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Abstract

We study the steady solutions of a generalized Whitham equation

ηt+
3co
2
ηηx+Lwηx = 0, where Lw is the nonlocal Fourier multiplier op-

erator given by the symbol ms(ξ) = (tanh ξ/ξ)s for s ∈ (0, 1), for which

we investigate whether a similar local and global theory is available as

for the Whitham equation, which is the case s = 1
2
. Using functional

analysis, we prove that there is a curve of small amplitude sinusoidal

waves bifurcating at wave speed c = (tanh(1))s, and these waves may

be extended to large ones by global bifurcation. In our quest to un-

derstand the regularity of a possible highest wave for this generalized

equation, we study the regularity of waves along the global bifurcation

curve. We find that any highest wave of the generalized equation is α-

Hölder continuous and has Hölder regularity Cα for 0 < α < s < 1, and

α + s ≤ 1. In addition, we study the properties of the symbol ms(ξ),

and the corresponding integral kernel. In view of the fact that some

arguments were quite technical, we perform a brief background study

of Banach algebras, Hölder and Schwartz spaces, Fréchet differentia-

bility, completely monotone functions, the implicit function theorem

on Banach spaces, and Fourier series.
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Preface

This thesis marks the end of the two years master’s degree programme

in ”Mathematical Sciences” at The Norwegian University of Science

and Technology (NTNU) in Trondheim, within the specialization Anal-

ysis (Differential Equations). The thesis was performed throughout my

4th semester of the master, spring 2017, at the Department of Math-

ematical Sciences under the Faculty of Information Technology and

Electrical Engineering.

The thesis, which is an add up to the work of my supervisor M.

Ehrnström, deals with the study of the generalized Whitham equation

for which we investigate whether a similar local and global theory is

available as for the Whitham equation, which is the case s = 1
2

(see

[1]). It is assumed from the reader only a basic knowledge of functional

analysis, partial differential equations and Fourier analysis.

The thesis is structured as follows:

Section 1 introduces the Whitham’s equation as a non-local model

for a shallow water wave, for capturing the balance between linear

dispersion and nonlinear effects. We next review some research on the

Whitham equation and then present the contribution of this thesis.

Section 2 recalls some facts about Banach algebras, Hölder and Schwartz

spaces, Fréchet differentiability, Completely monotone and Stieltjes

functions, and The implicit function theorem which will appear fre-

quently throughout the various sections.

Section 3 begins with the study of Fourier series of periodic functions

and its convergence, differentiability, decay and convolution properties.

It then gives a summary of the concept of Carleson-Hunt theorem

and also briefly treats the Fourier transform on R and other spaces.

The section ends with an introduction of Fourier multipliers on Hölder

spaces.
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Section 4 is devoted to the study of the generalized Whitham inte-

gral kernel Ks(x) = m̂s(x). It specifically gives the monotonicity and

limiting properties of the generalized Whitham symbol. The section

ends with some discussions about the convolution operator Lw.

Section 5 provides a prove of the existence of periodic traveling waves

and then introduces the local bifurcation theory which will be extended

to the global continuous curves of solutions in the next section. The

approach in this section and the next section follows closely that of

[2, 3].

Section 6 contains the main part of this thesis, where we investi-

gate the global bifurcation for the generalized Whitham equation by

an extension to the local bifurcation. It also gives some analysis of

the uniform convergence of solution and also the characterization of

blow-up.

A Ghanaian proverb reads ”Knowledge is like a Baobab tree, one

person’s arms cannot encompass it”. That is, it takes several arms held

together to encompass it. In my quest for knowledge, I am privileged

to have met many excellent persons who in diverse ways held my hand

in the process. My primary debt of gratitude goes to God as my source

of strength and spiritual guide. I am also grateful to the Norwegian

government for granting me the opportunity and also providing funds

for my studies.

I further wish to express my deepest and sincere gratitude to my

adviser Professor Mats Ehrnström, whose expertise, understanding,

generous guidance and support made it possible for me to work on

such a topic. I am also grateful to my parents and family for their love

and support during my studies, and lastly I thank the many excellent

professors and students at NTNU whom I have learned much from

during my time in Trondheim.
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1 Introduction

Waves on the surface of the ocean are a dramatic and beautiful phe-

nomena that impact every aspect of life on the planet [4]. The be-

haviour of water waves and the propagation characteristics of light

and sound are familiar from everyday experience. Wave motion is one

of the broadest scientific subjects and unusual in that it can be stud-

ied at any technical level. One important area of study is the traveling

water waves (the class of travelling waves which move progressively in

one direction with fixed speed and shape).

In most times, the steady waves repeat themselves periodically,

leading to periodic traveling waves. The bifurcation theory on the

other hand is one of the methods used in proving the existence of

such periodic traveling waves. Of particular interest is how the lo-

cal bifurcation curves of solutions (that is the 2π-periodic, smooth,

travelling-wave solutions) to the Whitham equation is extended to the

global continuous curves of solutions.

1.1 Whitham’s model equation

The water wave equations pose severe challenges for rigorous analysis,

modeling, and numerical simulation, from a mathematical viewpoint.

Although water waves have intrigued mankind for thousands of years,

it was not until the middle of the nineteenth century that the mod-

ern theory appeared, principally in the work of Stokes. The nineteenth

century also produced useful models for tidal waves, solitary waves, the

Korteweg–de Vries (KdV) equation, the Boussinesq models for shallow

water waves, the Kelvin–Helmholtz instability, Cauchy–Poisson circu-

lar waves, Gerstner’s rotational waves, Stokes’ model for the highest

wave, and Kelvin’s model for ship wakes [5].

The Korteweg-de Vries equation (KdV) was introduced in 1895 to
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model the behavior of long waves on shallow water in close agreement

with the observations of J. S. Russell [6]. The KdV model admits soli-

tary waves which present soliton interaction: two solitary waves keep

their shape and size after interaction although the ultimate position of

each wave has been affected by the nonlinear interaction [7]. KdV has

a bi-Hamiltonian structure which permits to obtain very precise infor-

mation about the structure of the equation by the inverse scattering

method, the equation being integrable [8]. The main challenge of the

KdV equation was that it could not describe the breaking of the wave.

In 1967, a British-born American mathematician, G.B. Whitham

proposed in [9] a non-local shallow water wave model for capturing the

balance between linear dispersion and nonlinear effects, so that one

would have smooth periodic and solitary waves, but also the features of

wave breaking and surface singularities. Whitham [7] emphasized that

the breaking phenomena is one of the most intriguing long-standing

problems of water wave theory, and since the KdV equation can not

describe breaking, he suggested the model

ηt +
3

2

co
ho
ηηx +Kho ∗ ηx = 0 (1.1)

known as the Whitham equation. This equation combines a generic

non-linear quadratic term with the exact linear dispersion relation for

surface water waves on finite depth. Here, the kernel

Kho = F−1(cho) (1.2)

is the inverse Fourier transform of the phase speed

cho(ξ) =

√
g tanhhoξ

ξ
(1.3)

for the linearized water-wave problem; the constants g, ho and co =
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√
gho denote, respectively, the gravitational constant of acceleration,

the undisturbed water depth, and the limiting long-wave speed. The

function η(t, x) describes the deflection of the fluid surface from the

rest position at a point x at time t [7].

The Whitham equation (1.1) with the kernel (1.2) has some very

interesting mathematical features. That is, it is generically non-local,

making pointwise estimates difficult. Moreover, cho(ξ) has slow decay,

and the kernel Kho is singular (it blows up at x = 0). This makes

the Whitham equation in some important respects different from many

other equations of the form (1.1) [3]. Whitham’s actual motivation was

to find a model that could feature the breaking of waves (wave breaking

in this context describes a situation in which the spatial derivative of

the function η becomes unbounded in finite time, while η itself remains

bounded). Another interest was wave peaking which means that, a

wave forms a sharp crest or peak, such as a stagnation point in the full

water-wave problem [2, 10].

The Whitham equation captures the peaking phenomenon of the

Stokes waves for the full water-wave problem. Interest in breaking,

peaking and other phenomena connected with (1.1) has spawned a

large amount of mathematical work. The monograph by Naumkin and

Shishmarev [11] is devoted entirely to equations like (1.1).

1.2 A review of some research on the Whitham

equation

A lot of research has being done on water wave models. Of particular

interest is the Whitham equation as a model for water waves. Some

highlights of the analytical and numerical research advancements of

the Whitham equation are been introduce in this section.

Early years after Whitham [7, 9] introduced the Whitham equa-

tion, Gabov [12] and Zaitsev [13] made some studies on this equa-
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tion. The monograph by Naumkin and Shishmarev [11] in the year

1994 is devoted entirely to the analysis of (1.1) for a mixture of ker-

nels and also provided an affirmative answer to the question of wave

breaking. In recent years, Hur [14] also dealt with the issue of wave

breaking of bounded solutions with unbounded derivatives. Together

with Tao [10], they show wave breaking for the Whitham equation

in a range of fractional dispersion. Hur and Johnson [15] also show

that periodic traveling waves with sufficiently small amplitudes of the

Whitham equation are spectrally unstable to long-wavelengths pertur-

bations if the wave number is greater than a critical value, bearing out

the Benjamin-Feir instability of Stokes waves.

Borluk et al. [16] investigated the simulation properties of the

Whitham equation as a model for waves at the surface of a body of

fluid. They found out that the periodic traveling-waves solutions of

the Whitham equation are good approximations to solutions of the

full free-surface water wave problem. This was as a results of the com-

parison of numerical solutions of the Whitham equation to numerical

approximations of solutions of the full Euler free-surface water-wave

problem.

Ehrnström and Kalisch [2] in 2009 proved that there exist small-

amplitude periodic traveling waves with sub-critical speeds and as the

period of these traveling waves tends to infinity, their velocities ap-

proach the limiting long-wave speed co. They further shown that there

can be no solitary waves with velocities much greater than co. Again

after performing some numerical analysis, it was proven that there is

a periodic wave of greatest height ∼ 0.642ho. In 2013, Ehrnström and

Kalisch [3] proved the existence of a global bifurcation branch of 2π-

periodic, smooth, traveling-wave solutions of the Whitham equation.

Furthermore [3] showed that the solutions converge uniformly to a so-

lution of Hölder regularity α ∈ (0, 1), except possibly at the highest
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crest point (where α ≤ 1
2
).

The kernel Kho of the Whitham equation has not thoroughly be-

ing understood. In 2009, [2] features the integrability of this kernel

in certain Lp spaces and smoothness away from the origin. However,

in a very recent time Ehrnström and Wahlén [1] provided an explicit

representation formula for it and again shown that the integral ker-

nel is completely monotone on the interval (0,∞) and also analytic

with exponential decay away from the origin. They further proved

the existence of a highest, cusped periodic traveling wave using the

global bifurcation theory. Again, they found that the solution is P -

periodic, even and strictly increasing on the interval (−P
2
, 0), satisfying

ϕ(0) = µ
2
. The solution is furthermore smooth away from any crest,

and obtains its optimal Hölder regularity C
1
2 (R) exactly at the crest,

thereby resolving Whitham’s conjecture.

The paper [17] identified a scaling regime in which the Whitham

equation can be derived from the Hamiltonian theory of surface wa-

ter waves. After integrating the Whitham equation numerically, they

shown that the equation gives a close approximation of inviscid free

surface dynamics as described by the Euler equations. They then

concluded that in a wide parameter range of amplitudes and wave-

lengths, the Whitham equation performs on par with or better than

the Korteweg-de Vries (KdV) equation, the Benjamin Bona Mahony

(BBM) equation and the Padé model.

Sanford et al. [18] focused on the stability of solutions in view

of [2]. The numerical results presented in [18] suggest that all large-

amplitude solutions are unstable, while small-amplitude solutions with

large enough wavelength L are stable. Additionally, [18] proved that

the periodic solutions with wavelength smaller than a certain cut-off

period always exhibit modulational instability. However, the cut-off

wavelength is characterized by kho = 1.145, where k = 2π
L

is the wave
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number and ho is the mean fluid depth. The works by Benjamin and

Hasselmann [19] also presented a detailed stability analysis for wave

trains on water of arbitrary depth ho, and calculated that small am-

plitude periodic traveling waves are unstable if the fundamental wave

number k satisfies kho > 1.363.

The Periodic traveling waves to the KdV do not exhibit this prop-

erty but are spectrally stable [20]. Bronski and Johnson [21] also in-

vestigated the spectral stability of a family of periodic standing wave

solutions to the generalized KdV equation.

