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Abstract. The purpose of this thesis is to explore the relation between the
classical Hardy space of analytic functions and the Hardy space of Dirichlet series.
Two chapters are devoted to developing the basic properties of these spaces. In
the remaining two chapters we study Nehari’s theorem – both in the classical and
multiplicative setting – as a concrete example of the usefulness of the interplay
between the space of Dirichlet series and the space of analytic functions on the
infinite-dimensional polydisc.

Sammendrag. Formålet med denne oppgaven er å utforske sammenhengen
mellom Hardy rommet av analytiske funksjonene i polydisken og Hardy rommet
av Dirichlet rekker. To kapittler er satt av til å utforske egenskapene til disse
rommene. I de to gjenværende kapittlene studeres Neharis teorem – b̊ade i den
klassiske og multiplikative settingen – som et konkret eksempel p̊a nytterdien av
å utnytte samspillet mellom rommet av Dirichlet rekker og rommet av analytiske
funksjoner p̊a den uendelig-dimensjonale polydisken.
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Introduction

We begin by a short introduction to the topic at hand, through Hankel forms and
Dirichlet series. After this a short overview of each chapter is given.

Hankel forms and Dirichlet series

A Hankel form in `2 × `2 → C is one of the form

ρ(a, b) :=
∑
m,n≥0

ambmρm+n ,

and we say that the Hankel form is bounded if there exists a constant such that∣∣∣∣∣
∞∑

m,n=0
ambnρn+m

∣∣∣∣∣ ≤ C
( ∞∑
m=0
|am|2

) 1
2
( ∞∑
n=0
|bn|2

) 1
2

.

Further we let H2(D) denote the Hilbert space of functions analytic in D with
square-summable Taylor coefficients. Every function ψ =

∑
j ρjz

j in H2(D) defines
a Hankel form Hψ by the relation

Hψ(fg) = 〈fg, ϕ〉H2 , f, g ∈ H2 .

The most important theorem for Hankel forms is the Nehari’s theorem [33], which
states that every bounded Hankel form is generated by a bounded symbol ψ on
the torus T. More precisely Hψ extends to a bounded form on H2(T) × H2(T)
if and only if ψ = P+ϕ for a bounded function ϕ in L∞(T). Where P+ denotes
the orthogonal projection L2(T)→ H2(T). An interesting question is whether the
multiplicative Hankel forms

%(a, b) :=
∑
m,n≥1

ambm%mn ,

exhibits the same properties as the (additive) Hankel forms. These can be viewed
as the classical Hankel forms now on the infinite-dimensional polydisc. We let H 2

denote the Hilbert space of Dirichlet series with square-summable coefficients in the
half plane C1/2 =

{
s ∈ C, Re s > 1/2

}
. Every Dirichlet series ψ =

∑
n≥1 ρnn

−s in
H 2 defines a multiplicative Hankel form Hψ by the relation

Hψ(f, g) = 〈fg, ψ〉H 2 , f, g ∈H 2 ,

The main purpose of this thesis is to explore to what extent Nehari’s theorem
holds for these multiplicative Hankel forms. This study is started by exploring the
properties of the multiplicative analog of the Hilbert matrix whose analytic symbol

1



2 INTRODUCTION

ϕ is the primitive of ζ(s + 1/2) − 1 in H 2
0 . As shown in [10] this Hankel form is

bounded with norm π. More explicitly written∣∣∣∣∣ ∑
n,m≥2

ambn√
nm log(nm)

∣∣∣∣∣ ≤ π(∑
n≥2
|am|2

) 1
2
(∑
n≥2
|bn|2

) 1
2

This raises the following question.
Question 1. Does the multiplicative Hilbert matrix have a bounded symbol?
To which the answer is still maybe. A key tool in the study of Dirichlet series
and Hardy spaces is the Bohr lift. For any n ∈ N, the fundamental theorem of
arithmetic yields

n =
∏
j≥1

p
κj
j ,

which associates the finite non-negative multi-index κ(n) = (κ1, κ2, κ3, . . .) to n.
The Bohr lift of the Dirichlet series is the power series

Bf(z) =
∑
n≥1

anz
κ(n) ,

where z = (z1, z2, z3, . . .). Under the Bohr lift, a formal computation shows that
〈BfBg,Bϕ〉L2(T∞) = 〈fg, ϕ〉H 2 ,

allowing us to compute the multiplicative Hankel form on the infinite polydisk T∞.
The study of Hankel forms on T∞ was initiated by Helson [25, p. 52–54], who
raised the following questions:
Question 2. Does every bounded multiplicative Hankel form have bounded symbol

ϕ on the polytorus T∞?
Question 3. Does every multiplicative Hankel form in the Hilbert Schmidt class

have a bounded symbol?
We answer these questions in full detail chapter 4. By realizing Hankel forms as
small operators on the polydisk and using ideas from Ortega-Cerdà and Seip [36],
Bayart et al. [6], and Brevig and Perfekt [9] we answer Question 1 in the negative.
By extending Carleman’s inequality into the polydisk we obtain Helson’s inequality,
and using this inequality we prove that every multiplicative Hankel form in the
Hilbert Schmidt class have a bounded symbol, thus confirming Question 3.
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Overview of the thesis

Chapter 1. The first chapter is an introduction to the classical Hardy spaces on
the disk. We prove the Riesz factorization theorem, and use the results to show that
the space of polynomials are dense in Hp. We then extend the properties of the point
estimate and Carleman’s inequality to the polydisk; these results are respectively
known as the Cole-Gamelin estimate and Helson’s inequality.

Chapter 2. The second chapter introduces the Hankel forms and shows their rela-
tionship with functions in the Hardy space H2. We study the bona fide example of a
Hankel form, namely the Hilbert matrix. Then we use the weak-factorization of the
Hardy space on the disk to prove Nehari’s theorem for Hankel forms.

Chapter 3. In the third chapter, we study the Hardy space of Dirichlet series, and
prove that this space behaves similarly to the Hardy spaces. In particular we prove
Carlson’s theorem, and use it to show that H 2 is the closure of Dirichlet polynomials
under the Besicovitch norm. Using an idea of Brevig and a bilinear form, a sharp
estimate for an embedding inequality is obtained.

The Bohr correspondence is then introduced, and we use it to obtain the point-
estimate for H p. Using the Bohr correspondence and idea of Saksman and Seip
we offer an elementary proof that Hardy space H p may be defined as the Banach
space completion of Dirichlet polynomials in the Besicovitch norm, thus extending
Carleson’s theorem.

Chapter 4. In the last chapter we introduce the multiplicative Hankel forms, and
study the multiplicative analogue to the Hilbert matrix. We prove that this Hankel
form is bounded with same norm as the Hilbert matrix. The chapter ends by proving
that Nehari’s theorem does not hold in full generality, this is done by studying Hankel
forms as small operators on the polydisc. We also show that Nehari’s theorem
holds under the restriction that the symbol is completely multiplicative or has square
summable coefficients.





CHAPTER 1

Hardy spaces on the disc

This chapter begins with some preliminaries, before the classical definition of the
Hardy space is presented together with some basic results on boundary behavior.
This work is done in preparation for proving the Riesz factorization theorem, which
has a number of interesting applications. In particular we show that every function
f ∈ H1 can be written as f = gh, where g, h ∈ H2 and ‖f‖1 = ‖g‖2‖h‖2. At the
end we show that the Hardy spaces may be defined as the closure of the polynomials
in L2, and extend some of our results to the polydisc.

1.1. Preliminaries

This section is devoted to introducing a series of necessary prerequisites. In par-
ticular we briefly introduce harmonic functions, the Poisson kernel and Möbius
transformations. In particular we need some results about the radial limits of har-
monic, and thus also analytic functions. For brevity the proofs are omitted, see
Pavlović [38], Rudin [44, Chp. XI], or Duren [15, Chp. I] for reference.

Following the notation of standard literature we will denote the unit disk D as
D = { z ∈ C : |z| < 1 } .

Similarly T, rather than ∂D will represent the boundary of the disk
T = { z ∈ C : |z| = 1 } = {eit : t ∈ R/2πZ} .

Functions defined on T will be identified with functions on R/2πZ, i.e. with func-
tions on the real line, periodic of period 2π. Here Z denotes the set of integers
{. . . ,−1, 0, 1, . . .}, and similarly N represents the set positive integers {1, 2, . . .}.

Integrals on T will be with respect dm= dθ/2π, the normalized Lebesgue
measure such that m(T) = 1. We will use the following notations to describe
integrals on T and over the real numbers R:∫

T
f dm := 1

2π

∫ π

−π
f(eiθ) dθ and

∫
R
f dx :=

∫ ∞
−∞

f(x) dx ,

and the notation
∫
T f(z) dm(z) will be used whenever the need to specify which

variable we are integrating over arises. Similarly, the notation∑
n∈Z

f(n) =
∞∑

n=−∞
f(n) and

∞∑
n=0

∞∑
m=0

f(n,m) =
∑
m,n≥0

f(n,m) ,

will frequently be used, and the latter expression will naturally be extended to as
many variables as needed. For 1 ≤ p < ∞, we will let Lp(T) denote the Banach
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6 1. HARDY SPACES ON THE DISC

space consisting of all analytic functions satisfying

‖f‖Lp(T) :=
(∫

T

∣∣f ∣∣p dm
) 1
p

<∞ .

When p =∞, we define L∞ as the space of essentially bounded functions
‖f‖L∞(T) := sup

0≤θ<2π

∣∣f(eiθ)
∣∣ .

For brevity we will write Lp = Lp(T) when no confusion is possible.

1.1.1. Harmonic functions and the Poisson kernel
Definition (Harmonic functions). Let u be an analytic function in an open set
Ω, such that ∂u2/∂2x and ∂u2/∂2y exists at every point of Ω. The Laplacian of u
is defined as

∆u := ∂2u

∂x2 + ∂2u

∂y2 .

If u ∈ C2(Ω) is a twice continuously differentiable function in Ω and if ∆u = 0 ,, at
every point of Ω, then u is said to be harmonic in Ω.

Theorem 1.1. A harmonic function u defined on a simply connected domain Ω
can be represented in the form u(z) = h(z)+g(z), z ∈ Ω, where h and g are analytic
and uniquely determined up to an additive constant; conversely, if u = h+ g, where
h and g are analytic, then f is harmonic.

Using this theorem one can deduce various properties of harmonic functions
from the corresponding properties of analytic functions and vice versa.

The Poisson integral and kernel. One of the most used and well
known harmonic functions is the Poisson kernel, see [1, p. 166-168], [44, p. 110-112,
Chp. XI] or Pavlović [38, Chp. III] for futher details.

Definition. For all 0 ≤ r < 1 and θ ∈ [0, 2π), the Poisson kernel is defined as

Pr(θ) :=
∞∑

n=−∞
r|n|einθ = 1− r2

1− 2r cos θ + r2 . (1.1)

Definition. The Poisson integral of a function φ ∈ Lp(φ) is the harmonic
function P [φ] defined by

P [φ] := Pr ∗ φ :=
∫
T
Pr(t− θ)ϕ(eiθ) dm (reiθ ∈ D) . (1.2)

The notation f ∗ g is referred to as the convolution of f and g. Perhaps the
most useful property of the Poisson integral is that it can be used to solve the
Dirichlet problem for the disk:

Theorem 1.2. If ϕ is a continuous function defined on T, then ϕ has a unique
continuous extension to D that is harmonic in D; this extension equals P [φ].

An immediate consequence is that set of all trigonometric polynomials is dense
in each of the spaces C(T), Lp(T), this known Weierstrass approximation theorem.
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1.1.2. The harmonic Hardy spaces
Definition. Let 1 ≤ p ≤ ∞. We denote by hp the space of harmonic functions
in D such that

hp :=
{
f : ‖u‖hp <∞

}
. (1.3)

Here ‖u‖hp is the norm of u, and defined as

‖u‖hp := sup
0≤r<1

( 1
2π

∫
T
|fr|p dm

)1/p
,

where the shorthand notation fr(eiθ) = f(reiθ) was introduced. In the case p =∞
the integral is to be interpreted as a supremum:

‖u‖h∞ := sup
z∈D
|u(z)| .

That Theorem 1.2 extends to 1 < p ≤ ∞ is shown in the following theorem:

Theorem 1.3. The function u belongs to hp (1 < p ≤ ∞) if and only if it is
equal to the Poisson integral of some function φ ∈ Lp. And if f = P [φ], then

‖u‖hp = ‖φ‖Lp .

Theorem 1.4 (Fatou’s Theorem [16], 1906). Let u ∈ hp (1 < p ≤ ∞), then u
has a radial limit at almost every point eiθ. In particular

lim
r→1−

f(reiθ) = φ(eiθ) for almost every θ ∈ [0, 2π) .

For a modern proof see Nikolski [34, p. 39]. The case L1 is treated in Rudin
[44, p. 244], and Duren [15, p. 5]. While Theorem 1.3 fails to hold for p = 1, the
following is true:

Corollary 1.5. Each function u ∈ h1 has a radial limit almost everywhere.

Corollary 1.6. If u is the Poisson integral of a function ϕ ∈ L1, then u(reiθ)→
ϕ(θ) almost everywhere.

As an example let φ =
∑∞
m=−∞ ame

imθ be a function such that φ ∈ L1. Then

P [φ](reiθ) =
∫
T

( ∞∑
n=−∞

r|n|eI(θ−t)n
)( ∞∑

m=−∞
ame

imt
)

dt

=
∞∑

m,n=−∞
ame

int

∫
T
eI(m−n)θ dm =

∞∑
n=−∞

r|n|ane
int ,

So the operator P : L1 → h1 is injective, as every function φ ∈ L1 may be seen as
a boundary function of a function u ∈ h1. However P is not onto as there exists
functions in h1, whose boundary function does not lie in L1.
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1.1.3. Subharmonic functions
As usual a domain is an open connected set in the complex plane.
Definition. A real-valued function g(z) is said to be subharmonic if it has the
following property: For each domain B with B ⊂ D, and for each function U(z)
harmonic in B, continuous in the closure B, such that g(z) ≤ U(z) for ∂B, then

g(z) ≤ U(z)
holds throughout B.

In particular if there is a function U(z) harmonic in B with boundary values
g(z), then g(z) ≤ U(z) in B.
Proposition 1.7. If f is analytic in a domain D and p > 0, then |f |p is
subharmonic in D.

1.1.4. The Möbius group
A transformation of the form

T (z) = az + b

cz + d
, (1.4)

where a, b, c, d ∈ C and ab − cd 6= 0, is called a Möbius transformation1. Where
C = {σ + it : σ, t ∈ R} denotes the complex plane.
Proposition 1.8. The Möbius transformation is a conformal one-to-one map-
ping that sends circles and lines to circles or lines.

Before moving on we would like to present two useful Möbius transformations.
The shifted Cayley transformation

T (z) = a+ 1 + z

1− z ,

is a conformal one-to-one mapping of the open unit disk onto the open half plane
Ca. In particular if z lies on the boundary T we have

T (eit) = a+ i tan(t/2) .
For any α ∈ D, define

ϕα(z) = z − α
1− αz . (1.5)

Fix α ∈ D. Then ϕα is a one-to-one mapping which carries T onto T, D onto D
and α to 0. We have

φ′a(z) = − 1− |a|2

(1− az)2 . (1.6)

Proposition 1.9 ( [44, Thm. 12.6] ). Suppose T is an Möbius transformation
(ϕ is one-to-one, ϕ(D) = D, α ∈ D, and ϕ(α) = 0). Then there exists a constant
θ ∈ [0, 2π), such that

T (z) = eiθϕα(z) z ∈ D . (1.7)
In other words, we obtain T (z) by composing the mapping ϕα with a rotation.

1This mapping is also referred to as a linear fractional transformation.
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1.2. The Hardy space

In 1915 Godfrey Harold Hardy, published in the Proceedings of the London Mathe-
matical Society a paper confirming a question posed by Landau [19]. In this paper,
not only did Hardy generalize Hadamard’s three-circle theorem, but he also put
in place the first brick of a new branch of mathematics which bears his name: the
theory of Hardy spaces Hp. For three decades afterwards mathematicians such
as Hardy, Littlewood, Pólya, Riesz, Privalov, F. and V. Smirnov, and G. Szegö,
expanded and developed the theory of the Hardy spaces. While most of this early
work is concerned with properties of individual functions of class Hp, the develop-
ment of functional analysis has stimulated a new interest in the Hp classes. For
the interested reader an excellent exposition of the classical Hardy space is the
monograph by Duren [15], other sources includes [29, 34] and the short treatise by
Rudin [44, Chp. XVII].

In this section we shall look at properties of spaces which are represented by
power series in D, i.e functions of the form

f(z) =
∑
n≥0

anz
n, z = reiθ . (1.8)

When the power series in equation (1.8) converges we call f an analytic function.
As before we will work in the unit disk 0 ≤ r < 1, and similar to how the ‖f‖Lp
norm was defined, we introduce

‖f‖Hp :=
(

sup
0≤r<1

∫
T

∣∣fr∣∣p dm
)1/p

= sup
0≤r<1

‖fr‖Lp . (1.9)

and when p =∞, we use let the norm be defined as the essential supremum of f :
‖f‖H∞ := sup

z∈D
|f(z)| . (1.10)

Definition. Let 1 ≤ p ≤ ∞, the Hardy space Hp(D) consists of those analytic
functions in the unit disk D such that, ‖f‖Hp < +∞.

As we will only work on the unit disk D will omit the domain and simply write
Hp when no confusion is possible. We will first look at the particular case p = 2
and then extend the properties to 1 ≤ p ≤ ∞.

1.2.1. The Hardy space H2.
With the norm of H2 defined as above, the definition of the inner-product follows
naturally:

〈f, g〉2H2 := lim
r→1

∫
T
fr · gr dm = lim

r→1
〈fr, gr〉2L2 .

In addition, we introduce the notation f∗(eiθ) := limr→1− f(reiθ). The most
essential properties of H2 are encapsulated in the following theorem:

Theorem 1.10. Let f =
∑
n≥0 anz

n and g =
∑
n≥0 bnz

n be analytic for |z| < 1,
where z = reiθ. Then

(1) 〈f, g〉2H2 =
∑
n≥0 anbn.
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(2) ‖f‖H2 =
∑
n≥0 |an|2 = ‖f∗‖L2 .

(3) ‖fr‖L2 is a non-decreasing function of r.
(4) H2 is a Hilbert space.
(5) |f(z)| ≤ ‖f‖H2/

√
1− |z|2.

It will be convenient to first prove the following lemma.

Lemma 1.11. Let z ∈ T, then {zj}j≥1 forms an orthonormal set in L2.

Proof. We start by introducing the Kronecker delta symbol δjk, defined as 1 if
j = k, and 0 otherwise. Proving the lemma is the same as showing

〈zj , zk〉L2 =
∫
T
zj · zk dm = δjk ,

for every j, k ∈ N. Since z ∈ T we can write z = eiθ, and our integral becomes∫
T
zj · zk dm = 1

2π

∫ 2π

0
eiθ(j−k) dθ .

It is clear that the integral is 1 whenever j = k. Assume therefore that j 6= k,

1
2π

∫ 2π

0
eiθ(j−k) dθ = 1

2πi
e2πi(j−k) − 1

j − k

which completes the proof since e2πi(j−k) = 1 for every integer pair j 6= k. �

Proof of Theorem 1.10. We begin by applying Lemma 1.11 to the inner
product of f =

∑
n≥0 anz

n and g =
∑
n≥0 bnz

n:

〈fr, gr〉2L2 =
∫
T
frgr dm =

∑
n,m≥0

anbmr
n+m

∫
T
zn · zm dz =

∑
n≥0

anbnr
2n ,

This proves that the inner product is increasing as a function of r, thus proving 3.
Since 0 < r < 1, we can apply the monotone convergence theorem on 〈fr, gr〉2L2 to
obtain item 1. The computation above also shows

〈fr, fr〉L2 = ‖fr‖2L2 =
∑
m≥0
|am|2r2n , (1.11)

and proves the first part of 2. Since L2(T) is a complete space, f∗ ∈ L2(T) and we
can compute the Fourier coefficients to be

f̂∗(n) =
∫ 2π

0
f∗(eiθ)e−nθ dθ

2π = lim
r→1

∫ 2π

0
fr(eiθ)e−inθ

dθ
2π =

{
an : n ≥ 0
0 : n < 0

,

The second equality follows from the monotone convergence theorem since f∗ is
increasing. Combining this with Parseval’s theorem shows

‖f∗‖L2 =
∑
n≥0
|an|2 = ‖f‖H2 ,
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thus completing the proof of 2. To prove 4 we need to show that every sequence
fr → f , as r → 1 is Cauchy in H2(T).2 Using Lemma 1.11 from above, and obvious
modifications,

‖fr − fs‖2L2 =
∫
T

∣∣∑
n≥1

an
(
rn − sn

)
zn
∣∣2 dm =

∑
n≥1

(
rn − sn

)
|an|2 .

But as
∑
n≥1 |an|2 < ∞ we get by the dominated convergence theorem that the

last summand goes to zero when r, s→ 1. Thus, H2 is a complete Hilbert space as
f∗(eiθ) = f(eiθ) almost everywhere.

To prove that point-wise evaluation of functions in H2 is a bounded functional
we may apply the Cauchy–Schwarz inequality

|f(z)| ≤
∑
n≥0

∣∣anzn∣∣ ≤ (∑
n≥0

∣∣z2n∣∣) 1
2
(∑
n≥0

∣∣an∣∣2)
1
2

≤ 1√
1− |z|2

‖f‖H2 .

where the last equality followed from applying item 2 and the geometric series∑
n≥0 r

n = 1/(1− r). This proves 5, and completes the proof of Theorem 1.10. �

From the preceding discussion we see that the polynomials are dense in H2,
thus the mapping f 7→ f∗ establishes an isometry between H2 and the closure of
the polynomials in L2. Hence, H2 may be defined as as:

(1) the set of analytic functions f in D such that limr→1
∫
T |fr|

2 dm <∞.
(2) the closure of the polynomials in L2(T).

That Hp can be seen as the closure of the polynomials in Lp and that Theorem 1.10
can be extended to 1 ≤ p ≤ ∞ is true, but not entirely trivial. A key part in
proving this will the the Riesz factorization theorem. A stepping stone in proving
this is the following theorem.

The class Hp was introduced as the set of all functions f(z) analytic in |z| < 1
for which the means ‖fr‖Lp are bounded. As seen from 1.10, ‖fr‖L2 is increasing
as a function of r, and the case p = ∞ is trivial as ‖fr‖L∞ increases with r from
the maximum modulus principle. A natural question is therefore whether ‖fr‖Lp
is always a non-decreasing function of r. This was proven by Hardy [19] and is
considered the starting point of the theory of Hardy spaces.

Theorem 1.12 (Hardy’s convexity theorem). For |z| < 1 let f(z) be analytic,
and let 1 ≤ p ≤ ∞. Then ‖fr‖Lp is a non-decreasing function of r.

