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Figure 3.6: Test and training error as a function of model complexity. This figure has been
taken from (Hastie et al., 2009, chap. 2), with permission from Springer.

of complexity is the variance-bias tradeoff.

Many statistical methods have a complexity parameter which can be used to balance be-
tween the variance and the bias of the model. In the case of logistic regression, the complex-
ity parameter is the number of variables. A model with more variables is more complex,
has a lower bias and higher variance. In the case of CART the complexity parameter is the
number of nodes. A smaller tree (with fewer nodes) has a larger bias but smaller variance
than a larger tree fit to the same data.

We will in Chapter 4 look at techniques called bagging and random forests, which re-
duce the variance while keeping the bias fixed, and hence reduce the expected prediction
error.

3.4.3 ROC Curves

A receiver operating characteristics (ROC) curve is a tool widely used to evaluate classifiers
in biomedical and bioinformatics applications.
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Table 3.1: Confusion matrix.

A threshold parameter in a binary classifier, T , is a value which defines a classification
rule. For instance: Classify all observations Y > T as ”ill”.

Assume we want to classify a patient as ”ill” or ”not ill” based on the result of a clini-
cal test. The Sensitivity is the probability that a test result will be positive when the
disease is present. It is estimated by the proportion of correctly classified positive (ill)
observations (patients).

Sensitivity = P (positive test | ill)

Estimated sensitivity =
#True Positive

#Condition Positive
.

Specificity is the probability that a test result will be negative when the disease is absent.
It is estimated by the proportion of correctly classified negative (not ill) observations.

Specificity = P (negative test | not ill)

Estimated specificity =
#True Negative

#Condition Negative
.

A ROC curve plots the sensitivity vs 1-specificity as the threshold is moved over the range
of all possible values (Gerds et al., 2008). Table 3.1 shows the confusion matrix which gives
a schematic explanation of the terms. An ideal ROC curve will hug the top left corner,
while a straight line represents a classifier with a random guess of the outcome. Figure 3.73

shows a ROC curve in which the classifier is somewhat better than random guessing. ROC
curves are useful for comparing different classifiers, since they take into account all possible
thresholds (James et al., 2013a, chap. 9).

3Figure created using the rpart (Therneau et al., 2017) and pROC (Robin et al., 2011) packages.
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Figure 3.7: The red line shows the ROC curve. The area under the ROC curve is the AUC
score.

Comparison of ROC Curves Through the AUC Score

There is a number of ways in which competing ROC curves can be compared, for example
by the use of optimal points (Gerds et al., 2008) or the AUC score. In this thesis, the AUC
score has been chosen as a summary statistic. The AUC score is the area under the ROC
curve, as shown in Figure 3.7. It ranges between the values 0 and 1, where a higher value
indicates a better classifier. An AUC score equal to 1 would imply that all observations
are correctly classified. The advantage of the AUC score is that the whole risk spectrum is
taken into consideration when comparing different classifiers.
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3.4.4 K-Fold Cross-Validation

When training a statistical model, the ideal scenario would be to have enough data such
that one can set aside a part of the data when fitting the statistical model. The observa-
tions used to fit the model are referred to as the training set, while the observations left
out are referred to as the test set. The statistical model could thus be fitted by using the
training set. The predictive power of this model could thereafter be evaluated by using
the test set. However, typically data is scarce. K-fold cross validation is a method which
estimates the expected prediction method.

In cross-validation one uses the same data set to train and evaluate a model. In K-fold
cross-validation the procedure is repeated K times. Assume we have n observations. These
are split into K random parts. These parts are approximately of equal size and are called
folds. The number K represents the number of folds. One fits the model to K − 1 of the
parts. These parts together make up the training set. The remaining part, part k, is left
out when fitting the model and is referred to as the test set. As a statistical model has
been fitted to the training set, one uses this model to make predictions on the test set. The
prediction error is then calculated. This procedure is repeated for k = 1, 2, ..., K and the
total prediction error can be estimated. This procedure is illustrated in Figure 3.8

Let κ : {1, ..., n} → {1, ..., K} be function indicating the partition to which observation
i is allocated by the randomization (Hastie et al., 2009, chap. 7). Further let f̂−k(x) rep-
resent the fitted model with k-th part of the data left out. The cross-validation estimate
of the prediction error is then given by:

CV (f̂) =
1

n

n∑
i=1

L(yi, f̂
−κ(i)(xi)),

where L is a loss function and (xi, yi) is the i-th observation.

In this thesis we will use the 0− 1 loss function for qualitative responses

L(C, Ĉ(X)) = I(C ̸= Ĉ(X)),

where C denotes the true category (or group), Ĉ denotes the predicted category and I
denotes the indicator function, returning 1 (true) or 0 (false).

When doing cross-validation the choice of K must be given some thought, as there is
a bias-variance tradeoff associated to the choice of K. A special case of K-fold cross-
validation is K = n and is known as leave-one-out cross-validation (LOOCV). In this case
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1 2 3 ... k ... K − 1 K

Train Train Train ... Test ... Train Train

Figure 3.8: A graphical representation of K-fold cross-validation. One partitions the data
set intoK subsets. One fits a model usingK−1 of the subsets, and then tests the prediction
error by making predictions for left-out subset k. This is repeated in turn for all of the k
subsets. The total error is averaged over the K estimates.

a single observation is left out as the test set in each step of the modelling procedure.
LOOCV is approximately unbiased for the prediction error, but has high variance as each
of the training sets differ by only one observation (Hastie et al., 2009, chap. 7). LOOCV
could however be good for small data sets, as each additional left-out observation gives a
worse fitted model. A higher choice for K is computationally faster and cheaper and could
be a good choice for big data sets. Typical choices for K are 5 and 10 as they lead to an
intermediate level of bias and variance.

3.4.5 Proper Scoring Rules

Scoring rules provide summary measures in the evaluation of probabilistic forecasts, by
assigning a numerical score based on the predictive distribution and the observation (Czado
et al., 2009). A scoring rule S(P, ω) rewards an expert when his prediction is P and the
realized outcome is ω (Chen, 2012). Let P be a convex class of probability measures. We
write

S(P,Q) =

∫
S(P, ω)dQ(ω)

for the expected score under Q when the probabilistic forecast is P (Gneiting and Raftery,
2007). The scoring rule S is proper relative to P if

S(Q,Q) ≥ S(P,Q) ∀P,Q ∈ P (3.5)

and is strictly proper if (3.5) holds with equality if and only if P = Q. A proper scoring rule
thus encourages honest predictions. If the scoring rule is strictly proper both calibration
and sharpness are being addressed (Winkler, 1996). Calibration refers to the statistical
consistency between the probabilistic forecasts and the observations, and is a joint property
of the predictive distributions and the observations. Sharpness refers to the concentration
of the predictive distributions, and is a property of the forecasts only (Czado et al., 2009).
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Brier Score

The Brier score was introduced by Brier in 1950. It can be used to evaluate a forecaster by
comparing a number of past forecast probabilities π̂1, ..., π̂n to their verifying observations
y1, ..., yn (Siegert, 2017). It is given by the squared distance between the actual outcome
yi ∈ {0, 1} and the forecast π̂i ∈ [0, 1]. The Brier score is given by

BS =
1

n

n∑
i=1

(yi − π̂i)
2

where n is the number of forecasts. The decision space for the Brier score is the interval
[0,1] and generally the lower the better (Gerds et al., 2008). The Brier score is a proper
scoring rule.



3.4. MODEL EVALUATION 44



Chapter 4

Ensemble Methods

What characterizes an ensemble method, is that a statistical model is fitted on many sets of
outputs aggregated to produce one prediction. This is done by making a number of passes
over the data, where linkages between the response and explanatory variables are obtained
on each pass (Berk, 2016, chap. 4). The topic of interest is the collection of linkages made
on each pass. Multiple learning algorithms are used to obtain better predictive performance
than can be obtained by using one learning algorithm alone.

Examples of ensemble methods are bootstrap aggregation (bagging), boosting and random
forests. In this thesis our focus is on bagging, Section 4.2 and random forests, Section 4.3.
Bagging was proposed by Leo Breiman in 1994, and is a technique for reducing the variance
of an estimated prediction function (Hastie et al., 2009, chap. 8), by taking the average
of many noisy but unbiased models. The random forests algorithm was introduced by
Breiman in 2001 and is a modification of bagging. As in bagging, an average of many
models is taken. However, in random forests, each model is built on a random subset of the
predictors. In that way, the correlation between the models is reduced, and the predictive
performance is further improved. In the case of CART this means that the prediction is
taken as an average of many small trees, each fit to a subset of the predictors.

4.1 The Bootstrap

As mentioned earlier, the motivation for bagging is that one can reduce the variance of
a prediction by taking the average prediction from many predictive models. Because the
most common case is that one has a single sample to work on, the bootstrap is a helpful
tool. Bagging averages the prediction over a collection of models fit to bootstrap samples.

45
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original data set : 1 2 3 4 5

⇓

b1: 4 3 5 1 4

b2: 3 4 3 1 1

b3: 2 4 2 2 1

b4: 2 1 5 5 2

...

bB: 3 2 4 5 2

Figure 4.1: The bootstrap. The original sample is shown at the top. To create a bootstrap
sample one draws from the original sample with replacement.

The bootstrap is a statistical tool introduced by Efron (1979). The most common use
is to quantify the uncertainty associated with a given estimator or a statistical model. By
drawing a large number of samples with replacement from a single realized data set, we
simulate data sets which differ somewhat from one another. This is called re-sampling
with replacement and is illustrated in Figure 4.1 The probability samples are denoted by
b1, b2, ..., bB, and are called the bootstrap data sets. B is the total number of resampled
data set. Each data set contains n elements. When sampling with replacement, about 63%
of the data points are in fact the same as in the original sample (Izenman, 2008, chap. 14).
Consider a sample of size n, denoted by S. The probability of drawing an observation xi

from the sample is Pr(X = xi) =
1
n
, i = 1, ..., n. Hence the probability that observation xi

has not been drawn is 1− 1
n
.

When we apply the bootstrap algorithm, we select n observations from the sample with
replacement. The probability for choosing a specific observation is always the same for all
observations. This is the same as sampling from independent and identically distributed
random variables

Pr(xi ∈ bj) = 1−
(
1− 1

n

)n

= 1− 1

e
= 0.632

where bj denotes the j-th bootstrap sample.
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4.2 Bagging

Assume we have n observations of a random variable X each with variance σ2. These
random variables are thus independently and identically distributed. We calculate the
mean X̄ = 1

n

∑n
i=1Xi. The variance of the mean is

Var(X̄) = Var
( 1
n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
σ2

n
.

Thus by averaging one can reduce the variance.

When bagging we take several training sets from a population and build a separate pre-
diction model using each training set. If we have a numerical outcome we obtain a final
prediction by averaging all of the separate predictions. In the case of a classification prob-
lem, where the output is the class membership, we take a majority vote over the separate
predictions. The multiple training sets are formed by making bootstrap replicates of the
the original training set and to use these as the new training sets (Breiman, 1996). The
idea is that one can obtain a model with a higher prediction accuracy since the resulting
average prediction has a smaller variance than one prediction alone. The vital element is
the instability of the prediction method. If perturbing the training set can cause significant
changes in the predictor constructed, then bagging can improve accuracy (Breiman, 1996).

4.2.1 Classification and the Majority Vote

Suppose we have a training set, make B predictions on bootstrap samples of this training
set, and make a class prediction for each xi

{Ĉb(xi}Bb=1 = {Ĉ1(xi), Ĉ2(xi), ..., ĈB(xi)}.

Further, let p̂k(xi) be the proportion of models that predicts Xi = xi to be a member of
the kth class. The final classification is then obtained by the majority vote:

Ĉbag(xi) = argmax
k

{p̂k(xi)} = majority vote {Ĉb(xi)}Bb=1.

