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Abstract

Study of various color difference formulas by the Riemannian approach
is useful. By this approach, it is possible to evaluate the performance of
various color difference fourmlas having different color spaces for mea-
suring visual color difference. In this paper, the authors present math-
ematical formulations of CIELAB (∆E∗ab), CIELUV (∆E∗uv), OSA-UCS
(∆EE) and infinitesimal approximation of CIEDE2000 (∆E00) as Rie-
mannian metric tensors in a color space. It is shown how such metrics are
transformed in other color spaces by means of Jacobian matrices. The co-
efficients of such metrics give equi-distance ellipsoids in three dimensions
and ellipses in two dimensions. A method is also proposed for comparing
the similarity between a pair of ellipses. The technique works by cal-
culating the ratio of the area of intersection and the area of union of a
pair of ellipses. The performance of these four color difference formulas is
evaluated by comparing computed ellipses with experimentally observed
ellipses in the xy chromaticity diagram. The result shows that there is
no significant difference between the Riemannized ∆E00 and the ∆EE at
small colour difference, but they are both notably better than ∆E∗ab and
∆E∗uv.

Introduction

Color difference metrics are in general derived from two kinds of experimental
data. The first kind is threshold data obtained from color matching experiments
and they are described by just noticeable difference (JND) ellipses. The second
kind is visual colour difference data and it gives supra-threshold colour difference
ellipses [1]. For example, Friele-MacAdam-Chickering (FMC) colour difference
metric [2] is based on first kind of data where as the CIELAB [3] is based on
second kind data.

MacAdam [4] was the first to describe just noticeable difference (JND) el-
lipses. Later, more elaborated data sets were established by Brown [5], Wyszecki
and Fielder [6]. Examples of supra-threshold colour difference based data are
BFD-Perceptibility(BFD-P) [7], RIT-DuPont [8], Witt [9]and others. The for-
mer two data sets were also included in the BFD-P data sets and fitted in the
CIE xy chromaticity diagram [7].

1



Riemann [10] was the first to propose that colors, as well as the other objects
of sense, could be described by non-Euclidean geometry. Later, Helmholtz [11]
derived the first line element for a color space. Similarly, Schrödinger [12]
and Stiles [13] also elaborated more on Helmholtz’s line element with modi-
fications. The latest and most advanced contribution along this line, is the
zone-fluctuation line element of Vos and Walraven [14]. A thorough review of
color metrics following the line element can be found in [15–17].

On the other side, color and imaging industries have a continuous demand
for a practical standard for measuring perceptual color differences accurately.
So, at present, many color difference metrics are in existence. Among these,
the CIELAB and the CIELUV [3] are popular and the most established ones
in industries. Theses formulas are defined by Euclidean metrics in their own
color spaces that are obtained by non-linear transformations of the tristimu-
lus values. The CIEDE2000 [18] is a revised and improved formula based on
the CIELAB color space, resulting in a non-Euclidean metric. Another impor-
tant example is the recent Euclidean color difference metric, ∆EE proposed by
Oleari [19] based on the OSA-UCS color space. However, all the formulas men-
tioned above have some demerits to measure the visual perception of the color
differences sufficiently [20–24]. Further, it has also been noticed by many other
color researchers that the small color difference calculation using the Euclidean
distance does not agree sufficiently with the perceptual color difference due to
the curvilinear nature of the color space [22, 25–29].

Studying the various color difference metrics by treating the color spaces
as Riemannian spaces proves useful. In such a representation, one can map or
transfer a color metric between many color spaces. Basically, in a curved space
the shortest length or the distance between any two points is called a geodesic.
In the Riemannian geometry, distances are defined in the similar way. There-
fore, small color differences can be represented by an infinitesimal distance at
a given point in a color space. This distance is given by a positive definite
quadratic differential form, also known as the Riemannian metric. In this sense,
the Riemannian metric provides a powerful mathematical tool to formulate met-
ric tensors of different color difference formulas.These metric tensors allow us
to compute equi-distance ellipses which can be analyzed and compared with
experimentally observed ellipses in a common color space.

In this paper, the authors formulate the CIELAB, the CIELUV, and the
OSA-UCS based ∆EE color difference formulas in terms of Riemannian metric.
Similarly, Riemannian approximation of the CIEDE2000 is also presented. The
CIEDE2000 approximation is hereafter referred to as the Riemannized ∆E00.
This is done by taking the line element to calculate infinitesimal color differences
dE. In this process, color difference equations are converted into the differential
form. Again, to obtain the Riemannian metric in a new color space, we need to
transform color vectors from one color space to another. This is accomplished by
the Jacobian transformation. To illustrate the method, the authors transformed
the four color difference formulas mentioned above into the xyY color space.
The equi-distance ellipses of each formula are plotted in the xy chromaticity
diagram for constant luminance. The input data to compute the ellipses for
our method is the BFD-P data sets [7]. The BFD-P data sets were assessed by
about 20 observers using a ratio method, and the chromaticity discrimination
ellipses were calculated and plotted in the xy chromaticity diagram for each
set [30]. A comparison has also been done between the computed equi-distance
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ellipses of each formula and the original ellipses obtained from the BFD-P data
set. A method for comparing a pair of ellipses by calculating the ratio of the
area of intersection and the area of union was proposed by the authors [31].
This method gives a single comparison value which takes account of variations
in the size, the shape and the orientation simultaneously for a pair of ellipses.
Therefore, this value is an indicator which tells us how well two ellipses match
each other. A comparative analysis has also discussed between computed equi-
distance ellipses of different color difference formulas.