Proof. As pointed out in section 1.1.3 |f |p (1 ≤ p ≤ ∞) is subharmonic if f is
analytic. So it is enough to prove Theorem 1.12 for subharmonic functions. Let
g(z) be subharmonic in |z| < 1, and define

m(r) :=
∫
T
gr dm, 0 ≤ r < 1 .

Choose 0 ≤ r1 < r2 < 1. Since g(z) is subharmonic there exists a function U such
that, U(z) is harmonic in |z| < r2, continuous in |z| ≤ r2, and equal to g(z) for

2That we may associate H2(T) with a subspace of L2(T) follows from 2, and Fatou’s Theorem 1.4
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|z| = r2. Hence, g(z) ≤ U(z) for |z| ≤ r2, so

m(r1) ≤
∫
T
Ur1 dm = U(0) =

∫
T
Ur2 dm = m(r2) ,

by the mean-value property A.23. This proves that m(r) is non-decreasing, and so
‖u‖Lp is also non-decreasing. �

While not needed, it is also true that log ‖fr‖Lp is a convex function of log r,
see Hardy [19] or Duren [15, p. 9].

Remark. Theorem 1.12 implies we may replace the sup in the definition of the
Hp with a limit

‖f‖Hp =
(

lim
r→1

∫
T
|fr|p dm

) 1
p

,

as the norm is increasing. The proof for p =∞ follows again from the maximum
modulus principle.

1.3. The zeroes of functions in Hp

Let f ∈ Lp, (1 ≤ p ≤ ∞). We denote the zero sequence of f as Z (f) consisting of
the elements {

z ∈ D : f(z) = 0
}
, (1.12)

in increasing order of magnitude. It is well known that for a analytic function in
the unit disk, either Z (f) = D or Z (f) has no limit points in D. The first case
bears little interest as by the maximum modulus principle it implies f ≡ 0. Thus,
the zeroes of a non-zero analytic function f ∈ Lp are isolated points in T, and if
the number of zeroes is infinite, the limit points have to lie outside D i.e. on the
boundary T. From the theorem of Weierstrass [44, Chapter 15] this is all we can
say about the zeroes of analytic functions.

However, if we instead consider functions in Hp we can say much more about the
distribution of zeroes in D, namely that the zeroes have to converge with a certain
rate toward the limit points on T. The basis of deriving the rate of conversion of
the zeroes of Hp is the following formula.

Theorem 1.13 (Jensen’s Formula). Let f be an analytic function in a region
which contains the closed disk Dr of radius r and center 0. Denote |α1| ≤ |α2| ≤
. . . ≤ |αn| the zeroes of f in the interior of Dr repeated according to multiplicity,
and suppose that f(0) 6= 0. Then

log
∣∣f(0)

∣∣ =
n∑
j=1

log |αj |
r

+
∫
T

log |fr|dm . (1.13)
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Proof. If f is an analytic function, then log
∣∣f ∣∣ is harmonic except at the zeroes

of f .3 If f is zero free in |z| ≤ ρ and analytic, then

log
∣∣f(0)

∣∣ =
∫
T

log |fρ|dm, (1.14)

which is the mean-value property A.23 applied on the harmonic function log
∣∣f ∣∣.

Order the zeros {αj}Nn=1 of f in Dr(0) according to their distance from origo i.e.
such that |α1| ≤ · · · ≤ |αn| < r and |αn+1| = · · · = |αN | = r. Define the function

g(z) = f(z)
n∏
j=1

r2 − αjz
r(αj − z)

N∏
j=n+1

αj
αj − z

. (1.15)

Inserting z = 0 into equation (1.15) and taking the logarithm gives

log
∣∣g(0)

∣∣ = log
(∣∣f(0)

∣∣ n∏
j=1

r∣∣αj∣∣
)

= log
∣∣f(0)

∣∣+
n∑
j=1

log r

|αj |
. (1.16)

On the other hand g has no zeroes in D and hence log|g| is harmonic, and so

log |g(0)| =
∫
T

log
∣∣gr∣∣ dm, (1.17)

again by the mean value property. Combining equations (1.16) and (1.17) gives∫
T

log
∣∣gr∣∣ dm = log |f(0)| −

n∑
j=1

log |αj |
r

. (1.18)

Let |z| = r, then the factors in (1.15) for j ∈ [n+ 1, N ] have absolute value 1. Since
αj = reiθj and z = reiθ it follows that for every n < j ≤ N ,

αj
αj − z

= 1
1− z/αj

= 1
1− ei(θ−θj)

. (1.19)

Using this and that the first product in equation (1.15) equates to one for z = reiθ,
we obtain the following expression for log

∣∣g(reiθ)
∣∣,

log
∣∣g(reiθ)

∣∣ = log
∣∣f(reiθ)

∣∣− N∑
j=n+1

log
∣∣1− ei(θ−θj)∣∣. (1.20)

Integrating this expression over T gives∫
T

log
∣∣fr∣∣ dm =

∫
T

log
∣∣gr∣∣dm − N∑

j=n+1

1
2π

∫ 2π

0
log
∣∣1− ei(θ−θn)∣∣ dθ .

The last integral is evidently independent of θj and thus zero by Lemma A.11.
Combining this with equation (1.18) completes the proof. �

3Recall that if D is a simply connected domain in C and h a non-vanishing holomorphic function
on D then h = eg for some holomorphic function g. So, if D was simply connected we would
know that f = eg for some holomorphic g, and then log |f | = log |eg | = log(exp(Re(g)) = Re(g)
and since g is harmonic (g was holomorphic) we are done.
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The next lemma proves a necessary condition on the zeros of a function f
in order that f ∈ Hp for some 1 ≤ p ≤ ∞. We will later use it to prove that
any function in Hp may be written as the product of a Blaschke product and a
non-vanishing element of Hp.

Lemma 1.14 (G. Szegö). Let f ∈ Hp (1 ≤ p ≤ ∞) be an analytic function in
D such that f 6≡ 0 and f(0) 6≡ 0. Further, let {αn}n≥1 be the zeros of f , listed
according to their multiplicities. Then these zeros satisfy the Blaschke condition∑

n≥1

(
1− |αn|

)
<∞ . (1.21)

Proof. If f has a finite number of zeroes, then the sum is finite and the result
follows. Therefore, we assume that f has an infinite number of zeroes, since f 6≡ 0
they converge toward some points in the unit circle. Which is to say limr→1 |zn| = 1.

Denote the number of zeroes of f in the closed disk Dr by N(r), where r < 1.
Fix K ∈ N, and choose r < 1 such that N(r) > K. By Jensen’s fomula 1.13, for
each r ∈ (0, 1), we have

∣∣f(0)
∣∣ K∏
n=1

r

|αn|
≤
∣∣f(0)

∣∣N(r)∏
n=1

r

|αn|
= exp

(∫
T

log
∣∣fr∣∣dm) <∞ ,

where the right hand side is bounded as f ∈ Hp ⊂ H1. Hence, there exists some
constant C <∞ such that

∏K
n=1 |αn| ≥ rK |f(0)|/C. As the sum now is finite we

can let r → 1. Since the inequality holds for all K, we can let K →∞.
∞∏
n=1

∣∣αn∣∣ ≥ ∣∣f(0)
∣∣

C
> 0 .

Using 1− x ≤ e−x now gives

0 <
∞∏
n=1

∣∣αn∣∣ =
∞∏
n=1

∣∣1− (1− |αn|)∣∣
≤
∞∏
n=1

exp
[
−
(
1− |αn|

)]
≤ exp

(
−
∞∑
n=1

(
1− |αn|

))
.

Since e−x → 0 as x → ∞, the inequality above proves that
∑∞
n=1
(
1 − |αn|

)
< ∞

as exp(−
∑∞
n=1
(
1− |αn|

)
> 0. �

So the Blashke condition (1.21) is a necessary condition for the zeroes of an
analytic function to belong to a Hardy space Hp. Surprisingly enough (1.21) is also
sufficient condition for the existence of a function f ∈ Hp, which has zeros only at
{αn}∞n=1.

Definition. A Blaschke product B(z) is a product of Möbius transformations
of the form

B(z) := zk
∏
n≥1

|αn|
αn

αn − z
1− αnz

,

We define B(z) = zk, when α = {αj}j≥0 is empty.
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Proposition 1.15 (Blaschke product). Let {αn}∞n=1 be sequence of complex
numbers such that

0 < |α1| ≤ |α2| ≤ · · · < 1, αn ∈ D ,

for all n ∈ N, satisfying the Blaschke condition (1.21). Then the Blaschke product
B(z) has only zeroes only at the points αn and a zero of order k at 0. In addition,
B(z) converges uniformly in each disk |z| ≤ R < 1, we have |B(eiθ)| = 1 almost
everywhere and |B(z)| < 1 for all z ∈ D.

Proof. The function B(z) is the product of the factors

bn(z) := |an|
an

an − z
1− anz

. (1.22)

Each factor bn has a zero at z = αn inside D, and a pole at z = α−1 outside the
closed unit disk D. Thus, each factor bn is analytic in D with precisely one zero at
αn. Assume that |z| ≤ R then,

∣∣1− bn(z)
∣∣ =

∣∣∣∣1− |an|an

an − z
1− anz

∣∣∣∣ =

∣∣∣∣∣
(
an + |an|z

)(
1− |an|

)
an
(
1− anz

) ∣∣∣∣∣
≤
∣∣∣∣1 + z|an|/an
1− z|an|/an

∣∣∣∣ ∣∣1− |an|∣∣ ≤ 1 + 1
1−R

(
1− |an|

)
.

Since
∑
n≥1(1− |an|) <∞ it follows that B(z) =

∏
n≥1 bn(z) converges uniformly

in each disk |z| ≤ R < 1. That |B(z)| < 1 is clear since

|B(z)| =

∣∣∣∣∣∣
∏
n≥1

|an|
an

an − z
1− anz

∣∣∣∣∣∣ ≤
∏
n≥1

∣∣∣∣ |an|an

an − z
1− anz

∣∣∣∣ < 1 ,

as each partial product is less than 1 for |z| < 1. Hence, |B(eiθ)| ≤ 1 by the
maximum modulus principle, and the radial limit B(eiθ) exists almost everywhere
(1.4).

Let f ∈ H∞ ⊆ H1, from Theorem 1.12 ‖fr‖L1 is increasing and we have the
bound

‖fr‖L1 ≤ ‖f‖L1 . (1.23)

We can apply the inequality above on the function f = B/Bn where Bn =
∏n
k=1 bk.

Since |Bn(eiθ)| ≡ 1 we get

‖(B)r/(Bn)r‖L1 ≤ ‖B‖L1 , (1.24)

where the slightly convoluted notation (Bn)r = Bn(reiθ) was introduced. As
Bn(z)→ B(z) uniformly on |z| = r we have the inequality

1 ≤ ‖B‖L1 . (1.25)

SinceB(eiθ) ≤ 1 almost everywhere, this proves that |B(eiθ)| = 1 almost everywhere.
�
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1.3.1. The Riesz factorization theorem
Lemma 1.14 shows that the zeroes of any nonzero function in in an Hardy space
forms a Blaschke product. Thus, we can try to divide out the zeros of f by dividing
f by the corresponding Blaschke product B. Of course, the resulting quotient
g = f/B is again an analytic function in D, and since B has absolute value 1 almost
everywhere on the unit circle, we may expect that g have the same Hp-norm as the
original f . That this reasoning is indeed correct was proven by F. Riesz in (1923)
[41].

Theorem 1.16 (F. Riesz). Let f ∈ Hp, (1 ≤ p ≤ ∞), f 6≡ 0, and let B denote
the Blaschke product formed with the zeroes of f in D. If

g := f/B ,

then g ∈ Hp, g is free of zeroes in D, and
‖g‖Hp = ‖f‖Hp .

Proof. From Lemma 1.14 it is clear that f and B has excactly the same zeroes.
Clearly g is then analytic and free of zeroes on D. Let {αn}n≥1 be the sequence if ze-
roes of f in D, and let bn(z) denote the factor of the Blaschke product corresponding
to the zero αn as defined in equation (1.22). Further, let

BN (z) =
N∏
n=1

bn(z) , z ∈ D ,

be the partial Blaschke product formed with the first N zeroes of f , and define
gN := f/BN . Proposition 1.15 shows that for every fixed N , we have (BN )r =
BN (reiθ) → 1 uniformly as r → 1. It follows that (gN )r → f and consequently
that

‖gN‖Hp = ‖f‖Hp .
Since |bn(z)| < 1 for all n and z ∈ D, we have that

0 ≤ |g1(z)| ≤ |g2(z)| ≤ · · · ≤ ∞ and |gn(z)| → |g(z)| ,
for every z ∈ D. Fixing 0 < r < 1 and applying Lebesgue monotone convergence
theorem, one gets

lim
N→∞

‖(gN )r‖pHp = lim
N→∞

∫
T
|(gN )r|p dm =

∫
T
|gr|p dm = ‖gr‖pLp .

Since gN is analytic in D and because ‖fr‖Lp ≤ ‖f‖Lp (see 1.12), the left-hand
side is bounded from above by ‖f‖pHp for every 0 < r < 1. Letting r → 1 we
obtain ‖g‖Hp ≤ ‖f‖Hp . Moreover, since B(z) ≤ 1 for all z ∈ D, we also have
that |g(z)| ≥ |f(z)| for all z ∈ D, this proves that we have equality, i.e that
‖g‖Hp = ‖f‖Hp . �

Corollary 1.17. Suppose 1 ≤ p <∞, f ∈ Hp and again let B be the Blaschke
product formed by the zeroes of f . Then there exists a zero-free function g ∈ H2

such that
f = B · gp/2 , (1.26)
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and

‖f‖pHp = ‖g‖2H2 . (1.27)

In particular, every f ∈ H1 is a product

f = gh , (1.28)

in which both factors are in H2 and

‖f‖H1 = ‖g‖H2 · ‖h‖H2 . (1.29)

Proof. By Theorem 1.16 f/B ∈ Hp and ‖f/B‖Hp = ‖f‖Hp a.e. Since f/B has
no zeroes in D there exists an analytic ψ ∈ D so that eψ = f/B. Let g = epψ/2,
then

|g|2 = |f/B|p, (1.30)

and so it follows that g ∈ H2 thus, proving equation (1.26). Equation (1.27) follows
directly from integrating equation (1.30) over T and taking the supremum over r.

To prove equation (1.28) we can write (1.26) in the form f = Bg = f1f2 with
f1 = Bg1/2 and f2 = g1/2. Since f1, f2 ∈ H2 , we have

‖f1‖H2 = ‖f2‖H2 = ‖g‖H2 = ‖f‖1/2H1
.

Using the last equation twice proves (1.29), and we are done. �

1.3.2. Applications of the Riesz factorization theorem
Proposition 1.18 (Mean convergence property). If f ∈ Hp, (1 ≤ p <∞) then

lim
r→1
‖fr‖Lp = ‖f‖Lp , (1.31)

and

lim
r→1
‖fr − f

∥∥
Lp

= 0 . (1.32)

Proof. We have ‖g‖2L2 = ‖f‖pLp from Corollary 1.17 so it is enough to prove
equation (1.31) for H2. However, this was shown in Theorem 1.10, and that we
may replace the supremum by a limit follows from Theorem 1.12 as the norm is
increasing as a function of r.

If f(z) =
∑
n≥1 anz

n, then |an|2 converges when f ∈ H2. From Fatou’s
lemma A.26 ,

‖fr − f‖L2 ≤ lim inf
ρ→1

‖fr − fρ‖ =
∑
n=1
|an|2

(
1− rn

)2
. (1.33)

Letting r → 1 shows equation (1.32) for p = 2, since letting r → 1 is no problem
as the radial limit limr→1 f(reiθ) exists for almost every θ, 1.4.

We have proved equation (1.31) for all 1 ≤ p < ∞, and equation (1.32) for
p = 2. To deduce (1.32) from (1.31) we need the following lemma from measure
theory. �
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Lemma 1.19 (Duren [15, p. 21]). Let Ω ⊂ R be a measurable subset, and let
ϕn ∈ Lp(Ω), 1 ≤ p < ∞, and n ∈ N. As n → ∞ suppose that ϕn(x) → ϕ(x) for
almost every x ∈ Ω and ∫

Ω
|ϕn(x)|p dx→

∫
Ω
|ϕ(x)|p <∞ .

Then, ∫
Ω

∣∣ϕn(x)− ϕ(x)
∣∣pdx→ 0.

See Duren [15, p. 21] for proof. proposition 1.18 now follows from this lemma
as f(reiθ) → f(eiθ) almost everywhere from Fatou’s Theorem 1.4 and we have
already shown that limr→1 ‖fr‖Lp = ‖f‖Lp .

Lemma 1.20. Let 1 ≤ p ≤ ∞ and 0 ≤ r < 1. Then,∣∣f(0)
∣∣p ≤ ‖fr‖pHp . (1.34)

Proof. From the mean value theorem A.23 we have

f(0) =
∫
T
fr dm . (1.35)

Applying the triangle-inequality yields

|f(0)| ≤
∫
T
|fr|dm .

Using Hölders inequality A.7 with 1/p+1/q = 1 the equation above can be written .

|f(0)| ≤
(∫

T
|fr|p dm

)1/p(∫
T
|1|q dθ

)1/q

. (1.36)

Raising both sides of the inequality to the power p completes the proof. �

With the help of the mean convergence property we are now ready to generalize
some properties from Theorem 1.10 to Hp (1 ≤ p ≤ ∞).

Lemma 1.21 (Point-estimate). Suppose 1 ≤ p <∞ and f ∈ Hp, then

|f(z)| ≤ ‖f‖Hp
(1− |z|2)1/p for all z ∈ D .

Proof. Following the lines of [49] we consider

Fr(w) = f
(
r
z − w
1− zw

)(1− |z|2)1/p(
1− zw

)2/p = f
(
rϕz(w))

[
−ϕ′z(w)

]1/p
, (1.37)

for 0 < r < 1. The idea is now to integrate |Fr(eiθ)|p =
∣∣f(rϕz(eiθ))∣∣p∣∣ϕ′z(eiθ)∣∣

with the substitution ϕz(eiθ) 7→ eiθ such that dθ 7→ ϕ′z(eiθ) dθ. So∫
T

∣∣Fr(eiθ)∣∣p dθ =
∫
T

∣∣f(reiθ)
∣∣p dθ = ‖fr‖pLp ≤ ‖f‖

p
Hp . (1.38)
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From Lemma 1.20 we get the following inequality for the integral∫
T

∣∣Fr(eiθ)∣∣p dθ ≥
∣∣Fr(0)

∣∣p =
∣∣f(rϕz(0))

∣∣pϕ′z(0) =
∣∣f(z)

∣∣p(1− |z|2). (1.39)

Comparing equation (1.38) and (1.39) completes the proof. �

1.4. Boundary functions

From Theorem 1.4 we have seen that every function f ∈ Hp has a nontangential
limit f(eiθ) at almost every boundary point. Let Hp(T) denote the set of boundary
functions f(eiθ). We know from Cauchy’s integral formula that a holomorphic
function is uniquely determined by its boundary value Proposition A.23, so a Hardy
space can be identified with a subspace of the Lp(T).

For the study of Dirichlet series it will be of interest to characterize Hp in
terms of these boundary functions. Let 1 ≤ p ≤ ∞ from Weierstrass approximation
theorem the set of trigonometric polynomials are dense in Lp(T). Thus, a function
f in Lp(T) may be written as

f(eiθ) =
∑
k∈Z

cke
ikθ , (1.40)

where ck are the Fourier coefficients. Similarly, Hp contains functions on the form

P (eiθ) =
n∑
k=0

ake
ikθ , (1.41)

where ak are complex constants and these functions will be called polynomials in
T. The main result is that the polynomials (1.41) are dense in Hp(D).

Theorem 1.22. For every 1 ≤ p <∞, Hp(T) is the closure of the set of polyno-
mials in eiθ.

Proof. We begin by considering the analytic function f(z) =
∑
n≥1 anz

n, f ∈
Hp(D) and let SNf(z) =

∑N
n=1 anz

n denote the n’th partial sum of the Taylor
series of f at the origin. Proving Theorem 1.22 is the same as proving that for
every ε > 0, there exists a k ∈ N, such that

‖SNf − f‖Hp ≤ ε ,
for every N ≥ k. The idea is to go a small distance λ into the disk, and prove that
the result holds for every 0 < λ < 1. In other words

‖SNλf − f‖Hp ≤ ε .

As before we write, fλ(z) = f(λz). Since f ∈ Hp has a bounded norm on the
boundary it follows from Proposition 1.18 that we can choose an ε such that

‖fλ − f‖Hp <
ε

2 .

Similarly, since SNf → f(z) uniformly on the circle |z| = λ, we have by the Taylor
approximation that for every f(λz), 0 < λ < 1 then

‖SNλf − fλ‖p ≤
ε

2 ,
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for sufficiently large enough Nλ. Applying Minkowski’s inequality A.9 we obtain
‖SNλf − f‖Hp ≤ ‖SNλf − fλ‖Hp + ‖fλ − f‖Hp ≤ ε . (1.42)

Thus, proving that the boundary function f(eiθ) belongs to the Lp closure of the
polynomials in eiθ.

To complete the proof we will show that for if PN (eiθ) =
∑n
k=0 ake

ikθ is some
polynomial such that PN converges to f ∈ Lp then f ∈ Hp. The strategy will be
to show that all the negative Fourier-coefficients to f is zero.

a−k = 1
2π

∫ 2π

0
f(eiθ)eikθ dθ = 1

2π

∫ 2π

0

(
f(eiθ)− PN (eiθ)

)
eikθ dθ ,

the last equality follows since the negative Fourier-coefficients of PN are zero. By
taking the absolute value and using the triangle inequality we obtain

|a−k| ≤
1

2π

∫ 2π

0

∣∣f(eiθ)− PN (eiθ)
∣∣ dθ = ‖f − Pn‖L1 ≤ ‖f − Pn‖Lp .

Since PN → f the norm above can be made arbitrary small, thus proving that
a−k = 0 for all k ∈ N. Hence, f ∈ Hp and we are done. �

To show that Theorem 1.22 does not extend to p =∞ consider the function

g(z) = exp
(
z − 1
z + 1

)
, z ∈ D ∪ T .

It is clear that g(z) is analytic for z ∈ D because it is the composition of analytic
functions, and the only singular point z = −1 lies on the boundary T. The function
in the exponent (z−1)/(z+1) is a Möbius transformation and maps D onto the left
half plane C− = {z ∈ C : Re(z) < 0}. Since the exponential function is bounded
on C−: |eσ+it| = eσ ≤ 1, this shows that g(z) is also bounded.

In fact, on the boundary we have |g(eiθ)| = 1, for almost every θ. Hence, g is
Lebesgue integrable and g ∈ L∞. Does this imply that g ∈ H∞? Hardly. Look
at g(r) as r → −1. Thus, there exists a function in L∞ which does not extend
analytically into H∞(D).

Corollary 1.23. If 1 ≤ p ≤ ∞, Hp is a Banach space.