In the case of a tie, the normal conversion is that these are split at random. If we have two
classes we can avoid a tie by selecting an odd number of bootstrap samples B.
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4.2.2 Out-of-Bag Observations

One of the advantages of bagging is that cross-validation no longer is needed to provide
the estimate of the test error. When bagging we fit models to bootstrapped subsets of
the observations. On average, each bagged model makes use of around two-thirds of the
observations. The last one-third of the observations are not used to make the fit and
are called the out-of-bag observations (OOB). These OOB’s can be used to estimate the
prediction accuracy. We can predict the response for the i-th observation by averaging the
predictions by the fitted models in which the i-th observations was an OOB. This leads to a
single OOB prediction. By repeating this for all OOB observations, the overall OOB mean
squared error or classification error can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each observation
is predicted using only the models that were not fit using that observation (James et al.,
2013a, chap. 8). This is essentially the LOOCV error, if B is large.

4.2.3 The Bagging Algorithm Applied to Classification Trees

The procedure when bagging a classification tree is as follows: An ensemble of B large
trees {Tb}B1 is fitted to bootstrap samples Z∗b of the original data set. We leave the trees
unpruned to minimize the bias (Izenman, 2008, chap. 14). B class predictions Ĉb(xi) for
xi are made using each of the trees. Finally, a majority vote is taken among these B
predictions to give the final prediction

ĈB
bag(xi) = majority vote{Ĉb(xi)}B1 .

The details of the bagging algorithm applied to classification trees are presented in Algo-
rithm 3.

Suppose there are ki (≤ B) trees for which xi is a member of the corresponding OOB
sample. The OOB misclassification rate is then

errOBB =
1

ki

ki∑
i=1

I[Ĉb(xi) ̸= yi]. (4.1)

The only tuning parameter when bagging a CART is the number of bootstrap samples B.
It is important to have a sufficiently large B. With a low value for B the OOB error will
have high variance. When B increases, the variance of the error will decrease, and will
reach a stable minimum value. However, as the misclassification error stabilizes, additional
trees will typically not give a further improvement.
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Algorithm 3: Bagging classification trees

Input: Training data Z = (x, y)
Number of trees to be grown: B

1 for b = 1 to B : do
2 Draw a bootstrap sample Z∗b from the training data;
3 Grow a tree Tb to the bootstrapped data;

4 Make class predictions for the OOB x’s using Tb, Ĉb(x);

5 end

Output: Final prediction: ĈB
bag(x) = majority vote {Ĉb(x)}B1

4.2.4 The Bagging Algorithm Applied to Logistic Regression

When bagging a logistic regression model one separately fits B logistic GLMs on boot-
strapped data sets. We will base this theory on the method purposed by Song et al.
(2013). The procedure of fitting GLMs includes a subset selection. Each of the logistic
GLMs will be created using forward stepwise regression, where at each step the model with
the lowest AIC score will be chosen as the best one. The result is an ensemble of B logistic
GLMs, which may contain different predictors.

To make a prediction of the outcome for a new observation, there are two possibilities:

1. By the majority vote: Let each of the GLMs make a prediction f̂i for yi = {0, 1},
given the input values xi. This gives a total of B predictions. The predictions for new
observations x are obtained by taking a majority vote over all of these B predictions:

f̂B
bag(x) = majority vote {f̂ b(x)}B1 .

2. By averaging the probabilities: (or the adjusted majority vote). Let π̂i denote the
estimated probability for yi = 1, given the input values xi. This gives a total of
B probabilities. The prediction for new observations x are obtained by taking an
average over all of these B probabilities, and then classify according to a threshold
value c

¯̂πB
bag(x) =

1

B

B∑
b=1

π̂b(x)

f̂B
bag(x) =

{
1 if ¯̂πB

bag(x) ≥ c

0 if ¯̂πB
bag(x) < c

.
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As the bagging algorithm applied to logistic regression builds on bootstrap data sets, we
have OOB observations, which can be used to estimate the prediction error using Equa-
tion 4.1.

Bagging applied to logistic regression is not expected to give an equally considerable in-
crease in the predictive performance, as for classification trees. Logistic regression is often
a stable method, while bagging gives best improvements to unstable methods (Breiman,
1996).

Algorithm 4: Bagging logistic GLM, based on the adjusted majority vote

Input: Training data Z
Number of bootstrap samples: B

1 for b = 1 to B : do
2 Draw a bootstrap sample Z∗b from the training data;

3 Fit a logistic GLM to the bootstrapped data f̂ b;
4 Make a prediction for the probability of success π̂b(x) for the observations in the

test set;
5 end
Output: Final prediction: Average the predicted probabilities:

¯̂πB
bag(x) =

1
B

∑B
b=1 π̂

b(x). Classify f̂B
bag according to a threshold value.

4.2.5 Benefits and Limitations

• Bagging works especially well for unstable procedures, procedures which have high
variance and low bias (Breiman, 1996). Examples of unstable procedures are neural
networks, CART and subset selection in linear regression. k-nearest neighbor classifier
is an example of a stable procedure, in which bagging will not help.

• Trees are ideal candidates for bagging, since they can capture complex interaction
structures in the data, and have relatively low bias (Hastie et al., 2009, chap. 8).

• One of the benefits of bagging is that pruning in CART is no longer needed.

• Bagging cannot reduce the bias. Random forests is a modification of bagging which
in addition to reducing the variance can reduce the bias, and will be discussed in the
next chapter.
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4.3 Random Forests

The random forest algorithm is similar to the bagging algorithm. In fact, bagging is a
special case of a random forest. We saw in Section 4.2 that one can reduce the variance
by averaging many noisy but approximately unbiased models. Further, we saw that tree
structures gain much by bagging as they have high variance and low bias, but are capable
of capturing complex interaction structures in the data.

In Section 4.2 we saw that the variance of the average of n observations of independent,
identically distributed random variables X, each with variance σ2 is σ2

n
. Now, suppose

we have n observations of a random variable X which are identically distributed, each
with mean µ and variance σ2, but not independent. That is, suppose the variables have a
positive pairwise correlation ρ

Cov(Xi, Xj) = ρσ2, i ̸= j.

These observations have a compound symmetry correlation structure. We calculate the
variance of the average

Var(X̄) = Var
( 1
n

n∑
i=1

Xi

)
=

n∑
i=1

1

n2
Var(Xi) + 2

n∑
i=2

i−1∑
j=1

1

n

1

n
Cov(Xi, Xj)

=
1

n
σ2 +

n− 1

n
ρσ2

=
1

n
σ2 + ρσ2 − 1

n
ρσ2

= ρσ2 +
1− ρ

n
σ2.

The idea behind random forests is to improve the variance reduction of bagging by reducing
the correlation between the trees, without increasing the variance too much (Hastie et al.,
2009, chap. 15). This is achieved by a growing trees on B bootstrapped data set, but with
a random selection of the input variables at each split, see Algorithm 5. Before each split,
only m of the p input variables are selected at random as candidates for splitting, where
m ≤ p. Typically m ≈ √

p. A value of m = p amounts to bagging.

As in bagging, the predictions for new observations x are made by averaging the predictions
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of the B unpruned trees

ĈB
rf (x) = majority vote {Ĉb(x)}B1 .

Tuning Parameters

There are only two tuning parameters in random forests: the number of m variables ran-
domly chosen as a subset at node and the number of bootstrap samples B (Izenman, 2008,
chap. 14).

The prediction error will typically have a lower variance by increasing the number of boot-
strap samples B. When B is sufficiently large, the error will reach a minimum value (a
flattening on the curve). Hence a B big enough is crucial, while increasing B will not help
when the minimum prediction error is reached.

Using a small value of m in building a random forest will typically be helpful when we
have a large number of correlated predictors (James et al., 2013a, chap. 8). The optimal
number of variables m to be chosen as a subset can be found by cross validation.

Algorithm 5: Growing a random forest

Input: Training set Z
Number of candidate variables to be tried at each iteration: m
Number of trees to be grown: B
Minimum node size nmin

1 for b = 1 to B : do
2 Draw a bootstrap sample Z∗ from the training data;
3 Grow a random forest tree Tb on the bootstrapped data by following these steps

in each terminal node:
4 repeat
5 Select m variables at random from the p variables;
6 Pick the best variable/split-point among the m;
7 Split the node into two daughter nodes;

8 until the minimum node size nmin is reached ;

9 Make class predictions for x using Tb, Ĉb(x);

10 end

Output: Final prediction: ĈB
rf (x) = majority vote {Ĉb(x)}B1
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4.4 Random GLM

A random generalized linear model (RGLM) is an ensemble predictor based on bootstrap
aggregation (bagging) of generalized linear models, where a subset of predictors is chosen
at random from the predictor space, for each bootstrap sample. Using these predictors, a
generalized linear model is build using forward regression according to the AIC criterion
(Song et al., 2013). We will in this thesis concentrate on logistic regression, as our outcome
is binary.

The construction of a RGLM consists of many steps. As before, assume we have a
data set consisting of n observations: Z = {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi =
{(xi1, xi2, ..., xip)}. The following procedure takes place at each of the B iterations: A
bootstrap sample is drawn from the original data set. A number of m variables is chosen at
random from the p predictors. These are rank-ordered according to their individual associ-
ation with the outcome variable y, by fitting a univariate GLM (a GLM with one predictor
only). The l top ranking variables are identified by using the Wald test or a likelihood ratio
test and make up the candidate predictors. These candidate predictors are used to con-
struct a logistic GLM using forward stepwise regression based on the AIC score. We now
have B different logistic GLMs. We use these models to make B separate predictions. The
final prediction is a result of an adjusted majority vote (aMV). The adjusted majority vote
has been defined in Section 4.2.4, and is simply the average of the predicted probabilities
for each of the B models. This procedure is summarized in Algorithm 6.

User-Defined Parameters

A RGLM has several parameters which need to be chosen by the user. The first parameter
is the number of bags B. This is a tuning parameter, and one needs to make sure that B is
large enough, so that the lowest possible misclassification error is reached. To choose the
value of B one can plot the misclassification error against the number of bootstrap samples.
The value of B should be chosen such that the misclassification error has reached a stable
value (a flattening on the curve).

Another tuning parameter is the number of random predictors to be chosen for each GLM,
denoted by m. This tuning parameter is similar to the m in random forests. If m = p all
predictors are chosen in each model. Song et al. (2013) present recommendations for the
choice of m, based on the dimensions of the data set and number of interactions between
the predictors. We have not considered modelling interactions in this thesis.
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Algorithm 6: Random GLM for logistic models

Input: Training set Z
Number of bootstrapped samples to be made B
Number of candidate predictors m
Top number of candidate predictors l

1 for b = 1 to B : do
2 Draw a bootstrap sample Z∗ from the training data;
3 Select m variables at random from the p variables;
4 Fit a univariate GLM model to each of the m variables to arrive at a association

measure;
5 Pick out the l top ranking (most significant) variables as candidate predictors;
6 Fit a GLM model by forward selection using the l chosen candidate predictors

using the AIC criterion;
7 Make a prediction for the probability of success π̂b(x), for the observations in the

test set;
8 end
Output: Final prediction: Average the predicted probabilities:

¯̂πB
RGLM(x) =

1
B

∑B
b=1 π̂

b. Classify f̂B
RGLM according to a threshold value.

The last tuning parameter is the maximum number of predictors l. The motivation for
this parameter is to reduce the computational time of the algorithm in data set with a
large number of predictors, of which not all of equal importance. The default value is
l = 50, in the software. As our number of predictors, in Chapter 5 and 6, is lower than 50,
we can skip this step.

Figure 4.2 shows an overview over the random GLM algorithm. It is based on a similar
overview in the article by Song et al. (2013), but is adjusted and therefore more relevant
for this thesis.

