L(B) = —3 (8~ B)"X(B)(8 - B),
where u(8) = 0 according to (2:20). This gives that

2(log L(B) —log L(B)) = (B8 — B)"1(B)(B — B).

The expression on the right-hand side is the Wald statistic, which is shown to have
an asymptotic chi-square sampling distribution in Section 2:4.1 with degrees of
freedom equal to the number of parameters. The distribution of the deviance D
can now be derived by considering (Dobson and Barnett, (2008, p. 80)

D = 2(log L(Bg,) — log L(3,,))
= 2(log L(Bq) — log L(Bg)) — 2(log L(B,,) — log L(3,,))
+2(log L(Bg) — log L(B,,)), (2.36)

where we’ve simply subtracted and added the terms involving log-likelihoods of
Bq, and B,,. The first two terms in have the distributions x?(m) and x2(p),
respectively (see Section , where m is the number of parameters in the satu-
rated model  and p is the number of parameters in the model of interest w. The
third term in (2.36), v = 2(log L(Bq) — log L(B,,)), is a positive constant, which
will be close to zero when our model of interest fits the data as well as the saturated
model. Hence the deviance has the approximate distribution (Dobson and Barnett,
2008, p. 80)

D~ x*(m —p,v), (2.37)
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where v is the non-centrality parameter. A non-central chi-squared distribution,
denoted x2(n, \), is defined as the distribution of

n

> (Zi+ ),

i=1

where the Z;’s are i.i.d. standard normal and the ¢;’s are arbitrary constants.
Then, the non-centrality parameter is defined as A = Y. ¢? (Dobson and Barnett,
2008, p. 8).

In Section 2.4.2] the deviance is used to test nested models.

2.3.3 Goodness of Fit

The deviance can also be used as a summary statistic to test the goodness of fit
of a model. As seen in , the deviance compares the likelihoods of the model
of interest w and the saturated model Q. As stated above, the likelihood function
under the saturated model is greater than the likelihood under any other model.
Hence, any model that has a small value of the deviance is considered to fit the
data well. This argument gives an informal approach to comparing two models,
say wy and we, that need not be nested. E.g. say D(wy) < D(w2), then model w;
is considered a better fit to the data than model ws. Note, this is not a statistical
test, but only an informal comparison. The goodness of fit of a model can be tested
using the likelihood ratio (LR) test, as described in Section

Another goodness of fit statistic worth mentioning is the Akaike’s information
criterion (AIC). The AIC is defined as (Dobson and Barnett} [2008| p. 137)

AIC = —2log L(B:y) + 2p, (2.38)

where p is the number of parameters in the model of interest that can be estimated
from the data. As in the case for the deviance, we can use the AIC to informally
compare the fit of two models w; and wo. Whichever model has the lowest AIC is
usually preferred.

Note that both the deviance and the AIC are based on the likelihood function.
Hence, if we are to compare two competing models using the deviance or the AIC
values, both models need to assume that the data are from the same exponential
family and use the same link function.

Kullback-Leibler (K-L) Information However, it turns out that the AIC is
an approximation to the Kullback-Leibler (K-L) information, which is defined as
(Burnham and Anderson) {2002} p. 51)

/f ( |g)>dx (2.39)

where f is considered the true distribution of the data x, and g is our postulated
model parametrised by 6. The K-L information is a directed distance from g to
f, and can be interpreted as the information lost when ¢ is used to approximate

20



f. Hence, if we have a set of candidate models G = {gy, ..., gn }, the best model is
the model g; € G that gives the smallest K-L information. Note that (2.39)) can be
written as (Burnham and Anderson), 2002, p. 58)

I(f,g) = / F() log(f(2))da — / £(2) log(g(]0)) dz

= B [log(f(z))] — Ex[log(g(=|0))]
= C — E,[log(g(x10))], (2.40)

where E, denotes the expected value with respect to the distribution f. The last
step in emphasizes that E;[log(f(z))] can be treated as a constant when
evaluating the K-L information for the candidate models in G. This is convenient
because the true distribution of the data f is usually not known. Hence, the
problem of finding the best model in G reduces to evaluating the relative K-L
information

I(f,9) — C = —Eg[log(g(x]6))]. (2.41)

However, since we need to estimate the model parameters 6 for each candidate
model g;, we can only obtain an estimate of the true relative K-L information.
Akaike showed that the expected value of the relative K-L information in
can be estimated, that is, it is possible to estimate (Burnham and Anderson) [2002,
p. 60)

B, | log(9(=10(v))) . (2.42)

where  and y are independent random samples from the same distribution and
both expectations are taken with respect to the distribution f. In large samples, an
approximate unbiased estimator of can be obtained from the log-likelihood
function as (Burnham and Anderson, 2002, p. 61)

log L(;y) — p, (2.43)

where p is the number of estimable parameters in our candidate model. Multiplying
this expression with —2 gives the AIC in .

This discussion shows that the AIC can be interpreted as a relative distance
from a candidate model to the true distribution that generated the data, or as
the information that is lost when using the candidate model. Yet, the absolute
value of the AIC is not so much of interest, as is the difference in the AIC values
between candidate models. Furthermore, unlike deviance values, AIC values can
be compared between models that have different probability distributions. This is
because the log-likelihood function in appears as an estimator of the expected
relative K-L information, whereas the deviance in is actually defined using
the log-likelihood function.

2.3.4 The Deviance for a Logistic Model

Consider again n independent observations i, ..., ¥, where y; is a realisation of a
random variable Y; ~ binomial(n;, p;). From the probability distribution function
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of the binomial distribution in (2.10]), the log-likelihood is

n

log L(Biy) = Y (y log<1 - ) +nilog(1 — p;) + log <y)) (2.44)

=1

The saturated model Q has one parameter for each observation, such that By =
(p1, ..., pn)T. Furthermore, the corresponding MLE BQ is such that p; = y;/n; for
all i’s (Dobson and Barnett, 2008, p. 81). This gives the log-likelihood under the
saturated model evaluated at the MLE

log L(Bq; y) En: (v: log(/> +n;log(1 — y;/ni) + log (Z))

P 1- yz/nz i

Assume that the model of interest w has p < n parameters. Using (2.33]) and the
definition of the deviance ([2.34)), we get the deviance for a binomial model

D= 2§ (yi 1og<Z) (ni yl)log<zj)>, (2.45)

where the g;’s are the fitted values obtained from the model w by using the MLE
ﬁw'

2.3.5 Deviance Residuals

To test if our fitted model has captured all the systematic effects in the observed
data, we assess the residuals. In essence, residuals are estimates of errors, defined
as the difference between the observed values and the fitted values. Conceptually
this can be written as (McCullagh and Nelder] (1989} p. 37)

datum = fitted values + residuals.

If our fitted model has indeed captured all the systematic effects in the data, the
residuals should only contain randomness. Usually this test is done graphically by
plotting the residuals and looking for any pattern. The absence of patterns in the
residual plot entails randomness.

The deviance D, as defined in , is decomposed into units of d;, one for
each pair of observed and fitted value such that D = > d;. Hence we can define
the deviance residual as (McCullagh and Nelder, |1989, p. 39)

ri = sign(y; — 9i) v/ di,

where sign(z) is a function that extracts the sign of a real number z, and y; and
y; are the observed values and the fitted values, respectively.
Using (2.45) we get the deviance residuals for a binomial model

re = sign(yi — §:) (2(y: log (v /1) — (i — yi) log((ni — yi)/ (ni — 31))))*.
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2.4 Hypothesis Testing

In this section we describe the Wald test and the likelihood ratio (LR) test, which
are used in our analyses to test the significance of the regression parameters.

2.4.1 The Wald Test
Consider hypotheses of the form

Hy:8=08, vs. Hi:B#p,, (2.46)

where 3 is the p x 1 vector of parameters and 3, a p x 1 vector of fixed values. Such
hypotheses can be tested using the Wald test, where the test statistic is (Rodriguez,
2007, Appendix A, p. 6)

W = (8- By)"Cov(B)"(B - By),

where Cov(83) denotes the p x p variance-covariance matrix of the estimated pa-
rameters. The Wald test statistic has approximately in large samples a chi-squared
distribution (Dobson and Barnett, [2008, p.85)

W ~x*@p)  (approx.), (2.47)

where p is the degrees of freedom. This follows from the fact that in large samples
(that is, for large values of n, the total number of observations), the MLE follows
approximately a multivariate normal distribution (Rodriguez, 2007, Appendix A,
p. 6) X X

B ~ Np(B,Cov(B)), (2.48)

where E(3) = 3 denotes the true parameter values. The variance-covariance matrix
of the MLE can be replaced by any consistent estimator, without altering the
asymptotic distribution of W in . Particularly, the variance-covariance matrix
can be estimated by

Cov(B) =T 1(3) = (X"WX) !, (2.49)

where we’ve used the expression for the information matrix in GLMs in .
The elements of W are the weights obtained in the last iteration of the IWLS-
algorithm in . Hence the Wald statistic for an MLE 8 in a GLM-framework
can be written

W = (B~ Bo) " XTWX(B - By).
In our analysis, such Wald tests are used to test the significance of each esti-
mated parameter 3;, where the null and alternative hypotheses are

H() : 6j =0 ws. H1 Zﬂj 7é 0, (250)
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In such cases where the MLE Bj is a scalar, it is common to take the square root
of the Wald statistic (Dobson and Barnett| [2008] p. 78)

B;
JVar(6;)

where the z-statistic has a standard normal distribution in large samples. In our
analyses, we test several such hypotheses simultaneously, that is, one set of hy-
potheses for each regression parameter 3; in the model. Hence, a multiple
testing correction is needed, as we discuss in Chapter

z =

(2.51)

2.4.2 Likelihood Ratio (LR) Test

Instead of testing for a fixed value for each estimated parameter, as in (2.46)), we
can alternatively compare the goodness of fit of two models. Consider hypotheses
of the form

H() N ﬁ = 60 = (51, ...,5q)T (252)
Hl :ﬁ = ﬂl = (Bla "'aﬁp)Tv (253)

where the model under the null hypothesis, say wp, has parameters 8, and the
model under the alternative hypothesis, say wi, has parameters 8;. Furthermore,
these two models need to be nested such that wy C wy, and ¢ < p < n where n is
the total number of observations. These hypotheses are tested by comparing their
maximum likelihoods, based on the likelihood ratio

L(ﬂwl )
L(B.,)
where we’ve replaced the parameters 3, and B, by their MLEs under their respec-

tive models. Multiplying this likelihood ratio by two and taking the logarithm on
both sides, we get that

A=

i

2log A = 2(log L(B3,,,)) — log L(B,,,))

= 2(log L(Bg) — log L(B,,,)) — 2(log L(B) — log L(3,,,))
= Dy — Dy, = AD, (2.54)

where we’ve used in the last step of this expression. If both models wy and
wi fit the data well, then Dy ~ x2(n — q) and D; ~ x?(n — p) according to
where the non-centrality parameter is set to zero for both models. Hence we get
that AD ~ x%(p — ¢) (Dobson and Barnett, 2008, p. 11).

This result can be used to construct analysis-of-deviance tables (McCullagh and
Nelder| 1989, p. 35). The nested models in this case correspond to the sequence
in which we introduce the covariates in the linear predictor in .
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Example 1 (Analysis-of-deviance table). Consider a model with two covariates
z1 and x2 in addition to an intercept, such that the regression model is

9(1) = Bo + x1 51 + w250, (2.55)

where y = E(Y|z1, z2) and the response Y has a distribution from the exponential
family. The corresponding analysis-of-deviance table is given in Table In each
row of this table the test statistic AD is used to evaluate the significance of adding
the corresponding covariate, given the preceding covariate(s). This is an example
of the so-called forward-selection algorithm, which continuous to add parameters
to the model as long their inclusion is significant.

Model H, H, AD

g(p) = Bo +z161 B = Po B = (bo, B1) Dy — Dy
g(p) = Bo+z1f1 +x282 B =(bo,1) B=(bo,f1,62) Di— Do

Table 2.1: Analysis-of-deviance table for model (2.55).

Now, let the alternative model in (2.53]) be the saturated model 2, which usually
has one parameter for each observation. That is, we compare our model of interest
w with ¢ parameters to the saturated model 2 with n parameters, such that (2.52))

and become
Hy:B8=08,= B, B)" (2.56)
Hl : 6 = ﬁQ = (ﬁla "'a/Bn)T' (257)

The saturated model has deviance equal to zero, since (2 is a perfect fit to the data.

Then, (2.54) becomes
2log\ = D,,,

where D, ~ x%(n — q). Hence, the deviance can be used as a statistic to test the
goodness of fit of a model, compared to the saturated model.
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Chapter 3

Multiple hypothesis testing

In this chapter we discuss challenges in multiple hypothesis testing, and associated
correction methods such as the Bonferroni and the Bonferroni-Holm methods.

When conducting a hypothesis test, there is a possibility of arriving at the
wrong conclusion. Consider the single two-sided hypothesis test

HO : ﬁj =0 wvs. H1 Zﬂj # 0, (31)

where §; could be the jth parameter in the regression model . In this case
there are two possible ways of making a mistake, called type I error and type
II error, as presented in Table A common way of reporting the result of a
hypothesis test is to report the p-value.

Definition 1. A p-value p(X) is a test statistic satisfying 0 < p(x) < 1 for every
sample point x. Small values give evidence that Hy is true. A p-value is valid if

P(p(X) < a) <, (3.2)
for all a, 0 < a < 1, whenever Hy is true. (Casella and Berger, |2002, p. 397).

A p-value is called an exact p-value if P(p(X) < «) = . For valid p-values, a
test that rejects Hy if p(X) < «, has significance level a. That is, the probability
of a type I error is controlled at level . However, when conducting multiple
hypotheses tests, the probability of at least one type I error becomes inflated.

Not reject Hy Reject Hy

Hj true Correct Type I error
Hj false  Type II error Correct

Table 3.1: Two types of errors in single hypothesis testing.

Consider testing m null hypotheses H = {Hq, ..., H;, }. In our case, m could be
the number of parameters in the regression model (2.4), and each H; corresponds
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to the hypothesis of no effect of parameter 3; (comparable to Hy in ) An
unknown number mg of these null hypotheses are true, and the set of these true
hypotheses is termed 7 C H. Similarly, there is an unknown number of false
hypotheses m —my in the set F = H\T. We aim to infer a collection of hypotheses
R C H that is as close to F as possible (ideally, R = F). Assuming each individual
hypothesis H; has a corresponding p-value p;, we let R = {H;;p; < qioc}, where
Qoc 18 a chosen threshold called the local significance level. That is, R is the set of
rejected null hypotheses, each rejected at significance level q)o.. In this situation,
a type I error is in the set RN T, and a type II error is in the set 7\ R. Table
shows a summary of the numbers of type I and type II errors committed (Goeman
and Solari| 2014)), where only m and R = |R| are observable. This table shows
that there was a total number of V' = |[RNT| hypotheses that were falsely rejected,
called false positive findings. When performing a large number of hypothesis tests,
the risk of false positive findings increases. To highlight this problem, we consider
the expected number of false positives, E(V).

Consider the special case H = 7. Then, for exact p-values, the probability of a
type I error is aye. for each individual hypothesis. Hence, E(V) = m- ajo.. That is,
as the number of hypotheses m increases, we should expect an increasing number
of false positive findings. E.g. consider we have m = 20 regression parameters,
and would like to test if they have a significant effect on the response by testing
hypotheses such as . By choosing the conventional significance level ajo. =
0.05, we would expect to find E(V) = 1 false positive. Furthermore, consider the
probability of at least one false positive result, P(V > 0). Assuming that the
p-values of all m hypotheses tests are independent (and H = T still), we get

P(V>0)=1-P(V =0)

:1—P(npj>aloc)

m
HP p] > aloc

Jj=1

- 1- aloc)

Since 0 < agoc < 1, we see that P(V > 0) — 1 as m increases. In the regression
example, with m = 20 and . = 0.05, we get that P(V > 0) = 0.64. That is, when
testing the significance of 20 regression parameters, each controlled at significance
level 0.05, the probability of at least one false positive is 64%. For these reasons,
it is necessary to take into account the number of hypotheses m being evaluated
when controlling the type I error.
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Not reject Hy Reject Hy Total

Hy true mg—V v mo
Hy false my — (R—V) R-V m
Total m—R R m

Table 3.2: Contingency table for multiple hypothesis testing. Only the total num-
ber of hypotheses m and the number of rejected hypotheses R, are observed.

3.1 Family-wise error rate (FWER)

The concept of a type I error can be generalized in different ways in the context of
multiple hypothesis testing. The family-wise error rate is one such generalization,
defined as the probability of at least one type I error (Goeman and Solari, | 2014])

FWER = P(V > 0),

where V' = |[R N T is the number of type I errors as shown in Table We will
consider two methods of controlling the FWER, the Bonferroni method and its
improvement, the Bonferroni-Holm method.

Consider first a collection of test statistics S, ..., Sy, one for each hypothesis
tested. The corresponding p-values p1,...,p;, are called raw p-values. (In the
regression example, S; could be the z-statistic , and the p; is the p-value
derived from the asymptotic normality of the jth regression parameter).

3.2 Bonferroni
The method of Bonferroni controls the FWER at level a by rejecting a hypothesis if
its corresponding raw p-value is smaller than «joc = a/m. To see that this controls

the FWER, denote the p-values of the mg true hypotheses qi, ..., gm,, such that the
event of a type I error is ¢; < a/m. Then, we get that

FWER = P(|J & < a/m)

< .ZOP(% < a/m) (3.3)

(6%
<mp— < a.

3

The first inequality follows from Boole’s inequalityﬂ The second inequality follows
from the definition of a p-value of a true null hypothesis . Note that the Bon-
ferroni method does not make any assumption regarding the dependency structure
of the p-values.

IFor any finite or countable set of events A1, Ag, ..., we have P(U; A;) < > P(AY).
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Furthermore, the inequalities in illustrate when the Bonferroni method is
conservative (meaning that the rejection criterion is overly strict, that is, ajpe =
a/m is smaller than it needs to be). The first inequality shows that the Bonferroni
method is conservative in cases where the hypotheses are dependent, because the
equality is true only when the rejection regions ¢; < «/m are disjoint. The last
inequality shows that the Bonferroni method controls the FWER at level mga/m
rather than the intended level a. Hence, in situations were there are many false
hypotheses (such that the ratio mg/m is small), the Bonferroni method will be
conservative.

It is possible to construct so called adjusted p-values following the Bonferroni
method, given by

p; = min(p; - m,1). (3.4)

3.3 Bonferroni-Holm

The conservative nature of Bonferroni’s method in cases with many false hypotheses
is partly remedied by the Bonferroni-Holm method, which is an iterative variant of
the Bonferroni method. In each iteration, this method expands the rejection region,
in order to reject as many hypotheses as possible while controlling the FWER. The
steps of the Bonferroni-Holm method are as follows.

1. Reject all hypotheses with p-values at most «v/m. This step is equivalent to
the Bonferroni method.

2. Let h be the number of hypotheses left unrejected, and reject all all hypothe-
ses with p-values at most a/h.

3. Repeat step 2 until either all hypotheses are rejected, or no additional rejec-
tions occur.

The proof that this iterative procedure controls the FWER at level « is based on
Boole’s inequality, and no other assumptions. Hence, the Bonferroni-Holm method
is as general as the original Bonferroni method, and should be preferred, specially
in cases where the proportion of false hypotheses is large. In any other situation,
the actual gain in power is small compared to Bonferroni’s method.
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Chapter 4

Regularization

In this chapter we extend the GLM-framework to incorporate a penalty on the size
of the regression parameters. Specifically, we introduce the lasso estimator, and
we briefly mention ridge regression. Next, we discuss some aspects of the resulting
optimization problem, from which we can derive parameter estimation algorithms,
such as pathwise coordinate descent. Finally, we note the difficulty of obtaining
a distribution for the estimated parameters, hence, we describe inference through
hypothesis testing using the pragmatic multi sample-splitting method.

4.1 The Optimization Problem

From the definition of the MLEs in ([2.17)), we can restate the optimization problem
of fitting a generalized linear model as

-~

3 = argmaxlog L(8;y), (4.1)
B

where y = (y1, ..., yn)” and B = (Bo, ..., Bp)T. This can be extended by imposing a
penalty term on the size of the coefficients (Hastie et al., 2015, p. 30)

~ . 1
Blv) = arg;nln{—ﬁ log L(B;y) + v[IBllq}, (4.2)
where v > 0 is the regularization parameter, and || - ||, denotes the £,-norm and is
given by
P
1Blla = >_181%,
3=0

for any fixed real number ¢ > 0. In we’ve scaled the log-likelihood with the
sample size n, which makes values of v comparable for different sample sizes (Hastie
et al., |2015, p. 9). Usually, the intercept parameter is not penalized (Buhlmann
and van de Geer} 2011}, p. 47). Hence, can be written

~

B(v) = argmin{— ~ log L(fo, B y) + 184}, (4.3)
Bo, B n
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where §jy is the intercept parameter, and B is now the column vector of the re-
maining p model parameters, that is 3 = (51, ..., B,) 7.