Method

Ellipse Equation

In the Riemannian space, a positive definite symmetric metric tensor gik is a
function which is used to compute the infinitesimal distance between any two
points. So, the arc length of a curve between two points is expressed by a
differential quadratic form as given below :

ds2 = g11dx
2 + 2g12dxdy + g22dy

2. (1)

The matrix form of Equation (1) is

ds2 =
[
dx dy

] [g11 g12

g12 g22

] [
dx
dy

]
, (2)

and

gik =

[
g11 g12

g21 g22

]
(3)

where ds is the distance between two points, dx is the difference of x coordinates,
dy is the difference of y coordinates and g11, g12 and g22 are the coefficients of
the metric tensor gik. Here, the coefficient g12 is equal to the coefficient g21 due
to symmetry.

In a two dimensional color space, the metric gik gives the intrinsic properties
about the color measured at a surface point. Specifically, the metric represents
the chromaticity difference of any two colors measured along the geodesic of the
surface.In general, it gives equi-distant contours. However, to calculate small
colour differences considering infinitesimal distance ds, the coefficients of gik also
determine an ellipse in terms of its parameters and vice versa. The parameters
are the semimajor axis, a, the semiminor axis, b, and the angle of inclination
in a geometric plane, θ, respectively. In equation form, the coefficients of gik in
terms of the ellipse parameter are expressed as [31]:

g11 =
1

a2
cos2 θ +

1

b2
sin2 θ,

g12 = cos θ sin θ (
1

a2
− 1

b2
),

g22 =
1

a2
sin2 θ +

1

b2
cos2 θ.

(4)

The angle formed by the major axis with the positive x-axis is given by

tan(2θ) =
2g12

(g11 − g22)
. (5)
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Here θ ≤ 90◦ when g12 ≤ 0, and otherwise θ ≥ 90◦. Similarly, the inverse of
Equations (4–5) are

1

a2
= g22 + g12 cot θ,

1

b2
= g11 − g12 cot θ.

(6)

Alternatively, the semi major axis, a, and the semi minor axis, b, of an ellipse
can also be determined by the eigenvector and eigenvalue of the metric gik. If
λ1 and λ2 are eigenvalues of the metric gik, the semimajor axis, a, and the
semiminor axis, b, equal to 1/

√
λ1 and 1/

√
λ2 respectively. Like wise, θ is the

angle between the first eigenvector and the first axis [32].

Transformation of coordinates

In Equation (1), the quantity ds2 is called the first fundamental form which
gives the metric properties of a surface. Now, suppose that x and y are related
to another pair of coordinates u and v. Then, these new coordinates will also
have new metric tensor g′ik. As analogy to Equation (3), it is written as:

g′ik =

[
g′11 g′12

g′21 g′22

]
. (7)

Now, the new metric tensor g′ik is related to gik via the matrix equation as
follows: [

g′11 g′12

g′21 g′22

]
=

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]T [
g11 g12

g21 g22

] [
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
, (8)

where the superscript T denotes the matrix transpose and the matrix

J =
∂(x, y)

∂(u, v)
=

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
(9)

is the Jacobian matrix for the coordinate transformation, or, simply, the Jaco-
bian.

Ellipse comparison

Using the principles of union–intersection and ratio testing, the authors present
the method to compare two ellipses with respect to their size, shape and ori-
entation. Figure 1(a) shows two ellipses A and B. The common area is the
intersection area between them and the total area of A and B is known as the
union area. From the statistical point of view, the acceptance region is the
intersection area and the rejection region is the union area. The ratio of these
intersection and union area gives us a non-negative value which lies in the range
of 0 < x ≤ 1. So, the matching ratio is expressed as:

R =
Area(A

⋂
B)

Area(A
⋃
B)

(10)

High value of R gives strong evidence that the two ellipses are closely matched
and vice versa. For example, a highly matched ellipse pair with R equal to .92
and a poorly matched ellipse pair with R equal to .21 are shown in Figure 1(b)
and Figure 1(c) respectively. Hence, a match ratio of 1 between a pair of ellipses
ensures full matching between them in terms of size, shape and orientation.
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(a) The union and the intersection area of
two ellipses.

(b) Highly matched ellipse pair with R .92. (c) Poorly matched ellipse pair with R .21.