OOB Observations

The bootstrap aggregation step makes it possible to use OOB observations to estimate the
predictive accuracy. By recording which observations have been left out in which bootstrap
sample, an overall OOB error estimate of the predictive accuracy can be estimated, as in
the bagging and random forest algorithms. It is recommended to use the OOB estimate of
prediction accuracy to advise the choice of the parameter values (Song et al., 2013).
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Figure 4.2: Overview of the RGLM construction. This is an simplified overview, based on
the overview in the article by Song et al. (2013). Our number of predictors is such that we
can skip the step of selecting the l top-ranking predictors in the algorithm. The rectangles
represent data matrices at each step.
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4.5 Variable Importance

When training a statistical model the case is often that several input variables are used.
The input variables are however seldom of equal importance. Some of the input predictors
turn out to be completely irrelevant. If the objective is to classify new observations, it is
useful to know which of variables control the classification process (Izenman, 2008, chap.
14). This also helps us in understanding what influences the outcome.

4.5.1 Variable Importance for Tree Ensembles

The relative importance of predictor variables can be illustrated by a variance importance
plot. In such a plot, the variables are sorted according to their importance, such that the
top variables have a higher importance than the bottom variables. We will here present
two types of variable importance plots which can be used for tree ensembles.

Variable Importance Based on Randomization

The variable importance based on randomization measures the prediction strength of each
variable. Computations are carried out for one bootstrap sample at a time. Let Tb be the
tree grown to the Zbth bootstrapped data. Let Z−b be the OOB observations corresponding
to this tree. Pass these OOB observations down the tree Tb, note the classifications and
compute the OOB error erroob. Next, the OOB observations for the jth variable Xj are
randomly permuted. Pass these permuted OOB samples down tree Tb and compute the
new OOB error err∗oob. If Xj is important, permuting its observed values will reduce our
ability to classify successfully each of the OOB observations (Izenman, 2008, chap. 14).
The decrease in accuracy as a result of this permuting is averaged over all trees, and is
used as a measure of the importance of variable j in the tree ensemble (Hastie et al., 2009,
chap. 15). The plot to the left in Figure 4.3 shows a variable importance plot of this type
for the iris data set.

Variable Importance Based on the Mean Decrease in Gini Index

From Section 3.3.1 we know that the Gini index of a parent node always is larger than the
Gini index of each of its daughter nodes. When bagging a classification tree or growing
a random forest one creates an ensemble of trees. Gini importance index is obtained by
averaging the decrease in node impurities over all trees (Izenman, 2008, chap. 14) for each
variable separately. The plot to the right in Figure 4.3 shows a variable importance plot of
this type for the Carseats data set in the ISLR package.
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Figure 4.3: Variance importance plots. Right : Variance importance based on randomiza-
tion (mean decrease in accuracy). Left: Mean decrease in node impurity (Gini index).

4.5.2 Variable Importance for GLMs and Random GLMs

Variable Importance for a Single GLM

To compare the variable importance of the predictors in a logistic model, one can use
the absolute values of the z-statistics for each model parameter. The z-statistic emerges
from the Wald test for regression coefficients. A higher |z|-value implies a more significant
predictor.

Variable Importance for RGLM

There is a number of ways one can evaluate the importance of variables in a RGLM. These
are shortly explained in the article by Song et al. (2013). In this thesis we will use variable
importance plots based on the number of times a variable has been selected by forward
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selection in building the RGLM.



Chapter 5

Simulation Study

In order to gain a better understanding of how the statistical methods we want to use can
be applied to our medical data set, we generate a model for an artificial data set. The aim
for the simulations is to reproduce a similar, but not identical, data set as the original one.
We want some features of the original data set to be captured by the simulations, but we
are not interested in reproducing all features exactly.

We start this chapter by an exploratory analysis of our original HUNT data set in order to
gain an understanding of it. This will enable us to choose how to simulate each predictor.
Thereafter in Section 5.3 we present our model for simulating an artificial data set. This
model will be used to simulate values for the predictors. In Section 5.4 we describe how
we will generate response data, using our artificial data set. We divide our simulated data
in two: into a training and a test set. We proceed by fitting 6 different statistical models
to our training set. By using the test set we can evaluate the predictive performance of
the models. Furthermore, we repeat the procedure of simulating and model fitting a large
number of times. The results of our simulation study are presented in Section 5.7. Our
focus will be on comparing the predictive performance of the various statistical models.

5.1 Predictors in the HUNT Data Set

The set of predictors which we want to include in our model can be divided into three
parts. The first part consists of predictors which are included in the Framingham risk
score, discussed in Section 2.1. These are the following:

• xage: Participation age [yr] (PartAg.NT2BLQ1)

59
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• xsechol: Serum cholesterol [mmol/L] (SeChol.NT2BLM)

• xhdl: Serum High-density lipoprotein cholesterol [mmol/L] (SeHDLChol.NT2BLM)

• xbp: Systolic blood pressure [mmHg](BPSystMn23.NT2BLM)

• xsmoke: Smoking status

Each xk represents observations of the predictor coded by the subscript. The unit in which
the predictor has been measured is in squared brackets. The corresponding coding in the
HUNT data base is in the round brackets. According to Velle-Forbord (2017), additional
predictors may include:

• xw: Weight [kg] (Wei.N21BLM)

• xh: Height [cm] (Hei.NT2BLM)

• xwc: Waist circumference [cm] (WaistCirc.NT2BLM)

• xhc: Hip circumference [cm] (HipCirc.NT2BLM)

• xwhr: Waist-to-hip ratio (WHR)

• xbmi: Body mass index [kg/m2] (BMI.NT2BLM)

• xsetrig: Serum triglycerides [mmol/L] (SeTrig.NT2BLM)

• xsecrea: Serum creatinine [µmol/L] (SeCrea.NT2BLM)

• xseglu: Serum glucose non fasting [mmol/L] (SeGluNonFast.NT2BLM)

Finally, we want our models to contain miRNAs to investigate if they can have predictive
power to predict myocardial infarction. The miRNAs available are the following:

• xhsa let 7g 5p: let-7g-5p (hsa let 7g 5p)

• xhsa miR 106a 5p: miR-106a-5p (hsa miR 106a 5p)

• xhsa miR 144 3p: miR-144-3p (hsa miR 144 3p)

• xhsa miR 151a 5p: miR-151a-5p (hsa miR 151a 5p)

• xhsa miR 191 5p: miR-191-5p (hsa miR 191 5p)
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• xhsa miR 21 5p: miR-21-5p (hsa miR 21 5p)

• xhsa miR 26a 5p: miR-26a-5p (hsa miR 26a 5p)

• xhsa miR 29c 3p: miR-29c-3p (hsa miR 29c 3p)

• xhsa miR 424 5p: miR-424-5p (hsa miR 424 5p)

• xhsa miR 425 5p: miR-425-5p (hsa miR 425 5p)

• xhsa miR 451a: miR-451a (hsa miR 451a)

We start the exploratory analysis of our data set by creating a heatmap of the predictors,
which can be found in Figure 5.1 1. Each column represents one individual, and each
row represents one predictor. The row named MI is the corresponding outcome of the
response variable for each individual. The values have been centered and scaled in the
row direction, and have thereafter been translated into colors, where the color-coding is
found in the top-left corner of the figure. This because some of the predictors are much
higher in magnitude than others, which would mask the relations between the variables.
The dendograms show the arrangement of clustering between the predictors and between
the subjects. We see that it is difficult to observe obvious groupings of the predictors. The
levels of serum creatinine is clearly related to the waist and hip circumference of a subject,
and with the blood pressure. Also most of the miRNAs have been clearly grouped together.

The top plot in Figure 5.2 shows box plots of centered predictors of the original data
set. These predictors will be used in our statistical models. The bottom plot in Figure 5.2
shows box plots of the miRNA’s in the original data set. We see that most of the predic-
tors have a symmetric distribution, with an even spread around the mean. We therefore
conclude that it is justified to simulate these predictors from the normal distribution.

Figure 5.3 shows the correlation matrix2 of some of the predictors. These are the pre-
dictors we want to use in our statistical models. We see that there are many predictors
which are uncorrelated. However, body measurements are highly correlated. We want
to account for this correlation structure in our simulated data set, hence we will use this
correlation matrix when making simulations.

1The heatmap has been created using the heatmap.2 function from the gplots package, created by
Warnes et al. (2016). The function used to compute the distance between the rows and columns has been
Euclidean, L2 =

√∑n
i=1(xi − yi)2.

2These plots have been created using the corrplot package (Wei and Simko, 2016).
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Figure 5.1: A heatmap comparing the predictors in our data set. These predictors have
been centered and scaled in the row direction. Each column corresponds to one subject
and each row corresponds to one predictor. Each colored rectangle represents the numerical
value of predictor l for for subject i, where the color key shows the interval of each color.
The dendograms show the hierarchical clustering of subjects and predictors using Euclidean
distance function.
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Figure 5.2: Top: Box plots of the centered predictors Bottom: Box plots of the miRNA’s.
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Figure 5.4: The estimated correlation matrix of the miRNAs of the original data set.
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We further see that the serum triglyceride and the HDL cholesterol have a high negative
correlation. This relation will also be included in the simulations. Figure 5.4 shows the
covariance matrix of the miRNA’s we might want to use in our models. Most of these are
clearly highly correlated. This needs to be accounted for when doing simulations.

5.2 Generating Artificial Predictor Data

Let xi,l, i = 1, ..., 197 denote the i-th observation of the l-th predictor of the original data
set. Further, let zj,l, j = 1, ..., 200 denote the j-th simulated predictor l.

Age has been simulated as a factor, with levels corresponding to intervals of ten years:
Age = {(49, 59], (59, 69], (69, 79], (79,89]}, ranging over the same values as the original
data set. The simulation of age is done by a random draw (without replacement) of one
age-interval. This makes each level equally likely. This is slightly different than the ages in
the original data set, in which the ages follow a skew distribution, with a peak around the
age 71.

Body measurements have been simulated from a multivariate normal distribution, because
of the high correlations between the predictors. The mean vector consists of the sample
means of the original data set. The covariance matrix is equal to the sample covariance
matrix of the original data set. The following abbreviations have been used: wc = waist
circumference, hc = hip circumference

zj,wc

zj,hc
zj,height
zj,weight

 ∼ N4




x̄wc

x̄hc

x̄height

x̄weight

 , Σ̂wc,hc,height,weight

 .

Furthermore, as we want to have the body mass index (BMI) and the waist-to-hip ratio as
predictors, these have been calculated from the simulated body measurements

zj,bmi =
zj,weight

z2j,height

zj,whr =
zj,wc

zj,hc
.

Smoking status has been simulated from the binomial distribution, where the number 1
indicates a smoker, and the number 0 indicates a non-smoker. The probability for an
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individual j to be a smoker has been set to 0.4 in order to make the simulated values more
similar to the original data set

zj,smoke = Binom(n = 1, πj = 0.4).

The predictors serum cholesterol, blood pressure, serum creatinine and serum glucose did
not show high correlations with any of the other predictors. These predictors have thus
been simulated from univariate normal distributions. The mean has for each predictor been
set equal to the corresponding sample mean of the predictor in the original data set, and
variance equal to the sample variance of the predictor in the original data set

zj,sechol = N (x̄sechol, σ̂
2
sechol)

zj,bp = N (x̄bp, σ̂
2
bp)

zj,secrea = N (x̄secrea, σ̂
2
secrea)

zj,seglu = N (x̄seglu, σ̂
2
seglu).