In short, regularization is useful when fitting a model to high-dimensional data.
That is, when the number of unknown parameters p in the model is of much larger
order than the sample size n (Buhlmann and van de Geer, [2011, p. 1). In order to
adequately estimate the unknown parameters, 3 needs to be sparse in some sense.
Sparsity can be measured in different ways depending on the £,-norm, and thus the
optimization problem and the resulting parameters will have different properties
depending on ¢ > 0.

Often, regularization is used to increase prediction accuracy. The unrestricted
problem results in unbiased parameter estimates (asymptotically), as men-
tioned briefly in Section (where E(B) =Bin ) However, in a prediction
setting, the variance of these unrestricted parameter estimates can be large (Hastie
et al. 2015 p. 7). The sparse parameter estimates following a regularized problem
are more biased, but have lower variance in a prediction setting.

Another reason for considering regularization is interpretability of the resulting
model. E.g. for ¢ = 1 in , some of the resulting parameter estimates can
be set to zero (as discussed below in Section , leading to a smaller subset of
parameters in the estimated model.

In our analyses, we’ve used regularization, specifically the lasso regularization
(using the ¢;-norm in )7 for two reasons. First, the observed data in our
analyses y has two classes (described in more detail in Section. The size of the
least frequent class is generally not greater than 10 times the size of the parameter
vector (3, which violates a rule-of-thumb known as the “rule of 10” (Veiergd et al.|
2012, Chapter 3). Essentially, this means that we generally don’t have enough
information in the observed data to adequately estimate all model parameters. For
this reason, the unrestricted problem fails to converge. Second, we don’t
expect all model parameters to be non-zero (as will be clarified in Section .
Hence, the lasso with its variable selection property (Section is useful.

4.2 The Lasso

An important case of the optimization problem in is the lasso, where the
model parameters are constrained using the £1-norm, that is, when ¢ = 1 in .
Furthermore, we let the likelihood in be from the normal distribution. This is
because the statistical properties of the lasso are more straightforward to develop
in the context of the usual linear regression model (2.8)). Later in Section [4.4] we
introduce the binomial likelihood into , obtaining the lasso regularized logistic
regression model central in our analyses.

For now, we consider n independent observations ¥, ...,y,, where y; is a re-
alization of a random variable Y; ~ N(p;,0?). From the probability distribution
function of the normal distribution in , the log-likelihood is given by

n

tog L(f0,8,0%5y) = 5 log(2m0%) — 23" (s — o — x:8)" /o>

i=1
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Substituting this expression into (4.3)), and considering o2 to be fixed, we find that
the lasso estimator is (Hastie et al, 2015] p. 8)

-~ . 1
B(v) = argmin{—|ly — Bol — X33 + v||B]1},
Bo,B 21

where 1 denotes a column vector of n ones, and || - ||2 the usual Euclidean norm. For
convenience, we assume that the predictors in X are standardized (Y, z;; = 0
and £ 377" | 2% = 1) and that the response y is centered (3 7, y; = 0), such that
the intercept parameter 5y can be dropped from the modelEI Hence, the lasso
estimator can we written

B(v) = axgmin{ o ly ~ X8I + v|B]1}, (14)
Jé] n

This optimization problem is written in the so-called Lagrangian form (Hastie et al.,
2015, p. 9), which is a convenient way of stating the problem. However, to help
intuition, can be re-expressed as a bounded optimization problem (Hastie
et al., 2015, p. 8)

X 1
B(t) = argénin{%lly - X3}

subject to |31 < t,

(4.5)

where ¢ limits how well the model is fit to the data. Smaller values of ¢ gives
smaller values of 3, and for large enough ¢ we obtain the ordinary least squares
(OLS) estimates. There is a one-to-one correspondence between ¢ in the bounded
problem and v in the Lagrangian form (Hastie et all 2015, p. 9). This
equivalence holds because both the objective function in the minimization and the
£y constraint region are convex in 3 (Buhlmann and van de Geer} 2011, p. 9)
(convexity is defined in Definitions [2] and [3| below.)

4.2.1 Variable Selection Property

One of the desirable properties of the lasso estimator is its variable selection prop-
erty. For small enough values of ¢ in , only some of the parameters in B(t)
will be non-zero (Hastie et al., 2015, p. 2). Since the regularization constrains
the size of the parameters, these non-zero parameters can be interpreted as the
parameters that influence the response variable the most. That is, the lasso can
also be understood as a model selection procedure, which is more automated than
other model selection procedures such as forward-selection (mentioned briefly in

n linear regression, the intercept parameter can be recovered from the model parameters
estimated on the centered data, as

Bo =17*ij317

j=1

where 3 and Z; are the empirical means.
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Section . The following is an intuitive explanation of why the lasso is able
to set some of the estimated parameters exactly to zero, based on the geometry of
the ¢1-norm.

Consider only two parameters in the linear model, that is, 3 = (81, 82). The
constraint region of the lasso estimator is then |51 + |52 < ¢, shown as the solid
diamond in Figure The solution to the bounded problem in is the first
point where the elliptical contours hit the constraint region (Hastie et al. [2015] p.
12). The situation depicted in Figure shows that this point is located on one
of the corners of the constraint region, which results in one of the parameters set
to zero (41 = 0).

For comparison, consider using the ¢;-norm as the constraint region. That is,
setting ¢ = 2 in the regularization . The resulting optimization problem is
called ridge regression (Hastie et al., [2015, p. 10). For normally distributed data,
the bounded problem is

R 1
B(t) = argénin{%lly - Xg|3}

subject to || 8|2 < 2,

(4.6)

which is similar to the lasso bounded problem except for the constraint. For
the two-parameter case 3 = (31, 2), the constraint region is the solid disk shown
in Figure Unlike the lasso, the geometry of the bounded problem does
not allow any of the estimated parameters to be exactly zero.

B2 B2

(- &

B1

B1

Figure 4.1: Lasso estimation (left) and ridge regression (right). The solid diamond
is the constraint region in the lasso, ||+ |82| < t. The solid disk is the constraint
region in ridge regression, 37 + 33 < t2. The ellipses are the contour lines of the
residual sum of squares function, where ,5' is the OLS solution. This figure is taken
from Buhlmann and van de Geer| (2011)), with permission from Springer.

4.3 Parameter Estimation

In this section we consider a parameter estimation algorithm for the lasso, called
pathwise coordinate descent. We rely on the lasso for the linear model, for which the
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core step of this algorithm is available in closed form, called the soft-thresholding
operator. This operator can be derived from the Karush-Kuhn-Tucker (KKT)
optimality conditions . Hence, we begin this section by inspecting the lasso
as an optimization problem. At the end of this section, an example is given where
we apply the lasso to a test data set, which illustrates the parameter path and the
associated cross-validation with respect to the regularization parameter v.

4.3.1 Optimality Conditions
The following definitions from [Hastie et al.| (2015, p. 95) are useful.

Definition 2 (Convex set). A set C C RP is convez if for all x,y € C, and for all
scalars s € [0,1], z=sx+ (1 —s)y € C.

Definition 3 (Convex function). A function f : RP — R is convex if for any
z,y € RP, and any scalar s € (0,1)

f(z2) = flsz+ (1 =s)y) <sf(x)+ (1 —s5)f(y)

In general terms, bounded problems such as (4.5)) can be stated as (Hastie et al.l
2015, p. 95)

B = argmin /(8)

subject to B € C,

(4.7)

where we assume that the objective function f : RP — R is a convex function, and
that the constraint C' C RP is a convex set. The constraint C' can be described using
sublevel sets of several convex functions g; : R? — R, for [ = 1, ..., m. Specifically,
the sublevel sets have the form {3 € RP|g;(8) < 0}. Since the g;’s are convex
functions, so are their sublevel sets (Hastie et all 2015, p. 96). Hence, can
be re-written as

B" = argmin f(83)
B

subject to ¢;(B) < Oforl=1,..m.

(4.8)

This constrained optimization problem can be reduced to an equivalent uncon-
strained optimization problem using the Lagrangian, L : RP? + R, defined by
(Hastie et al.l 2015, p. 97)

L(B;v) = [(B) + Y _ va(B),
=1

where v = (vy,...,Vm), and the weights v; > 0 are called Lagrange multipliers.
Furthermore, we have that

f(B) ifg(B)<0forl=1,..m,

4.9
+o00  otherwise. (4.9)

sup L(B;v) = {
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There exists optimal multipliers v/ that impose a penalty whenever the correspond-
ing constraint g;(3) < 0 is violated. This ensures that we’re in the topmost case in
equation (4.9). Hence, the solution to the bounded problem (4.8)) can be written

B = argmin L(8; V™).
B

Furthermore, this solution needs to satisfy the following condition (Hastie et al.,
2015, p. 97)

VsL(B";v*) = )+ Zu Vg (B8*) =0, (4.10)

For [ = 1 this condition reduces to V f(3* ) = —v*Vg(B"). Geometrically, this
means that at the solution 8%, the normal vector to the contour line of f and the
normal vector to the constraint curve g(3) = 0 point in opposite directions. (In
the discussion above, regarding Figure this point was referred to as the first
point where the elliptical contours of the residual sum of squares function hit the
constraint region.)

An example of the convex function g is the ¢1-norm, that is, g(8) = §=1|6j|.
However, this function is nondifferentiable (Hastie et al. |2015, p. 98), hence the
Lagrangian condition is not directly applicable as it requires evaluation of
the gradient of g. Nonetheless, for convex functions, the notion of a gradient can
be generalized by subgradients (Hastie et al., 2015, p. 99).

Definition 4 (Subgradient and subdifferential). Let f : R? — R be a convex
function. z; € RP is a subgradient of f at p € RP zfﬂ

f(B) = f(B) + (2, 8" = B)
for all B’ € RP. The set of all subgradients at 3 is called the subdifferential, denoted
of(B) =A{zi}i-
Whenever the function f in Definition[d]is differentiable at 3, the subdifferential

contains a single vector 9f(8) = {Vf(5)} (Hastie et all 2015, p. 99). Hence, a
more general form of the Lagrangian condition i

dpL(B";v Zul dg1(B") 2 0. (4.11)

Example 2 (Subgradients of the absolute value function). Let 8 € R and ¢(58) =
|B]. Two subgradients of the absolute value function g at 8 = 0 are shown in
Figure From this illustration, we can deduce that this function has infinitly
many subgradients at 8 = 0. That is, dg(8) is a set that contains all planes that
lower bound the function g at £, and can be written

{+1} if >0

9g(P) = 0|8l = ¢ {-1}  ifB<0
[—1,+1] ifg=0.

2Where (a,b) = aTb.
3Because the subdifferentiables are sets, the vector of zeros is written as an element of the set.
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It is convenient to write the subgradient z € 9|8| as z € sign(3).

[BI

Figure 4.2: The absolute value function g(8) = |5| and two of its subgradients z;
and z9 at 8 = 0.

Consider again the lasso problem for the linear regression model (4.4). To
express the ¢; constraint region in terms of sublevel sets {3 € RP|g(8) < 0}, we
let g(B8) = ||B|l1 — t, where t is the radius of the ¢;-norm as in (4.5). Then, the

Lagrangian condition (4.11]) is
* * 1 * * *
OpL(B"v") = 5-Vy = XB||3 + v 98",
which evaluated gives the Karush-Kuhn-Tucker (KKT) optimality conditions (Hastie
et al., 2015, p. 9)

(y = XB",x;) +v"z; =0 for j=1,..,p, (4.12)

3=

where z; € sign(58;) (as in Example [2). That is, the solution to this system of

equations, 3%, is the lasso estimator in (4.4)), B.

4.3.2 Soft thresholding

For a single covariate in the linear regression model, the lasso estimator is available
in closed-form by evaluating the KKT conditions (4.12])

1< 1R
I g =S a2 i =0, 4.13
n;y:ﬂ +ﬂn;m + vz ( )

and assuming that the data are standardized (such that = 3" | #? = 1), the solu-
tion can be written (Hastie et al.| [2015, p. 15)

%<ya X> —-v* if %<Y7 X> > v*
B = %(y,x> +v* if %(yg{) <v* (4.14)
0 if %|(y,x>\§y*,

w
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which is compactly written as

=8 (1lyx). (415)

where
Sy (z) = sign(z)(|z] — v)+,

is called the soft-thresholding operator. This operator translates its argument
towards zero by the amount v, and sets it to exactly zero whenever the absolute
value of the argument is smaller than v. The argument to the soft-thresholding
operator in is the OLS solution (Hastie et al., 2015, p. 15). That is, the
lasso estimator for the single covariate in a linear model is a shrunken version of
the corresponding OLS estimate.

4.3.3 Cyclical coordinate descent

Consider solving the lasso problem for more than one covariate, that is, we consider
optimization problems of the form . The idea of coordinate descent is to update
a single covariate at a time, keeping all other covariates fixed. That is, updating
the jth covariate amounts to performing a univariate optimization (Hastie et al.,
2015, p. 110)

B;Hl = argmin h(f1, ..., 5;717 Bj, §+1, - Bf)),

J

and B,tjl = B} for k # j, where h represents a general multivariate objective
function. This algorithm is guaranteed to converge to the global minimum for
problems that have the following separable form (Hastie et all 2015, p. 110)

h(B)=f(B)+ > gi(B)
Jj=1

where f : RP — R is a convex and differentiable function and g; : R — R is a convex
but not necessarily differentiable function. This separability applies to the lasso
problem (£.4), where f(8) = 5|y — X3, and g;(5;) = v|B;|. In general, when
the nondifferentiable part of h is a sum of univariate functions over the covariates
Bj, coordinate descent converges to the global solution.

Consider again the KKT conditions for a linear regression model , which
evaluated at B can be written

1 N X ) .
- Z(yi - deikﬂk —ziiB)zi; + vz, =0 for j=1,..,p,
i=1 k#j

)

and defining the partial residuals rgj =1; — ZZ oy xlkﬁk we can re-write this as

n

1 ] 1 n ) .
- g rgj)xij—kﬁjﬁ E J;fj+y*zj =0 for j=1,...,p.
i=1 i=1
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Comparing this equation to (4.13)), and assuming that the covariates are standard-
ized (such that + 3" x7; = 1), we see that the jth parameter update is (Hastie
et al., 2015, p. 112)

~ 1 .

Bj = Sy- (E<r(]),xj)).
Note that r¥) = r + xjﬁ’j, where r =y — X,é are the full residuals. Hence, the
update can be written (Hastie et al. 2015, p. 16)

A N 1
Bt S (B4 S 0txy)), (4.16)

where superscript ¢ denotes the iteration. This updating scheme is referred to as
naive updates (Friedman et al.;|2010, p. 5). There are other updating schemes (not
developed here), such as covariance updates, sparse updates and weighted updates,
each designed to increase computational efficiency.

4.3.4 Pathwise Coordinate Descent

Generally we are not interested in solving the lasso problem for a single
value of the regularization parameter v*, but rather, for a sequence of (decreasing)
values {v; } £ (Hastie et al., 2015 p. 17, 114). The strategy is to start with a value
Vg = Vpax just large enough so that all coordinates are zero, that is, B(V:ﬂax) =0.
Then, a smaller v§ is chosen and coordinate descent is run to estimate B(v7).
For the next value in the sequence, v3, coordinate descent is initialized by the
estimate from the previous step, ,é(l/f ). Such initializations are called warm starts.
In [Friedman et al.| (2010), the authors report that using warm starts results in a
stable and fast algorithm.

The largest value of the regularization parameter needed, v} ., can be found

by considering the coordinatewise update (4.16) (Friedman et al., |2010, p. 7).

N N
For 3 = 0 to stay zero, that is, 3 = 0, we see from the structure of the
soft-thresholding operator (4.14) that

1
ﬁ|<rtvxj>‘ SV* for j:17"'7p7

At
and since 3 = 0, the residual is r* = y. Hence, we get

1
Vrtlax = mgxg|<y,xk>l-

*
min

The minimum value in the decreasing sequence {vj}£ , is chosen to be v

eV .- The remaining K values in this sequence are equally spaced on the log-scale
between v} and v}, . Typical values in the glmnet-package are € = 0.001 and
K =100.

The main steps of pathwise coordinate descent are summarized in Algorithm
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Algorithm 1: Pathwise coordinate descent.

Result: Estimates the path of lasso solutions {3(v)}; for a linear
regression model.
initialize 8% = 0;
foreach v* € {v;}- | do
while not converged do
foreach j € {1,...,p} do
B 8, (B + Lt xg) )
end
end
return B(v*) = (B, .., BF1);
end
return = {B(7)}E,:

4.4 Lasso Regularized Logistic Regression

Our analysis is based on the lasso for a logistic regression model. That is, we
consider n independent observations yi, ..., yn, where y; € {0,1} is a realization of
a random variable Y; ~ Bernoulli(p;). Setting n; = 1 in the binomial log-likelihood
in , we get the log-likehood for the logistic model

n

log L(50 By) = Y (wilog(p) + (L —y)log(1 = p)).  (4.17)

i=1

Substituting this into (4.3) (and using ¢ = 1), we get the corresponding lasso
estimator

n

B(v) = sugmin(— S~ (1o +x:8) ~ log(1 + exp(fo + x,8))) + VI8 }. (415)
0 i=1

where we’ve used p; = exp(fo + x:3)/(1 + exp(5p + x;0)) from . In theory,
we could solve directly by applying coordinate descent (for a single value of
v). However, the updates along each coordinate are not explicitly available, as is
the case with the lasso for a linear regression model that uses the soft-thresholding
operator (4.16)). The glmnet package uses an approach that reduces the opti-
mization problem (4.18)) to a penalized weighted least-squared problem, that is, a
weighted form of @E_TD Then, the resulting optimization problem can be solved by
the regular cyclical coordinate descent algorithm, with coordinate updates of the
form . o

In more detail, let (5y, 3) be our current parameter estimates. The log-likehood
part of can be approximated by a second order Taylor expansion around
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(Bo, B) (as in (2.35)), which gives (Hastie et al., 2015, p. 116)
lOgLQ 50, :_*sz Zi ﬁO_XZ/G) +C(507B)7 (419)

where C is a constant (independent of (8o, 3)), and the weights w; and so-called
working response z; are

w; = pi(1 — pi),
—Di
(1 - pz)
obtained from (2.27)) and (2.30), respectively, where p; is evaluated using the cur-
rent parameter estimates (S, 3). Subscript @ in (4.19) emphasizes that this is a

quadratic function in the parameters (8o, 3), contrary to (4.17). Then, the opti-
mization problem (4.18)) can be written

ﬂO +Xzﬁ + =

~

Bv )—a%gngn{—*logLQ(ﬁo, B) +v|Bll1}- (4.20)

The full nested algorithm for estimating the parameter path of a lasso regularized
logistic regression can thus be summarized (Hastie et al., 2015, p. 116)

Outer loop Decrement v.

Middle loop Update the quadratic approximation log Lo using the current
parameters (fp, 3).

Inner loop Run the coordinate descent algorithm on the penalized weighted-

least-squares problem (4.20]).

4.5 Cross-Validation

As we’ve seen, both in the algorithm above (outer loop) and in pathwise coordinate
descent (Algorlthm ' we calculate parameter estimates 3 for different values of
the regularization parameter. A particular solution from the ensemble {B(v;)}L,
can be chosen by considering the prediction error for each value of the regularization
parameter v}, using cross-validation (Hastie et al., [2015, p. 13).

In essence, K-fold cross-validation partitions the data into K roughly equal-
sized parts (Hastie et al., 2009, p. 241). And for each k£ = 1,..., K, the model
is fitted on the remaining data by leaving out the kth partition. Then, this fitted
model is used to calculate the prediction error on the kth partition. For the lasso use
case, the main steps of the cross-validation scheme are sketched out in Algorithm
2] where usually K = 10. The function d used to calculate the error terms in
Algorithm is the mean-squared prediction error for linear regression (Hastie
et al., 2015, p. 13) and the binomial deviance for logistic regression (Friedman
et al.l [2010, p. 18).
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Algorithm 2: K-fold cross-validation for the lasso path.

