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Abstract

In the early 2000s, the superscalar CPU paradigm reached the point of diminishing re-

turns mainly due to power requirements and overheating concerns. Faced with a constant

demand for performance, hardware developers were in need of new ways to efficiently

use the ever increasing transistor count predicted by Moore’s law. The Chip MultiPro-

cessors (CMPs) came as a natural solution to the power wall: several less complex and

significantly less "power hungry" cores integrated on a single chip. In almost all ICT

segments today, from High Performance Computing (HPC) to embedded devices, CMPs

have become the architecture of choice. With this wide adoption of CMPs, software de-

velopers need to use parallel programming to fully exploit this architecture. Although

parallelization can maximize the performance and energy efficiency of applications run-

ning on CMPs, it also comes with its own set of challenges. Among these, inherent

management overheads that can account for sub-linear speedups and can increase the en-

ergy consumption of executions. Because of rising concerns for energy cost and battery

life, much research and development today focuses on reducing power requirements and

saving energy.

In this thesis, we investigate how parallel programming can be used to improve the en-

ergy efficiency of applications running on CMP systems. We focus on a programming

paradigm called Task Based Programming (TBP). The base concept of the TBP model is

that the programmer focuses on identifying and annotating pieces of code (tasks) which

can be executed concurrently with other tasks. An important result of our work is an

increased understanding of how computations, parallelization and energy consumption

relate when executing on CMP systems.

Working in this direction, we use a simulation framework to allow for increased flex-

ibility in design space exploration and noninvasive measurements. Unfortunately, the

performance overhead of simulation is significant: simulating a parallel application can

be 10000x slower than executing it on real hardware. In the first part of our research,

we took it upon ourselves to try to solve this issue. We investigate the challenges of em-

ploying a sampling based technique to take advantage of the periodic behavior in TBP

parallel applications. Our proposal is a simple 3-phase methodology that identifies only

a small number of representative execution samples to simulate thus reducing the overall

simulation time.

In the second part of our work, we look at parallelization as a mean to save energy on

CMP platforms. We test and compare two TBP libraries, Wool and Intel TBB, focusing

on the behavior of some basic TBP parallelization operations like task spawning, task syn-

chronization and task stealing. We investigate the energy footprint of these parallelization

overheads and the effect it has on the energy-efficiency of the executing system. We have

identified that failed task steals amount for the largest overhead. To reduce their impact

and improve our system’s energy efficiency, we devised a new occupancy-aware policy

for victim selection. This policy allows for a more informed decision when selecting the

victim for task stealing and reduces the number of failed steals.
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Preface

This doctoral thesis was submitted to the Norwegian University of Science and Tech-

nology (NTNU) in partial fulfillment of the requirements for the degree of philosophiae

doctor (PhD). The work herein was performed at the Department of Computer and Infor-

mation Science (IDI), NTNU, under the supervision of Professor Lasse Natvig.

This thesis consists of two parts. The first part consists of introduction, background,

methodology, research process, a summary of papers and final conclusions. The second

part is the main contribution, presented as a collection of six research papers.
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Chapter 1

Introduction

1.1 From single-core to multi-cores

Ever since the beginning of computing, the responsibility for increasing application per-

formance has shifted between hardware and software designers. With the technological

advances of the 1980s, many hardware constraints (size and speed of memories, speed

and complexity of processing units etc.) from previous decades were reduced and appli-

cation development became easier. By applying Dennard’s scaling rules [64], transistor

dimensions shrank by 30% each CPU generation which in turn allowed for an impres-

sive 55% increase in performance every 18-24 months [91]. With more transistors that

could be cramped on single chip, faster and more complex CPUs were produced. In this

period application speed-up came almost for free, as every new generation of processors

increased clock speed allowing for more operations to be executed per unit of time.

Early into the 21st century it became apparent that even if Moore’s law was still holding

true, Dennard’s scaling rules cannot continue to boost performance. Facing issues due to

high power requirements, high memory latencies and high "costs" of extracting Instruc-

tion Level Parallelism (ILP), CPU designers needed a new approach. Around 2002 they

moved towards using the high transistor count to build multiple, more energy-efficient,

cores on a single die [79, 144]. Evolving through several generations, CMPs have be-

come the many-cores, multithreaded, shared-cache CMPs of today[143, 162]. Early gen-

erations of CMPs were using two conventional superscalar cores stitched together to use a

common memory bus. Later designs used more tight integration and were able to fit more

than two processing units (PU) on a chip which were sharing an L2 cache. This allowed

for a big speedup in intra-core communication, but it also introduced new type of chal-

lenges like cache partitioning, fairness and Quality of Service [68, 69, 104]. The latest

generation includes simpler and more energy-efficient cores capable of simultaneously

multithreading (SMT). Figure 1.1 summarizes this CMP evolution.

However, the idea of using multiple processing units to improve performance was not

new. Mostly used in advanced research and HPC, multi-processor systems have been
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Figure 1.1: Evolution of CMPs from early generation (left) to recent design (right).

around for decades. The advantages and disadvantages of using them for general purpose

computing has been discussed since the late ’60s, when Gene Amdahl made his case for

the use of the single processor [27]. He put forward a formula, which became known as

Amdahl’s law, to calculate the theoretical maximum speedup of an execution when using

multiple processors. By Amdahl’s law only embarrassingly parallel applications can

achieve the maximum speedup when running on multiple cores. However, modern CMPs

employ techniques like task switching to increases CPU throughput and make better use

of the hardware.

There are four main technological and economical constraints that have pushed the shift

to CMPs: the power wall, the memory wall, the ILP wall and the complexity wall. The

next sections briefly describe each of these.

1.1.1 The Power Wall

Dynamic power (the power required by an active transistor) is defined as:

powerdynamic ∼ AF · C · V 2
dd · f

where AF is the activity factor, C is the total load capacitance, Vdd is the supply voltage

and f is the clock frequency [107]. When scaling down the size of a transistor, its supply

voltage can also be reduced while its clock speed can be increased. Looking at the formula

above, this means that we can mitigate the impact on power requirement of a higher

clock speed by reducing the supply voltage. Using this technique, chip manufacturers

have succeeded in producing ever more complex and faster single-core CPUs through the

90s (see Figure 1.2). Power requirement was manageable, but expensive packaging and

powerful cooling solutions were required to keep these chips working. The benefits in

2



1

10

100

1000

100,000

1,000,000

10,000,000

1990 1995 2000 2005 2010

10,000

Number of transistors (thousands)
Relative performance
Clock speed (MHz)
Power (W)
Number of cores/chip

0
1985

Figure 1.2: Technological trends for microprocessors. Simplified version of Figure 1 in

[78].

terms of power from technology scaling faded away when going from the 90 nm feature

size to the 65 nm one (around the year 2004) for several reasons. First, in smaller feature

sizes leakage currents increase. Second, the need to extract more ILP to keep the deep

pipelines full was increasing the complexity of the circuits and the activity factors of the

transistors. Third, in the aggressive competition to release the fastest CPU chip, area and

frequency were scaled over what was recommended by Dennard’s scaling rule. All in all

power dissipation went beyond practical limits and it was said that single-core design has

hit the power wall [88].

As a natural solution, CMPs pack several less complex and significantly less "power hun-

gry" cores on a single chip. The individual performance of a core is well below that of

a single-core CPU, but the aggregate performance of the chip can be better if the soft-

ware is designed to run in parallel. While CMPs allow designers to continue boosting

performance, they are expected to run eventually into the same power wall. A study by

Esmaeilzadeh et al. [71] estimates that when reaching the 8nm feature size approximately

50% of a fixed-size chip will have to be powered down in order to mitigate its power re-

quirements.

Figure 1.2 shows the evolution of CPUs and the shift towards CMPs. While Moore’s law

still holds true (the number of transistors is increasing exponentially), the CPU perfor-

mance, clock speed and power requirement have a different trend since 2004.
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1.1.2 The Memory Wall

For about 20 years, processor performance has increased almost 55% per year while mem-

ory latency decreased only 6-7% per year [91, 147] (see Figure 1.3). What this means is

that every new generation of CPU could process the data much faster than it can be re-

trieved from main memory. This growing performance issue prevents users from utilizing

the CPU at its fullest and is referred to as the memory gap. Wulf and McKee discussed

this memory gap in their 1995 paper and predicted that there will be a point where CPU

development will face a memory wall [181]. The main solution for this problem was the

introduction of caches hierarchies. As the gap widened, deeper hierarchies were needed to

keep up with the memory access requests of the CPU. In 2002, with a three level cache hi-

erarchy and very aggressive mechanisms for data prefetching, it was said that single-core

design has hit the memory wall.

The memory wall also affects CMPs, but since each core runs at a lower frequency the

gap slowed down a bit. Also, for CMPs the main issue is to hide the bandwidth demand

rather than the latency. Doubling the number of cores and the amount of cache every CMP

generation results in a corresponding doubling of off-chip memory traffic. This implies

that the rate at which memory requests must be serviced also needs to double [160].
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1.1.3 The ILP Wall

With single-core CPUs becoming faster and faster trough out the 90s, their pipelines

deepened and ever more ILP was needed to keep them full. Studies showed that high

parallelism can only be extracted at very high hardware costs [177]. In the beginning of

the 21st century common techniques for exploiting ILP became insufficient and it was said

that single-core design has hit the ILP wall. CMP design alleviate this issue since each

core has a shallower pipeline and requires fewer independent instructions to keep them

busy. Also, in a multi-core design the programmer can provide higher level of parallelism

(task level, thread level).

1.1.4 The Complexity Wall

The very complex single-core CPUs from the late 90s required a significant effort to

design, develop and test. Only a handful of companies could afford the man power and

infrastructure required for such a task. This was referred to as the complexity wall. Since

so much effort was channeled towards boosting performance of the single-core CPUs,

innovation was stalling.

In contrast, CMP design allows the reuse of a core design within a chip. Also, new

design challenges like cache partitioning and fairness open possibilities for innovation

and differentiation among developers.

1.2 The parallelization issue

In terms of software development, the shift from single-core to CMPs caused a great deal

of pain [169]. Most existing applications as well as all the new ones emerging from every

computational field had to be parallelized and optimized for running on multi-core proces-

sors. This is not a simple task: selecting the right architecture, choosing a parallelization

technique and tuning the code for the specifics of the hardware platform (employing data

distribution strategies etc.) are all very difficult [173]. But failing to do so would make

CMPs highly inefficient.

Even though there is a large collection of parallel programming models, languages and

compilers the software developers are still struggling with the parallelism requirements

posed by the multi-cores. With CMPs making their way in every electronic device on the

market today, this ”programmability gap” has become a concern in both hardware and

software communities. Both academia and industry have attempted to bridge this gap and

provide developers with parallel libraries that aim at improving application portability and

programming efficiency [52, 74, 83, 119, 121, 150]. Even if in the end the parallelization

succeeds, the added management overheads can account for sub-linear speedups and can
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increase the energy footprint of the application. Understanding and limiting these over-

heads is a necessary step towards scalable and more efficient runtime parallel libraries.

1.3 Research Questions

Investigating ways how use or improve parallel programming on CMPs to increase a sys-

tem’s energy efficiency are our main research goals. Our approach relies on the following

three research questions:

RQ1 What is the potential for energy saving for the TBP model on a multi-core system?

RQ2 How do basic operations in TBP parallel code (task spawning, task migration, syn-

chronization etc.) affect the energy footprint of the execution? What are the perfor-

mance/energy trade-offs?

RQ3 How can we improve the energy efficiency of TPB programs?

ExtraRQ How can we reduce long simulation times of deterministic architectural simulators

like M5/GEM5?

1.4 Thesis outline

The remainder of this thesis is organized in the following way:

• Chapter 2: - theoretical background related to the contributions in this thesis. The

chapter gives an overview of the main theoretical concepts that our research is based

on.

• Chapter 3: - the methodology used to produce the research results.

• Chapter 4: -the research progress. This chapter presents how we produced all our

papers during the doctoral research. The papers that are not included in this thesis

are also discussed.

• Chapter 5: - research results summary. This chapter overviews the papers included

in the thesis and highlights the contribution of each author.

• Chapter 6: - contribution summary and concluding remarks. This chapter reviews

the thesis contributions in relation to the research questions. It also describes the

challenges and potential directions of future work.

• Appendix A: - enclosed selected papers.
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Chapter 2

Background

This chapter provides some of the fundamental concepts required to understand the re-

search in the papers that are part of this thesis. In section 2.1 we introduce the necessary

background on performance and energy-efficiency measurements. Section 2.2 presents

the evolution of CMPs from early generations to present designs. The many thin cores
or few fat cores debate is outlined in section 2.3 together with some representative archi-

tectures for each class. And in section 2.4 we discuss the parallelization model and the

implementations that we focused on in this research.

2.1 Metrics

When evaluating a new design or a novel research idea, the use of correct metrics is

paramount. Poorly chosen metrics can lead to incorrect conclusions and can steer a re-

searcher in the wrong direction [70]. This sections gives a very brief overview of some

performance and energy-efficiency metrics, most of which are used in papers included in

this thesis.

Energy, measured in Joules, is the most fundamental metric in power and energy studies,

particularly those of mobile platforms where it correlates with battery life. Energy con-

sumption is also of great importance for facilities like data centers, where it is among the

top operating costs.

Power, measured in Watts, is the rate of energy dissipation. Power and its related metrics,

like areal power density, are meaningful in studies of current delivery, voltage regulation

and thermal dissipation.

Energy-delay product (EDP) was first proposed by Horowitz et al. [95] as a metric to

evaluate differences between energy savings techniques for digital circuit designs. With

low energy and fast runtimes in mind, EDP will give a better ranking to a faster execution

of the same instruction mix using the same amount of energy or to the same execution
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time but using less energy. EDP offers equal weight to both performance and energy

efficiency, but alternative metrics have been suggested that give a higher priority to the

performance component. These are energy-delay-squared product (ED2P) and energy-

delay-cubed product (ED3P). ED2P and ED3P are used mostly in the high-performance

field, where performance gain are more important than energy efficiency. The energy-

delay-area product (EDAP) and energy-delay-area-squared product (EDA2P) add the cost

of the component to the metric. Die cost is roughly proportional to the square of the

area [91], so EDA2P is a good metric to use while designing a CMP. At the system level,

EDAP may be preferred since fixed system costs such as memory and I/O reduce the

overall dependency on CMP cost.

Execution time is argued by most as the only reliable measure of performance [91]. Hen-

nessy and Patterson define wall clock time as the time required to complete an application,

including operating system tasks, disk accesses and other I/O operations [91]. In a system

running several programs simultaneous, the wall clock time of one program may depend

on the progressing of another. That is why CPU time is defined to include only the time a

CPU uses to execute the instructions of one program.

Cycles Per Instruction (CPI) and its reciprocal Instructions Per Cycle (IPC) were the most

used metrics for CPU performance in the single-core era. CPI measures the average num-

ber of cycles it takes to execute an instruction for an application or application section.

CPI =

∑
i (ICi · CCi)

IC
(2.1)

In Formula 2.1, ICi is the number of instructions for a given instruction type, CCi is the

average number of clock-cycles needed to execute that instruction type and IC is the total

instruction count. The summation is done over all instruction types for a given execution.

IPC is calculated as 1/CPI.

CPI and IPC can be very misleading metrics when applications execute in parallel for

many reasons [70]. For example, access control mechanisms like spinlocks will increase

the instruction count without actually making any forward progress in the execution. This

means that the instruction count will be very high which will lead to an erroneous per-

formance result. To better quantify the performance of such applications, work oriented

metrics are needed. One example for databases is Transactions Per Second which mea-

sures the number of useful database transactions per second.

Multi-core CPUs also allow for multiprogram workloads to be executed and such situa-

tions require a new type of metrics. Eyerman and Eeckhout propose two metrics for this

purpose: a user-oriented metric called Average Normalized Turnaround Time (ANTT) and

a system-oriented metric called System Throughput (STP) [72]. ANTT is defined as the

arithmetic average across the programs’ normalized turnaround times (the user-perceived

slowdown during multiprogram execution relative to the single-program execution). STP

is defined as the sum of the normalized progress rates (the programs’ progress during

multiprogram execution relative to the single-program execution) across all jobs.
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When evaluating a new technique, most often the speedup achieved when compared to a

baseline is of interest. This is calculated according to Formula 2.2.

Speedup =
Performancenew

Performancebaseline
(2.2)

2.2 Chip Multiprocessors

As Gordon Moore described in 1965, the decrease in manufacturing costs for dense in-

tegrated circuits allowed the number of transistors per chip to double every year [138].

He projected this trend will continue for at least 10 more years. In 1975 he revised this

forecast to doubling every second year. With this exponential increase in transistor count,

CPUs have seen tremendous improvements for several decades (see Figure 1.2). In early

2000s, Dennard’s scaling rules could no longer provide the necessary reduction of a chip’s

power requirements and a shift towards multi-cores occurred in CPU design.

To facilitate our latter discussion, this section will give a brief description of the evolu-

tion of CMPs from early generations to more current homogeneous and heterogeneous

designs. It will also present some representative examples targeting mostly similarities

and differences on an architectural level.

2.2.1 Evolution of CMPs

The constraints described in Section 1.1.1 - 1.1.4 did not take the tech world by surprise.

All of them were foreseen [88, 177, 181] and various architectural solutions were put

forward, many of which described a CMP design. As early as 1996 Olukotun et al. made

their case for the development of single-chip multiprocessors [144]. Several research

teams proposed architectural designs for CMPs like the Hydra [90], the Pirahna [33] or

the MAJC [168] years before the industry made the switch. The need for the design

change was understood by the main CPU developers and IBM [167], Sun [106], Futjitsu

[133] and Intel [48] announced their intention of developing CMP chips.

For many first generation CMPs (like the dual-core UltraSPARC-II [106] or the dual-core

POWER-4 [167]), the cores were “carbon copies“ of single-core designs. Reusing core

designs was a natural incremental step for such a design change, however it was in no

way a scalable solution. The off-chip data paths were the only shared resource among

the two cores (see Figure 1.1). These CMPs were primarily designed for the HPC market

and their primary goal was a reduction in volume: two to four cores can fit where only

one could resulting in a higher performance per unit volume. Power savings were also

achieved since a system using a CMP would need only one power source and would not

require the high-speed interconnection several single-core systems would [143].
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For the second generation CMPs, CPU developers tried to improve performance by shar-

ing a L2 cache among cores. With a L2 cache shared among several execution units, de-

signers needed to ensure cache coherency. This approach allowed executions with large

input sets to be splitted up and performed in parallel on a single CPU rather than on

several interconnected systems resulting in a performance boost. Core designs were still

based on stripped down versions of older single-core implementations.

If you were to double the number of cores each generation, the power requirement of each

core needed to be halved in order to maintain the same power envelope. With Dennard’s

scaling rules no longer providing the desired reduction in power for feature sizes beyond

65 nm [88], techniques like clock gating and frequency scaling were employed. In addi-

tion, off-chip bandwidth per core was also a design issue. As the packaging costs per pin

increase significantly with pin count, the focus has been to increase the per-pin bandwidth

[162]. These issues could only be addressed if the cores were designed specifically for

CMPs. Sun’s Niagara processor was among the first third generation CMPs (see Figure

1.1) [110]. Niagara was a 32-way CMP that used 8 cores each with a private L1 cache

and a shared L2 cache. Niagara’s developers used simple single issue cores with a short

pipeline. With this low complexity level of the cores, the per-core as well as the over-

all power requirement was significantly reduced when compared to a superscalar CPU.

Such design could only be fully exploited by applications with a high level of thread level

parallelism.

2.3 Homogeneous or heterogeneous?

One of the main challenges CMP designers face today, is how many and how complex the

cores should be on a chip. The industry has failed to find a "silver bullet" when it comes

to the many thin cores or few fat cores debate. Amdahl’s law describes how the serial part

of an application can have a big impact on the speedup that an application can achieve

through parallelization. To perform well for both serial and parallel executions, designers

need to hit a balance between the complexity of cores and the number of cores that can

fit on a chip [93]. The development simplicity and ease of programming has made sym-

metric homogeneous CMPs the design of choice for general purpose CPUs. However,

studies have shown that a heterogeneous approach could bring a substantial improve-

ment in energy efficiency, with minimal loss to performance [112]. Also, heterogeneous

chips can accommodate both large and complex cores best fitted for single-threaded, high

ILP executions as well as simple and energy efficient cores targeted for high throughput

applications [113]. Even more performance improvements have been forecasted if het-

erogeneity is pursued further and custom cores are developed specifically for CMP design

[114].
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2.3.1 Homogeneous architectures

In a homogeneous CMP all cores are of the same type, both in instruction set architecture

(ISA) and performance. This means that any thread can be executed on any of the cores

with the exact same results. From a chip developer’s point of view, such designs are

"simple" since the same core design is replicated several times on the die. From a software

developer’s point of view, programming this type of CMPs is more straightforward since

there is only one instruction set to think about, only one type of compute resources and it

makes load balancing relatively easy.