Figure 1: Illustration of the method to compare two ellipses with respect to
their size, shape and orientation.
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The Color Difference Metrics

In this section, the authors show how to derive the Riemannian forms of the
four color difference metrics chosen for the study. Only the outline of the deriva-
tions are given. For the detailed expressions of the coefficients of the Jacobian
matrices, see the appendix.

The ∆E∗ab Metric

The color difference in the CIELAB color space is defined as the Euclidean
distance,

∆E∗ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 . (11)

The CIELAB color space defined for moderate to high lightness is given as

L∗ = 116

(
Y

Yr

) 1
3

− 16,

a∗ = 500

[(
X

Xr

) 1
3

−
(
Y

Yr

) 1
3

]
,

b∗ = 200

[(
Y

Yr

) 1
3

−
(
Z

Zr

) 1
3

]
,

(12)

where L∗, a∗ and b∗ corresponds to the Lightness, the redness-greenness and the
yellowness-blueness scales in the CIELAB color space. Similarly, X, Y , Z and
Xr, Yr, Zr are the tristimulus values of the color stimuli and white reference
respectively.

The relationship between X, Y and Z tristimulus coordinates and x, y and
Y color coordinates are

X =
xY

y
,

Y = Y,

Z =
(1− x− y)Y

y
.

(13)

If we take the line element distance to measure the infinitesimal color differ-
ence at a point in the color space, Equation (11) becomes differential. In terms
of the differential quadratic form, we can write

(dE∗ab)
2 =

[
dL∗ da∗ db∗

] dL∗da∗

db∗

 . (14)

Now, to transfer or map differential color vectors dL∗, da∗, db∗ into dX, dY ,
dZ tristimulus color space, it is necessary to apply the Jacobian transforma-
tion where the variables of two color spaces are related by continuous partial
derivatives. Hence, it is expressed as:dL∗da∗

db∗

 =

 ∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z

dXdY
dZ

 . (15)
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Again, from Equations (14) and (15), we have

(dE∗ab)
2 =

[
dXdY dZ

] ∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L, a∗, b∗)

∂(X,Y, Z)

dXdY
dZ

 , (16)

where ∂(L, a∗, b∗)/∂(X,Y, Z) is the Jacobian matrix in Equation (15).
Similarly, transformation from X, Y , Z tristimulus color space into x, y,

Y color space is done by another Jacobian matrix ∂(X,Y, Z)/∂(x, y, Y ) and
expressed as : dXdY

dZ

 =


∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y


dxdy
dY

 . (17)

Finally, the L∗, a∗, b∗ metric is transformed into x, y, Y as follows:

(dE∗ab)
2 =

[
dx dy dY

] ∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )

dxdy
dY

 .
(18)

Thus, the Riemannian metric tensor corresponding to ∆E∗ab in the xyY space is

g∆E∗ab
=
∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
. (19)

The ∆E∗uv Metric

The color difference in the CIELUV color space is defined as the Euclidean
distance,

∆E∗uv =
√

(∆L∗)2 + (∆u∗)2 + (∆v∗)2 . (20)

The CIELUV color space is defined as

L∗ = 116

(
Y

Yr

) 1
3

− 16,

u∗ = 13L

[(
4X

X + 15Y + 3Z

)
−
(

4Xr

Xr + 15Yr + 3Zr

)]
,

v∗ = 13L

[(
9Y

X + 15Y + 3Z

)
−
(

9Yr
Xr + 15Yr + 3Zr

)]
.

(21)

In complete analogy with the case for ∆E∗ab, the Riemannian metric tensor
corresponding to ∆E∗uv in the xyY space is

g∆E∗uv
=
∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, u∗, v∗)

∂(X,Y, Z)

T
∂(L, u∗, v∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
. (22)
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The Riemannized ∆E00 Metric

The CIEDE2000 formula derived from the CIELAB color space is defined as a
non-Euclidean metric in a space as follows :

∆E00 =

[(
∆L′

kLSL

)2

+

(
∆C ′

kCSC

)2

+

(
∆H ′

kHSH

)2

(23)

+ RT

(
∆C ′

kCSC

)(
∆H ′

kHSH

)]0.5

.

The rotation function, RT , is defined as:

RT = − sin(2∆θ)Rc, (24)

where ∆θ = 30 · exp

[
−
(
h̄′ − 275

25

)2
]
, (25)

and Rc = 2

√
C̄ ′7

C̄ ′7 + 257
. (26)

The weighting functions are defined as:

SL = 1 +
0.015(L̄′ − 50)2√
20 + (L̄′ − 50)2

, (27)

SC = 1 + 0.045C̄ ′, (28)

SH = 1 + 0.015C̄ ′T, (29)

with T = 1− 0.17 cos(h̄′ − 30o) + 0.24 cos(2h̄′)

+ .32 cos(3h̄′ + 6o)− 0.2 cos(4h̄′ − 63o).
(30)

Here, the lightness, the chroma and the hue are obtained taking the average
of the pair of color samples for which the color difference is to be determined,
L̄′ = (L

′

1 + L
′

2)/2, C̄ ′ = (C ′1 + C ′2)/2 and h̄′ = (h′1 + h′2)/2. Further, ∆H ′ =
2
√
C ′1C

′
2 sin(∆h′/2).

