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Abstract

Cycle-accurate simulation is an important tool that depends on the computational power of supercomputers. Unfortunately,
simulations of modern multi-core platforms can take weeks or months. In this paper, we look into the challenges of employing
a sampling based technique for reducing simulation time of multi-threaded applications. We introduce FASTA, a simple 3-
phase methodology for reducing the simulation time of Task Based Parallel (TBP) applications. FASTA takes advantage of the
periodic behavior of parallel applications and identifies a small number of representative execution samples. By exploring a
large design space we show that even though we can not use FASTA for every type of application, there are some for which a
12x speedup can be achieved with an accuracy error as low as 2.6%.
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1. Introduction

Increasing in complexity with each generation, developments in hardware and software design require ten
of thousands of computational hours for simulation and testing. For computer architects simulation is also an
indispensable technique for exploring novel ideas. The main advantages of simulation are increased flexibility
for design space exploration and outputs with extensive, noninvasive and detailed measurements. In this way,
simulation bridges the gap between analytical modeling and real world measurements. Unfortunately, the cost of
these advantages is long simulation times.

In today’s ICT market, Chip Multiprocessors (CMPs) or multi-core architectures are the platform of choice in
almost all segments. CMPs were first introduced as a solution to a design constraint known as the power wall. For
decades, CPU designers took advantage of the increasing transistor count on a chip to boost computational power.
They did this by increasing the chip’s clock frequency and by exploiting instruction level parallelism (ILP) more
aggressively. However, cooling system limitations and diminishing returns from ILP created the need for a new
architectural approach. CMPs utilize the hardware resources provided by production technology improvements to
create several less complex cores. This architecture is able to exploit both instruction and thread level parallelism
allowing for an aggregate performance increase. At the same time, they require a lower power budget [1].

The switch to the multi-core model has placed a new burden on programmers. CMPs can not be fully exploited
using sequential programming and parallelization is required to achieve maximum performance. For this reason,
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there is a considerable interest in programming models that can simplify parallel programming. In this work, we
focus on Task Based Programming (TBP), a parallel programming model that has received significant attention
recently [2, 3, 4, 5]. TBP’s key idea is that the programmer partitions the application into tasks and specifies
the dependencies between them [4]. A task is a light weight unit of work, and all independent tasks can be
executed concurrently. A runtime task management library distributes tasks to processing units and enforces all
dependencies.

There have been many attempts to reduce simulation time. For single-core simulation, sampling-based tech-
niques are very effective at reducing simulation time with a small loss in accuracy. SimPoint tries to identify a set
of samples that are representative for the entire execution [6]. The complete execution is inferred from simulating
and weighing only these samples thus reducing the total simulation time. In a different approach, SMARTS uses
statistical sampling theory and samples the execution at fixed interval [7]. A more detailed study of simulation
time reduction methods can be found in [8] showing that sampling achieves high accuracy for single threaded
applications.

There are two major issues when sampling multi-threaded applications. First, we have to use a metric that
is proportional to forward progress of execution. Single-threaded applications are sampled using metrics like the
committed number of instructions or IPC/CPI. As argued by Alameldeen and Wood, these performance metrics
are not suited for parallel executions [9]. For example, while executing a busy wait loop, the instruction count of
the thread will increase but the execution will not move forward. Second, we need to account for the interleaving
of threads in different executions. Because of shared resources and data dependencies, different runs of the same
parallel application can have different instruction or task streams.

In this paper, we use a 3-phase approach called FASTA that aims to reduce simulation time of TBP applica-
tions running on CMP platforms. First, we run a fast, low detail simulation to sample the execution and gather
measurements. Next, we use a clustering algorithm to group together similar samples and to select a representative
point for each group. Finally, we simulate the representative samples in detail and we use the results to estimate
the full detailed execution. Through our experiments we found that the thread interleaving impacts the accuracy of
the FASTA results more for some classes of parallel applications than others. This impact becomes more promi-
nent with the increase of core count. However, we found a class of parallel applications that are not affected by
the interleaving problem. In these cases, FASTA results show an average error below 4% and a speedup of 12x
maximum.

2. Background

Researchers have been motivated to find ways to reduce simulation time due to simulation’s key role for
software and hardware development [8]. One proposed technique is to reduce the input set of the benchmarks
[10, 11]. This approach assumes that the characteristics of the full input set can be preserved even though fewer
instructions are actually executed. However, the accuracy of this approach is generally poor [8].