Result: Estimate the expected prediction errors of the lasso solutions
{8 )}
initialize data into K partitions;
foreach k € {1,...,K} do
testy < the kth partition;
trainingy < the remaining k — 1 partitions;
compute the lasso path {B(Vl*)}lL:l using data in trainingg;
foreach v* € {v;}£ | do
‘ erTg, < d(teStk,B(V*));
end

end
return {% >k errkJ}lL:l;

Example 3 (Lasso estimator for linear regression). We apply the lasso to the
abalone data set (Nash et al. [1994), provided by the UCI Machine Learning
Repository, which consists of n = 4177 instances. There are 8 predictors in this data
set: sex, length, diameter, height, whole weight, shucked weight, viscera weight
and shell weight, which are labelled zi,...,25. The response variable y is the
number of rings of the abalone, directly related to its age. That is, we consider
the observed variables to follow a normal distribution, and impose an ¢;-penalty
on the parameters. Then, the optimization problem is as stated in equation .

Figure (left panel) shows the corresponding coefficient path {B(v;)}L,.
This plot shows that all coefficients are zero at v* =~ 1, and gradually increase
in size as v* decreases. When v* = 0, the coefficients are the OLS estimates.
This exemplifies the variable selection property of the lasso, as discussed above in
association with Figure Figure (right panel) also shows the mean-squared
prediction error curve following a 10-fold cross-validation. This plot can be used to
select one specific set of coefficients on the path {,@(V;‘)}le, that is, for a specific
value of v). Usually, this value is either chosen to be v}, or v{,. The former is
where the mean-squared prediction error has its minimum, and the latter is the
largest value of v} that gives an error no larger than one standard deviation above
the minimum (Hastie et al., 2015, p. 13). Since v < vi., the coefficients B(vi,.)
are more sparse than B(v7,,). This is shown in Table This table shows that
the linear model that best predicts the age of an abalone is achieved (at v;,) by
retaining all but one of the predictors in the data set. Yet, a more parsimonious
model can be achieved (at v7,,) by excluding an additional predictor from this best
predicting model, whilst keeping the prediction error within one standard deviation
of the smallest error.
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Figure 4.3: The lasso coefficient path (left) and the 10-fold cross-validated mean-
squared prediction error (right) for the abalone data set (Nash et all [1994), as
functions of the regularization parameter v, plotted on the log-scale. The topmost
horizontal axes show the number of non-zero coefficients in the model.

Bj(yrzin) Bj(yfse)

J

1 0.06 0.01
2 - -

3 11.48 9.87
4 11.80 11.54
) 8.31 1.15
6 —19.35 —11.42
7T —8.62 -

8 9.64 17.30

Table 4.1: The estimated lasso coefficients for the abalone data set (Nash et al.
1994), at v}, = 0.27 x 1072 and v}, = 3.07 x 1072, A “—” indicates that the
coefficient was set to zero by the lasso.
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4.6 Inference

Due to the adaptive nature of the lasso estimator, it is difficult to find the distribu-
tion of the estimated parameters B This implies that it is not possible to construct
test statistics and obtain p-values in the traditional sense, as done in Section [2-4] for
regular GLMs, in order to test hypotheses about 8. In this section we describe the
multi sample-splitting procedure, which is a generic way of constructing p-values.
Multi sample-splitting is especially useful in a high-dimensional setting (p > n),
where the fitting method has a variable selection property (Dezeure et al., 2015] p.
3).

4.6.1 Multi Sample-Splitting

Consider the lasso for a GLM in a possibly high-dimensional setting, with X
an n X p model matrix, Y an n x 1 response vector and 3 a p X 1 parameter vector.
Let I = {1,...,n} denote the set of sample indexes. The idea is to split this set into
two equally sized halves, I and I5, and do model selection on one of these halves
and construct p-values using the other half.

More precisely, let I, C I with » = {1,2}, such that [ UL =1, [ N[, = &,
|I1| = [n/2] and |I5| = n — [n/2]. Denote by S(I;) the set of indexes of non-zero
parameters following a lasso fit using samples in I;. That is,

S(Il) - {1’ "'7p}'

If |,§’(Il)| < n/2 < |I| (which is generally true for the lasso), then the model matrix

Xi(h) has full rank |S(I;)|, where the subscript denotes the sample set and the
superscript denotes the parameter set in the model matrix. In that case, we fit the

usual GLM (2.4) (with no penalization term) with response vector Yy, and model

matrix X‘Z(Il), and use the asymptotic normality of the MLEs to obtain p-values

(based on z-statistics (2.51))) for the parameters B, = {;;j € S(I,)}. The raw
p-values of 3 are then given by

. S(I . . 4
Prawy = {pz_test,j based on GLM fit with Y, XI2( 1), if jeS(h), (4.21)

1, otherwise.

Consider adjusting these raw p-values for multiple testing. According to [Dezeure
et al.| (2015)), it is not necessary to control the family-wise error rate (FWER) over
the complete set of considered null hypotheses % = {Hq, ..., Hy} (H; corresponds
to Hp in (2.50)). The authors state that it is enough to control the FWER over
the hypotheses set Hg ;) = {Hj;;j € S(I;)}. Furthermore, rather than adjusting
the p-values using the Bonferroni-Holm method, the authors use the Bonferroni
method for simplicity. Hence the adjusted p-values are given by

Peorr,j = Min(Praw ; - [S(11)],1). (4.22)

The resulting p-values are highly dependent on the sample splits I; and I». That
is, the p-values in (4.21), and hence in (4.22)), are not likely to be reproducible.
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To overcome this, the sample-splitting is performed B times, with typical choices
B =50 or B =100. This gives a total of B p-values for each null hypothesis Hj,

that is, we have

(€] (B)

Peorr.j» -+ Peorr.j for j=1,...,p. (4.23)

These p-values are dependent (for fixed j), since the sample splits in each iteration
of B are over the same data. Hence, to aggregate these to a single p-value, we need

an appropriate method. A simple solution is to aggregate by using a y-quantile
(Dezeure et al., 2015} p. 4)

Qi(y) = min(’y—quantile{pgl;)rr’j/’y; b=1,..,B}1),

where 0 < v < 1. For v = 1/2, the quantile evaluates to the sample median of
{pg)rr’ s pgfr)r’ ;1 multiplied by a factor 2. Usually, a search is performed to find
the most appropriate value of ¥ € (Ymin, 1), where e.g. ymin = 0.05. Then, the

final p-values are given by

p; = min((1 —log(ymin)) inf  Q;(y),1) for j=1,..p, (4.24)
YE(Vmin,1)
where the term (1 — log(vmin)) can be considered a penalty for searching for an
appropriate ¥ € (Ymin, 1)-

The multi sample-splitting method just described is said to produce p-values
that are approximately reproducible. In addition, this method controls the
FWER at level a + B¢ for some 0 < § < 1, given that the following assumption is
fulfilled.

4.6.2 Screening property

As discussed in Section the lasso is able to do variable selection by setting
some of the model parameters so zero. For the multi sample-splitting to control
the FWER, however, a more precise assumption needs to be satisfied. Consider
the (unknown) set of indexes of parameters that are truly non-zero

So=1{j: 6] #0,5=1,...,p}. (4.25)
Then the screening property is (Dezeure et al., |2015, p. 2)
S = {j;Bj #0} 2 S,
and the assumption that needs to be fulfilled to control the FWER is
P(S(I1) 2 So) > 134, (4.26)

for some 0 < 6 < 1.

It is proven that the lasso for a linear regression model satisfies with
d — 0, given some constraints on the design matrix X and the (unknown) size
of the parameters B (not recited here). This latter constraint is susceptible to
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criticism, since an assumption on the sizes of the parameters will have an effect on
the resulting hypothesis test.
Based on the assumption (4.26]), it can be proven that (Meinshausen et all

2009)

FWER = P( | J pj <a) <a+ B, (4.27)
iess

where S§ is the complement set of Sy in (4.25), 0 < o < 1 is a chosen significance
level, B the number of times the samples are split, and § as in (4.26].
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Chapter 5

Additive Models

Thus far, we’ve assumed that the effects of the predictors are linear, as modelled
in (2.4). This might not be an adequate description. E.g. consider the model with
two predictors Example [I] where only linear effects are included

g(p) = Bo + Brz1 + Baxa,

where p = E(Y|x1,22) as before. A more realistic model may be achieved by
including higher order polynomial terms as

9(1) = Bo + Pray + Pawa + Bsxl + Paxs. (5.1)

In general, we can write this as a so-called additive model (Hastie et al., |2009} p.
296)
9(1) = Bo + fi(z1) + fa(x2),

where the f;’s can be any unspecified smooth functionsE] There exists methods that
estimate functions f; in a flexible manner, using a so called scatterplot smoother
(e.g. a cubic smoothing spline) (Hastie et al. [2009, p. 297). This approach lets
the data dictate the shape of the f;’s. However, we limit ourselves to consider
predefined functions f;, each expressed in terms of an expansion of basis functions.

5.1 Basis Function Expansion
Let X1, ..., X, denote the predictors, such that the additive model is
P
g(w) =Y 1;(X)), (5.2)
j=1

where we represent each f; by M; basis functions (Hastie et al., 2009, p. 140)

M;
FX5) =Y Bimhgm(X;),
m=1

n (51, f1(=1) = Biz1 + B32, and fa(w2) = Bow2 + faxl.
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where hjp, : R+—= R. For M; =1 and hj,,(X;) = X, we recover the original model
that is linear in the predictors. Other notable examples of the basis function A,
are

® hjm(X;) = X¢, polynomial terms. This leads to models of the form (5.1)).
® hjm(X;) =log(X;) or hjm(X;) = /X;, some non-linear transformation.

® hjm(X;) = I(Lym, < X; < Up), an indicator for a region. Using non-
overlapping regions, these models lead to piecewise contributions of the pre-
dictors.

In any case, if we predefine the number M; of basis functions for each j, and also
their parametric form hj,,, the f;’s are completely determined. That is, we can
proceed to fit the resulting model

M;

9() =D Bimhjm(X;),

j=1m=1

in the usual way (by running the IWLS algorithm for this GLM, as shown in Section

zb to obtain the estimates (3;,,. We will see an example of this model in Section
0.2.2
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Part 11

Data Specific Regression
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Chapter 6

Regression Model

In this chapter we define the lasso penalized logistic regression model used in our
analyses, which is given at the end in Section[6.2.3] But first, we define the response
variables and the model covariates in Sections and respectively.

6.1 Spike Trains as Response Variables

The activity of a neuron is recorded as a spike train, which is a sequence of event
times at which a neuron fires, as explained in Section [1.2.2] To reiterate, a neurons
can be in either of two states, a resting state or an active state. The point in time
when a neuron transitions from a resting state to an active state is called a firing
or a spike. When analyzing neural data, the rate at which a neuron fires, and the
proportion of time it fires, is of interest. A fundamental concept in neurophysiology
is that neurons respond to a stimulus or contribute to an action by increasing their
firing rate (Kass et all 2014, p. 563). Formally, the firing rate at time ¢ is defined
as FR(tley) = lim E(number of spikes in (¢, + At)|xt)’
At—0 At

(6.1)

where z; can incorporate any experimental conditions, any effects of previous spikes
(called history effects) or even activity of neighbouring neurons. The numerator in
is the (conditional) expected number of spikes in a time interval of length At.

Consider an observed spike train s, Sa, ..., S, over a time interval (0, T, where
the s;’s are the times at which a spike occurs. Such a spike train is modelled
as a point processes S, Sa,... on (0,00) (Kass et al., [2014, p. 564). To analyze a
point process within the framework of (restricted or unresticted) GLMs, we need to
discretize the spike times (Kass et al., 2014, p. 568). A way towards discretization
is the counting process representation of the point process, denoted N(t). The
function N (t) counts the total number of spikes that have occurred up until and
including time ¢. Next, we divide the finite observed time interval (0,7] into n
bins of equal length At = T'/n. The number of spikes in bin ¢ can now be counted
as AN, = N(t;) — N(t;—1), where t; = i - At. The set {AN;i = 1,...,n} is
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called the discrete increments, and it is displayed in Figure along with the
spike times and the counting process. Note that both the point process Si, So, ...
and the counting process N (t) are stochastic processes in continuous time, while
the discrete increments {AN;;i = 1,...,n} are a sequence of random variables in
discrete time.

Spike Times:

S1 S2 S3

Counting Process:

Discrete Increments:

IIIII|IIIII|IIIIIIIII
000010000100000100

t

Figure 6.1: The spike times S, .55, ... are random variables, each representing the
point in time when a spike occurs. N(t) is the cumulative count of spikes that
have occurred up until and including time ¢. The discrete increments AN; count
the number of spikes in bin 7. This figure is copied from Kass et al.| (2014, p. 567),
with permission from Springer.

Let Y; = AN;. If we choose a small enough bin size At, it is unlikely that there
will be more than one spike occurrence in a single bin (Kass et al., 2014, p. 568)
(this is the case illustrated in Figure[6.1)). That is, P(Y; > 1) ~ 0. Hence, we have
that

Y; ~ Bernoulli(p;), (6.2)

where p; = P(Y; = 1), as described in (2.9)). Since E(Y;) = p;, we can rewrite the
firing rate defined in (6.1]) as

FR(t|z,) = Alimo P(spike in X;t + At)|xy)
5

. (6.3)

That is, we consider the discretized (binary) sequence y = (yi,...,yn)” as the
response variable in the logistic regression model (2.14]) (as described in Section
, and get that the linear predictor

n=Xpg (6.4)

is such that n = logit(p), and p = (p1, ..., pn)?, where p; = P(Y; = 1). Note that
p; can also be interpreted as the expected number of spikes in bin ¢ (since n; = 1
in (2.12)). In the next section we elaborate on the contents of the n x p model
matrix X.
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6.2 Model Covariates

As expressed in , the firing rate of a neuron can depend on a stimulus, in
addition to its previous spiking activity and the activity of its neighbouring neurons.
Hence, inspired by Kass et al.| (2014, p. 566), the linear predictor in our regression
model can symbolically be written as

1 = stimulus effects + history effects + connectivity effects.

In the next two sections, we elaborate on how these three effects are modelled.

6.2.1 History and Connectivity Effects

In this section we outline an approach to model history effects and connectivity
effects based on basis function expansions, to incorporate non-linear effects of these
predictors, as described in Chapter

Since there are connectivity effects involved, we need to consider observations
from multiple neurons at once. To reflect this, we introduce the following notation:
let y; = (v, ynj)T denote the n observations of the jth neuron. Furthermore,
to reflect that we are modelling history effects, that is, that we are including ob-
servations from previous bins, we let y;; = y;(t;), where t; = ¢ - At is the midpoint
in time of the ith bin.

Consider modelling the observations of neuron j by taking into accounts its own
previous spiking history, in addition to the spiking history of neighbouring neurons.
Thus, the regression model can be written

N M

ni(ti) = 00; + Y Y Wkmyk(ti — tm), (6.5)

k=1m=1

where 7;(t;) = logit{p;(¢;)}, N denotes the total number of neurons, and M > 1
denotes the number of bins included. That is, M represents the number of steps
we go backwards in time, since y(t; — t,,,) is the observation of neuron k from the
previous mth bin (relative to bin 7). The intercept cp; represents the background
firing probability (on the logit-scale) of neuron j. The remaining parameters (the
akm’s) represent the effect of the directed connection from neurons k # j to
neuron j. These parameters can be gathered in M-dimensinal vectors o, =
(ajk17...7ajkM), which are then interpreted as the overall effect of the spiking
activity of neuron & on the spiking activity of neuron j. Whenever k = j, oy
represents the history effects of neuron j. There are a total of N? such vectors oy
representing history and connectivity effects between all N observed neurons, but
the model in estimates N of these parameters at a time. That is, for a fixed
neuron j, the model estimates oy, for k=1,...,N.

Example 4. Consider estimating o, using a time window of 737 = 160 ms ms
to include the past activity of neuron k. That is, the observations of neuron j
in each time bin are modelled using the observations of neuron k in the previous
M = 7y /At bins. Using At = 10ms, we get that o, is a 16-dimensional vector.
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As shown by Example 4] the connectivity effects a;;, depend on the number of
previous bins included M and the bin size At. That is, whether we wish to increase
the time window (increase M), or model a finer time resolution (decrease At), the
number of parameters in increases. To separate the connectivity effects o,
from the time window and resolution, we can use a set of basis functions. Consider
then the regression model

N M L

ni(ti) = aoj + > D> amubi(t)yr(ti — tm),

k=1m=11=1

where b;(¢;) denotes the Ith basis function evaluated at time ¢;. The set of basis
functions are predefined, and equal for all neurons. This model can also be written
as

N L
n;(ti) = aoj + Z Z b ar v (t), (6.6)
k=11=1
where bl,M = (bl(tl),...7bl(t1\/[))T and Yk,M(ti) = (yk(ti — tl), ~~;yk(ti — tM))T.
For each neuron pair, the directed connection oy = (ajk17...7ajkL) is now an
L-dimensional vector. That is, the size of o, is only dependent on the number of
basis functions.
In summary, the history and connectivity parameters in can be written as
an N x N x L matrix (where N is the number of observed neurons)

a1 «12 . 0N
Q21 Qa2 - QN

; (6.7)
anN1 G&N2 r NN

where

ajk = (Oéjkly ...,O(jkL).
Note that the parameters oj; in this matrix are estimated one row at a time.
That is, using observations of the jth neuron y; as the response variable, and

the remaining neurons as covariates, the regression model estimates o, for
E=1,..,N.

Cosine Bases The basis functions used in are so-called raised cosine “bumps”,
given as (Pillow et al., 2008, Methods)

bi(t) =

{;cos<alog<t+c>¢l>+;7 it aloglt+c) € lor—martal, oo

0, otherwise,

where ¢ represents the time after a spike event (so-called lag), the ¢;’s are compara-
ble to the placement of the peaks (or “bumps”) of the cosines which are separated
by 7/2, and a and c are constants. According to |[Pillow et al.| (2008]), these con-
stants (a and ¢) need to be chosen by evaluating the auto- and cross-correlation
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functions of the activity of the neurons yj. This recommendation is not followed in
our analysis. (See Appendix[C.1]for our choice of a and b). Furthermore, following
Pillow et al| (2008)), we've used Ly;s; = 10 cosine basis functions in to repre-
sent history effects, and L¢onnect = 4 to represent connectivity effects. The resulting
basis functions are shown in Figure (top row), along with their orthogonal
equivalent (bottom row). In our analyses, we use these orthogonal cosine bases.
This figure shows that the cosine bases allow for a finer temporal representation at
short lags, and a coarser representation at long lags. This means that we can model
with more detail the effects near the time of a spike, which is a desirable feature,
since more emphasis is placed on this time interval in the neuroscience literature,
which can display effects such as refractory periods (Kass et al., 2014 p. 568) (as

mentioned in Section |1.2.3)).

History Coupling
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Figure 6.2: Cosine bases from |[Pillow et al. (2008, Methods). There are
Ly;st = 10 bases used to represent history effects (left column), and Leonnect = 4 to
represent connectivity effects (right column). These bases span a time window of
approximately 737 = 160 ms. The top row shows the bases as given in , while
the bottom row are their orthogonal equivalent. That is, these latter bases are such
that b;, and b;, are orthogonal for all [; and /5. We’ve used these orthogonal bases
in our analyses.
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6.2.2 Stimulus Effects

As described in Section [[.3:3] a stimulus is provided in each trial. This stimulus
varies as the trial progresses through its three stages: sample epoch, delay epoch
and response epoch (as shown in Figure . A simple approach to incorporate the
effects of these periods is to include the trial time as a covariate. We've observed
that the trial time may have non-linear effects on the firing rate of a neuron.
To illustrates this, consider an empirical approximation to the firing rate of neuron
j, which can be defined as

FR, — 2iz1 Ui (ti)/n

2 (6.9)

Figure shows f}\%j calculated in the three bins corresponding to the sample,
delay and response epochs (averaged over the number of trials), for neurons j =
2,6,9 from session 20130702 of mouse ANM210861. This plot shows that the trial
time can have both a linear effect (neuron 2) and a non-linear effect (neurons 6
and 9) on the firing rate. Thus, we choose to represent the stimulus effects as a
polynomial in trial time of degree D. That is,

D
i(t:) = apj + td (6.10)
Nni(li) = Qoyj Ydjts 5 .
d=1
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Figure 6.3: Empirically approximated firing rate fl\%j, for neurons 2, 6 and 9
from session 20130702 of mouse ANM210861. F'R; was calculated in three bins
corresponding to each trial epoch. Each point is then the number of spikes in that

trial epoch divided by the length of that trial epoch At, and averaged over the
number of trials in GoodTrials.