The color coordinates used in the formula are defined from the CIELAB
coordinates in the following way:

L′ = L∗, (31)

a′ = a∗(1 +G), (32)

b′ = b∗, (33)

C ′ =
√
a′2 + b′2 , (34)

h′ = arctan
b′

a′
, (35)

G =
1

2

(
1−

√
C∗7ab

C∗7ab + 257

)
, (36)

where L∗, a∗ and b∗ corresponds to the lightness, the redness-greenness and the
yellowness-blueness scales and C∗ chroma in the CIELAB color space. Like-
wise, h

′
is the hue angle for a pair of samples. The authors like to explain
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some problems for formulating Riemannian metric of ∆E00. In the ∆E00 for-
mula as given in Equation (23), the coordinate H ′ does not exist since ∆H ′

is not the difference of any H ′. As per the rules of Riemannian geometry, it
is not possible to get the Riemannian metric of the formula from its original
configuration. However, at infinitesimal colour difference, it is possible to use
L′C ′h′ coordinates instead of L′C ′H ′ because C

′
and h

′
are legitimate coordi-

nates. Calculation of Riemannian metric using L′C ′h′ coordinates gives us an
approximation of ∆E00 when we substitute dH ′ = C ′dh′ as proposed by Völz
[33] at infinitesimal colour difference only. But, this Riemannized ∆E00 can not
be integrated to build CIE defined ∆E00 due to the definition of ∆H ′. Defining
the metric for infinitesimal colour differences, the discontinuity problems in the
hue angle as noted by Sharma et.al. [34] vanish. This is due to taking h′ values
instead of taking airthmetic mean h̄′. However, there are very small disconti-
nuities remaining in RT , caused by the discontinuity of h′ at h′ = 0 and in the
transformation from XY Z to L∗a∗b∗.

To calculate line element L′, C ′ and h′ values are taken. So, the Equation
(23) in the approximate differential form is written as follows:

(dE00)2 =
[
dL′ dC ′ dh′

]
×

(kLSL)−2 0 0

0 (kCSC)−2 1
2C
′
RT (kCSCkHSH)−1

0 1
2C
′
RT (kCSCkHSH)−1 C

′2(kHSH)−2


×

dL′dC ′

dh′

 .
(37)

In Equation (37), the matrix consisting of weighting functions, parametric fac-
tors, and rotation term is the Riemannian metric of the formula in its approxi-
mate form. This metric is positive definite since R2

T /4 < 1, sin(2∆θ) ∈ [−1, 1]
and |RC | < 2 (see Equations (24)–(26)). It can be transformed into xyY color
space by the Jacobian method. The first step is to transform differential color
vectors [dL′ dC ′ dh′] into [dL

′
da
′
db
′
] by computing all partial derivatives of vec-

tor functions L′, C ′, and h′ with respect to L
′
, a
′
, and b

′
. Then, the L

′
, a
′
,

and b
′

differential vecors are again transformed into L∗, a∗, and b∗ . Rest of the
other process is analog to the CIELAB space. The resulting Riemannian metric
tensor representing the CIEDE2000 color difference metric in the xyY space is

g∆E00
=
∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L′, a′, b′)

∂(L, a∗, b∗)

T
∂(L′, C ′, h′)

∂(L′ , a′ , b′)

T

×

(kLSL)−2 0 0

0 (kCSC)−2 1
2C
′
RT (kCSCkHSH)−1

0 1
2C
′
RT (kCSCkHSH)−1 C

′2(kHSH)−2


× ∂(L′, C ′, h′)

∂(L′ , a′ , b′)

∂(L′, a′, b′)

∂(L, a∗, b∗)

∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
.

(38)
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The ∆EE Metric

The ∆EE color difference formula is defined as the Euclidean metric in the log
compressed OSA-UCS color space,

∆EE =
√

(∆LE)2 + (∆GE)2 + (∆JE)2 . (39)

Here, LE GE and JE are the coordinates in the log-compressed OSA-UCS
space. The lightness is derived from the original OSA-UCS formula and their
definitions are expressed as follows[35, 36]:

LE =

(
1

bL

)
ln

[
1 +

bL
aL

(10LOSA)

]
, (40)

CE =

(
1

bc

)
ln

[
1 +

bc
ac

(10COSA)

]
, (41)

COSA =
√
G2 + J2, (42)

h = arctan(
−J
G

), (43)

GE = −CE cos(h), (44)

JE = CE sin(h), (45)

with the following constants,
aL = 2.890,

bL = 0.015,

ac = 1.256,

bc = 0.050.