The predictors serum triglyceride and HDL cholesterol are highly negatively correlated.
These predictors have thus been simulated from the bivariate normal distribution, where
the mean vector consists of the sample means from the original data set, and the covariance
matrix consists of the corresponding sample covariance matrix[

zj,setrig
zj,hdl

]
∼ N2

([
x̄setrig

x̄hdl

]
,

[
σ̂2
setrig ρ̂σ̂setrigσ̂hdl

ρ̂σ̂hdlσ̂setrig σ̂2
hdl

])
.

Finally, the miRNA’s have been simulated from a multivariate normal distribution. We
saw in Section 5.1 that most of the miRNA’s are highly correlated. The vector of mean
values will consist of the original sample means, while the covariance matrix will consist of
the corresponding original sample covariances

zj,mRNA ∼ N11(x̄mRNA, Σ̂mRNA).

5.3 Statistical Model for MI

The main motivation for creating a statistical model for MI is to create a response on which
we can evaluate and compare methods. We can treat the simulated data set as the truth
and can test whether or not our statistical methods are able to reveal the truth, that is,
capture the underlying structures in the data.



5.4. GENERATING RESPONSE DATA 68

As our statistical model for myocardial infarction we have chosen a logistic model

Y ∼ Binom
(
n = 1, πj =

exp(ηj)

1 + exp(ηj)

)
where

ηj = z′jβ, zj = {1, zj1, zj2, ..., zjp}, β = {β0, β1, β2, ..., βp}.

Because of the large number of predictors, of which not all are significant, we have chosen
to select eleven predictors. These predictors will have β’s different from zero in our model.
All of the other predictors will have a β exactly equal to zero. The choice of these eleven
predictors has been done through a logistic regression and bagging:

1. A logistic regression model was fitted to the original data set using all predictors. The
predictors were ranked after how significant they were in the logistic model according
to the Wald test.

2. The bagging algorithm was run on the original data set using all predictors. A
variance importance plot was used to see a ranking of the prediction strength of each
variable.

3. Based on steps 1. and 2., top eleven predictors were chosen intuitively.

By fitting a logistic model using these eleven predictors we thereafter obtained the estimates
of the regression coefficients. The resulting β’s are summarized in Table 5.1, and will serve
as the true values.

5.4 Generating Response Data

Our original medical data set is a case-control data set with 97 cases and 100 controls.
We want our artificial data set to inherit this property. We therefore create 200 artificial
individuals of which a 100 have experienced an myocardial infarction (cases) and a 100
have not (controls)

Yi =

{
1 = Case (n1 = 100)

0 = Control (n2 = 100).



CHAPTER 5. SIMULATION STUDY 69

Table 5.1: The true β values used in our statistical model for MI.

β0 -8.1705

βbmi 0.1495

βsechol 0.2933

βseglu -0.2636

βbp 0.0279

βage,1 -0.1057

βage,2 0.0132

βage,3 -0.2035

βhsa let 7g 5p 0.4887

βhsa miR 144 3p -1.4302

βhsa miR 26a 5p 1.2514

βhsa miR 21 5p 0.6019

βhsa miR 424 5p 0.5198

βhsa miR 191 5 -1.2141

This will make up our training set and will be used to fit the best model for each model type.

The response data has will be simulated using the logistic model of Section 5.3. Using
the β-values from Table 5.1 and the artificial data set for the predictors, an individual πj

will be calculated for each individual j, where j = 1, 2, ..., 200. This πj is the probability
of Yj = 1. Thereafter calls will been made to a function which returns random generations
from the binomial distribution using this probability. Furthermore the process of simulat-
ing the data for predictors and a corresponding response value will be repeated until 100
cases are and 100 controls are created. Algorithm 7 summarizes the simulation procedure,
including simulations of the predictors.

We will in addition simulate a test set of equal size using the same statistical model in
order to evaluate the predictive performance of the models.
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Algorithm 7: Simulating procedure

Input: βp×1

1 j = n1 = n2 = 0;
2 repeat
3 for l = 1 to p do
4 Simulate predictor l for individual j: zj,l;
5 Save to Z[j, l];

6 end
7 zj = Z[j, ];
8 ηj = zj

′β;
9 πj = 1/(1 + e−ηj);

10 Simulate response value for individual j: yj = Binom(1, πj);
11 Save to Y[j];
12 if yj = 1 then
13 n1 = n1 + 1;
14 else
15 n2 = n2 + 1;
16 end
17 j = j + 1;

18 until n1 ≥ 100 or n2 ≥ 100;
19 Sort data set according to the response values;
20 Remove excessive cases and/or controls such that n1 = 100 and n2 = 100 ;

Output: Data set D = [Yn×1,Zn×p], n = n1 + n2 = 200.
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5.5 Choice of Tuning Parameters and R Packages

Our motivation for the simulation study is to compare the prediction accuracy of different
statistical models to a similar data set as our medical data set. We are going to fit the
following models to each of our simulated data sets: pruned tree, logistic GLM, bagged tree,
bagged logistic GLM, random forest and random GLM. This section aims at argumenting
for the choice of tuning parameters in the various models, in relation to the software used.
We have used the statistical language R, created by R Core Team (2013), throughout this
thesis and will in this Section introduce relevant R packages.

Model 1: Pruned Tree

A classification tree usually has low bias and high variance. The size of the tree governs the
trees complexity and therefore has the role of a tuning parameter. A large tree will tend
to overfit the data, and will have a low predictive power. A pruned tree will have higher
bias but lower variance.

The tree Package

The package tree, created by Ripley (2016), will be used to fit and prune classification
trees. We use the function tree, from the tree package, to grow a full classification tree.
Thereafter, we use the function cv.tree to find the optimal tree size. The cost-complexity
tuning parameter α is denoted by k in this function and the tree size is called size. We
choose the tree size based on the minimal total deviance in the cost-complexity pruning
sequence. Finally, we use the function predict.tree to obtain predicted probabilities for
the test set.

Model 2: Logistic GLM

A logistic GLM which contains all of the predictors will usually have a low bias and high
variance, and might overfit the data. By carrying out a subset selection the less relevant
predictors can be removed from the model. The result is a more interpretable model with
a better predictive performance.

The glm and stepAIC Functions

Our logistic GLMs will be fit using the glm function of the stats package, which is a
part of R. To specify a logistic regression model we set family = "binomial". We use the
default link function, which is the logit function. Further, we use the stepAIC function,
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from the MASS package (created by Venables and Ripley (2002)), to perform a subset se-
lection. Since we are interested in a model obtained by forward stepwise regression, we set
direction="forward" in the stepAIC function. We specify that the function should look
through models with the scope ranging from the null model to the full model. The model
with the lowest AIC value is chosen as the best model. The predicted probabilities for the
test set were obtained by using the function predict.glm with type = "response".

Model 3: Bagged Tree

The only tuning parameter in a bagged tree is the number of trees in the tree ensemble, B.
However, the number of trees is not a critical parameter and using a very large value for
B will not lead to overfitting. Choosing a value for B which is too small, will not give the
best results, as the error will not have settled down. One therefore needs to select the value
of B so that the error has stabilized. Selecting a value for B beyond that will not increase
the predictive performance, and should be avoided due to computational time. In order
to decide on a value for B we have simulated one training set, to which we have fitted a
bagged tree, and one test set on which we have estimated the prediction error. Figure 5.5
shows the OOB error rate and the test error rate for the bagged tree as a function of the
ensemble size B, from B = 1 (a single tree) to B = 1000. Based on this Figure, we assume
an ensemble size of B = 500 should be sufficient.

The randomForest Package

To create a bagged tree we use the randomForest function from the randomForest package
created by Liaw and Wiener (2002). To use this function one needs to specify the mtry

variable. To create a bagged tree one needs to set this variable equal to the total number
of predictors. This means that all predictors will be considered in each of the split in each
tree, which is not the case for a random forest. To make predictions for the test set, the
function predict.randomForest will be used with type = "prob".

Model 4: Bagged Logistic GLM

In order to create a bagged logistic GLM, we will fit logistic GLMs to bootstrap samples
of the simulated training data set. These logistic models will be created using forward
stepwise regression, and the best models will be chosen based on the AIC score. As is the
case of a bagged tree, the ensemble size should be big enough for the error to stabilize.
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Figure 5.5: The training and test errors of a random forest as a function of ntree: the
number of trees in the ensemble.

The randomGLM Package

The randomGLM function from the randomGLM package, created by (Song and Langfelder,
2013), will be used to fit a bagged logistic GLM. The parameter nFeaturesInBag must be
set equal to the total number of predictors. The variable nBags relates to the ensemble size.
We will restrict this variable to 100, as this is the default value and should be sufficient.
By calling the function predict.randomGLM we get the predicted probabilities for our test
set.

Model 5: Random Forest

A random forest is closely related to a bagged tree. However it contains an additional tuning
parameter. In order to create a random forest only a random sample of m predictors is
considered when making each split growing the tree. This parameter has to be set when
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growing a random forest. Because the randomForest function which we will use to grow a
random forest, is computationally efficient, we select a separate value form for each random
forest. The OOB error will be used as a criterion for selecting the value of m. Figure 5.5
shows the OOB and test errors as a function of the number of trees in the random forest.
Based on this Figure we conclude that an ensemble size of B = 500 trees is sufficient.

randomForest

We will use the randomForest function to grow random forests. The variable mtry cor-
responds to m, which is the number of variables randomly sampled as candidates at each
split. The value of mtry corresponding to the lowest OOB error will be chosen for each
random forest separately. We will use ntree = 500 for each random forest. The function
predict.randomForest, with type = "prob", will be used to predict probabilities for the
test set.

Model 6: Random GLM

A random GLM will be fit in a similar fashion as the bagged logistic regression model. The
important difference is that as the model is built, using forward stepwise regression, only a
random subset of m predictors will be chosen as candidates.

randomGLM

We will here also set nBags = 100. The tuning parameter m is called nFeaturesInBag in
the randomGLM package. Song et al. (2013) recommend to use set this parameter based on
the formula: N · (1.0276− 0.00276 ·N), where N is the total number of predictors. For our
simulated datasets, this is equal to 23 · (1.0276− 0.00276 · 23) ≈ 22. The results would be
almost identical as for the bagged logistic regression model. We for this reason choose not
to follow this recommendation. Because the randomGLM function uses some computational
time when proceeding with the stepwise regression, we will not go through each possible
value, as for the case of mtry in the randomForest. Figure 5.6 shows the Brier score for
different values of nFeaturesInBag. This Figure is created by simulating 100 train and test
sets. A separate random GLM has been fitted to each of the training set and the Brier score
has been calculated for using these models for the 100 test sets. The grey lines correspond
to one train and test set pair. The black line shows the mean Brier score for the different
choices of nFeaturesInBag. Based on this figure, we have chosen to let each RGLM test
two values for the variable nFeatureInBag: 15 and 20. The model returning the lowest
OOB error will be chosen as the final model. By calling the function predict.randomGLM
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we get the predicted probabilities for the test set.

5.6 Procedure for Simulation and Model Fitting

The procedure of simulation and model fitting is illustrated in Figure 5.7 as well as described
in this section. Because there is randomness associated with the simulated artificial data
sets as well as in the fitted models, we have simulated 1000 train and test sets to evaluate
the predictive performance of our statistical models. This has been done by following the
following steps, 1000 times.

1. Simulate predictor data zj = (zj1, zj2, zj,3, ..., zjp) for individual j.

2. Calculate the probability of a case for individual j using the simulated predictor
values and the coefficients in Table 5.1:

πj =
eβ

T zj

1 + eβ
T zj

=
1

1 + e−βT zj
.

3. Use the simulated predictor data to simulate response data yj|zj ∼ Binom(1, 1, πj).

4. Repeat steps 1. and 2. until 200 controls and 200 cases have been generated.

5. Divide the simulated data into a training set and a test set of equal size (n = 200),
each with n1 = 100 cases and n2 = 100 controls.