However, in our analyses we represent this polynomial with a set of orthogonal
bases {Pi(t;),..., Pp(t;)} called Legendre polynomialﬂ (Sili and Mayers|, (2003,

ILegendre polynomials can be obtained in R by the built-in function poly.
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p. 263). Each Py(t;) is a polynomial of degree k, and can be expressed using
Rodriguez’ formula (Lamb) (1995 p. 451)
1
2k dtk
Inserting these polynomial bases into (6.10)), the stimulus effect can be modelled
as

Pi(t) (t2 — 1)k (6.11)

D
n;(t:) = ao; + Y Yai Palti)- (6.12)
d=1

Figure shows an example (using D = 5) contrasting the usual polynomial bases
in (6.10)) and the Legendre polynomials in (6.12)).
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Figure 6.4: The left plot shows the usual polynomial bases {t, ..., >} used in ,
and the right plot shows the orthogonal Legendre bases {P;(t), ..., P5(t)} used in
, where each Py(t) is given by . However, we’ve used the built-in
function poly in R to obtain the set of Legendre polynomials.

6.2.3 Lasso Penalized Logistic Regression

Combining the history and connectivity effects (6.6]), expressed in terms of cosine
basis functions, and the stimulus effects (6.12)), expressed as a polynomial, we get
that

List

n;(t:) = aoj+ Y @bl ay ;e (ti)
=1

N
+ 2
k=1,k#j

which is an example of the additive model in (5.2). Recall that ¢; = i - At is the
midpoint of the ith bin, where At is the bin length used to discretize the time

(6.13)

Lconnect

D
kDl ary e (t) + > 4 Palti),
=1 d=1
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interval (0,7 in which we’ve observed the data, as mentioned in Section In
our analyses we’'ve chosen At = 1ms, which ensures that the number of spikes in
the ith bin does not exceed one, at least for the data considered in the analyses
of Chapter m (Until Section all regression models are fitted by discretizing
(0,T] using At = 1ms). That is, since y;(t;) < 1, we can consider y;(t;) to be a
realization of a random variable Y; following a Bernoulli-distribution, as in .
Furthermore, we have from that yr (i) = (yr(ti —t1), .oy yu(ti —tar))T (and
hence by = (bi(t1), ..., bi(tar))T). That is, the linear predictor includes
observations from the past M bins (relative to bin ¢), which is a fixed number. In
our analyses we’'ve used M = 160, which means that the linear predictor at time
t; includes data from the previous 73y = M - At = 160 ms.

In this model we’ve introduced 14 Lpist + (N —1) Leonnect +D parameters,
which might be an over-parameterization. That is, we don’t expect neuron j to
have a connection to each and every one of the remaining k # j neurons in the
model. As discussed in Section [1.2.3] we don’t expect that many connections in the
underlying network (5% estimate). For these reasons, we impose a restriction on
the size of the parameters in the form of a lasso penalty, as introduced in Chapter
Let then the linear predictor in be

nﬂ(tl) = Qpj + Xti/@jv

where 3, is a combination of the (rearranged) jth row of the history and connection
matrix in , and the parameters 4 of the stimulus polynomial. x;, incorporates
observations of all neurons yj ps in the past M bins (relative to the ith bin),
weighted by the (orthogonal) cosine bases , in addition to D polynomial terms
of the trial time. Then, the optimization problem, as characterized in (4.18), can
be written

n

- 1
(Goj, B;)(v) = argnrgn{—ﬁ Z [le(ti)(aoj' +x¢,3/)
@055 P i=1

_ 10g(1 + exp(aoj + Xtiﬁj)):|
+V||/6j||1}’

(6.14)

where n = T/At.
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Chapter 7

Data Analysis

In this chapter we present the main results of our analyses. As mentioned intro-
ductory in Section [[.I] our main goal is to estimate the underlying network of
neurons. The analyses leading to these networks is done in Section In Sec-
tions and we analyse the stimulus effects and the history and connectivity
effects, respectively. However, we begin with Section with some exploratory
data analyses.

7.1 Exploratory Data Analysis

7.1.1 Session-Wise Activity

We’ve arbitrarily chosen to analyze data from mouse ANM210861, which has three
sessions tagged 20130701, 20130702 and 20130703, which from here on are termed
sessions 1, 2 and 3. These sessions have recorded activity of 30, 16, and 12 neurons,
respectively. Figure shows raster plotaﬂ of the activity of these neurons for all
three sessions. That is, each row in these plots is a spike train si, So, ..., Simy, as
defined in Section [G.11

The raster plots in Figure [7.I]show that some neurons are active throughout the
whole session, seen as rows that are mostly black. Examples are neuron 12 in session
1, neuron 5 in session 3 and the majority of neurons in session 2. As described in
Section the stimulus is provided periodically (during the sample epoch in each
trial, where the trials occur repeatedly throughout the session). That is, it might
be possible that neurons that display an almost continuous activity throughout the
session are not directly related to the stimulus. However, it is difficult to assess the
relation between neuronal activity and stimulus by inspecting these raster plots on
a session-wise time scale. In fact, we should expect the majority of the neurons
to be related to the stimulus, as most neurons are classified as pyramidal neurons,

LA raster plot shows a tick at the time a spike was present in the recorded voltage trace.
Raster plots are commonly used as exploratory tools in the analysis of neural data. See Kass
et al.| (2014} p. 4) for examples.
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which are neurons that project activity from the ALM towards the motor-related
areas in the brainstem, as mentioned in Section [I.3.1] The classification of each
neuron is summarized in Table which is done as part of the pre-processing of
the raw data (Li et al |2015, Methods).
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Figure 7.1: Raster plots of the activity of neurons, based on data from GoodTrials.
For each neuron, a vertical bar indicates the point in (session) time when a spike
occurred.
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Neuron Type Session 1 Session 2 Session 3

2,3,4,5,6,7,9,10, 1,2,3,4,56,8 1,2,3,4,6,7,8,

Pyramidal 11, 12, 13, 14, 17, 9,10, 12, 13, 14, 9, 10, 11, 12
18, 19, 20, 21, 22, 16, 15
23, 25, 26, 28, 30

Fast Spiking (FS) 1, 16, 24, 27 11 5

Not Classified 8, 15, 29 7 -

Table 7.1: Classification of the neurons. Pyramidal neurons project activity out
from the ALM-circuit towards motor-related areas in the brainstem. Fast spiking
(FS) neurons project activity to other neurons inside the ALM-circuit (also called
intratelencephalic neurons in Section . These classifications are done by in-
specting so-called waveforms, as parts of the pre-prosessing of the data, explained
in|Li et al.| (2015, Methods).

Additionally, the activity of the neurons in sessions 1, 2, and 3 can be sum-
marized by calculating their empirical firing rates F'R;, as in (using bin size
At = 1ms), averaged over all trials. The distribution of the firing rates in each
session is shown as boxplots in Figure The outliers in these boxplots are ex-
actly those neurons that show an almost continuous activity in the raster plots of
Figure Moreover, Figure [7.2] shows that the neurons were most active during
session 2. The median firing rate over all neurons in session 1, 2 and 3 is 0.63 Hz,
1.92Hz and 0.61 Hz, respectively.

Approximate Firing Rate
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N — — ]
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Session

Figure 7.2: Boxplots of the empirically approximated firing rate ﬁj , using
bin size At = 1 ms, averaged over all trials in GoodTrials.

Note that some neurons in Figure are only active during some parts of the
session. This is clearly visible for most of the neurons in session 3, where for example
neuron 2 is only seen to be active during the early part of the session, while neuron
11 is not active until late in the session. Furthermore, these particular two neurons
in session 3 are recorded on the same electrode/channel on the silicon probe, as
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seen in Figure [1.8] Therefore, it might be possible that these neurons in reality
represent the same physical neuron. Another such example is neurons 14 and 16 in
session 1. Still, there are plenty other neurons that are active only in some parts of
the session, which might be a correct representation of their true activity. However,
it might also be the case that the electrodes/channels that recorded these neurons
were not functioning properly during the whole session. Yet, in our analyses, we
have not adjusted for these effects. That is, we’ve consider the spike trains in
Figure [7.1] to be the actual activity of the identified neurons.

We note that there are times during the session where the majority of the
neurons, if not all, are inactive. This is most clearly visible just before the 500s
mark in session 2 (thick white vertical line cutting through all rows in Figure
7.1). These periods of inactivity might be related to so-called photostimulation
trials, which are trials where the experimenters themselves inactive the ALM. Using
photostimulation, the experimenters are also able to target and inactive specific
types of neurons, which can explain why some neurons are seen to be active only
in parts of the session. For details, see Li et al. (2015, Methods). In our analyses,
we have not taken such effects of photostimulation into account.

For completeness, similar raster plots as in Figure are plotted using only
either correct left lick trials and correct right lick trials, which are shown in Ap-
pendix These plots don’t give any additional insight into the activity of the
neurons.

7.1.2 Trial-Wise Activity

Next, we explore the firing rate in each trial epoch (similarly as for neurons 2, 6
and 9 from session 2 in Figure . That is, we calculate the empirical firing rate
F]\%j, as in , once for each trial epoch and average it over all trials. This is
done for the 16 neurons in session 2, as shown in Figure[7.3] These plots show that
some neurons are most active during the sample epoch, such as neurons 5 and 6.
These neurons might be directly related to the sensing of the metal pole, which
is provided as the stimulus in the sample epoch (as explained in Section [1.3.3]).
There are also neurons that are most active during the response epoch (when the
licks occur), such as neurons 4 and 8. This kind of activity, that peaks during the
response epoch, is called peri-movement activity (Li et al.| [2015] p. 52).

In addition to showing how the firing rate changes in different trial epochs, the
plots in Figure also show that there is a difference in activity in correct lick
left (red plots) and correct lick right (blue plots) trials. For example, Figure
shows that neurons 1 and 2 are generally most active during lick left trials (the red
points are considerably higher than the blue points), while neuron 13 is generally
most active during lick right trials. Such neurons are said to display a so-called
selective activity. Generally, selective activity begins during the sample epoch,
and reaches a maximum in the delay epoch. Additionally, these particular three
neurons (1, 2 and 13) have different firing rates in correct left/right trials during
the delay epoch (that is, right before a lick occurs). This type of activity is called
selective preparatory activity. (Recall from Section that we expect neurons
in the ALM to display preparatory activity). Furthermore, Figure shows that
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there are neurons that aren’t selective, that is, neurons that display rather similar
firing rates regardless of trial type. Neurons 7 and 11 are such examples. Similar
plots as in Figure [7.3| for neurons in session 1 and session 3 are shown in Appendix
IB.2l These plots also show examples of selectivity. Thus, from Figures
and we note that the provided stimulus does affect the firing rate, and it does
so differently in right/left trials. In addition, it seems that individual neurons are
tuned, so to speak, to respond to the stimulus in different trial epochs.
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Figure 7.3: The empirically approximated firing rate ﬁj calculated sepa-
rately for each trial epoch with At equal to the length of the relevant trial epoch,
averaged over all trials. The gray, red and blue plots are based on data from
GoodTrials, correct left lick trials, and correct lick right trials, respectively. These
16 neurons are from session 2.
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7.2 Tuning Curves

Influenced by the work of |Stevenson et al.| (2012), we first fit a regression model
with only stimulus effects in Section [7.2.1] and assess the effect of the estimated
parameters on the firing probability. Then, in Section[7.2.2] we fit the so-called full
regression model, by also including history and connectivity effects, and compare
it to the model with only stimulus effects.

7.2.1 Regression Model with only Stimulus Effects

In this section we fit the logistic penalized regression model from Section [6.2.3]
for each neuron j = 1,..., N, but with only stimulus effects as covariates. Let
xi, = (P1(t;), ..., Pp(t;)), where Py is given in (6.11), and the set {Py(t), ..., Pp(t)}
is shown in Figure for D = 5). Inserting this x;,, with 8; = (715, e ypi) T,
into , we get that

n

D
A . . . 1
(Goj, Y15, -+, ¥pj)(v) =  argmin  {—— > {yj(ti)(aoj + ) e Pa(ti))
Q055 Y155+ ¥YDj i=1 d=1

D
_ log (1 + exp (aoj + Z"}/ded(ti)> )}
d=1

+l[(1g5v05) 1}
(7.1)

As an example, we fit this model using observations from neuron j = 1, y1, from
session 2, as the response variable, and setting D = 5. Figure [7.4] shows the re-
sulting coefficient path (left panel), along with the 10-fold cross-validated binomial
deviance curve (right panel), as functions of the regularization coefficient v. (An
interpretation of these plots is given in Example [3| in Section . As noted in
Section the model with the lowest deviance can be considered to fit the data
best (when comparing models using the same likelihood). As shown by the cross-
validation curve in Figure this model is located at v, = 1.97 x 107° (shown
by the leftmost vertical dashed line), and retains all five parameters (71,1, ..., v5,1)
in the model. The parameter estimates of this model are shown in Table (first
column under “Logistic Lasso”). Note that the regularization parameter of this
best fit model (where the binomial deviance has its minimum) is close to zero
(Ymin =~ 0). That is, this penalized model is close to the usual (unrestricted) logis-
tic regression model. Hence, in this particular example, we fit a logistic GLM to
neuron j = 1 (from session 2) with stimulus effects as the only covariates (which
is equivalent to setting ¥ = 0 in 7 as discussed in Section regarding the
optimization problem for a GLM given in ) Table also shows the param-
eter estimates of this unrestricted regression model (first column under “Logistic
GLM”), which are seen to be similar to the restricted model. This table shows that
when there are only a few number of parameters in the regression model (here we
have five), then the parameter estimates from the lasso (at vmi,) are close to the
parameter estimates from the equivalent unrestricted regression model. The 441’s
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in Tabld7.2] can be interpreted as weights used to evaluate a 5th degree polynomial
that represents the effect of trial time on the firing rate of neuron 1.
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Figure 7.4: The lasso coefficient path (left) and the 10-fold cross-validated binomial
deviance curve (right) for the stimulus model in fitted using observations of
neuron 1 y; (from session 2) from GoodTrials, as functions of the regularization
parameter v, plotted on the log-scale. The topmost horizontal axes shows the
number of non-zero coeflicients in the model.

Logistic Lasso at vpin Logistic GLM
Estimate = FWER adjusted p-value  Estimate = FWER adjusted p-value

Qo1 —6.60 NA —6.61 0.00

Y11 —111.13 2.14 x 1073 —119.06 5.47 x 1076
V2,1 355.15 1.38 x 10726 372.13 1.10 x 1074
Y31 —168.43 2.58 x 1076 —185.28 5.45 x 10712
Y41 —15.82 1.00 —34.49 8.66 x 1071
Y5, 45.11 1.00 61.56 7.16 x 1072

Table 7.2: The first two columns are the estimated parameters and adjusted p-
values of the lasso penalized logistic model at Vmin = 1.97 x 1075, The
adjusted p-value for the intercept ag,; is not available, since the multi.split-
function in R calculates adjusted p-values for parameters that are constraint by the
£1-norm. The last two columns are the estimates and adjusted p-values from an
equivalent logistic GLM. These models where fit using observations of neuron 1
y1 (from session 2) from GoodTrials. The gray boxes highlight adjusted p-values
that are below the cut-off level 0.05.

As explained in Section adjusted p-values (adjusted for multiple testing,
as given in (4.24))) can be obtained for the lasso by multi sample-splitting. This
is done for the model in (|7.1) using the R-function multi.split from the hdi-
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package with B = 50 sample-splits (see (4.23))). These adjusted p-values are given
in Table (second column under “Logistic Lasso”). The p-values for the GLM
are obtained in the usual manner, however, those given in Table|7.2| (second column
under “Logistic GLM”) are adjusted using Bonferroni’s method (with m = 5).
Say we choose a significance level 5% for testing whether each regression parameter
74,1 is different from zero. (Since the p-values are adjusted, this controls the FWER
at 5%, as stated in in Section. Then, we see from the adjusted p-values
in Table [7.2] that both the lasso regularized logistic regression model and the usual
logistic regression model conclude that 1,1, 2,1 and 3, are significantly non-zero
(shown by the gray boxes, which highlight adjusted p-values below the cut-off level
0.05).

Next, we plot the estimated stimulus effect on the firing rate of neuron 1, using
the parameters from the lasso (first column under “Logistic Lasso” in Table
7.2]). That is, we plot the linear predictor

5
Tstim,1(ti) = Go,1 + Z’S/d,lpd(ti)a
d=1
on the probability scale
pl (tz) = logit_l{ﬁstim,l(ti)}v (72)

where the inverse of the logit-function is given by , and p;(t;) can be inter-
preted as the estimated probability of neuron 1 to fire in the ith bin. Since we’ve
chosen At = 1ms small enough to ensure that y;(¢;) <1 (as mentioned in Sections
and [6.2.3]), p1(¢;) is proportional to the firing rate of neuron 1, as given by the
relatlon. Hence, in the following, we interpret the effect any covariate might
have on the activity of a neuron either on the probability scale, or equivalently, in
terms of the firing rate.

Figure shows the estimated stimulus effect on the firing rate of neuron j =1
(7.2). (Note that we use all five estimated parameters given in Table in the first
column under “Logistic Lasso”, including those that aren’t significantly different
than zero according to the 5% significance test above). Such plots, where the firing
rate is plotted on the stimulus domain, are called tuning curves in the neuroscience
literature (Stevenson et al.,|2012), a terminology that implies that a neuron is tuned
to a certain type of stimulus. Figure [7.5shows that the firing rate is relatively high
in the beginning of the trial, but drops considerably during the sample epoch, then
rises slightly during the delay and the response epochs. These highs and lows are
relative to a baseline firing rate, plotted as logitfl{do 1} in Figure . horizontal
gray line). Thls tuning curve should be compared to the empirically approximated
firing rate FR R; of neuron j = 1 in Figure |7.3| (gray plot, which uses data from
GoodTrials). At first glance, the tuning curve does not seem to match the trend
in the approximated firing rate. However, note that the tuning curve is estimated
using the whole 5s of the trial (recall the trial structure from Figure , while the
firing rate is approximated in the sample epoch and onwards. That is, the activity
of the neuron in the interval from the start of the trial to the start of the sample
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epoch (roughly 0 to 0.6s in trial time) is ignored in the plots of Figure but this
activity is taken into account when fitting the tuning curve. Considering this, note
that the tuning curve estimates that the activity in the sample epoch is lower than
the activity in the delay and the response epochs, which is somewhat reflected in
the corresponding plot of the approximated firing rate F'R; in these three epochs.

Neuron 1

0.0030
1

prob. firing nl1

0.0020
1

0.0010
|

trial time (s)

Figure 7.5: Tuning curve of neuron 1 from session 2, estimated using data y; from
GoodTrials. The curve is the evaluated polynomial , using the fitted values
from the lasso shown in Table ﬂ (first column under “Logistic Lasso”). The
horizontal line is the inverse logit-function of the intercept dy 1. The vertical dashed
lines are the start of the sample, delay and response epoch, respectively.

As noted, the main point of a tuning curve is to display how the activity of a
neuron relates to a stimulus. For this reason, we’ve estimated two additional tuning
curves for each neuron j by fitting the lasso using observations y; from correct
lick left trials and from correct lick right trials, respectively. These tuning curves
(along with the tuning curve using data from GoodTrials) are shown in Figure
for the 16 neurons from session 2E| In cases where a neuron is relatively less active
in the beginning of a trial (before the start of the sample epoch), the tuning curves
of Figure correspond to the approximated firing rates in Figure (neuron 2 is
an example). Most importantly, these tuning curves show that there are neurons
that respond differently to left /right stimulus (called selective activity), while other
neurons have the same activity pattern regardless of trial type (e.g. neurons 4
and 7). An example of a selective neuron is neuron 9, which has an increased
activity in correct left trials, compared to correct right trials. Additionally, this
increased activity is manifested in the delay epoch, that is, neuron 9 displays a
selective preparatory activity. Other patterns (such as peri-movement activity)
can be deduced, as done in Section [7.1.2}

2For simplicity, the baseline firing rates, in terms of the estimated intercept parameters Goj
are not shown in Figure m which would have corresponded to three additional horizontal lines
(one for each of the trial types: GoodTrials, correct lick left and correct lick right trials).
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Similarly, tuning curves for the 30 neurons in session 1, and the 12 neurons in

session 3, are shown in Appendix [B.3]
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Figure 7.6: Tuning curves for the 16 neurons from session 2. The parameters are

and the red
The dashed

7

estimated using the lasso with only stimulus effects (|7.1)), and choosing the values
The gray curves are estimated using data from GoodTrials

and blue curves from correct lick left and right trials, respectively.

at Vmin-

vertical lines are the start of the sample, delay and response epochs, respectively.