Another technique for addressing long simulation time is truncated execution. In this approach, a continuous
section of X instructions is selected and simulated in detail. If this section is not in the beginning of the application,
fast-forwarding or checkpointing can be used to start the simulation at the desired point. When fast-forwarding,
a simulator only emulates the hardware system up to the desired execution point. With checkpointing, a snapshot
of the simulated system state is stored, allowing for a restart from that point.

In single-threaded environments, sampling-based techniques have been used to reduce simulation time while
maintaining good accuracy. There are primarily 3 classes of sampling techniques [12]:

o Representative sampling techniques attempt to identify a sample or a group of samples in the simulated
code that can be held representative for the entire execution. Perelman et al. [6] use the K-means algorithm
to group similar simulation points into clusters and then calculate a centroid for each cluster. The “closest”
sample point to the centroid is considered representative for the entire cluster.

o Periodic sampling techniques select portions of the simulated code at periodic intervals. SMARTS [7]
samples a large number of very small (in terms of number of instructions) execution points which are later
simulated in detail. An important characteristic of SMARTS is that it allows to trade off result confidence
against speed of execution. Building on their work with SMARTS, Wenisch et al. developed another
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Fig. 1. The FASTA flow

statistical sampling methodology called SimFlex [13]. Using a different approach for warming the CPU
units, SimFlex reduces the total simulation time. In addition, SimFlex can be employed for multiprocessor
throughput applications like those in the TPC-C OLTP or Specweb99 benchmark suites.

e Random sampling techniques try to combine the results from N randomly selected simulation points to
produce the overall result. To improve the accuracy of this technique Conte et al. [14] suggest the use of
longer warm-up periods and increasing the number of instructions in each sample.

For very large input sets even functional simulation (i.e. fast-forwarding) is too time consuming. In such cases,
a technique called direct-execution can be employed [15]. The host machine is used to execute the application
and checkpoint the execution. This checkpoint is then transferred to the simulator. In order for this technique to
work, the host and simulated machines must use the same ISA or cross-compilation needs to be employed before
the transfer.

Simulation can be also accelerated by varying the abstraction level or by exploiting parallel hardware. Rico
et al. [16] argue that the level of abstraction used by most current simulators can be misleading for some studies
like early processor design or high-level explorations. They introduce TaskSim, an architecture simulator designed
for many-core platforms that can provide several levels of modeling abstraction. Another way to reduce sim-
ulation time is to distribute the simulation across multi-core or multi-machine environments. Graphite[17] and
SlackSim[18] are two parallel simulation tools.

3. FASTA

In this paper, we propose a simple methodology for representative sampling, called FAst Simulation of TBP
Applications (FASTA). Like Perelman et al. [6], our technique exploits the periodic behavior of parallel applica-
tions and identifies representative sections for each interval of the execution. There are 3 main differences between
our approach and SimPoint: (1) we target the simulation of parallel application thus (2) we use a different work-
related progress metric than the traditional CPI/IPC and (3) our methodology is not architecture independent.

In this study, we used the simulated number of cycles (which we converted to simulated execution time) as a
metric for profiling and validating FASTA simulations against full-detailed simulations. This metric aggregates
the impact of all components in a simulation platform (execution units, memory hierarchies, interconnects etc)
and is the most used metric for measuring overall performance of a system [19]. However, if other metrics are of
interest (cache accesses, number of executed instructions etc.), FASTA can be easily adapted to reflect those. It is
just a matter of what data you chose to record during the sampling phase.

Fig. 1 gives an overview of the flow of our approach. To better understand how FASTA works and how
different parameters can affect the results, we summarize each phase in the next subsections.

3.1. Phase 1: Sampling

We gather the simulated number of cycles for every s completed tasks and create an execution profile. Section 4
discusses in detail why we use the number of completed tasks as a metric in our work. The value of s has an impact
on the granularity of the profile: a low value will lead to a more detailed profile while a high value to a coarser
one. A trade off is needed because simulating with a low s value requires more time while a coarser profile can
miss patterns in the execution.
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3.2. Phase 2: Clustering and Representative Point Selection

In Phase 2, we use the K-means algorithm on the resulting sample population. K-means is an well known
iterative clustering algorithm [20]. The main input parameter for this algorithm is the number of cluster to be
created (K). K affects both the accuracy and the potential speedup of the FASTA simulation.