1.3 The work at hand

The existence of smooth, small-amplitude, periodic traveling-wave so-

lutions and their properties was established and numerically investi-

gated by Ehrnström and Kalisch [2]. In years later, they again in

[3] worked on the steady solutions of the Whitham equation (that is

traveling-wave solutions characterized by a constant speed and shape).

They proved that the Whitham solutions are all smooth and subcriti-

cal, and that they converge uniformly to a wave of Cα-regularity, α < 1
2
.

In this present work, we consider a general version of the Whitham

equation defined in (1.1), (1.2) and (1.3). That is taking g, ho ∼ 1, we

have the generalized Whitham equation to be

ηt +
3co
2
ηηx +Ks ∗ ηx = 0. (1.4)

We then define the generalized Whitham symbol as

ms(ξ) = K̂s(ξ) =

(
tanh ξ

ξ

)s

, 0 < s < 1, (1.5)
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whilst we have the generalized Whitham kernel defined by

Ks(x) = F−1{ms(ξ)} =
1

2π

∫
R
ms(ξ)e

ixξdξ. (1.6)

The aim of this thesis is to study the generalized Whitham equation

(1.4) and to see if a similar local and global theory is available as

for the Whitham equation with s = 1
2

(see [1]). As one goal, we

wanted to understand the regularity of a possible highest wave for the

generalized equation (1.4). Although some steps in this direction have

been achieved, the time frame of this master’s thesis have not made a

complete theory possible.

In our way towards this goal, however we have studied and inves-

tigated the symbol ms(ξ) and its Fourier transform using the theory

of Stieltjes and completely monotone functions. It is also shown that

any subset of solutions in the global branch contains a sequence which

converges uniformly to some solution of Hölder class Cα for α ∈ (0, s).

This required a study of Banach algebras, Hölder spaces, Fréchet dif-

ferentiability, implicit function theorem in Banach spaces, and the bi-

furcation theory.

The bifurcation curve of the solution to the generalized Whitham

equation is found to be a subcritical pitchfork bifurcation, which is of

the same kind as the one described in [3]. The uniform convergence

of the sequence of solutions is proved for the case where α ∈ (0, s)

(s is defined in (1.5)) satisfy α + s ≤ 1. The case where s = 1
2

and

α < 1
2

is already included in [3, 1]. In the general case, when ϕ ≤ 2µ,

it is found that the Whitham solution is α-Hölder continuous and has

Hölder regularity Cα for 0 < α < s < 1 required that α + s ≤ 1. It is

also proved that if ϕ < 2µ uniformly on R, then the solution is smooth

with all its derivatives bounded.

In addition, we deal with the existence of periodic traveling waves
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as proved by Ehrnström and Kalisch [2]. The local bifurcation theo-

rem is studied and later extended to the global continuous curves of

solutions in relation to the generalized Whitham equation in the very

last section. Another object of study is the convolution operator Lw

of the generalized Whitham equation which we find to be a symmetric

bounded linear operator. In view of this, we introduce Fourier series

and transform since some of the arguments were quite technical.

References for borrowed materials and proofs are provided through-

out the text. Some results in Sections 2 and 3 are stated without proofs

and specific references, since they are standard. The proofs in Sections

4, 5 and 6 are the author’s own adaptions of the ones in [1, 2, 3], where

the generalized Whitham equation, kernel and symbol have been taken

into consideration.
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2 Preliminaries

In this section we review some spaces and fundamental tools from

real and functional analysis which are necessary in providing a firm

base for the rest of the discussion. It must be noted that the various

tools are not given in detailed but only a brief summary of what is

actually needed for the discussion. We begin with Banach algebras,

Hölder and Schwartz spaces. Next follows a general overview of Fréchet

differentiability, completely monotone and Stieltjes functions. We then

end the section with the introduction to the concept of the implicit

function theorem.

The results in this section are mostly stated without proofs and

specific references. The monograph by Marcoux [22] contains details

on Banach algebra whilst we can find the remaining topics by the works

of Buffoni and Toland [23], Miller and Samko [24], Shilling, Song and

Vondracek [25] and Royster [26].

Throughout the various sections, the standard notation of mathe-

matical analysis is used. For 1 ≤ p < ∞, the space Lp(Ω) is the set

of measurable real-valued functions of a real variable whose pth powers

are Lebesgue integrable over a subset Ω ⊆ R. If f ∈ Lp(Ω), its norm

is given by

‖f‖pLp(Ω) :=

∫
Ω

|f |pdx. (2.1)

The space L∞(Ω) consists of all measurable, essentially bounded func-

tions with norm

‖f‖L∞(Ω) := ess supx∈Ω|f(x)|. (2.2)

2.1 Banach algebras

If we consider B as a Banach space over C. We then say that B

is a Banach algebra if there exists an operation from B × B to B,
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(x, y) 7→ xy, such that for all x, y and z in B and α in C, we have

(xy)z = x(yz) the operation is associative,

(αx+ y)z = αxz + yz

z(αx+ y) = αzx+ zy the operation is bilinear,

‖xy‖ ≤ ‖x‖‖y‖ the norm is sub-multiplicative.

In [22], the set (C(X), ‖· ‖∞) of continuous functions on a com-

pact Hausdorff space X, becomes a Banach algebra under pointwise

multiplication of functions. That is, for f, g ∈ (C(X), ‖· ‖∞), we set

(fg)(x) = f(x)g(x) for all x ∈ X.

Remark 2.1. C(X) = {f : X→ C; f is continuous}.

If Y is being considered as a Banach space, then according to [27]

the set of continuous linear maps, L(Y), from Y to itself is a non-

commutative Banach algebra under composition.

2.2 Hölder and Schwartz spaces

Hölder spaces are basic in areas of functional analysis relevant to solv-

ing partial differential equations and in dynamical systems. The Hölder

space with the Hölder norm is a Banach space [28].

Definition 2.1 (Hölder space). The space consisting of functions sat-

isfying a Hölder condition (i.e for c, α > 0 such that

|f(x)− f(y)| ≤ c|x− y|α (2.3)

for all x and y in the domain of a real or complex-valued function f

on d-dimensional Euclidean space) is called a Hölder space.
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The Hölder space Ck,α(Ω), where Ω is an open subset of some Eu-

clidean space and k ≥ 0 an integer, consist of functions on Ω having

continuous derivatives up to order k and such that the kth partial

derivative are Hölder continuous with exponent α, where 0 < α ≤ 1.

If Ω is open and bounded, then we can say that the Hölder space

Ck,α(Ω̄) consists of all functions, u ∈ Ck(Ω̄) for which the norm

‖u‖Ck,α(Ω̄) =
∑
|γ|≤k

‖Dγu‖C(Ω̄) +
∑
|γ|=k

|Dγu|C0,α(Ω̄) (2.4)

is finite. We note that If 0 < α < β and Ω is bounded, then the Hölder

space Cβ(Ω) is compactly embedded to Cα(Ω).

Remark 2.2. If Ω is open and bounded, then Ck,α(Ω̄) is a Banach

space with respect to the norm ‖· ‖Ck,α.

Definition 2.2 (Schwartz space). The Schwartz space S (Rn) or space

of rapidly decreasing functions on Rn is the topological vector space of

functions f : Rn → C such that f ∈ C∞(Rn) and xα∂βf(x) → 0 as

|x| → ∞ for every pair of multi-indices α, β ∈ Zn+.

If α, β ∈ Zn+ and f ∈ S (Rn) then we have the family of semi-norms

of f to be

‖f‖αβ = sup
x∈Rn
|xα∂βf(x)|. (2.5)

The Schwartz space is a Fréchet space which have the property that

the Fourier transform is a linear isomorphism, S (Rn)→ S (Rn), and

if f ∈ S (Rn) then f is uniformly continuous on R. The Schwartz

space also have the property that if f, g ∈ S (Rn), then fg ∈ S (Rn)

and also if 1 ≤ p ≤ ∞, then S (Rn) ⊂ Lp(Rn) [29].

We next briefly discuss the Fréchet derivative and also refer the

reader to [30, 31] for a detailed presentation.
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2.3 Fréchet differentiability

Fréchet derivative is a derivative which is defined on the Banach Spaces.

It extends the idea of the derivative from real-valued functions of one

real variable to functions on Banach spaces. The Fréchet derivative has

applications to nonlinear problems throughout mathematical analysis

and physical sciences, particularly to the calculus of variations and

much of nonlinear analysis and nonlinear functional analysis [31].

Definition 2.3 (Fréchet derivative). If we have a function f , which

is defined to be an open subset of U of a Banach space X into the

Banach space Y . We say f is Fréchet differentiable at x ∈ U if there

is a bounded and linear operator T : X 7→ Y such that

lim
t→0

f(x+ th)− f(x)

t
= Tx(h) (2.6)

is uniform for every h ∈ SX . The operator T is called the Fréchet

derivative of f at x.

Conversely, if we set th = y and if t→ 0 then y → 0. Therefore by

this changes, we have f : X 7→ Y to be Fréchet differentiable at x ∈ U
if

lim
y→0

‖f(x+ y)− f(x)− T (y)‖Y
‖y‖X

= 0 (2.7)

for all y ∈ X.

We have from [23] that a Fréchet derivative belongs to neither X

nor Y , but rather is a bounded linear operator from X to Y (To say

that cosx0 is the derivative at x0 of the function f : R 7→ R given by

f(x) = sin x means only that df [x0]x = x cosx0 for all x ∈ R). In

practice, one can consider d
dt
f(x+ ty)|t=0 = Df [x](y) for x, y ∈ X and

t ∈ R, where the left hand side is defined as the Gâteaux derivative.
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2.4 Completely monotone and Stieltjes functions

In this section, we present our exposition with a brief survey and anal-

ysis of completely monotone and Stieltjes functions. The reader is

recommended to read [25, 32, 33] for a more detailed analysis.

Definition 2.4 (Completely monotonic function). A function f is

completely monotone on [0,∞) if it is continuous on [0,∞), infinitely

differentiable on (0,∞) and also satisfies

(−1)k
dk

dtk
f(t) ≥ 0, for t > 0 and k = 0, 1, 2, . . . . (2.8)

According to [24], if f(t) and g(t) are completely monotone, then

αf(t) + βg(t), where α and β are non-negative constants, and f(t)g(t)

are also completely monotone. It is also proven that, if h(t) is non-

negative function with a completely monotonic derivative, then f [h(t)]

is also completely monotone.

There exist limits of f (k) as t → 0 for any k ≥ 0; if those limits

are finite then f can be extended to [0,+∞) and (2.8) will also hold

for t = 0 (with strict inequality for all k). Limits at zero need not be

finite, as in f(t) = 1
t
, for example. It is clearly seen, that

lim
t→+∞

f (k)(t) = 0 (2.9)

for all k ≥ 1. The limit of f(t) at +∞ must be finite and if it is

non-zero, then it has to be positive (for example, f(t) = 1 + e−t).

It is known (Bernstein’s Theorem) that f is completely monotonic

if and only if

f(t) =

∫ ∞
0

e−stdµ(s) (2.10)

where µ is a non-negative measure on [0,∞) such that the integral

converges for all t > 0. For a proof of this results, see Schilling and
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Vondracek [25]. A consequence of Bernstein’s theorem is that if f is

completely monotone, then (2.8) holds with strict inequality for every

t and every k, unless f is identically constant.

Remark 2.3. Note that the measure µ in (2.10) is finite if and only

if

lim
t→0

f(t) <∞.

Definition 2.5 (Stieltjes function). A function f : (0,∞)→ [0,∞) is

said to be a (non-negative) Stieltjes function if it admits a representa-

tion

f(t) =
α

t
+ β +

∫
(0,∞)

1

t+ s
dµ(s) (t > 0), (2.11)

where α and β are non-negative constants and µ is a positive measure

on [0,∞) such that ∫
(0,∞)

(1 + s)−1dµ(s) <∞ (2.12)

Remark 2.4. We note from [1] that, if f has a finite limit at the

origin, then α = 0 and
∫

(0,∞)
dµ(s)
t

< ∞ by Fatou’s lemma. More-

over, β = limt→∞ f(t). The fact that Stieljes functions are completely

monotone is proved in [25].

The integral appearing in (2.11) is called the Stieltjes transform

of the measure µ. It is apparent that by the dominated convergence

theorem the Stieltjes function is completely monotone on (0,∞), thus

it is a subclass of the completely monotonic function, but we must

also note that not every completely monotone function is a Stieltjes

function.