(46)

Expressing GE and JE in terms of COSA, we have:

cosh =
G√

G2 + J2
,

sinh =
−J√
G2 + J2

,

GE = − CEG

COSA
,

JE = − CEJ

COSA
.

(47)

The OSA-UCS color space is in turn related to the CIEXYZ color space:

LOSA =

(
5.9[(Y

1/3
0 − 2

3
) + 0.042(Y0 − 30)1/3]− 14.4

)
1√
2
,

Y0 = Y
(
4.4934x2 + 4.3034y2 − 4.2760xy − 1.3744x− 2.5643y + 1.8103

)
.

(48)
The coordinates J and G, which correspond to the empirical j and g of the OSA-
UCS are defined through a sequence of linear transformations and a logarithmic
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compression as follows:AB
C

 =

 0.6597 0.4492 −0.1089
−0.3053 1.2126 0.0927
−0.0374 0.4795 0.5579

XY
Z

 , (49)

[
J
G

]
=

[
SJ 0
0 SG

] [
− sinα cosα
sinβ − cosβ

]ln
(

A/B
An/Bn

)
ln
(

B/C
Bn/Cn

) (50)

=

[
2(0.5735LOSA + 7.0892) 0

0 −2(0.764LOSA + 9.2521)

]
×
[
0.1792[lnA− ln(0.9366B)] + 0.9837[lnB − ln(0.9807C)]
0.9482[lnA− ln(0.9366B)]− 0.3175[lnB − ln(0.9807C)]

]
.

(51)

For calculating the line element at a given point, the log-compressed OSA-
UCS formula given in Equation (39) is written as:

(dEE)2 =
[
dLE dGE dJE

] dLE

dGE

dJE

 . (52)

The differential color vectors can be transformed into the OSA-UCS color space
by applying the Jacobian method as follows:

(dEE)2 =
[
dLOSA dG dJ

] ∂(LE , GE , JE)

∂(LOSA, G, J)

T
∂(LE , GE , JE)

∂(LOSA, G, J)

dLOSA

dG
dJ

 . (53)

In the OSA-UCS space, the coordinates J and G are also related with the
lightness function LOSA. So, to transfer the differential color vectors [dLOSA

dG dJ ] into [dx dy dY ], it is required to split the differential lightness vector
dLOSA and the differential coordinates dG and dJ in two parts. At first, let us
relate [dLOSA dGdJ ] in terms of [dx dy dY ] as follows:dLOSA

dG
dJ

 =
∂(LOSA, G, J)

∂(x, y, Y )

dxdy
dY

 =

[
∂LOSA

∂(x,y,Y )
∂(G,J)
∂(x,y,Y )

]dxdy
dY

 , (54)

where ∂(LOSA, G, J)/∂(x, y, Y ) is a 3×3 Jacobian matrix that is further divided
into the 1×3 and 2×3 Jacobian matrices ∂LOSA/∂(x, y, Y ) and ∂(G, J)/∂(x, y, Y ),
respectively. The first one is again separated as follows:

∂LOSA

∂(x, y, Y )
=
∂LOSA

∂Y0

[
∂Y0

∂x
∂Y0

∂y
∂Y0

∂Y

]
. (55)

Similarly, the second one is also separated in two parts since both G and J
depends on x, y, Y not only through A, B, and C, but also through LOSA. So,
the Jacobian follows as:

∂(G, J)

∂(x, y, Y )
=

∂(G, J)

∂(LOSA, A,B,C)
· ∂(LOSA, A,B,C)

∂(x, y, Y )
. (56)
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Again, in Equation (56), the last Jacobian ∂(LOSA, A,B,C)/∂(x, y, Y ) is
further split in two parts according to

∂(LOSA, A,B,C)

∂(x, y, Y )
=

[
∂LOSA

∂(x,y,Y )
∂(A,B,C)
∂(x,y,Y )

]
, (57)

where
∂(A,B,C)

∂(x, y, Y )
=
∂(A,B,C)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
. (58)

The first of these is simply the constant matrix given in Equation (49), and the
last one is already familiar from the other metrics.

Results and Discussion

In this section, first, the authors discuss the behaviour of computed ellipses of
the ∆E∗ab, the ∆E∗uv, the Riemannized ∆E00 and the ∆EE in the xyY color
space with respect to BFD-P ellipses individually. Secondly, a comparative
study between computed ellipses of these four color difference metrics will be
done.A detailed quantitative comparison is done by using BFD-P data sets.

Before doing comparative analysis, it is necessary to mention that equi-
distance ellipses computed by the metric defined in Equation (38) represents
Riemannized ∆E00 ellipses for infinitesimal colour differences. In fact, the ∆E00

metric in its original form does not define the Riemannian space in the strict
sense.