6. Fit six different models to the training set.

• Model 1: Pruned tree: A full classification tree has been fitted to the training
set. The tree has been pruned, where the optimal tree size has been chosen using
cross-validation.

• Model 2: Logistic GLM : A logistic GLM has been fitted to the training set using
the AIC score for choosing the best model.

• Model 3: Bagged tree: An ensemble of trees has been fitted to separate bootstrap
samples of the training set.

• Model 4: Bagged logistic GLM : An ensemble of logistic GLMs has been fitted to
separate bootstrap samples of the training set. Each of the logistic GLMs has
been fitted using forward stepwise regression and the AIC score for choosing the
best model.
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Figure 5.6: The Brier score for different choices of nFeaturesInBag based on 100 simulated
training and test sets, each of size n = 200. The grey lines show the Brier scores for each
individual simulated training and test set. The black line shows the mean value. The red
dots indicate the values of nFeaturesInBag for which the Brier score has been calculated.
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• Model 5: Random forest : An ensemble of trees has been fit to bootstrap samples
of the training set for different choices of the tuning parameter mtry. The
random forest corresponding to the mtry with the lowest OOB error was chosen.

• Model 6: Random GLM : Two randomGLMs have been fitted to the training
set, with nFeaturesInBag = 15 and 20. The model with the lowest OOB error
was chosen. This model thus consists of an ensemble of logistic GLMs, each
fitted to a bootstrap sample of the training set. Each model has been fit by
stepwise regression using the AIC score to choose the best model. At each step
in the forward regression only a random sample of nFeaturesInBag predictors
have been used.

7. Estimate the training error of each model by calculating the misclassification rate.

8. Make separate predictions for the test set, using each of the fitted models.

9. Estimate the prediction error using the Brier and AUC scores.

5.7 Results

The results based on 1000 repeats of simulation and model fitting are presented in Table 5.2.
These values are the sample means for the statistics: AUC score, Brier score and training
error. The training error has been estimated is the misclassification rate. These results are
also presented graphically in Figures 5.8, 5.9 and 5.10, where we see the mean values of the
AUC score, the Brier score and the training error respectively. The dots indicate the mean
values, while the bars indicate the interquantile range of the score statistics. The red lines
indicate the maximum or minimum mean.

In Section 3.4.3 we saw that the AUC score is the area under an ROC curve. An ROC
curve is created by plotting the sensitivity against the specificity over all possible threshold
values. The AUC ranges from 0 to 1, where a higher value indicates a better classifier. In
Figure 5.8 and Table 5.2 we see that the random GLM has obtained the highest AUC score,
which is equal to 0.791. This is a high AUC score, and implies that the model has high
predictive ability. The bagged logistic GLM and the logistic GLM have very similar AUC
scores. The pruned tree shows bad predictive power, with an AUC score equal to 0.640.
The bagged tree and random forest show quite similar performance, and are comparable
to the performance of the logistic models. We see that their interquantile ranges overlap
with the interquantile ranges of the logistic models.
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Figure 5.7: A graphical representation of the procedure of model fitting to the simulated
data sets. This procedure (of simulating and model fitting) has been repeated 1000 times.
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Table 5.2: The mean values (on the test sets) based on 1000 simulated test and training
set of score statistics for the 6 different models.

Pruned Logistic Bagged Bagged Random Random

tree GLM tree logistic forest GLM

AUC score 0.640 0.781 0.744 0.787 0.751 0.791

Brier score 0.235 0.197 0.206 0.192 0.204 0.188

Training error 0.305 0.229 0.321 0.292 0.313 0.283

From Section 3.4.5 we know that the Brier score is a proper score function which mea-
sures the accuracy of probabilistic predictions. It is defined as the mean squared distance
between the predicted probability and the true outcome and ranges from 0 to 1, where a
lower value indicates a better predictive power. In Figure 5.9 and Table 5.2 we see that the
random GLM has the lowest Brier score, which is equal to 0.188. The bagged GLM and the
logistic GLM show comparable values. The pruned tree shows bad predictive performance.
The bagged tree and random forest give similar results, and are comparable to the logistic
models. Again we see that the interquantile ranges overlap for 5 of the models.

The training error has been estimated by calculating the misclassification rate of the fitted
model on the training set. We saw in Section 3.4.2 that one cannot rely on the training
error to evaluate the predictive performance of a statistical model. If a model has a very
low training error, it might be because it overfits the data, and will give a bad predictive
performance. We see from Figure 5.10 and Table 5.2 that the logistic GLM has the lowest
training error. However, based on a quite low the test error, it does not seem to overfit the
data.

5.8 Discussion and Conclusion

In our simulation study we have simulated 1000 artificial training sets and 1000 artificial
test sets. The predictor values have been simulated using the sample means, standard
deviations and correlation matrices of the original data set. The response values have been
simulated, one at a time, using a logistic model and the simulated predictor values. We
have fitted 6 different statistical models to each of the training sets. We have used these
models to make predictions for each of the test sets. The predictive powers (test errors)
of the models have been estimated by calculating the AUC and Brier scores. The training
errors have been estimated by calculating the misclassification rates when the models have
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Figure 5.8: The AUC scores based on 1000 repetitions of simulation and model fitting. The
blue dots show the mean AUC score on the test set for each model. The black bars show
the interquantile ranges.

made predictions on the same training sets as they were fitted to.

Section 5.7 showed that the random GLM gave the overall best predictive performance.
However, the bagged GLM and the logistic GLM showed very comparative results. The
conclusion is that one may gain a slight improve in the prediction accuracy by creating
an ensemble of logistic regression models. However, this comes at the cost of the model
simplicity and interpretability and there is not very much to gain. A drawback of the ran-
dom GLM is that is has a slightly longer computational time compared to the tree-based
methods.

The pruned tree showed an overall bad performance and should not be recommended as a
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Figure 5.9: The Brier scores based on 1000 repetitions of simulation and model fitting. The
purple dots show the mean BS score on the test sets for each model. The black bars show
the interquantile ranges.

predictive tool to a similar data set as our simulated one. However, by creating an ensem-
ble of trees, the predictive performance can be greatly improved. We have seen that the
bagged tree and random forest show good performance, and comparable results as the lo-
gistic models. The reason for why the logistic models outperformed the tree-based methods
might be that our simulated response values have been created using a logistic model. We
will test this hypothesis when fitting the same models to our original data set in Chapter 6.

In this simulation study we have not looked at how accurately the methods have been
able to estimate the original model parameters, shown in Table 5.1. This is because it
would be very difficult to obtain such conclusions using our models.
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Figure 5.10: The training errors based on 1000 repetitions of simulation and model fitting.
The orange dots show the mean training error for each model. The black bars show the
interquantile ranges.



Chapter 6

Data Analysis

Motivated by the simulation study in Chapter 5, we have chosen to fit 6 different statistical
models also to our HUNT data set: a pruned tree, logistic GLM, bagged tree, bagged logistic
GLM, random forest and random GLM. Since we in this thesis are not only interested in
identifying the most relevant predictors for predicting an event of MI, but also in evaluating
the predictive performance of different statistical models, we have divided the data analysis
into two parts. Section 6.1 aims at evaluating the predictive power of our chosen statistical
models, when applied to our HUNT data set. This has been done by cross-validation.
Section 6.2 aims at identifying the most relevant predictors for an event of MI, and the
original data has been used for this purpose.

6.1 The Predictive Power of Our Statistical Models

To estimate the predictive power of our statistical models we have, inspired by Song et
al. (2013), used cross-validation. The following procedure was repeated 100 times: We
randomly partitioned the HUNT data set into two parts: a training set and a test set.
The training set contained data of 131 randomly chosen subjects. The test set contained
data of the remaining 66 subjects. We fitted 6 different models to the training set. The
fitting procedure followed the procedure described in Section 5.5. The training errors were
calculated by counting the misclassification rates when using the fitted models to make
predictions on the observations in the training set. Thereafter, the 6 different models were
used to make separate predictions on the test set. The test errors were calculated by us-
ing the Brier and AUC score. Figure 6.1 shows a graphical representation of this procedure.

The results are presented in Figures 6.3, 6.2 and 6.4, where the AUC score, Brier score

83



6.1. THE PREDICTIVE POWER OF OUR STATISTICAL MODELS 84

Figure 6.1: A graphical representation of the procedure of evaluating the predictive power
of our 6 different statistical methods, when applied to the HUNT data set.

and the training error is plotted for the various statistical models. The dots show the
mean values, while the bars indicate the interquantile ranges. The red lines show the max-
imum or minimum mean value. The corresponding numerical results are found in Table 6.1.

We see that the statistical models applied to the HUNT data set give similar results as
when applied to our artificial data sets. In total 5 of the models perform well and have
interquantile ranges which overlap each other. The model giving the lowest test error, and
hence has the best predictive performance, is the random GLM, followed by a bagged GLM
and a logistic GLM. Furthermore, we see that a single tree makes a bad performance, but
that by applying ensemble methods on a tree, the predictive performance increases sub-
stantially. The logistic regression model has the lowest training error, which could imply
that the model has been overfit to the data. However, the AUC and Brier scores do not
support this assumption.
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Table 6.1: The mean values of score statistics for the 6 different models when applied to
the HUNT data set, based on 100 repetitions of training and testing.

Pruned Logistic Bagged Bagged Random Random

tree GLM tree logistic forest GLM

AUC score 0.622 0.795 0.777 0.809 0.790 0.816

Brier score 0.243 0.199 0.196 0.185 0.193 0.180

Training error 0.299 0.183 0.288 0.269 0.270 0.254
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Figure 6.2: The mean Brier score for different models, based on 100 repetitions of training
and testing. The purple dots show the mean values for each model, the black bars show
the interquantile ranges, while the red line shows the lowest mean value.
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Figure 6.3: The mean AUC score for different models, based on 100 repetitions of training
and testing. The blue dots show the mean values for each model, the black bars show the
interquantile ranges, while the red line shows the highest mean value.
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Figure 6.4: The mean training error for different models, based on 100 repetitions of training
and testing. The orange dots show the mean values for each model, the black bars show
the interquantile ranges, while the red line shows the lowest mean value.
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6.2 Final Results

This section presents the medical results, from fitting our statistical models to the HUNT
data set. The procedure has been to fit the 6 models to the whole data set once. The
presentation of the results is divided into two parts. Firstly, in Section 6.2.1, we will
present the results for one model at a time. Secondly, in Section 6.2.2, we compare results
across the models. This chapter contains a mix of the HUNT variable coding, in the R

outprints, and of the coding used in this thesis. Please see Section 5.1 for an overview of
the coding of the predictors.

6.2.1 Model-Wise Results

Model 1: Pruned Tree

We present the result of our pruned tree by plotting the actual tree, in Figure 6.5. This
is a small tree, with only 4 terminal nodes, which probably explains the low predictive
power. The miRNA coded by hsa let 7g 5p gives the first splitting criterion. Thereafter
comes the predictor smoking status (smoke), followed by serum triglycerides (setrig) and
the miRNA coded by hsa miR 26a 5p. The predictor serum triglycerides is not included
in the Framingham risk score.

Model 2: Logistic GLM

We present the results of the logistic GLM in the usual manner, by an outprint created
by the summary function. This outprint shows which predictors have been included by
the forward stepwise procedure in creating the best model based on the AIC score. The
values under the Estimate column show the estimated coefficients, where β0 = −2.006344,
βhsa miR 144 3p = −1.592524, βsmoke = −9.88172 etc. The columns Std.Error and z value

show the corresponding standard errors and z values. The last column shows the p-values,
where the significant predictors for testing, H0 : β = 0 vs. H1 : β ̸= 0, are the ones with
the lowest p-value. We see that 4 of the miRNAs have been included in the final GLM and
are significant. Furthermore, we see that the predictors waist-to-hip ratio (whr), BMI and
serum glucoe non-fast (seglu) have been included in the model, which are not present in
the Framingham risk score.
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Figure 6.5: The pruned tree fitted to the HUNT data set, where the size of the tree has
been determined by cost-complexity pruning. The variable names follow the HUNT coding.