Theorem 2.5. In [[25], Theorem 2.2], it is given that Stieltjes func-

tions are completely monotone. A completely monotone function is a

Stieltjes function if and only if the measure µ in (2.10) is absolutely
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continuous on (0,∞) and its Radon-Nikodym derivative is completely

monotone.

It turns out from [1], that any Stieltjes function has an analytic

extension to the cut complex plane C\(−∞, 0]. This property gives

a complete characterization of the class of Stieltjes functions. Let

C+ = {z ∈ C : =mz > 0} and C− = {z ∈ C : =mz < 0}.

Theorem 2.6. [[25], Corollary 7.4] Let f be a positive function on

(0,∞). Then f is a Stieltjes function if and only if the limit limt→0 f(t)

exist in [0,∞] and f extends analytically to C\(−∞, 0] such that =mz

· =mf(z) ≤ 0.

Remark 2.7. From [1] we note that, positive constant functions are

examples of Stieltjes functions. It follows easily by basic properties of

analytic functions that a non constant Stieltjes function maps C+ to C−.

We also note that if f is not identically 0, then 1/f(z) is a Nevan-

linna function (A complex function which is an analytic function on

the open upper half-plane and has non-negative imaginary part). The

corresponding function 1/f(t) is then a complete Bernstein function by

[25].

Lemma 2.8. [[1], Lemma 2.12] If f is a Stieltjes function, then so is

f s for any s ∈ (0, 1].

We end the section by giving a brief explanation about the implicit

function theorem and also refer the reader to [23, 26] for details.

2.5 The implicit function theorem

In mathematics, more specifically in multivariable calculus, the implicit

function theorem is a tool that allows relations to be converted to

functions of several real variables.
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Theorem 2.9 (Implicit function theorem). Suppose X,Y and Z are

Banach spaces and H is an open subset of X×Y, such that the mapping

f : H→ Z is continuously Fréchet differentiable on H. If (xo, yo) ∈ H,

f(xo, yo) = 0 and Y 3 y 7→ ∂f(xo, yo)(0, y) is a Banach space iso-

morphism from Y onto Z, then there exist an open subset U ⊂ X and

V ⊂ Y such that xo ∈ U and yo ∈ V and a continuously Fréchet differ-

entiable function g : U → V such that f(x, g(x)) = 0 and f(x, y) = 0

if and only if y = g(x), for all (x, y) ∈ U× V.

Remark 2.10. Note H = {(x, g(x)) : (x, y) ∈ U× V}.

In practice, if we consider a function f : R3 → R (with continuous

partial derivatives) given by f(x, y, z) = x2 +y2 +z2−1. Suppose that

(xo, yo, zo) is a point satisfying f(xo, yo, zo) = 0 and ∂f
∂z

(xo, yo, zo) 6= 0

but xo 6= 1,−1 and yo 6= 1,−1. In this case there is an open disk

M ⊂ R2 containing (xo, yo) and an open interval N ⊂ R containing zo

with the property that if (x, y) ∈ M then there is a unique element of

N for which f(x, y, g(x, y)) = 0.

In other words, there is a function g : M → N so that z = g(x, y)

or, we solve for z in terms of the variables x and y. We say that

equation f(x, y, z) = 0 has implicitly defined z as a function of x and

y. In such a case, we are able to explicitly solve for z, for if x > 0 and

y > 0, then z = g(x, y) =
√

1− x2 − y2 (Note that the function g is

differentiable).

On the other hand, if we were to have chosen xo = 1 and yo = 1,

then we would not be able to find such a function g defined on an open

interval containing 1, for some values of x and y would of necessity be

sent to two different values of z.

Remark 2.11. z = g(x, y) is differentiable with the derivative given

by
∂g

∂x
= −∂f

∂x
/
∂f

∂z
and

∂g

∂y
= −∂f

∂y
/
∂f

∂z
.
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3 Fourier Series and Transform on R

In the year 1807, the French mathematician and physicist, Fourier

made an astonishing discovery through his deep analytical investiga-

tions into the partial differential equations modeling heat propagation

in bodies. Fourier introduced the series for the purpose of solving the

heat equation in metal plate and also investigated the decomposition

of a periodic function f into a countable sum of sines and cosines [34],

that is

f(x) =
ao
2

+
∞∑
n=1

an cos

(
2πnx

p

)
+ bn sin

(
2πnx

p

)
(3.1a)

or

f(x) =
∑
n∈Z

cne
2πinx
p (3.1b)

where p is the period of f and cn is given by

cn =
1

p

∫ p

−p
f(x)e

−2πinx
p dx. (3.2)

In using the orthogonality properties of sine and cosine, he found

simple formulas for the coefficients ao, an, bn and cn and then applied

the techniques in the analysis of the heat equation with periodic bound-

ary conditions. The infinite sum of the right hand side expressed in

(3.1a) and (3.1b) are known as the Fourier series representation of f .

Fourier analysis is an essential component of much of modern ap-

plied (and pure) mathematics. It forms an exceptionally powerful

analytic tool for solving a broad range of linear partial differential

equations and it is also applicable in the field of physics, engineering,

biology, finance, among others. Many modern technological advances,
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including television, music CDs and DVDs, cell phones, movies, com-

puter graphics, image processing, and fingerprint analysis and stor-

age, are, in one way or another, founded on the many ramifications of

Fourier theory [35].

We begin our discussion by introduction Fourier series in Section

3.1. Section 3.2, introduces the periodic functions and extensions and

in Section 3.3, we explore some fundamental properties of Fourier series

related to convergence, differentiation, decay and convolution. Section

3.4 next gives the concept of Carleson-Hunt theorem on Fourier series.

In Section 3.5, we discuss the Fourier transform on L1(R), L2(R) and

the Schwartz space S (R) and finally we end with Section 3.6, which

gives a brief summary about certain properties of the Fourier multiplier

operators given by classical symbols.

The results in the various sections are mostly stated without proofs

and specific references. The works by Cajori [34], Olver [35], Bogges

and Narcowich [36], Zygmund [37], Jørsboe and Mejlbro [38], Strichartz

[39], and Amann [40] covers all topics in this section.

3.1 Fourier series

The preceding section served to motivate the development of Fourier

series as a tool for solving partial differential equations. Our immediate

goal is to give a brief discussion about the Fourier series. A more

detailed discussion can be found in [36, 35].

The coefficients of the full range Fourier series representation of f
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on (−p, p) in (3.1a) is defined by

ao =
1

p

∫ p

−p
f(x)dx, (3.3a)

an =
1

p

∫ p

−p
f(x) cos

(
2πnx

p

)
dx (n = 1, 2, 3, . . .), (3.3b)

bn =
1

p

∫ p

−p
f(x) sin

(
2πnx

p

)
dx (n = 1, 2, 3, . . .). (3.3c)

If f is 2p-periodic then the series in (3.1a) is a representation of f .

Fourier series is used in representing a given periodic function f(x) in

terms of cosine and sine functions. Calculation of a Fourier series boils

down to computing the coefficients ao, an and bn and a firm graps of

integration by parts is required to compute these calculations success-

fully.

In applications, it is found that most function are defined on a half-

range interval (0, p) and the 2p-periodic extension of f can be defined

to be an odd function or an even function. Fourier series could still be

used to represent such functions defined on half-range intervals. The

function f can be extended periodically with period p after which, the

extended function can be represented by Fourier series which in general

involves both sine and cosine terms.

Remark 3.1. One of the draw backs in Fourier series is that in order

for a function to have a Fourier series representation, the function

must be periodic. A function f is odd if f(−x) = −f(x) and even if

f(−x) = f(x) for all x.

We next discuss the periodic functions and extensions of the Fourier

series.
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3.2 Periodic functions and extensions

Periodic functions are used throughout science to describe oscillations,

waves and other phenomena that exhibit periodicity.

Definition 3.1 (Periodic functions). A function f is periodic with

period 2p if

f(x) = f(x+ 2p) (3.4)

for all x.

The most important examples are the trigonometric functions, which

repeat over intervals of 2π radians.

Theorem 3.2. If f(x) = f(x + p) is periodic then f(x) = f(x + 2p)

is also periodic.

Proof of Theorem 3.2. If we let y = x+ p then,

f(x+ 2p) = f(y + p) = f(y) = f(x+ p) = f(x).

Hence, for any integer n, f(x+ np) = f(x) for all x.

The smallest positive number p for which (3.4) holds is called the

fundamental period or simply the period of f .

Remark 3.3. If f and g are periodic functions with period p then

αf(x) + βg(x) and f(x)g(x) are also periodic with period p, where

α and β are constants. The function f(x) = c, where c is a constant

is also a periodic function.

All periodic functions are fully determined on [0, p) or any half-open

interval of length p. For example,∫ p+t

t

f(x)dx =

∫ p

0

f(x)dx (3.5)

for any t ∈ R.
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Definition 3.2 (Periodic convolution). The p-periodic convolution f∗p
g between two p-periodic functions f and g is given by

f ∗p g =

∫ p

0

f(x− y)g(y)dy. (3.6)

Theorem 3.4. Let f be a function with a well-defined periodic sum-

mation fs, where

fs(x) =
∞∑

k=−∞

f(x+ kp). (3.7)

If g is any other function for which the convolution fs ∗p g exists, then

the convolution fs ∗p g is periodic.

Proof of Theorem 3.4.

fs ∗p g =

∫ ∞
−∞

fs(x− y)g(y)dy

=
∞∑

k=−∞

∫ t+(k+1)p

t+kp

fs(x− y)g(y)dy

y 7→ y + kp

=
∞∑

k=−∞

∫ t+p

t

fs(x− y − kp)g(y + kp)dy

=

∫ t+p

t

[
fs(x− y)

∞∑
k=−∞

g(y + kp)

]

fs(x−y−kp) = fs(x−y) by periodicity and from (3.7), we can defined

the function g by

gs(y) =
∞∑

k=−∞

g(y + kp).
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Hence, from (3.5) we conclude that

fs ∗p g =

∫ p

0

fs(x− y)gs(y).

Definition 3.3 (Periodic extensions). If f is any function defined in

the interval (−p, p] or [−p, p) then 2p-periodic extension of f denoted

f̃ is defined by

f̃(x) =

f(x) if x ∈ (−p, p] or x ∈ [−p, p)

f̃(x+ 2p) otherwise .

Theorem 3.5. [[35], Lemma 3.4] If f(x) is any function defined for

−π < x ≤ π, then there is a unique 2π-periodic function f̃ , known

as the 2π-periodic extension of f , that satisfies f̃(x) = f(x) for all

−π < x ≤ π.

One can see [35] for a detailed prove. The construction of the

periodic extension in Theorem 3.5, uses the value f(π) at the right

endpoint and requires f̃(−π) = f̃(π) = f(π).

Alternatively. one could require f̃(π) = f̃(−π) = f(−π), which, if

f(−π) 6= f(π), leads to a slightly different 2π-periodic extension of the

function. There is no, a priori reason to prefer one over the other [35].

Remark 3.6. A Fourier series can converge only to a 2π-periodic

function.

3.3 Convergence, differentiability, decay and con-

volution

The convergence, differentiation, decay and convolution of the Fourier

series is briefly examine in this subsection and a more detailed discus-
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sion is presented in [36].

The convergence of Fourier series is somewhat important in the

study of Fourier analysis. If we consider a 2π-periodic function which

is integrable on the interval [−π, π], then the Fourier coefficient defined

in (3.2) can be redefined as

cn =
1

2π

∫ π

−π
f(x)e−inxdx. (3.8)

In a more careful investigation of convergence, the partial sums of

Fourier series defined by

fN(x) =
N∑

n=−N

cne
inx (3.9)

is needed.

Definition 3.4 (Dirichlet kernel). The function

DN(x) =
N∑

n=−N

cne
inx =

sin(N + 1
2
)x

sin x
2

(3.10)

is called the Dirichlet kernel.

The Fourier partial sum of f(x) can be expressed through the

Dirichlet kernel:

fN(x) =
1

2π

∫ π

−π
DN(x− y)f(y)dy

=
1

2π

∫ π

−π
DN(y)f(x− y)dy.

Theorem 3.7 (Riemann-Lebesgue Lemma). If f ∈ L1(−π, π) is a
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piecewise continuous function on the interval −π ≤ x ≤ π. Then

cn =
1

2π

∫ π

−π
f(x)e−inxdx → 0 as n→ ±∞.