Similarly, the ellipses are computed with a constant Y=0.4 in xyY color
space. If we define constant lightness, then partial derivatives of lightness func-
tions of all Jacobians will be zero. This gives 2 × 2 metric tensors and ellipses
are computed in the xy chromaticity diagram.

Figure 2 shows BFD-P ellipses in the CIE 1964 chromaticity diagram. Sim-
ilarly, Figures 3(a), 3(b), 3(c) and 3(d) show the ellipses of ∆E∗ab, ∆E∗uv, Rie-
mannized ∆E00 and ∆EE metrics respectively, using BFD-P data. All these
ellipses are computed at the constant lightness value (L∗ = 50) and color cen-
ters are taken from BFD-P data. In the xyY color space, this lightness value
corresponds to the luminance Y = 0.4. In the Riemannized ∆E00 case, para-
metric factors (kL, kC and kH) are set to 1. Comparing with BFD-P ellipses,
disagreements can be seen with respect to the size, shape and rotation in el-
lipses of ∆E∗ab, ∆E∗uv, Riemannized ∆E00 and ∆EE formulas. ∆E∗ab and ∆E∗uv
ellipses appear more circular than BFD-P ellipses, but Riemannized ∆E00 and
∆EE ellipses follow closer to the original ellipses in the blue and green region.
However, it could be said that all computed ellipses of these four color differ-
ence metrics follow the general pattern of agreement with BFD-P ellipses. For
example, the blue is the smallest, the green largest and the red, blue and yellow
are more elongated than others. But, it is also seen that Riemannized ∆E00

and ∆EE ellipses represent experimentally obtained ellipses more reasonably
than compared to ∆E∗ab and ∆E∗uv ellipses. For example, ellipses of ∆E∗ab, and
∆E∗uv around neutral and gray color centers are bigger in size, while in the same
region Riemannized ∆E00 and ∆EE ellipses look more similar to the BFD-P
ellipses. This indicates better quality performance of these two color difference
formulas over two popular ∆E∗ab and ∆E∗uv formulas. Similarly, ∆EE ellipses
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perform better in the blue region than Riemannized ∆E00 ellipses. The authors
also computed the difference between the Riemannized ∆E00 and the original
∆E00 metrices for finite colour differences by using the CIEDE2000 total colour
difference test data of Gaurav Sharma et.al. [34]. For ∆E00 ≤ 1, the error is
less than 0.5% and for ∆E00 ≤ 2, it is smaller than 1.2%. However, It is seen
that in the cases where ∆E00 > 2.5, the error between two metrices steeply
raise. But, for larger colour differences, geodesic line can be calculated from the
metric tensor of the Riemannized ∆E00. Basically, ∆E00 formula is developed
to calculate small colour differences because the BFD-P data set upon which
the ∆E00 formula developed is scaled for ∆E∗ab < 2 [7].

As described in the Ellipse Comparison part of the Methods section, the anal-
ysis is done by our method for comparing the similarity of a pair of ellipses. In
Figure 4, histogram of R values between BFD-P and ∆E∗ab, ∆E∗uv, Riemannized
∆E00 and ∆EE ellipses are given in Figures 4(a), 4(b), 4(c), 4(d) respectively.
According to this method, the maximum R values given by ∆E∗ab, ∆E∗uv, Rie-
mannized ∆E00 and ∆EE are .81, .87, .95, and .93 respectively. Similarly, the
lowest R values of these four formulas are, .1, .14, .2 and .2 respectively. Ellipse
pairs of all metrics having maximum R values are located around neutral color
region while matching pairs with lowest R are found around high chroma blue.
Table 1 shows number of matching ellipses of four metrics with R values greater
than .75 and less than .75. The result indicates that the Riemannized ∆E00

and ∆EE perform better than the ∆E∗ab and the ∆E∗uv.
The authors have also used box plots to display ellipse matching values

of these metrics in Figure 5. In the plots, the median value is marked by
the central horizontal lines. The notch indicate the confidence interval of the
median, and the box is bounded by the upper and lower quartiles of the grouped
data. We can see that the Riemannized ∆E00 gives the highest median value
while the CIELAB median value is the lowest. By using this technique, full
range of matching value data is also plotted for comparing these four metrics
simultaneously. The range of data is shown by dashed line, and outliers and
marked with a cross. According to this box plot, the performance ranking of
these metrics come in the following order: Riemannized ∆E00 first, ∆EE second,
∆E∗uv third and ∆E∗ab fourth. However, there is no big difference between ∆E00

and ∆EE and between ∆E∗uv and ∆E∗ab. But, with respect to Riemannized
∆E00 and ∆EE , the performance of ∆E∗uv and ∆E∗ab metrics for matching
ellipses is seen weaker.

In order to compare how well the different metrics reproduce the BFD-P
ellipses, the pairwise statistical sign test of R values is also done between all
pairs of metrics. The test result shows that at 5 % confidence level, Rieman-
nized ∆E00 and ∆EE both performed significantly better than ∆E∗uv and ∆E∗ab
metrics. Further, ∆E∗uv performs better than ∆E∗ab with p = 0.0176. There is
no significant difference between ∆E00 and ∆EE metrics.