Full Regression Model
We now fit the so-called full regression model

7.2.2

6.14]) from Section That is, in

addition to stimulus effects, as represented by a degree D = 5 (orthogonal) polyno-
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mial, we include history and connectivity effects, using Lynjst = 10 and Leonnect = 4
(orthogonal) cosine bases, respectively.

As an example, we fit this model to observations from neuron j = 1 from session
2 using data from GoodTrials, that is, we set y; as the response in , and
use the observations from the remaining k # j 15 neurons (there are 16 neurons
in session 2) to evaluate the cosine bases as covariates. Then, the total number of
parameters in this model is 14+10+15-4+5 = 76. Figure[7.7]shows the coefficient
path (left panel) and the 10-fold cross-validation curve (right panel) for this model.
The model with the lowest binomial deviance (leftmost vertical dashed line in the
cross-validation curve), at vpi, = 2.13 x 107°, results in 55 non-zero parameter
estimates. The estimated coefficients representing the stimulus effects are given in
Table (second column under GoodTrials), which are the focus of this section.
(Tables and show the estimated coefficients representing the history and
connectivity effects, respectively, which will be discussed in the next section). Note
that the coefficients representing the stimulus effects have the largest absolute value
among all estimated coefficients in the full model, as shown by the coefficient path
in Figure [7.7] However, comparing the sizes of the estimated stimulus effects and
estimated history and connectivity effects may be meaningless, since the bases used
to represent these effects are not on the same scale. (This is seen by comparing
the y-axis of the orthogonal cosine bases in Figure which ranges from —0.4 to
0.4, to the y-axis of the orthogonal Legendre polynomial bases in Figure which
ranges from —0.15 to 0.15).
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Figure 7.7: The lasso coefficient path (left) and the 10-fold cross-validated bino-
mial deviance (right) for the regression model in fitted to observations from
neuron j = 1, y1, from session 2, using data from GoodTrials. The topmost hor-
izontal axes shows the number of non-zero coefficients in the model. The labels
in the coeflicient path represent the estimated coefficients 41 1, ...,45,1 of the five
(orthogonal) polynomial bases P, ..., P5 (shown in Figure and the estimated
coefficient @& 1,1 for the first (orthogonal) history basis by (shown in Figure .

Table shows a comparison of the stimulus coefficients between the full re-
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gression model and the regression model with only stimulus effects ,
known as net and gross effects, respectively. The first column of this table (under
GoodTrials) is identical to the first column of Table (under “Logistic Lasso”),
which is added for completeness. Table |[7.3| shows that the regularization param-
eter Vmin (for the minimum binomial deviance model) is larger for the full model
compared to the stimulus only model, which leads to a shrinkage in the parameter
estimates of the full model. That is, the estimated (stimulus) coefficients from the
full model are generally smaller (in absolute value) than the coefficients from the
stimulus only model. Furthermore, this table shows that the deviance is
smaller for the full regression model compared to the stimulus only model, which
indicates that the full regression is a better fit to the data (regardless of which trial
type the data is from), as discussed in Section

GoodTrials Left Tr. Right Tr.

Stim. only Full Stim. only Full Stim. only Full
Vimin (1079) 1.97 2.13 3.23 4.18 1.34 3.50
Dev. (103) 30.82 28.77 19.76 18.51 6.67 6.39
Qo1 —6.60 —6.86 —6.22 —6.48 —7.66 —7.61
V1,1 —111.13 —69.09 61.20 1.59 —501.22 —406.02
2,1 355.15 168.92 186.36 72.55 342.22 235.79
3,1 —168.43 —123.85 —111.42 —49.92 —126.33 —173.68

Va1 —15.82 - —2.85 —10.73 - -
Y51 45.11 0.70 - - 184.35 61.58

Table 7.3: Estimated coefficients of the stimulus effect from the full regression
model (net effect) and the regression model with only stimulus effects
(gross effect). These two models are fitted for neuron 1 in session 2, once for data
from each of the three trial types: GoodTrials, correct left trials, and correct right
trials. The deviance is as defined in .

Next, we use the estimated coefficients in Table to plot tuning curves for
the three types of trials (GoodTrials, correct left lick trials, and correct right lick
trials). That is, we plot as in the previous section. These tuning curves are
shown in Figure (Note that the left plot in this figure is the same as the leftmost
plot in the first row in Figure . Figure shows that the tuning curves from
the full model (6.14)) retain the same shape as the tuning curves from the stimulus
only model is indicates that the design matrix in the full regression model
may be nearly block-wise orthogonal with respect to stimulus effects and history
and connectivity effects. Furthermore, as indicated by the shrinkage in Table [7.3
the tuning curves from the full model have smaller numerical values, which can be
seen by comparing the range of the y-axes in these two plots. This means that
once we've accounted for history and connectivity effects (in the full model), the
stimulus affects the firing rate of neuron 1 to a smaller degree. (That is, the net
effect of the stimulus is smaller than the gross effect of the stimulus). The tuning
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curves from the full regression model for all 16 neurons from session 2 are shown
in Figure Comparing the plots in this figure, to the plots in Figure we
see the same trend; that the shape of the tuning curves are retained, while the net
effect of the stimulus is smaller than its gross effect.

Stimulus only Full model
< Neuron 1 Neuron 1
o ' — 5
o ' '
o ' IS '
' S '
' S '
~ N | — o |
c . < :
o ' = — !
£ o : £ :
E 3 A : £ 9 :
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Figure 7.8: Tuning curves from the regression model with only stimulus effects
(left), and from the full regression model (right), fitted for neuron 1.
The gray, red and blue curves are tuning curves estimated by using data from
GoodTrials, correct left lick trials, and correct right lick trials, respectively. The
parameter estimates for these curves are shown in Table The dashed vertical
lines represent the start of the sample, delay and response epochs, respectively.
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Figure 7.9: Tuning curves for the 16 neurons from session 2. The parameters
are estimated using the so-called full regression model with history, connectivity

and stimulus effects (6.14]), and choosing the values at vpmin. The gray curves are

estimated using data from GoodTrials, and the red and blue curves from correct

lick left and right trials, respectively. The dashed vertical lines are the

sample, delay and response epochs

start of the

, respectively.
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7.3 History and Connectivity Effects

In this section we plot history and connectivity effects by using their estimated
coefficients from the full regression model to evaluate the bases functions
discussed in Section That is, considering the linear predictor in (6.13)), we
can plot the estimated history effects

List
Mist,g () = Goj + > @5b] yyjn(ti), (7.3)
=1

and the estimated connectivity effects

Leconnect
Neonnect,jk (ti) = Goj + Z @jklblj:MYk,M(ti), (7.4)
=1
on the probability scale (by using the inverse logit-function). That is, we plot
history effects as logit{/nist,;j (t;)} and connectivity effects as logit{fconnect,; (:)}-
Continuing the example of fitting the full regression model using ob-
servations from neuron j = 1 from session 2, we get the estimated history and
connectivity effects shown in Tables [7.4] and [7.5] respectively. Note that the esti-
mated history effects in Table are relatively large (in absolute value) compared
to the connectivity effects in Table (7.5} (The estimated history effects and the
estimated connectivity effects are comparable since the (orthogonal) cosine bases
used to represent these effects are on the same scale, seen by comparing the y-axes
in Figure . This was indicated by the plot of the coefficient path in Figure
where the effect of the first history basis is seen to be prominent (which has
an estimated value &1,11 = —11.13 at vy, = 2.13 X 10*5). Furthermore, both in
Tables and we see that the &;;’s have a tendency to be closer to zero as the
index [ increases. That is, the estimated effects on the firing rate of neuron j =1
become smaller as the lag increases, as discussed in Section with regards to
the placement of the cosine bases in time after a spike event (Figure [6.2)).

o~

a1,

1 -11.13
2 -3.50
3 2.09
4 -551
) 1.87
6 -4.00
7
8
9

-2.80

10 -1.23

Table 7.4: Estimated history effects for the penalized logistic model in (6.14)) at
Vmin = 2.13 x 107, for neuron j = 1 from session 2 using data from GoodTrials.
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Connect. Neuron (k)  &151  G1k2  G1k3  Gika

2 —1.55 090 -—-1.14 0.12

3 —2.07 0.70  —0.54 -
4 —1.18 0.30 —-0.16 —0.42
) -0.08 —-0.52 —-0.46 —047
6 0.11 - - —0.04
7 - —0.08 - 0.48
8 —0.25 - 0.82 —-0.21
9 —0.12 0.21 - -
10 - —0.56 - 0.16
11 0.80 —0.23 0.10 0.03
12 2.14 - - -
13 1.26 0.89 1.21 -
14 0.26 - 0.03 0.16
15 —0.49 0.94 - —0.26
16 1.62 - 0.23 -

Table 7.5: Estimated connectivity effects for the penalized logistic model in (6.14))
at Umin = 2.13 x 107°, for neuron j = 1 from session 2 using data from GoodTrials.

Setting the estimated coefficients in Tables and into (7.3]) and (7.4)), we

can plot history and connectivity effects for neuron j = 1. These plots are shown in
the top row of Figure where we’ve included plots of two connectivity effects,
TNeonnect, 1,2 a0 Teonnect,1,3- (The parameter estimates of these two connectivity
effects are shown in the first two rows of Table . To interpret these connectivity
plots, recall the conceptualized connectivity effect from Figure [I.4]in Section [T.2:3]
In general, the (j, k)th connectivity effect flconnect,j& can be interpreted as the effect
of neuron k’s activity on the firing rate of neuron j, as discussed in Section in
the context of the N x N x L matrix in . The plots in the second row of Figure
are obtained by fitting the full regression model using the observations
from neuron j = 2 (y2) as the response variable (the off-diagonal plots in this row
are the connectivity effects foonnect,2,1 and feonnect,2,3). Similarly, the plots in the
third row of Figure[7.10]are from the full regression model fitted using observations
from neuron j = 3 (y3) as the response variable (the off-diagonal plots in this row
are the connectivity effects fconnect,3,1 and Teonnect,3,2)-

The plots of the history effects in Figures [7.10a], [7.10¢ and [7.101 show that right
after a neuron has fired, the probability of it firing again decreases. This can be
seen for all three neurons, where the firing rate is below the background firing rate
(horizontal line) until lag 50 ms. As noted in Section this is known as the
refractory period. Furthermore, these history plots show that after the refractory
period, the firing rate increases until it reaches a peak at lag 100 ms. Meaning,
if neuron j (for j = {1,2,3}) fired anywhere from 50 to 100ms ago, it is more
likely to fire again. This points towards some oscillating activity patterrEl, that is,

3This is a know phenomena in neuroscience, called neural oscillation, where a neuron fires in
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activity that occurs in regular intervals.

The connectivity plots of Figure show that these three neurons seem to
have excitatory connections among themselves. For example, the connectivity plot
in Figure shows that right after neuron 2 has fired, neuron 1 is also likely to
fire, since the connectivity curve is above the background firing rate of neuron 1.
The same pattern can be observed for the directed connection from neuron 3 to
neuron 1, shown in Figure Furthermore, these two plots also show that the
connectivity effect goes towards zero as the lag increases, as noted in the estimated
coefficients in Table[7.5] Note that the excitatory effects among these three neurons
appear at different lags. For the directed connections in Figures and
just discussed, the excitatory effect appears rather immediately (at short lags).
This is also the case for the directed connection from neuron 3 to neuron 2 shown
in Figure However, the excitatory effect appears at later lags for the directed
connection from neuron 1 to neuron 2 in Figure[7.10d} and from neuron 1 to neuron
3 in Figure [7.10g] For example, for the directed connection in Figure this
excitatory effect appears in the interval 50 to 100 ms. Additionally, a connectivity
effect that is excitatory at first can change to an inhibitory effect. This is seen
for the directed connection from neuron 2 to neuron 3 in Figure which is
excitatory in the first 50 ms and inhibitory in the interval 50 to 100 ms.

A connectivity effect that appears at specific lags is related to how the infor-
mation flows in the underlying physical network of neurons, as discussed in Section
[[:2:3|regarding Figure[[.4 As shown in Figure[l.4] the lag can be divided into three
intervals: from 0 to 3ms, from 3 to 15 ms and from 15 to 100 ms. The connectivity
effect that manifests in these intervals indicates the type of underlying connection:
common, direct and indirect, respectively. From the connectivity plots of Figure
the type of underlying connection is not immediately clear, because the lag
axis is scaled from 0 to 160 ms, which is a consequence of placing the (orthogonal)
cosine bases such that we include observations from the previous 75, = 160 ms, as
stated in Section [6.2.3] This scaling does not reveal the details in the intervals
from 0 to 3ms and from 3 to 15 ms.

a rhythmical fashion.
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Figure 7.10: History and connectivity effects of neurons 1, 2 and 3 from session
2, estimated using data from GoodTrials. The plots on the jth row are obtained
by fitting the lasso using observations from the jth neuron, y;, as the re-
sponse variable. The plots on the diagonal show the estimated history effects
logit_l{ﬁhist’j}. The remaining plots in the jth row and the kth column are the
estimated connectivity effects logitfl{ﬁwnnect’jk}. The (j, k)th connectivity repre-
sents the effect of neuron k on the activity of neuron j. The dashed horizontal line
is the estimated intercept logit_l{&oj}, which represents the baseline firing rate of
neuron j.

74



7.4 Network of Neurons

In this section we attempt to estimate the underlying network of neurons, by defin-
ing significant connectivity effects. Recall from Section that a directed con-
nection from neuron k to neuron j is represented by ojr = (ayk1, k2, -, OjkL)
(where L = 10 for history effects and L = 4 for connectivity effects). In the follow-
ing, we have chosen to conclude that the connection o is significant if at least
one of its element is significant. To test the significance of each «a;;, we calculate
its adjusted p-value, and use a cut-off level 0.05. (This controls the FWER at 5%,
as stated in in Section . Similarly, we can also test if neuron j is sig-
nificantly tuned to a certain stimulus, by testing the significance of each ~y4;. That
is, if at least one ~y; is significant, for d = 1, ..., D, then we conclude that neuron
J has a significant tuning curve. Hence, we obtain adjusted p-values for the ajz’s
and the 74’s by the multi sample-splitting procedure described in Section
This is done using the function multi.split from the hdi-package in R, where we
use B = 50 sample-splits (see (4.23)).

7.4.1 Significant Effects

Consider the full regression model fitted for neuron j = 1 from session
2, using data from GoodTrials, for which the estimated coefficients at vy, are
summarized in Tables (stimulus), [7.4] (history) and (connectivity). These
estimates, along with their adjusted p-values, are summarized in Tables (history
and connectivity) and (stimulus), in the columns corresponding to At = 1ms.
This table also shows parameter estimates, and their adjusted p-values, for the same
regression model , except that the interval in which the data is observed
(0,T] is discretized using At = 10ms. The reason for considering this coarser
discretization is to reduce the computation time needed to calculate the adjusted
p-values. For example, it took 6.73h to calculate the adjusted p-values in Table[7.6]
in the At = 1 ms discretization, and only 19 min to calculate the adjusted p-values
in the At = 10 ms discretization. Details will be discussed in Section [8:2] Hence,
for all remaining neurons in the alm-1 data set, adjusted p-values will be calculated
using the At = 10 ms discretization.

Okl FWER adjusted p-value
Neuron (k) Basis (I) At=1ms At=10ms At = 1ms At = 10ms

1 1 —11.13 —12.39 6.80 x 107204 1.92 x 107203

2 —3.50 —2.61 1.86 x 10719 2.29 x 107

3 2.09 1.41 4.60 x 1073 2.48 x 101

4 —5.51 —4.32 1.22 x 10710 1.06 x 1078

5 1.87 —0.82 1.00 1.00

6 —4.00 —-1.72 4.15 x 1077 9.81 x 107!

7 - —1.65 1.00 1.00

8 —2.80 - 1.82 x 10~* 1.00

9 - 2.60 1.00 1.22 x 1072

(6]



a1 k1 FWER adjusted p-value

Neuron (k) Basis (I) At=1ms At=10ms At = 1ms At = 10ms

10 —-1.23 - 3.74 x 1071 1.00
2 1 —1.55 —1.66 1.00 1.00
2 0.90 0.29 1.00 1.00
3 —1.14 —0.75 1.00 1.00
4 0.12 - 1.00 1.00
3 1 —2.07 -1.85 7.08 x 10~° 1.32 x 10~*
2 0.70 0.52 1.00 1.00
3 —0.54 —0.28 1.00 1.00
4 - - 1.00 1.00
4 1 —1.18 —1.12 3.03 x 10~2 2.46 x 1071
2 0.30 0.36 1.00 1.00
3 —0.16 —0.37 1.00 1.00
4 —0.42 —0.60 1.00 1.00
5 1 —0.08 —0.10 1.00 1.00
2 —0.52 —0.76 1.00 1.00
3 —0.46 —0.34 1.00 1.00
4 —0.47 —0.49 1.00 1.00
6 1 0.11 0.15 1.00 1.00
2 - - 1.00 1.00
3 - - 1.00 1.00
4 —0.04 - 1.00 1.00
7 1 - - 1.00 1.00
2 —0.08 —0.07 1.00 1.00
3 - 0.18 1.00 1.00
4 0.48 0.35 1.00 1.00
8 1 —0.25 - 1.00 1.00
2 - - 1.00 1.00
3 0.82 - 1.00 1.00
4 —0.21 - 1.00 1.00
9 1 —0.12 - 1.00 1.00
2 0.21 0.26 1.00 1.00
3 - - 1.00 1.00
4 - - 1.00 1.00
10 1 - - 1.00 1.00
2 —0.56 —0.40 1.00 1.00
3 - - 1.00 1.00
4 0.16 0.75 1.00 1.00
11 1 0.80 0.75 1.05 x 107° 5.43 x 10~°
2 -0.23 —0.15 1.00 1.00
3 0.10 - 1.00 1.00
4 0.03 - 1.00 1.00
12 1 2.14 2.20 1.00 1.00
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a1 k1 FWER adjusted p-value

Neuron (k) Basis (I) At=1ms At=10ms At = 1ms At = 10ms

2 - - 1.00 1.00
3 - 0.10 1.00 1.00
4 - - 1.00 1.00
13 1 1.26 1.50 1.00 1.00
2 0.89 0.84 1.00 1.00
3 1.21 0.69 1.00 1.00
4 - - 1.00 1.00
14 1 0.26 0.30 1.00 1.00
2 - - 1.00 1.00
3 0.03 - 1.00 1.00
4 0.16 0.06 1.00 1.00
15 1 —-0.49 —0.33 1.00 1.00
2 0.94 0.79 1.00 1.00
3 - - 1.00 1.00
4 —0.26 —0.32 1.00 1.00
16 1 1.62 1.62 1.00 1.00
2 - - 1.00 1.00
3 0.23 - 1.00 1.00
4 - 3.07 1.00 1.00

Table 7.6: Parameter estimates of history and connectivity effects of neuron j =1
(from session 2) &1,5,;, and their adjusted p-values (with respect to the FWER, as
shown in (4.27)). The parameter estimates are obtained from the penalized logis-
tic model using data from GoodTrials, fitted once for each discretization
At = 1ms and At = 10ms. The adjusted p-values are obtained using the func-
tion muli.split from the hdi-package, with B = 50 iterations. The gray boxes
highlight p-values that are below the cut-off level 0.05.
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Va1 FWER adjusted p-value
Degree (d) At=1ms At=10ms At=1ms At=10ms

1 —69.09 —24.71 1.00 1.00
2 168.92 54.89 2.74 x 107* 2.90 x 104
3 —123.85 —41.65 3.31 x 1072 3.60 x 10~3
4 - - 1.00 1.00
5 0.70 - 1.00 1.00

Table 7.7: Parameter estimates of stimulus effects of neuron j = 1 (from session 2)
44,1, and their adjusted p-values (with respect to the FWER, as shown in (4.27)).
The parameter estimates are obtained from the penalized logistic model in
using data from GoodTrials, fitted once for each discretization At = 1ms and
At = 10ms. The adjusted p-values are obtained using the function muli.split
from the hdi-package, with B = 50 iterations. The gray boxes highlight p-values
that are below the cut-off level 0.05.