Proof of Theorem 3.7.

cn =
1

2π

∫ π

−π
f(x)e−inxdx

−cn =
1

2π

∫ π

−π
f(x)e−inxe−iπdx

=
1

2π

∫ π

−π
f(x)e−in(x−π

n
)dx

y 7→ x− π
n

−cn =
1

2π

∫ π

−π
f(y +

π

n
)e−inydy

−4πcn =

∫ π

−π

[
f

(
y +

π

n

)
− f(y)

]
e−inydy

4π|cn| ≤
∫ π

−π

∣∣∣∣f(y +
π

n

)
− f(y)

∣∣∣∣dy
→ 0 as n→ ±∞.

Theorem 3.8 (Uniform convergence). A sequence of the partial sums

{fN(x)} is said to be uniformly convergent to the function f(x), if the

speed of convergence of the partial sums fN(x) does not depend on x.

We say that the Fourier series of a function f(x) converges uni-

formly to this function if

lim
N→∞

[
max

x∈[−π,π]
|f(x)− fN(x)|

]
= 0. (3.11)
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Lemma 3.9. The Fourier series of a 2π-periodic continuous and piece-

wise smooth function converges uniformly.

Theorem 3.10 (Convergence in L2-norm). The space L2(−π, π) is

formed by those functions for which∫ π

−π
|f(x)|2dx <∞. (3.12)

We will say that a function f(x) is square-integrable if it belongs to the

space L2. If a function f(x) is square-integrable, then

lim
N→∞

1

2π

∫ π

−π
|f(x)− fN(x)|2dx = 0. (3.13)

That is the partial sums fN(x) converge to f(x) in the norm L2.

Remark 3.11. The uniform convergence implies L2-convergence. But

the opposite is not true.

Under appropriate hypotheses, if a series of functions converges,

then one will be able to integrate or differentiate it term by term, and

the resulting series should converge to the integral or derivative of the

original sum [35].

Theorem 3.12 (Differentiation of Fourier series). If f(x) defined in

(3.1a) and (3.1b) has a piecewise C2 and continuous 2π–periodic ex-

tension, then its Fourier series can be differentiated term by term, to

produce the Fourier series for its derivative

f ′(x) ∼
∞∑
n=1

[n bn cos(nx)− n an sin(nx)] =
∞∑

n=−∞

incne
inx. (3.14)

Theorem 3.13 (Differentiation of Fourier transform). If we differen-
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tiate the basic inverse Fourier transform formula

f(x) =
1√
2π

∫ ∞
−∞

f̂(ξ)eiξxdξ (3.15)

with respect to x, we obtain

f ′(x) =
1√
2π

∫ ∞
−∞

iξf̂(ξ)eiξxdξ. (3.16)

The resulting integral is itself in the form of an inverse Fourier

transform, namely of i k f̂(ξ), which immediately implies the following

key result.

Proposition 3.14. The Fourier transform of the derivative f ′(x) of a

function is obtained by multiplication of its Fourier transform by iξ:

F [f ′(x)] = iξf̂(ξ). (3.17)

Similarly, the Fourier transform of the product function xf(x) is ob-

tained by differentiating the Fourier transform of f(x):

F [x f(x)] = i
df̂

dξ
. (3.18)

Corollary 3.15. The Fourier transform of f (n)(x) is (iξ)nf̂(ξ).

The smoothness of the function f(x) is manifested in the rate of

decay of its Fourier transform f̂(ξ). The Fourier transform of a (nice)

function must decay to zero at large frequencies: f̂(ξ)→ 0 as |ξ| → ∞
(This result can be viewed as the Fourier transform version of the

Riemann– Lebesgue Lemma 3.7). If the nth derivative f (n)(x) is also

a reasonable function, then its Fourier transform f̂ (n)(ξ) = (iξ)nf̂(ξ)

must go to zero as |ξ| → ∞. This requires that f̂(ξ) go to zero more

rapidly than |ξ|−n. Thus, the smoother f(x), the more rapid the decay
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of its Fourier transform. As a general rule of thumb, local features of

f(x), such as smoothness, are manifested by global features of f̂(ξ),

such as the rate of decay for large |ξ|. The Symmetry Principle implies

that the reverse is also true: global features of f(x) correspond to local

features of f̂(ξ). For instance, the degree of smoothness of f̂(ξ) governs

the rate of decay of f(x) as x→ ±∞ [35].

Uniform convergence of the Fourier series requires at the very least

that the Fourier coefficients goes to zero : cn → 0 as n→ ±∞.

Theorem 3.16 (Decay). [[35], Theorem 3.31] Let 0 ≤ k ∈ Z. If the

Fourier coefficient of f(x) satisfy

∞∑
n=−∞

|n|k|cn| <∞, (3.19)

then the Fourier series (3.1b) converges uniformly to a k-times contin-

uously differentiable function f̃(x) ∈ Ck, which is the 2π-periodic ex-

tension of f(x). Furthermore, for any 0 < l ≤ k, the l-times differenti-

ated Fourier series converges uniformly to the corresponding derivative

f̃ (l)(x).

If the Fourier coefficients go to zero faster than any power of n,

e.g., exponentially fast, then the function is infinitely differentiable.

Analyticity is more delicate, and we refer the reader to [37] for details.

Theorem 3.17 (Convolution theorem). If f, g ∈ L1(R), then

f̂ ∗ g =
√

2πf̂ · ĝ. (3.20)

If additionally f̂ , ĝ ∈ L1(R), then

f̂ · g =
√

2πf̂ ∗ ĝ. (3.21)

Thus (3.20) and (3.21) hold for all f, g ∈ S(R). Moreover, if f, g ∈
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L2(R), then

f ∗ g =
√

2πF−1(f̂ · ĝ) and f̂ · g =
√

2πf̂ ∗ ĝ.

3.4 The Carleson-Hunt theorem on Fourier series

Carleson-Hunt theorem is a fundamental result in mathematical anal-

ysis establishing the pointwise (Lebesgue) almost everywhere conver-

gence of Fourier series of Lp functions for p ∈ (1,∞) [38]. If we consider

the Fourier coefficients on 2p-periodic functions on R defined by

f̂n :=

∫ p

−p
f(x)e−

inxπ
p dx. (3.22)

We write

f(x) ∼ 1

2p

∑
n∈Z

f̂ne
inxπ
p (3.23)

to indicate that, under certain conditions on f , this infinite trigono-

metric series converges to f pointwise, uniformly, or in norm. For

example [2], if f ∈ Lp(−p, p), p > 1, then the Carleson-Hunt theorem

[38] guarantees that the series converges to f(x) almost everywhere.

If, in addition, f(x) is an even function, the series can be written as

f(x) ∼ 1

2p
f̂o +

1

p

∞∑
n=1

f̂n cos

(
nxπ

p

)
=

1

p

∞∑
n=0

′f̂n cos

(
nxπ

p

)
,

where the prime indicates that the first term of the sum is multiplied

by 1/2.

We next examine the the Fourier transform on the spaces L1(R), L2(R)

and S (R).
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3.5 The Fourier transform on L1(R), L2(R) and the

Schwartz space S (R)

The extension of the Fourier calculus to the entire real line leads nat-

urally to the Fourier transform, a powerful mathematical tool for the

analysis of aperiodic functions.

Theorem 3.18 (Fourier transform formula). The Fourier transform

F(f) = f̂ of an aperiodic function f is defined by

f̂(ξ) =
1√
2π

∫
R
f(x)e−iξxdx. (3.24)

Theorem 3.19 (Fourier inversion formula). If both f, f̂ ∈ L1(R), then

f(x) =
1√
2π

∫
R
f̂(ξ)eiξxdξ (3.25)

for almost everywhere x ∈ R.

Remark 3.20. It is not always the case that f̂ is integrable whenever f

is. But if f ∈ L2(R), with f, f ′ and f ′′ in L1(R), we do have f̂ ∈ L1(R).

Lemma 3.21. If f ∈ L1(R), then |f̂(ξ)| ≤ 1√
2π
‖f(x)‖L1.

Proof of lemma 3.21.

|f̂(ξ)| =
∣∣∣∣ 1√

2π

∫ ∞
−∞

f(x)e−iξxdx

∣∣∣∣
≤ 1√

2π

∫ ∞
−∞
|f(x)||e−iξx|dx

=
1√
2π

∫ ∞
−∞
|f(x)|dx

=
1√
2π
‖f(x)‖L1 .
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S (R)

Lemma 3.22. If fn → f in L1, then f̂n → f̂ in L∞.

Proof of Lemma 3.22.

|f̂(ξ)− f̂(ξ)| =
∣∣∣∣ 1√

2π

∫ ∞
−∞

(fn(x)− f(x))e−iξxdx

∣∣∣∣
≤ 1√

2π

∫ ∞
−∞
|fn(x)− f(x)||e−iξx|dx

=
1√
2π

∫ ∞
−∞
|fn(x)− f(x)|dx

=
1√
2π
‖fn(x)− f(x)‖L1

→ 0 as n→∞ by assumption.

Lemma 3.23. f̂(ξ)→ 0 as |ξ| → ∞ by the Riemann-Lebesgue Lemma

3.7.

Remark 3.24. f̂(ξ) is uniformly continuous in R [36].

Theorem 3.25 (Parseval’s theorem). If f belongs to L2[−π, π], then

∞∑
n=−∞

|f̂(n)|2 =
1

2π

∫ π

−π
|f(x)|2dx. (3.26)

Theorem 3.26 (Plancherel’s theorem). The Fourier transform ex-

tends uniquely to a unitary operator F : L2(R)→ L2(R). That is

〈f̂ , ĝ〉L2(R) = 〈f, g〉L2(R) (3.27)

for all f, g ∈ L2(R).

Proposition 3.27. If f ∈ L1(R), f ∈ L2(R) and also if f̂ is as defind

in (3.24), then ‖f‖L2 = ‖f̂‖L2.

Remark 3.28. Fourier transforms on L1(R) and L2(R) coincide on

L1(R) ∩ L2(R).
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The Fourier transform is a linear isomorphism F : S (R)→ S (R),

and if f ∈ S (R) then f is uniformly continuous on R. If f and g

belongs to the class S (R) of rapidly decreasing functions, then f̂ ∗ g, f̂
and ĝ all exist in S ′(R) (the tempered distributions). The space of

tempered distributions S ′(R) is defined as the (continuous) dual of

the Schwartz spaceS (R). We refer the reader to [39] for a precise

details on the Fourier transform on S and also the Fourier transform

of tempered distribution.

Finally, we end the section with a brief discussion of Fourier mul-

tipliers on Hölder spaces.

3.6 Fourier multipliers on Hölder spaces

We introduce a brief summary of certain properties of the Fourier mul-

tiplier operators, given by classical symbols for the purpose of our

analysis. We refer the reader to [40, 39] for a more detailed argument.

A smooth, real-valued function g on R is said to be in the symbol

class Sm if for some constant c > 0 and any non-negative integer k,

the estimate

|∂kξ g(ξ)| ≤ c(1 + |ξ|)m−k (3.28)

holds. If α ≥ 0 is real, we may consider those functions in L2 such that∫
(1 + |ξ|2)α|ĝ(ξ)|2dξ (3.29)

is finite to define the Sobolev space H2
α.

Remark 3.29. Notice that since 1 ≤ (1+|ξ|2)α the finiteness of this in-

tegral implies
∫
|f̂(ξ)|2dξ <∞ which implies f ∈ L2 by the Plancherel

theorem.
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4 The Generalized Whitham Kernel

In this section, we discuss the generalized Whitham kernel and its prop-

erties. We will first review the monotonicity property of the generalized

Whitham kernel and next discuss the limit property of the generalized

Whitham symbol. We then finally end the section with some discus-

sion on the convolution operator Lw of the generalized Whitham kernel.

One should note that not all theorems are proved, hence we refer the

reader to the necessary reference for a detailed proof.

Whitham [9] introduced the Whitham equation (1.1) after recog-

nizing the problems of the Korteweg-de Vries (KdV) equation (a model

equation for water waves). The equation was introduced with the ker-

nel defined in (1.2). A more precise details about the Whitham kernel

(1.2) is presented in [1, 2].