Consequently, Hp could be defined as the subspace of those Lp functions which
all negative Fourier coefficients are equal to zero:

Definition. The Hardy space Hp for 1 ≤ p ≤ ∞ is the subspace of Lp(T)
consisting of functions f such that f̂(n) = 1

2π
∫ 2π

0 f(t)e−int dt = 0 for all n < 0.

Hp =
{
f ∈ Lp : f̂(n) = 0 ∀n < 0

}
. (1.43)

Since the polynomials are dense in Hp for 1 ≤ p <∞, we will henceforth make
no distinction between the spaces Hp(D) and Hp(T). Thus, formally defining Hp

as the closure of all polynomials with respect to the norm on the boundary

‖f‖Hp =
(∫

T
|f |p dm

) 1
p

.

We take the expression above as a radial limit when necessary, that is when p =∞.
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1.5. Carleman’s inequality

The purpose of this section is to prove Carlemans’s inequality, and we offer some
historical context for the inequality. The last part is devoted to viewing some
generalizations of this inequality.

The circle is uniquely characterized by the property that among all simple closed
plane curves of given length L, the circle of circumference L encloses maximum
area. This property is most succinctly expressed in the isoperimetric inequality

A ≤ L2/4π . (1.44)

Here A is the area enclosed by a curve C of length L, and where equality holds if
and only if C is a circle. There are many known proofs of this fact. More than
one idea can be found in the expository paper by Osserman [37], along with a brief
histor of the problem. It was Carleman [12] who in 1921 gave the first proof based
on complex analysis, in the special case of a Jordan domain bounded by a smooth
curve. In this section we will see that the theory of the Hardy spaces gives an
elementary proof of the inequality. In modern notation equation (1.44) may be
rewritten as ∫

D
|τ |2 dσ ≤

(
1

2π

∫ 2π

0
|τ(eiθ)|dθ

)2

(1.45)

where τ is a conformal mapping of D onto A, and is known as Carleman’s inequality.
Here dσ denotes the Lebesgue measure on D normalized so that the measure of D
is 1. In terms of real (rectangular and polar) coordinates, we have

dσ = 1
π

dxdy = 1
π
r dr dθ, z = x+ iy = reiθ .

Note that in light of Theorem 1.22 the right-handside of equation (1.44) is nothing
more than ‖τ‖2H1 . Similarly, we define

‖f‖Ap :=
(∫

D
|f |p dσ

) 1
p

. (1.46)

In the passing we mention that the space that contains all analytic functions such
that ‖f‖Ap <∞ is called the Bergman space Ap, and it has a theory nearly as rich
as the Hardy spaces, see Duren [15, p. 250] for a brief overview. We will only make
use of the Bergman spaces for its convenient notation though. Thus, Carleman’s
inequality (1.45) may be restated as

‖f‖A2 ≤ ‖f‖H1 . (1.47)

Lemma 1.24. Let f(z) =
∑
n≥0 anz

n be analytic in A2, then

‖f‖A2 =
(∑
j≥0

|aj |2

1 + j

) 1
2

. (1.48)
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Proof. Recall from Lemma 1.11 that
∫
T z

jzk dm = δjk by the orthogonality of
the trigonometric system. Thus,∫

D
zjzk dσ = 2

∫ 1

0
ri+j

∫
T
zjzk dmdr = 2δjk

2 + j + k
= δjk

1 + j
.

Applying this to equation (1.46) the norm of the A2 space becomes

‖f‖A2 =
(∫

D
|f |2 dσ

) 1
2

=
(∑
j,k≥0

ajak

∫
D
zjzk dσ

) 1
2

=
(∑
k≥0

|aj |2

1 + j

) 1
2

. �

By using the Riesz factorization theorem among other results Vukotić presented
in [48] a modern and natural way of generalizing (1.47).

Proposition 1.25. For 1 ≤ p <∞, every f ∈ Hp belongs to A2p, and

‖f‖A2p ≤ ‖f‖Hp .

Proof. We begin by considering the case p = 2 first. Since f is analytic, we can
write

f(z) =
∑
n≥0

anz
n ,

which converges for z ∈ D. Squaring this we obtain

f2 =
∑
n≥0

Anz
n where An =

n∑
k=0

akan−k . (1.49)

Using Lemma 1.24 on f2, now gives

‖f‖4A4 = ‖f2‖2A2 =
∑
n≥0

|An|2

1 + n
=
∑
n≥0

1
1 + n

∣∣∣∣∑
k≥0

akan−k

∣∣∣∣2.
The last equation can be turned into an inequality by applying the Cauchy-Schwarz
inequality n+ 1 times

‖f‖4A4 ≤
∞∑
n=0

n∑
k=0
|akan−k|2 =

(∑
n≥0
|an|2

)2
= ‖f‖4H2 .

This proves the case p = 2. Assume that p ≥ 1, if f ≡ 0 we are done. If f 6= 0
then f has a finite number of zeroes, and in particular from Riesz factorization
theorem 1.16 we can write f(z) = g(z)B(z), where B is a Blaschke product and
g ∈ H2 is zero free in D. Furthermore, from Corollary 1.17 it is known that gp/2 is
in H1, since g does not vanish in D, and ‖f‖Hp = ‖g‖Hp . Thus,

‖f‖A2p ≤ ‖g‖A2p = ‖gp/2‖p/2A4 ≤ ‖gp/2‖p/2H2 = ‖g‖Hp = ‖f‖Hp ,

where |B(z)| < 1 in D from 1.15 was used to prove the first inequality and the
second inequality follows from p = 2. Which completes the proof. �

The classical isoperimetric inequality now follows directly.
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Corollary 1.26. Let G be a Jordan domain with rectifiable boundary of length
L(∂G), and area A(G) Then there holds the inequality

A(G) ≤ L(∂G)2/4π .

Proof. Appealing to the Riemann mapping theorem, we can choose a conformal
mapping F of D onto Ω. Then,

L(∂G) = lim
r→1−

L(F ({|z| = r})) = lim
r→1−

∫ 2π

0
|F ′(reiθ)|dθ = 2π‖F ′‖H1 .

From Duren [15, p. 44] we have that if f(z) maps |z| < 1 conformally onto the
interior of a Jordan curve C, then C is rectifiable if and only if τ ∈ H1.

Also A(Ω) = ‖τ‖2A2 , so the isoperimetric inequality (1.44) follows from ‖f‖2A2 ≤
‖f‖2H1 applied to f = τ . �

Generalizations for the weighted Bergman space. While
not needed for this thesis, we offer a small digression as to how Carleman’s in-
equality extends to the weighted Bergman space. See the monograph Hedenmalm,
Korenblum, and Zhu [23] for further references on the Bergman spaces. Let α > 1
and 1 ≤ p < ∞, and define the (weighted) Bergman space Apα(D) as the space of
analytic functions in D that are finite with respect to the norm

‖f‖Apα :=
(∫

D
|f(w)|p(α− 1)(1− |w|2)α−2 dσ(w)

)1/p

Here dσ denotes the Lebesgue area measure, normalized so that dσ(D) = 1. It will
be convenient to let dσα(w) = (α− 1)(1− |w|)α−2 dσ and to let dσ1 = dm denote
the normalized Lebesgue measure on the torus T.

The following inequality is due to Burbea [11, Cor. 3.4] who generalized
Carleman’s inequality.
Proposition 1.27 (Burbea). Suppose that f ∈ H2, then for every integer k ≥ 2

‖f‖A2k
k

=
(∫

D
|f(z)|2k dσk(z)

) 1
2k

≤ ‖f‖H2 . (1.50)

Let Cα(j) denote the coefficients of the binomial series
1

(1− z)α =
∑
j=0

Cα(j)zj , Cα(j) =
(
j + α− 1

j

)
. (1.51)

Notice that C1(j) = 1 for every j. Identifying Cα(j) as the coefficients of the
binomial series (1− z)−α, we find that

Cαk(j) =
∑

j1+j2+···+jk=j
Cα(j1)Cα(j2) · · ·Cα(jk) . (1.52)

In particular if α is an integer, then Cα(j) denotes the number of ways to write j
as a sum of α non-negative integers. Hence,∑

j+k=l
Cα(j)Cβ(k) = Cα+β(l) .
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To prove equation (1.50) we will need to compute the norm of the weighted Bergman
space

Lemma 1.28. Let f =
∑
n≥0 anz

k be in A2
α, then

‖f‖2A2
α

=
∑
n≥0

|an|2

Cα(n) .

Proof. Since f ∈ A2
α, we may interchange the integral and summation as needed.

‖f‖2A2
α

=
∫
D
|f(z)|2 dσα(z)

=
∫
D

∑
n,m≥0

anamr
n+mei(n−m)θ(α− 1)(1− r2)α−2 dσ(w)

= 2(α− 1)
∫ 1

0

∑
n≥0
|an|2r2n(1− r2)α−2r dr

=
∑
n≥0
|an|2(α− 1)

∫ 1

0
tn(1− t)α−2 dt

Where the substitution r2 7→ t was used. Using Corollary A.20 the integral becomes∫ 1

0
tn(1− t)α−2 dt = B(n+ 1, α− 1) = 1

α− 1

(
n+ α− 1

n

)−1
= 1

(α− 1)Cα(n) ,

and we are done. �

Proof of Proposition 1.27. Again let f(z) =
∑
j≥0 ajz

j . The idea is to
use |f |2k = |fk|2 and use Lemma 1.28.

‖f‖2kA2k
k

=
∑
j≥0

1
Ck(j)

∣∣∣∣∣ ∑
j1+j2+···+jk=j

aj1 · · · ajk

∣∣∣∣∣
2

≤
∑
j≥0

( ∑
j1+j2+···+jk=j

|aj1 |2 · · · |ajk |2
)

=
(∑
j≥0
|aj |2

)2k

= ‖f‖2kH2 ,

where equation (1.52) was used in the second to last inequality. �

Even though the above proof was relative easy, it is not known whether Propo-
sition 1.27 holds for non-integer k.
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1.6. Hardy spaces on the polydisc

In this section we give a brief introduction to the Hardy spaces of the countably
infinite polydisk, Hp(D∞), which in recent years have recieved considerable interest
and study, emerging from the fundamental papers [24, 14]. Much of the renewed
interest is due to a simple observation of Bohr [7], which facilitates a link between
Dirichlet series and function theory in polydiscs.

The standard reference for the Hardy space on the polydisc is the classical
monograph [44] by Rudin. We will frequently use polynomials in several complex
variables, and for bookkeeping the following multi-index notation is introduced.

Definition. An m’th order multi-index on Cn is the following vector
α = (α1, α2, . . . , α) where αi ∈ {0, 1, . . . ,m}. Furthermore |α| = α1+α2+· · ·+αn =
m. For z ∈ Cn we take

zα := zα1
1 zα2

2 · · · zαnn .

Any m’th degree polynomial on Tn can thus be represented as

P (z) =
∑
|α|≤m

aαz
α ,

where we assume that there exists some aα 6= 0 and |α| = m. Similarly we denote
an analytic function on Tn as

f(z) =
∑
α≥0

aαz
α ,

with α = (α1, α2, · · · ).

Definition. Let U be an open subset of Cn. A function F : U → C is called
analytic if it is continuous and analytic in each variable.

In one dimension we have studied the unit disk and the unit torus:
D = {z ∈ C : |z| < 1} ,
T = {z ∈ C : |z| = 1} ,

where it was clear that ∂D = T, and we made no distinction between the spaces. It
is natural to consider:

Dn := {z = (z1, z2, . . . , zn) ∈ Cn : zi ∈ D} ,
Tn := {z = (z1, z2, . . . , zn) ∈ Cn : zi ∈ T} .

However, if we let z = (1, 0, . . . , 0) then z is on ∂Dn but not on T, so for n ≥ 1,
we see that Tn * ∂Dn. Thus, some extra care is needed to define Hp(D∞), since
functions in Hp(D∞) will generally not be well defined in the whole set D∞.

However, similar to the one-dimensional case the radial boundary limit
f∗(z) = lim

r→1−
f(rz) ,

exists for almost every z ∈ Td, and we can write

‖f‖p
Hp(Dd) =

∫
Td
|f∗|p dmd . (1.53)
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This means that Hp(Dd) is a subspace of Lp(Td,md). Moreover, again as in the
one-dimensional case, for every f ∈ Hp(Dd) we have

lim
r→1−1

‖f − fr‖Hp(Dd) = 0 . (1.54)

Which implies that the polynomials are dense in Hp(Dd). Thus, it will be convenient
to define the space Hp(Dd) as the Banach space completion of the polynomials
F (z) =

∑N
n=0 anz

κ(n) in the norm

‖f‖Hp(Td) :=
(∫

Td
|f |p dmd

) 1
2

.

As before we make no distinction between Hp(Td) and Hp(Dd). A convenient
method to obtain equations (1.53) and (1.54) is to apply the Lp-boundedness of
the radial maximal function on Hp(Dd) for all p > 0. By Fubini’s theorem, the
boundedness of the maximal function then reduces to the classical one-dimensional
estimate, see [42] for details.

To define D∞, it will be convenient to introduce the set D∞fin which consists of
elements z = {zj}j≥1 ∈ D∞ such that zj 6= 0 only for finitely many j. It is clear
that the function f can be written as a convergent Taylor series

f(z) =
∑
α∈N∞fin

aαz
α , z ∈ D∞fin ,

and the coefficients ck determine f uniquely.

Definition. Let p ≥ 1. The space Hp(D∞) is the space of analytic functions
on D∞fin obtained by taking the closure of all polynomials in the norm

‖f‖Hp(T∞) :=
(∫

T∞
|f |p dm∞

) 1
p

.

Here dm∞ denotes the Haar measure, we refer to [24] for the details, mentioning
only that the Haar measure of T∞ is simply the product of the normalized Lebesgue
measures in each variable.

Lemma 1.29. For any multi-indices α and β on Cd we have∫
Td
zα · zβ dmd(z) = δαβ . (1.55)

Proof. Recall from Lemma 1.11 that in the one dimensional case∫
T
zk · zj dm(z) = δij

holds for all non-negative integers k and j, by the orthogonality of the trigonometric
system. Applying this for each of the d variables completes the proof. �
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1.6.1. The Cole-Gamelin estimate
We now wish to show that point evaluations at a point z in

D∞ ∩ `2 = {z ∈ D∞ :
∑
j≥1
|zj |2 < +∞} ,

extends continuously to Hp(T∞). This was first shown by Cole and Gamelin in
[14].

Proposition 1.30 (Cole-Gamelin). Let f ∈ Hp(T∞), where p ≥ 1 then

|f(z)| ≤
(∏
j≥1

1
1− |zj |2

) 1
p

‖f‖Hp(D∞) ,

and the inequality is sharp.

Proof. Let P (z) be a polynomial with z ∈ Dd,

|P (z1, z2, · · · , zd)|p .

By applying the standard point-estimate 1.21 to z1 we obtain

|P (z1, z2, · · · , zd)|p ≤
1

1− |z1|2

∫
T
|P (w1, z2, · · · , zd)|p dm(w1) . (1.56)

Applying 1.21 to z2 in equation (1.56) gives

|P (z1, z2, · · · , zd)|p ≤
2∏
j=1

1
1− |zj |2

∫
T2
|P (w1, w2, · · · , zd)|p dm2(w1, w2) ,

by repeating this process and applying the point estimate to each variable we obtain

|P (z1, z2, · · · , zd)|q ≤
d∏

m=1

1
1− |zm|2

∫
Td
|P |q dmd .

Letting d→∞ completes the proof. That this inequality is sharp follows since the
point-estimate in one variable is sharp. �

1.7. Helson’s inequality

The purpose of this section will be to generalize Carleman’s inequality (1.47)(∑
k≥0

|ak|2

1 + k

) 1
2

≤
∫
T
|f |dm, (1.57)

to T∞. In other words we wish to prove that

Theorem 1.31 (Helson’s inequality). Given f ∈ H1(D∞) then(∑
α≥0

|aα|2

(1 + α1)(1 + α2) · · ·

) 1
2

≤ ‖f‖H1(D∞) , (1.58)

where α ≥ 0 means the unbounded multi-index α = (α1, α2, · · · ).
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Proof. As before it suffices to prove Theorem 1.31 in d variables, and then take
closure of the analytic polynomials. We let f(z) be a polynomial of j = 1, . . . , d
variables, and following Helson [26] define the operator Tj as

Tj
∑
α≥0

aαz
α =

∑
α≥0

aα√
1 + αj

zα .

Where again the multi-index notation defined in section 1.6 was used. Helson’s
inequality (1.58) can now be written as

‖T1 · · ·Tdf‖H2(Td) ≤ ‖f‖H1(Td) . (1.59)
The idea is now to apply Carleman’s inequality (1.57) to the first variable of
f(z1, · · · , zd) in the left hand-side of equation (1.59)

‖T1 · · ·Tdf‖H2(Td) ≤
(∫

T

(∫
Td−1
|T2 · · ·Tdf |dmd−1

)2
dm1

) 1
2

. (1.60)

The next step is to use Minkowski’s continuous inequality A.10;[∫
X

(∫
Y

|f(x, y)|dν(y)
)2

dµ(x)
] 1

2

≤
∫
Y

(∫
X

|f(x, y)|2dµ(x)
) 1

2

dν(y) ,

to the right-hand side of (1.60), thus reversing the order of integration

‖T1 · · ·Tdf‖H2(Td) ≤
∫
T

(∫
Td−1
|T2 · · ·Tdf |2 dm1

) 1
2

dmd−1 .

We now have one fewer T s, and one variable removed from the inner integral. Re-
peating this process of alternating between Carleman’s and Minkowski’s inequality
d− 1 times to the right hand-side of equation (1.59) we obtain

‖T1 · · ·Tdf‖H2(Td) ≤
∫
Td−1

(∫
T
|Tdf |2 dmd−1

) 1
2

dm1 .

A final application of Carleman’s inequality and Minkowski’s inequality shows

‖T1 · · ·Tdf‖H2(Td) ≤
(∫

Td
|f |dmd

) 1
1

= ‖f‖H1(Td) .

Taking the closure of the analytic polynomials now completes the proof. �
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Hankel forms

The purpose of this section is to introduce the bilinear forms, the Hilbert matrix,
and prove Nehari’s theorem in its original form.

It was Hankel [18] who in 1861 began the study of finite matrices whose entries
depend only on the sum of the coordinates, and therefore such objects are called
Hankel matrices. In particular, Hankel forms was first represented by matrices
(an+k)n,k≥0 where (an)n≥0 is a sequence of complex numbers and was originaly
used to study moment problems.

The theory on Hankel forms had a latent development, but after the work of
Nehari [33] [1957] and Hartman [22] [1958], the theory rapidly evolved. The classical
framework for the theory of Hankel operators is the sequence space

`2 =
{
x = (xk)k≥0 : ‖x‖2`2 =

∑
k≥0
|xk|2 <∞

}
, .

We will identify `2 with the Hardy space H2 of analytic functions in D

H2 =
{
f(z) =

∑
n≥0

anz
n : ‖f‖2H2 =

∑
n≥0
|an|2 <∞

}
.

We see from the expression above that the vector f = (a0, a1, · · · ) ∈ `2 is iden-
tified with the analytic function f(z) =

∑
n≥0 anz

n ∈ H2 and vice versa. This
identification was explicitly shown in Theorem 1.10 and will be used frequently.

2.1. Bilinear forms

Definition. Let a = {an}n≥1, b = {bn}n≥0 be two sequences in `2. Then the
map A : `2 × `2 → C defined by

A(a, b) =
∞∑
m=0

∞∑
n=0

Am,nambn ,

is a bilinear form.

Where the double sequence {Am,n}m,n≥0 can be viewed as a matrix with indices
Am,n. As a reminder we will from here on out use the notation

∑
m,n≥0 to denote

double series, when no confusion is possible. A bilinear form is said to be bounded

29
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if there exists a positive constant K such that∣∣∣∣∣∣
∞∑

m,n≥0
Am,nambn

∣∣∣∣∣∣ ≤ K
(∑
n≥0
|an|2

) 1
2
(∑
n≥0
|bn|2

) 1
2

. (2.1)

The smallest number K for which the inequality holds is referred to as the norm,
and we write ‖A‖ = K. This is attained when |A(a, b)|/‖a‖‖b‖ is maximized, thus
we define the operator norm of A as

‖A‖ := sup
a,b∈`2
a,b6=0

|A(a, b)|
‖a‖‖b‖

= sup
a,b∈`2

‖a‖=‖b‖=1

|A(a, b)| , (2.2)

where the norms of a and b is the `2 norm.
Among the numerous bilinear forms which have been studied [20, Chp. VIII,

IX], there are some whose coefficients Am,n of the special types α(n+m), where
the function α(n) is defined for integral values of n. We will denote these bilinear
forms as Hankel forms:

Definition. For a sequence ρ = (ρ1, ρ2, ρ3, . . .) ∈ `2 its corresponding Hankel
form on `2 × `2 is given by

ρ(a, b) :=
∑
m,n≥0

ambmρm+n , (2.3)

which initially is defined for a, b ∈ `2.

Proposition 2.1. Let f ,g be in H2. Then,

Hϕ(fg) := 〈fg, ϕ〉H2 = ρ(a, b) , (2.4)

induces a Hankel form on `2 × `2 where

ϕ(z) =
∑
n≥0

ρnz
n.

The function ϕ is called the symbol of H.

Proof. Since f, g ∈ H2 this implies that f ,g are analytic functions on the form

f(z) =
∑
m≥0

amz
m and g(z) =

∑
n≥0

bnz
n.

Using equation (2.4), a computation at the level of coefficients shows

Hϕ(fg) =
∫
T
fg · ϕdm

=
∑

m,n,k≥0
ambnρk

∫
T
zm+n · zk dm =

∑
m,n≥0

ambnρn+m = ρ(a, b).

The integral was evaluated using Lemma 1.11, since zm+n and zk are orthogonal
on L2. �
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Similar to equation (2.1), we define Hϕ to be bounded bounded if there exists
a real number k such that for all f, g ∈ H2∣∣H(fg)

∣∣ ≤ k‖f‖H2‖g‖H2

The smallest possible k is obtained by maximizing
∣∣H(fg)

∣∣/‖f‖‖g‖. Thus we define
the norm of Hϕ as

‖Hϕ‖ = sup
f,g∈H2

f,g 6=0

|〈fg, ϕ〉H2 |
‖f‖‖g‖

= sup
f,g∈H2

‖f‖=‖g‖=1

|〈fg, ϕ〉H2 | , (2.5)

where the norm of f and g is the H2 norm. If ϕ is in H∞, we obtain a very simple
bound for ‖Hϕ‖.