In our first study about efficient simulation of TBP application [21], we explored the characteristics of clus-
tering that can impact FASTA’s accuracy. We also introduced a selection method for the initial values of the
centroids called Initialization aware that we use in the current paper. A detailed presentation of our K-means
implementation can be found in [21] as well.

The algorithm outputs (1) the coordinates of the centroids, (2) a set of weights for each cluster and (3) a
mapping of each data point to a cluster. The “closest” sample point to its respective centroid is selected as
representative for each cluster.

3.3. Phase 3: Detailed Simulation

In Phase 3, we start the full-detailed execution of the representative samples using the checkpoints or fast-
forwarding. When using checkpoints, we can start the simulations concurrently because each checkpoint is inde-
pendent of the others.

In the fast-forwarding approach, we emulate the execution up to the representative sample point where we
switch to full-detailed simulation. Then, we simulate the representative sample and dump the measurements
before we fast-forward to the next representative point. However, switching back and forth between simple and
full-detailed mode adds an overhead that affects speedup. Also, since some buffers are cleared when switching
from detailed to simple simulation (TLBs for example) accuracy can also be impacted.

For both approaches, the detailed results are weighted according to the output of K-means and an estimate of
the complete execution in detailed mode is created.

We experimented with 3 different methods to generate the checkpoints:

o Checkpoint Representative Sample Points (CRSP): After the representative sample points are selected, a
second low-detail simulation is started and checkpoints are created only for the representative sample points
(see Fig. 1).

o Checkpoint All Sample Points (CASP): Generate a checkpoint for each sample point during Phase 1.

e Checkpoint at Intervals (CI): This approach is a trade-off between CRSP and CASP. During Phase 1, check-
points are generated every X sample points, where X can be defined by the user. After selecting the repre-
sentative sample points, the nearest preceding checkpoint is used to restart the simulation and create a new
checkpoint for the representative sample.

All the checkpoints have been created using the built-in functionality of our simulator. We did not try to
improve in any way this functionality, neither for storage nor for speed. Both [22] and [23] present ways in which
checkpoint size and restoration time can be reduced. We consider that such work, though interesting and important
in the simulation field, was beyond the scope of our research. We kept focus on validating our methodology rather
than trying to optimize it.

4. The challenges

There are 2 main challenges to be addressed when employing sampling for reducing the simulation time of
multi-threaded applications:

e sampling using a metric that is proportional to forward progress of execution
o the change in the instruction stream of a parallel application from one execution to another as races resolve
differently on different runs
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Table 1. BOTS input workloads

FFT Fib nQueens Sort SparseLU Strassen
25 30’th 14x14 25 200x200 2048x2048
Input floats element board integers sparse matrix matrix
(no cut-off) of 25x25 blocks

To address the first issue, we use the number of completed tasks as a work-related progress metric. We count
the tasks collectively for all working threads. In this way we eliminate the problem of spin locks being recorded
as false progress of the execution.

The second issue is much more difficult to deal with. Wenisch et al. conclude that it is unclear how to
sample general multiprocessor applications so they focus their SimFlex methodology on throughput parallel ap-
plications [13]. Because in our approach we are trying to estimate the results of a detailed simulation using results
from a very simple one, we need to assess the variability of the thread interleaving. To do that, we have experi-
mented with 2 low detailed simulation modes. The first one models a simple CPU with instantaneous access to
memory (Atomic mode) while the second one models the same CPU but with delays in accessing the memory
system (Timing mode). By comparing the Atomic and Timing execution profiles, we can reason about the impact
the memory model has on interleaving the threads. We also assess how the difference in CPU model affects the
profiles, by comparing the results of the 2 low detailed simulation modes with the detailed ones.

5. Methodology

We use the cycle-accurate GEMS simulator [24] in full-system mode with the 2.6.27 Linux kernel. We simulate
both the application and the operating system (OS) because TBP libraries rely on the OS to manage shared memory
and provide a thread and process abstraction. Our simulated platforms use 2-, 4- and 8-core CPUs, with a clock
frequency of 1GHz and a 2 level cache hierarchy with a split L1 private cache (64 KB) and a shared L2 (2 MB).
As mentioned before, for Phase 1 we have experimented with 2 simulation modes. The Afomic mode models a
simple 5-stage pipeline In-Order CPU that can accesses the memory hierarchy without any resource contention or
queuing delay. The Timing mode models the same simple CPU but its access to memory is realistic and includes
delays. The simulations in Phase 3 are performed using a detailed Out-of-order CPU model.