In our discussion we will consider g, ho ∼ 1 in (1.3) and examine

the generalized Whitham kernel defined by

Ks(x) = F−1{ms(ξ)} =
1

2π

∫
R
ms(ξ)e

ixξdξ (4.1)

where ms(ξ) is the generalized Whitham symbol for which we will

define as

ms(ξ) = K̂s(ξ) =

(
tanh ξ

ξ

)s

, 0 < s < 1. (4.2)

4.1 Monotonicity property of the generalized

Whitham kernel

Our aim is to show that the generalized Whitham symbol (4.2) be-

longs to the class of completely monotone functions. A more general

theory can be found in the monograph [25], although we only skew the

discussion to the generalized Whitham symbol.
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The generalized Whitham symbol can be represented as ms(ξ) =

f(ξ2), where

f(λ) =

(
tanh

√
λ√

λ

)s

, λ ≥ 0 and 0 < s < 1. (4.3)

It is clearly seen that f(λ) is positive on the interval (0,∞) and also

has a finite limit as λ→ 0. That is

lim
λ→0

f(λ) = lim
λ→0

(
tanh

√
λ√

λ

)s

= lim
λ→0

(
sinh
√
λ√

λ
· 1

cosh
√
λ

)s

=

(
lim
λ→0

sinh
√
λ√

λ
· lim
λ→0

1

cosh
√
λ

)s

= 1 <∞.

Theorem 4.1. [[1], Proposition 2.20] Let g and f be two functions

satisfying g(ξ) = f(ξ2). Then g is the Fourier transform of an even,

integrable and completely monotone function if and only if f is Stieltjes

with limλ→0 f(λ) <∞ and limλ→∞ f(λ) = 0.

Proof of Theorem 4.1. See [1], Proposition 2.20 for proof.

Proposition 4.2. (h(λ))s is a Stieljes function for any s ∈ (0, 1).

Proof of Proposition 4.2. We can observe that the function f in (4.3)

has a limit 0 as λ → ∞ and 1 as λ → 0 (see Section 4.2). It is then

left to show that f is a Stieltjes function and to proof this we consider

a function h which is defined by

h(λ) =

(
tanh

√
λ√

λ

)
, λ ≥ 0. (4.4)
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Whitham kernel

and f(λ) = (h(λ))s. It is noted that the reciprocal of h(λ)

λ 7→
√
λ

tanh
√
λ

is positive on (0,∞) with the finite limit 1 as λ → 0, and extends to

an analytic function on C\(−∞, 0] if we let
√
λ denote the principal

branch of the square root. It also maps C+ to C+. By a straightforward

calculation it can be shown that

=m

(
z

tanh z

)
= =m

(
z cosh z

sinh z

)

= =m

(
z(ez + e−z)

(ez − e−z)
· (e

z − e−z)
(ez − e−z)

)

=
=mz(2 sinh(2<e z) + 2i sin(2=mz))

|ez − e−z|2

=
2

|ez − e−z|2
(=mz sinh(2<e z)−<e z sin(2=mz))

>
4

|ez − e−z|2
(=mz<e z −<e z=mz)

= 0

when <e z, =mz > 0 from which it follows that =m(
√
λ/ tanh

√
λ) > 0

when =mλ > 0. This implies that λ 7→ tanh
√
λ/
√
λ satisfies the

conditions of Theorem 2.6 and Remark 2.7, hence the function h is a

Stieltjes function. In agreement with Lemma 2.8, we can then say that

(h(λ))s = f(λ) is a Stieltjes function.

Remark 4.3. It must be noted that sinh(z) = −i sin(iz), sinh z ≥
z and sin z ≤ z, for z ≥ 0.

The generalized Whitham kernel Ks(x) in (4.1) is completely mono-

tone on (0,∞). In particular, it is positive, strictly decreasing and

strictly convex for x > 0 as proved by [1].
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Ehrnström and Wahlén remarked in [1] that an alternative ap-

proach to obtaining the positivity and monotonicity properties of the

Whitham kernel is to study the functions −xDxK(x) and x2D2
xK(x).

And that these functions are regular at the origin and one can show

that their Fourier transforms Dξ(ξms(ξ)) and D2
ξ(ξ

2ms(ξ)), respec-

tively, are positive definite.

4.2 Limit property of the generalized Whitham

symbol

Limits are essential to mathematical analysis in general and are used

to define continuity, derivatives and integrals. We will in this section

examine the limit properties of the generalized Whitham symbol and

kernel.

It is clearly seen that the function ms(ξ) in (4.2) is real analytic,

even and strictly decreasing on (0,∞). The generalized Whitham sym-

bol takes the following limits:

lim
ξ→0

ms(ξ) = lim
ξ→0

(
tanh ξ

ξ

)s

= lim
ξ→0

(
sinh ξ

ξ
· 1

cosh ξ

)s

=

(
lim
ξ→0

sinh ξ

ξ
· lim
ξ→0

1

cosh ξ

)s

= 1 <∞
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lim
ξ→∞

ms(ξ) = lim
ξ→∞

(
tanh ξ

ξ

)s

= lim
ξ→∞

(
sinh ξ

ξ
· 1

cosh ξ

)s

=

(
lim
ξ→∞

sinh ξ

ξ
· lim
ξ→∞

1

cosh ξ

)s

= 0

since limξ→∞ 1\ cosh ξ rapidly turns to 0. This also holds by Lemma

3.23. Consequently, ∫ ∞
−∞

Ks(x)dx = 1. (4.5)

Proof of (4.5). If f ∈ L1(R), then∫
R
f(x)dx = f̂(0) =

∫
R
f(x)eixξ

∣∣∣∣
ξ=0

dx

∫
R
Ks(x)dx = K̂s(0) =

(
tanh ξ

ξ

)s∣∣∣∣
ξ=0

= 1.

We can therefore deduce from the proof of (4.5) that

‖Ks‖L1(R) =

∥∥∥∥F−1

{(
tanh ξ

ξ

)s}∥∥∥∥
L1(R)

= 1.

Thus, it can be shown that Ks ∈ L1(R) in the following way. Since

the function ms(ξ) is analytic, the inverse Fourier transform has rapid
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decay. Thus, splitting the integral according to

‖Ks‖L1(R) =

∫
R
|Ks(x)|dx

=

∫
|x|≤1

|Ks(x)|dx+

∫
|x|≥1

|Ks(x)|dx

it is plain that Ks has finite L1(R)-norm. In fact, this argument es-

tablishes more generally that Ks ∈ Lp(R) for 1 ≤ p < 2, [2].

Remark 4.4. We note that the smooth and even function ms(ξ) is in-

creasing in (−∞, 0) and decreasing in (0,∞), reaching its global max-

imum of unit size at ξ = 0. As |ξ| → ∞, it vanishes with the rate

|ξ|−s.

We finally in the next section briefly discuss some properties of

the convolution operator and also examine how it acts on periodic

functions.

4.3 The convolution operator Lw

The convolution operator from the Whitham map is much needed in

our bifurcation analysis and it is necessary that we know it properties.

We refer the reader to [2, 12, 13] for more details. We define the

convolution operator by

Lw := Ks ∗ . (4.6)

Theorem 4.5 (Bounded linear operator). Lw is a bounded linear op-

erator on L2(R), if for f ∈ L2(R) then ‖Lwf‖L2(R) ≤ ‖f‖L2(R).

Proof of Theorem 4.5. In applying Theorems 3.26 and 3.17, we have
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that

‖Lwf‖L2(R) = ‖F(Lwf)‖L2(R)

=

∥∥∥∥(tanh ξ

ξ

)s
f̂(ξ)

∥∥∥∥
L2(R)

≤ ‖f̂‖L2(R)

= ‖f‖L2(R).

Theorem 4.6 (Symmetric bounded linear operator). The operator

Lw is symmetric on L2(R); if f, g ∈ L2(R), then (Lwf, g)L2(R) =

(f, Lwg)L2(R).

Proof of Theorem 4.6. We apply Theorem 3.26 and also suppose f, g ∈
L2(R), then we have that

(Lwf, g)L2(R) = (F(Lwf),F(g))L2(R)

=

∫
R
F(Lwf)F(g)dξ

=

∫
R

(
tanh ξ

ξ

)s
f̂(ξ)ĝ(ξ)dξ

= (f, Lwg)L2(R).

It follows that Lw is a symmetric bounded linear operator on the space

L2(R).

We next discuss how the convolution operator acts on periodic func-

tions. If f ∈ L∞(R) is periodic and even and that since Ks is in L1(R),
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then by Theorem 3.4 we can write the integral∫ ∞
−∞

Ks(x− y)f(y)dy =
∞∑

n=−∞

∫ p

−p
Ks(x− y + 2np)f(y)dy

=

∫ p

−p

( ∞∑
n=−∞

Ks(x− y + 2np)

)
f(y)dy

=

∫ p

−p
T (x− y)f(y)dy.

The definition T (x) shows that it is 2p-periodic, even and contin-

uous on [−p, p]\{0} by (3.7). It is proved by Ehrnström and Kalisch

in [2] that T (x) belongs to Lp(−p, p), for 1 ≤ p < 2 using Minkowski’s

inequality. Therefore, according to Carleson-Hunt theorem [38], T (x)

can be approximated pointwise by its Fourier series. Thus from Section

3.4, we have

T (x) =
1

p

∞∑
n=0

′T̂n cos

(
nπx

p

)
a.e., (4.7)

where the Fourier coefficients of T are given by

T̂n =

∫ p

−p

∞∑
k=−∞

Ks(x+ 2kp)e−
ixnπ
p dx

x 7→ x+ 2kp

=
∞∑

k=−∞

∫ p

−p
Ks(x+ 2kp)e−

i(x+2kp)nπ
p dx

=

∫ ∞
−∞

Ks(x)e−
ixnπ
p dx

= K̂s

(
nπ

p

)
.
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One can observe that the periodic problem is given by the same mul-

tiplier as the problem at hand, hence we have the representation

Lwf = Ks ∗ f(x)

=
1

p

∞∑
n=0

′f̂nT̂n cos

(
nπx

p

)
=

1

p

∞∑
n=0

′f̂nK̂s

(
nπ

p

)
cos

(
nπx

p

)
.

We will now in the next section discuss the local bifurcation for the

Whitham equation which will later be extended to the global continu-

ous curves of solutions in Section 6.
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5 Local Bifurcation for the Whitham Equa-

tion

In this section, we will discuss the local bifurcation in relation to

the Whitham equation by first investigating the existence of travel-

ing waves. The section is then ended with a discussion of the local

bifurcation theory (the reader is referred to [3, 2] for a more detailed

work).

The solution of the Whitham equation is defind on the space Cα
even,

α ∈ (0, 1), that is the space of even and α-Hölder continuous real-

valued functions on the unit circle S. We also take into consideration

that the convolution operator (4.6) is a bounded linear operator (The-

orem 4.5) on Cα
even(S) → Cα+s

even(S) for α + s 6∈ Z. Bifurcation theory

is the mathematical study of changes in the qualitative or topologi-

cal structure of a given family, such as the integral curves of a family

of vector fields, and the solutions of a family of differential equations

[41, 42].

Most commonly applied to the mathematical study of dynamical

systems, a bifurcation occurs when a small smooth change made to

the parameter values (the bifurcation parameters) of a system causes

a sudden ’qualitative’ or topological change in its behaviour. Bifurca-

tions occur in both continuous systems (described by ODE’s or PDE’s)

and discrete systems (described by maps). Two main principal classes

are known as the local and global bifurcation [43].

5.1 Existence of periodic traveling waves

In considering steady solutions with the propagation speed c > 0 of a

right-going traveling wave, we make the usual ansatz η(x, t) = ϕ(x −
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ct). Using this form, the equation (1.4) transforms into

− cϕ′ + 3co
2
ϕϕ′ +Ks ∗ ϕ′ = 0 (5.1)

which may be integrated to

− cϕ+
3co
4
ϕ2 +Ks ∗ ϕ = β (5.2)

for some real constant β. For solutions ϕ ∈ L2(R), it appears that the

convolution Ks ∗ϕ is in L2(R) since Ks is in L1(R) as shown in Section

4.3. Therefore, the left-hand side must vanish as |x| → ∞, and we

shall consider the only case for which β = 0 [2]. The scalings 3
4
ϕ 7→ ϕ

and 1
co
Ks 7→ Ks then yield the normalised equation

− µϕ+ ϕ2 +Ks ∗ ϕ = 0 (5.3)

where µ := c\co is the non-dimensional wave speed.

Alternatively, we can also consider the scalings 3co
4c
ϕ 7→ ϕ which

yields the normalised equation

− ϕ+ ϕ2 +
1

c
Ks ∗ ϕ = 0. (5.4)

We refer reader to the Crandall-Rabinowitz bifurcation theorem [2, 44]

for details on the following theorem and lemma. The proof of the

theorem is an adaption of the one in [2], but for general s ∈ (0, 1).