In the next subsections we will present two modern CMP architectures in this class. We

will emphasize the architectural features that brought improvements, both in performance

or energy-efficiency when compared to previous CMP generations. We will also highlight

the main differences that make these architectures stand out.

Intel Haswell

Haswell is the codename for Intel’s forth architectural generation of Core CPUs. It was

first introduced in 2011 at Intel Developer Forum [21] and the first chip that used this

architecture was released in 2013. The list of CPUs that Intel has released using this

architecture is very long and it spans from desktop PCs, HPC servers and for the first time

mobile ultrabooks.

Haswell chips support from 2 to 18 cores which coupled with Intel’s Hyper-threading

means that they can handle up to 36 threads. Each core integrates 4 ALUs, 2 vector

integer ALUs, 2 FPUs, 3 address generation units, 2 branch execution units, all integrated

in a 14- to 19-stage instruction pipeline. The highest-level shared cache is usually referred

to as the Last Level Cache (LLC). For most Haswell chips L3 is the LLC, but there are

variants like the R-series desktop processors which include a 128 MB shared L4 cache

level. Even though the LLC is not a unified cache, Intel designed it so that it will scale

linearly with the number of cores (one cache bank per core). Most Haswell chips also

include a GPU from Intel’s HD Graphics family, but this will not be the focus of this

section.

First introduced by Intel in 2008 to compete with AMD’s HyperTransport, the Quick Path

Interconnect (QPI) is a point-to-point CPU interconnect. It is designed to link processors

in what Intel calls a Quick Path Architecture. Separate QPI link pairs will connect several

CPUs and several IO hubs in a network. The cores, the LLC, the memory controller, the

QPI interconnect and the PCI-express buses are all linked by a ring bus (see Figure 2.1).

Built on the same 22 nm process as previous generation, Haswell’s improvements in

power and performance are not due to miniaturization. To improve on its predecessor’s

power requirements, Intel has implemented a new power management framework which

allows the CPU to handle device driver events in scheduled batches rather than real time.
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Figure 2.1: Intel Haswell architecture, simplified block diagram.

In this way, the CPU can spend more time powered down between bursts of activity. To

boost Haswell’s off-chip bandwidth, Intel has introduced support for DDR4 memory.

For programming its CMPs, Intel provides software developers a set of highly optimized

libraries like Intel Integrated Performance Primitives (IPP) [22] or Intel Math Kernel Li-

brary (MKL) [23]. Intel Cilk Plus [20] is a general-purpose programming language, orig-

inally developed at MIT and later acquired by Intel. It extends the C and C++ program-

ming languages with constructs to express parallel loops and fork-join mechanisms. Intel

Threading Building Blocks (TBB) [24] is a template library that supports scalable parallel

programming using standard C++ code. In addition to these proprietary solutions, devel-

opers can still use low-level multi-threading primitives or high-level generic solutions like

OpenMP [52] or MPI [83].
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Figure 2.2: AMD Piledriver architecture, simplified block diagram.

AMD Piledriver

Piledriver is the codename for AMD’s second generation architecture in the Bulldozer

family. AMD refers to the chips in the Bulldozer family as Accelerated Processing Units
because they enclose both the CPU and GPU in the same package. The first generation

Bulldozer chips used a new design from the ground up, rather than being an incremental

development of an earlier processor. Improvements in branch prediction and scheduling

for both floating point and integer operations give Piledriver a performance boost over its

predecessors. Its energy efficiency has been increased by switching from soft- to hard-

edge flip-flops. Flip-flops are used to store data or a state and the information is latched

at the rising edge of the clock. This means that they are very sensible to clock jitter. Soft-

edge flip-flops are more tolerant to this jitter and are able to function even if the clock

signal spills over the edge. On the other hand, hard-edge flip-flops are smaller and less

complex than their soft counterparts, but using them involves an extra effort to account

for the timing margin.

Piledriver uses the same module design introduced by the first generation Bulldozer CMPs.

Each module consists of 2 integer clusters, 1 floating point cluster capable of SMT, ded-

icated L1 data cache for each cluster and shared L2 cache (see Figure 2.2). Each integer
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cluster contains an integer scheduler in addition to the integer execution units (2 ALUs

and 2 address generation units), while the floating point cluster contains 2 symmetrical

128-bit fused multiply-add pipelines which share a scheduler. Because of its dedicated

hardware in the integer modules, this design is more effective while executing two threads

consisting of integer operations when comparing it to an SMT core. The disadvantage of

this architectural approach is that a single thread execution consisting of integer opera-

tions can only use one integer cluster, resulting in underutilization of the resources. Both

integer and floating point clusters in a module share the L1 instruction cache and the

decode-dispatch logic. All modules share a non-unified L3 cache connected via the Sys-

tem Request Queue as well as an integrated memory controller connected via a crossbar

interconnect (see Figure 2.2). Like Intel’s QPI, AMD also provides a point-to-point link

called HyperTransport to interconnect several processors on a motherboard.

Like Intel, AMD provides a set of libraries called AMD Compute Libraries to help de-

velopers in programming its CMPs [2]. This set includes both GPU (dBLAS, dSparse,

dFFT) as well as CPU libraries (BLIS, libflame). Developers can also use low-level multi-

threading primitives or high-level generic solutions like OpenMP [52] or MPI [83].

2.3.2 Heterogeneous architectures

Heterogeneous or asymmetric systems are not a new concept. For the room-size com-

puters of the ’60s and ’70s, a cost-effective way to increase compute power was to add a

second processing unit to the system. The single-CPU operating systems of the time were

initially extended with minimal support for the second CPU so it could only execute user

programs. This means the CPUs were not able to perform the same tasks which is why

those systems were ranked as asymmetric. Operating such systems required an extensive

knowledge and were only used in research institutes and large universities [3].

A CMP is called heterogeneous if it incorporates dissimilar cores, usually featuring spe-

cialized processing capabilities that can handle particular tasks. The heterogeneity or

asymmetry of a CMP can be pursued both in hardware and software. In hardware, cores

of different size and features can be placed together on a single die. These architec-

tures provide the flexibility of scheduling the workload to those processing units that best

match the system’s requirements for performance or energy-efficiency [6, 139]. Modern

mobile chips are implementing such designs as single-ISA heterogeneous CMPs [4]. In

software, the ISA, OS and even programming model of the various cores can be different

[124, 125]. Pursuing heterogeneity in both software and hardware at the same time with

heterogeneous-ISA CMPs promises to give out even more benefits [174].

The design of heterogeneous chips brings up a completely different set of challenges that

span across the system stack [56, 87, 126]. However, heterogeneous CMPs hold great

potential in optimizing both sequential and parallel computing [137]. To achieved it, chip

designers need to work towards tightly integrating hardware multithreading, many cores,

SIMD units, accelerators and on-chip communication systems [46]. At the same time,
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Figure 2.3: Exynos 7 architecture, simplified block diagram.

programmers will need to exploit parallelism, orchestrate computations and manage data

locality at several levels in order to achieve reasonable performance [47].

In the next subsections we will try to give a brief overview of some recent or under-

development heterogeneous chip designs. We focused of those architectures that seemed

to be the most successful in today’s market, like ARM big.LITTLE CPUs. We discuss

advantages and challenges of systems using only heterogeneous CPUs but also CPU plus

accelerators. And finally we also present research to develop the next generation of het-

erogeneous CMPs for the HPC sector.

Heterogeneous CPU

Samsung’s Exynos family, like other chips designed for mobile platforms, are part of a

class called System on Chip (SoC). This mean they incorporate functional units and logic

capable to perform several tasks like: compute jobs (CPU), graphics (GPU), image pro-

cessing, audio processing, radio modems etc. In this Exynos overview we will only focus

on the CPU block and its big.LITTLE heterogeneous architecture. Samsung’s implemen-
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tation of the big.LITTLE design is known as heterogeneous multi-processing (HMP) and

it relies on a scheduling mechanism developed by Linaro (a consortium of ARM vendors)

called Global Task Scheduling (GTS) [6]. Figure 2.3 is an abstract simplification of the

Exynos 7420 SoC, showing only some of the largest blocks present on the chip.

The CPU block is comprised of 8 cores arranged in two clusters. The big cluster includes

4 ARM A57 cores clocked at 2.1 GHz while the LITTLE one consists of 4 ARM A53

cores clocked at 1.5 GHz. The clock frequency is not the only difference between these

two core architectures. ARM A57 is a 3-wide/3-issue CPU with a 15+ stage pipeline

while the A53 is a 2-issue in-order architecture with an 8 stage pipeline. Both support

64-bit operations and the same ARM ISA. The two clusters are connected via an ARM

Cache Coherent Interconnect (CCI) which is the key component in the heterogeneous

setup of ARM’s big.LITTLE design. The CCI enables cache coherency among the two

core clusters and allows a thread’s working set to migrate from one cluster to the other

[4]. Using GTS, the OS manages the workloads on the clusters and the task migration

between them [1, 5]. When used in mobile devices, the scheduling is optimized to use

the LITTLE cores as much as possible and use the big cores only for "heavy lifting" [6].

By matching a thread’s computational requirements to the core that best fits its needs, this

heterogeneous architecture allows its resources to be better provisioned. In this way it

achieves a higher energy efficiency for a wider range of applications.

In addition to the CPU clusters, CCI has 3 more ports to allow the creation of a group

of cache coherent devices. First such port is shared by 2 graphics blocks: a 2D graph-

ics accelerator called Fully Integrated Mobile Graphics 2D (G2D) and the GPU. Having

the GPU sharing the CCI port is a departure from ARM’s guidelines, where we usually

see the GPU using 2 ports of the CCI. However, Samsung also chose to not connect the

GPU to the memory controllers via the CCI, but rather through the memory interface bus.

This has relieved the bandwidth demand on the CCI and has allowed Samsung to clock

the CCI to a lower frequency (up to 532 MHz) rather than half the DRAM frequency as

ARM recommends [4]. The next CCI port is taken by a new type of logic block in the mo-

bile space: a memory compressor. Called the Exynos Memory Compressor or M-Comp,

this hardware was designed by Samsung to support and optimize the DRAM memory

compression mechanism included by the Android 4.4 kernel. The memory compressor is

part of a larger block called IMEM that contains other elements such as hardware cryp-

tographic accelerators [4]. The last CCI port is reserved for ARM’s debugging and trace

system of SoCs.

With the Exynos 7420, Samsung is pursuing energy efficiency more than performance. By

using a 14 nm FinFET process and by not pushing the clocks too high, Samsung managed

to obtain a 35%-45% reduction in power requirement when compared to the Exynos 5433

predecessor [4]. This means that the 7420 SoC can be used in very thin mobile devices

that don’t have the ability to dissipate much heat or the room to accommodate a large

battery. ARM’s big.LITTLE heterogeneous design gives Exynos 7420 the ability to better

match computational requirements to hardware resources improving its energy efficiency.
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Heterogeneous CPU with GPU acceleration

In the last decade, mainstream computer systems usually included not only CPUs as pro-

cessing elements. The most prevalent such processor has been the GPU, originally de-

signed to perform specialized graphics computations in parallel. Over time, GPUs have

become more powerful and more generalized, allowing them to be applied to general

purpose parallel computing tasks (known as GPGPU) with excellent power efficiency

[28, 85, 129].

Because CPUs and GPUs have been designed as separate processing elements, they are

not optimized to work together efficiently on compute workloads. In the early days of

GPGPU (around 2005), computational problems needed to be expressed as graphics prim-

itives supported by one of the two major graphics APIs, Open Graphics Library (OpenGL)

or DirectX. The need for this translations was removed by the advent of general purpose

programming languages such as the Compute Unified Device Architecture (CUDA) and

the Open Compute Language (OpenCL) [28, 53, 65].

Difficulty in programming these platforms is not the only challenge that needs address-

ing. A program running on the CPU queues work for the GPU using system calls through

a device driver stack managed by a completely separate scheduler. This introduces sig-

nificant dispatch latency, with overheads that make the process worthwhile only when

the application requires a very large amount of parallel computation. To fully exploit

the capabilities of these parallel execution units, it is essential for hardware designers to

re-architect computer systems and to tightly integrate them [28].

In order to enable GPGPU in its designs, ARM supports the OpenCL language for both

its CPUs and GPUs. The OpenCL framework enables heterogeneous execution across

different types of processing units like CPUs, GPUs, digital signal processors (DSPs)or

other accelerators [17]. In this model, a host CPU is running the code that sets up the

compute devices (GPUs, DSPs or other CPUs) and schedules the kernels (computational

tasks) for execution. The host is also responsible for managing the data transfers to and

from the compute devices.

Prakash et al. [154] explore the energy-efficiency benefits of Samsung’s Exynos 5422

SoC and discuss the trade-offs of CPU heterogeneity. The 5422 SoC implements the

same HMP run-state migration as the Exynos 7420, using four ARM Cortex A15 cores in

the big cluster, four ARM Cortex A7 cores in the LITTLE cluster and a Mali T628 GPU

[13]. The GPUs in ARM’s Mali T600 Midgard series were the first in the embedded world

to fully support the complete OpenCL profile, which means that the 5422 can extend and

accelerate processing with the GPU. The Mali T628 has six shader cores, four of which

can be used for general purpose computing. Each shader core contains a multi-threaded

processing engine called a tri-pipe made up of a load-store pipeline, two arithmetic pipe-

lines and a texture pipeline (used only for graphics jobs). The arithmetic pipelines have

a mix of scalar and vector ALUs that execute a single long instruction word (VLIW de-

sign). The results in [154] show an average of 19% increase in performance by using both

CPU and GPU as oposed to using only CPU or only GPU. At the same time, judicious
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Figure 2.4: Example of a HSA multi-socket CPU-GPU design, simplified block diagram.

selection of operating frequencies for both CPU and GPU can lead to an average of 36%

improvement in energy efficiency. However, we need to note that all these results have

been achieved through statically partitioning the workloads across CPU and GPU cores.

Delporte et al. [63] have proposed an optimization scheme called heterogeneous plat-
form accelerator (HPA) that will allow generic applications to dynamically exploit all

available computational units. Their approach is language agnostic and relies on the Low

Level Virtual Machine (LLVM)’s Just-In-Time (JIT) compiler [118]. As the executions

starts, a performance monitor is constantly analyzing the executed code and classifies each

function by their compute-intensiveness. Once a candidate is found, it is first checked if

it can be parallized and/or optimized using the Polly tool [86]. After all these steps are

completed, the next time the candidate function is called during the execution, it will be

off-loaded to the GPU. The HPA framework will also monitor the off-loaded functions

and can revert its decision if their performance on the GPU proves to be lower than what

the CPU was capable of.
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Heterogeneous system with many accelerator types

The Heterogeneous Systems Architecture (HSA) Foundation was formed in June 2012 to

enable the industry specification, advancement, and promotion of new chip designs, pro-

gramming and runtime tools targeted for heterogeneous systems [8, 116]. The foundation

members are among the largest tech companies today: AMD, ARM, Samsung, Texas In-

struments and many others. They promote a lower level programming specification that

serves as an intermediate layer definition between high-level language APIs (like OpenCL

2.0) and the underlying computing device [140]. HSA has so far released a specification

for system architecture, an intermediate programming language called HSAIL, a runtime

API and a multi-vendor architecture specification [9]. The end-goal is to achieve an uni-

fied install-base support across many devices and platforms which will enable software

development in a write once, run everywhere fashion.

Early efforts of the HSA Foundation were on using the GPU as an accelerator (in HSA

terminology they are referred to as kernel agents - see Figure 2.4 an example design),

but its scope is to efficiently support a wide assortment of processing units. A HSA-

compliant system should be able support multiple instruction sets based on host CPUs and

several different kernel agents. It should also meet the requirements for an HSA queuing

model, memory model and an instruction set for parallel processing. The HSA queuing

model is designed to reduce the overhead of job dispatch by supporting shared virtual

memory, system coherency, signaling and user mode queuing. The goal of the memory

model is to ensure memory consistency in a concurrent parallel execution. Even though

there are no GPUs to fully support the HSA specifications at the moment, early research

and benchmarking shows that it brings important reduction in management overheads,

increases performance and reduces latency [140].

Heterogeneous systems in HPC

Started in October 2011, the Mont Blanc European Union project aims to use embedded

technology to develop the next generation HPC cluster capable of setting future global

standards in the field [156, 157, 163]. With today’s HPC systems, servers or data centers

being power constrained, the Mont Blanc project is exploring a new approach in design-

ing these systems in order to reach the exascale performance mark by 2018 [156]. The

proposed prototype will use 15 compute cards which will include the ARM CPUs, GPUs,

the DDR3 RAM memory and the Ethernet network switch in a single cluster blade [158].

Early results on a prototype cluster using NVIDIA Tegra 2 SoCs show lower power re-

quirements than Intel x86 based reference systems, but a at cost of lower performance

[156]. However, testing on newer SoCs like the Tegra 3 which has a higher multi-core

density and a higher clock frequency per core, improves previous results reducing the

performance gap [155].

The current Mont Blanc prototype, which is also available to public users, is using a total

of 1080 compute cards, each fitted an Exynos 5 Dual SoC (ARM A15 dual-core and an
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ARM Mali T-604 GPU). Grasso et al. have investigated the energy-efficiency potential

of using this SoC for HPC workloads [85]. They conclude that embedded GPUs offer

performance improvements of up to 8.7x and energy savings of nearly 3x on specific ap-

plications. They also identified some OpenCL software optimization techniques targeted

for the ARM Mali GPU Compute Architecture. Speculative results of the prototype clus-

ter using Exynos 5420 octa-core SoCs show it will surpass the performance of an Intel

x86 Quad i7 reference system [158].

To help achieve the exascale performance goal giving the energy and hardware con-

straints, Keiser et all. propose a new a runtime system called HPX [105]. The authors

argue most of the current HPC programming models are facing issues of scalability, pro-

grammability, performance portability, fault management and energy efficiency. HPX

combines a set of well-known ideas and techniques like constraint based synchronization,

adaptive locality control and message driven computation to reduces the challenges of

executing on HPC architectures as they grow from peta- to exascale.

2.4 Programming model

Parallel programming is not a new topic and over the decades many parallel programming

models have been developed and improved. A parallel programming model describes an

abstract parallel machine by its basic operations such as arithmetic operations, spawning

of tasks, reading from and writing to shared memory. Also, it outlines the effects of these

operations on the state of the computation and the constraints of when and where these

can be applied [108]. Such a parallel programming model is often associated with one or

several parallel programming languages or libraries that realize the model.

In contrast with sequential programming, parallel programming models are not always

platform agnostic. This is due to the fact that for parallel architectures there is not one

unifying model. Leslie G. Valiant has credited the wide adoption of the sequential compu-

tation model throughout the ’70s and the ’80s to the fact that it adopted the von Neumann

model. Foreseeing that general purpose parallel computation will some day replace the

sequential one, he developed the initial Bulk Synchronous Parallel model (BSP) [170].

This model has since been improved and extended primarily with the help of Bill McColl

and Rob Bisseling and their research teams [42, 43, 92, 134]. By 2010, Valiant has devel-

oped Multi-BSP, an extension to the original BSP model that better applies to multi-chip

architectures [171]. A BSP system consists of processing units with their local memory, a

network that can connect pairs of these processing units and a hardware mechanisms that

allows the synchronization of all or a subset of components. Parallel computation is per-

formed in a series of supersteps which includes concurrent execution of several threads,

data communication and barrier synchronization.

In our research we focused on the Task Based Programming model (TBP). TBP, also

known as nested task parallelism, promotes the parallelization by dividing a workload

into small parts called tasks. In contrasts with data parallelism, the TBP tasks do not
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have to include the same operations on different data. They can be different from each

other and they can depend one on the other by passing data among them. When compared

with the threads of thread parallelism, the TBP tasks are considerable lighter and plat-

form agnostic. To increase flexibility and scalability of the model, the programmer marks

the tasks to be executed in parallel, but it is the runtime system that actually manages

the execution of the tasks. In this way, the same code can be executed on single-core,

homogeneous or heterogeneous multi-core systems.