Proposition 2.2. Let Hϕ be a Hankel form, and let ϕ in H∞. Then
‖Hϕ‖ ≤ ‖ϕ‖H∞ . (2.6)

Proof. A direct computation of the inner product yield,

|Hϕ(fg)| =
∣∣∣∣∫

T
f · g · ϕdm

∣∣∣∣ ≤ sup
z∈T
|ϕ(z)|

∣∣∣∣∫
T
f · g dm

∣∣∣∣
≤ sup

z∈T
|ϕ(z)|

(∫
T
|f |2 dm

) 1
2
(
|g|2 dm

) 1
2

,

where the first inequality follows by taking out by taking the supremum of ϕ, and
the latter from Cauchy–Schwarz. As the last expression is ‖ϕ‖L∞‖f‖H2‖g‖H2 , the
proposition follows directly from equation (2.5). �

2.2. The Hilbert matrix

As seen in Proposition 2.1 every Hankel form can be viewed as the inner product
of two functions in H2. Another simple integral that produces Hankel forms is the
following,

H(fg) =
∫ 1

0
f(z)g(z) dz , f, g ∈ H2. (2.7)

Proposition 2.3. The integral (2.7) is a Hankel form with symbol

ϕ(z) =
∑
k≥0

1
k + 1z

k .

Proof. To see that ϕ is the symbol, we compute H(fg) at the level of coefficients:∫ 1

0
f(z)g(z) dz =

∑
m,n≥0

ambn

∫ 1

0
zm+n dz =

∑
m,n≥0

ambn
m+ n+ 1 . (2.8)

Where the interchange of the sum and integral follows since f, g ∈ H2. Comparing
this with equation (2.3) we see that

ρm+n = 1
m+ n+ 1 . (2.9)



32 2. HANKEL FORMS

Thus the symbol can be written

ϕ(z) =
∑
k≥0

1
1 + k

zk =
∫ 1

0

( ∞∑
k≥0

(zw)k
)

dw . �

We can view ρn+m of H(fg) as the coefficients of the following matrix

Definition. Let M : `2 → `2 be the following matrix

M :=
(

1
n+m+ 1

)
m,n≥0

=


1 1/2 1/3 · · ·

1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·
...

...
...

. . .

 .

We define M as the Hilbert matrix.

Since ϕ is not bounded, we obtain from Proposition 2.2 the un-interesting
bound ‖Hϕ‖ ≤ ∞. The purpose of the remaining part of this section is to prove
that ‖Hϕ‖ in fact is bounded.

Theorem 2.4. The Hankel form Hϕ is a strictly positive and bounded on H2

and ‖H‖ = π.

This is the same as proving∑
n,m≥0

anbn
n+m+ 1 ≤ π

(∑
n≥0
|an|2

) 1
2
(∑
n≥0
|bn|2

) 1
2

, (2.10)

where the constant π can not be improved, in other words showing that ‖M‖ = π.
Equation (2.10) is part of a family of inequalities all known as Hilbert’s inequality.

The history of the Hilbert’s inequality is briefly explained in Hardy, Littlewood,
and Pólya [20, Chp. IX]. According to this Hilbert first proved his double series
theorem in his lectures on integral equations. The theorem states that there exists
some positive constant C, such that for any real square summable sequence {an}
one has ∑

m,n≥1

aman
m+ n

≤ C
∑
m≥1

a2
m . (2.11)

Hilbert proved this equation with the constant C = 2π, and later Shur improved
this bound, proving that the optimal constant was C = π. We will not prove
equation (2.10) here, but instead prove the weaker version (2.11). The reason for
this is twofold.

Firstly it was shown in Hardy, Littlewood, and Pólya [20, p. 233] that equa-
tion (2.11) may be sharpened into (2.10) by using a discretization of the continuous
version of (2.11) and the Hermite–Hadamard inequality. The details are omitted
as we will later prove the strongest version of Hilbert’s inequality using Nehari’s
theorem.

Secondly, the proof for the weaker version (2.11) has a natural extension to
Hankel forms for Dirichlet series. The same does not hold for equation (2.10), see
Brevig and Perfekt [9] for further details. To simplify the writing, Hilbert assumed
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in (2.11) that an = bn. While it is a well-known fact that this restriction does not
change the bound of the form, we will instead follow Steele [47] and prove∣∣∣∣ ∑

m,n≥0

ambn
n+m

∣∣∣∣ ≤ π(∑
m≥0

a2
m

) 1
2
(∑
n≥0

a2
n

) 1
2

. (2.12)

A naive first attempt to prove equation (2.12) would be to use Cauchy-Schwarz( ∑
m,n≥1

αsβs

)2
≤
∑
m,n≥1

α2
s

∑
m,n≥1

β2
s , (2.13)

directly with

αs = am√
n+m

, βs = bn√
n+m

, s = (n,m) .

By design, the products αsβs recapture the terms one finds on the left-hand side
of Hilbert’s inequality, but the bound one obtains from Cauchy’s inequality (2.13)
turns out to be disappointing. Specifically with the choices above we have( ∑

m,n≥1

anbn
n+m

)2
≤
∑
m,n≥1

a2
m

n+m

∑
m,n≥1

b2n
n+m

, (2.14)

where unfortunately the right-hand side diverges. The first factor diverges like an
harmonic series when we sum over n, and similarly β2

s diverges when we sum over
m. Thus, we will instead look at the parametric family

αs = am
n+m

(
m

n

)λ
, βs = bn

n+m

(
n

m

)λ
, s = (n,m) ,

where 0 < λ < 1 will be chosen later. The reason for the choice above is simple,
For large n, αs ∼ am/n

λ+1. So αs behaves like a real Dirichlet series for n, and
hence converges for λ > 0. Applying Cauchy–Schwarz (2.13) on

∑
αsβs yield( ∑

m,n≥1

ambn
n+m

)2

≤
∑
m,n≥1

a2
m

n+m

(
m

n

)2λ ∑
m,n≥1

b2n
n+m

(
n

m

)2λ
. (2.15)

We will now bound the right-hand side by an integral estimate, and by symmetry, we
only need to consider one of the factors. For any non-negative decreasing function
f : [0,∞)→ R, we have ∑

n≥1
f(n) ≤

∫ ∞
0

f(x) dx . (2.16)

Specifically for the function f(x) = m2λx2λ(m+ x)−1,∑
n≥1

(m/n)2λ

n+m
≤
∫ ∞

0

(m/x)2λ

m+ x
dx x 7→my=

∫ ∞
0

y−2λ

1 + y
dy = π

sin 2πλ , (2.17)

where the last equality follows from Lemma A.18. As sin 2πλ is maximal when
λ = 1/4, we obtain π as the constant. Even though λ = 1/4 gives the best constant,
it does not prove that there does not exists a smaller constant C < π that satisfies
(2.11).
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Proposition 2.5 (Hilbert’s inequality). Let an, bn be real square summable
sequences, then ∣∣∣∣ ∑

m,n≥1

ambn
n+m

∣∣∣∣ ≤ π(∑
m≥1

a2
m

) 1
2
(∑
n≥1

a2
n

) 1
2

, (2.18)

and the constant π can not be improved.

Proof. Using the Cauchy–Schwarz inequality on the sequences

αm,n = am
n+m

(
m

n

)1/4
, βm,n = bn

n+m

(
n

m

)1/4
,

we obtain the following bound∣∣∣∣ ∑
m,n≥1

ambn
n+m

∣∣∣∣2 ≤ (∑
m≥1

a2
m

∑
n≥1

1
n+m

√
n

m

)(∑
n≥1

b2n
∑
m≥1

1
n+ 1

√
m

n

)
.

By taking the square root and applying the integral estimate equation (2.17), we
obtain (2.18). To prove that the inequality in (2.18) is sharp, we note that both
sides of converges for

an(ε) := bn(ε) := n−(1+ε)/2 , ε > 0 ,

but fails for ε = 0. The idea is to ’stress’ the inequality by seeing what happens as
ε→ 0. By the standard integral estimate (2.16)∑

m≥1
m−1−ε ≤

∫ ∞
1

x−1−ε dx = 1
ε
.

Thus, we obtain the following estimates for the sums∑
m≥1

a2
m =

∑
m≥1

b2m = 1
ε

+O(1), (2.19)

where O(1) is some function that is bounded as ε→ 0. Similarly,∑
n,m≥1

ambn
m+ n

≥
∫ ∞

1

∫ ∞
1

(xy)−(1+ε)/2 dx dy
x+ y

=
∫ ∞

1
x−1−ε

∫ ∞
1/x

u−(1+ε)/2 dudx
1 + u

.

We now need an estimate for the last integral. A standard calculation shows∫ 1/x

0

u−(1−ε)/2

1 + u
du ≤

∫ 1/x

0
u−(1+ε)/2 du = 2

1− εx
(ε−1)/2 <

x−1/2

1/2 .

Hence the error in replacing the lower limit in the inner integral by 0 is less than
x−α/α, where α is positive and independent of ε. Integration gives∫ ∞

1
x−1−ε · x−α/α dx = 1

α(α+ ε) <
1
α2 .
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Using this and Lemma A.18 we obtain∑
n,m≥1

ambn
m+ n

=
∫ ∞

1
xx−1−ε

(∫ ∞
0

u−(1+ε)/2 du
1 + u

+O(x−α/α)
)

= 1
ε

π

sin π/2 +O(1/α2) = 1
ε

{
π

sin π/2 + o(1)
}
,

(2.20)

for sufficiently small ε. Here o(1) is some constant that tends to 0 as ε→ 0, to be
precise o(1) = ε ·O(1/α2). Combining equations (2.19) and (2.20) we obtain∑

n,m≥1

ambn
m+ n

≥ π
(∑
n≥1

a2
m

) 1
2
(∑
n≥1

b2n

) 1
2

,

for ε sufficiently small. This proves that π is the best possible constant for (2.18). �

Corollary 2.6 (Hilbert’s inequality). Let an, bn be real square summable se-
quences and 1 < p <∞. If q ∈ R satisfies 1/p+ 1/q = 1. Then,∑

m,n≥1

ambn
n+m

≤ π

sin π/p

(∑
n≥1

apn

) 1
p
(∑
n≥1

bqn

) 1
q

, (2.21)

and π/ sin(π/p) is the best possible constant.

Proof. To prove the more general case we may apply Hölders inequality for sums∑
m,n≥1

ambn
n+m

≤

(∑
m≥1

apm
∑
n≥1

(m/n)1/q

n+m

) 1
p
(∑
n≥1

bqn
∑
m≥1

(n/m)1/p

n+m

) 1
q

≤
(

π

sin π/q

) 1
p
(

π

sin π/p

) 1
q

(∑
m≥1

apm

) 1
p
(∑
n≥1

bqn

) 1
q

≤ π

sin π/p

(∑
m≥1

apm

) 1
p
(∑
n≥1

bqm

) 1
q

.

The first equality follows from the integral estimate and Lemma A.18, the second
from equation (A.21). Proving that π/ sin(π/p) is the best constant, can be done
similarly as in the case p = 2, now with the sequences

an = m−(1+ε)/p , bn = n−(1+ε)/q , ε > 0 . (2.22)
See Hardy, Littlewood, and Pólya [20, p. 232] for the details. �
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2.3. Nehari’s theorem and weak product spaces

In this section we aim to introduce and prove Nehari’s theorem, and use it to study
the strongest form of Hilbert’s’ inequality. From Proposition 2.2 we have that the
Hankel form

ρ(a, b) =
∑
m,n≥0

ambnρm+n ,

is bounded if the symbol

ϕ(z) =
∑
n≥0

ρnz
n ,

is bounded in the essential supremum norm. Nehari’s theorem gives the reverse
implication, namely that every bounded Hankel form has a bounded symbol, and
the smallest such symbol coincides with the norm. As we will see this is equivalent
to that H1(T) admits weak factorization. Before we can give the formal definition
of Nehari’s theorem, we need to introduce the following projection.

Definition (Riesz projection). We define, P+ : L2(T)→ H2(T), by

P+f(z) =
∑
k≥0

cnz
k , z ∈ T ,

as the Riesz projection. Here f(z) =
∑
k∈Z ckz

k is a complex-valued function on T,
and {ck}k∈Z are the Fourier coefficients of f ∈ Lp(T).

Lemma 2.7. The Riesz projection P+, is a nonzero orthogonal projection. In
other words ‖P‖ = 1.

Proof. It is clear from the definition of the Riesz projection that P 2
+ = P+

and 〈P+f, g〉L2 = 〈f, P+y〉L2 holds for all f, g ∈ L2. Thus showing that P+ is an
orthogonal projection from L2 to H2. For the second statement let f ∈ H2 and
P+f 6= 0, then the use of the Cauchy-Schwarz inequality implies that

‖P+f‖ = 〈P+f, P+f〉
‖P+‖

=
〈f, P 2

+f〉
‖P+f‖

= 〈f, P+f〉
‖P+f‖

≤ ‖f‖L2 .

Therefore ‖P+‖ ≤ 1. However if P+ 6= 0, then there exists an f ∈ L2 with P+f 6= 0
and ‖P+(P+f)‖ = ‖P+‖ ≥ 1. �

Theorem 2.8 (Nehari’s Theorem). The Hankel form Hϕ is bounded on H2 if
and only if there exists a function ψ ∈ L∞ such that P+ψ = ϕ and

‖Hϕ‖ = inf
P+ψ=ϕ

‖ψ‖L∞ , (2.23)

where P+ : L2 → H2 is the Riesz projection.
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2.3.1. Weak product spaces
Weak products on Hardy spaces have their origin in the work of Coifman, Rochberg,
and Weiss [13]. We define the weak productH2�H2 as the Banach space completion
of the finite sums f =

∑
k gkhk where fk, gk ∈ H2, under the norm

‖f‖H2�H2 := inf
∑
k

‖gk‖H2‖hk‖H2 , (2.24)

where the infimum is taken over all finite representations of f as a sum of products.
In other words H2�H2 is the closure of all finite sums f =

∑
j gjhj , for gj , hj ∈ H2

under the norm (2.24).

Proposition 2.9. Suppose that g ∈ Hp and h ∈ Hq with 1 < p ≤ q < ∞ and
1/p+ 1/q = 1/s ≤ 1. Then ‖gh‖Hs ≤ ‖g‖Hp‖h‖Hq , and gh ∈ Hs.

Proof. This follows directly from Hölders inequality
‖gh‖Hs ≤ ‖g‖Hp · ‖h‖Hq , .

Since g ∈ Hp and h ∈ Hq, then ‖g‖Hp‖h‖Hq <∞ and so gh ∈ Hs. �

Proposition 2.9 allows us now to prove the following tautology.

Proposition 2.10. Let H2 � H2 be defined as above. Then H1 = H2 � H2,
meaning every function in H1 lies in H2 � H2 and vice versa. In addition the
norms are equal:

‖f‖H2�H2 = ‖f‖H1 .

Proof. Proposition 2.9 proves the inclusion H2 � H2 ⊂ H1. However from
Corollary 1.17, every function f in H1 can be written as a product gh, where g
and h are functions in H2. This proves the inclusion H1 ⊂ H2 � H2, and thus
we have H1 = H2 �H2. Corollary 1.17 says that every function f ∈ H1 we have
‖f‖H1 = ‖g‖H2‖h‖H2 . Thus,

‖f‖H1 = ‖g‖H2‖h‖H2 ≥ inf
j

∑
j

‖gj‖H2‖hj‖H2 = ‖f‖H2�H2 .

From the definition we have f =
∑
j gjhj , and the triangle inequality

‖f‖H1 =
∥∥∑

j

gjhj
∥∥
H1 ≤

∑
j

‖gj‖H2‖hj‖H2 .

Taking the infinum with respect to all representations gj , hj proves that ‖f‖H1 ≤
‖f‖H2�H2 . �
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2.3.2. Nehari’s Theorem
Lemma 2.11. Suppose that ϕ generates a Hankel form on H2 ×H2. Then,

‖Hϕ‖ = ‖ϕ‖(H2�H2)∗ . (2.25)

Proof. By explicitly writing out both sides of equation (2.25), we have

‖Hϕ‖ = sup
f,g∈H2

∣∣〈fg, ϕ〉H2
∣∣

‖f‖H2‖g‖H2
, (2.26)

‖ϕ‖(H2�H2)∗ = sup
f∈H2�H2

∣∣〈f, ϕ〉∣∣
‖f‖(H2�H2)∗

. (2.27)

To prove 2.11 we will first prove that (2.26) is greater or equal to equation (2.27),
and then prove the reverse inequality. Let f ∈ H2�H2, since f =

∑
j gjhj , we get

|〈f, ϕ〉H2 | ≤
∑
j

∣∣〈gihi, ϕ〉H2
∣∣≤ ‖Hϕ‖

∑
j

‖gi‖H2‖hi‖H2 .

Where the first inequality follows from the definition of f and the triangle-inequality,
and the second from (2.26). By taking the infinum over all finite representations
we obtain

|〈f, ϕ〉H2 | ≤ ‖Hϕ‖‖f‖H2�H2 ,

by the definition of the norm of H2�H2. This proves the inequality ‖ϕ‖(H2�H2)∗ ≤
‖Hϕ‖. Similarly, ∣∣〈gh, ϕ〉H2

∣∣ ≤ ‖gh‖H2�H2‖ϕ‖(H2�H2)∗

≤ ‖g‖H2‖h‖H2‖ϕ‖(H2�H2)∗ .

First inequality follows from equation (2.27), and the second from the definition
of H2 �H2. Proposition 2.10. Since inf

∑
j ‖gj‖‖hj‖ ≤ ‖g‖H2‖f‖H2 . This proves

that ‖Hϕ‖ ≤ ‖ϕ‖(H2�H2)∗ and thus our claim is proven. �

Before we can prove Nehari’s theorem we need to recall a few general concepts
about Banach space from functional analysis. Let X be a Banach space, and let
S be a closed subspace. A coset of X modulo S is a subset ξ = x+ S consisting
of all x+ y, where x is some fixed member of X and y ∈ S. Two cosets are either
identical or disjoint. The quotient space X/S has as ts elements all distinct cosets
of X modulo S. Finally, the norm of a coset ξ = x+ S is defined by

‖ξ‖ = inf
y∈S
‖x+ u‖ . (2.28)

Under this given norm, X/S is complete, and therefore itself a Banach space.
The annhilator of the subspace S is the set S⊥ of all linear functionals ϕ ∈ X∗

such that ϕ(x) = 0 for all x ∈ S. It can be verified that S⊥ is a subspace of X∗.

Proposition 2.12 (Duren [15, p. 113]). The space (X/S)∗ is isometrically
isomorphic to S⊥. Furthermore, for each fixed x ∈ X,

max
ϕ∈S⊥,‖ϕ‖≤1

∣∣ϕ(x)
∣∣ . = inf

y∈S
‖x+ y‖ ,

Where max indicates that the supremum is attained.
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Proof. For each fixed ϕ ∈ S∗, the class of all extensions ψ ∈ X∗ is a coset
in X∗/S⊥. It is clear that this correspondence between S∗ and X∗/S⊥ is an
isomorphism. In fact, ‖ϕ‖ ≤ ‖ψ‖ for every extension ψ; and, by the Hahn-Banach
theorem, there is at least one extension for which ‖ϕ‖ = ‖ψ‖. Thus, for the coset of
extensions of ϕ, the infimum defining the norm is attained, and is equal to ‖ϕ‖. �

As we saw in Chapter 1, the polynomials are dense in Hp, if 1 ≤ p < ∞ and
Hp is a Banach space. If 1 ≤ p ≤ ∞, the set of boundary functions of Hp is the
subspace of Lp for which

cn =
∫ 2π

0
einθf(eiθ) dθ = 0 , n = 1, 2, . . . ,

the negative Fourier-coefficients vanish. In particular if each f ∈ Hp is identified
with its boundary function, Hp can be regarded as a subspace of Lp. According
to the Riesz representation theorem, every bounded linear functional ψ on Lp

(1 ≤ p <∞) has a unique representation

ψ(f) =
∫
T
fg dm, g ∈ Lq , (2.29)

where 1/p+ 1/q = 1. In fact, ‖ψ‖ = ‖g‖q, and (Lp)∗ is isometrically isomorphic to
Lq. Since Hp is a subspace of Lp, then Proposition 2.12 can be used to describe
(Hp)∗ if the annhilator of Hp in (Lp)∗ can be determined. But if g ∈ Lq annhilates
every Hp function, then surely∫ 2π

0
einθg(eiθ) dθ = 0 n = 1, 2, . . . .

Therefore g(eiθ) is the boundary function of some g(z) ∈ Hq, and g(0) = 0. We
will denote this class of functions as Hq

0 . Conversely, if g ∈ Hq
0 , it follows that∫

T
fg dm = 0 ,

for every f ∈ Hp. Hence Hq
0 is the annhiliator of Hp, and it follows form Propo-

sition 2.12, that (Hp)∗ is isometrically isomorphic to Lq/Hq
0 . Actually, we can do

a little better and replace Lq/Hq
0 by Lq/Hq, since the correspondence ξ ↔ eiθξ

between cosets of the two spaces itself is an isometric isomorphism. In summary:
Lemma 2.13. For 1 ≤ p < ∞, the space (Hp)∗ is isometrically isomorphic to
Lq/Hq, where 1/p+ 1/q = 1.
Proof of Nehari’s theorem 2.8. Combining Propositions 2.10 and 2.10
we see that

‖Hϕ‖ = ‖ϕ‖(H1)∗ .

From Lemma 2.13 we have shown that the dual space of H1 is isometrically isomor-
phic to L∞/H∞, Since this is a subspace of L∞ the Hahn-Banach theorem A.21
states that ϕ extends to a bounded linear functional on L∞. Thus proving that

‖Hϕ‖ = inf
P+ψ=ϕ

‖ψ‖L∞ , (2.30)

where P+ : L2 → H2 is the Riesz projection. This completes the proof. �
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2.3.3. Bounded symbol of the Hilbert matrix
Let us indicate an alternative proof (in fact, the original approach of Hilbert) of the
fact that the usual Hilbert matrix has norm π. The strongest version of Hilbert’s
inequality is ∣∣∣∣ ∑

m+n>0
m6=n

ambn
m+ n

∣∣∣∣ ≤ C(∑
m≥0
|am|2

) 1
2
(∑
n≥0
|bn|2

) 1
2

, , (2.31)

which also can be stated for two-tailed sequences {am}m∈Z and {bn}n∈Z. Similar
to the classical Hilbert inequality the symbol to equation (2.31) is

ϕ(θ) =
∑
n≥1

1
n
einθ =

∑
n≥1

ϕ̂(n)einθ = log
(
1− eiθ

)
.

Note however that gives the bound C ≤ ‖ϕ‖L∞ = ∞. To obtain a better bound
we note that since ϕ ∈ H2 we have ϕ̂(n) = 0 for all n = −1,−2, . . .. Thus we may
add as many negative Fourier coefficients to ϕ and still have a symbol for (2.31).
By adding every negative Fourier coefficient we obtain

ψ(θ) =
−1∑

n=−∞

1
n
einθ +

∞∑
n=1

1
n
einθ =

∑
n∈Z
n 6=0

1
n
einθ . (2.32)

Thus, on one hand we have

ϕ(θ) = P+ψ(θ) , (2.33)

while on the other

ψ(θ) = 2i
∑
n≥1

sin(nθ)
n

= i(π − θ) .

Here the first equality follows from splitting and regrouping the series, while the
second follows from Proposition A.15. We thus obtain the following bound

‖H‖ ≤ ‖ψ‖L∞ = π .