Theorem 5.1. For a given p > 0 and a given depth ho ∼ 1, there exists

a local bifurcation curve of, 2p-periodic, even and continuous solutions

of the weak Whitham equation (5.4). Those solutions are perturbations

in the direction of cos(πx/p), and their wave speed at the bifurcation
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point is determined by the full dispersion relation

c∗ =

(
p tanh(π/p)

π

)s
(5.5)

In particular, as p→∞ we have c∗ → 1.

Here and elsewhere, Dc is the Frechet derivative with respect to c.

Lemma 5.2. Let W be a Banach algebra, c ∈ I := (0, 1) a parameter,

and let L : W → W be the Fréchet derivative at 0 with respect to u of

the Whitham map

u 7→ u− 1

c
Ks ∗ u− u2 = F (u, c). (5.6)

Suppose that L and DcL exist and are continuous from W → W , and

that for some c∗ ∈ I the following conditions hold:

(i) dim ker(L) = 1;

(ii) W = ker(L)⊕ ran(L);

(iii) (DcL)ker(L) ∩ ran(L) = 0.

Then there exist ε > 0 and a continuous bifurcation curve {(cκ, ϕκ) :

|κ| < ε} with cκ|κ=0 = c∗, such that ϕ0 is the vanishing solution of

(5.4), and {ϕκ}κ is a family of nontrivial solutions with corresponding

wave speeds {cκ}κ. Moreover, we have

dist(ϕκ, ker(L)) = o(κ) in W. (5.7)

Proof of Theorem 5.1. We begin the proof by first defining the Fréchet
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derivatives L and DcL:

L = DuF (0, c) = 1− 1

c
Ks∗

DcL = DcDuF (0, c) =
1

c2
Ks ∗ .

In search for a traveling solution we consider first the linearized equa-

tion

Lψ = ψ − 1

c
Ks ∗ ψ = 0. (5.8)

For ψ ∈ L∞(R), the Fourier transform of Lψ is given by

L̂ψ = ψ̂ − 1

c
K̂s ∗ ψ

= ψ̂ − 1

c
K̂sψ̂

= ψ̂

(
1− 1

c

(
tanh ξ

ξ

)s)
= ψ̂

(
c−

(
tanh ξ

ξ

)s)
= 0.

This makes sense in the settings of distributions (see [39]).

If c > 1, we have that ψ̂(ξ) = 0 for all ξ; If c = 1 implies ψ̂(ξ) = 0

for all ξ 6= 0. The support of ψ̂ is then define by supp(ψ̂) ⊆ {0}
which also implies that ψ̂ is a linear combination of δ0, δ

′
0, δ
′′
0 , . . . and

that Fδ0 = 1 , hence ψ = constant; and if c < 1, then there exist

±ξo such that c = (tanh ξo/ξo)
s and ψ̂(ξ) = 0 for all ξ 6= ±ξo. The

support of ψ̂ is then define by supp(ψ̂) ⊆ {±ξo} which also implies

that ψ = α cos(ξox) for α ∈ R.

In summary, the nontrivial even solutions of the linear problem are

thus given by ψ(x) = α if c = 1,

ψ(x) = α cos(ξox) if c < 1.
(5.9)
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We note that the constant solutions different from zero are nonphysical,

hence we get rid of it in this analysis. The speed c > 0 will be our

bifurcation parameter as we fix the depth ho ∼ 1 and half wavelength

p > 0 for the purpose of finding even periodic small amplitude solutions

by bifurcating from a curve of trivial flows. It is then clear from (5.9)

that, in any real linear space of 2p-periodic and even functions,

dim ker(L) = 1

if and only if ξ = nπ/p, n ∈ Z+ [2]. We have a unique c as in (5.5), if

we settle for the lowest mode by taking n = 1.

We now introduce the commuting Banach algebra

W :=

{
u(x) =

1

p

∞∑
n=0

′ûn cos

(
nπx

p

)
: ‖u‖ :=

1

p

∞∑
n=0

′|ûn| <∞
}
.

(5.10)

as we look for even, continuous and periodic solutions [see Section 3.4].

One much note that each member of W is uniformly continuous on all

of R. We then consider the Whitham equation as a continuous map

(5.6) from W to itself. We have at the very end of Section 4.3 that

the periodic problem is given by the same multiplier as the problem at

hand. As such,

Lu =

[
1− 1

c
Ks ∗

]
u

= u− 1

c
Ks ∗ u

=
1

p

∞∑
n=0

′ûn cos

(
nπx

p

)
− 1

c

1

p

∞∑
n=0

′ûnT̂n cos

(
nπx

p

)
=

1

p

∞∑
n=0

′ûn

(
1− 1

c
T̂n

)
cos

(
nπx

p

)
.
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Hence

Lu ∼ 1

p

∞∑
n=0

′ûn

(
1− 1

c
T̂n

)
cos

(
nπx

p

)
(5.11)

holds almost everywhere on [−p, p]. By Theorem 3.7 (Riemann-Lebesgue

lemma), T̂n → 0 as n → ∞, which implies that the right-hand side is

in W , hence continuous, and by the definition of the norm in (5.10) we

have that

‖Lu‖ =

∥∥∥∥1

p

∞∑
n=0

′ûn

(
1− 1

c
T̂n

)
cos

(
nπx

p

)∥∥∥∥
=

1

p

∞∑
n=0

′
∣∣∣∣ûn(1− 1

c
T̂n

)∣∣∣∣
=

1

p

∞∑
n=0

′|ûn|
∣∣∣∣1− 1

c
T̂n

∣∣∣∣
≤
(

1 +
1

c
max
n
{T̂n}

)
1

p

∞∑
n=0

′|ûn|

=

(
1 +

1

c
max
n
{T̂n}

)
‖u‖

so that L : W → W is continuous. Since also the left-hand side is

continuous, (5.11) is an equality, which in its turn implies that the full

nonlinear Whitham map

u 7→ u− 1

c
Ks ∗ u− u2 = Lu− u2 (5.12)

is a continuous endomorphism on W , since this is an algebra. The fact

that ker(L) = spanR(cos(πx/p)) corresponds to

T̂n=1 = T̂ (1) = K̂s

(
π

p

)
=

(
p tanh(π\p)

π

)s
= c (5.13a)
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and

T̂ (n) 6= c for n 6= 1. (5.13b)

To show that codim ran(L) is one dimensional, we consider a given

u ∈ W . Take u∗ ∈ W with û∗(1) = 0, and û∗(n) = û(n) for n 6= 1.

Then the function

v(x) =
1

p

∞∑
n=0

′ û∗(n)

1− 1
c
T̂ (n)

cos

(
nπx

p

)
(5.14)

is well defined and belongs to W (this can be seen from Section 4.3,

but it also follows the Riemann-Lebesgue lemma in combination with

(5.13)). From (5.11), we can rewrite v(x) by

v(x) = L−1u∗(x). (5.15)

Consequently,

u(x) =
1

p

∞∑
n=0

′û(n) cos

(
nπx

p

)

=
1

p

∞∑
n=0

′û(n)
1− 1

c
T̂ (n)

1− 1
c
T̂ (n)

cos

(
nπx

p

)
+
û(1)

p
cos

(
πx

p

)

=
1

p

∞∑
n=0

′û∗(n)
1− 1

c
T̂ (n)

1− 1
c
T̂ (n)

cos

(
nπx

p

)
+
û(1)

p
cos

(
πx

p

)
= Lv(x) +

û(1)

p
cos

(
πx

p

)
so that W = ker(L) ⊕ ran(L). The derivative with respect to the

bifurcation parameter c is

(DcL)u =
1

c2
Ks ∗ u. (5.16)
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Hence, by the same arguments as above, we have that

(DcL)u =
1

pc2

∞∑
n=0

′û(n)T̂ (n) cos

(
nπx

p

)
(5.17)

is bounded as a map on W , that is ‖(DcL)u‖ ≤ ( 1
c2

maxn{T̂ (n)})‖u‖.
In particular,

(DcL)ker(L) ∩ ran(L) = ker(L) ∩ ran(L) = 0. (5.18)

5.2 Local bifurcation theory

Local bifurcation occurs when a parameter change causes the stability

of an equilibrium (or fixed point) to change [41]. Let Cα
even(S), α ∈

(0, 1) denote the space of even and α-Hölder continuous real-valued

functions on the unit circle S. The Whitham symbol in (4.2) is consid-

ered as a generic non-local smoothing operator in the form of a Fourier

multiplier, that is

m(ξ) =

(
tanh ξ

ξ

)s
.

1

|ξ|s
≈ 1

(1 + |ξ|)s
, |ξ| � 1. (5.19)

We can then say that m belongs to the symbol class S−s(R) and there-

fore its estimate is given by

|∂kξm(ξ)| ≤ 1

|ξ|s+k
≈ 1

(1 + |ξ|)s+k
. (5.20)

Remark 5.3. We must also note that

tanh ξ

ξ
.

1

1 + |ξ|
≈ 1

(1 + |ξ|2)
1
2

. (5.21)
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To illustrate how the analysis used for the Whitham equation can

be applied to a larger class of equation, a local bifurcation is performed

for the Whitham equation.

We shall make use of ([3], Theorem 3.1), which we state in a form

suitable for our purposes. The proof of Theorem 5.4 is almost the same

as the one in [3], but we discard the KdV equation and only consider

the generalized Whitham equation (1.4).

Theorem 5.4 (Functional-analytic formulation). For a fix α and µ >

0, the solutions in Cα
even(S) of the Whitham equation (5.3), coincide

with the kernel of an analytic operator F : Cα
even(S)× R>0 → Cα

even(S)

given by

F (ϕ, µ) = µϕ− Lwϕ+N(ϕ) (5.22)

where Lw is bounded linear and compact and the non-linear opera-

tor N(ϕ) has zero linear part, meaning that DϕN [0, µ] = 0. Thus

DϕN [0, µ] is Fredholm of index 0.

Remark 5.5. The operators L and N are independent of µ.

Proof of Theorem 5.4. We first consider the Whitham equation (5.3)

and defined Lw as in (4.6). Cα
even(S) is a sub-algebra of the Wiener

algebra of 2π-periodic functions with absolutely converging Fourier

series [45]. Hence for f ∈ Cα
even(S) and from (3.1a) we have that

f(x) =
∞∑
k=0

ak cos(kx) and
∞∑
k=0

|ak| <∞.

Now, from (4.6) we have

Lwf(x) = Ks ∗ f(x) (5.23)

=
∞∑
k=0

ak

(
tanh k

k

)s
cos(kx). (5.24)
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The Fourier multiplier symbol in the above expression belongs to the

symbol class S−s(R) as shown in (5.19) and Lwf is bounded linear

operator on Cα
even(S) → Cα+s

even(S) for α + s /∈ Z. That is from (3.29),

(5.19) and (5.21) we have that

|Lwf |2Hα(R) =

∫
|(L̂wf)(ξ)|2(1 + |ξ|2)αdξ

=

∫ ∣∣∣∣(tanh ξ

ξ

)s
f̂(ξ)

∣∣∣∣2(1 + |ξ|)αdξ

.
∫ ∣∣∣∣ f̂(ξ)

(1 + |ξ|)s

∣∣∣∣2(1 + |ξ|)αdξ

≈
∫ ∣∣∣∣ f̂(ξ)

(1 + |ξ|2)
s
2

∣∣∣∣2(1 + |ξ|)αdξ

=

∫
|f̂(ξ)|2(1 + |ξ|2)α−sdξ

= |f |2Hα−s(R).

Since Lw : Hα−s → Hα is continuous implies that Lw : Hα → Hα+s

is also continuous, hence Lw is invertible with bounded linear inverse

L−1
w : Cα+s

even(S)→ Cα
even(S). Due to the compactness of the embedding

Cβ
even(S) ↪→ Cα

even(S), β > α, the operator is compact on Cα
even(S). We

then define the mapping Lw : Cα
even(S)× R>0 → Cα

even(S) by

Fw(ϕ, µ) := µϕ− Lwϕ− ϕ2, (5.25)

where Fw is analytic. We also have Fw(0, µ) = 0, and the linearization

DϕFw[0, µ] = µ− Lw is Fredholm of index 0.

We restate ([3], Corollary 3.2) as we consider the general s ∈ (0, 1).

The proof is almost the same as the one in [3], hence we refer the reader

to the exact reference for proof.