Tasks may spawn other tasks in a fork-join style and this may be done even in a dynamic

and data dependent manner. Dependencies among tasks can either be specified by the

programmer [76] or inferred automatically based on annotation of procedure declarations

[67, 149]. Such collections of tasks may be represented by a task graph, where nodes

represent tasks and arcs represent data dependencies, and can occur at several levels of

granularity. At runtime, tasks are ordered and distributed automatically to available pro-

cessing units and all dependencies are enforced. This approach frees the programmers

from managing and mapping the parallel threads onto the CMP.

In the next subsections we present a few TBP models that we researched during our doc-

toral work. We did not used all of them in our papers (see Chapter 4), but discussing them

here provides an overview of the state of the field.

2.4.1 OmpSs

The OmpSs programming model has been developed with the goal of supporting both ho-

mogeneous and heterogeneous hardware architectures [31, 67]. It extends OpenMP [52]

with support for irregular and asynchronous parallelism and heterogeneous architectures

from the StarSs programming model developed at the Barcelona Supercomputing Center

(BSC)[149]. OmpSs uses the in, out and inout clauses to allow tasks to express data-

dependencies. This information is used by the OmpSs runtime to create a dependency

graph to control the order of execution and avoid explicit synchronization [58, 77]. In

terms of heterogeneity, OmpSs is designed to simplify synchronization and data transfers

between host CPUs and GPU accelerators. It supports the ability to schedule tasks to mul-

tiple GPUs independently and the possibility to provide more than one implementation of

a task (in CUDA or OpenCL). The scheduler can select at runtime the task implementation

based on resource availability and/or data locality [77].

Nanos++ is the run-time library developed at BSC [16] for most of the research-oriented

task-centric models, such as OmpSs , StarSs [30] and SmpSs [130]. It relies on the

Mercurium compiler [15] to translate the OmpSs constructs and transforms them into

calls to the library [77]. Mercurium also parses the CUDA and OpenCL code that may be

part of the source files, but it leaves this code unchanged. This gets passed to the NVIDIA

compiler or the OpenCL runtime in the final steps of the compilation. Nanos++ is highly

parametrized with options including different scheduling policies, cut-offs and back-off

mechanisms for locks [77].
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2.4.2 Intel Array Building Blocks

Intel Array Building Blocks (ArBB) is a high-level data-parallel programming environ-

ment. It is designed to produce scalable and portable programs that can harvest data and

thread parallelism on both multi-core and heterogeneous many-core architectures [142].

Intel ArBB is a combination of Intel Ct, a former research project Intel started in 2007,

and a multi-core development platform initially developed at the University of Waterloo

[19] and then continued by RapidMind Inc.[18]. The aim of Intel ArBB is to increase pro-

ductivity for programmers who need to exploit hardware parallelism, but for whom very

low level parallel programming is not an option. Intel ArBB is an embedded language

and is implemented as a library in the host language C++.

Bo Joel Svensson and Mary Sheeran worked towards embedding Intel ArBB into the

Haskell functional programming language [164]. Their work extends a previous research

that aims to accelerate Haskell array codes using GPUs [51]. Despite such promising

results, Intel discontinued the ArBB development in favor of other projects like Cilk Plus

and Threading Building Blocks.

2.4.3 Intel Cilk Plus

Intel Cilk Plus is a general-purpose programming language designed for multithreaded

parallel computing and based on the C and C++ programming languages [20]. It ex-

tends these two languages to express task and data parallelism. Intel Cilk Plus allows

parallelization of both new or existing code to efficiently exploit CMPs and/or vector

instructions.

By marking a function call with the keyword spawn, the programmer indicates that it is

safe to run that call in parallel. However, based on resource availability the scheduler will

do the task management and assign them to the execution threads. Cilk also defines a

barrier with the keyword sync, which signals that the current function call can’t proceed

until all previous spawned functions have completed. These two keywords coupled with

parallel loops marked by cilk_for are the building blocks that provide software developers

a very straightforward way to write parallel code [29].

In addition to good utilization of CMP resources, a central goal in the design of Intel

products like Cilk Plus and Threading Building Blocks is composability. This feature

has to do with the good collaboration among the components of an application that can

be either custom designed or imported from third parties like libraries. This is achieved

by the use of work-stealing task schedulers that allow the units of work to migrate from

the execution thread that generated them to another one that will execute them. Such

mechanism also ensures that the execution will exploit all the processing units available at

any given time. These schedulers can accommodate to changes in the number or priority

of applications executed on the system and scale down or up the number of execution

threads accordingly.
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2.4.4 Wool

Wool is a C-library supporting fine grained independent task parallelism and was devel-

oped by Karl-Filip Faxén at the Swedish Institute of Computer Science. Its main goals

are to provide a simple programming interface and to address the very high management

overheads that are common in fine-grained task parallelism. To achieve this Wool adopts

a direct coding style to facilitate the parallelization of existing code. It also introduces the

direct task stack approach to reduce overheads for basic operations like task spawning,

joining and work stealing [74, 76].

Management overheads are an inherent challenge of parallelization. This becomes an

even greater performance issue when working with fine-grained task parallelism. To ad-

dress it, some TBP libraries implement cut-off thresholds to prevent the creation of finer

tasks. In [61], the authors point out that when using TBB, tasks with less than 100k CPU

cycles worth of work will incur a high performance penalty due to the overheads. In con-

trast, Wool is designed to handle much finer tasks and can achieve overheads twice as low

when compared to other TBP implementations in some tests [76].

2.4.5 Intel Threading Building Blocks

Intel Threading Building Blocks (TBB) is a C++ template library designed to help soft-

ware developers enable parallelism and scalability when writing loop- and task-based

applications. TBB includes a number of generic parallel algorithms, a work stealing task

scheduler, locks and atomic operations, highly concurrent containers and two memory

allocator templates that address the issue of scalability. Like Intel Cilk Plus, TBB aims to

decouple the programming from the particularities of the underlying machine [150].

To create a composable execution environment, the TBB task scheduler uses a thread

pool that is visible at the process level. In this way it is capable of load-balancing

the execution and quickly adapt to changes in resource availability. Building on top

of the task scheduler, the library implements a number of highly tuned parallel algo-

rithms (like parallel_for and parallel_reduce). To help developers manage their appli-

cation’s data TBB defines several concurrent containers (like concurrent_queue and con-
current_vector) and useful, low-level synchronization constructs (like fetch_and_add and

fetch_and_increment). All these components provide an abstraction for parallelism that

avoids the low level programming inherent in the direct use of threading packages such

as p-threads.

2.4.6 What we used and why

Choosing among the various TBP implementations is tightly connected to the exact re-

quirements of the application to be parallelized [12]. In the initial stages of the PhD
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research, we needed a solution that will allow for a fast and easy parallelization of ex-

isting code. We were aiming to use in our research a benchmark suite with a wide user

base against which we could compare our results. Both BOTS and PARSEC are parallel

benchmark suits and come with one or several parallel implementations of their applica-

tions (see Section 3.2). We decided against compiler dependent solutions like OmpSs or

Intel Cilk Plus since they are less flexible and a bit more difficult to work with. Because of

its direct coding style and design goal of being low overhead, we first focused on Wool.

The C-based library does not enjoy a large user base, but we were able to get support

from its developer. Also we managed to do a collaboration with a team from KTH Royal

Institute of Technology who had experience with Wool [98].

In a later stage of our research, we wanted to test the low overhead design of Wool against

a solution which was not optimized for this [101]. Intel TBB was the best candidate

for this, since it shared many characteristics with Wool (being a non-compiler dependent

library with a work-stealing load balancing approach). Our work showed potential for

reducing the overheads of Intel TBB, particularly those related to the stealing mechanism.
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Chapter 3

Methodology

This chapter gives an overview of the experimental methodology used in our research.

Based on previous work in our group, we developed a simulation framework to quantify

our results on both performance and power efficiency. Section 3.1 presents our framework

as a whole and then discusses each individual component. We then give a brief overview

of the benchmarks used in our research in section 3.2.

3.1 Simulation framework

Developing or investigating in both hardware and software involves a significant effort for

testing. On a high level, there are three main testing methodologies: analytical modeling,

simulation and measurements on real hardware [161]. Analytical modeling has the ad-

vantage that it can efficiently cover large design spaces, but it can also be hard to reason

about the accuracy of the findings. In contrast, measurements on real hardware can be

very accurate but cover only one design point. Simulation bridges the gap between the

other two by having the potential of good accuracy while covering reasonably large de-

sign spaces. It also has the advantage of providing a very large set of measurements that

would otherwise be very difficult to attain.

Our research group has more than 10 years of experience in simulations based research in

the multi-core area [68, 84, 104, 117]. For our research we needed a simulation framework

that would allow us to measure both performance and energy-efficiency. The research of

Marius Grannæs and Magnus Jahre [84, 104] recommended the M5 architectural sim-

ulator for performance measurements (see Section 3.1.1). At the start of our research,

Wattch was the standard tool used in power and energy studies [45]. However, this tool

was lacking the multithreaded and multi-core support we needed for our work. For this

reason we opted for a newer tool called McPAT which had more features and was capable

to integrate easily with our simulator (see Section 3.1.2). Figure 3.1 summarizes how the

two tools interconnect and work together. Later on in our research we were able upgrade
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Figure 3.1: Simulation framework

our simulator, but maintain the workflow between it and the power estimation tool. Us-

ing this framework we were able to track down how changes in the software affected its

execution which further allowed us to improve its performance and energy efficiency.

3.1.1 Architectural simulators

Over the course of our research we used a total of three different simulators: M5, GEM5

and Sniper. As already mentioned, we started our work using the execution-driven, full-

system simulator called M5 [41]. The object oriented infrastructure of M5 reflects the

modularity of real hardware. A simulated system is merely a collection of objects (CPUs,

memory devices, interconnections etc.), all part of the same simulation process and shar-

ing the same global event queue. This approach allowed us to focus only on the modules

of interest to our research (core architecture, bus interconnect etc.) and abstract away

the rest. M5 is able to do both system call emulation and full-system simulation. A

full-system simulation includes the Operating System (OS) in addition to the test appli-

cation/benchmark. In contrast, all system calls are handled by the host OS when doing

system call emulation. In order to achieve a more realistic and deterministic simulation,

we used the full-system approach in all of our work.

By incorporating the memory models of another simulator called GEMS [132], M5 evolved

into GEM5 [40]. GEM5 maintained and improved all the main features and objects of M5

(CPU models, ISA support, I/O devices, infrastructure), but also added the cache coher-

ence protocols and interconnect models of GEMS. This allowed users a wider range of

investigations by using both the simple and fast memory model of M5, but also the de-

tailed Ruby model from GEMS.

In the initial stage of our research (see Chapter 4) we pointed out an important limitation

that is true for both M5 and GEM5: long simulation times. Consequently, this has pre-

vented us from using anything but very small input sets when simulating with these two

26



tools. We dedicated part of our research to try to improve our framework and overcome

this limitation (see Section 4.2). However, our approach to address this issue required

more time for investigation and validation than we had available. At the same time a

parallel computer architecture simulator called Sniper became available [49]. Sniper uses

the interval core model [80] and Graphite simulation infrastructure [136] to provide fast

and accurate simulations. With the ability to distribute the simulation across all available

processing units in a host system, Sniper solved the problem we had with long simulation

times. Moreover, Sniper was able to simulate the x86 ISA. This made it possible for us

to execute Intel based parallelization libraries (like TBB) out-of-the-box without the need

of cross-compilation or customization. On the other hand, by using Sniper we had to

sacrifice some of the features available in GEM5, like the deterministic simulation.

All three simulators were easily integrated with McPAT by using a Python script to map

the performance results to the input file of the power estimation tool (see Figure 3.1). As

the tools in our framework changed or evolved, this “interconnect” had to be updated to

ensure the correctness of the measurements.

3.1.2 Power estimation

The Multicore Power, Area, and Timing (McPAT) tool is a modeling framework that sup-

ports timing and space exploration for multi-core platforms [123]. It models all three

types of power dissipation (dynamic, static, and short-circuit power) to give a complete

view of the power usage of CMP processors. Developed in collaboration by HP-labs and

the University of Notre Dame, McPAT models all major system components of a computer

system (including in-order and out-of-order cores, network-on-chip, shared and private

caches, memory controllers). McPAT enables architects to use metrics like energy-delay-

area-squared product (EDA2P) and energy-delay-area product (EDAP) that are useful to

quantify the cost of new architectural ideas.

McPAT runs separately from the architectural simulator and only reads performance statis-

tics from it through an XML-based interface. This interface allows both the specification

of the static micro-architecture configuration parameters and the passing of dynamic ac-

tivity statistics generated by the performance simulator. With this approach McPAT is

very flexible and easily integrated with any number of simulators.

3.2 Benchmarks

In our first papers we used a subset of the Barcelona OpenMP Task benchmark Suite
(BOTS) [66]. BOTS is a benchmark compilation assembled by the Barcelona Super-

computing Center (BSC) focused on assessing the performance of OpenMP task-based

parallelization. The authors’ aim was to both allow programmers to evaluate OpenMP
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implementations on CMP architectures and investigate architectural effects on TBP ap-

plications. Some of the kernels were imported from other benchmark collections (like

FFT or strassen) and others were written by the team at BSC (like sparselu). In all our ex-

periments, we customized the benchmarks to use the Wool library rather than the default

OpenMP parallelization.

To measure the parallelization overheads we first used a set of micro-benchmarks (Stress,

MemStress and Matrix-Mul) written by the developer of the Wool library. These bench-

marks were created to expose different features of a TBP library like spawning operations,

load balancing the workload, and working with explicit or implicit parallelism. Together

they cover both compute-intensive executions as well as memory-bounded ones.

In our last two papers we focused on a subset of the Princeton Application Repository
for Shared-Memory Computers (PARSEC) benchmark suite [39]. Initially started as a

cooperation between Intel and Princeton University, the development of PARSEC has

expanded due to its open-source licensing. PARSEC is composed of multithreaded pro-

grams and was designed to be representative for the shared-memory workloads running

on CMPs. It also provides an efficient manner to instrument and manipulate the included

programs. The suite comes with a management script that facilitates the building of the

complete suite or individual applications, selection of different building configurations,

execution of the applications with different input sets and many other features. The suite

includes applications from several domains (financial, computer vision, physical model-

ing, content based search etc.) and it was aimed at supporting research rather than being a

scoring system [38]. A study by Bhadauria et al. has highlighted PARSEC’s strong points

in evaluating CMP architectural design, but it also emphasizes the limitation of most of

its application to scale with the core count [35].

Since our study was focused on the overheads of Intel TBB, we selected the benchmarks

that were parallelized using this library: Blackscholes, Bodytrack, Fluidanimate, Stream-

cluster and Swaptions. Collectively, these benchmarks express parallelism both explicitly

as well as through some templates (like parallel_for and parallel_reduce). All these pro-

vide a good test base for our study.
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Chapter 4

Research progress

This chapter discusses how we produced all the papers during my doctoral research. I

illustrate the chronological order of the papers and how they are related. To simplify the

discussion, the papers are grouped into three categories according to the main contribution

of each paper. The categories are summarized in Table 4.1. Figure 4.1 shows the duration

and concurrency of the work with the different papers as well as their relations.

Table 4.1 Papers categories

Category Name Number of papers
A Literature review and initial study 5

B Improving simulation framework 2

C Investigating parallel overheads 3

Figure 4.1: Papers chronology and logical connection.
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4.1 Category A: Literature review and initial study

Table 4.2 Paper category A

Title Reference
A1 Energy Efficient Methods for Multi-core Programming [96]

A2 Task Based Programming on Multicores, A Case Study [97]

on Energy Consumption

A3 Investigating the Potential of Energy-savings Using a [98]

Fine-grained Task Based Programming Model on Multi-cores

A4 Multi- and Many-cores, Architectural Overview for Programmers [151]

A5 Green Computing: Saving Energy by Throttling, Simplicity [141]

and Parallelization

This PhD work was fully funded by the faculty of Information Technology, Mathematics

and Electrical Engineering (IME) at NTNU. Part of the computation time needed for the

experiments in this research was provided through the NOTUR project NN4650K Multi-
core Memory System Research managed by the Department of Computer and Information

Science (IDI), NTNU. With this project the CARD group at IDI was joining the Green
Computing research trend, "a multifaceted global effort to reduce energy consumption and

to promote sustainable development in the IT world" [115]. Concerns about increasing

energy consumption managing costs and a general higher awareness about ICT’s envi-

ronmental impact, has pushed academia to find ways to improve energy efficiency and

resource utilizations across all fields (see Figure 4.2). The approach I was tasked to study

was improving the use of software parallelization to increase energy efficiency of CMPs.

The first step in my research was to do a literature study and put forward an initial research

plan. Figure 4.2 summarizes my literature review, highlighting the areas of interest for my

project. Table 4.2 includes all the papers we wrote during this initial stage of the PhD re-

Figure 4.2: Overview of the literature review [96].
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search. While attending the 6th summer school on Advanced Computer Architecture and

Compilation for High-Performance and Embedded Systems (ACACES 2010) I presented

a poster discussing my research plan which was further detailed in paper A1.

This original plan was extended after the ACACES summer school, making task schedul-

ing a center piece of our research. By this time I was able to do experiments using the

first iteration of my simulation framework (M5 + McPAT). Also I already have chosen

Wool as the TBP library to study and implemented some very simple applications to use

as benchmarks. We set as goal for our research the P6-goal: Performant, Programmable,

Portable and Power-efficient Parallel Programming. Paper A2 summarizes our research

plan and our initial results designed to underline the energy efficiency gain of going from

single-core to multi-core as well as the issue of parallelization overheads. I presented

this paper during the third Swedish Workshop on Multi-Core Computing (MCC’10) in

Göteborg, Sweden.

While attending MCC’10 I met Artur Podobas and Prof. Mats Brorsson from KTH Royal

Institute of Technology. Artur was also at the start of his PhD research and he was focus-

ing on quality-of-service improvements in task-parallel runtime-systems [152]. In early

2011 we discussed and agreed to work together for writing a paper investigating the en-

ergy savings that can be achieved by using TBP on CMPs. Artur had previously worked

with Wool and he already ported the applications of the BOTS benchmark suite to use

Wool rather than OpenMP. He provided these benchmarks which I used in my simulation

framework to quantify the effects of parallelization on performance and energy consump-

tion. Our results show improvements of the EDP metric if the parallel workload is prop-

erly balanced. With help and support from both our supervisors, this became paper A3

which I presented during the 2nd Workshop on Applications for Multi and Many Core

Processors (A4MMC), part of ISCA 2011 in San Jose, California.

While working on paper A3, Prof. Lasse Natvig was invited to write an introductory

chapter for a parallel programming book to be published by Wiley. To improve the un-

derstanding of the hardware-software synergy, this chapter was to give programmers an

introduction into the history and architecture of CMPs. Together with another PhD can-

didate at that time, Mujahed Eleyat and two associate professors, Magnus Jahre and Jørn

Amundsen, we wrote the Multi- and Many-cores, Architectural Overview for Program-
mers chapter. The chapter focuses on fundamental techniques (block access, functional

parallelism, pipelining etc.), the architectural issues that lead to CMPs (the power wall,

the memory wall etc.) and homogeneous/heterogeneous architectures with real world ex-

amples. The book entitled Programming multi-core and many-core computing systems is

expected to be published in 2017.

In early 2011, Prof. Lasse Natvig learned about a special issue of the CEPIS Upgrade

journal that would focus on Green Computing. Given that our research focus aligned

with the topic of this journal, we agreed to write and submit a proposal. The aim of this

article was to give an overview of several techniques that have been used for improving

energy efficiency of computing systems. We emphasized parallelization and its role in

both hardware and software to reduce energy consumption. After acceptance, this became

31



paper A5 which included work from our A1, A3 and A4 papers. The paper was also

translated and published in the Spanish version of the journal.

4.2 Category B: Improving the simulation framework

Table 4.3 Paper category B

Title Reference
B1 Towards Efficient Simulation of Task Based Parallel Applications [99]

B2 Challenges of reducing cycle-accurate simulation time for [100]

TBP applications

While working on paper A3, it became apparent that the full-system simulations we were

performing with M5 suffered a very high time penalty. Applications that would execute in

less than 2 seconds on real hardware could require up to 2 days to simulate in our frame-

work. This meant that we could only use very small input sets in which the sequential

portion of the execution would have a significant impact. This affected the granularity at

which we could asses and quantify any changes we would do to the parallel code.