In this work, we use a subset of the Barcelona OpenMP Task Benchmark Suite (BOTS) [25]. We changed the
default OpenMP parallelization to a Wool [4] implementation. We also customized this library to signal GEM5
every time a task is completed. In this way, the simulator is able to keep record of each completed task and to
implement the sampling for Phase 1. Table 1 lists the benchmark input sets we used in our experiments. Using
these inputs, the full detail simulation of some benchmarks running on the 8-core platforms lasted more than 18
days. For this reason we decided not to increase input sets with the core count.

6. Results

In the next subsections we present our accuracy, speedup and parameter variation results. Our design space
is defined on 3 parameters: the sample size (ranging from s = 500 to s = 2000 samples), the number of clusters
(ranging from K =4 to K = 10 clusters) and the core count (2-, 4- and 8-core systems). We investigate the impact
the interleaving of threads has on profiling the applications and ultimately on the accuracy of the FASTA results.
We experiment with both checkpointing and fast-forwarding in order to determine the best speedup that we can
achieve for our simulations.

6.1. Accuracy and speedup results

In order to quantify the error of the FASTA results we define the performance as the total number of tasks
divided by estimated simulated time. We use the complete full-detail simulation of each benchmark as a baseline.
The accuracy error is calculated as E = (Ppasta — Prun)/ Pran Where Ppasta is the estimated performance of the
FASTA simulation and Pgy is the performance of the baseline.
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Fig. 2 presents the accuracy results for all benchmarks for s = 1000 completed tasks and K = 6 clusters
across all test platforms. More results on the full ranges of both s and K are presented in Section 6.2. As the
average results show, the accuracy tends to decrease from 2- to 8-core systems. This trend can be partly explained
by the fact that we did not increase our workloads with the number of cores. Because of this, the clusters are
less differentiated for 8 cores, they can merge together and the selection of representative samples is erroneous.
SparseLU and Strassen are affected by this type of errors. However, higher errors (like those of FFT and Fib) are
due to the way threads interleave on different runs, this being discussed further in Section 6.3.

As mentioned in Section 3.3, using the fast-forward approach during Phase 3 can impact the accuracy of the
results, not only the speedup. This is a short-coming of our experimental framework and not a limitation of the
methodology. However, the clearing of buffers when switching back and forth between simulation modes is not the
only cause for error. Thread interleaving has an impact here as well and is discussed in more details in Section 6.3.

Fig. 3 presents the potential speedups that can be achieved by using FASTA when compared to a complete
full detailed execution of the benchmarks. These results are calculated for s = 1000 completed tasks and K =
6 clusters. Based on our results, we can conclude that for benchmarks with large input sets like FFT, Sort and
Strassen, the checkpointing overhead is larger so CASP takes longer than fast-forwarding. If we use CRSP or
CI then it will be generally faster than fast-forwarding. For Fib, nQueens and SparseLU checkpointing is always
faster than fast-forwarding. It is also worth mentioning that checkpointing methods require storage space. FFT,
Sort and Strassen need on average 156 GB, 176 GB and 115 GB respectively for a single simulation using the
CASP method.
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6.2. Parameter analysis

Fig. 4 — 6 show part of our results for the parameter study. Because of space limitation, we only present 2
sets of results for each test platform: the variation of K for s = 1000 and the variation of s for K = 6.

For reasons discussed in Section 6.3, it is very hard to clearly quantify the effect of s or K on the accuracy
of FASTA. However, for our simulations, we observed that a profile granularity of 800 - 1000 points gives the
best accuracy results. This means, that knowing the total number of tasks an application will execute, we could
calculate the value of s.

For a low value K, several patterns in the profile merge together in a cluster which results in a poor estimation.
Generally, the higher the K the better the FASTA estimation is. However, we need to consider that K determines
the number of samples that are simulated in detail during Phase 3. If we simulate too many samples during this
phase, the potential speedup of FASTA decreases. So the idea is to select a low as possible K without affecting
the accuracy of the estimation. In our experiments a value of 5 or 6 for K would yield a good accuracy level.