On the basis of above results, it is good to point the features of color spaces
used by these metrics responsible for better performance. For example, satura-
tion is defined in ∆E∗uv not in ∆E∗ab [37]. In ∆EE , the lightness LOSA takes
into account the Helmholtz-Kohlrausch and crispening effects [19]. Further, the
OSA-UCS system adopts a regular rhombohedral geometry which gives square
grid with integer value of lightness [38]. This makes OSA-UCS space more
uniform than CIELAB and CIELUV and suitable for small to medium color
difference measurement. On the other hand, the non-Euclidean Riemannized
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Figure 2: BFD-P ellipses in the CIE1964 chromaticity diagram (enlarged 1.5 times).

∆E00 have many parameters for computing color differences. However, this for-
mula has its specific advantage to correct the non-linearity of the visual system.
But, the quality of the formula depends on selecting parameters values.

Table 1: Number of matching ellipses with matching values ≥ .75 and ≤ .75 of
four color difference metrics. This matching is done with BFD-P ellipses.

Number of Ellipse pairs with Number of Ellipse pairs with
match ratio ≥ .75 match ratio ≤ .75

∆E∗ab 3 77
∆E∗uv 7 73
∆E00 57 23
∆EE 55 25

Conclusion

First, formulation of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-UCS
∆EE color difference formulas into the Riemannian metric is successfully ac-
complished. Secondly, The Riemannized ∆E00 is found indistinguishable to the
exact ∆E00 for the small colour differences.

Thirdly, computation of equi-distance ellipses of these four formulas in the
xyY color space is done by transferring Riemannian metrics of formulas into the
xyY color space by the Jacobian method. Fourthly, a comparison between ex-
perimentally observed BFD-P and computed ellipses of these formulas is done in
two ways: first descriptive and second by our developed comparison technique.
On the basis of our findings as discussed above, the authors can say that Rie-
mannized CIEDE2000 and OSA-UCS ∆EE formulas measure the visual color
differences significantly better than CIELAB and CIELUV formulas. However,
neither formulas are fully perfect for matching visual color differences data.
Among CIELAB and CIELUV formulas, performance of the CIELUV is found
slightly better than the CIELAB. Similarly, there is no significant difference
between Euclidean ∆EE and Riemannized CIEDE2000 formulas. It is inter-
esting to note that the Euclidean ∆EE formula is not inferior to the complex,
non-Euclidean industry standard ∆E00 for measuring small color differences.
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(a) CIELAB ellipses using BFD-P data. (b) CIELUV ellipses using BFD-P data.

(c) CIEDE00 ellipses using BFD-P data. (d) OSA-UCS ∆EE ellipses using BFD-P
data.

Figure 3: Computed CIELAB, CIELUV, Riemannized CIEDE00 and OSA-UCS ∆EE el-
lipses in the CIE1964 chromaticity diagram (enlarged 1.5 times).
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(a) CIELAB. (b) CIELUV.

(c) CIEDE00. (d) OSA-UCS ∆EE .

Figure 4: Histogram of comparison values of CIELAB, CIELUV, Rie4annized CIEDE00 and
OSA-UCS ∆EE with respet to BFD-P Ellipses. The values lie in the range 0 < x ≤ 1. Higher
comparison value indicates better matching between a pair of ellipses.

Figure 5: Box plots of ellipse matching values of CIELAB, CIELUV, Riemannized CIEDE00
and OSA-UCS ∆EE with respect to BFD-P ellipses.
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Appendix: Detailed expressions for the Jacobians

From x, y, Y to X, Y , Z

∂(X,Y, Z)

∂(x, y, Y )
=


∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y

 =


Y
y

−xY
y2

x
y

0 0 1
−Y
y

(x−1)Y
y2

1−x−y
y

 (59)

From X, Y , Z to L∗, a∗, b∗

∂(L, a, b)

∂(X,Y, Z)
=

 ∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z


=

 0 116
3 ( 1

Yr
)

1
3Y

−2
3 0

500
3 ( 1

Xr
)

1
3X

−2
3

−500
3 ( 1

Yr
)

1
3Y

−2
3 0

0 200
3 ( 1

Yr
)

1
3Y

−2
3

−200
3 ( 1

Zr
)

1
3Z

−2
3


(60)
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From X, Y , Z to L∗, u∗, v∗

∂(L∗, u∗, v∗)

∂(X,Y, Z)
=

∂L∗

∂X
∂L∗

∂Y
∂L∗

∂Z
∂u∗

∂X
∂u∗

∂Y
∂u∗

∂Z
∂v∗

∂X
∂v∗

∂Y
∂v∗

∂Z

 , (61)

where the calculations of all partial derivatives are as follows:

∂L∗

∂X
= 0, (62a)