As part of my PhD training, I followed a course called Computer Architecture 2 for which

I also worked on a semester project. For this project I started investigating sample based

techniques for reducing long simulation times. These techniques were successfully used

for reducing simulation time of single-thread applications [89, 148, 182, 185], but there

was no similar approach for parallel applications. The first issue to overcome when using

sampling for simulated multi-threaded applications is to identify a metric that will allow

you to correctly profile the execution. IPC is a poor candidate in this situation and a work

related metric is needed [25]. For this reason I proposed the number of completed tasks as

a progress metric. When looking at architecture features, TBP applications demonstrate

a cyclic behavior across several metrics, including workload/time, branch prediction and

cache performance. If correctly identified, this repeatable pattern can be used to reduce

the simulation time. The method I proposed in the mini-project was a three stage process.

First, the test application was simulated in a simple and fast simulation mode so it can

be sampled and profiled. Second, on the resulting data set, I used the K-means clustering

algorithm [128] to identify the repetitive sections in each execution. One representative

sample from each cluster was then selected based on the cluster’s centroid. Finally, I

fast-forward the test application to each selected samples and simulate the samples in

detailed mode. The results are weighted according to the size of the cluster they are part

of and added up to create an overview of the complete execution. I observed speed-ups of

up to 15x, but several issues concerning both the sampling approach and the M5/GEM5

simulator itself needed to be addressed.

As a first step in our work to improve the simulation framework, in paper B1 we focused

on the sampling, clustering and representative points selection methods. For each of these
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methods, we investigated several parameters and traced their impact on the accuracy and

the speed of the sampled simulation. I customized the Wool library to signal and record

every completed task. This was needed in order to use the number of completed tasks as

a progress metric for sampling the TBP applications. Our results showed that an average

of 5 samples, about 0.5 % of the total application, are sufficient to achieve an accuracy

below 5 %. I presented these results in the Norsk Informatikkonferanse (NIK 2012), in

Bødo, Norway.

Building on the results of the B1 paper, we developed a 3-phase methodology called

FASTA to employ sampling for reducing simulations times of TBP applications. FASTA

samples and profiles the execution, identifies representative sample points through clus-

tering and simulates in detail the representative points. To improve my original approach

from my semester project, I modified the GEM5 simulator to allow switching back-and-

forward between simple and detailed simulation modes. We observed that the way the

multiple execution threads interleave in a test execution differs from simulation to simu-

lation and this is skewing the accuracy of FASTA. However, we recorde good accuracy

(below 4%) a class of the applications we tested with a speedup of up to 12x. All these

results are part of paper B2, which I presented in the International Conference on Com-

putational Science (ICCS 2013), in Barcelona, Spain.

4.3 Category C: Investigating the parallel overheads

Table 4.4 Paper category C

Title Reference
C1 On the Energy Footprint of Task Based Parallel Applications [101]

C2 Victim Selection Policies for Intel TBB: Overheads and [102]

Energy Footprint

C3 Tuning the victim selection policy of Intel TBB [103]

While we were working on paper B2, Prof. Natvig learned about the release of a new

parallel simulator called Sniper (see Section 3.1.1). Based on an earlier simulation infras-

tructure called Graphite developed at MIT [136] and using a new core model [80], Sniper

was able to run a simulation in parallel. This feature reduced the simulation time and

allowed us to use larger input sets for our test benchmarks. After investigating this new

simulator for a while, we decided to use it rather than dedicating more time to the FASTA

research. Building on the results of paper A3, we started looking into the parallelization

overheads caused by some basic TBP operations like task spawning, task synchronization

and task stealing. We decided to put to test Wool’s low overhead design against Intel

TBB. Using some synthetic benchmarks, we quantified the energy footprint for each of

the above mentioned TBP operations across core counts ranging from 1 to 12 cores. Our

results showed that even though Wool added far less overhead per TBP operation, its ag-

gressiveness in balancing the workload by task stealing meant that it wasted more energy
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overall. The results also showed that Intel TBB could also be improved to reduce the

energy footprint of the parallelization overheads. I presented these results as paper C1

at the International Conference on High Performance Computing and Simulation (HPCS

13), in Helsinki, Finland.

Continuing the investigation of parallelization overheads and their energy footprint, we

focused on the task stealing operation of Intel TBB. For testing, we decided to use a subset

of the PARSEC suite, namely the Blackscholes, Bodytrack, Fluidanimate, Streamcluster

and Swaptions benchmarks. Based on our results from the C1 paper, we focused on reduc-

ing the number of failed steal attempts. We observed that this type of overheads increases

with core count which makes it an important limitation when scaling up the number of

cores. To have a baseline of how much we can improve the victim selection mechanism,

we first developed an oracle scheme that would always select a low congestion victim with

some work to steal. To achieve this, we stored information about occupancy and conges-

tion of the tasks queues outside the simulated memory space in our simulator. Updates to

our data structure were done during the execution of the application through specialized

instructions called markers. In addition, we also implemented a pseudo-random selection

scheme inspired by Wool. This scheme will first select a random task queue to steal from

and if that fails it then proceeds to scan all the other queues in an attempt to find work.

Both of these schemes were compared against Intel TBB’s random selection approach for

both total number of instructions added as well as energy footprint. I presented our re-

sults as paper C2 at the International Conference on Architecture of Computing Systems

(ARCS 2014), in Lübeck, Germany.

Latter the same year, we were given the opportunity to extend our C2 paper as an article to

be published in a special number of the Journal of System Architecture (JSA). For this ar-

ticle, we kept the oracle scheme, we improved the implementation of the pseudo-random

scheme and we introduced a new occupancy-aware selection scheme. We performed a

more thorough comparison of the 3 schemes in terms of added overheads and we ex-

tended the maximum core count of the simulations from 16- to 32-cores. The article was

published in JSA number 10, 2015.
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Chapter 5

Research results

The aim of this chapter is to provide an overview of the papers included in this thesis.

The sections 5.1 through 5.6 contain the abstract of the paper and a description of the

contributions each co-author had to the paper.

5.1 Paper A3

Investigating the Potential of Energy-savings Using a
Fine-grained Task Based Programming Model on Multi-cores

Alexandru C. Iordan, Artur Podobas, Lasse Natvig and Mats Brorsson

Presented at the 2nd Workshop on Applications for Multi and Many Core Processors

2011

5.1.1 Abstract

In this paper we study the relation between energy-efficiency and parallel executions when

implemented with a fine-grained task-centric programming model. Using a simulation

framework comprised of an architectural simulator and a power and area estimation tool,

we have investigated the potential energy-savings when employing parallelism on multi-

cores system. In our experiments with 2 - 8 multi-cores systems, we employed frequency

and voltage scaling in order to keep the relative performance of the systems constant and

measured the energy-efficiency using the Energy-delay-product. Also, we compared the

energy consumption of the parallel execution against the serial one. Our results show

that through judicious choice of load balancing parameters, significant improvements of

around 200 % in energy consumption can be acheived.
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5.1.2 Authors’ contribution

The work in this paper continues the experiments we started in paper A2. It was Prof.

Natvig’s proposal to do a comparative study of the energy consumption for single-core

execution against several multi-core parallel ones. I developed the experimental frame-

work which involved installing the M5 simulator and McPAT tool on the Kongull cluster

computer at NTNU, cross-compiling all benchmarks and improving the Python script

used to transfer the performance results from M5 simulation to the input file of McPAT. I

also performed all the experiments and wrote most of the text of the paper. Artur Podobas

provided the BOTS benchmarks that he ported to use the Wool library as well as a brief

description for each of them. He and I had several discussions over e-mail or Skype over

methodology, how to present the results and changes to the body of the text. Both Prof.

Natvig and Prof. Brorsson worked as advisors providing many helpful comments and

improvements to the overall quality of the paper.

5.2 Paper B1

Towards Efficient Simulation of Task Based Parallel Applications
Alexandru C. Iordan, Magnus Jahre and Lasse Natvig

Norsk Informatikkonferanse (NIK)

2012

5.2.1 Abstract

For computer architects and software developers, simulation is an indispensable tool for

evaluating new designs and ideas. Unfortunately, it is significantly slower to simulate a

parallel environment than to work on real hardware. In this work, we take a first step

towards efficient simulation of Task Based Parallel (TBP) applications. Our key idea

is that the number of completed tasks can be used as a work-related progress metric to

sample these applications. Using this metric, we show that the complete execution of

TBP programs can be accurately represented by simulating only a few samples. In fact,

our TBP applications only need 5 samples on average to get a mean error below 5 %. In

our experiments, when sampling at 1000 completed tasks, 5 samples correspond to 0.5 %

of the total execution on average.

5.2.2 Authors’ contribution

Inspired by the sampling approach of SimPoint [89], I came up with the idea for this paper

while working on the Computer Architecture 2 semester project. I extended the experi-
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mental framework, which involved customizing the Wool library to signal GEM5 when a

task was completed, customizing GEM5 to quantify the total number of completed tasks

and trigger a statistic dump for each sample size and various scripting for extracting infor-

mation from the samples. I also performed all the experiments and wrote most of the text

of the paper. Assoc. prof. Magnus Jahre provided much support throughout the develop-

ment of this work, both in terms of the technical work as well as improvements to the text.

Prof. Natvig worked as advisor providing many helpful comments and improvements to

the overall quality of the paper.

5.3 Paper B2

Challenges of Reducing Cycle-accurate Simulation Time for TBP Applications
Alexandru C. Iordan, Magnus Jahre and Lasse Natvig

International Conference on Computational Science (ICCS)

2013

5.3.1 Abstract

Cycle-accurate simulation is an important tool that depends on the computational power

of supercomputers. Unfortunately, simulations of modern multi-core platforms can take

weeks or months. In this paper, we look into the challenges of employing a sampling

based technique for reducing simulation time of multi-threaded applications. We intro-

duce FASTA, a simple 3-phase methodology for reducing the simulation time of Task

Based Parallel applications. FASTA takes advantage of the periodic behavior of parallel

applications and identifies a small number of representative execution samples. By ex-

ploring a large design space we show that even though we can not use FASTA for every

type of application, there are some for which a 12x speedup can be achieved with an

accuracy error as low as 2.6%.

5.3.2 Authors’ contribution

This paper is a continuation of the work I did for the semester project and the B1 paper. I

extended the experimental framework, which involved customizing the GEM5 simulator

to allow the back-and-forward switching between simple and detailed simulation modes

and to allow multiple checkpoints to be created. I also performed all the experiments and

wrote most of the text of the paper. Assoc. prof. Magnus Jahre provided much support

throughout the development of this work. His help needs to be primarily noted in the

customization of the GEM5 simulator to allow the back-and-forward switching between
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simple and detailed simulation modes. Prof. Natvig worked as advisor providing many

helpful comments and improvements to the overall quality of the paper.

5.4 Paper C1

On the Energy Footprint of Task Based Parallel Applications
Alexandru C. Iordan, Magnus Jahre and Lasse Natvig

International Conference on High Performance Computing and Simulation (HPCS)

2013

5.4.1 Abstract

From HPC systems to embedded devices, energy consumption is becoming a dominant

factor in managing costs. With Chip multiprocessors becoming the platform of choice in

almost all ICT segments, software developers need to employ parallel programming to

fully exploit this architecture. However, parallelization adds a management overhead to

the execution of an application. In this paper, we study parallel applications implemented

using two TBP libraries, Wool and Intel TBB. We explore both compute and memory

bound executions. We also investigate the energy footprint of the parallelization over-

head and the effect it has on the energy-efficiency of the executing system. Our study

looks into the behavior of some basic parallelization operations like task spawning, task

synchronization and task stealing. We encountered situations when the number of task

stealing operations grows exponentially with the core count increasing execution time.

This behavior drastically reduces the energy-efficiency of those executions. Avoiding

such behavior is crucial if future parallel systems are to reach their performance poten-

tial. Our results also show that the energy efficiency for compute intensive applications

improves with the core count while for memory intensive application that is not the case.

5.4.2 Authors’ contribution

The idea for this paper resulted from the conclusions of paper A3. Previous to this paper,

Prof. Natvig suggested a new parallel simulator called Sniper that I tested and included

in our experimental framework. I moved our experimental framework to the Stallo super-

computer at UiT, in Trømso and used IDI’s computing time as part of the EECS research

initiative. I customized the TBP libraries to signal the simulator when a task operation

(spawn, sync and steal) has started and ended and I customized the Sniper simulator to

dump its statistics at each signal. I created the scripts to parse all the resulting data and

quantify for each task operation its effect on the execution time and energy efficiency of

38



the application. I performed all the experiments and wrote most of the text of the paper.

Assoc. prof. Magnus Jahre and I had several discussions about the paper and he provided

numerous helpful comments on methodology, results and text. Prof. Natvig worked as

advisor providing feedback and improvements to the overall quality of the paper.

5.5 Paper C2

Victim Selection Policies for Intel TBB: Overheads and Energy Footprint
Alexandru C. Iordan, Magnus Jahre and Lasse Natvig

Architecture of Computing Systems (ARCS)

2014

5.5.1 Abstract

With the wide adoption of Chip Multiprocessors (CMPs), software developers need to

switch to parallel programming to reach the performance potential of CMPs and max-

imize their energy efficiency. Management overheads due to parallelization can cause

sub-linear speedups and increase the energy consumption of parallel programs. In this

paper, we investigate the parallelization overheads of Intel TBB with a particular focus

on its victim selection policy. We implement an “all knowing” oracle victim selection

scheme as well as a pseudo-random scheme and compare them against TBB’s default

random selection policy. We also break down TBB’s parallelization overheads and report

how basic operations like task spawning, task stealing and task de-queuing impact the en-

ergy footprint. Our experiments show that failed task stealing is by far the highest energy

consumer. In fact, the oracle victim selection policy can reduce the application energy

footprint by 13.6% compared to TBB’s default policy.

5.5.2 Authors’ contribution

This paper continues the work in paper C1. I extended the experimental framework, which

involved compiling the selected PARSEC benchmarks with our customized TBB library.

I also performed all the experiments and wrote most of the text of the paper. Assoc.

prof. Magnus Jahre provided much support throughout the development of this work on

methodology, results and text. Prof. Natvig worked as advisor providing feedback and

improvements to the overall quality of the paper.
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5.6 Paper C3

Tuning the victim selection policy of Intel TBB
Alexandru C. Iordan, Magnus Jahre and Lasse Natvig

Journal of Systems Architecture (JSA)

2015

5.6.1 Abstract

The wide adoption of Chip Multiprocessors (CMPs) in almost all ICT segments has trig-

gered a change in the way software needs to be developed. Parallel programming max-

imizes the performance and energy efficiency of CMPs, but also comes with a new set

of challenges. Parallelization overheads can account for sub-linear speedups and can in-

crease the energy consumption of applications. In past experiments we looked at specific

operations such as spawning new tasks, dequeuing the task queue and task stealing for

Intel TBB. Our results showed that failed steals account for the largest overhead. In this

work, we focus on TBB’s victim selection policy. We implement a new occupancy-aware

policy and we improve the implementation of the pseudo-random policy we proposed in a

previous paper. We compare the results of our new policies against an “oracle scheme” as

well as against TBB’s random victim selection approach. Our results show improvements

in execution times and energy-efficiency of up to 11.23% and 14.72% respectively when

compared to TBB’s default policy.

5.6.2 Authors’ contribution

This paper extends the work in paper C2. I performed all the experiments and wrote most

of the text of the paper. Both assoc. prof. Magnus Jahre and Prof. Natvig provided

much support throughout the development of this work on presenting the results and im-

provements to the overall quality of the paper. Jahre and Natvig’s support needs a special

mention for this paper, since they managed to keep me focused to deliver the paper on a

tight and stressful schedule.
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Chapter 6

Concluding remarks

The goal of this thesis was to show in what way parallel programming can be used to

improve a system’s power efficiency. We focused on the management of parallelization

overheads and how they impact the energy footprint of an execution. We have investi-

gated the overheads related with the basic TBP operations, like task spawning, task syn-

chronization and task stealing. This investigation showed that task stealing does not scale

with core counts and is responsible for performance bottlenecks. We proposed several

victim selection schemes to reduce the number of failed steal attempts and improve both

execution time and energy efficiency of the application.

We started in paper A3 by showing how parallel executions can very easily reduce the

energy consumption when compared to sequential ones. While increasing the number

of processing cores, but keeping the relative performance of the system constant, our

results showed a bathtub trend in energy consumption. This trend underlines the effect

parallelization overheads have on the execution. Continuing the investigation in paper

C1, we looked at basic TBP operations and quantified their effect on the energy footprint

of our test applications. We singled out task stealing as the main bottleneck among tested

overheads and we designated it as main area of interest for moving forward. In papers C2

and C3 we focused on reducing the number of failed steal attempts and improving both

execution times and energy consumption by changing the victim selection policy. Our

results show that an informed victim selection can be very beneficial and can eliminate

the performance degradation we observed while increasing the core count.

In addition we also performed work towards reducing simulation times of deterministic

architectural simulators like M5/GEM5 in papers B1 and B2. Our work was inspired by

sampling methodologies like SimPoint used in single-core simulations [89]. We proposed

the number of completed tasks to be used as a work-related progress metric to sample sim-

ulated parallel applications. We introduced FASTA, a 3-phase methodology that employs

sampling to reduce simulations times of TBP applications.
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6.1 Contributions

Our main goal in this research was to investigate how parallel programming can be used

to improve the energy efficiency of applications running on CMP systems. We further

divided this goal in three research questions. In the next sections I will try to review these

questions considering the results included in the thesis.

6.1.1 Research question 1

RQ1: What is the potential for energy saving for the TBP model on a multi-core
system?

Paper A2 includes the initial results, but the main work was done in paper A3. By paral-

lelizing a set of benchmarks and comparing their EDP for single-core execution against

the parallel executions across several core counts we could see both the benefits and trade-

offs of parallelization. The bathtub trend reflects very well how parallelizations improves

a system’s efficiency as well as how management overheads can overcome the benefits

and push the EDP metric high. All benchmarks recorded their lowest EDP for core counts

between 2 and 4 after which we can see how execution times increase, driving the EDP

up. The reason we are seeing this effect at such low core counts is due to the very small

input sets we were using at that time. However, the overall results gave us enough data to

continue our research further, as well as opened new challenges for us which we tried to

tackle in papers B1 and B2.

6.1.2 Research question 2

RQ2: How do basic operations in TBP parallel code (task spawning, task migration,
synchronization etc.) affect the energy footprint of the execution? What are the
performance/energy trade-offs?

In paper C1 we did a comparative study of Wool and Intel TBB in an attempt to identify

best working scenarios for both TBP libraries and highlight their strong points. By design,

Wool is a lightweight, low overhead library and as we expected outperformed Intel TBB

in both execution time and energy efficiency. However, a closer look at some basic TBP

operations showed that Wool is more aggressive in trying to balance the workload and the

energy footprint of task stealing increases exponentially because of that. For operations

like task spawning and task synchronization, both libraries show almost constant energy

footprint across core counts. This is due to the fact that these operations are influenced

mainly by the size of the input set. In regard to the task stealing bottleneck, Intel TBB

performs better in the sense that it includes cut-off mechanisms that put worker threads to

sleep and reduce congestion when there is too little work. Because of the results in this
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paper we focused our attention on the task stealing operation in an attempt to eliminate

the performance bottleneck it introduces as you scale up the core count.

6.1.3 Research question 3

RQ3: How can we improve the energy efficiency of TPB programs?

Building on the results of paper C1, we wanted to improve the work stealing mechanism

in Intel TBB, particularly to reduce the number of failed steal attempts. In papers C2 and

C3 we proposed and evaluated several victim selection schemes. The default approach in

Intel TBB is to use a random selection of victims and a hard coded threshold for how many

failed attempts before putting a worker thread to sleep. With our new schemes we could

put the worker threads to sleep faster when there was too little work to do. Our approach

showed good results for some benchmarks, but not all of them. The extra work we added

to the library could not always be balanced out and in those cases our implementations

showed a higher energy footprint than the default one.

6.1.4 Extra research question

ERQ: How can we reduce long simulation times of deterministic architectural sim-
ulators like M5/GEM5?

Our results in paper A3 pointed out the long simulation times as very important limitation

of our experimental framework. Because of this limitation, it was not feasible for us to use

anything but very small input sets in our testing. In papers B1 and B2 we tried to find a

way to address this issue and we developed a sampling based methodology called FASTA.

FASTA could reduce simulation times by a factor of 12x, but it would also reduce the

accuracy of the simulation. Since this was not the main goal of our research, when a new

parallel architectural simulator became available we decided to update our experimental

framework rather than continuing refining FASTA.