Proposition 5.6. For each integer k ≥ 1, there exist µk := (tanh(k)/k)s
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and a local, analytic curve

ε 7→ (ϕ(ε), µ(ε)) ∈ Cα
even(S)× (0, 1)

of nontrivial 2π/k-periodic Whitham solutions with Dεϕ(0) = cos(kx)

that bifurcates from the trivial solution curve µ 7→ (0, 1) at (ϕ(0), µ(0)) =

(0, µk). In a neighborhood of the bifurcation point (0, µk) these are all

nontrivial solutions of Fw(ϕ, µ) = 0 in Cα
even(S)× (0, 1), and there are

no other bifurcation points µ > 0, µ 6= 1, for solutions in Cα
even(S).

At µ = 1 the trivial solution curve µ 7→ (0, µ) intersects the curve

µ 7→ (µ− 1, µ) of constant solutions ϕ = µ− 1; together these consti-

tute all solutions in Cα
even(S) in a neighborhood of (ϕ, µ) = (0, 1).

Proof of Proposition 5.6. See Corollary 3.2 [3] for proof.

We finally in the next section discuss the global bifurcation for the

Whitham equation.
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6 Global Bifurcation for the Whitham Equa-

tion

In this final section we study the global bifurcation for the Whitham

equation (1.1) and some properties along the bifurcation branch (Uni-

form convergence and the characterization of blow-up).

The sections are being structured as follows. In Section 6.1 we

discuss the boundedness and smoothness of the Whitham solution,

while Section 6.2 discusses the global bifurcation theory. Section 6.3

next introduces the Lyapunov-Schmidt reduction theory in relation to

the global bifurcation of the Whitham equation. Section 6.4 proceeds

by establishing the bifurcation formulas and finally in Section 6.5, we

discuss the properties along the bifurcation Branch.

The discussions in this chapter follows a similar pattern as pre-

sented by Ehrnström and Kalisch in [3]. In this present discussion we

consider the generalized Whitham symbol described in (4.2) instead of

K̂(ξ) =

√
tanh ξ

ξ
(6.1)

as defined in [3]. The theorems in this section are true for the convo-

lution operator Lw, which maps Cα into Cα+s for α + s 6∈ Z, but for

simplicity we will assume α + s ≤ 1 where α < s.

6.1 Boundedness and smoothness of the Whitham

solution

Global bifurcations occur when ‘larger’ invariant sets, such as periodic

orbits, collide with equilibria. This causes changes in the topology

of the trajectories in the phase space which cannot be confined to a

small neighbourhood, as is the case with local bifurcations. In fact, the
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changes in topology extend out to an arbitrarily large distance (hence

‘global’) [42].

Let Fw be the Whitham operator from Theorem 5.4, defined by

(5.24) and (5.25). With

U :=

{
(ϕ, µ) ∈ Cα

even(S)× (0, 1) : ϕ <
µ

2

}
, (6.2)

we let

S := {(ϕ, µ) ∈ U : Fw(ϕ, µ) = 0} (6.3)

be our set of solutions (we refer reader to [1] for a detailed proof of the

choice of U and S).

The Lemmas 6.1, 6.2 and 6.3 follows strictly with few details added

to the ones found in ([3], Section 4). We also assume that these lemmas

are true for the generalized Whitham equation.

Lemma 6.1 (L∞-bound). Let µ > 0. Any bounded Whitham solution

satisfies

‖ϕ‖∞ ≤ µ+ ‖Lw‖L(L∞(S)) (6.4)

where L(X) denotes the Banach algebra of bounded linear operators on

a Banach space X.

Proof of Lemma 6.1. From µϕ− Lwϕ− ϕ2 = 0 we have that

|ϕ|2 = |µϕ− Lwϕ|

≤ µ|ϕ|+ |Lwϕ|

≤ µ|ϕ|+ ‖Lw‖L(L∞(S))‖ϕ‖∞.

We take the supremum and divide by ‖ϕ‖∞, then we have (6.4).

Lemma 6.2 (Fredholm). The Fréchet derivative DϕFw[ϕ, µ] is a Fred-

holm operator of index 0 for all (ϕ, µ) ∈ U .
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Proof of Lemma 6.2. We have

DϕFw[ϕ, µ] = (µ− 2ϕ)id− Lw,

and, for any given (ϕ, µ) ∈ U , that (µ− 2ϕ)id ∈ Lis(C
α
even(S)). In view

of that Lw is compact on Cα(S), the operator DϕFw[ϕ, µ] is Fredholm.

The linearization DϕFw[0, µ] has Fredholm index zero along the trivial

solution curve; we have

τ 7→ (µ− 2τϕ)id− Lw ∈ C([0, 1],L(Cα(S)),

and since the index is continuous in the operator-norm topology, it

follows that it is zero also at (ϕ, µ).

Lemma 6.3. Whenever (ϕ, µ) ∈ S the function ϕ is smooth, and

bounded and closed sets of S are compact in Cα
even(S)× (0, 1).

Proof of Lemma 6.3. We write the Whitham equation (5.3) in the form(
ϕ− µ

2

)2

=
µ2

4
− Lwϕ,

where we have ϕ to be

ϕ = F̃ (ϕ, µ) :=
µ

2
−
(
µ2

4
− Lwϕ

) 1
2

. (6.5)

The mapping Lw is bounded and linear Cα(S) → Cα+s(S) (proof of

Theorem 5.4), and x 7→
√
x is real analytic for x > 0. Consequently, if

we let

V :=

{
(ϕ, µ) ∈ Cα(S)× (0, 1) :

µ2

4
> Lwϕ

}
,

then F̃ is real analytic V → Cα+s(S). The space Cα+s(S) is relatively

compact in Cα(S), whence F̃ maps bounded subsets of V into pre-

compact sets. We may then prove:
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(i) (Smoothness). For any ϕ ∈ S there exists a constant R1 such

that supϕ ≤ R1 < µ/2. Since ϕ is a fixed point of F̃ (, µ) we have

(ϕ, µ) ∈ V . A straightforward induction argument reveals that

ϕ ∈ C∞(S).

(ii) (Compactness). Let K ⊂ S be bounded and closed in the

Cα(S)× R-topology. Then K ⊂ V , and {ϕ : (ϕ, µ) ∈ K} = F̃K

is pre-compact in Cα(S). Any sequence {(ϕj, µj)}j≥1 ⊂ K thus

converges to a pair (ϕ0, µ0) in the Cα(S)×R-topology. The fact

that K is closed implies that (ϕ0, µ0) ∈ K, whence K is compact.

We next introduce the concept of global bifurcation in relation to

the Whitham equation.

6.2 Global bifurcation theory

We shall make use of the global one-dimensional branches theorem

([23], Theorem 9.1.1), which we state in the form suitable for our pur-

poses.

Theorem 6.4 (Global bifurcation). Suppose (0, µ) ∈ U and Fw(0, µ) =

0 for all µ ∈ R. If also the Lemmas 6.2 and 6.3 hold then, the local bi-

furcation curves ε 7→ (ϕ(ε), µ(ε)) of solutions to the Whitham equation

from Proposition 5.6 extend to global continuous curves of solutions

R≥0 → S, with S as in (6.3). One of the following alternatives holds:

(i) ‖(ϕ(ε)‖Cα(S) →∞ as ε→∞.

(ii) (ϕ(ε), µ(ε)) approaches the boundary of S as ε tend to ∞.

(iii) The function ε 7→ (ϕ(ε), µ(ε)) is T -periodic, for some T ∈ (0,∞).
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We can rely on Lemma 6.2 and 6.3 and show that, for ε > 0 taken

to be sufficiently small, µ(ε) is not identically equal to a constant; that

is if any of the derivatives µ(k)(0) 6= 0. In our case it turns out that

µ̇(0) = 0, however one can show that µ̈(0) 6= 0.

We apply the Lyapunov-Schmidt reduction in other to establish

this. In other to discuss the Lyapunov-Schmidt reduction and the bi-

furcation formulas in the next two sections we first defind some equa-

tions that are suitable for our purposes. Let µ∗ := µ1 be the bifurcation

point from Proposition 5.6 and let

ϕ∗(x) := cos(x). (6.6)

Let furthermore

M :=

{∑
k 6=1

ak cos(kx) ∈ Cα(S)

}
, (6.7)

and

N := ker(DϕFw[0, µ∗]) = span(ϕ∗). (6.8)

Then Cα
even(S) = M ⊕ N and we can use the canonical embedding

Cα(S) ↪→ L2(S) to define a continuous projection

q ϕ := 〈ϕ, ϕ∗〉L2(S)ϕ
∗, (6.9)

with

〈u, v〉L2(S) :=
1

π

∫
S
uv dx. (6.10)

6.3 Lyapunov-Schmidt reduction

The Lyapunov-Schmidt procedure is a method for reducing the ques-

tion of existence of solutions to an infinite-dimensional equation, locally

in a neighbourhood of a known solution, to an equivalent one involving
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an equation in finite dimensions, quite commonly (though not always)

in just two dimensions [23].

Theorem 6.5 (Lyapunov-Schmidt Reduction [44]). There exist a neigh-

borhood O × Y ⊂ U around (0, µ∗) in which the problem

Fw(ϕ, µ) = 0 (6.11)

is equivalent to that

Φ(εϕ∗, µ) := qFw(εϕ∗ + ψ(εϕ∗, µ), µ) = 0 (6.12)

for functions ψ ∈ C∞(ON×Y,M), Φ ∈ C∞(ON×Y,N), and ON ⊂ N

an open neighborhood of the zero function in N . One has

Φ(0, µ∗) = 0,

ψ(0, µ∗) = 0,

Dϕψ(0, µ∗) = 0,

and solving the finite-dimensional problem (6.12) provides a solution

ϕ = εϕ∗ + ψ(εϕ∗, µ) (6.13)

of the infinite-dimensional problem (6.11).

We next discuss the concept of bifurcation formulas in relation to

the solution curve (bifurcation curve) of the Whitham equation.

6.4 Bifurcation formulas

The shape of the bifurcation curve follows from the bifurcation for-

mulas. If D2
ϕϕFw[0, µ∗](ϕ∗, ϕ∗) 6∈ R(DϕFw[0, µ∗]), the number µ̇(0) is

nonzero, and the bifurcation is called transcritical (see Figure 1).
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However, if D2
ϕϕFw[0, µ∗](ϕ∗, ϕ∗) ∈ R(DϕFw[0, µ∗]) then µ̇(0) and

the local shape of the curve is determined by µ̈(0). Now, if µ̇(0) < 0,

the bifurcation is subcritical, and if µ̇(0) > 0, it is supercritical. In

both cases the diagram is referred to as a pitchfork bifurcation (see

Figure 1).

Figure 1: An illustration of the pitchfork bifurcation.

The bifurcation formulas in ([3], Theorem 4.6) is modified with

general s ∈ (0, 1). The proof is also an adaption of the one in [3].

Theorem 6.6 (Bifurcation Formulas). Let

µ∗ = (tanh(1))s,

C1 =
1

µ∗ − 1
,

and

C2 =
1

2
(
µ∗ −

(
tanh(2)

2

)s) .
The main bifurcation curve (k = 1) for the Whitham equation found
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in Proposition 5.6 satisfies

ϕ(ε) = ε cos(x) + ε2

(
1

2
C1 + C2 cos(2x)

)
+O(ε3), (6.14)

and

µ(ε) = µ∗ + ε3(C1 + C2) +O(ε3), (6.15)

in Cα
even(S) × (0, 1) as ε → 0. In particular, µ̈(0) < 0 and Proposition

5.6 describes a subcritical pitchfork bifurcation.

Proof of Theorem 6.6. The analysis for µ is perform first, followed by

that of ϕ. It is known that ε 7→ µ(ε) is analytic at ε = 0 and that

µ(0) = µ∗, however it remains to show that µ̇(0) = 0 and also to deter-

mine µ̈(0). We refer to [[44], Section I.6] for the bifurcation formulas

used in this proof. We have that

D2
ϕϕFw[0, µ∗](ϕ∗, ϕ∗) = −2ϕ∗2,

D2
ϕµFw[0, µ∗]ϕ∗ = ϕ∗,

and the value of µ̇(0) may be explicitly calculated as

µ̇(0) = −1

2

〈D2
ϕϕFw[0, µ∗](ϕ∗, ϕ∗), ϕ∗〉L2(S)

〈D2
ϕµFw[0, µ∗]ϕ∗〉L2(S)

= 0,

since ∫
S

cos3(x) dx = 0.