Note that the parameter estimates from the coarser discretized model with
At = 10 ms are similar to the parameter estimates from the finer discretized model
with At = 1ms (in Tables and . This is to be expected, since the param-
eters in these models represent the same effects, regardless of what bin length is
used to discretize the observed interval (0,7]. To see this, consider the regression
parameters ajj; and g as weights that are used to evaluate the basis functions
they represent (orthogonal cosines b; (6.8)) and orthogonal polynomials Py ,
respectively). To illustrate, Figure WS evaluated cosine bases, using the two
discretizations At = 1ms and At = 10ms. These plots show that the bases retain
the same shape, and hence, capture the same effects, regardless of the bin length.
(This is also true for the orthogonal versions of these bases, which are actually used
to fit the regression models). However, it is preferable to discretize using At = 1 ms,
which leads to bases functions that capture the effects in more detail. This can be
seen by comparing the history and connectivity effects in Figure (which are
fitted using the coarser discretized model with At = 10 ms), to the corresponding
effects in Figure (fitted using the finer discretized model with At = 1ms).
This comparison shows that the plots in |7.12| resemble the corresponding plots in
Figure however, the former results in less detailed and more jagged plots.
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Figure 7.11: Evaluated cosine bases b, from (6.8), for [ = 1,..., L. The left column
shows the L = 10 history bases, and the right column shows the L = 4 connectivity
bases. Each plotted point is b;(¢;), where ¢; = - At is the midpoint of the ith bin
for i = 1,..., M, where M is the number of bins we go back (relative to bin ). In
the top row At = 1ms, and M = 160. And in the bottom row At = 10ms, and
M = 16.
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Figure 7.12: History and connectivity effects of neurons 1, 2 and 3 in session 2,
using data from GoodTrials, discretized using bin length At = 10ms. The plots
on the jth row are obtained by fitting the lasso using observations from
the jth neuron, y;, as the response variable. The plots on the diagonal show the
estimated history effects logit_l{ﬁhist,j}. The remaining plots in the jth row and
the kth column are the estimated connectivity effects 1ogit71{ﬁconnect7jk}. The
dashed horizontal line is the estimated intercept logit™' {évo; }-

Furthermore, note the difference in the y-axes between the effects in Figure[7.12]
and their corresponding effects in Figure [7.10] For example, the history effect of
neuron 1 in Figure[7.12a]shows that neuron 1 has a baseline firing probability of 0.01
(intercept), and a maximum firing probability of 0.05 (reached at lag 100 ms). The
same history effect in Figure however, shows a baseline firing probability of
0.001 and a maximum firing probability of 0.005. The fact that the probability scale
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decreases by a factor 10, when the interval (0,7 is discretized using At = 1ms
rather then At = 10ms, is related to the number of bins in which there are no
observed firings. Recall the discretization process from Section [6.1} illustrated in
Figure As the number of bins n = T'/At increases by a factor 10 when using
At = 1ms rather than At = 10ms, the number of bins where y;(¢;) = 0 increases
by the same factor. Hence, the firing probabilities in our analyses should not be
considered as absolute quantities. However, these probabilities can be used to assess
the change in activity of a neuron compared to a baseline activity. For example,
the history effect of neuron 1 shows that the maximum firing probability is five
times higher than its baseline firing probability in both discretizations.

More importantly, Tables[7.6|and [7.7] show that the calculated adjusted p-values
are similar (in most cases) for the estimated effects from the At = 1ms discretized
model and the At = 10 ms discretized model. For example, using significance level
5%, there are 6 (out of Lyt = 10) history effects that are significant in the At =
1 ms discretized model (shown by the gray boxes in Table[7.6]). Similarly, there are
4 history effects that are significant in the At = 10ms discretized model. Hence,
using the rule that oy, is significant if at least one of its element is significant, we
get that the history effect for neuron 1 (1) is significant, in both diszcretizations.
Furthermore, in both diszcretizations, we get that the directed connections from
neuron 3 to neuron 1 (o 3) and from neuron 11 to neuron 1 (ovi11) are also
significant. And additionally, in both diszcretizations, we also get that neuron 1
has a significant tuning curve (as shown by the gray boxes in Table . However,
according to this pragmatic significance rule, the directed connection from neuron
4 to neuron 1 (a1 ,4) is significant under the At = 1ms discretized model, as the
adjusted p-value of o 4,1 is under the cut-off level 0.05. But, o 4 is not significant
under the At = 10 ms discretized model. That is, we trade-off accuracy in detecting
significant effects in favour of decreasing computation time, when we calculate the
adjusted p-values from the At = 10ms discretized model rather than from the
At = 1ms discretized model.

In summary, we’ve observed that using cut-off level 0.05 we get almost the same
conclusions regarding significance from both discretizations for neuron j = 1 from
session 2. Hence, for the remaining neurons in session 2 (and generally for the
remaining neurons from any session and any mouse in the alm-1 data set), we
test for significant effects using adjusted p-values calculated from the At = 10ms
discretized model.

7.4.2 Excitatory and Inhibitory Connections

In estimating the network of neurons, we focus on direct connections, which are
described in the discussion regarding Figure in Section Using this figure,
we can define excitatory and inhibitory connections by evaluating the area between
the connectivity effect curve and the baseline. That is, consider the dark gray area
(from 3 to 15ms) in Figure which illustrates how the direct connection from
neuron a affects the activity of neuron b. As seen, the effect is excitatory at first,
but then changes to a slight inhibitory effect. However, to classify this connectivity
as either excitatory or inhibitory, we calculate the area under the effect curve that
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is above the baseline (intercept), and the area that is under the baseline. We
approximate these areas by a simple trapezoidal rule. Then, if the area above the
baseline is greater than the area under the baseline, we classify the connectivity as
excitatory. (This is the case illustrated in Figure . Similarly, if the area under
the baseline is greater, then the connection is classified as inhibitory. Furthermore,
by evaluating the difference in the area above and below the connectivity curve
and the baseline we can estimate to some extent the strength of the connection.
For example, if the area above the baseline is much larger than the area under
the baseline, we consider this connection as a strong excitatory connection. To
accurately evaluate these areas, we use the estimated connectivity effects from
models where the interval (0,7 is discretized using At = 1ms. (Recall that the
connectivity plots form the At = 10ms discretized model where less detailed and

more jagged, as shown in Figure [7.12)).

7.4.3 Network of Connections Between the 16 Neurons from
Session 2

Figures [7.13] [7.14] and [7.15] show the estimated network of neurons from session 2,
using data from GoodTrials, correct left lick trials, and correct right lick trials,
respectively. Each directed connection from neuron . to neuron j in these net-
works is a significant connectivity effect oy, evaluated using cut-off level 0.05 on
the adjusted p-values calculated from the full regression model , where the
interval (0,7 is discretized using At = 10 ms. For example, as shown in Table
neuron 1 has significant connections from neurons 3 (o 3) and 11 (ovq,11). This is
shown as arrows pointing from neurons 3 and 11 to neuron 1 in Figure These
two connections are evaluated as excitatory and inhibitory, respectively. Figure
shows why the former connection was evaluated as excitatory, as the plotted
connectivity effect lies above the baseline, seemingly for all lags, especially for lags
3 to 15ms. Additionally, Table[7.6| also shows that neuron 1 has significant history
effects (ai,1). This is displayed in Figure E as the curved dashed arrow from
neuron 1 to itself. Furthermore, Table shows that neuron 1 has a significant
tuning curve. This is shown in Figure [7.13] by coloring neuron 1 as a light gray
node (otherwise neuron 1 would’ve been colored as a dark gray node).

Note, for each estimated network, the full regression model is fitted N
times, independently, where N is the number of observed neurons in the session.
That is, the regression model is fitted using observations from the jth neuron,
¥, as the response variable, and the remaining k£ # j neurons as covariates, for
j=1,..,N.

As mentioned in Section we can expect there to be (N2 — N)-5% directed
connections in a network of N neurons. In session 2, there are N = 16 neurons,
and hence we can expect there to be 12 directed connections. In the estimated net-
works in Figures [7.13} [7.14] and [7.15] there are 35, 21 and 12 directed connections.
First off, we note that N is not necessary the total number of recorded neurons,
but rather, the number of so-called principal neurons (Section . Recall that
principle neurons are neurons that transmit an excitatory signal to other neurons.

82



Whats more, it is unclear whether neurons that provide both an excitatory and an
inhibitory connectivity should be considered principle neurons (neuron 14 is such
an example, which seems to excite neurons 6 and 11, but inhibit neuron 15, see
Figure . Secondly, we have classified a connection as excitatory/inhibitory by
only considering the connectivity effects in the 3 to 15 ms range, as outlined in the
previous section, which also adds to the uncertainty in the number of expected
connections. Furthermore, as noted above, we’ve made a trade-off between accu-
racy and computation time by evaluating significance (and hence the existence of
a connection in these networks) using At = 10ms to discretize the interval (0, T].
Additionally, we note that the number of connections decreases when estimating
the network using data from GoodTrials, correct left and right trials. Recall from
Section that data from correct left trials and correct right trials are subsets
of GoodTrials. There are 285 GoodTrials, 134 correct lick left trials and 116
correct lick right trials in session 2. That is, the number of estimated connections
seems to decrease as the available data decrease in size. However, the difference
in the estimated networks of Figures and might be because of an actual
underlying difference in how the ALM responds to left/right licks.

Note that neuron 11 seems to stand out in the estimated networks in all three
trial types, with regards to the number of connections both from and to this neuron.
Recall from Table that this neuron was the only neuron in session 2 that was
classified as an F'S neuron (in the pre-processing of the raw data, done by [Li et al.
(2015, Methods)), which are neurons that transmit signals to other neurons in the
ALM. Secondly, note that there is a strong excitatory connection from neuron 15
to neuron 2, in all of the three estimated networks. In Figure which shows the
relative location of the recorded neurons, we can see that neurons 2 and 15 were
recorded on the same electrode/channel in session 2. Finally, note that neuron
16 is not displayed in the estimated networks in Figures and This is
because neuron 16 has too few observations, which can be seen in the raster plot
for session 2 in Figure[7.I] where neuron 16 is active during approximately one third
of the session time. Hence, when fitting the regression model using yi¢ as
the response variable, the (nested) coordinate descent algorithm from Section
does not converge. This seems to apply generally for neurons that have a relatively
small number of spikes, which will be discussed in Section

Estimated networks for session 1 and session 3 are shown in Appendix [B-4]
where there are several neurons with too few spikes to fit the regression model.

(These are colored black in Figures and .
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Figure 7.13: Estimated network of the 16 neurons from session 2, using data from
GoodTrials. A directed arrow from neuron k to neuron j indicates a significant
connection o, tested at 5% significance level. Light gray nodes represent neurons
that have a significant tuning curve, also tested at 5% significance level. Excitatory
and inhibitory connections are assigned by evaluating the difference in the area
between the connectivity effect and the baseline firing probability. The width of an
arrow shows the strength of the connectivity, as the (normalized) absolute value of
the difference in the area above and below the connectivity curve and the baseline.
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Figure 7.14: Estimated network of the 16 neurons from session 2, using data from
correct lick left trials. A directed arrow from neuron k£ to neuron j indicates a
significant connectivity o;i, tested at 5% significance level. Light gray nodes rep-
resent neurons that have a significant tuning curve, also tested at 5% significance
level. Excitatory and inhibitory connections are assigned by evaluating the differ-
ence in the area between the connectivity effect and the baseline firing probability.
The width of an arrow shows the strength of the connectivity, as the (normalized)
absolute value of the difference in the area above and below the connectivity curve
and the baseline.
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Figure 7.15: Estimated network of the 16 neurons from session 2, using data from
correct lick right trials. A directed arrow from neuron k to neuron j indicates a
significant connectivity o;i, tested at 5% significance level. Light gray nodes rep-
resent neurons that have a significant tuning curve, also tested at 5% significance
level. Excitatory and inhibitory connections are assigned by evaluating the differ-
ence in the area between the connectivity effect and the baseline firing probability.
The width of an arrow shows the strength of the connectivity, as the (normalized)
absolute value of the difference in the area above and below the connectivity curve
and the baseline.
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Chapter 8

Discussion and Conclusion

8.1 Summary of Results

The analyses in Chapter [7] are based on data from mouse ANM210861, which has
three sessions called session 1, 2 and 3. In these three sessions, there are extracel-
lular recordings of 30, 16 and 12 neurons, respectively. As part of the exploratory
data analysis in Section[7.1] we observed that some neurons were active throughout
the whole session, while some were active only in parts of the session. This is shown
by the raster plots in Figure The boxplots of (empirical) firing rates in Figure
showed that neurons were most active during session 2. The median firing rates
over all neurons in sessions 1, 2 and 3 were 0.63 Hz, 1.92Hz and 0.61 Hz, respec-
tively. Table showed that the majority of the neurons are pyramidial neurons,
which are neurons that connect activity from the ALM into motor-related areas in
the brainstem. This motivated the analyses of stimulus effects.

Hence, in Section [7.1.2] we calculated empirical firing rates in the three trial
epochs (delay, sample and response). The plots in Figure indicated that a
neurons activity is related to the stimulus. From these plots we could observe
different types of stimulus related activity, such as selectivity, which is a neurons
predisposition to increase its activity during either lick left or lick right trials.

In Section we fitted a logistic penalized regression model that included
stimulus effects as covariates. These stimulus effects where represented by a 5th
degree polynomial, using a set of orthogonal Legendre bases {Pi, ..., Ps} (which
are shown in Figure . As an example, we fitted this model using observations
from neuron j = 1, y1, from session 2. The resulting minimum binomial deviance
model retained all five parameters (none were set to zero), since the regularization
parameter was close to zero (Vmin = 1.97 X 10*5). Since there were only five
parameters in the model, we also fitted a logistic GLM. The estimated coefficients
and adjusted p-values were similar between the lasso restricted logistic model and
the unrestricted logistic model, as shown by Table Most importantly, we
used the estimated parameters from the lasso to plot a tuning curve, as shown in
Figure [7.5] This tuning curve captured to some extent the trend of the activity of
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neuron 1 shown in Figure The tuning curves in Figure showed that the
fitted regression models captured the selectivity, that is, the difference in neuronal
activity in correct lick left and correct lick right trials.

In Section [7.2.1] we fitted a logistic penalized regression model that, in addition
to including stimulus effects, also included history and connectivity effects. These
additional effects were represented by Lyt = 10 and Leopnect = 4 (orthogonal)
cosine bases (which are shown in Figure . As an example, we fitted this so-
called full regression model to observations from neuron j = 1, y;, from session 2,
and observed that the minimum binomial deviance model (at v, = 2.13 X 10*5)
retained 55 (out of 76) of the parameters in the model. Table compared the
stimulus effects from the full regression model (net effect) to the stimulus effects
from the stimulus only model (gross effect). The regularization parameter vy, was
generally larger for the full regression model, and hence, lead to the net effects being
smaller (in absolute value) than the gross effects. However, note that the value of
Vmin in the full regression model is still in the order of 10~°, which is close to zero.
That is, we could have fitted the usual (unrestricted) GLM using y1, but we prefer
to fit the lasso restricted model to allow the estimated parameters to be exactly
zero. (This is because we would like to achieve sparsity in the estimated parameters,
in order to estimate network of neurons that are as simple as possible, as will be
discussed below). Figure showed that the tuning curves for neuron 1 from
session 2 have similar shapes whether they’re estimated using the full regression
model, or the stimulus only model. The same trend can be seen for all 16 neurons
from session 2 by comparing the plots in Figure to the plots in Figure

The estimated history and connectiviy effects from the full regression model
were the focus of Section [7.3] Figure [7.10] plotted these effects for neurons 1, 2 and
3 from session 2. These plots showed that the history of neuron j had the largest
effect (in absolute value) on its firing rate, relative to a connectivity effect from
neuron k (for j,k € {1,2,4} and j # k). Furthermore, the history effect seemed
to capture the refractory periods (see Section of each neuron, in addition
to some oscillatory pattern. The connectivity effects between neurons 1, 2 and 3
seemed excitatory.

In Section we attempted to estimated the underlying network of neurons.
This was based on two concepts: significance of (history, connectivity and stim-
ulus) effects, and classification of a connection between two neurons (excitatory
or inhibitory). In Section we incorporated a pragmatic approach to find-
ing significant effects: the directed connectivity effect from neuron k& to neuron j,
aji = (g1, ..., kL), is significant if at least one of its element is significant. And
similarly, we could also conclude that neuron j was significantly tuned to a stimulus
if at least one of the parameters representing stimulus effects 7;1, ..., vjp was signif-
icant. For neuron j = 1 from session 2, we found that calculating adjusted p-values
using the R-function multi.split took 6.73h, when the observations in the time
interval (0,7] used to fit the regression model were discretized using At = 1ms.
For this reason, we increased the bin length to At = 10ms, which resulted in a
considerable reduction in computation time. multi.split took 19 min to calculate
the adjusted p-values for neuron j = 1 from session 2, when the time interval (0, T
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was discretized using At = 10ms. The adjusted p-values from the At = 10ms dis-
cretized model were similar (in all but one case) to the p-values from the At = 1 ms
discretized model. The former adjusted p-values resulted in the significance of oy 1,
a3, 11 and the tuning curve. The latter adjusted p-values, however, resulted
in the significance of the same effects as the former, but in addition, also concluded
that o 4 was a significant effect. Hence, it seems that we trade-off accuracy in
detecting significant effects in favour of decreasing computation time, when cal-
culating adjusted p-values using the At = 10ms discretization rather than the
At = 1ms discretization.

In addition to evaluating the significance of a connection, we also classified its
effect as either excitatory or inhibitory. This was done by evaluating the plot of the
connectivity curve, and its deviation from the baseline firing rate, by calculating the
area between these quantities, as described in Section[7.4.2] Note, these areas were
only calculated for lags in the interval from 3 to 15 ms, which are direct connections
as illustrated by Figure|1.4

Finally, in Section we presented the resulting network of the 16 neurons
from session 2. These networks were estimated by fitting the lasso penalized re-
gression model with stimulus, history and connectivity effects, once for each neuron
j=1,...,N. Figures[7.13] [7.14and [7.15]show the estimated networks based on data
from GoodTrials, correct lick left trials, and correct lick right trials. These three
networks are seemingly different, however, that might be attributed to the size of
the data used to fit the regression model, since we observed that as the number
of trials reduces, so does the number of significant connections. Furthermore, we
observed in all Figures [7.13] [7.14] and [7.15] that there were most connections from
and to neuron 11, which was the only neuron in session 2 that was classified as an
F'S neuron in the pre-processing of the raw data (Li et al., 2015, Methods). Lastly,
we noted that neurons 2 and 15 had a strong connection between themselves, and
they were recorded on the same electrode/channel, as shown in Figure Fur-
thermore, the majority of the neurons in session 2 seem to have significant tuning
curves, as shown by the blue nodes in these estimated networks.

8.2 Challenges in the Data Analysis

Representing Stimulus Effects As stated in Section we represented the
stimulus effects by choosing a set of (orthogonal) Legendre bases { Py, ..., Pp}, with
D = 5 fixed. These bases are shown in Figure[6.4 That is, we completely determine
the number of bases and their parametric shape, such that the resulting additive
model can be fitted by the usual IWLS algorithm, as stated in Section[5.1] However,
by letting the bases function be so-called thin plate regression splines (Wood, 2006}
p. 153), we can let the data estimate the degrees of freedom, which is a comparable
quantity to the degree of a polynomial D. This was done by using the R-function
gam from the package mgcv, by fitting the stimulus only model using observations
of neuron 1, y1, from session 2 using data from GoodTrials. The estimated tuning
curve is shown in Figure[8.I] which has 4.15 estimated degrees of freedom. Compare
this tuning curve to the tuning curve estimated using the orthogonal Legendre
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bases with D = 5 in Figure from Section where we fitted a comparable
regression model with only stimulus effects to observations from neuron 1 from
session 2. These two tuning curves, fitted using two different methods, are rather
similar. That is, by letting the fitting procedure underlying the R-function gam
estimate the degrees of freedom, and hence the shape of the tuning curve, we
obtain a similar result compared to when predefining the degree D of a Legendre
polynomial. This gives us confidence that the tuning curves of Section rely
more so on the data used to fit the regression model, rather than the imposed
degree D of the polynomial that represents the stimulus effect.

Neuron 1
Smoothing spline. edf = 4.15
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Figure 8.1: Estimated tuning curve for a regression model with only stimulus
effects, using observations from neuron 1 from session 2. This curve is bases on
so-called thin plate regression splines, which is estimated using the R-function gam
from the package mgcv. The horizontal line is the inverse logit-function of the
estimated intercept, which represents a baseline probability of firing. The dashed
lines are the 2-standard error estimates of the fitted curve. The estimated degrees
of freedom for the fitted curve is 4.15.