6.2 Future work

The simulation framework we employed in our research provides extensive performance

results and power estimations which would be very difficult to extract from a real world

platform. However, the accuracy of these results can vary and for this reason we focused

on the trend of our results rather than raw values. To evaluate more accurately the im-

pact of the parallelization overheads on a given CMP architecture, real world executions

and measurements can be performed. Juan M. Cebrián et al. used the Model Specific

Registers (MSRs) present in Intel’s Core architecture since the second generation (Sandy
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Bridge) to measure the chip’s energy efficiency [50]. Their results also reveal that tem-

perature variation can have an important impact on energy consumption, something that

our framework could not simulate.

Our study of the overheads involved in Intel TBB’s task stealing mechanism revealed two

important points. First, the very simple default approach of random victim selection does

not scale well with core count. As the number of cores increases, randomly picking a

victim to steal from fails to help with the congestion issue. An informed decision about

which thread has work to share and/or the level of congestion of each thread can reduce

the performance penalty observed with the random selection approach. However, gather-

ing such information at runtime also incurs a performance penalty which cannot always

be balanced out. This is our second important observation. As a future development,

combining the two selection methods and adding a switching mechanism between them

could provide better results on a wider range of scenarios.

In power constrained fields, like mobile, the CPUs are designed to trade performance for

energy-efficiency by dynamically throttling down operating frequencies or even powering

down some of the cores. Such mechanisms could also be applied for software design and

application could be coded with the ability to switch between an energy efficient profile

and a performance profile. Ideally the switch should be handled by the OS, but that will

also require extending the existing APIs in the OS.

6.3 Outlook

Until new technologies will emerge to address the power wall, the memory wall and the

ILP wall [88, 177, 181], CMPs are the architecture of choice in all fields of ICT. With

CMPs becoming ubiquitous, parallel programming becomes a mandatory skill in order

to fully exploit such architectures. Because of a large number of problem types, a single

silver bullet hardware and/or software model is highly unlike to emerge. Instead, pushed

by Amdahl’s law and by the need for specialized computations, CMPs will become more

heterogeneous [93]. Challenges like high power density will require CMPs to be able

to dial down their operating frequencies or move execution to less power intensive cores

[71]. With the big.LITTLE architecture, ARM’s line of mobile CMPs has proven that

high performing and energy efficient operating modes can coexist on the same chip.

On the software side, parallelization models and/or libraries will need to provide devel-

opers with an abstraction level that will make parallel programming more main stream.

Code composability will need to become a main design goal for any application devel-

oped for multi-threaded execution. This is needed to allow runtime resource allocation

for multiple parallel application running on the same CMP.
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Abstract
In this paper we study the relation between energy-efficiency and parallel executions when

implemented with a fine-grained task-centric programming model. Using a simulation

framework comprised of an architectural simulator and a power and area estimation tool,

we have investigated the potential energy-savings when employing parallelism on multi-

cores system. In our experiments with 2 - 8 multi-cores systems, we employed frequency

and voltage scaling in order to keep the relative performance of the systems constant and

measured the energy-efficiency using the Energy-delay-product. Also, we compared the

energy consumption of the parallel execution against the serial one. Our results show

that through judicious choice of load balancing parameters, significant improvements of

around 200 % in energy consumption can be acheived.
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A.1 Introduction

At the start of the new millennium, with performance being limited by high power bud-

gets and heat dissipations requirements, the superscalar paradigm reached the point of

diminishing returns. Faced with the constraint of the power wall[12], hardware devel-

opers were in need of new ways to efficiently use the ever increasing transistor count

predicted by Moore’s law.

Multi-core architectures have been a natural solution for the power wall: several less

complex and significantly less "power hungry" cores are integrated on a single proces-

sor. Processors like Sun’s Niagara T1 and T2, Tilera’s Tile64 or IBM’s Cyclops-64 use

less complex cores, with shallow pipelines and simpler branch prediction, and lower

clock speeds than previous CPU generations. Scaling down frequency (f ) and supply

voltage (Vdd) has a large effect on the chip’s dynamic power, as shown by the relation:

powerdynamic ∼ V 2
dd · f . Developing parallel applications, that can take advantage of

such chips has the potential of reducing energy consumption while still providing high

performance.

This paper is a initial study of the impact of load-balancing on energy-efficiency in parallel

executions. We use a very simple test scenario in which we increase the number of cores

while proportionally decreasing their working speed. The applications in our experiments

are developed using a paradigm called Task Based Programming (TBP). TBP organizes

an application as a set of computational units (called tasks) that are scheduled across

different cores. Parallel applications developed with TBP are known to handle irregular

dependencies on input sets well and can adapt to varying computational load[16]. The

base concept of the TBP model is that the programmer should identify and annotate pieces

of code (tasks) which can be executed concurrently with other tasks, while the complexity

of the hardware is abstracted away from him/her.

Generally, parallelization of applications has a cost of added overhead that sometimes

scales badly, and this can increase the amount of energy that is used. In our study we em-

ployed a rather simple core design which we did not modify as we scaled up the number

of cores. Our goal was not to find a way to develop a multi-core that was highly energy-

efficient, but to investigate the potential to save energy by parallel executions. We used

voltage and frequency scaling to keep the relative performance of the systems constant

and to maintain the chip’s power requirements under realistic values.

The rest of this paper is organized as follows: in Section 2 we give a brief introduction to

power metrics, TBP and Wool library. Section 3 outlines the experimental methodology

used in our experiments and Section 4 discusses our results. Section 5 presents related

work and Section 6 describes our plans for future work. Section 7 concludes the paper.
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A.2 Background

A.2.1 Power metrics

A well known metric that can balance performance and power requirement is Perfor-
manceN/Watt. The N parameter is used to increase or decrease the importance of the

Performance component of the metric. For N = 1, this metric is used in the Green 500 list

to rank world’s most energy-efficient supercomputers[1].

Industry standard benchmarks like EnergyBench (for embedded systems) and SPECpower

(for servers and multi-processor computers) use customized metrics to report on energy-

efficiency. For example, SPECpower ranks a system using ssj_ops/Watt metric (stands

for server side Java operations performed per Watt). This is a derived form of the Perfor-
mance/Watt metric and it represents the number of the executed SPEC operations divided

by the average power of the system.

Another frequently used metric is the Energy-delay-product (EDP). When comparing sce-

narios that do not alter instruction count, this metric is equivalent to the reciprocal of

Performance2/Watt. Offering equal weight to energy consumption and performance, EDP

ensures a balanced energy-efficiency comparison among the test systems. Since our focus

is on studying the trade-off of energy-savings and performance on multi-core systems, we

choose to use EDP for our experiments.

A.2.2 Task Based Programming

A task, which can be fine-grained or coarse-grained, is a section of the code that performs

some operations over a set of parameters[15]. Task Based Programming (TBP) is a pro-

gramming paradigm that allows the parallelization of applications that can be divided in

multiple tasks. TBP comes in contrast with data parallelism where the same operations

are executed by different nodes (or cores) with different data[14]. Using TBP model, the

programmer should identify pieces of code (tasks) to be executed concurrently with other

tasks.

TBP libraries, like Intel’s TBB[21] and Cilk++[7] increases the productivity of program-

mers since details like distribution of work to a set of cores and message passing between

parallel processes are abstracted away from the programmer. etails of the system. Mem-

barth et al.[19] performed a comparative study of several frameworks for parallel pro-

gramming on multi-cores. Their results showed that TBP libraries like Intel’s TBB and

Cilk++ not only perform better than other frameworks like OpenMP or OpenCL, but also

have a wide usability and provide a better productivity for the programmer.
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A.2.3 The Wool library

Our approach involves a lightweight TBP library called Wool [11]. Wool is a work-

stealing parallel library that was designed with the ability to scale well with small tasks

(smaller than a hundred cycles). These characteristics make Wool very efficient in deal-

ing with work imbalance and also assure that it has very low overheads. The compara-

tive study in [20] shows that Wool outperforms some other parallelization libraries (like

Cilk++ or OpenMP) in terms of cycle costs for parallelization and task management op-

erations.

Wool uses special data structures called task queues to store, manage and schedule the

tasks for each worker thread. This differs from other models such as the GCC version of

OpenMP which have one global queue containing all the tasks. Private queues generally

improve performance of the system, since the locking-contention usually is much smaller

compared to global queues. However, distributed queues face the challenge of balancing

the work among them. More details and examples about Wool can be found in [11] and

[20].

In Wool, load-balancing is implemented through the randomly task stealing technique.

When a worker thread empties its own task queue, the stealing mechanism sweeps through

all available worker queues to find available tasks to steal. Because making a task steal-
able adds an overhead, the programmer can control the number of stealable tasks per

queue. In this way, the programmer has control over the load-balancing of the applica-

tion.

Another scenario when task stealing is employed is when a worker is trying to synchronize

with one of its children, and finds it stolen. In order to prevent threads from being idle a

technique called leap-frogging is used. More details about this technique can be found in

[22].

A.3 Experimental setup

A.3.1 Architectural simulations

Using the M5 simulator [5], we performed full-system simulations of several multi-core

platforms. In a full-system simulation, the target system is able to run its own operating

system and in our experiments we used the 2.6.27 Linux kernel. This type of simulation

also makes it possible to record the behavior of all key components of the system: core,

cache hierarchy, memory controller, main memory.

The basis for our modeled CPU is the Alpha 21364 processor from DEC. The choosing of

this model was motivated by the fact that Alpha ISA is the most stable one for full-system

multi-core simulations in M5 [4]. A second reason is that the 21364 was also validated

in McPAT [18] (more details in section 3.2). In all multi-core systems simulated we used
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the same processor architecture with all parameters kept constant, except the three main

parameters: number of cores, supply voltage and core frequency. We assumed voltage

and frequency scaling at chip level so that we keep the power requirement under realistic

values. We used the formula core_frequency = single_core_frequency / number_of_cores
to maintain constant the relative performance of the test systems.

The maximum number of cores we simulated was limited only by the values for core fre-

quency and Vdd (the way we calculated our voltage scaling values is described in section

3.2). The minimum value for Vdd we could assign was 2.3 ∗ Vth [17] and in our case this

limit is 0.19 ∗ 2.3 = 0.44 V.

The original 21364 has a clock frequency of 1.2 GHz and was produced in 180 nm tech-

nology. We assumed a 65 nm process technology and by linear scaling, similarly to Li and

Martinez [17], we can determined the single-core frequency at 3.32 GHz. However, using

this frequency for the single-core system and then scaling down Vdd results into voltage

values very close to the 2.3 ∗ Vth limit. For such low values of Vdd the chip’s leakage cur-

rent increases significantly and the static power can become dominant. To alleviate this

we chose to assign a lower core frequency of 2 GHz to the single-core system. Since the

speed of the cores does not affect the way they process the applications, just the execution

time, the trends presented in our results are the same for both sets of experiments (the

ones with a single-core running at 3.32 GHz and the ones with the single-core running at

2 GHz).

Table A.1 lists the main characteristics of our experiments. Further details about M5’s

architectural parameters and characteristics listed in Table A.1 and Table A.2 can be found

in [4] and [5].

The modeled system uses a cache hierarchy with split data and instruction private L1

caches. All cores share a 2 MB on-chip L2 cache through a common bus and implement

a MOESI cache coherence protocol. Details about the cache hierarchy are given in Table

A.2.

A.3.2 Power estimations

Our simulation framework includes a power and area estimation tool called McPAT[18].

Developed in collaboration by HP-labs and the University of Notre Dame, McPAT models

all major system components of a computer system (including in-order and out-of-order

cores, network-on-chip, shared and private caches, memory controllers). Using infor-

mation from the ITRS 2007 roadmap [2], McPAT supports design space exploration for

single and multi-core architectures ranging from 90 nm to 22 nm production technology.

According to the Process Integration, Devices, and Structures chapter in ITRS 2007,

there are 3 types of circuit logic: high performance (HP), low operating power (LOP)

and low standby power (LSTP). HP devices include chips of high complexity and perfor-

mance such as the microprocessors for desktop or server computers. LOP devices include
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Table A.1 Main characteristics of modeled processor core

Parameter Value
Process technology 65 nm

Nominal Vdd 1.1 / 0.89 / 0.82 / 0.78 / 0.76 / 0.74 / 0.73 / 0.72 V

Vth 0.19 V

Type of execution Out-of-Order

Instruction set Alpha

No. Cores 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 cores

Clock frequency 2000 / 1000 / 666 / 500 / 400 / 333 / 285 / 250 MHz

Fetch/issue/commit width 4 / 4 / 4 insts./cycle

Inst. window size (Int / FP) 20 / 15 entries

Functional units

4 integer ALUs

1 integer multiply / divide

1 FP ALU

1 FP multiply/divide

Table A.2 Cache parameters

Cache Size Assoc. Block size Access MSHRs Banks
(bits) (bits) latency Targets / MSHR

L1 private iCache 32 KB 2 64 2 4 MSHRs /4 tgts 1

L1 private dCache 32 KB 4 64 2 4 MSHRs /4 tgts 1

L2 shared Cache 2 MB 4 64 10 4 MSHRs /4 tgts 4

relatively high-performance mobile circuits, like those in notebooks. LSTP devices are

typically intended for low performance applications like cellular phones. We performed

our estimations for the 65 nm technology and the HP device type.

McPAT is able to report both dynamic and static power. Dynamic power for each system

component is defined as: powerdynamic ∼ AF ·C ·V 2
dd · f , where AF is the activity factor,

C is the total load capacitance, Vdd is the supply voltage and f is the clock frequency.

AF is estimated using access statistics and component’s characteristics provided by the

architectural simulation of that component. The capacitance is computed with analytic

models for each basic circuit block that makes up the system component. In addition to

the dynamic power component McPAT also estimates the leakage power. As described in

[18] the leakage current is estimated using MASTAR[3] and data from Intel.

The developers of McPAT validated the Alpha 21364 processor model we used in our

simulations against published data. As the results in [18] show, McPAT is able to estimate

the power requirements of the Alpha 21364 with an average error of 21 % (this value

is highly influnced by the fact that validation was done for peak power and not average

power).

In order to correlate the values for frequency and voltage scaling we resorted to a report

from Intel[9] documenting this relation (in steps of 200 MHz) for three Pentium proces-
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sors. From that report we extracted an average voltage step of 0.052 V per 200 MHz.

This represents 3.88 % of the 1.34 V nominal voltage used for that family of processors.

Since we simulated CPUs in the 65 nm technology process which has a 1.1 V nominal

voltage [2], we calculated the voltage scaling step as 3.88 % of this nominal voltage for

a frequency step of 200 MHz. By subtracting each core frequency in Table A.1 from the

single-core value and dividing the result by 200, we calculated the number of frequency

steps. We used this number of steps to proportionally reduce Vdd. The resulting voltage

values for each multi-core configuration we simulated are reported in Table A.1.

A.3.3 Benchmarks

In our experiments we used a subset of the Barcelona OpenMP Task benchmark Suite

(BOTS)[10]. BOTS is a benchmark compilation assembled by the Barcelona Supercom-

puting Center (BSC) to assess the performance of task-based programming models. Some

of the kernels come from other benchmark collections (like FFT or strassen) and the oth-

ers were written by the team at BSC (like sparselu). For our experiments, we changed the

default OpenMP parallelization to a Wool implementation. This change was motivated

by our wish to use a lightweight library with a low parallelization overhead. To allow for

reasonable simulation times (from 12 hours to 2 days), the workloads we used are gener-

ally smaller than real-life problem sizes. Table C.1 lists the size of the workloads we used

in our experiments. The benchmarks have been cross-compiled for the Alpha ISA using

a cross-compiler (consisting of gcc-4.3.2 and glibc-2.6.1) [4]. All benchmarks have been

compiled using the flags: -O3 -static -pthread. A brief description of the BOTS subset

that we used is given in section 4.

Table A.3 Input workloads used in experiments

Alignment FFT Fib nQueens SparseLU Strassen

Input
512x512 40’th 13x13 100x100 1024x1024

20 proteins matrix element board sparse matrix matrix

of floats of 20x20 blocks

A.4 Results

The main two issues that need to be addressed in order to improve a system’s energy-

efficiency when running parallel applications are parallel overhead and load imbalance.

In order to quantify the effect of the two causes on energy consumption, we performed

experiments in which we altered Wool’s ability to deal with load imbalance. By control-

ling the number of tasks that each worker queue is allowed to mark as stealable, we also

controlled the task distribution across worker threads. Taking into consideration that an

imbalanced task-tree will also force the worker threads to perform more "management
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operations" (search for task to steal, successful/unsuccessful steals), modifying the num-

ber of stealable tasks also has effect on the overhead. We covered a wide range of testing

points, from a minimum of 1 stealable task to 10000. There were some benchmarks

(alignment and sparselu) for which the load imbalance for low values of stealable tasks

was so large that its execution required an unreasonable long simulation time. For these

applications we reduced the test range. For reasons of space limitations for this paper,

Table A.4 only lists the lowest EDP values and the corresponding number of stealable

tasks. For the same reason, we do not report or discuss performance-orientated metrics

like speed-ups.

Alignment is a protein alignment benchmark that is based on the Myers and Miller algo-

rithm. In a master-slave manner, all the tasks in its execution are spawned by the main

worker thread (the thread that is used to start the program). The children tasks, which do

not spawn any other tasks, need to be available for the other workers. That is why the

number of stealable task has a big effect on the energy-efficiency of the system executing

this benchmark. All the other threads need to steal work from the main thread and a low

number of stealable task leads to race contention among them. Our experiments showed a

progressive decrease in EDP as the number of stealable tasks increased up to a threshold

of around 200 tasks. After this point the improvements come at a much slower pace. For

the stealability parameters listed in Table A.4, the workload is almost perfectly balanced,

and the energy consumption for all multi-core executions is below the single-core one

(see Fig.A.1)

Fibonacci is a recursive benchmark that calculates the Fibonacci series of a given value

n. The workload in the tasks are fine-grained, with leaf-nodes having only a single if and

return statement. Using a recursive, divide-and-conquer approach, this application creates

a very extensive task-tree which means that there is enough work for every worker. This

application has good improvements when parallelized, with the workload evenly balanced

among the workers even for low values of stealable tasks.

FFT calculates the Discrete Fourier Transform of a matrix in a recursive manner using

the Cooley-Turkey algorithm. It showed good results when parallelized and all multi-core

executions had an energy consumption under the single-core one (see Fig.A.1).

nQueens is a search-and-prune benchmark that generates all solution for the nQueens

problem. It "builds" the solutions row by row and each valid position of a queen spawns a

new task. Like Fibonacci, this is another application that benefits little from large numbers

of stealable tasks. However nQueens does not generate a very large task-tree. The main

worker thread starts the work by spawning a task for each valid position of a queen on

the first row of the chessboard. The other workers steal these tasks and begin working

with them. Since these tasks are coarse-grained, the workers need to steal fewer in order

to keep busy. This application did not show improvements in energy consumption for all

multi-core systems, as will be discussed later in the section.

SparseLU calculates the LU matrix factorization and the algorithm is fairly unbalanced.

Just like Alignment, SparseLU spawns a relative small number of tasks and the challenge
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is to schedule them in a balanced manner among the worker threads. With the right

number of stealable tasks (see Table A.4), the workload imbalance is solved and the multi-

core executions register a lower energy consumption than the single-core one.

Strassen is a parallel matrix multiplication algorithm. The algorithm subdivides the array

into smaller arrays, and performs matrix multiplication on them. Like nQueens, Strassen

showed partial improvements on energy-savings when parallelized. The parallel matrix

multiplication executed faster on 2 and 3 cores compared to the 1 core system, but lost

this advantage as the core count increased. Again, the reasons for this will be discussed

later in the section.

Using the values for number of stealable tasks listed in Table A.4, we performed a compar-

ison of the parallel execution against the serial one. With these values, the performance

of each benchmark on the multi-core systems is at a maximum (at least from the load-

balancing point of view), so we only measured Energy for this study. Fig.A.1 presents

this comparison. As you can see, for most configurations, the parallel executions show

a higher energy-efficiency (marked by a lower energy) than the serial one. The biggest

improvement recorded is for Fibonacci which shows a 239 % decrease in energy con-

sumption when comparing the 3-cores execution to the single-core one. However, after a

certain point the descendant trend of energy consumption stops for all benchmarks. There

are three reasons for this behavior.

First, as the number of cores grows — so too are the scheduling and task management

overheads. We recorded maximum increases of 52 % (for Strassen) in instruction count

going from 2 cores to 8 cores.