Similar what was done in section 2.2 we can prove that the constant π in equa-
tion (2.31) is sharp, by stressing the inequality. Since the inequality is sharp,
Nehari’s theorem tells us that we have found a function ψ ∈ L2 such that ϕ = P+ψ
and ‖Hϕ‖ = ‖ψ‖L∞ = π.

2.3.4. Nehari’s theorem on the polydisc
We briefly mention that the proof above can be extended into the polydisc d > 1,
and as in the one dimensional case the following two statements are equivalent:

• Hψ is a bounded Hankel form if and only if the symbol ϕ in L∞(Td) is
bounded.

• H1(Td) admits weak factorization.
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Factorization on the polydisc Dd is however a much subtler matter. That H1(Dd)
admits a weak factorization is a a highly nontrivial result that was first proven for
d = 2 by Ferguson and Lacey [17], and extended to d > 2 by Lacey and Terwilleger
[30].

Theorem 2.14 (Ferguson–Lacey, Lacey–Terwilleger). H1(Dd) admits weak fac-
torization, in other words

H1(Dd) = H2(Dd)�H2(Dd) , 1 < d <∞ .

Our purpose is to explore to explore whether the two statements above are
equivalent in the infinite dimensional polydisc T∞.





CHAPTER 3

The Hardy space of Dirichlet series

In this chapter we will study Dirichlet series of the form

f(s) =
∑
n≥1

ann
−s , (3.1)

where s = σ + it is a complex variable. Such series has a long history beginning
in the nineteenth century, and the interest was due mainly to the central role that
Dirichlet series play in analytic number theory. The general theory of Dirichlet
series was developed by Hadamard, Landau, Hardy, Riesz, Schnee, and Bohr, to
name a few. However, this research took place before the modern interplay between
function theory and functional analysis, as well as the advent of the field of several
complex variables, and thus the field was in many ways dormant until the late 1990s
[46].

Much renewed interest in Dirichlet series is due to the 1997 paper of Hedenmalm,
Lindqvist, and Seip [24] which introduced H 2, the Hilbert space of Dirichlet series
with square summable coefficients1. This chapter starts with the study this classical
space. Then he Bohr correspondence is introduced, which we will use to create an
analouge space to Hp for Dirichlet series.

3.1. Preliminaries

Similar to Chapter 1, we will briefly recall some classical facts about the Dirichlet
series. Our main reference is Apostol [2, Chp. XI].

Definition. An arithmetical function is a function f : N→ C.

Definition. An arithmetical function f is called multiplicative if f is not iden-
tically zero and if

f(mn) = f(m)f(n), gcd(m,n) = 1 . (3.2)

A multiplicative function f is called completely multiplicative if we also have

f(mn) = f(n)f(m), m, n ∈ N.

Remark. We note that the function f(n) = n−s, where s is a fixed real or complex
number is completely multiplicative. Fixing n = 1, we see that (3.2) implies that
f(1) = 1.

1Note that Hedenmalm, Lindqvist, and Seip used the notation for H for this space. After the
work of Bayart [4] the notation changed to H 2.
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The study of half-planes will be important in this chapter, and for that reason
we introduce the notation

Cθ :=
{
s = σ + it : σ > θ

}
, (3.3)

where θ can be any real number. In contrast to the power series the regions
of convergence for Dirichlet series differ when we consider pointwise convergence,
uniform convergence or absolute convergence. Given f(s) we can define at least
three abcissas σc , σu, σa of convergence.

(1) σc is the smallest σ such that f(s) is convergent in Cσc .
(2) σu is the smallest σ such that f(s) converges uniformly in Cσu+ε for any

ε > 0.
(3) σa is the smallest σ such that f(s) converges absolutely in Cσa .

Theorem 3.1. If the series
∑
n≥1 ann

−s does not converge everywhere or diverge
everywhere, then there exists a real number σc, called the abscissa of convergence,
such that the series converges for all s in the half-plane σ > σc and diverges for all
s in the half-plane σ < σc.
Theorem 3.2. Suppose the series

∑
|amn−s| does not converge for all s or

diverge for all s. Then there exists a real number σa called the abscissa of absolute
convergence, such that the series

∑
amn

−s converges absolutely if σ > σa, but does
not converge absolutely if σ < σa.

Since absolute convergence implies convergence we have trivially −∞ ≤ σc ≤
σu ≤ σa ≤ ∞. See figure 1 for a comparison of the different abscissas.

σc σa

Absolute convergence

ConvergenceDivergence

Conditional
convergence

Figure 1.

Remark. The function f(s) may continue analytically in a region bigger than
Cσc . Let g(s) =

∑
n≥1(−1)nn−s = 2ζ(s)(2−s− 1/2), then σc = 0, but σa = σu = 1.

We want to clearify what the relation between σu and σa is. Of relevance is
the abscissa of regularity and boundedness which was studied by Bohr:

(4) σb is the smallest σ such that f(s) converges at some point s and it is
bounded in Cσb+ε for any ε > 0.

Bohr [7] proved further that
Lemma 3.3. For all Dirichlet series f(s) =

∑
n≥1 ann

−s, we have σu = σb.
In particular this means that whenever we have an analytic function f that

coincides with a Dirichlet series in a half plane Ca and it is holomorphic and bounded
up to Cb with b < a, then the Dirichlet series converges uniformly to f up to Cb.
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3.2. The Hardy-Hilbert space H 2

As done by Hedenmalm, Lindqvist, and Seip [24], we introduce the space

H 2 :=
{∑
n≥1

ann
−s :

∑
n≥1
|an|2 < +∞

}
.

In other words H 2 is the Hilbert space of Dirichlet series with square summable
coefficients, and is a natural analogue of H2(T) for Dirichlet series.

Definition. Given two Dirichlet series f(s) =
∑
ann

−s and g(s) =
∑
bmm

−s

in H 2. We define

〈f, g〉H 2 =
∑
m,n≥1

anbm (3.4)

as the inner product on H 2. This induces the following norm on H 2

‖f‖H 2 := 〈f, f〉H 2 =
∑
n≥1
|an|2. (3.5)

In Theorem 1.10 we showed the basic properties of the Hardy space. The
purpose of this section is to develop similar results for H 2

Theorem 3.4. Let f(s) =
∑
m≥1 amn

−s, g(s) =
∑
n≥1 ann

−s be in H 2. Then

(1) The largest half-plane of convergence for a Dirichlet series f(s) in H 2 is
C1/2. Meaning there exists Dirichlet series in H 2 that does not converge
in the any half-plane bigger than C1/2.

(2) We have the point estimate

|f(σ + it)| ≤ ζ(2σ)1/2‖f‖H 2 .

(3) The space H 2 is the closure of Dirichlet polynomials P (s) =
∑N
n=1 ann

−s

under the norm

‖P‖H 2 :=
(

lim
T→∞

1
2T

∫ T

−T
|P (it)|2 dt

) 1
2

(3.6)

(4) For σ ≥ 1/2 we have the following embedding inequalities

1
π

∫
R
|f(1/2 + it)|2 dt

1 + t2
≤ C̃‖f‖2H 2 ,

sup
τ∈R

∫ τ+1

τ

|f(σ + it)|2 dt ≤ C2‖f‖2H 2 .

By applying Cauchy–Schwarz on (3.1) we obtain two important properties

|f(s)| ≤
∑
n≥1

∣∣ann−s∣∣ ≤ (∑
n≥1
|an|2

) 1
2
(∑
n≥1

n−2σ
) 1

2
. (3.7)
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Since ns = es logn = e(σ+it) logn = nσeit logn, implies |ns| = |nσ|. So the abscissa
of absolute convergence is at most 1/2 for Dirichlet series in H 2. In addition this
shows the point-estimate

|f(s)| ≤ |ζ(2σ)|1/2‖f‖H 2 ,

where again s = σ + it is a complex variable. To prove that C1/2 is the largest
half-plane of convergence for H 2 consider f(s) = ζ(1/2+ε+s) ∈H 2, where ε > 0.
Then f converges in the half-plane C1/2+ε and diverges otherwise. Before we can
define the inner product on H 2 it will be useful to show the following:

Theorem 3.5. Given two Dirichlet series f(s) =
∑
n≥1 ann

−s and g(s) =∑
m≥1 bmn

−s with abscissae of absolute convergence σ1 and σ2, respectively. Then
for all α > σ1 and β > σ2 we have

lim
T→∞

1
2T

∫ T

−T
f(α+ it)g(β + it) =

∑
n≥1

anbn
nα+β (3.8)

Proof. Expanding we have

f(a+ it)g(b+ it) =

∑
n≥1

am
mα+it

∑
n≥1

bn
nβ−it

 =
∑
n,m≥1

ambn
mαnβ

(
n

m

)it

=
∑
n≥1

anbn
nα+β +

∞∑
m,n=1
m 6=n

ambn
mαnβ

(
n

m

)it
Now by the triangle-inequality∑

m,n≥1

∣∣∣∣ ambnmanb

∣∣∣∣ ≤∑
m≥1

|am|
mα

∑
n≥1

|bn|
nβ

,

so the series is absolute convergent, and this convergence is also uniform for all t.
Hence we may integrate term by term and divide by 2T to obtain∫ T

−T
f(α+ it)g(β − it) dt

2T =
∑
n≥1

anbn
nα+β +

∞∑
m,n=1
m 6=n

ambn
mana

∫ T

−T
eit log(n/m) dt

2T (3.9)

For m 6= n we can write the last integral as
1

2T

∫ T

−T
eit log(n/m) dt =

sin
[
T log(n/m)

]
T log(n/m) = O

(
1
T

)
Again the double series converges uniformly with respect to T since (sin x)/x is
bounded for every x. Hence, we can let T → ∞ in equation (3.9) to obtain the
statement of the theorem. �

Corollary 3.6 (Carlson’s theorem). Let f(s) =
∑
ann

−s be analytic in C0
and bounded in every half-plane Re(s) > δ with δ > 0. Then, for each δ > 0,∑

n≥1
|an|2n−2σ = lim

T→∞

1
2T

∫ T

−T
|f(σ + it)|2 dt . (3.10)
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Letting σ → 0 in (3.10), and comparing with (3.5) immediately gives the corollary.

Corollary 3.7. If f(s) =
∑∞
n=1 ann

−s is convergent and bounded in C0, then
f ∈H 2 and

‖f‖2H 2 = lim
σ→0

(
lim
T→∞

1
2T

∫ T

−T
f(σ + it)f(σ + it) dt

)1/2

. (3.11)

Note that this together with Lemma 3.3, implies Bohr’s inequality |σa − σu| ≤
1/2. However as the largest halfplance of convergence for Dirichlet series in H 2 is
C1/2, we introduce P the set of all Dirichlet polynomials,

P (s) =
∞∑
n=1

ann
−s, s ∈ C .

As the Dirichlet polynomials converges in C+, and is bounded we obtain from
Corollary 3.7 the following equivalent definition of H 2

Definition. The space H 2 is the closure of Dirichlet polynomials P (s) =∑N
n=1 ann

−s under the norm

‖P‖H 2 :=
(

lim
T→∞

1
2T

∫ T

−T
|P (it)|2 dt

) 1
2

(3.12)

3.2.1. The embedding constant
As mentioned in the introduction, functions in H 2 are analytic in the half-plane
C1/2. It is therefore interesting to investigate how they behave along the along the
abscissa σ = 1/2. In this context, the most important question is the embedding
problem, first considered implicitly by Montgomery and Vaughan, and addressed
again by Hedenmalm, Lindqvist, and Seip. We will see in this section a practical
application of a bilinear form to obtain a sharp estimate for one such embedding.
The Embedding inequality can be formulated as follows:

Theorem 3.8. The embedding inequality

sup
τ∈R

∫ τ+1

τ

|f(σ + it)|2 dt ≤ C‖f‖2H 2 , (3.13)

holds for every f in H 2, σ > 1/2 and C is a constant independent of σ.

An important consequence of this theorem is that it shows that the Dirichlet
series in H 2 are locally L2-integrable on the line Re(s) = 1/2. It suffices to obtain
(3.13) for finite Dirichlet series f , since on compact subsets of C1/2, elements of H 2

are uniformly approximated by them. Moreover, by the Poisson integral formula,
we see that it suffices to consider the limit case σ = 1/2. Thus the embedding
inequality may be restated as:(∫ τ+1

τ

|f(1/2 + it)|2
)1/2

dt ≤ C‖f‖H 2 (3.14)
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There are several proof of equation (3.14) in standard litterature, Hedenmalm,
Lindqvist, and Seip used a version of the classical Plancherel–Polya inequality [24,
Thm. 4.11], while Olsen and Saksman prefered methods from Fourier analysis [35,
pp. 36–37]. Lastly one may also prove the inequality using a general Hilbert–type
inequality due to Montgomery and Vaughan [31]. It should be pointed out that
these proofs do not give a precise value for the constant.

However, by employing the embedding of H 2 into the conformally invariant
Hardy space of C1/2, Brevig [8] was able to obtain an optimal value for the equivalent
embedding:

Theorem 3.9 (The Embedding Inequality). Suppose that f(s) =
∑∞
n≥1 ann

−s

is in H 2. Then (
1
π

∫
R
|f(1/2 + ix)|2 dx

1 + x2

) 1
2

≤ C̃‖f‖H 2 , (3.15)

and the constant C̃ =
√

2 is optimal.

We will first prove Theorem 3.9 and then show that equation (3.14) holds if
and only if Theorem 3.9 is true.

The left-hand side of equation (3.15) is the norm of the conformally invariant
Hardy space in the half plane C1/2, which we denote H2

i . It consists of those
functions f such that f ◦ T ∈ H2(T), where T is the following mapping from D
to C1/2,

T (z) := 1
2 + 1− z

1 + z

The shifted Cayley transform T appeared in the transference principle of Queffélec
and Seip [40]. Now, the norm of H2

i can be evaluated as follows:

‖f‖H2
i

: = ‖f ◦ T‖H2

=
(

1
2π

∫
T
|f(1/2 + i tan(t/2)|2 dt

) 1
2

=
(

1
π

∫
R
|f(1/2 + ix)|2 dx

1 + x2

) 1
2

,

Hence the embedding inequality in equation (3.15) may be restated as

‖f‖H2
i
≤ C̃‖f‖H 2 (3.16)

To prove the embedding inequality 3.9 we begin by estimating the following Hilbert–type
inequality.

Lemma 3.10. Let a = {an}n≥1, b = {bn}n≥1 be sequences in `2. Then

∑
m,n≥1

ambn

√
mn

[max(m,n)]2 ≤ 2
(∑
m≥1
|am|2

) 1
2
(∑
n≥1
|bn|2

) 1
2

, (3.17)

where the constant 2 is optimal.
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Proof. This is a Hilbert–type (see [20, Ch. IX]) bilinear form, and may be
proven in the same fashion as Hilbert’s inequality studied in section 2.2. Denote
the double sum as

Ba,b :=
∑
m,n≥1

ambn

√
mn

[max(m,n)]2

By the Cauchy–Schwarz inequality, we find

|Ba,b| ≤

(∑
m≥1
|am|2

∑
n≥1

m

[max(m,n)]2

) 1
2
(∑
n≥1
|bn|2

∑
m≥1

n

[max(m,n)]2

) 1
2

, (3.18)

and by symmetry, we only need to consider one of the factors. Since max(n,m) = m
for all 1 ≤ n ≤ m and max(n,m) = n for all n ≥ m,∑
n≥1

m

[max(m,n)]2 =
m∑
n=1

m

m2 +
∞∑

n=m+1

m

n2 < 1 +m

∫ ∞
m

dx
x2

x 7→ym= 1 +
∫ ∞

1

dy
y2 = 2 .

Applying this inequality to equation (3.18) gives (3.17). The only thing that remains
is to prove that this constant 2 is optimal. Choose an = bn = n−(1+ε)/2, then both
sides of (3.17) converges for all ε > 0. Trivially,(∑

m≥1
|am|2

) 1
2
(∑
n≥1
|bn|2

) 1
2

= 1
ε

+O(1) , (3.19)

by the integral estimate. The left-hand side may be evaluated similarly

Ba,b >

∫ ∞
1

(∫ y

1
+
∫ ∞
y

)
(xy)−(1+ε)/2

√
xy

[max(x, y)]2 dx dy

=
∫ ∞

1

(∫ y

1
x−ε/2y−2−ε/2 dx+

∫ ∞
y

x−2−ε/2y−ε/2 dx
)

dy = 4
ε(ε+ 2) .

Comparing this with equation (3.19) yields

∑
m,n≥1

ambn

√
mn

[max(m,n)]2 ≥
4

ε+ 2

(∑
m≥1
|am|2

) 1
2
(∑
n≥1
|bn|

) 1
2

+ o(1) , (3.20)

for an = bn = n−1/2−ε/2, and small enough ε. As equation (3.20) holds for every
ε > 0 proves that the constant 2 is optimal. �

Proof of Theorem 3.9. Expanding we find

‖f‖2Hi = 1
π

∫
R
|f(1/2 + it)|2 dt

1 + t2
=
∑
n,m≥1

aman√
mn

1
π

∫
R

(n/m)it

1 + t2
dt . (3.21)

Since xit = eit| log x| it follows from Lemma A.13 that
1
π

∫
R

(n/m)it

1 + t2
dt = e−| log(m/n)| = mn

max(m,n)2 =
{
n/m if m ≥ n
m/n if m < n

. (3.22)
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Combining equation (3.21) with (3.22) and applying Lemma 3.10 we find

‖f‖2Hi =
∑
m,n≥1

ambn <

√
nm

[max(n,m)]2 ≤ 2
(∑
m≥1
|am|2

) 1
2
(∑
n≥1
|bn|2

) 1
2

= 2‖f‖2H 2 .

Taking the square root completes the proof. That the constant
√

2 is optimal follows
from equation (3.17). �

To conclude this section we will spend some time proving the equivalence of
equation (3.15) and (3.14).

Proposition 3.11. Let f ∈ H 2. Then equation (3.14) holds if and only if
equation (3.15) holds. In particular the constant C in (3.14) satisfies

2
coth π ≤ C

2 ≤ 5π
2 .

Proof. We start by proving that (3.14) =⇒ (3.15). Splitting the integral into
intervals of length 1 gives

‖f‖2H2
i

= 1
π

∫
R
|f(1/2 + it)|2 dt

1 + t2

≤ 1
π

∑
k∈Z

1
1 + k2

∫ k

−k
|f(1/2 + it)|2 dt ≤ coth(π)C2‖f‖H 2 ,

where the embedding constant C from (3.14) was used in the last inequality, and
the last sum follows from

∑
k∈Z 1/(k2 + 12) = a−1 coth(aπ) in Lemma A.14. To

prove the reverse inequality (3.14) ⇐= (3.15) we assume that Theorem 3.9 holds.
Then ‖f‖2Hi ≤ C̃‖f‖

2
H 2 , and

1
π

∫ 1/2

−1/2
|f(1/2 + it)|2 dt

1 + t2
≤ 2‖f‖2H 2 , (3.23)

where C̃ =
√

2. By mapping equation (3.14) onto [−1/2, 1/2] we have∫ τ+1

τ

|f(1/2 + it)|2 dt =
∫ 1/2

−1/2
|hτ (1/2 + it)|2 dt , (3.24)

where the shifted function hτ (t) = f(t+ i(1/2 + τ)) was introduced. Thus,

1
π

1
1 + 1/22

∫ τ+1

τ

|f(1/2 + it)|2 dt = 1
π

∫ 1/2

−1/2

|hτ (1/2 + it)|2

1 + (1/2)2 dt

≤ 1
π

∫ 1/2

−1/2

|hτ (1/2 + it)|2

1 + t2
dt ≤ 2‖gτ‖2H 2 .

Where equation (3.23) was used in the last equality. As ‖gτ‖H 2 = ‖f‖H 2 , we have
shown that equation (3.15) implies (3.14). In particular we have shown that∫ τ+1

τ

|f(1/2 + it)|2 dt ≤ C̃2 5π
4 ‖f‖H

2 .

Combining this with Brevig’s result completes the proof. �
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3.3. The Hardy space H p

In chapter 3 we studied H 2, the Hilbert space of Dirichlet series with square
summable coefficients, and saw this space is a natural analogue of H2. One of the
main difficulties in constructing spaces H p (1 ≤ p ≤ ∞) analogous to Hp is the
abscence of any Blaschke factorization: we cannot deduce theorems for H p from
theorems for H 2 as easily as in the case of Hp.

Bayart [4] extended the definition of H p to every p ≥ 1, by defining H p as
the closure of all Dirichlet polynomials f(s) =

∑N
n=1 ann

−s under the norm2

‖f‖H p :=
(

lim
T→∞

1
2T

∫ T

−T
|f(it)|p dt

) 1
2

. (3.25)

For p = 2, this is Carlson’s theorem 3.6, and thus gives back the original definition
of H 2. However it is far from clear that equation (3.25) is the right one, or that
it even yields spaces of convergent Dirichlet series in any right half-plane. The
clarification of these matters is provided by the Bohr correspondence.

3.3.1. The Bohr correspondence
In this section, we introduce a new way to view Dirichlet polynomials, which is due
to Bohr [7]. Fix N and consider the Dirichlet polynomial P ∈P,

P (s) =
N∑
n=1

ann
−s . (3.26)

The fundamental theorem of arithmetic allows us to uniquely factor any integer
into prime factors

n =
π(n)∏
k=1

pαkk , (3.27)

where π(n) denotes the the prime-counting function. If we now translate each prime
number into a variable,

z1 = 2−s, z2 = 3−s, · · · , zk = p−sk , · · · ,
we will have at most π(N) variables in the corresponding polynomial. Thus, the
factorization (3.27) allows us to bijectively associate each integer to the following
multi-index

n ←→ α(n) = (κ1, κ2, . . . , κπ(n)) . (3.28)
Thus, this gives us the Bohr correspondence,

P (s) =
N∑
n=1

ann
−s ←→ BP (z) =

N∑
n=1

anz
κ(n) , (3.29)

which yields a polynomial of at most π(N) variables. From now on, for a given
element P ∈H 2, we let BP denote the corresponding power series, and we drop

2The norm in is actually a quasi-norm for 0 < p < 1, however we are only concerned with the case
p ≥ 1.
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the relationship between z and s. Letting N → ∞ we see that multiplicative
structure of the integers allows us to view an ordinary Dirichlet series as a Fourier
series in infinitely many variables.

This transformation — the so-called Bohr correspondence — gives an isometric
isomorphism between H p and the Hardy space Hp(T∞). In this section we will
show that it ensures an unambiguous definition of H p for 1 ≤ p <∞.

Proposition 3.12. Let P and Q be defined as the following Dirichlet polynomials
P (s) =

∑N
m=1 amm

−s, Q(s) =
∑N
n=1 bnn

−s. We then have the equality

〈BP,BQ〉H2(Td) = 〈P,Q〉H 2 . (3.30)

Proof. Recall from Lemma 1.29 that we have∫
Td
zα(n) · zα(m) dmd(z) = δmn

by orthogonality of the one-dimensional case and zα(r) · zα(s) = zα(rs) from (3.28).
A direct computation of the coefficients now yields

〈BP,BQ〉H2(Td) =
∞∑

m,n≥1
ambn

∫
Td
zα(m) · zα(n) dmd(z) =

N∑
n=1

anbn

To complete the proof recall from section 3.2 the norm of H 2,

〈P,Q〉H 2 =
N∑
j=1

ajbj . �

By taking the closure of the Dirichlet polynomials and Corollary 3.6, we thus have

‖f‖H 2 = ‖Bf‖H2(D∞) :=
(∫

T∞
|Bf |2 dm∞

) 1
2

. (3.31)

Bayart [4] extended equation (3.31) to hold for 1 ≤ p <∞ using Birkhoff’s ergodic
theorem and Kronecker’s lemma. However Saksman and Seip outlined in [45, Sec.
3] a more elementary approach using an interpolation argument.