Computation Time As noted in Section[7.4.1] calculating the adjusted p-values
for regression models where the observed time interval (0, 7] is discretized by At =
1ms, takes a considerable amount of time. For example, for neuron 1 from session
2, the calculation (of the adjusted p-values in Tables and based on data
from GoodTrials) took 6.73 h, when taking advantage of parallelization on a server
with multiple cores[l] We've observed that the computation time is related to the
dimensions of the model matrix used to fit the regression model. For example,
in session 2 there 285 GoodTrials. Since each trial lasts 5s, the observed time

IThe server has 24 (logical) cores, as reported by the R-function detectCores from the package
parallel.
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interval is T' = 285 -5 = 1450s long. Hence, discretizing using At = 1 ms, we get
that the length of the observation vector of a neuron is |y;| = 1.425 x 10°. That
is, the model matrix X has 1.425 x 10° rows. When we increased the bin size by
a factor 10, that is, At = 10 ms, the resulting model matrix X had 10 times fewer
rows (1.425 x 10%), which decreased the computation time of the adjusted p-values
for neuron 1 from session 2 to 19 min.

Calculation of the adjusted p-values using the multi-sample approach hinges
on estimating the parameters of a lasso regularized regression model at vy, B
times (where B is the number of sample splits), as explain in Section where
usually B = 50 or B = 100 (we used B = 50 sample splits when calculating the
adjusted p-values in Section . Recall that the parameter estimates of the
lasso at vy, are obtained by fitting several lasso models for different values of
the regularization parameter v (called the lasso path), and cross-validating with
respect to some loss function (binomial deviance in the case of logistic lasso model),
as outlined in Section Consider fitting the lasso path once, which is done by
the cyclical coordinate descent algorithm, which is described in Section At
the heart of this algorithm lies the soft-thresholding operator , which is used
to update each parameter in the model, as shown in . For conveniance, this
parameter-wise updating scheme is re-stated here

N A 1
5;+1 — SV (ﬁ; + E<rtaxj>)7

where S, is the soft-thresholding parameter. Note that in the argument to S,,
an inner-product is calculated between the jth column of the model matrix (x;)
and the residuals from the previous step ¢ (r'). This is an inner product between
two vectors of length T/At. Figure shows that the computation time of an
inner product calculation seems to increase exponentially, as the length of the
vectors increase. Granted that if the vectors in the inner product have lengths
in the order of 10° and 10° (which is the case for the At = 10ms and the At =
1ms discretized models in our analyses, as noted above), the calculation is in the
order of 10725 (to be exact: 4.9 x 10725 and 9.9 x 10~2s, respectively). These
computation times seem small, but relatively, the computation time for the inner
product is twice as long for the At = 1ms discretized model, compared to the
At = 10ms discretized model. This difference adds up for all model parameters 3;
(in the full regression model fitted to neurons from session 2 in Section there
were 76 model parameters) and the number of iterations ¢ that are needed (for the
cyclical coordinate descent algorithm to converge). Furthermore, this difference is
multiplied when estimating the lasso path for several values of the regularization
parameter v, performing the 10-fold cross-validation, and obtaining the adjusted
p-values for B sample splits.
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Figure 8.2: Computation time of (x;,xx) = >, Tk, where x; and x, are two
vectors of integers, where the integers were picked at random (with replacement)
from the interval [0,999]. These computation times were obtained on the same
multi core server used to calculate the adjusted p-values in Section m (Paral-
lelization was not used to calculate these computation times.)

There might also be other reasons that affect the computation time for fitting a
lasso penalized regression model, and hence, also for calculating adjusted p-values.
We’ve observed that (nested) coordinated descent algorithm (outlined in Section
takes longer to converge for neurons that have few spikes relative to the num-
ber of bins n = T/At, that is, neurons for which there are few observations where
y; # 0 (¢ is the bin number). It is not obvious how the lack of observations af-
fect the computation time. In the extreme case, the (nested) coordinated descent
algorithm does not converge at all, and we are not able to obtain any parameter es-
timates. This happened for neuron 16 from session 2, when estimating the network
of neurons based data from lick left trials and lick right trials (neuron 16 is hence
not shown in Figures and [7.15)). In the estimated networks of session 1 and
3, such neurons, that lead to non-convergence of the (nested) coordinated descent
algorithm, are shown as black nodes in Figures and The non-convergence
of this algorithm might be related to the so-called “rule of 10” mentioned in Sec-
tion For example, neuron 16 from session 2 has 169 observations that are
non-zero. Recall that the network of neurons in Section [7.4.3] were fitted using the
full regression model, which had a total of 76 parameters. That is, the number
of observations (which is the least frequent class) is not greater than 10 times the
number of parameters in the model, which violates the “rule of 10”. Intuitively,
this means that there isn’t enough information in the observations of neuron 16 to
fit the full regression model. Nevertheless, we would expect the lasso to converge
in this situation. As mentioned in Section [f:I} our motivation for choosing to fit

92



a lasso restricted logistic regression model, rather than the (unrestricted) logistic
regression model, was exactly because we believed that the lasso would be able to
estimate the model parameters under such conditions where there are few observa-
tions. This reasoning was based on the ability of the lasso (or rather, regularized
models in general) to adequately estimate the the unknown model parameters, even
in a high dimensional setting p > n (where p is the number of unknown parameters,
and n is the sample size, as in Section .

We believe that the non-convergence of the lasso might be related to the effects
of photostimulation (the experimenters ability to inactive targeted neurons, see (Li
et al. 2015, Methods)). That is, there is a systematic effect that causes neurons to
be inactive in certain parts of the session. This can clearly be seen in the raster plot
of the 12 neurons from session 3, shown in Figure The lasso did not converge
for most of these neurons, as seen in the estimated network in Figure (note the
number of black nodes). In Section we suggest that photostimulation effects
should be taken into account.

8.3 Neuroscientific Findings

Tuning Curves The tuning curves of Section [7.2] showed some characteristic
neuronal activity, such as selectivity. That is, for the 16 neurons from session 2,
we could for example observe a relative difference between lick left and lick right
trials, as shown by the red and blue plots of Figure (from stimulus only model)
and of Figure (from full regression model). However, it is interesting to note
that all 16 neurons from session 2 have seemingly different tuning curves. That is,
none of these neurons appear to be tuned to the same stimulus. This is also the
case for the tuning curves for the 30 neurons from session 1 and the 12 neurons
from session 3, shown in Figures and (both of which are estimated by
the stimulus only regression model). This might be an actual phenomena, that
the neurons in the ALM are all tuned to different stimuli. However, it is possible
that the underlying data used to estimate the tuning curves might include noise.
As mentioned in Section the recording is done by measuring the change
in activity in the extracellular (meaning “outside the cell”) environment. That is,
there is a chance that the observations of neuron j, y;, might actually include some
activity of neuron k. We imagine that this chance increases if neurons j and k are
located nearby, such that their activity is recorded on the same electrode/channel
(for example neurons 2 and 15 from session 2, see Figure . If the underlying
data used to estimate the tuning curves truly is noisy, the stimulus effects should
be represented by a lower degree polynomial than degree D = 5, to restrict the
shape of the resulting tuning curves.

In any case, whether the variety of tuning curves is because the underlying
neurons actually are tuned to different stimuli, or whether the variety is due to
noisy data, this can explain why the tuning curves retained their shape when
they were estimated from the full regression model (Section rather than the
stimulus only regression model (Section . (Figure shows a clear example,
using data from neuron 1 from session 2, where the tuning curves retain their
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shape). That is, if neurons j and k are tuned to completely different stimuli, their
tuning curves will retain their shapes whether we include the connectivity between
these neurons or not. On the other hand, if neurons j and k were tuned to the
same stimuli, say for example that they were both active during the sample epoch
only, then we can imagine that their tuning curves will change if we include their
connectivity. This might explain why [Stevenson et al.| (2012)) reported that their
estimated tuning curves (based on a different data set than the alm-1 data set
considered in this thesis) changed as the authors included connectivity effects.

Sink/Source of FS Neurons in the Estimated Networks As noted in Sec-
tion there is a single neuron in session 2 that was classified as an FS neuron,
as part of the pre-processing of the raw data (see Table . In the estimated net-
work of neurons in Figures[7.13}, [7.14] and [7.15] we observed that neuron 11 has the
highest amount of connections. That is, it seems that neuron 11 is a central part
of the estimated network of neurons, which is in accordance with the neurological
characteristics of an FS neuron. As explained in Section F'S neuorons (also
called intratelencephalic neurons) send signals to other neurons in the ALM. That
is, F'S neurons are a driving force, so to speak, behind the activity in the ALM.
In the estimated network of session 3, shown in Figure we observe the same
trend. In this figure, neuron 5 seems to be a central part of the network, which
was classified as an FS neuron (Table[7.1]). However, in the estimated network of
session 1, it is not clear if the four F'S neurons (neurons 1, 16, 24 and 27) have
a central role. This is because there are too many connections in the estimated
network of session 1, which makes it difficult to visually assess its structure.

There’s a rule of thumb in neuroscience known as Dale’s principle, which states
that FS neurons act inhibitory (and pyramidial neurons act excitatory). That is,
according to this Dale’s principle, the connection from an FS neuron should be
inhibitory. However, in the estimated networks of session 2 and session 3, we’ve
generally observed the opposite case. For example, neuron 5 from session 3 (which
is an FS neuron, see Table has three outgoing connections (to neurons 1, 7
and 9), as seen in the estimated network shown in Figure All these three
connections are excitatory, which contradicts Dale’s principle. For neuron 11 from
session 2, all four connections leaving neuron 11 (towards neurons 8, 10, 12 and
13) are also excitatory, seen in the estimated network based on data from lick right
trials, shown in Figure For the other two estimated networks based on data
from GoodTrials and lick left trials (Figures and respectively) neuron
11 has outgoing connections that are both excitatory and inhibitory. Although,
most of them are excitatory.

However, note that we classified a connection as either excitatory/inhibitory
using only the shape of the connectivity curve from 3 to 15ms, as explained in
Section If we considered the whole lag (in the time window from 0 to 160 ms),
the resulting networks might have been different regarding the classification of
connections.
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8.4 Future Work

Resolution of the Lag Time Window Consider the resolution of the time
window of the lag, which goes from 0 to 160 ms, which we chose by setting the
number of bins we go back in time to M = 160 (in the At = 1ms discretized
model, as stated in Section . This time window did reveal some interesting
oscillating behaviour for the history effects, as seen in Figure [7.10, However, we
believe that this time window is too wide to capture any interesting connectivity
effects. Asindicated by the discussion in Section[1.2.3] regarding the conceptualized
connectivity effect of Figure [I.4] the most interesting connectivity effects might be
in the intervals 0 to 3ms, 3 to 15ms and 15 to 100ms. It would be interesting
to place the cosine bases (that represent the connectivity effects, as explained in
Section such that they specifically covered these intervals. This can be
achieved by simply letting M = 100 (when At = 1ms), which would lead to a time
window that goes from 0 to 100ms. Going further, to tailor the cosine bases to
capture the effects in the three distinct intervals of Figure the constants (such
as a and c in (6.8)) and the placement of the cosine bases (in terms of ¢; in (6.8))
should experimented with, and changed. The values used in our analyses were
directly copied from [Pillow et al.| (2008). Tailoring the cosine bases to capture the
effects in the intervals 0 to 3ms, 3 to 15 ms and 15 to 100 ms might be a worthwhile
effort, which could lead to estimated connectivity effects that represent common,
direct and indirect connections more precisely. From [Pillow et al.| (2008), we also
copied the number of history bases Lyjs; = 10 and the number of connectivity bases
Leconnect = 4. These numbers should also be experimented with, to see how the
resulting estimated history and connectivity effects change, and hence, also how
the estimated networks change.

Reducing the Number of Connections in the Estimated Networks The
estimated network of the 30 neurons from session 2, shown in Figure shows no
clear underlying structure, since there are many connections (too many to visually
discover any structure, at least). To some extent, this is also the case for the
estimated network of the 16 neurons from session 2, shown in Figure[7.13] (based on
data from GoodTrials). A possible solution to this is to enforce fewer connections
in the estimated networks. This can be achieved by considering a stricter cut-off
level when evaluation the adjusted p-values to test the significance of a connection.
Recall that we used a cut-off level of 0.05 to test the significance of a connection in
Section hence, a stricter cut-off level could be 0.001. However, it is unusual
to test for significance using a cut-off level below 0.05 when evaluating FWER
adjusted p-values.

A second approach to reducing the number of connections in the estimated
networks is to select the estimated coefficients from the lasso path at vy, rather
than at vp;,. This is because, generally, there are fewer non-zero coefficients at vy,
compared to Vyi,, which will lead to fewer connections in the estimated networks.
For example, recall that the full regression model fitted to observations from neuron
1 from session 2 had 55 non-zero coefficients at vy, (see the lasso path shown in
Figure . However, if we had chosen the estimated coefficients at v14 in this
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example, we would’ve retained only 8 coefficients. It would be interesting to see
the network of neurons that result by choosing a more sparse solution to the lasso
regression models.

Expanding the Regression Models As noted in Section [7.1.1]} we ignored the
effects of photostimulation (the experimenters ability to inactive targeted neurons,
see (Li et al., 2015, Methods)) and the relative location of the neurons as given by
the implanted MEA used to record the activity of the neurons (see Sections [1.2.4]
and . Trials where the experimenters used photostimulation are tagged in the
alm-1 data set, and can be accounted for in the regression models by, for example,
using an index, or simply by removing the data from these trials. To account for
the locations of the recordings, however, some type of distance metric between
the neurons need to be developed. A simple distance metric would be the usual
Euclidean distance in two dimensions, calculated between the electrodes/channels
of Figure[1.8] That is, in addition to the connectivity effects as represented by the
cosine bases, it would be interesting to include location effects between neurons,
by adding additional covariates to the regression model. Ideally, this would lead to
estimated networks where the connections are not affected by the location of the
recordings. For example, we can imagine that taking location effects into account
would not lead to a strong connection between neurons 2 and 15 from session 2
(which are recorded on the same electrode/channel, see Figure , as seen in the
estimated networks of the 16 neurons from session 2 in Figures [7.13] [7.14] and [7.15]

Regarding the fitted regression models, there is a need to evaluate their goodness
of fit, in a more extensive manner than done in this thesis. In Section [7.2.2]
we mentioned briefly that the deviance seems to decrease, when fitting the full
regression model compared to fitting the stimulus only model (see Table . If
possible, perhaps we could have developed so-called analysis-of-deviance tables (as
in Example [1] in Section 7 to compare the full and stimulus only regression
models. This would’ve yielded a test on the significance of the stimulus effect, or the
history and connectivity effect (depending on the order in which these effects are
introduced into the regression models). It would be beneficial to investigate what
types of goodness of fit measures there exist for the lasso penalized regression model.
(As outlined in Section regarding inference based on regularized regression
models, we’ve only focused on calculating the adjusted p-values in order to assess
the significance of the estimated parameters.)

Finally, our regression models used a set of parameters to represent an effect
(stimulus, history and connectivity). For example, we represented stimulus effects
by a set of five parameters {7;1, ..., 7j5} (where j denotes the response neuron), one
for each of the polynomial bases. As explained in Section the lasso (or rather,
regularized models in general) sets a constraint on the size of each of the parameters
in the model. However, to reflect that all five of the v;4’s in actuality represent a
single effect (stimulus), we could instead constrained them as a group. This would
lead to parameter estimates where all of the 7;4’s are either set to zero or not. By
reflecting this grouped structure in the constraint, we fit a so-called grouped lasso
regression model. It would be interesting to fit this type of regression model, and
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perhaps construct the estimated networks by including connectivity effects that
were non-zero.

Analyzing the other 18 Mice in the alm-1 Data Set The R-code developed
in this thesis, given in Appendix [C} is general enough to analyze data from the
remaining 18 mice in the alm-1 data set, with regards to estimating the tuning
curves and the networks of neurons. However, keep in mind that there will be
neurons in each session with few observations, such that the lasso does not converge,
as noted above in Section It would be interesting to see if the trends observed
in our analyses based on data from mouse ANM210861 (such as different tuning
curves for each neuron, and FS neurons that are seemingly a central part of the
estimated network), can also be found for the other mice in the alm-1 data set.

8.5 Conclusion

In this thesis we considered neural data recorded from the ALM of an adult mouse
brain, under experimental conditions where the mouse is given a certain stimulus.
We observed that the neural activity is related to the stimulus. Thus, we fitted
a logistic penalized regression model, where the activity of a neuron is set as the
response variable, and the stimulus effect as a covariate. This resulted in tuning
curves (which plot neural activity against stimulus) that were seemingly different
for each neuron, indicating that each neuron was related to the stimulus in its own
unique way. When we included history and connectivity effects into the regres-
sion model, these tuning curves retained their shape. By plotting the estimated
history effects, we could observe characteristics such as refractory periods and neu-
ral oscillation. And by plotting the estimated connectivity effects, we could see
that neurons affected each other in an excitatory and/or inhibitory manner. By
evaluating the significance of the connections, we estimated networks of neurons.
These networks show how the recorded neurons relate to each other, and hence,
how the activity/information flows between them. We observed that so-called FS
neurons had the highest amount of connections (compared to so-called pyramidial
neurons), and hence, seem to be a central part of the underlying network. This is
of relevance from a neuroscientific point of view, where central research questions
concern the transformation of activity in the brain that eventually translates to,
for example, body movements.
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Appendix A

A.1 Summary of the alm-1 Data Set

Mouse tag Session tag Number of trials Number of neurons
ANM210861 20130701 423 30
20130702 384 16
20130703 483 12
ANM210862 20130626 292 25
20130627 299 21
20130628 380 7
ANM210863 20130626 350 27
20130627 319 29
20130628 362 34
ANM214427 20130805 320 12
20130806 243 3
20130807 550 5
20130808 372 6
ANM214429 20130805 467 9
20130806 575 10
20130807 524 14
20130808 485 15
ANM214430 20130820 333 10
20130821 375 18
20130822 343 7
20130823 194 7
ANM218453 20131014 327 16
20131015 306 10
20131016 307 13
20131017 289 8
20131018 337 7
ANM218457 20131003 300 21
20131004 289 23
20131005 344 16
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Mouse tag Session tag  Number of trials Number of neurons

20131006 403 15
20131007 297 23
20131008 273 20
ANM218693 20131203 366 14
20131204 325 20
20131205 331 25
ANM219030 20130829 308 19
20130830 344 6
20130831 391 10
20130901 270 13
20130903 363 9
ANM219031 20131021 396 22
20131022 316 21
20131023 318 15
20131024 145 11
20131025 312 24
ANM219033 20131116 216 19
20131117 214 6
20131118 309 11
20131119 360 6
20131120 314 2
20131121 403 3
20131122 253 10
ANM219036 20131116 275 16
20131117 303 18
20131118 208 10
20131119 233 13
20131120 217 23
20131121 319 12
20131122 285 )
ANM219037 20131116 292 11
20131117 357 17
20131118 315 21
20131119 363 17
20131120 319 11
20131121 312 11
20131122 251 12
ANM219038 20131021 328 25
20131022 318 22
20131023 313 22
20131024 321 9
20131025 246 11
20131026 275 11
20131027 294 9
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Mouse tag Session tag  Number of trials Number of neurons

20131028 325 10
ANM219047 20130919 343 17
20130920 311 12
20130921 366 13
20130922 376 13
20130923 294 )
ANM219048 20130919 414 26
20130920 406 30
20130921 365 22
20130922 395 20
20130923 398 29
20130924 350 14
20130925 412 7
ANM219253 20140117 337 10
20140118a 150 9
20140118b 149 16
20140119a 153 5)
20140119b 144 5
20140120a 128 9
20140120b 191 12
20140121a 115 )
20140121b 149 7
20140122 295 15
ANM221977 20140115 337 8
20140116 415 13
20140118 178 15

Table A.1: Summary of the alm-1 data set.
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Appendix B

Figures

B.1 Raster Plots

The following raster plots correspond to the raster plots in Figure The differ-
ence is that these plots also show activity from only correct lick left and correct
lick right trials.

Session 1

1000 200 a000 a0

P——

Session 1

Correct left trials

Session 1
Correct right trials

1000 2000 a0 a0

Figure B.1: Session 20130701, mouse ANM210861. Raster plots of the activity of
neurons, based on GoodTrials, correct lick left trials, and correct lick right trials,
respectively.
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Figure B.2: Session 20130702,
neurons, based on GoodTrials,
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Figure B.3: Session 20130703, mouse ANM210861. Raster plots of the activity of
neurons, based on GoodTrials, correct lick left trials, and correct lick right trials,
respectively.