Second is the less than linear algorithmic speedup of the parallel programs. In addition

to this, the work stealing mechanism can induce stalls and serialization into execution.

There are situations when a worker thread is forced to wait the completion of a task that

was stolen from him. The leap-frogging technique can alleviate this problem only if the

stolen task spawns children. A simple quantification of these behaviors can be made by

examining the increase in execution time: 20 % increase when going from 2-cores to

8-cores for Strassen.

Third reason is the increase in static power as we scale down Vdd. Frequency and voltage

scaling have a positive impact on dynamic power (when increasing the core count from

2 cores to 8, all executions showed an average of 43 % decrease of dynamic power), but

they have the opposit effect on static power (leakage power to be more precise). Leakage

power is influenced mainly by fabrication parameters of the transistors (gate thickness,

gate material etc.) but also by Vdd and Vth (the voltage at which the transistor is viewed

as switched "on"). As we scale down Vdd and we get closer to the Vth, the leakage current

increases and so is the static power. All multi-core configurations recorded an increase of

135 % of static power, when going from 2-cores to 8-cores.
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Table A.4 Best EDP values for multi-core test systems

2 cores 3 cores 4 cores 5 cores 6 cores 7 cores 8 cores

Alignment
EDP 40.76 34.98 38.57 45.99 49.89 59.41 62.19

No. of steals 900 900 1000 900 1000 900 900

Fibonacci
EDP 218.5 161.56 177.29 199.53 201.73 211.81 224.92

No. of steals 3 4 4 4 4 3 4

FFT
EDP 217.36 181.28 172.94 205.42 222.66 245.46 267.35

No. of steals 900 1500 3000 3500 7000 10000 10000

nQueens
EDP 1453.35 1498.70 1708.82 1978.66 2239.21 2581.41 2829.59

No. of steals 4 5 5 6 9 9 7

SparseLU
EDP 79.39 53.83 58.06 64.09 71.58 80.46 88.50

No. of steals 200 200 900 900 900 900 1000

Strassen
EDP 37.85 37.79 37.45 46.52 56.11 69.11 83.32

No. of steals 9 100 90 90 900 900 900
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Figure A.1: Energy consumption comparison
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A.5 Related work

There is a large body of work that focus on using parallel execution to improve perfor-

mance and not energy consumption. What has got little interest thus far, at least to our

knowledge, is quantifying the effect of TBP parallelization on energy efficiency on multi-

core systems.

Li and Martinez[17] make a detailed power-performance exploration of parallel applica-

tions running on chip-multiprocessors. Using an analytical model, they perform extensive

design space explorations to find the best multi-core configuration and also run simula-

tions to verify the validity of the analytical results. They conclude that through judicious

choice of parallelism’s granularity and voltage/frequency scaling values, parallel comput-

ing can improve performance while maintaining or even reducing the power budget.

Contreras and Martonosi[8] make a study of Intel’s Threading Building Blocks (TBB) and

try to characterize some of the overheads associated with it. They emphasize the fact that

this framework helps the programmer by abstracting away the complexity of the hardware.

They also propose an improvement to TBB’s task stealing mechanism in order to limit the

parallelization overhead. Even though the focus of the authors is on performance, their

implementation can also have a beneficial effect on the energy-efficiency of the system.

Sangyeun and Melhem[6] use an analytic framework to study the interplay between par-

allelism of an application, its performance and energy consumption. Their result demon-

strate the advantage (quantified in energy or EDP) that can be gained from employing

dynamic voltage and frequency scaling to execute the serial and parallel part of an ap-

plication at different levels of frequency and voltage. Also they study the scenario when

individual processors can be turned off when not in use. Even if it assumes an simplified

environment, this work provides valuable theoretical insights into energy-aware resource

management.

There is a number of papers that is very relevant for the future development of our study.

However, since they are not directly related to the current stage of the research, they are

referenced in the next section.

A.6 Future work

We want to extend our experiments towards a larger number of cores and at the same time

change the processor model. We are currently investigating an ARM model which is a

much recent and scalable multi-core architecture. Also, a 4-core ARM Cortex-A9 eval-

uation board is commercially available and that makes it possible to validate our model

and also to do experiments with both simulation and real execution.

We also plan to do a more detailed characterization of the specific mechanisms employed

by Wool. Future work will focus on a detailed quantification in terms of EDP of Wool’s
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load-balancing technique and possibly a comparison with other techniques (basic waiting,

parking, etc. [11]).

Another approach to study the relation between task based parallelization and energy

consumption is to use performance counters to track the behavior of real multi-cores.

Weissel and Bellosa[23] and Goel et.al. [13] have been exploring power modeling with

the use of performance counters. It is a long term goal for us to use similar approaches

for achieving increased understanding of the energy issue, our models and their accuracy.

A.7 Conclusions

Although our study assumes a simplified environment and a simple test scenario we think

it provides valid insights into how energy-efficiency and parallel execution relate. By in-

tegrating an architecture simulator (M5) with a power and area estimation tool (McPAT),

we have put in place a framework for performance/power experiments. Using this frame-

work, we studied the energy-efficiency of multi-core platforms running several BOTS

benchmarks parallelized with the Wool library. Our experiments show improvements of

the EDP metric when the parallel workload is balanced correctly for each benchmark and

configuration.

Our experiments also show the potential for energy-efficiency improvements of parallel

executions on multi-cores compared to the serial version of the same application on a

single-core system. However, these improvements do not come for free. Task synchro-

nization and management overhead, sub-linear speedups and increase in leakage power

become more and more significant as the number of cores grows.

In all, we think the results we have found so far are promising and motivates for further

research into energy-efficiency through parallelization.
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Abstract
For computer architects and software developers, simulation is an indispensable tool for

evaluating new designs and ideas. Unfortunately, it is significantly slower to simulate a

parallel environment than to work on real hardware. In this work, we take a first step

towards efficient simulation of Task Based Parallel (TBP) applications. Our key idea

is that the number of completed tasks can be used as a work-related progress metric to

sample these applications. Using this metric, we show that the complete execution of

TBP programs can be accurately represented by simulating only a few samples. In fact,

our TBP applications only need 5 samples on average to get a mean error below 5 %. In

our experiments, when sampling at 1000 completed tasks, 5 samples correspond to 0.5 %

of the total execution on average.
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B.1 Introduction

Chip Multiprocessors (CMPs) or multi-core architectures [16] are becoming the prevalent

computing infrastructure. Multi-cores were originally introduced as a means of avoiding

the power wall. In particular, they make it possible to utilize the resources provided by

improvements in production technology to increase aggregate performance without in-

creasing the power budget [8]. Unfortunately for the programmer, this means that he

can no longer expect to reap the benefits of Moore’s law without parallelizing the appli-

cation [17]. For this reason, there is a significant interest in programming models that

simplify the task of parallelizing applications. In this work, we focus on Task Based
Programming (TBP) which is a parallel programming model that has received significant

attention recently [4, 7, 11, 22].

The key idea behind Task Based Programming (TBP) is that the programmer partitions the

application into tasks and specifies the dependencies between them [7]. In some cases,

the programming environment lets the programmer annotate procedure declarations in

a way that makes the runtime system able to infer the task dependencies automatically

[6, 19]. A task is a light weight unit of work, and all independent tasks can be executed

in parallel. When a TBP application is run, a task management library distributes tasks

to processing elements and ensures that all dependencies are met. Membarth et al. [14]

found that TBP methodologies are among the most usable parallel programming models

and that they yield good performance. In addition, the TBP model has a solid theoretical

foundation. For instance, any greedy task scheduler will be within a factor of two of the

optimal execution time [9].

Parallel programming is becoming a necessity for realizing the performance potential of

processors, and new computer architectures should be evaluated with this in mind. On

a high level, there are three main ways to evaluate new architectural ideas: analytical

modeling, simulation and measurements on real hardware [21]. Analytical modeling has

the advantage that it can efficiently cover large design spaces, but it can also be hard to

reason about the accuracy of the findings. In contrast, measurements on real hardware can

be very accurate but cover only one design point. Simulation bridges the gap between the

two other techniques by offering good accuracy while covering reasonably large design

spaces. Unfortunately, the performance overhead of simulation is significant.

For single-thread applications, sampling-based techniques have proven to be very effec-

tive at reducing simulation time with a very small reduction in accuracy [10, 18, 23, 24].

The key idea is to identify a small set of samples to simulate and then infer the results for

the complete application. The number of committed instructions is used to identify sam-

ples in a hardware independent manner. This metric is hard to adapt to a multi-threaded

environment because of the existence of busy wait loops. Busy wait loops include in-

structions that do not result in the benchmark making forward progress. Alameldeen and

Wood [1] recommend to use a work related metric for such situations.

Inspired by previous work [18], this paper is a necessary first step towards sampling-based
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simulation of TBP applications. We first run a fast, low detail simulation and sample the

execution to gather performance measurements. Next, we group together similar samples

using a clustering algorithm [12] and select a representative point for each cluster. Finally,

we create an estimation of the detailed execution by simulating only the representative

samples.

In this work, we make two main contributions. First, we propose the number of completed

tasks as a progress metric for sampling the TBP applications. This makes it possible to

divide the total work of the application into equal size samples even with the existence of

busy wait loops.

Sampling strategies commonly exploit the periodic behavior of applications. As a second

contribution of this work, we show that our TBP applications present with this type of

behavior. In fact, our TBP applications are highly periodic, needing only 5 samples on

average to get an error below 5 %. In our experiments, 5 samples correspond to an aver-

age of 0.5 % of the total execution, when using a sample size of 1000 completed tasks.

In addition, we investigate the effects of other implementation decisions like the initial

centroid placement and how to choose representative points.

A long term goal is to use the sample information to simulate selected parts of the appli-

cation with a high degree of detail. This approach may increase simulator performance

significantly. To focus fully on the sampling methodology, we leave this promising appli-

cation as further work.

The rest of this paper is organized as follows. Section 2 discusses the background for

our work. Section 3 describes our proposed method for reducing the simulation time and

Section 4 gives insight into our simulation framework. Section 5 presents our results and

Section 6 concludes the paper.

B.2 Background

Simulation is a key technique for computer architecture research so there is a high moti-

vation in developing ways to reduce the simulation time [24]. One way to overcome the

problem of slow simulations is to trade accuracy for a faster execution. However, this is

not possible or desirable in many cases.

Another simple strategy is to run only a portion of an application’s execution and assume

that this is representative for the whole execution. For applications where starting the

execution at a specified point is not possible, a technique called fast-forwarding can be

used [24]. When fast-forwarding, a simulator only emulates the hardware system allowing

for a faster simulation until an interest point in the execution. Another option is to use

checkpointing. When checkpointing, a snapshot of the simulated system state is stored,

making it possible to restart execution from that point. The main disadvantage of this

technique is the potentially large storage space required for the checkpoint.
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Figure B.1: Simulation times for Simple, Detailed and Sampled simulation modes

Algorithm 1 Simulation Methodology
Perform sampling in Simple simulation mode and create execution profiles

Group sample points into clusters using K-means

Choose a representative sample point for every cluster

while representative points still exists do
fast-forward to the next representative sample point

execute in detailed simulation mode

Perelman et al.[18] introduce SimPoint, a profile-driven clustering-based analysis tool

which is capable of identifying a set of execution samples (called simulation points) that

are independent of the hardware platform. An improved version of this tool, SimPoint

3.0, is described in [10]. The simulation points are representative for various repetitive

parts of the program’s execution. By simulating them in detail and then weighing their

results according to the size of the program region they are part of, one can estimate the

complete detailed execution with significant reduced simulation time.

SMARTS [23] employs statistical sampling to collect and execute in detail a large num-

ber of very small (in terms of number of instructions) execution samples. An important

characteristic of SMARTS is that it allows to trade off confidence in results against speed

of execution. Both SimPoint and SMARTS are designed for single-threaded applications

and are used in conjunction with single-core simulation platforms.

There are also other approaches for accelerating simulations of parallel architectures.

Rico et al.[20] argue that the level of abstraction used by most current simulators can

be misleading for some studies like early processor design or high-level explorations.

They introduce TaskSim, an architecture simulator designed for many-core platforms that

can provide several levels of modeling abstraction. Another way to reduce simulation

time is to distribute the simulation across multi-core or multi-machine environments.

Graphite[15] and SlackSim[3] are two parallel simulation tools.
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B.3 Sampling TBP applications

The 4 steps of our methodology are summarized in Algorithm 1. In this paper, we focus

on the sampling, clustering and representative points selection steps of this methodology.

Since all these steps use data from the fast, low detail simulation mode, we performed all

simulations in this mode. We study the impact of several parameters on the accuracy of the

sampled simulation. Each sampled simulation is compared against a complete execution

in simple mode to determine its accuracy. We leave switching between 2 simulation

modes (simple and detailed) as future work.

The complete methodology described by Algorithm 1 can be summarized as follows.

In the first step, we sample the execution of the application and gather the information

required to create a profile using the simple simulation mode. Next, we use the profile

of the application to run a clustering algorithm in order to group the data points into

K clusters. For each cluster, we calculate a centroid (the average of all the points in that

cluster) and a weight (the number of data points in each cluster relative to the total number

of points). The centroids are used in the next step to select the representative sample

point for each cluster. The weights are used in the final step to create an estimate for the

complete execution. As Figure B.1 shows, the total time required for the sampled mode
is the time to run the simple simulation for profiling plus the time it takes to simulate the

representative samples in detail and to fast-forward between them. All in all, a reduction

in simulation time is achieved.

B.3.1 Choosing Samples

Sampling-based techniques aimed at single-thread applications use the number of com-

mitted instructions for sampling. This metric is not suited for parallel environments [1]

because of busy wait loops. For this reason, we propose to use the number of completed

tasks as a progress metric for TBP applications. In the sampling step of our technique,

we count the number of completed tasks of all working threads collectively. For every s
completed tasks, we record the simulated time which allows us to create the profile of the

application.

B.3.2 Clustering Samples

In order to identify the repetitive sections in each execution, we employ the K-means
algorithm to group similar data points into clusters using the simulated time as a metric.

K-means [13] is a well known iterative clustering algorithm and Algorithm 2 illustrates

its main steps. Clustering is done in two phases, which are repeated to convergence. The

main parameter of the algorithm is the number of cluster K to be created. The placement

of the initial centroids among the sampled data can also have an impact on the results. We

investigate the accuracy impact of both of these parameters in Section B.5.
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Algorithm 2 K-means algorithm
place K points (centroids) among the data points

while points change cluster membership do
for all sample points do

calculate the distance to each centroid

assign the point according to the minimal distance

for all centroids do
new position = average of all the points in the cluster

The algorithm has converged when the sample points cease to change cluster membership

between iterations. The output of this algorithm are the coordinates of the centroids, a

set of weights for each cluster and a mapping of each data point to a cluster. Figure B.2

shows the profile of one of our benchmarks together with the clustering of the data points

(for K = 6). The enlarged points are the centroids of each cluster.

B.3.3 Implementation parameters

In this paper, we study the sampling, clustering and representative points selection meth-

ods and their impact on the accuracy of the sampled simulation. We experiment with

several parameters for these methods and we also reason about the impact on the poten-

tial speedup.

The first parameter we investigate is the sample size s. As mentioned before, we use the

number of completed tasks as a progress metric for sampling. Each sample contains a

total of s completed tasks, counted for all executing threads collectively. The value of s
impacts the detection of the repetitive patterns in the execution. The relation between the

value of s, the number of sample points (S) and the total number of tasks (T) is given

by the equation: S = T/s. A low s value creates a more detailed profile, since more

sample points are available. However, there are 2 disadvantages for sampling with a low s
value: (I) it takes longer because of the larger overhead (sampling, dumping stats) and (II)

below a certain s no useful information is added to the profile. In contrast, a high s value

leads to a coarser profile, with larger but fewer sample points, which can miss patterns.

Additionally, in the last step of Algorithm 1, larger sample points take longer to simulate

in detail, which impacts the potential speedup.

The second parameter we investigate is the number of clusters K used by K-means. This

parameter impacts the way the samples are grouped together and, similar to s, it can affect

the potential speedup when simulating the representative sample points.

Third, we investigate 3 methods for placing the initial centroids for K-means:

• Equally spread — We spread the initial centroids evenly among the minimum and

maximum values of the sample points.

• Initialization Aware — We define 3 centroids that are placed as follows: one is

placed among the data points of the initialization phase of the application, one

89



0 100000 200000 300000 400000 500000 600000 700000

No. of completed tasks

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

S
im

u
la

te
d

 t
im

e
 (

s
)

0 100000 200000 300000 400000 500000 600000 700000

No. of completed tasks

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

S
im

u
la

te
d

 t
im

e
 (

s
)

Figure B.2: SparseLU: profile (top) and clusters (bottom)

is placed among the minimum values of the whole data set and one among the

maximum values of the whole data set. For K > 3, the extra centroids are evenly

distributed among the minimum and maximum values of the data set.

• Random

The last parameter we investigate is the way the representative points are selected after

the centroids are determined. We investigate 3 methods:

• First after centroid — The first sample point positioned after the centroid is se-

lected.

• First appearance — The first sample point in each cluster is selected. This method

generates the sampled simulation with the smallest fast-forwarding time.

• Distance Threshold — The first point whose value is greater or equal to a given

percentage of the centroid’s value is selected (we experimented with 80 %, 85 %,

90 % and 95 %).
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Table B.1 BOTS input workloads

FFT Fib nQueens Sort SparseLU Strassen

Input
225 30’th 14x14 225 200x200 2048x2048

floats element board integers sparse matrix matrix

(no cut-off) of 25x25 blocks

B.4 Methodology

We use the cycle-accurate GEM5 simulator [2] in full-system mode with a 2.6.27 cus-

tomized Linux kernel. We simulate both the application and the operating system (OS)

because TBP libraries rely on the OS to manage shared memory and provide a thread and

process abstraction. The simulated platform is an in-order, 2-core processor with a clock

frequency of 1GHz. We simulate a 2 level cache hierarchy with split data and instruction

private cache (64 KB each) and a shared L2 cache (2 MB). Since this is an early study, we

limit our experiments to a dual-core CPU to reduce simulator overhead. In future work

we will simulate a platform with more cores. To be able to simulate the benchmarks to

completion within reasonable time, we perform our simulations in GEM5’s atomic mode.

In atomic mode, only basic characteristics of the CPU are simulated.

In this work, we use a subset of the Barcelona OpenMP Task Benchmark Suite (BOTS)[5].

BOTS is a benchmark suite assembled to assess the performance of task-based program-

ming models. Table C.1 lists the input workloads we used in our experiments. In these

experiments, the default OpenMP parallelization was changed to a Wool implementation.

Wool [7] is a lightweight, work-stealing TBP library that was designed with the ability

to scale well with small tasks (smaller than a hundred cycles). It uses pthreads to create

a number of working threads, each of them with its own task queue. The Wool library

was customized to signal GEM5 every time a task is completed. A dedicated counter is

incremented every time a signal is received from the application.

B.5 Results

In this work, we explore a large design space for sampling-based simulation of TBP ap-

plications. We experiment with values of s and K and the methods for initial placement

of centroids as well as selecting the representative sample point. Unless otherwise stated,

the results are presented for s = 800 tasks, K = 10 clusters, initial centroid positioning

policy IA and First after centroid representative sample selection method.

As we mentioned in Section B.3, the sampled simulation is compared against a complete

execution in simple mode. Performance is calculated as the total number of tasks executed

divided by the total simulated time. The Performance estimation error (%) in Figure B.3,

B.5, B.7 and B.8 refers to the difference (in percentage) between estimated performance
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of the sampled simulation (PS) and performance of the complete simple mode simulation

(PFull): Performance estimation error (%) = (PS − PFull)/PFull ∗ 100.

SparseLU registered highest accuracy in most of our experiments (see Figure B.3, B.5 and

B.8). Figure B.2 illustrates why our scheme works very well for this benchmark. Here,

the sample points within a cluster are very similar which makes estimation based on a

representative sample point very accurate.

B.5.1 Sample Size

Figure B.3 shows the accuracy impact of the sample size s, for several values of K. For low

values of s, the sample points contain little information. If too few of them are simulated

(K is low also), the estimations based on them are inaccurate.

It is also interesting to observe that increasing s will not always lead to a smaller error. In

Figure B.3a, FFT has a higher error value for 3000 tasks than 400 tasks. This is explained

by the effect of s on the execution profile of the application. For high values of s, the

execution profile ceases to capture all the trends and this impacts accuracy. This can be

observed in Figure B.4.

B.5.2 Number of Clusters

The number of clusters is the most important input parameter for the clustering algorithm.