Model 3: Bagged Tree

Figure 6.6 shows the two types of variable importance plots for bagged trees. We see
that the top predictors differ somewhat between the plots, but that the most of the top
predictors are the same. Importantly, we see that many of the miRNAs have been identified
as important predictors. Furthermore, the predictors serum triglycerides (setrig) and body
mass index are among the top-ten predictors in both plots. These predictors are not
included in the Framingham risk score.
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Call:

glm(formula = MI ~ hsa_miR_144_3p + SmoStat.NT2BLQ1_2K_TVF +

BMI.NT2BLM + SeHDLChol.NT2BLM + hsa_miR_26a_5p + SeChol.NT2BLM +

BPSystMn23.NT2BLM + hsa_miR_424_5p + SeGluNonFast.NT2BLM +

hsa_miR_191_5p + WHR, family = "binomial", data = ds)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1298 -0.6939 -0.1033 0.6329 2.4261

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.00634 627.93381 -0.003 0.99745

hsa_miR_144_3p -1.59252 0.51484 -3.093 0.00198 **

SmoStat.NT2BLQ1_2K_TVF1 -9.88172 627.91828 -0.016 0.98744

BMI.NT2BLM 0.17445 0.07664 2.276 0.02284 *

SeHDLChol.NT2BLM -1.33170 0.60703 -2.194 0.02825 *

hsa_miR_26a_5p 1.59039 0.68699 2.315 0.02061 *

SeChol.NT2BLM 0.54031 0.20022 2.699 0.00696 **

BPSystMn23.NT2BLM 0.03498 0.01241 2.818 0.00483 **

hsa_miR_424_5p 0.41011 0.23906 1.715 0.08626 .

SeGluNonFast.NT2BLM -0.60204 0.29078 -2.070 0.03842 *

hsa_miR_191_5p -1.34736 0.77032 -1.749 0.08028 .

WHR 5.91296 3.71684 1.591 0.11164

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 273.05 on 196 degrees of freedom

Residual deviance: 164.36 on 185 degrees of freedom

AIC: 188.36

Number of Fisher Scoring iterations: 17
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Figure 6.6: Variable importance plots when growing a bagged tree on our HUNT data set.

Model 4: Bagged Logistic GLM

The results for the bagged logistic GLM are presented in Figure 6.7, by a variable impor-
tance. Recall that this variable importance plot is created by counting the number of times
a given predictor has been chosen by the stepwise forward regression procedure and cannot
be directly compared with the variable importance plots of tree ensembles. Again we see
that many of the miRNAs have shown to bee important predictors. In addition, from the
predictors not included in the Framingham score, serum glucose non fasting (seglu) and
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BMI, are highly relevant.
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Figure 6.7: Variable importance plots when bagging a logistic GLM on our HUNT data
set.

Model 5: Random Forest

The results from the random forest are represented through the variable importance plots in
Figure 6.8. We again see that the two types of variable importance plots differ somewhat in
the top predictors. When comparing these plots with the corresponding variable importance



6.2. FINAL RESULTS 92

plots for the bagged tree, we see that they are very similar. Again we see that several of the
miRNAs play an important role. Furthermore, we see that the predictors BMI and serum
trilglycerides (setrig), which are not present in the Framingham risk score, are among the
top ten predictors.
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Figure 6.8: Variable importance plots when growing a random forest on our HUNT data
set.
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Model 6: Random GLM

Variable importance plot for the random GLM is presented in Figure 6.9. This variable
importance plot is quite similar to the variable importance plot of the bagged GLM, but
not similar to the variable importance plot of the random forest. We see that 4 of the
miRNAs are among the top ten significant predictors. The predictor BMI is significant.
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Figure 6.9: Variable importance plots when fitting a random GLM on our HUNT data set.
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6.2.2 Overall Results

The previous section showed the results for one model at a time. In this section we aim at
comparing the results across the models.

We have fitted 6 different models. In 3 of the models the underlying structure was a
classification tree while in the remaining 3 models the underlying structure was a logistic
GLM. We have seen that the tree based methods tend to identify the same predictors as
the most relevant. The same is true for the methods based on logistic GLMs. The most
important predictors however tend to differ across these two model groups. This can also
be seen by drawing a heatmap of the estimated probabilities. Such a heatmap is shown in
Figure 6.10, where each small rectangle represents one predicted probability for the subjects
in the HUNT data set, when using the fitted models. The predicted probabilities have been
translated into colors, based on the magnitude of the numerical values. The color-coding
is found in the top-left corner in the figure. Further, each row corresponds to one of our 6
methods. The row named MI event corresponds to the true outcome (case/control) of each
subject. Each column corresponds to one subject. The dendograms show the arrangement
of clustering. The dendogram corresponding to the model types has clearly identified two
groups of methods: the tree-based methods and the methods based on logistic GLMs. This
can also be seen by comparing the coloring across one subject at a time: the tree-based
methods tend to give similar classifications and the methods based on the logistic GLM
tend to give similar classifications.

The heatmap in Figure 6.10 has identified a group of subjects which none of our mod-
els have been able to classify correctly, the leftmost grouping. It would be very interesting
to investigate what properties these subjects share. Why were we not able to capture
this group? Maybe the inclusion of additional predictors in our models could improve the
predictions.
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Figure 6.10: A heatmap comparing predictions obtained by using different statistical meth-
ods. Each row corresponds to one of our 6 methods. The row named MI event corresponds
to the true outcome (case/control) of each subject. Each column corresponds to one subject.
One colored rectangle represents one prediction for subject i, where the color key shows
the interval of each color. The dendograms show the hierarchical clustering of subjects and
methods using Euclidean distance function.
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Chapter 7

Discussion and Conclusion

7.1 Statistical Issues

The main motivation for this thesis, from a statistical point of view, was to see if one can
increase the prediction accuracy when predicting a MI event by applying ensemble methods
on the data set. Based on literature, we expected to see a greater increase in prediction
accuracy for the tree-based methods than the models based on logistic regression, as trees
have low bias but high variance. Our data analysis has confirmed this. The prediction
accuracy increased when creating a tree ensemble. We saw a great improvement when cre-
ating a bagged tree, and a further improvement when growing a random forest, compared
to the single pruned tree. We have also seen that the predictive power of a logistic GLM
can be improved when combining the prediction from an ensemble of GLMs. Again we
saw an increase in the prediction accuracy when creating a bagged GLM, and a further
increase when creating a random GLM. Thus, by including only a subset of predictors in
each model, and then combining the models to make one prediction, is an effective method.

There is an important difference between how the ensemble of GLMs and the tree ensem-
bles made predictions (final classifications), which needs to be addressed. The ensembles
of GLMs made the final prediction by averaging the predictions, π̂b(xi) from each model,
and then classified according to a threshold value of 0.50. However, the tree based meth-
ods made the final prediction by the majority vote over all classifications Ĉb(xi). The
classification, according to a threshold value of 0.50, was made by each tree separately.
The difference between these two procedures can be compared to the difference between
the mean value and median of a set of numbers. The methods based on logistic regres-
sion obviously use the mean value. In the case of two classes, if one would sort all of the
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classifications, so that all classifications corresponding to one class would be lined up after
each other, followed by all classifications corresponding to the other class, the majority
vote would be the same as the median value. Let’s examine this further by an example:
Suppose we fit 5 models and obtain the following probabilities: 0.4, 0.4, 0.4, 0.4 and 0.9.
The classification made by the methods which average the probabilities would be 1, while
it would be 0 if classified by taking the majority vote (using 0.5 as the cut-off value). The
two procedures thus have their pros and cons: By averaging the predictions no information
is lost. We do not only get the final classification, but the probability for belonging to the
class 0 or 1. However, this method is not robust to outliers. By taking a majority vote,
outliers have a smaller influence on the result. This difference in how the classifications
have been obtained should not have a large influence when using the Brier and AUC scores
as a measure of the prediction accuracy. We used the class proportions for the tree based
methods when calculating the Brier and AUC scores.

There is one aspect of the random GLM which we found somewhat strange. Based on
the recommendation by Song and Langfelder (2013), we should have included 22 out of 23
in each step in the forward selection procedure of our random GLM. The models would not
be independent when almost all of the predictors are present in each model. We have used
a loop which searches for the parameter value which gives the smallest OOB error for our
HUNT dataset. This resulted in using nFeaturesInBag = 17. In the simulation study we
used 15 or 20, whichever gave the lowest OOB error of the two.

7.2 Discussion of the Medical Results

The main motivation for this thesis, from a medical point of view, was to improve the
prediction accuracy when predicting a MI event for a new subject. We were also interested
in finding out if microRNAs have a predictive potential for developing MI. Our results
have shown that the best predictive power was obtained by the random GLM. That is, an
ensemble of forward stepwise obtained logistic GLMs, where only a subset of predictors
were considered as candidates in each step of the forward selection procedure. We have
evaluated the predictive power of our methods by dividing our data set into a train set of 2

3

of the observations, and a test set of 1
3
of the observations, 100 times. The Brier score for

the random GLM was 0.180. The AUC score for the random GLM was 0.816. The AUC
score of a single logistic GLM was 0.795. We can compare this result to the results obtained
by Velle-Forbord (2017). Velle-Forbord (2017) used the same data set and fitted logistic
regression models using best subset selection based on the AIC score. To evaluate the
prediction accuracy, Velle-Forbord (2017) used leave-one-out cross-validation. The AUC
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score obtained by Velle-Forbord (2017) was 0.80. We have thus increased the AUC score.
However, in addition to applying ensemble methods, we have added additional predictors.

Further, we have seen that many predictors, which are not included in the Framingham
risk score, are relevant in our models. In particular the predictors BMI, Serum triglycerides
(setrig) and Serum glucose non fasting (seglu). We have also seen that microRNAs are very
relevant. The microRNAs have shown high importance in all of our models. However, the
specific microRNAs have varied. This is can be due to the high correlation between the
microRNAs, which we saw in Figure 5.4. The three, most relevant microRNAs have shown
to be hsa let 7g 5p, hsa miR 26a 5p and hsa miR 144 3p.

None of our models have captured an effect of the subjects age, which is a very impor-
tant predictor in the Framingham risk score. The reason for this is probably that the age
of the subjects in the HUNT study has been relatively homogeneous. The minimum age
was 50 and the highest 80, with median value of 68 years. The Framingham risk score uses
age intervals from 20 to 79 years.

To improve the predictive power further, one could start with the heatmap in Figure 6.10.
The dendogram has identified a group of subjects which none of our models have been able
to classify correctly, the outermost left grouping. What is specific with these subjects?
What do they have in common? Maybe an additional predictor, which we have not in-
cluded in our models, would have captured this group.

This thesis has shown that by applying ensemble methods one can improve the predic-
tion accuracy. However, this increase is not very high. There are two drawbacks which
should be taken into consideration: computational cost and model interpretability. How-
ever, for a data set of the size as our HUNT data set, the computational cost is low enough
so that an average computer can create the model in less than a minute. The problem of
model interpretability is somewhat solved by the variable importance plot.
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Appendix A

R Codes for Simulating an Artificial
Data Set

This appendix shows the R codes used to simulate artificial predictor values and artificial
response values, by following the procedure descried in Chapter 5. Since we want to compare
the predictive power of statistical models, we simulate one big artificial data set, which we
later divide into a training and test set of equal size. We start by loading all the necessary
packages, and we set a sum-to-zero constraint on the categorical variables.