∂L∗

∂Y
=

116

3
(

1

Yr
)

1
3Y (−2/3), (62b)

∂L

∂Z
= 0, (62c)

∂u∗

∂X
= 13

(
116

(
Y

Yr

)(1/3)

− 16

)[
60Y + 12Z

(X + 15Y + 3Z)2

]
, (62d)

∂u∗

∂Y
= 13×

(
116

(
Y

Yr

)(1/3)

− 16

)[
−60X

(X + 15Y + 3Z)2

]

+

[
4X

(X + 15Y + 3Z)

](
13× 116( 1

Yr
)

1
3Y (−2/3)

3

)

−
(

4Xr

Xr + 15Yr + 3Zr

)(
13× 116( 1

Yr
)

1
3 Y(−2/3)

3

)
,

(62e)

∂u∗

∂Z
= 13

(
116

(
Y

Yr

)(1/3)

− 16

)[
−12X

(X + 15Y + 3Z)2

]
, (62f)

∂v∗

∂X
= 13

(
116

(
Y

Yr

)(1/3)

− 16

)[
−9Y

(X + 15Y + 3Z)2

]
, (62g)

∂v∗

∂Y
= 13

(
116

(
Y

Yr

)(1/3)

− 16

)[
9X + 27Z

(X + 15Y + 3Z)2

]

+

[
9Y

(X + 15Y + 3Z)

](
13× 116( 1

Yr
)

1
3Y (−2/3)

3

)

−
(

9Yr
Xr + 15Yr + 3Zr

)(
13× 116( 1

Yr
)

1
3 Y(−2/3)

3

)
,

(62h)

∂v∗

∂Z
= 13

(
116

(
Y

Yr

)(1/3)

− 16

)[
−27Y

(X + 15Y + 3Z)2

]
. (62i)

From L
′
, a
′
, b
′

to L′, C ′, h′

The Jacobian for this transformation is

∂(L′, C ′, h′)

∂(L′ , a′ , b′)
=


∂L′

∂L′
∂L′

∂a′
∂L′

∂b′

∂C′

∂L′
∂C′

∂a′
∂C′

∂b′

∂h′

∂L′
∂h′

∂a′
∂h′

∂b′

 =

1 0 0

0 ∂C′

∂a′
∂C′

∂b′

0 ∂h′

∂a′
∂h′

∂b′

 . (63)
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where the partial derivatives are as follows:

∂C
′

∂a′
=

a
′

√
a′2 + b′2

=
a
′

C ′
(64a)

∂C
′

∂b′
=

b
′

√
a′2 + b′2

=
b′

C ′
(64b)

∂h
′

∂a′
=
−b′

C ′2
(64c)

∂h′

∂b′
=

a
′

C ′2
. (64d)

From L∗, a∗, b∗ to L′, a′, b′

The Jacobian for this transformation is

∂(L′, a′, b′)

∂(L∗, a∗, b∗)
=

 ∂L′
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∂a∗
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 . (65)
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∂a∗
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From LOSA, G, J to LE, GE, JE
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where the calculation of all partial derivatives are as follows:

∂LE

∂LOSA
=
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, (68a)
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From x, y, Y to LOSA

∂LOSA

∂(x, y, Y )
=
∂LOSA

∂Y0
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∂x
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where
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∂Y0

∂x
= Y (4.4934 · 2x− 4.2760y − 1.3744), (70b)

∂Y0

∂y
= Y (4.3034 · 2y − 4.2760x− 2.5643), (70c)

∂Y0

∂Y
= 4.4934x2 + 4.3034y2 − 4.2760xy − 1.3744x− 2.5643y + 1.8103.

(70d)

From LOSA, A, B, C to G, J

∂(G, J)

∂(LOSA, A,B,C)
=

[ ∂G
∂LOSA

∂G
∂A

∂G
∂B

∂G
∂C

∂J
∂LOSA

∂J
∂A

∂J
∂B

∂J
∂C

]
, (71)
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where

∂G

∂LOSA
= TG

∂SG

∂LOSA
= TG · −2× 0.764, (72a)

∂J

∂LOSA
= TJ

∂SJ

∂LOSA
= TJ · 2× 0.57354, (72b)

∂G

∂A
= SG

0.9482

A
, (72c)

∂G

∂B
= SG

−0.9482− 0.3175

B
, (72d)

∂G

∂C
= SG

0.3175

C
, (72e)

∂J

∂A
= SJ

0.1792

A
, (72f)

∂J

∂B
= SJ

−0.1792 + 0.9837

B
, (72g)

∂J

∂C
= SJ

−0.9837

C
, (72h)

where the shorthands

TG = 0.9482[lnA− ln(0.9366B)]− 0.3175[lnB − ln(0.9807C)], (73a)

TJ = 0.1792[lnA− ln(0.9366B)] + 0.9837[lnB − ln(0.9807C)], (73b)

have been introduced.
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