Balancing K and s allows us to produce accurate simulations. Figure B.5 shows how K
impacts the accuracy of the simulation for different values of s.

As mentioned in Section B.3, the value of K also impacts the potential speedup of the

simulation. Considering the number of tasks simulated in Sampled mode (Tasks_in_Sam-

pled=K · s) and the total number of samples in the full execution (Total_samples), we

compute the Fraction of execution=Tasks_in_Sampled/Total_samples. Figure B.6 presents

the Fraction of execution (as percentage) for 4 values of s. The values exceeding 100 %

for nQueens, Sparselu and Strassen in Figure B.6d are due to the fact that these bench-

marks execute less than 1 million tasks in total. Consequently, Sampled mode requires

more samples (K · s = 1000000) than are available.

B.5.3 Initial Position of the Centroids

The initial positioning of the centroids is the second input parameter of K-means. It im-

pacts the final position of the centroids and ultimately the selected representative sample.

Figure B.7 shows the accuracy of the three methods presented in Section B.3.

We investigated the Initialization Aware positioning policy in order to better model the

initialization phase of the tested benchmarks. A good candidate for this policy is Sort
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Figure B.3: Sample size vs. simulation accuracy

which has an initialization phase of about 30 % of the total execution. In Figure B.7, Sort

has an error below 0.01 % for this policy. For low values of s and K, IA shows better

accuracy results for Sort, but also for Fib and Sparselu. All 3 policies have very similar

accuracy values for high values of K.

B.5.4 Selecting the Representative Points

Representative point selection impacts both accuracy and simulation speed. Figure B.8

presents the impact on accuracy for all methods described in Section B.3. The average

results in Figure B.8 show that the First appearance selection yields the highest error

while the First after centroid the smallest. However, there are some rare situations where

the value of the first point of a cluster is very close to the one of the centroid. By selecting

this point as representative, we get a lower error than by using the Distance Threshold
methods. This can be observed in Figure B.8 for nQueens and Strassen.

The selection of the representative points is important because the fast-forwarding time

in Sampled mode can be reduced by choosing earlier samples in the execution. Table B.2
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Figure B.4: Sample size vs. profile accuracy

Table B.2 Simulation time for Simple, Detailed and Sampled modes

Measurements Estimations
T Simp TDet TSimp S TDet TSamp Speedup

(s / 1000t) (s / 1000t) (s) (s) (s)

fft 7.40 134.27 11124.3 1503 201804.53 22882.64 8.82 x

fib 0.042 0.56 57.04 1347 749.04 116.62 6.42 x

nqueens 117.89 1523.32 100085.89 849 1291857.19 207087.53 6.24 x

sort 4.10 147.06 5501.24 1343 197362.46 11713.42 16.85 x

sparselu 99.62 1225.66 68436.89 687 841663.52 142474.13 5.90 x

strassen 12.14 167.36 10005.19 824 137831.84 20780.93 6.63 x

lists the measured average time for executing 1000 tasks and the total simulation time

in Simple mode. We also simulated a detailed execution of each benchmark for 3000

completed tasks. We averaged the time for executing 1000 tasks (TDet) and estimated the

full execution time (TDet = TDet ·S) with the total number of samples (S). The table also

presents the estimations for Sampled mode according to Equation B.1.

TSamp = TSimp + T Simp · (S −K) + TDet ·K (B.1)

The Sampled mode simulation time is estimated for the worst case scenario where the last

representative sample point is the last sample point in the execution. In this scenario, the

fast-forwarding time is at its maximum value. We also calculate the potential speedup:

Speedup = TDet/TSamp. For these measurements we used s = 1000 completed tasks. In

Equation B.1, TSamp assumes K = 5 clusters.

B.6 Conclusion and Future work

This work is a necessary first step towards efficient simulation of TBP applications. We

introduce the number of completed tasks as a work-related metric that can be used to di-

vide the execution of a TBP application into fixed-size samples. Furthermore, we show

that our TBP applications exhibit periodic behavior, an average of 5 samples being suf-

ficient to achieve an accuracy below 5 %. This observation has a significant potential
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Figure B.5: Number of clusters (K) vs. simulation accuracy
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Figure B.6: Fraction of execution
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Figure B.8: Representative sample selection

for accelerating simulation since only 0.5 % of the application needs to be simulated to

compute an accurate estimate of application performance.

Our plan for further work is to leverage the insight obtained in this work to improve sim-

ulator performance for TBP applications. There are at least two possible implementation

strategies. In the first scheme, we start by simulating the application with a low degree of

accuracy to chose the representative points. Then, we gather detailed simulation results

from these samples. The main advantage of this scheme is that it is robust to changes in the

architecture and benchmarks since we create a new profile with every new architectural

configuration. The second scheme assumes that it is possible to identify characteristics

of a task that are independent of the computer architecture. In this case, we can profile

the execution once and reuse the profile for all architectural configurations. This scheme

amortizes the overhead of sampling over many simulations. For both schemes, it is pos-

sible to use fast-forwarding between the detailed sample points or to create checkpoints.
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Abstract
Cycle-accurate simulation is an important tool that depends on the computational power

of supercomputers. Unfortunately, simulations of modern multi-core platforms can take

weeks or months. In this paper, we look into the challenges of employing a sampling

based technique for reducing simulation time of multi-threaded applications. We intro-

duce FASTA, a simple 3-phase methodology for reducing the simulation time of Task

Based Parallel applications. FASTA takes advantage of the periodic behavior of parallel

applications and identifies a small number of representative execution samples. By ex-

ploring a large design space we show that even though we can not use FASTA for every

type of application, there are some for which a 12x speedup can be achieved with an

accuracy error as low as 2.6%.
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C.1 Introduction

Increasing in complexity with each generation, developments in hardware and software

design require ten of thousands of computational hours for simulation and testing. For

computer architects simulation is also an indispensable technique for exploring novel

ideas. The main advantages of simulation are increased flexibility for design space explo-

ration and outputs with extensive, noninvasive and detailed measurements. In this way,

simulation bridges the gap between analytical modeling and real world measurements.

Unfortunately, the cost of these advantages is long simulation times.

In today’s ICT market, Chip Multiprocessors (CMPs) or multi-core architectures are the

platform of choice in almost all segments. CMPs were first introduced as a solution to a

design constraint known as the power wall. For decades, CPU designers took advantage

of the increasing transistor count on a chip to boost computational power. They did this by

increasing the chip’s clock frequency and by exploiting instruction level parallelism (ILP)

more aggressively. However, cooling system limitations and diminishing returns from ILP

created the need for a new architectural approach. CMPs utilize the hardware resources

provided by production technology improvements to create several less complex cores.

This architecture is able to exploit both instruction and thread level parallelism allowing

for an aggregate performance increase. At the same time, they require a lower power

budget [10].

The switch to the multi-core model has placed a new burden on programmers. CMPs

can not be fully exploited using sequential programming and parallelization is required to

achieve maximum performance. For this reason, there is a considerable interest in pro-

gramming models that can simplify parallel programming. In this work, we focus on Task
Based Programming (TBP), a parallel programming model that has received significant

attention recently [6, 9, 12, 17]. TBP’s key idea is that the programmer partitions the

application into tasks and specifies the dependencies between them [9]. A task is a light

weight unit of work, and all independent tasks can be executed concurrently. A runtime

task management library distributes tasks to processing units and enforces all dependen-

cies.

There have been many attempts to reduce simulation time. For single-core simulation,

sampling-based techniques are very effective at reducing simulation time with a small loss

in accuracy. SimPoint tries to identify a set of samples that are representative for the entire

execution [15]. The complete execution is inferred from simulating and weighing only

these samples thus reducing the total simulation time. In a different approach, SMARTS

uses statistical sampling theory and samples the execution at fixed interval [20]. A more

detailed study of simulation time reduction methods can be found in [22] showing that

sampling achieves high accuracy for single threaded applications.

There are two major issues when sampling multi-threaded applications. First, we have to

use a metric that is proportional to forward progress of execution. Single-threaded appli-

cations are sampled using metrics like the committed number of instructions or IPC/CPI.
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As argued by Alameldeen and Wood, these performance metrics are not suited for parallel

executions [1]. For example, while executing a busy wait loop, the instruction count of

the thread will increase but the execution will not move forward. Second, we need to ac-

count for the interleaving of threads in different executions. Because of shared resources

and data dependencies, different runs of the same parallel application can have different

instruction or task streams.

In this paper, we use a 3-phase approach called FASTA that aims to reduce simulation

time of TBP applications running on CMP platforms. First, we run a fast, low detail

simulation to sample the execution and gather measurements. Next, we use a clustering

algorithm to group together similar samples and to select a representative point for each

group. Finally, we simulate the representative samples in detail and we use the results to

estimate the full detailed execution. Through our experiments we found that the thread

interleaving impacts the accuracy of the FASTA results more for some classes of parallel

applications than others. This impact becomes more prominent with the increase of core

count. However, we found a class of parallel applications that are not affected by the

interleaving problem. In these cases, FASTA results show an average error below 4% and

a speedup of 12x maximum.

C.2 Background

Researchers have been motivated to find ways to reduce simulation time due to simula-

tion’s key role for software and hardware development [22]. One proposed technique is

to reduce the input set of the benchmarks [2, 11]. This approach assumes that the charac-

teristics of the full input set can be preserved even though fewer instructions are actually

executed. However, the accuracy of this approach is generally poor [22].

Another technique for addressing long simulation time is truncated execution. In this

approach, a continuous section of X instructions is selected and simulated in detail. If this

section is not in the beginning of the application, fast-forwarding or checkpointing can be

used to start the simulation at the desired point. When fast-forwarding, a simulator only

emulates the hardware system up to the desired execution point. With checkpointing, a

snapshot of the simulated system state is stored, allowing for a restart from that point.

In single-threaded environments, sampling-based techniques have been used to reduce

simulation time while maintaining good accuracy. There are primarily 3 classes of sam-

pling techniques [21]:

• Representative sampling techniques attempt to identify a sample or a group of sam-

ples in the simulated code that can be held representative for the entire execution.

Perelman et al. [15] use the K-means algorithm to group similar simulation points

into clusters and then calculate a centroid for each cluster. The "closest" sample

point to the centroid is considered representative for the entire cluster.
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Figure C.1: The FASTA flow

• Periodic sampling techniques select portions of the simulated code at periodic in-

tervals. SMARTS [20] samples a large number of very small (in terms of number

of instructions) execution points which are later simulated in detail. An important

characteristic of SMARTS is that it allows to trade off result confidence against

speed of execution. Building on their work with SMARTS, Wenisch et al. devel-

oped another statistical sampling methodology called SimFlex [19]. Using a differ-

ent approach for warming the CPU units, SimFlex reduces the total simulation time.

In addition, SimFlex can be employed for multiprocessor throughput applications

like those in the TPC-C OLTP or Specweb99 benchmark suites.

• Random sampling techniques try to combine the results from N randomly selected

simulation points to produce the overall result. To improve the accuracy of this

technique Conte et al. [7] suggest the use of longer warm-up periods and increasing

the number of instructions in each sample.

For very large input sets even functional simulation (i.e. fast-forwarding) is too time

consuming. In such cases, a technique called direct-execution can be employed. The host

machine is used to execute the application and checkpoint the execution. This checkpoint

is then transferred to the simulator. In order for this technique to work, the host and

simulated machines must use the same ISA or cross-compilation needs to be employed

before the transfer.

Simulation can be also accelerated by varying the abstraction level or by exploiting par-

allel hardware. Rico et al. [16] argue that the level of abstraction used by most current

simulators can be misleading for some studies like early processor design or high-level

explorations. They introduce TaskSim, an architecture simulator designed for many-core

platforms that can provide several levels of modeling abstraction. Another way to re-

duce simulation time is to distribute the simulation across multi-core or multi-machine

environments. Graphite[14] and SlackSim[5] are two parallel simulation tools.
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C.3 FASTA

In this paper, we propose a simple methodology for representative sampling, called FAst
Simulation of TBP Applications (FASTA). Like Perelman et al. [15], our technique ex-

ploits the periodic behavior of parallel applications and identifies representative sections

for each interval of the execution. There are 3 main differences between our approach and

SimPoint: (1) we target the simulation of parallel application thus (2) we use a different

work-related progress metric than the traditional CPI/IPC and (3) our methodology is not

architecture independent.

Fig. C.1 gives an overview of the flow of our approach. To better understand how FASTA

works and how different parameters can affect the results, we summarize each phase in

the next subsections.

C.3.1 Phase 1: Sampling

We gather the simulated execution time for every s completed tasks and create an execu-

tion profile. Section C.4 discusses in detail why we use the number of completed tasks

as a metric in our work. The value of s has an impact on the granularity of the profile: a

low value will lead to a more detailed profile while a high value to a coarser one. A trade

off is needed because simulating with a low s value requires more time while a coarser

profile can miss patterns in the execution.

C.3.2 Phase 2: Clustering and Representative Point Selection

In Phase 2, we use the K-means algorithm on the resulting sample population. K-means

is an well known iterative clustering algorithm [13]. The main input parameter for this

algorithm is the number of cluster to be created (K). K affects both the accuracy and the

potential speedup of the FASTA simulation.

The algorithm outputs (1) the coordinates of the centroids, (2) a set of weights for each

cluster and (3) a mapping of each data point to a cluster. The "closest" sample point to its

respective centroid is selected as representative for each cluster.

C.3.3 Phase 3: Detailed Simulation

In Phase 3, we start the full-detailed execution of the representative samples using the

checkpoints or fast-forwarding. When using checkpoints, we can start the simulations

concurrently because each checkpoint is independent of the others.

In the fast-forwarding approach, we emulate the execution up to the representative sample

point where we switch to full-detailed simulation. Then, we simulate the representative
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sample and dump the measurements before we fast-forward to the next representative

point. However, switching back and forth between simple and full-detailed mode adds an

overhead that affects speedup. Also, since some buffers are cleared when switching from

detailed to simple simulation (TLBs for example) accuracy can also be impacted. For

both approaches, the detailed results are weighted according to the output of K-means

and an estimate of the complete execution in detailed mode is created.

We experimented with 3 different methods to generate the checkpoints:

• Checkpoint Representative Sample Points (CRSP): After the representative sample

points are selected, a second low-detail simulation is started and checkpoints are

created only for the representative sample points (see Fig. C.1).

• Checkpoint All Sample Points (CASP): Generate a checkpoint for each sample point

during Phase 1.

• Checkpoint at Intervals (CI): This approach is a trade-off between CRSP and CASP.

During Phase 1, checkpoints are generated every X sample points, where X can be

defined by the user. After selecting the representative sample points, the nearest

preceding checkpoint is used to restart the simulation and create a new checkpoint

for the representative sample.

All the checkpoints have been created using the built-in functionality of our simulator. We

did not try to improve in any way this functionality, neither for storage neither for speed.

Both [18] and [3] present ways in which checkpoint size and restoration time can be

reduced. We consider that such work, though interesting and important in the simulation

field, was beyond the scope of our research. We kept focus on validating our methodology

rather than trying to optimize it.

C.4 The challenges

There are 2 main challenges to be addressed when employing sampling for reducing the

simulation time of multi-threaded applications:

• sampling using a metric that is proportional to forward progress of execution

• the change in the instruction stream of a parallel application from one execution to

another as races resolve differently on different runs

To address the first issue, we use the number of completed tasks as a work-related progress

metric. We count the tasks collectively for all working threads. In this way we eliminate

the problem of spin locks being recorded as false progress of the execution.

The second issue is much more difficult to deal with. Wenisch et al. conclude that it is

unclear how to sample general multiprocessor applications so they focus their SimFlex

methodology on throughput parallel applications [19]. Because in our approach we are

trying to estimate the results of a detailed simulation using results from a very simple one,
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Table C.1 BOTS input workloads

FFT Fib nQueens Sort SparseLU Strassen

Input
225 30’th 14x14 225 200x200 2048x2048

floats element board integers sparse matrix matrix

(no cut-off) of 25x25 blocks

we need to assess the variability of the thread interleaving. To do that, we have experi-

mented with 2 low detailed simulation modes. The first one models a simple CPU with

instantaneous access to memory (Atomic mode) while the second one models the same

CPU but with delays in accessing the memory system (Timing mode). By comparing

the Atomic and Timing execution profiles, we can reason about the impact the memory

model has on interleaving the threads. We also assess how the difference in CPU model

affects the profiles, by comparing the results of the 2 low detailed simulation modes with

the detailed ones.

C.5 Methodology

We use the cycle-accurate GEM5 simulator [4] in full-system mode with the 2.6.27 Linux

kernel. We simulate both the application and the operating system (OS) because TBP

libraries rely on the OS to manage shared memory and provide a thread and process ab-

straction. Our simulated platforms use 2-, 4- and 8-core CPUs, with a clock frequency of

1GHz and a 2 level cache hierarchy with a split L1 private cache (64 KB) and a shared

L2 (2 MB). As mentioned before, for Phase 1 we have experimented with 2 simulation

modes. The Atomic mode models a simple 5-stage pipeline In-Order CPU that can ac-

cesses the memory hierarchy without any resource contention or queuing delay. The

Timing mode models the same simple CPU but its access to memory is realistic and in-

cludes delays. The simulations in Phase 3 are performed using a detailed Out-of-order

CPU model.

In this work, we use a subset of the Barcelona OpenMP Task Benchmark Suite (BOTS) [8].

We changed the default OpenMP parallelization to a Wool [9] implementation. We also

customized this library to signal GEM5 every time a task is completed. In this way, the

simulator is able to keep record of each completed task and to implement the sampling

for Phase 1. Table C.1 lists the benchmark input sets we used in our experiments. Using

these inputs, the full detail simulation of some benchmarks running on the 8-core plat-

forms lasted more than 18 days. For this reason we decided not to increase input sets with

the core count.
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C.6 Results

In the next subsections we present our accuracy, speedup and parameter variation results.

Our design space is defined on 3 parameters: the sample size (ranging from s = 500 to

s = 2000 samples), the number of clusters (ranging from K = 4 to K = 10 clusters) and

the core count (2-, 4- and 8-core systems). We investigate the impact the interleaving

of threads has on profiling the applications and ultimately on the accuracy of the FASTA

results. We experiment with both checkpointing and fast-forwarding in order to determine

the best speedup that we can achieve for our simulations.

C.6.1 Accuracy and speedup results

In order to quantify the error of the FASTA results we define the performance as the

total number of tasks divided by estimated simulated time. We use the complete full-

detail simulation of each benchmark as a baseline. The accuracy error is calculated as

E = (PFASTA − PFull)/PFull where PFASTA is the estimated performance of the FASTA

simulation and PFull is the performance of the baseline.

Fig. C.2 presents the accuracy results for all benchmarks for s = 1000 completed tasks

and K = 6 clusters across all test platforms. More results on the full ranges of both s
and K are presented in Section C.6.2. As the average results show, the accuracy tends to

decrease from 2- to 8-core systems. This trend can be partly explained by the fact that we

did not increase our workloads with the number of cores. Because of this, the clusters are

less differentiated for 8 cores, they can merge together and the selection of representative

samples is erroneous. SparseLU and Strassen are affected by this type of errors. However,

higher errors (like those of FFT and Fib) are due to the way threads interleave on different

runs, this being discussed further in Section C.6.3.

As mentioned in Section C.3.3, using the fast-forward approach during Phase 3 can im-

pact the accuracy of the results, not only the speedup. This is a short-coming of our

experimental framework and not a limitation of the methodology. However, the clearing

of buffers when switching back and forth between simulation modes is not the only cause

for error. Thread interleaving has an impact here as well and is discussed in more details

in Section C.6.3.

Fig. C.3 presents the potential speedups that can be achieved by using FASTA when com-

pared to a complete full detailed execution of the benchmarks. These results are calculated

for s = 1000 completed tasks and K = 6 clusters. Based on our results, we can conclude

that for benchmarks with large input sets like FFT, Sort and Strassen, the checkpointing

overhead is larger so CASP takes longer than fast-forwarding. If we use CRSP or CI then

it will be generally faster than fast-forwarding. For Fib, nQueens and SparseLU check-

pointing is always faster than fast-forwarding. It is also worth mentioning that check-

pointing methods require storage space. FFT, Sort and Strassen need on average 156 GB,

176 GB and 115 GB respectively for a single simulation using the CASP method.
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Figure C.2: The accuracy of FASTA simulations
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Figure C.3: The speedup of FASTA simulations
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C.6.2 Parameter analysis

Fig. C.4 — C.6 show part of our results for the parameter study. Because of space limi-

tation, we only present 2 sets of results for each test platform: the variation of K for s =

1000 and the variation of s for K = 6.