> library(foreach)

> library(MASS)

> library(caret)

> library(ModelMetrics)

> library(matrixStats)

> options(contrasts=c("contr.sum", "contr.sum"))

Our HUNT data set is stored in the data frame ds. The original coding of the predictors,
and corresponding own coding of the predictors, can be found in the overview of Section 5.1.
The first step is to create the logistic model, which will serve as the statistical model for
MI.

> logistic = glm(StatCaseControl ~ BMI.NT2BLM + SeChol.NT2BLM + SeGluNonFast.NT2BLM +

+ BPSystMn23.NT2BLM + Age_groupedby10 + hsa_let_7g_5p +

+ hsa_miR_144_3p + hsa_miR_26a_5p + hsa_miR_21_5p + hsa_miR_424_5p +

+ hsa_miR_191_5p, family="binomial", data=ds)

105



106

> print(signif(logistic$coefficients), digits=3)

(Intercept) BMI.NT2BLM SeChol.NT2BLM SeGluNonFast.NT2BLM

-8.1705 0.1495 0.2933 -0.2636

BPSystMn23.NT2BLM Age_groupedby101 Age_groupedby102 Age_groupedby103

0.0279 -0.1057 0.0132 -0.2035

hsa_let_7g_5p hsa_miR_144_3p hsa_miR_26a_5p hsa_miR_21_5p

0.4887 -1.4302 1.2514 0.6019

hsa_miR_424_5p hsa_miR_191_5p

0.5198 -1.2141

Since we want our artificial data set to resemble the original data set, we calculate the sam-
ple means, standard deviations and sample covariance matrices, and use these to simulate
predictor values.

> ages = factor(c("(49, 59]", "(59, 69]", "(69, 79]", "(79, 89]"))

> age.effects = matrix(c(1, 0, 0, -1, 0, 1, 0, -1, 0, 0, 1, -1), ncol=3)

>

> smoke = as.factor(c(0,1))

>

> measurements.mu = c(mean(ds$WaistCirc.NT2BLM), mean(ds$HipCirc.NT2BLM),

+ mean(ds$Hei.NT2BLM), mean(ds$Wei.NT2BLM))

> measurements.Sigma = cov(ds[, c("WaistCirc.NT2BLM", "HipCirc.NT2BLM",

+ "Hei.NT2BLM", "Wei.NT2BLM")])

>

> hdl_setrig.mu = c(mean(ds$SeHDLChol.NT2BLM), mean(ds$SeTrig.NT2BLM))

> hdl_setrig.Sigma = cov(ds[, c("SeHDLChol.NT2BLM", "SeTrig.NT2BLM")])

>

> mRNA.mu = sapply(ds[,279:289], FUN=mean)

> mRNA.Sigma = cov(ds[,279:289])

We initialize an empty data frame df.sim in which we will store the simulated values.

> df.sim = data.frame(statcasecontrol = integer(), age = factor(),

+ sechol = double(), hdlchol = double(), bp = double(),

+ setrig = double(), secrea = double(), seglu = double(),

+ smostat = factor(), wc = double(), hc = double(),

+ bmi = double(), whr = double(), hsa_let_7g_5p = double(),

+ hsa_miR_106a_5p = double(), hsa_miR_144_3p = double(),

+ hsa_miR_151a_5p = double(), hsa_miR_191_5p = double(),

+ hsa_miR_21_5p = double(), hsa_miR_26a_5p = double(),

+ hsa_miR_29c_3p = double(), hsa_miR_424_5p = double(),

+ hsa_miR_425_5p = double(), hsa_miR_451a = double())
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Now we can simulate the artificial data set. By using the repeat function, at each iteration,
the predictor values for one subject were simulated at a time. This by using the sample
mean, standard deviations and covariance matrices of the original data set and making
calls to the functions rnorm and mvrnorm, which give random realizations of the univariate
and multivariate normal distribution functions, respectively. By setting the parameter
n equal to 1, we tell the function that we only want one realization for each iteration
of the repeat function. Using these predictor values, and our logistic model for MI, a
probability pi for Y = 1 for the subject has been calculated. Using this probability, a call
has been made to the rbinom function, which gives random realizations from the binomial
distribution. According to the value returned by rbinom, the subject has been classified
as an case (Y = 1) or an control (Y = 0). Corresponding counters ncase or ncontrol are
incremented by one. The repeat function terminates when both the number of cases and
controls is greater or equal to 200.

> ncase = 0; ncontrol = 0

> {

+ repeat{

+ mRNA = mvrnorm(n = 1, mu = mRNA.mu, Sigma = mRNA.Sigma)

+

+ age.indx = sample(1:4, 1)

+ age = ages[age.indx]

+

+ sechol = rnorm(n = 1, mean = sechol.mu, sd = sechol.sd)

+ bp = rnorm(n = 1, mean = bp.mu, sd = bp.sd)

+ secrea = rnorm(n = 1, mean = secrea.mu, sd = secrea.sd)

+ seglu = rnorm(n = 1, mean = seglu.mu, sd = seglu.sd)

+

+ hdl_setrig = mvrnorm(n = 1, mu = hdl_setrig.mu, Sigma = hdl_setrig.Sigma)

+

+ smostat = sample(smoke, 1, prob=c(0.4, 0.6))

+

+ measurements = mvrnorm(n = 1, mu = measurements.mu,

+ Sigma = measurements.Sigma)

+

+ wc = measurements[1]; hc = measurements[2]

+ bmi = measurements[4]/(measurements[3]/100)^2

+ whr = measurements[1]/measurements[2]

+

+ eta = sum(c(1, bmi, sechol, seglu, bp, age.effects[age.indx,], mRNA[1], mRNA[3],

+ mRNA[7], mRNA[6], mRNA[9], mRNA[5]) %*% logistic$coefficients)

+

+ pi = 1/(1+exp(-eta))

+ y = rbinom(n = 1, size = 1, prob = pi)
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+

+ if(y == 1){

+ ncase = ncase + 1} else{

+ ncontrol = ncontrol + 1}

+

+ addline = data.frame(y, age, sechol, hdl_setrig[1], bp, hdl_setrig[2], secrea,

+ seglu, smostat, wc, hc, bmi, whr, mRNA[1], mRNA[2],

+ mRNA[3], mRNA[4], mRNA[5], mRNA[6], mRNA[7], mRNA[8],

+ mRNA[9], mRNA[10], mRNA[11], fix.empty.names = FALSE,

+ row.names=NULL)

+

+ df.sim = rbind(df.sim, addline)

+ if(ncase >= 200 && ncontrol >= 200) break

+ }

+ }

This last code chunk simply divides the simulated data set into a training and test set, of
equal size, which contains 100 cases and 100 control each.

> colnames(df.sim) = c("statcasecontrol", "age", "sechol", "hdlchol", "bp", "setrig",

+ "secrea", "seglu", "smostat", "wc", "hc", "bmi", "whr",

+ "hsa_let_7g_5p", "hsa_miR_106a_5p", "hsa_miR_144_3p",

+ "hsa_miR_151a_5p", "hsa_miR_191_5p", "hsa_miR_21_5p",

+ "hsa_miR_26a_5p", "hsa_miR_29c_3p", "hsa_miR_424_5p",

+ "hsa_miR_425_5p", "hsa_miR_451a")

>

> df.train = df.sim[which(df.sim$statcasecontrol==1)[1:100],]

> df.train = rbind(df.train, df.sim[which(df.sim$statcasecontrol==0)[1:100],])

> rownames(df.train) = NULL

>

> df.test = df.sim[which(df.sim$statcasecontrol==1)[101:200],]

> df.test = rbind(df.test, df.sim[which(df.sim$statcasecontrol==0)[101:200],])

> rownames(df.test) = NULL



Appendix B

R Codes for Analysis of the HUNT
Dataset

These codes show the analysis of the HUNT dataset by the 6 different statistical methods:
pruned tree, logistic GLM, bagged tree, bagged logistic GLM, random forest and random
GLM. We start by loading all packages we are going to use.

> library(foreign)

> library(tree)

> library(randomForest)

> library(randomGLM)

> library(foreach)

> library(MASS)

> library(ModelMetrics)

> library(pROC)

Set an constraint on the factorial (categorical) variables, so that they sum to zero and set
a seed so that the results are reproducible.

> options(contrasts=c("contr.sum", "contr.sum"))

> set.seed(10)

Prepare our data set, which is saved as Backup global mean og FRM.sav. WHR is our
calculated waist-to-hip ratio, Age_grouped is a categorical variable which has groupings of
ages and MI stores the response variables.
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> ds = read.spss("Backup global mean og FRM.sav", to.data.frame=TRUE)

> WHR = ds$WaistCirc.NT2BLM/ds$HipCirc.NT2BLM

> Age_grouped = cut(ds$PartAg.NT2BLQ1, breaks = c(49, 59, 69, 79, 89))

> MI = (ds$MICases=="Fatale MI" & ds$MICases=="Non-fatale MI")

> cases = which(MI==0)

> MI[cases] = 1; MI[-cases] = 0

> MI = as.factor(MI)

Further, we make the smoking status, SmoStat.NT2BLQ1_2K_TVF a categorical variable,
and reduce the data frame so that it only contains predictors which we will use. Next we
remove all subjects with missing smoking status and WHR.

> ds$SmoStat.NT2BLQ1_2K_TVF = as.factor(ds$SmoStat.NT2BLQ1_2K_TVF)

> predictors = c("SeChol.NT2BLM", "SmoStat.NT2BLQ1_2K_TVF", "SeHDLChol.NT2BLM",

+ "BPSystMn23.NT2BLM", "WaistCirc.NT2BLM", "HipCirc.NT2BLM",

+ "BMI.NT2BLM", "SeTrig.NT2BLM", "SeCrea.NT2BLM",

+ "SeGluNonFast.NT2BLM")

> ds = data.frame(MI, ds[, predictors], WHR, Age_grouped, ds[,279:289])

> ds = ds[is.na(ds$SmoStat.NT2BLQ1_2K_TVF)==FALSE,]

> ds = ds[is.na(ds$WHR)==FALSE,]

> n = dim(ds)[1]

Our HUNT data set is stored in the data frame ds. We proceed by fitting our 6 different
statistical models. We suppress the outprints here as the results of the data analysis have
been presented in Chapter 6.

B.1 Data Analysis

Model 1: Pruned tree

We start by growing a full tree on our data set, and set this equal to tree.full. MI ∼ .
tells the tree function that all predictors are to be included. We can plot the full tree by
making a call to the plot function, and add text to the branches by calling text.

> tree.full = tree(MI~., data = ds)

> plot(tree.full)

> text(tree.full, cex = 0.7)
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|
hsa_let_7g_5p < −0.0351475

SmoStat.NT2BLQ1_2K_TVF:a

SeTrig.NT2BLM < 1.59

BMI.NT2BLM < 27.75

SeChol.NT2BLM < 6.6

SeCrea.NT2BLM < 80

HipCirc.NT2BLM < 103.5
hsa_miR_26a_5p < −1.45165

BPSystMn23.NT2BLM < 145

hsa_miR_26a_5p < −0.982928

hsa_miR_424_5p < −2.34409

BMI.NT2BLM < 27.9hsa_miR_21_5p < 2.8308

hsa_miR_151a_5p < −1.57258

hsa_let_7g_5p < −0.283312
WaistCirc.NT2BLM < 92

HipCirc.NT2BLM < 99.5

BMI.NT2BLM < 25.35

SeChol.NT2BLM < 6.45

0

0

0 1
0

0 1

0 0

0

0 1

0

1

1

1

1

0 1
1

To find the optimal tree size, we use the cv.tree function, which runs k-fold cross validation
to find the deviance of the cost-complexity parameter k. We choose the tree size, denoted
by size, which corresponds to the lowest deviance. Now we prune the tree to obtain the
optimal tree size, and make a plot of it.
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> size = cv.tree(tree.full)$size[which.min(cv.tree(tree.full)$dev)]

> tree.pruned = prune.tree(tree.full, best = size)

> plot(tree.pruned)

> text(tree.pruned, cex=0.7)

Model 2: Logistic GLM

To fit an logistic regression model by stepwise forward regression, we start by defining
the null and full models. The null model, logistic.null, contains only the intercept β0.
The full model, logistic.full contains all of the predictors. We then make a call to
the stepAIC function, and tell it start from the null model, and add predictors, one at
a time, by stepwise forward regression, until all predictors from the full model have been
added. The model returning the lowest AIC value is our chosen model and is saved as
logistic.best.