B.2 Approximated Firing Rate

The following figures are bases on data from session 20130701 and 20130702 (called

session 1 and 3 in Section [7.1)) from mouse ANM210861.
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Figure B.4: The empirically approximated firing rate ﬁj , for the 30 neurons
are from session 1.
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B.3 Tuning Curves
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Figure B.6: Tuning curves for the 30 neurons from session 1. The parameters are
estimated using the lasso with only stimulus effects , and choosing the values
at vmin. The gray curves are estimated using data from GoodTrials, and the red
and blue curves from correct lick left and right trials, respectively. The dashed
vertical lines are the start of the sample, delay and response epochs, respectively.
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Figure B.7: Tuning curves for the 12 neurons from session 3. The parameters are
estimated using the lasso with only stimulus effects , and choosing the values
at vmin. The gray curves are estimated using data from GoodTrials, and the red
and blue curves from correct lick left and right trials, respectively. The dashed
vertical lines are the start of the sample, delay and response epochs, respectively.

108



B.4 Network of Neurons

Session 1

Figure B.8: Estimated network of the 30 neurons in session 1, using data from
GoodTrials.
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Figure B.9: Estimated network of the 12 neurons in session 3, using data from
GoodTrials.
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Appendix C

R-code

C.1 Cosine Bases

The following R-code is replicated from the Matlab-code that accompanied
(2008), which can be downloaded at http://pillowlab.princeton.edu/
code_GLM.html.

getBasis = function (nBases, binSize) {
b = binSize*nBases # IN THESIS TEXT: ¢ <— b
peaks = c(binSize ,binSizex10*nBases)

# nonlinearity for stretching x axis (and its inverse)
nlin = function (x){log(x+1le—20)}
invnl = function (x){exp(x)—1le—20}

# Generate basis of raised cosines

yrange = nlin (peaks+b)

db = diff(yrange)/(nBases—1)

centers = seq(yrange[l],yrange[2],db) # IN THESIS TEXT: phi_.j <— pix
clj] / (2%db)

maxt = invnl(yrange[2]4+2xdb)—b

iht = seq(binSize ,maxt, binSize)

nt = length (iht)

raisedCosineBasis = function(x,c,dc){
(cos (max(—pi,min(pi,(x—c)=*pi/dc/2)))+1)/2 # IN THESIS TEXT: a <—
pi / (2xdb)
}

ihbasis = matrix (NA,nrow = nt,ncol = nBases)
for (i in seq(1l,nt)){
for(j in seq(1l,length(centers))){
ihbasis[i,j] = raisedCosineBasis(nlin(iht+b)[i],centers[j],db)
}
}

# orthogonal bases
library (pracma)
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31 ihbas = orth(ihbasis)
32
33 return(list (bas=ihbasis ,bas_orth=ihbas , tau_N=maxt))

34}

C.2 Model Matrix

The following code is used to construct the model matrices used to fit the full

regression model (6.14]).

library (R. matlab)
library (foreach)
library (doParallel)
library (parallel)
library (Matrix)

[T VU R R

LU L / /

s  # INPUT PARAMETERS

HHAHHHHHAHAH AR
10 mouseTag = "ANM210862”
11 sessionTag = 720130626”
12 trialType = c¢(”goodTrials” " leftTrials” ,”rightTrials”) [1]
135 binSize = ¢(0.01,0.001) [2] # should only choose 0.001 or 0.01 (see the
function weightedSpikeData)
14 deg = 5 # degree of lickOnset polynomial
15 nBases_history = 10
16 nBases_connectivity = 4

17 NTRINTNTNINY, IR ININTNTET)
! 1177 T 1117 T 7

19 # read data
20 data = readMat(paste(”/global/work/harisf/mette/data/data_structure.”,

mouseTag,” /data_structure _” ,mouseTag,” _” ;sessionTag ,” .mat” ,sep="")
)

21 totalNumberOfNeurons = length (data$obj [[12]][[1]])

23 # get trials that should be analyzed

24 getTrials = function (trialType){

25 if (trialType = 7 goodTrials”){

26 trials.good = which(data$obj [[9]][[3]][[4]][[1]] == 1) # trials

where mice are performing (should be tested)
27 trials.photostimConfig = which(is.nan(data$obj

[T911113111[5]1[[1]])) # trials where photostimulation
configuration is tested (should NOT be tested)

28 trials.good = trials.good[!is.element(trials.good, trials.
photostimConfig)] # trials where mice are performing, AND we’
ve taken out trials where photostimulation configuration is

tested

29 trials = trials.good

30

31 if (trialType = "rightTrials”){

32 trials _correctR = which(data$obj [[8]][1,] = 1)

33 trials _correctR = trials _correctR[is.element(trials_correctR,
trials.good)]

34 trials = trials _correctR

112



62
63

64

66

67

if (trialType = 7leftTrials”){

trials _correctL = which(data$obj[[8]][2,] = 1)

trials _correctL = trials _correctL[is.element(trials_correctL ,
trials.good) ]

trials = trials_correctL

}

return(trials)

}

trials = getTrials(trialType)

discretizeSpikeData = function (neuron,TRIALS, binSize) {
eventTrials = data$obj [[12]][[3]][[neuron J][[1]][[3]]
eventTimes = data$obj [[12]][[3]][[neuron]]|[[1]][[2]]
lickOnset = mean(c(data$obj [[9]][[3]][[3]][[1]][TRIALS]) ,na.rm=TRUE)

timelnterval = seq(0,5,binSize) # each trial lasts 5 seconds (this
is true in all 3 sessions of mouse ANM210861, but is it true
for all other mice?)

mat_j = matrix (NA, ncol=3,nrow=length (timelnterval)—1)

registerDoParallel (cores = detectCores ()—1)
mat = foreach(trial_j = TRIALS,.combine = rbind) %dopar% {
trialStartTime _j = data$obj[[7]][1, trial_j]
eventTimes_j = eventTimes|[which(eventTrials = trial_j)] —
trialStartTime _j

mat_j[,1] = rep(trial_j,length(timelnterval)—1)
mat_j[,2] = timelnterval [2:]length(timelnterval)]—1lickOnset
mat_j[,3] = as.vector(table(cut(eventTimes_j, breaks=timelnterval))

)

mat _ j

}

stopImplicitCluster ()

colnames (mat) = ¢ (7 trialld”,”lickOnset” ,paste(”spikeCountj” ,neuron ,
Sep:ﬂﬂ))
mat = as.data.frame (mat)

return (mat)

}

discretizeAndAlignSpikeData = function (mainNeuron ,TRIALS, binSize){
spikeData_mainNeuron = discretizeSpikeData (mainNeuron, TRIALS, binSize

)

otherNeurons = setdiff (seq(1,totalNumberOfNeurons) ,mainNeuron)
timeInterval = seq(0,5,binSize)

registerDoParallel (cores = detectCores () —1)
spikeData_otherNeurons = foreach (i = seq(1,totalNumberOfNeurons—1) ,.
combine = cbind) %dopar% {
neuron = otherNeurons|[1i]
eventTimes = data$obj[[12

1111 [[2]]
eventTrials = data$obj [[12]]]

3111 ]
(311 1]7[[3]]

neuron | ]
[

[[1
neuron | ][]

J11[1
3111
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}

registerDoParallel (cores = detectCores()—1)
spikesInTrial = foreach(trial_j = unique(spikeData_mainNeuron$
trialld), .combine = list) %dopar% {
trialStartTime _j = data$obj [[7]][1, trial_j]

eventTimes_j = eventTimes |[which(eventTrials = trial_j)] —
trialStartTime _j
spikevector = as.vector(table(cut(eventTimes_j,breaks=

timelnterval)))
stopImplicitCluster ()

spikeData_neuron = unlist (spikesInTrial)

stopImplicitCluster ()

colnamesTxt = NULL

fo

r(i in seq(1l,totalNumberOfNeurons—1))

colnamesTxt = c(colnamesTxt,paste(”spikeCountj” ,otherNeurons|[i],

sep = 7~,77))

colnames (spikeData_otherNeurons) = colnamesTxt

return (as.data.frame(cbind (spikeData_mainNeuron,spikeData_

}

otherNeurons)))

getBasis = function (nBases, binSize){
b = binSizex*nBases
peaks = c(binSize ,binSize*10*nBases)

#

nl

nonlinearity for stretching x axis (and its inverse)

in = function(x){log(x+1e—20)}

invnl = function (x){exp(x)—1le—20}

#

Generate basis of raised cosines

yrange = nlin (peaks+b)

db = diff(yrange)/(nBases—1)

centers = seq(yrange[l],yrange[2],db)
maxt = invnl(yrange[2]+2xdb)—b

iht = seq(binSize ,maxt, binSize)
nt = length (iht)
raisedCosineBasis = function(x,c,dc){

(cos (max(—pi,min(pi,(x—c)*pi/dc/2)))+1)/2

ihbasis = matrix (NA,nrow = nt,ncol = nBases)

fo

}

r(i in seq(1,nt)){
for(j in seq(l,length(centers))){

}

ihbasis[i,j] = raisedCosineBasis(nlin(iht+b)[i],centers[j],db)

#matplot (ihbasis ,type="b” ,pch=seq(1,5))

#

for plotting model coefficients

lags = invnl(centers)—b
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library (pracma)
ihbas = orth(ihbasis) # orthogonal bases

return(list (bas=ihbasis ,bas_orth=ihbas , lags=lags ,tau_N=maxt))

}

getMedianBasis = function (nBases, binSize_original ,binSize _median) {
bas_original = getBasis(nBases, binSize = binSize_original)
pointsToCombine = binSize _median / binSize_original
totalCombinedPoints = floor (dim(bas_original$bas)[1] /
pointsToCombine)
indexes = list ()
for (i in seq(0,totalCombinedPoints — 1))
indexes = c(indexes, list (seq(1l,pointsToCombine) + pointsToCombine
i)
binSize _median = list (bas = matrix(NA, ncol = dim(bas_original$bas)
[2] ,nrow = length(indexes)),
bas_orth = matrix(NA, ncol = dim(bas_original$

bas) [2] ,nrow = length (indexes)),
tau N = bas_original$tau_N)

for (i in seq(l,length(indexes))){

binSize _median$bas[i,] = bas_original$bas[floor (median(indexes [[1i
11051
binSize _median$bas_orth [i,] = bas_original$bas_orth[floor (median(

indexes [[1]])),]
}

binSize _median

}

weightedSpikeData = function (spikeData ,nBases_history ,nBases_
connectivity ,binSize){
if (binSize = 0.001){
bas_hist = getBasis(nBases_history ,binSize)$bas_orth
bas_connect = getBasis(nBases_connectivity ,binSize)$bas_orth

if (binSize = 0.01){
bas_hist = getMedianBasis(nBases_history ,binSize_original = 0.001,
binSize _median = binSize)$bas_orth
bas_connect = getMedianBasis(nBases_connectivity ,binSize_original
= 0.001,binSize _median = binSize)$bas_orth
}

#history
registerDoParallel (cores = nBases_history)
basisWeights = foreach(k = seq(1,nBases_history) ,.combine = cbind) %
dopar%{
if (binSize = 0.01)

bsWght = convolve (¢ (0,spikeData[,3]) ,rev(bas_hist[,k]) ,type="
open”) [2:dim(spikeData) [1]]
if (binSize = 0.001)
bsWght = convolve(c(0,spikeData[,3]) ,rev(bas_hist[1:160,k]) ,type
="open” ) [2:dim(spikeData) [1]] # ideally , should convolve
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193
194
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198

}

using bas_hist [,k], but to shorten computation time we use
the first 160 rows
bsWght
}

stopImplicitCluster ()

txt=NULL
for (k in seq(1l,nBases_history)){
txt = c(txt,paste(sub(”spikeCount”,”” ,colnames(spikeData)[3]),”.k”
7k7sep:””))
}

colnames (basisWeights) = txt

spikeData_basis = cbind (spikeData[—1,seq(1,3)],basisWeights) #when
using convolution

colnames (spikeData_basis) [1:3] = colnames(spikeData) [1:3]

spikeData_basis = as.data.frame(spikeData_basis)

#connectivity

registerDoParallel (cores = detectCores() — 1)

spikeData_basis_connectivity = foreach(j = seq(4,dim(spikeData) [2])
,.combine = cbind) %dopar% {

registerDoParallel (cores = nBases_connectivity)
basisWeights = foreach(k = seq(1,nBases_connectivity) ,.combine =
cbind) %dopar% {
if (binSize = 0.01)

bsWght = convolve(c(0,spikeData[,j]) ,rev(bas_connect[,k]) ,type
="open”) [2:dim (spikeData) [1]]
if (binSize = 0.001)
bsWght = convolve (¢ (0,spikeData[,j]) ,rev(bas_connect[1:160,k])
,type="open”) [2:dim(spikeData) [1]] # # ideally , should
convolve using bas_connect[,k], but to shorten computation
time we use the first 160 rows

bsWght
stopImplicitCluster ()

txt=NULL
for (k in seq(1l,nBases_connectivity)){
txt = c(txt,paste(sub(”spikeCount” ,
k77 ’kysep:””))

9

,colnames (spikeData)[j]),”.

colnames (basisWeights) = txt

basisWeights

}

stopImplicitCluster ()

spikeData_basis = cbind (spikeData_basis ,spikeData_basis_connectivity

)

return (spikeData_basis)

saveModelmatrixIn = paste(”/global/work/harisf/mette/modelmatrix/”,

mouseTag,” /” ,sessionTag ,”/” ,trialType ,sep="")
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if (!'dir.exists (saveModelmatrixIn))
dir . create (saveModelmatrixIn ,recursive = TRUE)

for (responseNeuron in seq(1l,totalNumberOfNeurons)){
start = Sys.time()
spikeData <— discretizeAndAlignSpikeData (responseNeuron , trials ,
binSize)

spikeData_basis <— weightedSpikeData (spikeData ,nBases_history ,nBases
_connectivity , binSize)

predMat = cbind (spikeData_basis[,—c(1,2,3)],poly(spikeData_basis
[,2], degree = deg))

txtPolyname = NULL

for (i in seq(1l,deg))

txtPolyname = c(txtPolyname, paste(” poly(lickOnset)” ,i,sep = 7"))
colnames (predMat) [ seq (dim (predMat) [2] —deg+1,dim (predMat) [2])] =
txtPolyname

# save data

evaluatedData = cbind (spikeData_basis[,3],predMat)

colnames (evaluatedData) [1] = paste(”spike.j” ,responseNeuron ,sep="")
tol = 1e—10

for (i in seq(2,dim(evaluatedData) [2])){

evaluatedData [ which (abs(evaluatedData[,i]) < tol),i] 0

evaluatedData = Matrix (as.matrix (evaluatedData) ,sparse = TRUE)

saveRDS (evaluatedData , paste (saveModelmatrixIn,” /n” ,responseNeuron ,” _
b” ,binSize*1000,”ms.rds” ;sep=""))

end = Sys.time() — start

cat (?”Model_matrix._saved_for _neuron.” ,responseNeuron ,”._(Time_used:.”
,as.numeric(end) ,”.” ;attr (end,” units”),”)._\n” ,sep="")

”

C.3 Lasso Penalized Regression Model

The following code uses the model matrices from the code in Section [C.2] to actu-
ally fit the full regression model (6.14]), using the R-function cv.glmnet from the
glmnet-package.

library (glmnet)

library (doMC)
library (Matrix)

# INPUT PARAMETERS

7t T 7t it
mouseTag = 7 ANM210862”
sessionTag = 720130626”
trialType = c¢(”goodTrials” ,”leftTrials” ,”rightTrials”) [1]
binSize = ¢(0.01,0.001) [2] # normally, we fit lasso models only for
binSize = 0.001

ST TSR RIS RIS TRTRTSTRTRTSY

117



16

[P
= O © ®

[ XN

NONON NN N NN

~

modelmatrixDirectory = paste(”/global/work/harisf/mette/modelmatrix/”,
mouseTag,” /” ,sessionTag ,”/” ,trialType ,sep="")

modelmatrixFiles = list . files (modelmatrixDirectory ,pattern=paste(”_b”,
binSizex1000,”ms.rds” ,sep=""))

saveLassofitIn = paste(”/global/work/harisf/mette/lassofit/” ,mouseTag,
7 /7 ;sessionTag ,”/” ,trialType ,sep="")
if (!'dir.exists (saveLassofitIn))
dir.create(saveLassofitIn ,recursive = TRUE)

for (fileName in modelmatrixFiles){
modelMatrix = readRDS(file .path(modelmatrixDirectory, fileName))

x = modelMatrix [, —1]
y = modelMatrix[,1]

y[which(y > 1)] = 1 # since family = "binomial”. Certainly for
binSize = 0.01 we get that some y > 1

startTime = Sys.time ()
# fit cv.glmnet model
registerDoMC (cores = 10)
model _lasso _cv = cv.glmnet (x,y,
family = ”binomial” ;alpha = 1, nfolds =
10,
parallel = TRUE)
endTime = Sys.time () — startTime
saveRDS (model _lasso _cv, file . path(saveLassofitIn , fileName))

cat (” Lasso_model_fitted _for _neuron.” ,substr (fileName ,start = 2,stop
= regexpr (”_" ,fileName)[1]—1),”..(Time_used:.” ,as.numeric (
endTime) ,” .7 ;attr (endTime,” units”),”)._.\n” ,sep="")

C.4 Multi-Sample Split

The following code uses the model matrices from the code in Section[C.2]to calculate
the FWER adjusted p-values for the parameters in the full regression model ((6.14)),
using the R-function multi.split from the hdi-package.

library (Matrix)
library (parallel)
library (hdi)
library (glmnet)

HHHHAH 1t HHH 1t

# INPUT PARAMETERS

ey,

mouseTag = 7" ANM210862”

sessionTag = 720130626”

trialType = c¢(”goodTrials” ,”leftTrials” ,”rightTrials”) [1]

binSize = ¢(0.01,0.001) [1] # normally , we run multisplit only for
binSize = 0.01
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modelmatrixDirectory = paste(”/global/work/harisf/mette/modelmatrix/”,
mouseTag,” /” ,sessionTag ,”/” ,trialType ,sep="")

modelmatrixFiles = list . files (modelmatrixDirectory ,pattern=paste(”_b”,
binSizex1000,”ms.rds” ,sep=""))

saveMultisplitIn = paste(”/global/work/harisf/mette/ multisplit/”,
mouseTag,” /” ,sessionTag ,”/” ,trialType ,sep="")
if (!dir.exists (saveMultisplitIn))
dir.create (saveMultisplitIn ,recursive = TRUE)

lasso.cv.lambda.min = function (x, y, nfolds = 10, grouped = nrow(x) >
3 x nfolds ,...){
suppressMessages (library (doMC))
registerDoMC (cores=10)
fit .cv <— cv.glmnet(x, y, nfolds = nfolds, grouped = grouped,
parallel = TRUE,

sel <— predict(fit.cv, type = "nonzero”, s = ”lambda.min”)
sel [[1]]
}
glm.pval.x.as.matrix = function (x, y, family = "binomial”, verbose =
FALSE, ...){
fit.glm <— glm(y ~ as.matrix(x), family = family, ...)

fit .summary <— summary (fit .glm)
if (!fit.glm$converged & verbose) {
#print (fit .summary)
cat (”.glm. fit:_algorithm._.did .not_converge.\n”)

pval.sel <— coef(fit.summary)[—1, 4]
names(pval.sel) <— colnames(x)
pval.sel

}

for (fileName in modelmatrixFiles) {
modelMatrix = readRDS(file.path(modelmatrixDirectory, fileName))

x = modelMatrix [, —1]

y = modelMatrix[,1]

y[which(y > 1)] = 1 # since family = "binomial”. Certainly for
binSize = 0.01 we get that some y > 1

startTime = Sys.time ()
fit <— multi.split(x,y, ci = FALSE, B = 50,

classical . fit = glm.pval.x.as.matrix, #args.
classical . fit = list (verbose = TRUE) ,

model. selector = lasso.cv.lambda.min, args.model.
selector = list (family = ”binomial”),

parallel = TRUE, ncores = 10,
return.selmodels = FALSE, verbose = FALSE)
endTime = Sys.time () — startTime
saveRDS (fit , file . path(saveMultisplitIn , fileName))
cat (” Multisplit_done_for_neuron.” ;substr(fileName ,start = 2,stop =
regexpr(” .7 ,fileName)[1] —1),”._(Time_used:.” ;as.numeric (endTime)
,7.7 ,attr (endTime,” units”),”)..\n” ,sep="")
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