Proposition 3.13. For every 1 ≤ p <∞ then,

‖f‖H p = ‖Bf‖Hp(D∞) :=
(∫

T∞
|Bf |p dm∞

) 1
p

. (3.32)

Proof. As before it will suffice to prove this for all f ∈ P that are Dirichlet
polynomials, and then take the closure of the Dirichlet polynomials. It is clear that
equation (3.25) holds for every even p = 2n,

lim
T→∞

1
2T

(∫ ∞
−∞
|P (it)|2n dt

)
= lim
T→∞

1
2T

(∫ ∞
−∞

(
|P (it)|n)2 dt

)
= ‖Pn‖2H 2 .

Thus, for every n ∈ N we have

‖P‖H 2n = ‖Pn‖1/nH 2 = ‖BPn‖1/nH2(D∞) = ‖BP‖H2n(D∞), .
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Now pick p freely such that 1 ≤ p < ∞. By Weierstrass approximation theorem
there exists a polynomial Q(x) =

∑J
j=0 bjx

j on the interval [0, L] – where L =∑N
n=1 |an|2 – such that for every ε >∞,

|xp/2 −Q(x)| < ε . (3.33)
For any 1 ≤ p <∞ we can rewrite the limit as

lim
T→∞

1
2T

(∫ ∞
−∞
|P (it)|p dt

)
= lim
T→∞

1
2T

(∫ ∞
−∞

(
|P (it)|2

)p/2
dt
)
,

where P (s) =
∑N
n=1 ann

−s is some finite Dirichlet polynomial. By using equa-
tion (3.33) it is clear that the error in replacing |P (it)|p with Q(P (it)2) in the
equation above is at most O(ε).

lim
T→∞

1
2T

(∫ ∞
−∞
|P (it)|p dt

)
= = lim

T→∞

1
2T

∫ T

−T
Q(P (it)2) +O(ε) dt

= O(ε) + lim
T→∞

1
2T

∫ T

−T

J∑
j=0

bj |P (it)|2j dt

= O(ε) +
J∑
j=0

bj‖BP‖2j
H2j(Td) .

The last norm is simply ‖P‖2jH 2j , by the previous discussion and the Bohr corre-
spondence. Thus, letting ε→ 0 wee see that every p can be uniformly approximated
by the even p values by taking the closure of the Dirichlet polynomials. �

The fact that we can identify H p with Hp(T∞) follows now directly.

Theorem 3.14. The mapping B : P → Hp(T∞) extends to an isometric isomor-
phism from H p onto Hp(T∞).

Proof. From Proposition 3.13, B is an isometric isomorphism from the Dirichlet
polynomials P onto B(P). Where the last notation denotes the Dirichlet poly-
nomials on T∞, under the norm ‖Bf‖Hp(T∞). Since H p is the completion of P
under the norm (∫ T

−T
|P (it)|p dt

) 1
p

,

and Hp(T∞) is the completion of B(P) for ‖ · ‖Hp(T∞) the assertion is proved. �

To complete the picture, we define H ∞ as the space of Dirichlet series f(s) =∑∞
n≥1 ann

−s that represents bounded analytic functions in the half plane C+. This
space is naturally endowed with the norm

‖f‖H ∞ := sup
σ>0
|f(s)|, s = σ + it ,

and then the Bohr correspondence allows us to associate with H ∞ with the space
H∞(T∞). We refer to Queffélec and Queffélec [39] for a further study of this space.
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3.3.2. The properties of H p

We are now ready to try to extend the properties of H 2 from Theorem 3.4 onto
H p. First the domain of definition of an element in H p is supplied by the following
point estimate.

Theorem 3.15. Let f ∈H p. Then, the Dirichlet series which defines f converges
in the half-plane C1/2, and if Re(s) > 1/2, then

|f(s)|p ≤ ζ
(
2 Re(s)

)
‖f‖pH p . (3.34)

Proof. We first let s ∈ C1/2, F = Bf and z = (2−s, 3−s, . . .) ∈ D∞ ∩ `2- Since
F is in Hp(T∞), we can apply the Cole-Gamelin estimate 1.30

|f(s)|p ≤
∏
j≥1

1
1− |p−sj |2

‖f‖Hp(D∞) =
∑
n≥1

n−2 Re(s)‖f‖pH p .

The last equality follows from the Euler product

ζ(s) =
∑
n≥1

1
ns

=
∏
p

1
1− p−s ,

see Corollary A.3 for details. This proves that the abscissa of boundedness for f is
less than 1/2 and Lemma 3.3 implies that f converges in the half-plane C1/2.

To show that C1/2 is the best possible consider the Dirichlet series f(s) =
ζ(1/2 + ε+ s)2/p ∈H p and rewriting the sum in terms of its Euler product. �

Remark. From the previous proof and Lemma 3.3 it follows that if f(s) =∑
n≥1 ann

−s belongs to H p, then σu(f) ≤ 1/2. Similarly if p ≥ 2, then {an}n≥1 ∈
`2, and by the by the Cauchy-Schwarz inequality gives σa ≤ 1/2. Otherwise if
1 < p < 2, we have by Riesz-Thorin theorem {an}n≥1 ∈ `q where 1/q + 1/p = 1,
for which it follows directly by Hölders inequality that in this case σa ≤ 1/p. Note
that this also can be shown using the Hausdorff–Young inequality.

This extends the first three properties of Theorem 3.4 onto H p. The last
property to study is the embedding problem for H p, this was first studied by Bayart
[4] and is of primary importance. It will be enough to formulate the question for
polynomials, since existence of non-tangential boundary values almost everywhere
would be an immediate consequence of a positive answer, and the inequality could
then be stated for all Dirichlet series in H p.

Question 1. Fix an exponent p > 2. Does there exist a constant 1 ≤ Cp < +∞
such that, ∫ 1

0

∣∣f(1/2 + it)
∣∣p ≤ Cp‖f‖pH p , (3.35)

holds for every Dirichlet polynomial f ∈P?

In the case p = 2n with n ∈ N the answer is trivially positive: apply the case
p = 2 from Theorem 3.8 to the function fn ∈H 2. This provides evidence in favour
of a positive answer.
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Let us indicate some properties of H p that makes Question 1 difficult to
answer. It can be shown that for p > 1 the isometric subspace H p(D∞) ⊂ Lp(T∞)
is not complemented in Lp(T∞) unless p = 2. Assume that such a bounded
projection existed, then one could apply the same interpolation technique shown
in equation (3.32) to prove that the L2−orthogonal projection is bounded in Lp.
In other words, the infinite product of one-dimensional Riesz projections would be
bounded in Lp. By considering products of functions each depending on one variable,
we see that the only possibility is that the norm of the dimensional projection is 1.
However as shown by Hollenbeck and Verbitsky [28] the norm of the dimensional
projection is 1 only for p = 2. This fact makes it difficult to apply interpolation
between the already known values p = 2, 4, 6, . . ..

The reason we only ask whether equation (3.35) holds for p ≥ 2 and not p > 0 is
due to Harper [21], who proved that equation (3.35) fails to hold for every 0 < p < 2.
Whether equation (3.35) holds for any p > 2 is still unknown.

In analytic number theory there are a couple of famous unsolved conjectures,
due to Montgomery regarding norm inequalities for Dirichlet polynomials [32, pp.
129]. One of Montgomery’s conjectures states that for every ε > 0 and p ∈ (2, 4)
there exists a constant C = C(ε) such that for all finite Dirichlet polynomials
f(s) =

∑N
n=1 amn

−s with |an| ≤ 1 one has∫ T

0
|f(it)|p dt ≤ C ·Np/2+ε(T +Np/2) for T > 1 .

This inequality is known to be true for p = 2, 4 and if true would imply the density
hypothesis for the zeros of the Riemann zeta function. The similarities suggest
for a possible connection between Montgomery’s conjectures and our embedding
problem. This indicates that answering the embedding problem is likely highly
non-trivial.





CHAPTER 4

Multiplicative Hankel forms

We are now ready to introduce the multiplicative Hankel forms. The purpose of this
chapter will be to study the most prominent example of an infinite multiplicative
Hankel form; the multiplicative Hilbert matrix. With the aid of the Bohr lift, we will
see that every multiplicative Hankel matrix can be uniquely associated with either
a Hankel form on H2(T∞) × H2(T∞) or equivalently a (small) Hankel operator
acting on H2(T∞). This will be used to determine to which extent Nehari’s theorem
remains valid in the multiplicative setting.

In two papers, published in 2006 [26] and (posthumously) in 2010 [27], Henry
Helson initiated a study of multiplicative Hankel matrices, which are finite or infinite
matrices whose entries am,n only depend on the product nm. For ψ ∈ H2(Dd) the
corresponding Hankel form is

ρ(a, b) =
∑
α,β≥0

aαbβρα+β

If we now write the positive integers in multi-index notation mn = pαpβ = pα+β

and let d→∞ we obtain

%(a, b) =
∑
m,n≥1

ambn%nm (4.1)

Thus, we see that on the infinite dimensional polydisc, the Hankel forms becomes
multiplicative.

Definition. Each sequence % = (%1, %2, · · · ) induces a (not necessarily bounded)
multiplicative Hankel form on `2 × `2,

%(a, b) =
∑
m,n≥1

aman%nm , a, b ∈ `2. (4.2)

We define the multiplicative Hankel form (4.2) to be bounded if there is a
constant C <∞ such that

|%(a, b)| =

∣∣∣∣∣∣
∞∑

m,n=1
ambn%nm

∣∣∣∣∣∣ ≤ C
( ∞∑
m=1
|am|2

) 1
2
( ∞∑
n=1
|bn|2

) 1
2

. (4.3)

As in the one dimensional case the smallest number C for which the inequality
holds is referred to as the norm of %.

57
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If f and g are Dirichlet series with coefficient sequences a and b, respectively,
then (4.3) can be rewritten

Hϕ(fg) = 〈fg, ϕ〉H 2 =
∑
k≥1

( ∑
mn=k

ambn

)
%k =

∑
m,n≥1

ambn%mn, .

From which we see that the multiplicative Hankel form is bounded if and only if
Hϕ is a bounded form on H 2 ×H 2.

Under the Bohr correspondence from section 3.3.1, H p corresponds to the
infinite-dimensional Hardy space H2(T∞), which we view as a subspace of L2(T∞).
Following the exact same steps as in Proposition 3.12, a formal computation shows

〈BfBg,Bϕ〉L2(Td) = 〈fg, ϕ〉H 2 ,

allowing us to compute the multiplicative Hankel form (4.2) on T∞ or H 2 . This
interplay will be used extensively to study Nehari’s theorem. We begin by studying
the most prominent example of a bounded multiplicative Hankel form using the
Dirichlet series.

4.1. The multiplicative Hilbert matrix

In section 2.2 we studied the classical Hilbert matrix

M =
( 1
m+ n+ 1

)
m,n≥0

which is the prime example of an (additive) Hankel form. The first bona fide
example of a multiplicative Hankel form was obtained by Brevig, Perfekt, Seip,
Siskakis, and Vukotić, who in [10] found an infinite matrix with entries %m,n that
depended only on the product mn and with properties parallel to those of M . The
purpose of this section is to study this particular Hankel form. For convergence
reasons it will be natural to work with Dirichlet series without constant term

Definition. The subspace H 2
0 consists of those f ∈H 2 with a1 = f(+∞) = 0

and bounded norm

‖f‖H 2
0

:=
∑
n≥2
|an|2 <∞ . (4.4)

It follows from Cauchy-Schwarz that every f in H 2
0 is analytic in the half plane

C1/2, see Theorem 3.4 for an equivalent proof for H 2. Similar to how the integral
in (2.7) induced the Hankel form for the Hilbert matrix, the analog in H 2 is

Hϕ(fg) =
∫ ∞

1/2
f(w)g(w) dw , f, g ∈H 2

0 . (4.5)

Theorem 4.1. The bilinear form equation (4.5) is a multiplicative Hankel form
with symbol

ϕ(s) =
∫ ∞

1/2
ζ(s+ w)− 1 dw =

∑
n≥2

1√
n (logn)

n−s (4.6)
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Proof. To see that ϕ is the symbol, we compute Hϕ(fg) at the level of coeffi-
cients:∫ ∞

1/2
f(w)g(w) dw =

∫ ∞
1/2

∑
m,n≥2

aman(mn)−w dw =
∑
m,n≥2

aman√
mn log(nm)

(4.7)

Comparing this with equation (4.2) we see that

%mn = 1√
mn log(nm)

Thus the symbol can be written

ϕ(s) =
∑
k≥2

1√
k log(k)

k−s =
∑
k≥2

∫ ∞
1/2

k−(s+w) dw =
∫ ∞

1/2
ζ(s+ w)− 1 dw ,

as wanted. �

Hence, the matrix of H(fg) with respect to the orthonormal basis {n−s}n≥2 is

M := (%mn)n,m≥1

(
1√

mn log(mn)

)
m,n≥2

.

We will refer to this matrix as the multiplicative Hilbert matrix. Similar to the Hilbert
matrix, we will be interested in understanding M as an symbol on `20 := `2(N\{1}),
which means that, equivalently, we will be concerned with the properties of the
Hankel form H acting on H 2

0 . That the form Hϕ is bounded on H 2
0 ×H 2

0 is
shown in the next theorem.

Theorem 4.2. The Hankel form Hϕ is a strictly positive and bounded on H 2
0 ×

H 2
0 and ‖Hϕ‖H 2

0
= π.

Proof. The proof relies as in Hardy, Littlewood, and Pólya [20, Chp. IX] on
the following Mellin-transformation∫ ∞

0
x−1/p dx

1 + x
= π

sin(π/p) , (4.8)

see Lemma A.18 for details. As before we will prove that ‖M ‖`20 = π as this implies
that ‖H‖H 2

0
. By the Cauchy–Schwarz inequality we have

∑
n,m≥2

|am||bn|√
mn log(nm)

≤

(∑
m≥2
|am|2

∑
n≥2

1
n log(mn)

√
logm
logn

) 1
2

(∑
n≥2
|bn|2

∑
m≥1

1
m log(mn)

√
logn
logm

) 1
2

,

(4.9)
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and from symmetry we only need to consider one of the factors. The standard
integral estimate gives

∑
n≥2

√
logm
logn

1
n log(mn) ≤

∫ ∞
2

√
logm
log x

1
log(mx)

dx
x

≤
∫ ∞

log 2
logm

u−1/2 du
1 + u

≤
∫ ∞

0
u−1/2 du

1 + u
= π

sin π/2 = π ,

where u 7→ log x/ logm and equation (4.8) were used. Applying this to equation (4.9)
gives the estimate∣∣∣∣ ∑

n,m≥2

ambn√
nm log(nm)

∣∣∣∣ ≤ π(∑
n≥2
|am|2

) 1
2
(∑
n≥2
|bn|2

) 1
2

This now proves the inequality ‖M‖`20 ≤ π, and thus ‖H‖H 2
0
≤ π. To prove that

the norm is bounded below we stress the inequality, with the following sequences

am = bm = m−1/2(logm)−(1+ε)/2

Applying the standard integral estimate again we obtain

‖a‖2`20 = ‖b‖2`20 = 1
ε

+O(1) , (4.10)

when ε→ 0+. Inserting this sequence into the left-hand side of (4.9) we find

∑
n,m≥2

ambn√
nm log(nm)

=
∑
n,m≥2

(
log(nm)

)−(1+ε)/2

√
mn log(mn)

≥
∫ ∞

log 3

∫ ∞
log 3

(xy)−(1+ε)/2

x+ y
dxdy

This iterated integral can computed as the corresponding integral in Hardy, Lit-
tlewood, and Pólya [20, p. 233], using Lemma A.18 twice. Thus, we obtain the
following estimate ∑

n,m≥2

ambn√
nm log(nm)

= 1
ε

( π

sin π/2 + o(1)
)

(4.11)

For the details of the computation above, see Proposition 2.5, we use the same
estimates as done there, only twice.

Comparing equations (4.10) and (4.11) gives∣∣∣∣ ∑
n,m≥2

ambn√
nm log(nm)

∣∣∣∣ ≥ π(∑
n≥2
|am|2

) 1
2
(∑
n≥2
|bn|2

) 1
2

thus the inequality is sharp, and the constant π can not be improved. This proves
that ‖M‖`20 = π, and hence completes our proof. �
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4.1.1. Bounded symbol
Definition. Let Hϕ be a multiplicative Hankel form. We say that Hϕ has a
bounded symbol ϕ if there exists a symbol ψ ∈ L∞(T∞) such that P+ψ = ϕ, where
P+ is the Riesz-projection.

Note that the existence of such a bounded symbol would imply that the corre-
sponding multiplicative Hankel form is bounded, this is known as the converse of
Nehari’s theorem. Let ψ be in L∞(T∞), then by the Cauchy–Schwarz inequality

|Hψ(fg)| = |〈fg, ψ〉| ≤ ‖f‖H2D∞‖g‖H2(D∞)‖ψ‖L∞(T∞) ,

thus proving ‖Hϕ‖ ≤ ‖ψ‖L∞(T∞).
A natural question which we are unable to settle is the following: Does M

have a bounded symbol? As it was shown in [10] that if the embedding∫ 1

0
|P (1/2 + it)|dt ≤ C‖P‖H 1 , (4.12)

holds then M has a bounded symbol. Whether equation (4.12) holds was an open
problem for many years, and just solved in the negative Harper [21]. See [45] for
more details on the embedding problem. Nevertheless, for completeness sake we
will prove that if the following equivalent embedding holds,

‖f‖H1
i

:= 1
π

∫
R
|f(1/2 + it)| dt

1 + t2
≤ C‖f‖H 1 , (4.13)

then M has a bounded symbol. Note that proving that ϕ ∈ (H 1
0 )∗ and thus that

M has a bounded symbol is the same as proving that∣∣∣∣∣
∫ ∞

1/2
f(s) ds

∣∣∣∣∣ = |〈f, ϕ〉H 2 | ≤ C‖f‖H 2
0
.

From Theorem 3.15 and in particular equation (3.34) we have∣∣∣∣∫ ∞
1

f(s) ds
∣∣∣∣ ≤ C‖f‖H 1

0
,

thus we only need to bound the interval [1/2, 1]. By Hilbert’s classical inequality
we have ∣∣∣∣∣

∫ 1

0
F (z) dz

∣∣∣∣∣ ≤ π‖F‖H1(D).

As before we apply the shifted Cayley transformation T = 1/2 + 1−z
1+z to obtain∣∣∣∣∣

∫ 3/2

1/2
f(s) ds

∣∣∣∣∣ ≤ C‖f‖H1
i
(C1/2).

Hence, if ‖f‖Hi(C1/2) is bounded this implies that M admits a bounded symbol.
However, as mentioned earlier Harper [21] found a sequence of functions such that
the embedding inequality equation (4.12) and thus also equation (4.13) failed to
hold for all 0 < p < 2. Thus, the preceding discussion gives no answer as to whether
M has a bounded symbol.
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4.2. Nehari’s theorem

We now come to the question of to which extent Nehari’s theorem remains valid in
the multiplicative setting. Under the Bohr correspondence, H p corresponds to the
infinite dimensional Hardy space H2(T∞), which we view as a subspace of L2(T∞).
As a reminder we have

〈BfBg,Bϕ〉L2(Td) = 〈fg, ϕ〉H 2 .

allowing us to compute the multiplicative Hankel form (4.1) on T∞ or H 2. In the
remainder of this section we work exclusively in the polydisc, with no reference to
Dirichlet series. We therefore drop the notation B and study Hankel forms

Hϕ = 〈fg, ϕ〉L2(Td) , f, g ∈ H2(Td).

The Hankel form Hϕ may be realized as a small Hankel operator Hϕ on the poly-
disk. When this operator is bounded it acts as an operator from H2(D∞) to the
antianalytic space (L2(T∞)	H2(T∞)

)
which consists of all antianalytic elements

in L2(T∞), i.e., all functions in L2 for which all Fourier coefficients with at least
one positive index vanish.

Lemma 4.3. Let ϕ ∈ H2(Dd), where d ∈ N∪ {∞}, and define the operator Hϕ by

Hϕ(f) := P (ϕf) .

where P denotes the orthogonal projection of L2(T∞), onto H2(D∞). Then the
Hankel form Hϕ(fg) = 〈fg, ϕ〉H2(D2) has the same norm as Hϕ.

Proof. For the ease of notation we assume that g is a normalized function such
that ‖g‖

H2(Dd) = 1. Then

‖Hϕf‖H2(Dd) = sup
g∈H2(Dd)

|〈P (ϕf), g〉| = sup
g∈H2(Dd)

|〈ϕf, g〉| ,

since P is an orthogonal projection and f ∈ H2(Dd). If g ∈ H2(Dd), then g ∈
H2(Dd), thus

‖Hϕf‖H2(Dd) = sup
g∈H2(Dd)

|〈ϕf, g〉| = sup
g∈H2(Dd)

|〈fg, ϕ〉| = ‖Hϕ(fg)‖ ,

where the second equality follows from the integral representation

〈fg, ϕ〉 =
∫
Td
fg · ϕdmd =

∫
Td
ϕf · g dmd = 〈ϕf, g〉 . �

Lemma 4.4. Suppose that ϕ1,ϕ2,· · · ,ϕm are symbols that depend on mutually
separate variables and which generate multiplicative Hankel forms Hϕj , 1 ≤ j ≤ m.
Then

‖Hϕ‖ =
m∏
j=1
‖Hϕj‖ ,

where ϕ =
∏
ϕj.
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Proof. For ease of notation we let ϕ(z1, z2) = ϕ1(z1)ϕ2(z2) and note that the
proof may be extended to as many variables as necessary. In two variables we have
P = P1P2 where P1 exclusively work on z1 and P2 on z2. Thus, by the orthogonality
of P and the linearity of ϕ

Hϕ(f) = P (ϕf) = P2P1(ϕ2ϕ1f) = P2
(
ϕ2P1(ϕ1f)

)
= Hϕ2

(
Hϕ1(f)

)
Introduce the function g(z2) = Hϕ1

(
f(z1, z2)

)
. Then the norm of Hϕ becomes

‖Hϕ‖2 = ‖Hϕ2(g)‖2 =
∫
T2
|Hϕ2(g)|2 dm2

≤ ‖Hϕ2‖2
∫
T2
|g|2 dm2

= ‖Hϕ2‖2
∫
T2
‖Hϕ1(f)‖2 dm2

≤ ‖Hϕ2‖2‖Hϕ1‖2
∫
T2
|f |2 dm2 .