> logistic.null = glm(MI ~ 1, data = ds, family = "binomial")

> logistic.full = glm(MI ~ ., data = ds, family = "binomial")

> logistic.best = stepAIC(logistic.null, scope =

+ list(upper = logistic.full, lower = logistic.null),

+ direction = "forward", data = ds, trace = FALSE)

We can call the summary function to get an outprint of our logistic GLM.

> summary(logistic.best)

Model 3: Bagged Tree

To fit a bagged tree we use the randomForest function. We set the parameter ntree which
is the ensemble size equal to 500. What is important, is that mtry must be equal to the
number of predictors. Otherwise the model fitted will be a random forest. The parameter
importance=TRUE needs to be set to create a variable importance plot. One can plot the
variable importance plots by calling the function varImpPlot.

> bag = randomForest(MI~., data = ds, ntree = 500, mtry = 23, importance = TRUE)

> varImpPlot(bag, cex = 0.8, main = "Bagged Tree")

Model 4: Bagged GLM

The creation of a bagged GLM has been done using the randomGLM function. We specify
the predictors by setting x = x, where x is the model matrix used by the logistic model.
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To specify the response variable we set y = ds[,1]. We set nFeaturesInBag equal to the
number of predictors modeled by the model matrix x. The parameter nBags sets the size
of the ensemble. There is no function one can use the make a variable importance plot
directly, thus we create one manually.

> x = model.matrix(logistic.full)[,-1]

> bag.logistic = randomGLM(x = x , y = ds[,1], nBags = 100, nFeaturesInBag = 24)

> datvarImp.bag=data.frame(Feature = as.character(dimnames(

+ bag.logistic$timesSelectedByForwardRegression)[[2]]),

+ timesSelectedByForwardRegression = as.numeric(

+ bag.logistic$timesSelectedByForwardRegression))

> datVarImpSelected.bag = datvarImp.bag[rank(-datvarImp.bag[,2],

+ ties.method="first")<=20,]

> datVarImpSelected.bag = datVarImpSelected.bag[order(datVarImpSelected.bag[,2]),]

> par(mfrow = c(1,1), mar = c(4,8,3,1))

> barplot(datVarImpSelected.bag[,2], horiz = TRUE, names.arg =

+ datVarImpSelected.bag[,1], xlab = "Feature Importance", las = 1,

+ cex = 0.6, main = "Most significant features for the bagged GLM",

+ cex.axis = 1, cex.main = 1.2, cex.lab = 1, col="lightgrey")

Model 5: Random Forest

To grow a random forest we use the randomForest function. We include a for-loop, to
decide on the tuning parameter mtry. This tuning parameter tells how many predictors
are to be considered in each split when growing one tree, and we choose is based on the
minimum OOB error. The parameter ntree sets the size of the ensemble. We can plot the
variable importance plots by calling varImpPlot.

> rf.OOBerror = numeric(22)

> for(rf.mtry in 1:22){

+ rf = randomForest(MI~., data = ds, mtry = rf.mtry)

+ rf.OOBerror[rf.mtry] = rf[["err.rate"]][nrow(rf[["err.rate"]]),"OOB"]

+ }

> rf = randomForest(MI~., data = ds, ntree = 500, mtry = which.min(rf.OOBerror),

+ importance=TRUE)

> varImpPlot(rf, cex = 0.8, main="Random Forest")

Model 6: Random GLM

The creation of a random GLM has been done in a similar fashion as the bagged GLM,
with the important difference, that the parameter nFeaturesInBag must be decided on.
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We do this by creating a for-loop. We thereafter choose the value for nFeaturesInBag

which corresponds to the lowest OOB-error.

> RGLM.OOBerror = numeric(22)

> for(RGLM.mtry in 1:22){

+ RGLM = randomGLM(x = x, y = ds[,1], nBags = 100, nFeaturesInBag = RGLM.mtry)

+ RGLM.OOBerror[RGLM.mtry] = sum(RGLM$predictedOOB != ds[,1])

+ }

> randomGLM = randomGLM(x = x, y = ds[,1], nBags = 100,

+ nFeaturesInBag = which.min(RGLM.OOBerror))

> datvarImp = data.frame(Feature = as.character(dimnames(

+ randomGLM$timesSelectedByForwardRegression)[[2]]),

+ timesSelectedByForwardRegression = as.numeric(

+ randomGLM$timesSelectedByForwardRegression))

> datVarImpSelected = datvarImp[rank(-datvarImp[,2], ties.method="first") <= 20, ]

> datVarImpSelected = datVarImpSelected[order(datVarImpSelected[,2]),]

> par(mfrow = c(1,1), mar = c(4,8,3,1))

> barplot(datVarImpSelected[,2], horiz = TRUE, names.arg = datVarImpSelected[,1],

+ xlab = "Feature Importance", las = 1, cex = 0.6,

+ main = "Most significant features for the RGLM",

+ cex.axis = 1, cex.main = 1.2, cex.lab = 1, col = "lightgrey")

B.2 Testing the Predictive Power of Our Statistical

Models

The following codes show how have tested the predictive power of our statistical models,
when applied to the HUNT data set. We have randomly partitioned the data set into a
training and test set, where the training set consisted of about 2

3
of the observations and

the test set the remaining 1
3
. Models have been fitted to the training sets. The fitted

models have been thereafter used to make predictions for the test sets. The accuracy of
the predictions has been evaluated by calculating the Brier and AUC scores. The training
error was also recorded. This has been repeated 100 times.

> K = 100

> BS = matrix(NA, ncol=6, nrow=K)

> AUC = matrix(NA, ncol=6, nrow=K)

> TRAIN.error = matrix(NA, ncol=6, nrow=K)

> for(k in 1:K){

+ set.seed(k+6)

+
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+ test = sample(seq(1,197,1), 66, replace=FALSE)

+

+ ds.test = ds[test, ]

+ ds.train = ds[-test,]

+ y.test = as.numeric(as.character(ds.test$MI))

+ y.train = as.numeric(as.character(ds.train$MI))

+

+ #### PRUNED TREE ####

+ tree.train = tree(MI~., data=ds.train)

+ size.train = cv.tree(tree.train)$size[which.min(cv.tree(tree.train)$dev)]

+ while(size.train == 1){

+ size.train = cv.tree(tree.train)$size[which.min(cv.tree(tree.train)$dev)]

+ }

+

+ tree.train.pruned = prune.tree(tree.train, best = size.train)

+

+ tree.pred = predict(tree.train.pruned, newdata=ds.test)[,2]

+

+ tree.bs = brier(y.test, tree.pred)

+ tree.auc = auc(y.test, tree.pred)

+

+ tree.train.error = mean(ds.train[,1] != predict(tree.train.pruned, type="class"))

+

+ #### LOGISTIC ####

+ logistic.train.null = glm(MI~1, data=ds.train, family="binomial")

+ logistic.train.full = glm(MI~., data=ds.train, family="binomial")

+

+ logistic.train.best = stepAIC(logistic.train.null, scope =

+ list(upper = logistic.train.full,

+ lower = logistic.train.null),

+ direction="forward", data=ds.train, trace=FALSE)

+

+ logistic.pred = predict(logistic.train.best, newdata=ds.test, type="response")

+

+ logistic.bs = brier(y.test, logistic.pred)

+ logistic.auc = auc(y.test, logistic.pred)

+

+ logistic.train.error = mean(ds.train[,1] != round(

+ logistic.train.best$fitted.values))

+

+ #### BAGGED LOGISTIC ####

+ x.train = model.matrix(logistic.train.full)[,-1]

+

+ logistic.test.full = glm(MI~., data=ds.test, family="binomial")

+ x.test = model.matrix(logistic.test.full)[,-1]
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+

+ bag.logistic.train = randomGLM(x = x.train , y = ds.train[,1], nBags = 100,

+ nFeaturesInBag = 24)

+

+

+ bag.logistic.pred = predict(bag.logistic.train, newdata=x.test)[,2]

+

+ bag.logistic.bs = brier(y.test, bag.logistic.pred)

+ bag.logistic.auc = auc(y.test, bag.logistic.pred)

+

+ bag.logistic.train.error = mean(ds.train[,1] != bag.logistic.train$predictedOOB)

+

+ #### BAGGED TREE ####

+ bag.train = randomForest(MI~., data=ds.train, ntree = 500, mtry=23)

+ bag.pred = predict(bag.train, newdata=ds.test, type = "prob")[,2]

+

+ bag.bs = brier(y.test, bag.pred)

+ bag.auc = auc(y.test, bag.pred)

+

+ bag.train.error = mean(ds.train[,1] != predict(bag.train, type="class"))

+

+ #### RANDOM FOREST ####

+ rf.OOBerror = numeric(22)

+ for(rf.mtry in 1:22){

+ rf = randomForest(MI~., data=ds.train, mtry=rf.mtry)

+ rf.OOBerror[rf.mtry] = rf[["err.rate"]][nrow(rf[["err.rate"]]),"OOB"]

+ }

+ rf.train = randomForest(MI~., data=ds.train, ntree =500,

+ mtry = which.min(rf.OOBerror))

+ rf.pred = predict(rf.train, newdata=ds.test, type = "prob")[,2]

+

+ rf.bs = brier(y.test, rf.pred)

+ rf.auc = auc(y.test, rf.pred)

+

+ rf.train.error = mean(ds.train[,1] != predict(rf.train, type="class"))

+

+ #### RANDOM GLM ####

+ x.train = model.matrix(logistic.train.full)[,-1]

+

+ logistic.test.full = glm(MI~., data=ds.test, family="binomial")

+ x.test = model.matrix(logistic.test.full)[,-1]

+

+ rGLM15 = randomGLM(x = x.train, y = ds.train[,1], nBags = 100,

+ nFeaturesInBag = 15)

+ rGLM15.misclas = sum(rGLM15$predictedOOB != ds.train[,1])
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+

+ rGLM20 = randomGLM(x = x.train, y = ds.train[,1], nBags = 100,

+ nFeaturesInBag = 20)

+ rGLM20.misclas = sum(rGLM20$predictedOOB != ds.train[,1])

+

+ rGLM.OOBerror = c(rGLM15.misclas, rGLM20.misclas)

+ rGLM.misclas.min = which.min(rGLM.OOBerror)

+

+ if(rGLM.misclas.min == 1){

+ randomGLM.train = rGLM15

+ }else

+ {

+ randomGLM.train = rGLM20

+ }

+

+ randomGLM.pred = predict(randomGLM.train, newdata=x.test)[,2]

+

+ randomGLM.bs = brier(y.test, randomGLM.pred)

+ randomGLM.auc = auc(y.test, randomGLM.pred)

+

+ randomGLM.train.error = mean(ds.train[,1] != randomGLM.train$predictedOOB)

+

+

+ BS[k,] = c(tree.bs, logistic.bs, bag.bs, bag.logistic.bs, rf.bs, randomGLM.bs)

+ AUC[k,] = c(tree.auc, logistic.auc, bag.auc, bag.logistic.auc,

+ rf.auc, randomGLM.auc)

+ TRAIN.error[k, ] = c(tree.train.error, logistic.train.error, bag.train.error,

+ bag.logistic.train.error, rf.train.error,

+ randomGLM.train.error)

+ }