Moreover, when µ̇(0) = 0 one has that

µ̈(0) = −1

3

〈D3
ϕϕϕΦ[0, µ∗](ϕ∗, ϕ∗, ϕ∗), ϕ∗〉L2(S)

〈D2
ϕµFw[0, µ∗]ϕ∗〉L2(S)

. (6.16)

Since D2
ϕµFw[0, µ∗] = id we find that the denominator is of unit size.
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One calculates

DϕΦ[ϕ, µ]ϕ∗ = qDϕFw[ϕ+ ψ(ϕ, µ), µ](ϕ∗ +Dϕψ(ϕ, µ)ϕ∗),

D2
ϕϕΦ[ϕ, µ](ϕ∗, ϕ∗)

=qD2
ϕϕFw[ϕ+ ψ(ϕ, µ), µ](ϕ∗ +Dϕψ(ϕ, µ)ϕ∗, ϕ∗ +Dϕψ(ϕ, µ)ϕ∗)

+qDϕFw[ϕ+ ψ(ϕ, µ), µ]D2
ϕϕψ[ϕ, µ](ϕ∗, ϕ∗),

and, in view of that Fw is quadratic in ϕ,

D3
ϕϕϕΦ[ϕ, µ](ϕ∗, ϕ∗, ϕ∗)

=3qD2
ϕϕFw[ϕ+ ψ(ϕ, µ), µ](ϕ∗ +Dϕψ(ϕ, µ)ϕ∗, D2

ϕϕψ[ϕ, µ](ϕ∗, ϕ∗))

+qDϕFw[ϕ+ ψ(ϕ, µ), µ]D3
ϕϕϕψ[ϕ, µ](ϕ∗, ϕ∗, ϕ∗).

Applying the form of DϕFw together with that

ψ(0, µ∗) = Dϕψ[0, µ∗]ϕ∗ = 0

one finds that

D3
ϕϕϕΦ[0, µ∗](ϕ∗, ϕ∗, ϕ∗) =q (µ∗id− Lw)D3

ϕϕϕψ[0, µ∗](ϕ∗, ϕ∗, ϕ∗)

− 6q ϕ∗D2
ϕϕψ[0, µ∗](ϕ∗, ϕ∗).

(6.17)

We have ran(µ∗id−Lw) = M , so that q(µ∗id−Lw) = 0. We thus need

to determine ϕ∗D2
ϕϕψ[0, µ∗](ϕ∗, ϕ∗). Since DϕFw[0, µ∗] = µ∗id− Lw is

an isomorphism on M , it is possible (see again [[44] Section I.6]) to
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rewrite D2
ϕϕψ[0, µ∗](ϕ∗, ϕ∗) as

D2
ϕϕψ[0, µ∗](ϕ∗, ϕ∗) = −(DϕFw[0, µ∗])−1(id−q)DϕϕFw[0, µ∗](ϕ∗, ϕ∗)

= −(DϕFw[0, µ∗])−1(id−q)(−2ϕ∗2)

= (DϕFw[0, µ∗])−1(2 cos2(x))

= (DϕFw[0, µ∗])−1(1 + cos(2x))

=
1

µ∗ − 1
+

cos(2x)

µ∗ −
(

tanh(2)
2

)s .
(6.18)

After multiplication with cos(x) this equals

cos(x)

µ∗ − 1
+

cos(x)

2
(
µ∗ −

(
tanh(2)

2

)s) +
cos(3x)

2
(
µ∗ −

(
tanh(2)

2

)s) .
In view of (6.16) and (6.17) the coefficient in front of cos(x) equals
1
2
µ̈(0). All taken into consideration, we obtain (6.15) via a Maclaurin

series, and one easily checks that µ̈(0) < 0.

To prove (6.14), we make use of the formula

ϕ(ε) = εϕ∗ + ψ(εϕ∗, µ(ε)) (6.19)

from the Lyapunov-Schmidt reduction (cf. Theorem 6.5). We already

know that ϕ(0) = 0 and ϕ̇(0) = cos(x), so it remains to calculate ϕ̈(0).

It follows from (6.19) that

ϕ̈(ε) =D2
ϕϕψ[0, µ∗](ϕ∗, ϕ∗) + 2D2

ϕµψ[0, µ∗](ϕ∗, µ̇(0))

+D2
µµψ[0, µ∗](µ̇(0), µ̇(0)) +Dµψ[0, µ∗]µ̇(0).

Since ψ(0, µ) ≡ 0 where ψ exists, we have Dµψ(0, µ∗) = 0. Combining
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this with µ̇(0) = 0 one finds that

ϕ̈(0) = D2
ϕϕψ[0, µ∗](cos(x), cos(x)),

so that the proposition now follows from (6.18).

Remark 6.7. We note that

(µ∗ − Lw)−1
∑
k=0

ak cos(kx) =
∑
k=0

ak

µ∗ −
(

tanh(k)
k

)s cos(kx).

We next discuss some properties along the bifurcation branch of

the Whitham equation.

6.5 Properties along the bifurcation branch

In considering a sequence of Whitham solutions (ϕn, µn) ∈ S where

µn ∈ (0, 1), then Lemma 6.1 implies that ϕn is uniformly bounded in

C(S). That is

‖ϕ‖2
∞ ≤ ‖µϕ‖∞ + ‖Lw‖L∞(R)‖ϕ‖∞ = (|µ|+ 1)‖ϕ‖∞,

so that (ϕn)n is bounded whenever (µn)n is bounded. We know that

the kernel Ks of the Whitham equation is integrable and continuous

almost everywhere, hence we can claim that any uniformly bounded

sequence of Whitham solutions (i.e in L∞(R)) is equicontinuous (Proof

of Theorem 4.1, [2]). The Arzela-Ascoli Lemma can be applied to

conclude that a subsequence of ϕn converges in C(S), when dealing

with periodic solutions.

Theorem 6.8 (Uniform Convergence). Any sequence of Whitham so-

lutions (ϕn, µn) ∈ S has a subsequence which converges uniformly to a

solution ϕ. If ϕ < 2µ uniformly on R, then the solution is smooth with
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all its derivatives bounded. If ϕ attains the value µ
2
, then the solution

is α-Hölder continuous for 0 < α < s with α + s ≤ 1.

Proof of Theorem 6.8. We know from the proof of Theorem 5.4 that

Lw maps Cα(S) into Cα+s(S) for α + s 6∈ Z and α, s ∈ (0, 1), we see

from (6.5) that ϕ ∈ Cα(S) wherever 2ϕ 6= µ. On the other hand, when

ϕ(x) = µ
2

we have

|ϕ(x)− ϕ(y)| = µ

2
− ϕ(y)

=
(µ2

4
− Lwϕ(y)

) 1
2

= (Lwϕ(x)− Lwϕ(y))
1
2

≤ C|x− y|
α+s
2 .

This means that if Lw is α-Hölder continuous at x, then ϕ is α-Hölder

continuous at the same point. If ϕ ∈ Cα(S) then Lwϕ ∈ Cα+s and

ϕ has Hölder regularity 1
2
(α + s) at x. In view of that 1

2
(α + s) >

α for α < s, this shows that for any such α, the function ϕ has the

corresponding Hölder regularity at x = 0. In particular if we choose

α = 0 and s = 1
2

then by repeating the argument one can show that

ϕ ∈ C 1
2 wherever 2ϕ 6= µ, and ϕ ∈ C 1

4 . Now the estimate

|Lwϕ(x)− Lwϕ(y)| ≤ |x− y|α+s (6.20)

if α + s < 1 and s ≤ 1
2

implies α < 1
2
. Thus ϕ ∈ Cα(S) for all α < 1

2
.

We next establish an argument for α + s = 1 for s ∈ (1
2
, 1). As-

suming s > 1
2

and also considering ϕ ∈ Cα, we have (6.20) when the

same argument for s ≤ 1
2

is used. From the proof of Theorem 5.4 the

solution ϕ is even and it maximum is attained at 0 (Proposition 5.6).

This implies that Lwϕ is also even and it maximum is attained at 0.

That is if Lwϕ ∈ C1 then (Lwϕ)′(0) = 0. Now Lwϕ ∈ C1+(α+s−1)

implies that (Lwϕ)′ ∈ Cα+s−1 and (Lwϕ) ∈ C1, in applying the mean
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value theorem (Remark 6.9) at x = 0, we have that

|Lwϕ(0)− Lwϕ(y)|
1
2 ≤ |y|(α+s) 1

2 .

Hence for ϕ ∈ Cα implies |ϕ(0) − ϕ(y)| ≤ |y|α, for all α < s since we

considered α + s = 1 for s ∈ (1
2
, 1).

We will now prove that if ϕ < µ
2

uniformly on R, then ϕ ∈ C∞(R)

and all of it derivatives are uniformly bounded on R. Assuming that

ϕ < µ
2

uniformly on R and we have the operator Lw which maps

Cα(R) into Cα+s(R) and L∞(R) ⊂ C0(R) into Cs(R) ⊂ L∞(R). We

note from the proof of Lemma 6.3 that

ϕ = F̃ (ϕ, µ) :=
µ

2
−
(
µ2

4
− Lwϕ

) 1
2

.

That is the Nemytskii operator

v 7→ µ

2
−
(
µ2

4
− Lwϕ

) 1
2

maps Cα(R) ∩ L∞(R) into itself for v < µ2

4
and α > 0 (see Theorem

2.87, [46] and note that Cα(R) = Bα
p,q, where we take p = q = ∞ in

our analysis). Now all the three mappings are continuous and since

ϕ < µ
2
, it follows that Lwϕ <

µ2

4
, and therefore

[
Lw 7→

µ

2
−
(µ2

4
−Lwϕ

) 1
2
]
◦ [ϕ 7→ Lwϕ] : Cα(R)∩L∞(R) ↪→ Cα+s(R)

for all α ≤ 0. Hence, the equality

ϕ =
µ2

4
−
(µ2

4
− Lwϕ

) 1
2

guarantees that ϕ ∈ C∞(R) with uniformly bounded derivatives as
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long as ϕ ∈ L∞(R).

Remark 6.9. The mean value theorem holds, if a function f is contin-

uous on the closed interval [x, y] and differentiable on the open interval

(x, y), then there exist a point ξ in (x, y) such that

|f(x)− f(y)| = |x− y||f ′(0)− f ′(ξ)|, for f ′(0) = 0.

If f ∈ C1+α implies f ′ ∈ Cα and f ∈ C1, and also if |y| > |x| then

|f(x)− f(y)| = |x− y||f ′(0)− f ′(ξ)|

≤ |x− y||ξ|α

≤ |x− y||y|α.

Now at the point x = 0, we have that

|f(0)− f(y)| ≤ |y|1+α.

The proof of Theorem 6.10 is an adaption of the one in [3], but

with general s ∈ (0, 1).

Theorem 6.10 (Characterization of Blow-up). Alternative (i) in The-

orem 6.4 can happen only if

lim inf
ε→∞

inf
x∈R

(µ(ε)

2
− ϕ(x; ε)

)
= 0. (6.21)

In particular, alternative (i) implies alternative (ii).

Proof of Theorem 6.10. Assume that

lim inf
ε→∞

inf
x∈R

(µ(ε)

2
− ϕ(x; ε)

)
≥ δ,
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for some δ > 0. Any such solution of the Whitham equation satisfies

µ(ϕ(x)− ϕ(y)) + (ϕ(x))2 − (ϕ(y))2 + Lwϕ(y)− Lwϕ(x)

|ϕ(x)− ϕ(y)| = |Lwϕ(x)− Lwϕ(y)|
µ− ϕ(x)− ϕ(y)

≤ |Lwϕ(x)− Lwϕ(y)|
2δ

.

Since Lw is continuous Cα(S) → Cα+s(S) and the family {ϕ(ε)}ε is

uniformly bounded in Cα(S) (cf. Lemma 6.1), it follows that {ϕ(ε)}ε
is uniformly bounded in Cα+s(S) too. Now if we take α = 0, then

Lw : C0(S) → Cs(S) is also continuous and hence ϕ ∈ Cs which also

implies that ϕ ∈ Cks for k ∈ Z and ks < 1. Therefore we have that

‖ϕ(ε)‖Cα(S) ≤ Cδ−k, α ∈ (0, 1),

for some constant C depending only on Lw. It must be noted that µ is

bounded and that ‖ϕ(ε)‖Cα(S) →∞ is possible only if (6.21) holds.

µ(ε) is bounded and hence according to Theorem 6.8, there is a

subsequence (ϕnk)k which converges uniformly to a solution ϕo as k →
∞. If we consider µo as the wave speed associated to ϕo, then by the

nodal properties of ϕnk , it follows that ϕo(0) = µo
2

and ϕ ∈ Cα(S). The

solution of the Whitham equation (5.3) is even, strictly increasing on

(−π, 0), smooth on S, and has Hölder regularity 1
2
(α + s) at x.
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