6.3. Thread interleaving

Given a random sample point in an application’s profile, we were expecting to see different values of the
simulated execution time when we simulate that application in different modes (Atomic, Timing or Detailed).
What we also found was that a sample point will not contain the same work (the same tasks) across the 3 simulation
modes. This can be seen as a “shift” of the profile spikes in Fig. 7. Because of this “shift”, the clusters and
representative points selected in Phase 2 from a low-detail simulation profile do not map onto the Detailed profile.
This behavior causes the FASTA estimations to be erroneous. This happens because threads do not interleave the
same way for different simulation modes.

FFT calculates the discrete Fourier transform using the Cooley-Turkey algorithm and its execution is divided
in 3 main phases. Because of the recursive approach used, tasks form a binary tree in each of the algorithm’s
phases. As the execution progresses, all sample points end up containing tasks from each of the 3 phases. The
”shift” visible in Fig. 7 is caused by races in accessing the data and the way the dependencies among tasks are
handled. The estimation error varies from an average of 7.7% in the 2-core simulations to an average of 20.2% in
the 8-core ones.

Fib, nQueens, Sort and Strassen are also implemented recursively and show the same behavior. However, how
prominent the profile “shift” is differ from benchmark to benchmark. We found that the form of the application’s
task tree is closely correlated with the “shift”. Fib and FFT have a binary task tree (2 children for every parent)
and they are the ones affected by the largest profile “shift”. Sort generates a task tree with 4 children for every
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parent and it is far less affected than the previous two benchmarks. For Strassen the “shift” is even less significant
since its task tree has 7 children for every parent. The number of parent tree-node translates into the number of
situations when the task stream can change. The higher the number of parent nodes, the higher the chances that
race conditions will determine a different task stream for different executions.

In the case of benchmarks with more than 1 type of tasks (FFT and Sort), resource contention is another cause
of changes in the task stream. This can be seen by analyzing an Atomic mode profile against a Timing mode one.
Since the two simulation modes use the same simple CPU model, the profile “shift” is caused only by races in
accessing the different memory models. By overlapping Timing mode profiles and Detailed mode ones, we could
see yet another type of resource contention: the ones for CPU resources. Due to space limitation we could not
include any such figures in this paper.

We also observed that the profile “shift” becomes more significant with the core count. In the 2-core experi-
ments we recorded no such behavior, while for the 4-core ones profiles differed in some cases. The 8-core profiles
are affected the most. This is due the fact that the number of races for resources (software or hardware) increase
with the number of worker threads. So the number of situation when the task stream can change is greater for a
higher core count.

There is 1 benchmark that was not affected by the profile “shift” (see Fig. 8). SparseLU calculates the LU
matrix factorization. The algorithm divides the input array into smaller blocks on which computation is performed.
This is not a recursive algorithm and only 1 thread spawns all tasks. Because there is only 1 parent task and all
children tasks perform the same work, race conditions do not change the task stream of this benchmark’s execution.
The average estimation error ranges from 0.5% for the 2-core test system to 3.7% for the 8-core one.

The fast-forwarding approach in Phase 3 is also affected by the thread interleaving problem, even though it is
technically a single execution. If an application has a deep task tree (like FFT or Fib), then switching back and
forth between 2 simulation modes will cause a similar “shift” of the representative samples as the one seen in
Fig. 7. In the case of SparseL.U, using fast-forwarding is almost as accurate as using checkpointing (see Fig. 2).

7. Conclusion

In this paper, we have introduced FASTA, a simple methodology for reducing simulation time of TBP applica-
tions running on multi-core platforms. In a 3-phase approach, FASTA samples and profiles the execution (Phase
1), identifies representative sample points through clustering (Phase 2) and simulates in detail the representative
points (Phase 3). The results in Phase 3 are weighted and an estimate of the full-detail execution is created.
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We investigated the challenges of using a sampling based methodology in a multi-threaded environment. To
adapt to this environment, we propose the number of completed tasks as a progress metric for sampling. Our
experiments over a large design space show that FASTA estimations error can be below 4% for a certain class of
appplications. At the same time FASTA simulations can achieve up to 12x speedup. Applications that have a deep
task tree, show increasing estimation errors with the core count. The reason for these errors is the interleaving of
threads that causes a different task stream for each simulations mode. As a result, the representative samples cal-
culated from a low-detail simulation profile are not representative for the detailed simulation. We also determined
that the level in which the task stream changes between runs is correlated with the number of parent-nodes in an
application’s task tree. Our parameter analysis shows that for K = 6 clusters, in most cases the estimation error of
FASTA is below 5%. These results are encouraging and they recommend FASTA for future research.
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