This proves the inequality ‖Hϕ‖ ≤ ‖Hϕ2‖‖Hϕ1‖.
To prove the reverse inequality is slightly simpler, let fj , and gj be the functions

such that Hϕj (fj , gj) is maximized. This means that Hϕ(fg) is optimal with
f =

∏
fj , g =

∏
gj ,

Hϕ(fg) =
m∏
j=1

Hϕj (fjgj)

hence

‖Hϕ‖ = sup
‖f‖=‖g‖=1

|Hϕ(fg)|

≥ sup
‖fj‖=‖gj‖=1

|Hϕ(
m∏
j=1

fjgj)|

= sup
‖fj‖=‖gj‖=1

m∏
j=1

Hϕj |
(
fjgj

)
| =

m∏
j=1
‖Hϕj‖

Recalling ‖Hϕ‖ = ‖Hϕ‖ from Lemma 4.3 completes the proof. �

We are now ready to prove that Nehari’s theorem holds for multiplicative
Hankel forms in the special case where the symbol is completely multiplicative.

Theorem 4.5. Suppose that a(n) is a multiplicative function and define

ϕ(s) =
∑
n≥1

a(n)n−s

such that ϕ ∈H 2. If HBϕ is a bounded Hankel form on H2(T∞)×H2(T∞), then
there exists a Ψ ∈ L∞(T∞) such that Bϕ = P+Ψ.

Moreover, if the function a(n) is completely multiplicative, then the Hankel
form HBϕ is always bounded on H2(T∞)×H2(T∞).
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Proof. Assume that α(n) is a multiplicative function, then it follows from Theo-
rem A.1 that the symbol ϕ(s) =

∑
n≥1 α(n)n−s may be factored into the following

Euler product

ϕ(s) =
∏
j≥1

(
1 +

∑
k≥1

α(pkj )p−ksj

)
:=
∏
j≥1

ϕj(s).

Since each ϕj only depends on the variable zj we may apply the Bohr correspondence

Φ(z) := Bϕ(z) =
∏
j≥1

Φj(zj) ,

where Φj = Bϕj . For each j, Hϕj is a one variable Hankel form, and so Nehari’s
theorem applies. Thus, there exists some Ψj in L∞ such that HΨj = HΨj and
‖HΦj‖ = ‖HΨj‖∞. Define Ψ(z) :=

∏
j≥1 Ψj(zj).

It now follows directly from the one variable case and Lemma 4.4 that there
exists some Φ = P+Ψ such that ‖HΦ‖ = ‖HΨ‖∞. This shows that the multiplicative
Hankel form is bounded given that the symbol is multiplicative.

The second statement of Theorem 4.5 is just a reformulation of the fact that
the set of bounded point evaluations for H1(T∞) is in D∞ ∩ `2. In details, since ϕj
is completely multiplicative we have

ϕ(z) =
∏
j≥1

1
1− α(pj)zj

.

Using the formula for the geometric series again the norm can be written

‖ϕ‖2H 2 =
∑
n≥1

a(n)2 =
∏
j≥1

1
1− α(pj)2 <∞

where again the Bohr correspondence was applied. From Theorem 3.15 we have
the following point-estimate

|f(α(p1), α(p2), · · · )| ≤
(∏
j=1

1
1− |α(pj |2

)
‖f‖H 1 = ‖ϕ‖2H 2 · ‖f‖H 1

where again the Euler-product A.3 was used. Since ‖ϕ‖(H1)∗ ≤ ‖ϕ‖2H 2 , the calcu-
lation above shows that HBϕ is always bounded on H2(T∞)×H2(T∞) when the
symbol is completely multiplicative. �

We now turn to proving that Nehari’s theorem does not hold in full generality
by doing a proof by contradiction.

Lemma 4.6. Given that Nehari’s theorem holds on T∞ then there exists a constant
C such that

inf
P+ψ=ϕ

‖ψ‖L∞(T∞) ≤ C‖Hϕ‖(H2�H2)∗ (4.14)

holds for all ϕ ∈ (H2 �H2)∗.
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Proof. We define

X = L∞(T∞)/(L2(T∞)	H2(T∞)
)
,

where L2(T∞) 	 H2(T∞) denotes the orthogonal compliment of H2 in L2(T∞).
The space X was chosen such that

‖ϕ‖X = inf
P+ψ=ϕ

‖ϕ‖L∞(T∞)

By assumption Nehari’s theorem holds and thus Hϕ has a symbol ϕ ∈ L2(T∞),
hence the map T : (H2 � H2) → X is well defined. The graph of T is closed in
H2 � H2, and thus T is continuous and bounded. In other words there exists a
constant C such that equation (4.14) holds, since

‖Tϕ‖X ≤ C‖Hϕ‖(H2�H2)∗ . �

As noted earlier Ferguson and Lacey [17] and Lacey and Terwilleger [30] was
able to prove the remarkable fact that Nehari’s theorem extends to 1 ≤ d < ∞.
In other words Hψ extends to a bounded form on H2(Dd)×H2(Dd) if and only if
ψ = P+ϕ for some bounded function on ϕ on Td; here P+ is the Riesz projection
on Td. We define Cd as the smallest constant C that can be chosen in the estimate

inf
P+ψ=ϕ

‖ψ‖L∞(Td) ≤ Cd‖Hϕ‖(H2(Td)�H2(Td))∗ (4.15)

For d = 1, this is Nehari’s original theorem and so C1 = 1. Ortega-Cerdà and
Seip was the first to prove that there is no analogue of Nehari’s theorem on the
infinite-dimensional polydisc [36].

Theorem 4.7 (Ortega-Cerdà and Seip). For every integer d ≥ 2, the constant
Cd in equation (4.15) is at least (π2/8)d/4.

This gives a nontrivial lower bound for the constant appearing in the norm
estimate in Nehari’s theorem. As (π2/8)1/4 > 1, we see that Cd →∞ when d→∞.
Thus, by Lemma 4.6 the theorem above proves that Nehari’s theorem does not
extend to the infinite-dimensional polydisc.

We will offer a more instructive proof of Theorem 4.7 here, using the multi-
plicative nature of the Hankel form. To show that Nehari’s theorem fails on T∞,
it will be enough to find a polynomial ϕ such at the constant C in equation (4.14)
exceeds 1. Assume that such a symbol exists, in other words

‖ϕ‖(H1(Td))∗

‖Hϕ‖
≥ 1 + δ , δ > 0 . (4.16)

Where ϕ(z) = ϕ(z1, z2, . . . , zd). Further we define ϕn as the product of n such
symbols with distinct variables,

ϕn(z) = ϕ(z(1))ϕ(z(2)) · · ·ϕ(z(n))

Here z(k) is simply the short-hand notation for d-distinct variables, z(1) = z1, . . . , zd,
similarly z(2) = zd+1, . . . , z2d and so forth. From Lemma 4.4 it now follows that

‖Hϕn‖ = ‖Hϕ‖n
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and similarly by taking the norm of ϕn(z) the inequality ‖ϕn‖(H1)∗ ≥ (‖ϕ‖(H1)∗)n
is clear. Thus, equation (4.16) becomes

‖ϕn‖(H1(Tnd))∗

‖Hϕn‖
≥ (1 + δ)n , δ > 0 .

This contradicts Theorem 4.5 as (1 + δ)n →∞ as n→∞, and gives a non-trivial
lower bound for the constant in Nehari’s theorem. Thus, finding such a symbol
would prove that Nehari’s theorem fails to hold on T∞. The exsistence of such a
symbol is shown in the following lemma.

Lemma 4.8. Let ϕ(z1, z2) = z1 + z2 then

‖ϕ‖(H1)∗

‖Hϕ‖
≥ π

2
√

2
> 1

Proof. A rough but sufficient estimate shows

‖ϕ‖(H1)∗ = sup
f 6=0

|〈f, ϕ〉|
‖f‖H1

≥ |〈ϕ,ϕ〉|
‖ϕ‖H1

=
‖ϕ‖2H2

‖ϕ‖H1

Where we have estimated the
(
H1(T)

)∗-norm by testing ϕ against itself. As ϕ(z >
1, z2) = z1 + z2, we clearly have ‖ϕ‖2H2

= 2, see Theorem 1.10 for details. The
matrix of Hϕ with respect to the standard basis of H2(T) is

M =

0 1 1
1 0 0
1 0 0

 .
As the spectral norm of a symmetric matrix is ‖M‖ = maxj |λj |, where λj are the
eigenvalues of A, a straightforward computation gives

‖Hϕ‖ = ‖M‖ =
√

2

That the largest eigenvalue is
√

2 can be seen from the characteristic polynomial
λ(λ2 − 2) of M . While a computation at the level of coefficients shows

‖ϕ‖H1 =
∫
T2
|z1 + z2|dm2 =

∫
T
|1 + z|dm = 4

π
, (4.17)

where the second equality follows by symmetry, see Lemma A.12 for details. We
are now done, since

C1 ≥
‖ϕ‖(H1)∗

‖Hϕ‖
≥
‖ϕ‖2H2

‖ϕ‖H1
≥ π

2
√

2
. �

Notice that the proof above also shows that the factorization in the polydisc is
not norm-preserving, and therefore the weak factorization

H1(T∞) = H2(T∞)�H2(T∞)

does not hold.
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4.3. Hilbert-Schmidt forms

While Nehari’s theorem fails to hold in full generality on T∞, we will show that it
holds for a restrictive class of Hankel forms. By applying Cauchy–Schwarz on the
multiplicative Hankel form we obtain the following crude estimate∣∣∣∣ ∑

m,n≥1
%mnambn

∣∣∣∣2 ≤ ∑
n,m≥1

|ρmn|2
∑
m≥1
|am|2

∑
n≥1
|bn|2 .

From which it is clear that if ∑
m,n≥1

∣∣%mn∣∣2 <∞ , (4.18)

then the multiplicative hankel form is bounded, with bound at most the square
root of the sum. We say that a multiplicative Hankel form with kernel % is of
Hilbert-Schmidt type if equation (4.18) holds. The study of the Hilbert–Schmidt
class S2, was initiated by Helson in [25] where he asked the following question:

Does every multiplicative Hankel form in S2 have a bounded symbol?
Helson himself gave a positive answer to this in [26], and this section is dedicated
to a reformulation of his proof. The terms of the sum in (4.18) are the same for all
pairs (m,n) such that the product mn has a given value k. The number of ways
to write k as a product of two integers is precisely the number of divisors, since
k = a · k/a for every divisor a. Thus (4.18) becomes∑

m,n≥1

∣∣%mn∣∣2 =
∑
n≥1

∣∣%n∣∣2d(n) , (4.19)

where d(n) is the number of divisors of n. The next is to prove that the last sum
is related to Helson’s inequality 1.31.

Lemma 4.9. Given f ∈ H1(D∞) with coefficients an, then∑
α≥0

|aα|2

(1 + α1)(1 + α2) · · · =
∑
n≥1
|an|2/d(n) . (4.20)

Proof. Let n have the prime factoring n =
∏
p
αj
j . The divisors of n are obtained

by replacing each αj by all βj satisfying 0 ≤ βj ≤ αj . Thus, the number of divisors
is

d(n) =
∏
j

(1 + αj) ,

where only a finite number of the numbers αj differ from 0. Using this representation
of d(n) on the right-hand side of equation (4.20) completes the proof. �

Thus, using the Cauchy–Schwarz on (4.19) and Lemma 4.9 we obtain

|〈f, ϕ〉| ≤
(∑
n≥1

|an|2

d(n)

)1/2(∑
n≥1
|ρn|2d(n)

)1/2
≤ C‖f‖H 1

This shows that ‖ϕ‖(H 1)∗ ≤ C, thus every multiplicative Hankel form in S2 indeed
have a bounded symbol.
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Remark. The restriction in equation (4.18) is very strict. Let λ = {λn}n≥1 be
the eigenvalues to the matrix (%mn)m,n≥1, then an Hankel form is bounded if λ is
bounded – in fact the matrix norm is maxn |λn|. In comparison Hankel forms in
the Hilbert–Schmidt class S2 requires λ ∈ `2.

4.4. Some related open problems

We end this chapter by including some remarks on a few open problems related to
the topics in this thesis.

The Embedding constant for p = 2. Determine the smallest constant, such that(∫ 1

0
|f(1/2 + it)|2

) 1
2

≤ C‖f‖H 2 (4.21)

is sharp for all f ∈H 2. A rough estimate as done in [35] shows that

‖f‖2H2
i

= 1
π

∫
R
|f(1/2 + it)|2 dt

1 + t2

≤ 1
π

∑
k∈Z

1
1 + k2

∫ k+1

k

|f(1/2 + it)|2 dt ≤ coth(π)C2‖f‖H 2 ,

thus giving the estimate
√

2/
√

coth(π) ≤ C. Since
√

coth(π) ≈ 1.0018 one might
conjecture that the bound can be improved to 1 such that equation (4.21) is sharp
with constant

√
2. However this is still an open problem.

The Embedding problem. Fix an exponent p > 2. Does there exists a constant
Cp <∞ such that (∫ 1

0
|f(1/2 + it)|p

) 1
p

≤ Cp‖f‖H p (4.22)

for every Dirichlet polynomial f? In the case p = 2k the answer is trivially true:
just apply the case p = 2 to the function fk in H 2. This provides some evidence
in favour of a positive answer, however due note that a recent result by Harper [21]
proved that for all 0 < p < 2 there exists functions such that equation (4.22) fails
to hold.

This problem was discussed in more depth in section 3.3.2 and it seems likely
that further progress will require novel and unconventional combinations of tools
from functional, and complex analysis, as well as from analytic number theory. See
[45] for a further discussion on the problem.

Bounded Hankel forms without a bounded symbol. The proof showed in sec-
tion 4.2 first proven by Ortega-Cerdà and Seip [36] is non-constructive. Meaning
that no concrete example of a bounded Hankel form without a bounded has been
found.
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Bounded symbol for the multiplicative Hankel matrix Is the symbol ϕ(s) =∑
n≥2(logn)−1n−1/2−s is the Riesz projection of a function in L∞(T∞)?

This is a natural question as it was shown to hold true for the Hilbert matrix, see
section 2.3.3. As ϕ(s) neither is completely multiplicative or has square summable
coefficients neither Theorem 4.5 nor section 4.3 answers the question above. An
equivalent formulation is to ask whether there exists a constant C < +∞ such that∣∣∣∣a1 +

∑
n≥2

an√
n logn

∣∣∣∣ ≤ C‖f‖H p , (4.23)

holds for every Dirichlet polynomial f(s) =
∑N
n=1 ann

−s when p = 1? Clearly
equation (4.23) holds for p = 2, and it was shown recently by Bayart and Brevig [5]
that equation (4.23) holds for all p > 1. Whether equation (4.23) holds for p = 1 is
still unclear.





APPENDIX A

Preliminaries

1.1. Euler products

The next theorem, discovered by Euler in 1737, is sometimes called the analytic
version of the fundamental theorem of arithmetic.

Theorem A.1. Let f be a multiplicative arithmetical function such that
∑
f(n) is

absolutely convergent. Then the sum of the series can be expressed as an absolutely
convergent infinite product,∑

n≥1
f(n) =

∏
p

{ 1 + f(p) + f(p2) + · · · } , (A.1)

extended over all primes. If f is completely multiplicative, the product simplifies to∑
n≥1

f(n) =
∏
p

1
1− f(p) . (A.2)

Remark. In each case the product is called the Euler product of the series.

Proof. Consider the product

P (x) =
∏
p≤x

1 + f(p) + f(p2) + · · ·

extended over all primes p ≤ x. Since this is the product of a finite number of
absolutely convergent series we may rearrange the terms in any fashion without
altering the sum. By the fundamental theorem of arithmetic we can write

P (x) =
∑
n∈A

f(n)

where A consists of those n having all their prime factors less than x. Hence∑
n≥1

f(n)− P (x) =
∑
n∈B

f(n) ,

where B is the set of n having at least one prime factor > x. Therefore∣∣∣∣∑
n≥1

f(n)− P (x)
∣∣∣∣ ≤∑

n∈B
|f(n)| ≤

∑
n≥x

f(n)

and thus P (x)→
∑
f(n) as x→∞. This follows since f(n) converges absolutely

and the sum on the right tends to zero as n→∞. As seen earlier
∏

1+an converges

71



72 A. PRELIMINARIES

absolutely whenever
∑
an converges absolutely. In this case,∑

p≤x

∣∣f(p) + f(p2) · · ·
∣∣ ≤∑

p≤x

∣∣f(p)
∣∣+
∣∣f(p2)

∣∣ · · · ≤∑
n=2
|f(n)|

which follows from the triangle inequality. Since all the partial sums are bounded,
the series of positive terms ∑

p

∣∣f(p) + f(p2) + · · ·
∣∣

converges, and this implies absolute convergence of the product in equation (A.1).
When f is a completely multiplicative function we have f(pn) = f(p)n and each
series on the right of (A.1) is a convergent geometric series, in detail∑

n≥1
f(n) =

∏
p

{ 1 + f(p) + f(p2) + · · · }

=
∏
p

∑
n≥0

f(p)n =
∏
p

1
1− f(p) �

In particular if we apply Theorem A.1 to absolutely convergent Dirichlet series
we immediately obtain

Theorem A.2. Assume
∑
n≥1 f(n)n−s converges absolutely for σ > σa. If f is

multiplicative we have∑
n≥1

f(n)
ns

=
∏
p

{
1 + f(p)

ps
+ f(p2)

p2p + · · ·
}

if σ > σa ,

and if f is completely multiplicative we have∑
n≥1

f(n)
ns

=
∏
p

1
1− f(p)p−s if σ > σa

Taking f(n) = 1 we immediately obtain the following Euler product.

Corollary A.3. If Re(s) > 1 then

ζ(s) =
∑
n≥1

1
ns

=
∏
p

1
1− p−s .
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1.2. Inequalites

Three of the most famous “classical inequalitues” are those of Cauchy, Hölder and
Minkowski. These inequalities are omitted from the main part due to their general
or elementary nature, but are used so frequently that a short treatise is justified.

Our main reference is Hardy, Littlewood, and Pólya [20], for an excellent
introduction to these inequalities see the monograph by Steele [47]. Throughout
this section, we assume that p > 1 and p, q are real constants satisfying

1
p

+ 1
q

= 1 ,

unless otherwise stated. We denote p and q as the Hölder conjugates.

Lemma A.4 (Young’s inequality). Let a and b be real non-negative constants.
Then

ab ≤ ap

p
+ bq

q
, (A.3)

where equality holds if and only if ap = bq. Here p and q are the Hölder conjugates.

Proof. As (a− b)2 = a2 + b2 − 2ab ≥ 0, the claim is true for p = q = 2. This is
often used as the start in proving Cauchy-Schwarz inequality. Similarly the claim
is certainly true if b = 0 or a = 0, we therefore assume that a > 0 and b > 0. Since
(log x)′′ = −1/x2, the logarithm is convex for all x > 0, thus for all θ ∈ [0, 1] and
x, y ∈ R+ the following inequality always hold

log
[
(1− θ)x+ θy

]
≥ (1− θ) log x+ θ log y . (A.4)

Set x = ap and y = bq, if 1− θ = 1/p then θ = 1/q. So (A.4) becomes

log
(ap
p

+ bq

q

)
≥ 1
p

log ap + 1
q

log bq = log a+ log b = log(ab) , (A.5)

with equality if and only if ap = bq. Young’s inequality follows by exponentiation.
�

Theorem A.5 (Hölder’s inequality). Let p, q be the Hölder conjugates, and a ∈ `p,
b ∈ `q be sequences. Then

∞∑
n=0
|anbn| ≤

(∑
n≥0
|an|p

)1/p(∑
n≥0
|bn|q

)1/q
(A.6)

Proof. For simplicity we begin by defining

S =
(∑
n≥0
|an|p

)1/p
, T =

(∑
n≥0
|bn|q

)1/q
. (A.7)

By replacing a and b in (A.3) by |an|/S and |bn|/T respectively, we get the inequal-
ities

|an|
S

|bn|
T
≤ 1
p

(
|an|
S

)p
+ 1
q

(
|bn|
T

)q
(n = 1, 2, . . .)
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Adding up the right and left-hand sides of the inequalities for all n ∈ N, using (A.7)
and 1/p+ 1/q = 1, we get

1
ST

∞∑
n=0
|anbn| ≤

1
p

∑
|an|p

Sp
+ 1
q

∑
|bn|p

T q
= 1
p

+ 1
q

= 1

Finally multiplying the equation above by ST , we obtain Hölder’s inequality. �

Corollary A.6 (Cauchy–Schwarz inequality). Let a = {am}m≥0, b = {bn}n≥0
be families of complex numbers. If a, b ∈ `2 then∣∣∣ ∞∑

n=0
anbn

∣∣∣2 ≤ ( ∞∑
n=0
|an|2

)( ∞∑
n=0
|bn|2

)
Theorem A.7 (Hölders inequality). Let (X,Σ, µ) be a measure space and suppose
f and g are Σ-measurable complex valued functions on X. Then∫

X

|fg|dµ ≤
(∫

X

|f |p dµ
) 1
p
(∫

X

|g|q dµ
) 1
q

where p, q are the Hölder conjugates. Equality holds when |f(x)|p = |g(x)|q holds
for almost every x ∈ X.

Proof. Similar to our proof for the discrete case we introduce the normalized
functions f̃ = f/‖f‖p and g̃ = g/‖g‖p, such that∫

X

∣∣f̃ ∣∣p dµ =
∫
X

∣∣g̃∣∣q dµ = 1 . (A.8)

Applying Young’s inequality A.4 to f̃ and g̃ yields∣∣∣f̃ · g̃∣∣∣ ≤ 1
p

∣∣f̃ ∣∣p + 1
q

∣∣g̃∣∣q
Since inequalities are preserved under integration, we can integrate∫

X

∣∣∣f̃ · g̃∣∣∣dµ ≤ 1
p

+ 1
q

= 1

where equation (A.8) was used in the first inequality. Multiplying by ‖f‖p‖g‖q and
using the definition of f̃ and g̃ completes the proof. �

Corollary A.8 (Cauchy–Schwarz inequality). Let (X,Σ, µ) be a measure space
and suppose f and g are Σ-measurable complex valued functions on X. Then∫

X

|fg|dµ ≤
(∫

X

|f |2 dµ
) 1

2
(∫

X

|g|2 dµ
) 1

2

Equality holds when |f(x)|2 = |g(x)|2 holds for almost every x ∈ X.

Theorem A.9 (Minkowski’s inequality). Let (X,Σ, µ) be a measure space and
suppose f and g are Σ-measurable complex valued functions on X. Then(∫

X

|f + g|p dµ
)p
≤
(∫

X

|f |p dµ
) 1
p

+
(∫

X

|g|p dµ
) 1
p

(A.9)
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where p, q are the Hölder conjugates. Equality holds when |f(x)|p = |g(x)|p holds
for almost every x ∈ X.

Proof. For short the inequality above can be written ‖f + g‖p ≤ ‖f‖p + ‖g‖p.
The case p = 1 follows directly from the triangle inequality. Assume therefore that
p > 1, since |f + g|p = |f + g||f + g|p−1 we can again use the triangle inequality,∫

X

|f + g|p dµ ≤
∫
X

|f ||f + g|p−1 dµ+
∫
X

|g||f + g|p−1 dµ . (A.10)

If we then apply Hölder’s inequality A.7 separately to each of the bounding sums,
we find that∫

|f ||f + g|p−1 dµ ≤
(∫

X

|f |p
) 1
p
(∫

X

|f + g|q(p−1) dµ
)(p−1)/p

∫
|g||f + g|p−1 dµ ≤

(∫
X

|g|p
) 1
p
(∫

X

|f + g|q(p−1) dµ
)(p−1)/p

.

Thus, in our shorthand notation (A.10) an be written

‖f + g‖pp ≤ ‖f‖p‖f + g‖p−1
p + ‖g‖p‖f + g‖p−1

p . (A.11)

Since Minkowski’s inequality (A.9) is trivial when ‖f + g‖p = 0, we can assume
without loss of generality that ‖f + g‖p > 0. Thus, we can divide both sides of the
bound (A.11) by ‖f + g‖p−1

p to complete the proof. �

Theorem A.10 (Minkowski’s continuous Inequality). Let (X,Σ, µ) and (Y,Ω, ν)
be σ-finite measure spaces, and assume that f : X×Y → C is a measurable function.
For 1 ≤ p <∞ we have[∫

X

(∫
Y

|f(x, y)|dν(y)
)p

dµ(x)
] 1
p

≤
∫
Y

(∫
X

|f(x, y)|p
) 1
p

dν(y) (A.12)

Informally we can repeatedly apply Minkowski’s inequality A.9 to get∥∥∥∥∑
k

fk

∥∥∥∥
p

≤
∑
k

‖fk‖p

Then using the scaling property of ‖ · ‖p, we can write∥∥∥∥∑
k

fk∆k

∥∥∥∥
p

≤
∑
k

‖fk‖p∆k

So we can write a Riemann sum for the integral inequality (A.12) and pass to the
limit to get the desired integral inequality. A more formal proof is shown below.

Proof. Since our measure space are σ-finite and |f(x, y)| ≤ 0 we can apply
Tonelli’s theorem where needed. In particular, the case p = 1 follows directly from
Tonelli’s theorem with equality. Assume therefore that p > 1. Now, if∫

X

(∫
Y

|f(x, y)|dν(y)
)p

dµ(x) = 0 ,
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we are done. Assume therefore that it is strictly positive and define

g(x) :=
(∫

Y

|f(x, y)|dν(y)
)p−1

.

By observing that (p− 1)q = p the norm of g can be computed

‖g‖Lq =
[∫

X

g(x)qdµ(x)
] 1
q

=
[∫

X

(∫
Y

|f(x, y)|dν(y)
)p

dµ(x)
] 1
q

=: I1/q

The inequality now follows by applying Tonelli’s theorem and Hölder’s inequality
to

I =
∫
X

∫
Y

|f(x, y)|g(x)dν(y) dµ(x) =
∫
Y

∫
X

|f(x, y)|g(x)dµ(x) dν(y)

≤
∫
Y

[(∫
X

|f(x, y)|pdµ(x)
) 1
p
(∫

X

g(x)qdµ(x)
) 1
q
]
dν(y)

=
∫
Y

(∫
X

|f(x, y)|pdµ(x)
) 1
p

‖g‖Lq dν(y) = I
1
q

∫
Y

(∫
X

|f(x, y)|pdµ(x)
) 1
p

dν(y)

Dividing by I1/q and using that I/I1/q = I1−1/q = I1/p completes the proof. �
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1.3. Integrals and sums

Lemma A.11.
1

2π

∫ 2π

0
log
∣∣1− eiθ∣∣ dθ = 0 .

Proof. Expanding the logarithm as a Taylor series gives a quick proof∫ 2π

0
log
∣∣1− eiθ∣∣dθ = −

∫ 2π

0

(∑
n≥1

eiθ

n

)
dθ = i

∑
n≥1

e2πin − 1
n

= 0 .

However, the justification of termwise integration is not entirely trivial as the series
is not absolutely convergent. For a more formal proof using Cauchy’s residue
theorem see [44, p. 307]. A slightly longer solution would be to note that∫ 2π

0
log
∣∣1− eiθ∣∣dθ =

∫ 2π

0
log |2 sin(θ/2)|dθ = 2π log 2 + 2

∫ π

0
log sin xdx (A.13)

The last integral is quite famous, see [1, p. 206]. More elementary∫ π

0
log sin x dx =

(∫ π/2

0
+
∫ π

π/2

)
log sin xdx

=
∫ π/2

0
log sin x+

∫ π/2

0
log sin

(
π

2 + x

)
dx

=
∫ π/2

0
log 1

2 sin(2x) dx = −π2 log 2 + 1
2

∫ π

0
log sin x dx

Where u 7→ x−π/2, sin(π/2+x) = cosx and sin(2x) = 2 sin x cosx were used. Thus,∫ π
0 log sin x dx = −π log 2, meaning equation (A.13) is zero and we are done. �

Lemma A.12. Let ϕ(z) = z1 + z2∫
T

∫
T
|z1 + z2|dm(z1) dm(z2) =

∫
T
|1 + z|dm(z) = 4

π
, (A.14)

Proof. The first equality follows by symmetry. Since |e−iy| = 1, we have the
equality |e−ix + e−iy| = |e−i(x−y) + 1|. Thus,∫

T

∫
T
|z1 + z2|dm(z1) dm(z2) = 1

(2π)2

∫ 2π

0

∫ 2π

0
|1 + e−i(x−y)|dxdy

= 1
(2π)2

∫ y+2π

y

∫ 2π

0
|1 + e−ix|dx dy

= 1
2π

∫ 2π

0
|1 + e−ix|dx =

∫
T
|1 + z|dm(z) ,

by the linear substitution x 7→ x− y. For the last equality in (A.14) we have,∫
T
|1 + z|dm(z) = 1

2π

∫ 2π

0

∣∣∣∣2 cos
(
x

2

) ∣∣∣∣dx = 2
π

∫ π

0
cos
(
x

2

)
dx = 4

π
. �
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Lemma A.13. Let a ∈ R/{0}, and g(x) = 1/(x2 + a2), then

ĝ(s) =
∫
R

e−ixs

a2 + x2 dx = π

|a|
e−|as| . (A.15)

Proof. This integral is often used to show the benefits of contour integration.
Since a 6= 0 we can remove the variable a, through the substitution x 7→ u|a|,

ĝ(k) = 1
|a|

∫
R

e−iuk

1 + u2 du . (A.16)

Where the variable k = |a|s was introduced. Suppose s > 0 and define the contour
CR that goes along the real line from −R to R and then counterclockwise along a
semicircle centered at 0 from R to −R. See figure 1. Take R to be greater than 1, so

x

y

R−R

CR

Figure 1. The half-circle contour

that the imaginary unit i is enclosed within the curve. Since 1+z2 = (1− iz)(1+ iz)
the only singularity within CR is at z = i, and by the Cauchy residue theorem∫

CR

f(z) dz =
∫
CR

e−ikz

1 + z2 dz = 2πi · Res
z=i

f(z) = 2πi · e
−k

2i = πe−k .

The contour CR may be split into two parts,∫
CR

f(z) =
∫ a

−a
f(z) dz+

∫
arc
f(z) dz , (A.17)

and using some simple estimations, we have∣∣∣∣∣
∫

arc

eikz

1 + z2 dz

∣∣∣∣∣ ≤
∫

arc

1
|1 + z2|

dz ≤
∫

arc

dz
R2 − 1 = πR

R2 − 1 .

Thus, letting R→∞ in equation (A.17) we obtain∫
R

e−ixs

1 + x2 dx = πe−k .

If s < 0 then a similar argument with an arc CR′ that winds around −i rather than
i shows that ∫

R

e−ixk

1 + x2 dx = πek

Combining the last two equations with equation (A.16) completes the proof.
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Proof: 2. This integral may also be evaluated without the use of complex
analysis. Note by symmetry that∫

R

e−ixt

1 + t2
dt =

∫
R

cos(xt) + i sin(xt)
1 + t2

dt =
∫
R

cos(xt)
1 + t2

dt

since sin(at)/(1 + t2) is odd. Using the Laplace-transform L (f) =
∫∞

0 f(x)e−sx dx,
on the last integral we obtain

L

(∫ ∞
0

cos(xt)
1 + t2

dt
)

=
∫ ∞

0

(∫ ∞
0

cos(xt)e−sx dx
)

dt
1 + t2

=
∫ ∞

0

s

s2 + t2
dt

1 + t2
= π

2
1

1 + s
.

Since L (e−|t|) =
∫∞

0 e−|t|e−ts dt = 1/(1+s), taking the inverse L -transform yields∫
R

cosxt
1 + t2

dx = 2L −1
(
π

2
1

1 + s

)
= πe−|x| . (A.18)

To evaluate the L -transform the order of integration was interchanged, the justifi-
cation follows from Fubini since the integrand is absolutely integrable∣∣∣∣∣

∫
R2

+

cos(xt)e−sx

1 + t2
d(x, t)

∣∣∣∣∣ ≤
∫
R2

+

e−x

1 + t2
d(x, t) = π

2 <∞ .

Where the short-hand notation R2
+ = [0,∞)× [0,∞) was used. �

Lemma A.14. Let a ∈ R/{0} then∑
n∈Z

1
n2 + a2 = π

a
coth(πa)

Proof. This follows from the Poisson summation formula (Rudin [44, p. 194])∑
n∈Z

f(n) =
∑
w∈Z

f̂(2πw) ,

and Lemma A.13. Then∑
n∈Z

1
n2 + a2 = π

|a|
∑
w∈Z

e−2π|aw| = π

|a|
e2π|a| + 1
e2π|a| − 1

= π

a
coth(πa)

where we used the extended geometric formula∑
n∈Z

r|n| = 1 + 2
∑
n≥0

rn = 1 + r

1− r ,

and the absolute value was dropped since coth(−a) = − coth(a). �
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Proposition A.15. For all θ ∈ (0, 2π) we have,∑
n≥1

sin(nθ)
n

= π − x
2 (A.19)

Proof. This result follows immediately from using the Poisson summation for-
mula on f(θ) = 1[−π,π](π−θ)/2. However it is possible to calculate the sum without
knowing the result in advance. By the Abel’s theorem

f(θ) :=
∞∑
n=1

sinnθ
n

= lim
s→0+

∞∑
n=1

sinnθ
n

e−ns .

Utilizing the Taylor expansion of the logarithm, gives
∞∑
n=1

sinnθ
n

e−ns = Im
∞∑
n=1

en(iθ−s)

n
= − Im log(1− eiθ−s)

= − Im log(1− e−s cos θ − ie−s sin θ) = arctan
(

e−s sin θ
1− e−s cos θ

)
.

Thus letting s→ 0+,

f(θ) = arctan
(

sin θ
1− cos θ

)
= arctan

(
cot θ2

)
= arctan

(
tan π − θ2

)
.

As θ ∈ (0, 2π) this completes our proof. �

The Gamma function. Let s = σ + it with σ, t ∈ R. We define the
Γ-function for σ > 0 by

Γ(s) :=
∫ ∞

0
e−tts−1 dt

The Γ function is analytic for σ > 0, and it’s most important properties are shown
in the following theorem.

Theorem A.16 (Bohr-Mollerup). Let f : (0,∞) → (0,∞) satisfy the following
properties

(1) f(1) = 1
(2) f(x+ 1) = f(x)
(3) log f is convex.

Then f(x) = Γ(x) for all x ∈ (0,∞).

Proposition A.17 (Euler’s reflection formula). For every 0 < s < 1, then

Γ(s)Γ(1− s) = π

sin(πs) .

The standard way to prove A.17 is to use the Weierstrass product formula for
sin(πx) and Γ(x) see Artin [3] for details. While this computation is very straight-
forward, the derivation of these product formulas are cumbersome, instead we will
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rewrite Γ(s)Γ(1− s) as the following integral.∫ ∞
0

xs−1

1 + x
dx =

∫ ∞
0

∫ ∞
0

e−(1+x)yxs−1 dx dy

=
∫ ∞

0

∫ ∞
0

e−y−u
(
u

y

)s−1 du
y

dy

=
(∫ ∞

0
e−yy−s dy

)(∫ ∞
0

e−uus−1 du
)

= Γ(s)Γ(1− s)

where
∫∞

0 exp(−(x + 1)y) dy = 1/(1 + x) and x 7→ u/y was used to rewrite the
integral. We note that the integral in question is the Mellin transform of 1/(1 + x).

Definition. Suppose f : [1,∞) is locally Lebesgue integrable, and satisfies the
growth condition |f(x)| ≤ AxB . We define Mellin transformation of f to be

Mf (s) =
∫ ∞

0

f(x)
x1−s dx .

Hence Proposition A.17 is proven by the following lemma.

Lemma A.18. Let f(x, y) = (x+ y)−1 be the homogenity kernel. Then

Mf (s) :=
∫ ∞

0

f(x)
x1−s dx = 1

y1−s
π

sin πs , (A.20)

for every 0 < Re(s) < 1. If y = 1 then there exists constants 1/p + 1/q = 1 such
that,

Mf (1/p) =Mf (1/q) . (A.21)

Proof. Equation (A.21) follows directly from (A.20), since

sin(π/p) = sin(π(1− 1/q) = sin π cosπ/q − cosπ sin π/q = sin(π/q) ,

and the fact that y = 1. Using the substitution x 7→ y · t, we obtain

Mf (s) = 1
y1−s

∫ ∞
0

1
1 + t

dt
ts−1 := 1

y1−sMg(s) ,

and the Mellin transform of g(x) = 1/(1 + x) will be evaluated using complex
analysis. Consider the branch of zs−1/(z+ 1) defined on the slit plane C\[0,∞) by

f(z) = rs−1ei(s−1)θ

z + 1 ,

where z = reiθ, and θ ∈ (0, 2π). For small ε and R > 1, we consider the keyhole
domain C, consisting of z in the slit plane C\[0,∞) satisfying ε < |z| < R, see
figure 2. Since f has a simple pole at = −1, Cauchy’s residue theorem yields∫

C

f(z) = 2πi Res
z=−1

f(z) = −2πieπis . (A.22)
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x

y

R−R

CR

Cε

Figure 2. The keyhole contour

The integral over C breaks into the sum of 4 integrals.∫
C

f(z) dz =
∫ R

ε

xs−1

x+ 1 dx+
∫
CR

zs−1

z + 1 dz

+
∫ ε

R

e2πi(s−1)xs−1

1 + x
dx+

∫
Cε

zs−1

z + 1 dz ,
(A.23)

and for the integrals over CR and Cε we obtain the following estimates∣∣∣∣∣
∫
CR

zs−1

z + 1 dz

∣∣∣∣∣ ≤ Rs−1

R− 12πR = O(Rs) , (A.24)∣∣∣∣∣
∫
Cε

zs−1

z + 1 dz .

∣∣∣∣∣ ≤ εs−1

1− ε2πε = O(εs) (A.25)

Letting R→∞ and ε→ 0 in equation (A.23) gives(
1− e2πi(s−1)

)∫ ∞
0

xs−1

x+ 1 dx = −2πieπis ,

since (A.24) and (A.25) vanish as R→∞ and ε→ 0, for all 0 < s < 1. Thus

Mg(s) =
∫ ∞

0

xs−1

1 + x
dx = π

2i
eπis−2πi − e−πis

= π

sin(πs) ,

and since Mf (s) = ys−1Mg(s) we are done. �
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The Beta function. Let x, y be complex variables. We define the β-
function1 as

β(x, y) :=
∫ 1

0
tx−1(1− t)y−1 dt , Re(x),Re(y) > 0 . (A.26)

Note that by using the substitution 1 +x 7→ t−1, equation (A.20) can be written as∫ ∞
0

x−s

1 + x
dx =

∫ 1

0
ts−1(1− t)−s dt = β(s, 1− s) .

Using Lemma A.18, this shows that β(s, 1− s) = Γ(s)Γ(1− s)/(Γ(s+ [1− s]). That
this result extends to all x, y ∈ R is proven in the next proposition.

Proposition A.19. Let u, v ∈ C, such that Re(u),Re(v) > 0. Then

β(u, v) = Γ(u)Γ(v)
Γ(u+ v) . (A.27)

Proof. Let f(u) = β(u, v)Γ(u + v)/Γ(v). By proving that f satisfies the three
conditions in the Bohr–Mullerup theorem A.16, it follows that f(u) = Γ(u). Thus
proving the claim, see Rudin [43, p. 194] for details.

Proof 2: Let f ∗ g =
∫ t

0 f(τ)g(t− τ) dτ . By using the convolution theorem
L (f ∗ g) = L (f) ·L (g), on tu ∗ tv we have

L

(∫ t

0
su−1(t− s)v−1 ds

)
= L (tu−1)L (tv−1) = Γ(u)

su
Γ(v)
sv

,

where L (ta) = Γ(a+ 1)/sa+1 was used. Thus∫ t

0
su−1(t− s)v−1 ds = L −1

(
Γ(u)Γ(v)
su+v

)
= Γ(u)Γ(v)

Γ(u+ v) t
u+v−1 .

Setting t = 1 completes the proof.
Proof 3: We apply the change of variables t = xy and s = x(1− y) to the

integral

Γ(u)Γ(v) =
∫ ∞

0

∫ ∞
0

e−(t+s)tu−1sv−1 dtds .

Note that t + s = x, 0 < t < ∞ and 0 < s < ∞ imply that 0 < x < ∞ and
0 < y < 1. The Jacobian is

J(x, y) = ∂(t, s)
∂(x, y) =

∣∣∣∣ y x
1− y −x

∣∣∣∣ = −x ,

and since x > 0 we conclude that dtds = |J(x, y)|dxdy = x dx dy. Thus,

Γ(u)Γ(v) =
∫ 1

0

∫ ∞
0

e−xxu−1yu−1xv−1(1− y)v−1xdxdy

=
∫ ∞

0
e−xxv+u−1 dx

∫ 1

0
yu−1(1− y)v−1 dy = Γ(u+ v)β(u, v) . �

1The notation β was choosen for the Beta-function to avoid confusion with the Blaschke product.
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Corollary A.20. For every n, k ∈ C, such that Re(n),Re(k) > 0, we have

β(n, k) = 1
k

(
n+ k − 1
n− 1

)−1
. (A.28)

Proof. We begin by using n! = Γ(n+ 1) = nΓ(n) and expanding the binomial(
η

κ

)
= η!
κ!(η − κ)! = Γ(η + 1)

Γ(κ+ 1)Γ(η − κ)
1

(η − κ) = 1
β(η − κ, κ+ 1)

1
(η − κ) ,

where the β(x, y) = Γ(x)Γ(y)/Γ(x+ y) was used. Solving the equation with respect
to the β-function and setting η = k + n− 1 and κ = n− 1 proves the claim. �
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1.4. Functional analysis and measure theory

Definition. Let (X, ‖.‖) be a normed linear space. A linear functional ψ on X
is said to be bounded if

sup
{
|ψ(x)| : x ∈ X, ‖x‖ ≤ 1

}
(A.29)

is finite. When this is the case, the above quantity is called the norm of ψ and
denoted by ‖ψ‖.

Theorem A.21 (Hahn-Banach theorem). Let (X, ‖.‖) be a normed linear space,
Y a subspace of X and ψ a bounded linear functional defined on Y . Then there
exists a bounded linear functional ψ defined on X such that φ(y) = ψ(y) for all
y ∈ Y and ‖ψ‖ = ‖ϕ‖

Definition. For any operator T : X → Y , we define the graph of T as the set{
(x, y) ∈ X × y : Tx = y

}
.

Theorem A.22 (Closed graph theorem). Let X and Y be Banach spaces, and
T : X → Y a linear operator. Then T is continuous if and only if its graph is closed
in X × Y .

Proposition A.23 (Mean value theorem). Let f(z) be analytic in a disk D, let
a ∈ D and 0 ≤ r < 1 then

f(a) = 1
2π

∫ 2π

0
f(a+ reiθ) dθ. (A.30)

Proof. As f(z) is analytic we get by the Cauchy integral formula

f(a) = 1
2πi

∫
|z−a|=r

f(z)
z − a

dz

= 1
2πi

∫ 2π

0

f(a+ reiθ)
(a+ reiθ)− a d(a+ reiθ)

= 1
2πi

∫ 2π

0

f(a+ reiθ)
reiθ

rieiθ dθ = 1
2π

∫ 2π

0
f(a+ reiθ) dθ .

For the parametrised circle with centre a, we have dθ = dz /i(z−a), so the integral
of dz over a circle vanishes, while the integral of dθ does not. �

Theorem A.24 (Weierstrass Approximation Theorem). The set of polynomial
functions on a closed interval [a, b] are dense in the set of continuous functions
C([a, b]).

For every continuous function f : [a, b]→ R and ε > 0, there exists a polynomial
p : [a, b]→ R such that

‖f(x)− p(x)‖∞ < ε ,

for all x ∈ [a, b].
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Theorem A.25 (Lebesgue’s Monotone Convergence Theorem). Let {fn} be a
sequence of monotonely increasing sequence functions, such that
fn(x)→ f(x) as n→∞ for every X. Then f is measurable, and∫

X

f dµ = lim
n→∞

∫
X

fn dµ

Lemma A.26 (Fatou’s Lemma). If fn : X → [0,∞] is measurable for every n ∈ N
then ∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ (A.31)

Theorem A.27 (Lebesgue’s Dominated Convergence Theorem). Let fn be a
sequence of real-valued measurable functions on a measure space (X,Σ, µ). Suppose
that the sequence converges pointwise to a function f and is dominated by some
integrable function g in the sence that

∣∣fn(x)
∣∣ ≤ g(x) for all n ∈ N, and all x ∈ X.

Then f is lebesgue integrable and

lim
n→∞

∫
X

|fn − f |dµ = 0

this also implies

lim
n→∞

∫
X

fn dµ =
∫
X

f dµ

Theorem A.28 (Tonelli’s theorem). Let (X,A, µ) and (Y,A, v) be σ-finite mea-
sure space. If f from X × Y → [0,∞) is non-negative and measurable, then∫

X

(∫
Y

f(x, y) dy
)

dx =
∫
Y

(∫
X

f(x, y) dx
)

dy =
∫
X×Y

f(x, y) d(x, y) .

Theorem A.29 (Fubini’s theorem). Let (X,A, µ) and (Y,A, v) be σ-finite measure
space, and X × Y is the given product measure. If f(x, y) is measurable and if any
of the three integrals∫

X

(∫
Y

|f(x, y)|dy
)

dx,
∫
Y

(∫
X

|f(x, y)|dx
)

dy,
∫
X×Y

|f(x, y)|d(x, y) ,

is finite, then∫
X

(∫
Y

f(x, y) dy
)

dx =
∫
Y

(∫
X

f(x, y) dx
)

dy =
∫
X×Y

f(x, y) d(x, y) .
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