For reasons discussed in Section C.6.3, it is very hard to clearly quantify the effect of s
or K on the accuracy of FASTA. However, for our simulations, we observed that a profile

granularity of 800 - 1000 points gives the best accuracy results. This means, that knowing

the total number of tasks an application will execute, we could calculate the value of s.

For a low value K, several patterns in the profile merge together in a cluster which results

in a poor estimation. Generally, the higher the K the better the FASTA estimation is.

However, we need to consider that K determines the number of samples that are simulated

in detail during Phase 3. If we simulate too many samples during this phase, the potential

speedup of FASTA decreases. So the idea is to select a low as possible K without affecting

the accuracy of the estimation. In our experiments a value of 5 or 6 for K would yield a

good accuracy level.

C.6.3 Thread interleaving

Given a random sample point in an application’s profile, we were expecting to see differ-

ent values of the simulated execution time when we simulate that application in different

modes (Atomic, Timing or Detailed). What we also found was that a sample point will

not contain the same work (the same tasks) across the 3 simulation modes. This can be

seen as a ”shift” of the profile spikes in Fig. C.7. Because of this “shift”, the clusters and

representative points selected in Phase 2 from a low-detail simulation profile do not map

onto the Detailed profile. This behavior causes the FASTA estimations to be erroneous.

This happens because threads do not interleave the same way for different simulation

modes.

FFT calculates the discrete Fourier transform using the Cooley-Turkey algorithm and its

execution is divided in 3 main phases. Because of the recursive approach used, tasks form

a binary tree in each of the algorithm’s phases. As the execution progresses, all sample

points end up containing tasks from each of the 3 phases. The ”shift” visible in Fig. C.7

is caused by races in accessing the data and the way the dependencies among tasks are

handled. The estimation error varies from an average of 7.7% in the 2-core simulations to

an average of 20.2% in the 8-core ones.

Fib, nQueens, Sort and Strassen are also implemented recursively and show the same

behavior. However, how prominent the profile “shift” is differ from benchmark to bench-

mark. We found that the form of the application’s task tree is closely correlated with the

“shift”. Fib and FFT have a binary task tree (2 children for every parent) and they are the

ones affected by the largest profile “shift”. Sort generates a task tree with 4 children for

every parent and it is far less affected than the previous two benchmarks. For Strassen
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Figure C.4: The parameter analysis (K and s) - 2 cores

Figure C.5: The parameter analysis (K and s) - 4 cores

Figure C.6: The parameter analysis (K and s) - 8 cores
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the “shift” is even less significant since its task tree has 7 children for every parent. The

number of parent tree-node translates into the number of situations when the task stream

can change. The higher the number of parent nodes, the higher the chances that race

conditions will determine a different task stream for different executions.

In the case of benchmarks with more than 1 type of tasks (FFT and Sort), resource con-

tention is another cause of changes in the task stream. This can be seen by analyzing an

Atomic mode profile against a Timing mode one. Since the two simulation modes use

the same simple CPU model, the profile “shift” is caused only by races in accessing the

different memory models. By overlapping Timing mode profiles and Detailed mode ones,

we could see yet another type of resource contention: the ones for CPU resources. Due to

space limitation we could not include any such figures in this paper.

We also observed that the profile “shift” becomes more significant with the core count. In

the 2-core experiments we recorded no such behavior, while for the 4-core ones profiles

differed in some cases. The 8-core profiles are affected the most. This is due the fact

that the number of races for resources (software or hardware) increase with the number

of worker threads. So the number of situation when the task stream can change is greater

for a higher core count.

There is 1 benchmark that was not affected by the profile “shift” (see Fig. C.8). SparseLU
calculates the LU matrix factorization. The algorithm divides the input array into smaller

blocks on which computation is performed. This is not a recursive algorithm and only

1 thread spawns all tasks. Because there is only 1 parent task and all children tasks

perform the same work, race conditions do not change the task stream of this benchmark’s

execution. The average estimation error ranges from 0.5% for the 2-core test system to

3.7% for the 8-core one.

The fast-forwarding approach in Phase 3 is also affected by the thread interleaving prob-

lem, even though it is technically a single execution. If an application has a deep task

tree (like FFT or Fib), then switching back and forth between 2 simulation modes will

cause a similar “shift” of the representative samples as the one seen in Fig. C.7. In the

case of SparseLU, using fast-forwarding is almost as accurate as using checkpointing (see

Fig. C.2).

C.7 Conclusion

In this paper, we have introduced FASTA, a simple methodology for reducing simula-

tion time of TBP applications running on multi-core platforms. In a 3-phase approach,

FASTA samples and profiles the execution (Phase 1), identifies representative sample

points through clustering (Phase 2) and simulates in detail the representative points (Phase

3). The results in Phase 3 are weighted and an estimate of the full-detail execution is cre-

ated.

We investigated the challenges of using a sampling based methodology in a multi-threaded
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Figure C.7: FFT - Timing mode profile vs. Detailed mode profile

Figure C.8: SparseLU - Timing mode profile vs. Detailed mode profile
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environment. To adapt to this environment, we propose the number of completed tasks

as a progress metric for sampling. Our experiments over a large design space show that

FASTA estimations error can be below 4% for a certain class of appplications. At the

same time FASTA simulations can achieve up to 12x speedup. Applications that have a

deep task tree, show increasing estimation errors with the core count. The reason for these

errors is the interleaving of threads that causes a different task stream for each simulations

mode. As a result, the representative samples calculated from a low-detail simulation pro-

file are not representative for the detailed simulation. We also determined that the level

in which the task stream changes between runs is correlated with the number of parent-

nodes in an application’s task tree. Our parameter analysis shows that for K = 6 clusters,

in most cases the estimation error of FASTA is below 5%. These results are encouraging

and they recommend FASTA for future research.
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Abstract
From HPC systems to embedded devices, energy consumption is becoming a dominant

factor in managing costs. With Chip multiprocessors becoming the platform of choice in

almost all ICT segments, software developers need to employ parallel programming to

fully exploit this architecture. However, parallelization adds a management overhead to

the execution of an application. In this paper, we study parallel applications implemented

using two TBP libraries, Wool and Intel TBB. We explore both compute and memory

bound executions. We also investigate the energy footprint of the parallelization over-

head and the effect it has on the energy-efficiency of the executing system. Our study

looks into the behavior of some basic parallelization operations like task spawning, task

synchronization and task stealing. We encountered situations when the number of task

stealing operations grows exponentially with the core count increasing execution time.

This behavior drastically reduces the energy-efficiency of those executions. Avoiding

such behavior is crucial if future parallel systems are to reach their performance poten-

tial. Our results also show that the energy efficiency for compute intensive applications

improves with the core count while for memory intensive application that is not the case.
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D.1 Introduction

With increasing concerns about energy cost and battery life, almost all ICT segments

today focus on reducing power requirements and saving energy. For HPC systems and

data centers, high energy consumption translates into high cost of operation. High per-

formance CPUs dissipate a lot of heat and require powerful cooling systems to keep them

running. This results in over 30% of the energy consumed for solving an HPC task be-

ing “wasted” on cooling [1]. For embedded and mobile systems, energy consumption

relates to battery life and the amount of time the device can operate without recharging or

changing its battery.

For high performance CPU architects, power density and not energy itself is the main

development constraint. In order to mitigate this power wall along with other limitations

like the memory wall or the ILP wall, CPU designers introduced Chip multiprocessors

(CMPs). This architecture makes it possible to utilize the increasing transistor count pro-

vided by improvements in production technology without a power budget growth [8]. Ex-

ploiting both instruction and thread level parallelism, CMPs allow an increase in aggregate

performance that was not possible through traditional superscalar approaches. However,

CMP architectures can not be fully exploited using traditional sequential programming.

Parallel programming is needed in order to take full advantage of their resources and

ultimately improve the energy efficiency of the system. For this reason, there is a consid-

erable interest in programming models that can simplify parallel programming and make

it available for mainstream programmers. We focus on Task Based Programming (TBP), a

parallel programming model that has received significant attention recently [3, 7, 11, 17].

This work is a first step towards understanding the energy overheads of TBP applications.

To achieve this, we study the energy footprint of the overhead introduced by parallel pro-

gramming. We define the energy footprint as the energy spent for executing the given

application or section of code in the context of the test system. We first investigate the

applications as a whole and then look at key parts of TBP parallelization like task spawn-

ing, task synchronization and task stealing/migration. We chose these task management

operations because they are the fundamental building blocks of TBP libraries.

To allow for extensive, noninvasive measurements in our study, we use a performance

simulator and a power estimation tool. We use micro-benchmarks to study the parallel

overhead and its effect on both compute and memory bound TBP applications. We paral-

lelized our benchmarks using the Wool [7] and TBB [17] libraries and we computed the

energy footprint for the basic TBP operations mentioned above. Our results show that

task stealing operations can become real “power hogs” as the core count increases. Such

behavior needs to be avoided for TBP libraries to reach their performance potential on

future processors.
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Algorithm 3 Wool scheduling loop
procedure DO_WORK( )

i = 0

while True do
if i > 0 then

i = i -1

victim_thread = victim_thread + 1

else
i = random()

victim_thread = i

next_task = steal (victim_thread)

D.2 Task Based Programming Background

TBP libraries allow programmers to exploit concurrency by partitioning an application

into tasks. Task are small regions of code that perform a specific function and that can

be executed in parallel with other tasks. Dependencies among tasks are either specified

by the programmer [7] or are inferred automatically based on annotation of procedure

declarations [5, 15]. At runtime, tasks are distributed automatically to available process-

ing units and all dependencies are enforced. This approach frees the programmers from

managing and mapping the parallel threads onto the CMP.

For TBP, there are two programming styles that can be used to define the control flow.

Direct style includes a synchronization operation that can be used to wait for the comple-

tion of a set of tasks before starting another one. This approach gives the programmer the

flexibility to alter the control flow but also the responsibility to ensure that all tasks are

synchronized [7]. The second style is called continuation-passing style where the com-

pletion of the current tasks returns a pointer to the next task to be executed. This program-

ming style creates portable code and exposes optimization opportunities for compilers by

simplifying the control flow [17]. In our study, Wool is a direct style library while Intel’s

TBB has a continuation-passing approach.

D.2.1 The Wool Programming Model

Wool was developed by Karl-Filip Faxén at the Swedish Institute of Computer Science.

The main goal of Wool is to provide a simple programming interface and to ensure a

very low parallel overhead. It is built on top of pthreads for thread management and has

a scheduler based on a work-stealing. Being a direct style library, Wool facilitates the

parallelization of existing code [7].

The user can supply the number of threads an application will start through a command

line argument. To ensure the best distribution of work, the recommendation is to use 1

thread per physical core. Each worker maintains a set of data structures for implementing

task management, in particular a pool of tasks that are ready to execute. Tasks are created
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Algorithm 4 TBB scheduling loop
procedure WAIT_FOR_ALL( )

repeat
repeat

while task is available do
next_task = current_task->execute()

Decrease ref_count for parent of current_task

if ref_count == 0 then
next_task = parent of current_task

current_task = get_task()

until current_task == NULL

current_task = steal_task(random_victim())

if steal unsuccessful then
Wait a fixed amount of time

if waited too many times then
Suspend and wait for signal from master thread

until root_task is dead

(spawned) and added to the task pool of the worker that spawn them. From the task pool,

tasks can be executed by their owner or can be stolen by other workers. Load balancing

is achieved through work-stealing. The user can control this mechanism by supplying the

number of tasks that are marked as stealable in each pool. When an application is started,

only the main thread has work to do and all other workers start an infinite loop trying to

steal work (see Algorithm 3). Tasks can spawn other tasks, resulting in a hierarchical task

tree where the execution of a task is dependent on the completion of all its “children”.

D.2.2 The Intel TBB Programming Model

TBB is a C++ template library design by Intel to help programmers create portable, paral-

lel applications using task parallelism. The library includes algorithms, highly concurrent

containers, locks and atomic operations, a task scheduler and a scalable memory allocator.

Like Wool, load balancing is achieved through work-stealing. TBB provides an increased

parallelism abstraction that avoids the low level programming inherent in the direct use

of threading packages such as pthreads [17].

When TBB is first initialized, a set of worker threads is started and the calling thread

becomes the master thread. Like Wool, the user can supply the number of threads through

a command line argument. Each worker is assigned a task queue which is used to enqueue

parallel tasks. The scheduling loop that runs on each worker consists of 3 nested loops

responsible to obtain work(see Algorithm 4).
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D.3 Basic TBP functions

In this paper, we study the impact the parallelization overhead has on the execution per-

formance and ultimately on the its energy-efficiency. To do that, we focus on some basic

operations of TBP libraries like task spawning, task synchronization and task stealing.

For each of them, we estimate an energy footprint in order to identify potential “energy

hogs”. In the next subsection, we summarize how both Wool and TBB implement these

basic TBP operations.

D.3.1 Wool Macros

Wool provides a set of task definition macros in the form:

TASK_n{rtype, name, arg_type1, arg1, ... , arg_typen, argn}

where n defines the arity (number of arguments) of the task, rtype is the type of the return

value, name is the name of the task and arg_typei is the type of the ith argument. For

a task called example_task defined in the above manner, Wool provides the following

operations [6]:

SPAWN{example_task, arg1, ... argn}

SYNC{example_task}

CALL{example_task, arg1, ... argn}

SPAWN makes the task available for execution by adding it to the thread’s task pool. A

task is designated stealable if it is among the first s tasks spawned, where s is a command

line argument. Marking a tasks as stealable adds a small overhead to the spawning oper-

ation. From the task pool, tasks can be executed either by the worker that spawned them

(inlined execution) or by another worker after a stealing operation. When executed, a task

can spawn other tasks which will result in a task tree with hierarchical dependencies.

SYNC is used to invoke the most recent spawned task in the pool having the name given

as argument. This operation can succeed if that task is in the task pool of the current

worker or it can fail if the task was stolen by another worker. If the operation fails, the

current thread will try to steal some work so that it keeps busy. However, in order to avoid

a deadlock situation, it will only steal from the thief that stole the original task. This

method is called leapfrogging [19].

CALL is an optimized operation for task invocation, being equivalent to a SPAWN fol-

lowed by a SYNC. Since the calling thread is the one who will execute it, the tasks is

neither added to task pool nor marked as stealable. This makes this function faster than a

SPAWN succeeded by a SYNC.
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Wool also provides macros for parallelizing loops. The LOOP_BODY family of macros

is used to defined the body of the loop and the FOR macro is used to execute the iterations

in parallel.

LOOP_BODY_n{name, grainsize, index_type, index,

arg_type1, arg1, ... , arg_typen, argn}

where n defines the arity, name is the name of the loop body, grainsize is used to balance

parallelism versus overhead, index is the index variable of the loop and index_type is its

type. arg_typei refers to the type of the ith argument.

A parallel loop is invoked using

FOR{name, b_low, b_high, arg1, ... , argn}

where name is the name of the loop body, b_low and b_high are the iteration bounds and

argi are loop invariant arguments.

Apart from the main thread, all workers are executing a procedure called Do_work() (see

Algorithm 3). This procedure is basically an infinite loop for stealing work. In order to

reduce execution time, Wool implements a quasi-random selection of the victim thread:

workers are scanned sequentially and only once in a while a randomize function is called.

Since a task can spawn other tasks, a worker can populate its task pool after only one

successful steal and will have to empty it before returning to the Do_work() procedure.

In our experiments we estimate the energy-footprint of the SPAWN and SYNC operations

as well as the steal() function. We also investigate the reasons for the different outcomes

of all these operations.

D.3.2 TBB Methods

In TBB applications, tasks are described as C++ classes derived from the tbb::task base

class. The tbb::task class includes a virtual method called execute() used for describing

the body of the task. The programmer needs to define this method for each task class that

he creates.

Once a task has been instantiated, it can be launched by a spawn( task ) method and added

to the task queue. From the task queue the task is available for execution or stealing. A

task can instantiate and spawn other tasks creating a hierarchical task tree.

TBB allows parallelism to be annotated both explicitly, through spawn( task ), and im-

plicitly , through some templates. A list of these templates is given below:

parallel_for <range, body>

parallel_reduce <range, body>

parallel_scan <range, body>
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Figure D.1: Normalized EDP of the three micro-benchmarks for both Wool and TBB

libraries

parallel_while <body>

parallel_sort <iterator, compare>

Each worker thread is running a scheduling procedure called wait_for_all() consisting of

3 nested loops which is shown in Algorithm 4. The inner loop is executing the current

task by calling the execute() method. Since TBB is a continuation-passing style library,

the completion of this tasks returns a pointer to the next task that needs to be executed.

If a new task is not referenced, the inner loop exits. In the middle loop the get_task()
method tries to dequeue the local task queue using a LIFO order. If successful, the inner

loop is called again. If unsuccessful because the queue is empty, the middle loop exits

and the outer loop invokes the stealing mechanism. If stealing fails, the current worker

backs off for a period of time and then selects randomly a new victim. While fast and easy

to implement, this method is not fair: the same worker can be selected as victim several

times even if it does not have the largest task queue [4].

In this work, we investigate the energy-footprint of the spawn(), get_task() and steal()
methods.

D.4 Methodology

D.4.1 Simulation tools

We performed our experiments using a new parallel x86 computer architecture simulator

called Sniper [2]. Sniper uses the interval core model [9] and Graphite simulation in-

frastructure [14] to provide fast and accurate simulations. We modeled a Nehalem-based

Xeon 5500-series multi-core CPU (code name Gainestown) with a clock frequency of
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Table D.1 Main characteristics of modeled processor

Parameter Value

Core

Clock frequency 2.66 GHz

Instruction set x86-64

Dispatch width 4

Window size 128

Core count 1-,2-,4-,6-,8-,12-cores

Cache

Size Assoc. Replacement policy

L1 iCache/dCache #cores x 32KB 4/8 LRU

L2 Cache #cores x 256KB 8 LRU

L3 Cache 2/4/8/12/16/24 MB 16 LRU

Main memory

Size 2/4/8/12/16/24 GB

Number of 1/2/4/6/8/12

Memory Controllers

2.66 GHz and 3 levels of cache. Table F.1 presents the main characteristics of the mod-

eled processor.

The performance results from Sniper are fed into a power estimation tool called McPAT

[13]. An important characteristic of McPAT is its ability to model dynamic, static and

short-circuit power. Dynamic power refers to the power required by a circuit to switch

from one logical state to the other. For each system component, dynamic power is defined

as: powerdynamic ∼ AF · C · V 2
dd · f , where AF is the activity factor, C is the total load

capacitance, Vdd is the supply voltage and f is the clock frequency [10]. Switching cir-

cuits also dissipate short-circuit power which McPAT modeles analytically. Static power

is caused by current leakage during periods of non-activity. McPAT estimates leakage

current using models of real-world CMOS circuits.

All our benchmarks were parallelized using Wool version 0.2 and TBB version 4.1.1.

In order to isolate and measure only the overheads introduced by task spawning, task

synchronization and task stealing we customized both libraries. We added some special

instructions called markers in the beginning and at the end of each function of interest.

These markers are recognized by Sniper and a label is added to results reported when

executing the region of code in between two markers.

D.4.2 Benchmarks

In this work, we use micro-benchmarks to measure the parallelization overhead with as

little interference as possible from other sections of the execution. Stress is a recursive

micro-benchmark that creates a balanced binary task tree. The leaf nodes perform a num-

ber of additions while most of the execution is comprised from spawning the task tree and

load-balancing the workload through task stealing. The user can change the number of

operations performed by the leaf nodes as well as the depth of the task tree through com-
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mand line arguments. This is a compute-intensive benchmark having no memory traffic

outside the on-chip caches.

To test and measure the impact of the parallelization overhead on a memory-intensive

execution we used another micro-benchmark called MemStress. This applications creates

the same balanced task tree as Stress. The difference is that the leaf nodes of MemStress
perform simple operations with the elements of a large array. The array is large enough

that it can not be stored in the private caches and its elements are accessed in a non-

sequential way. Again, the user can control the size of the array, the depth of the task tree

as well as the stride used to read the array’s elements.

The third micro-benchmark we use is called MatrixMul(MM) and performs a matrix mul-

tiplication. The result of the multiplication is computed using subarrays (or blocks) of the

operands rather than the whole arrays. With this approach, the small blocks can be loaded

into the private caches allowing for a faster computation. By modifying the size of the

blocks, this application can be either compute- or memory-intensive. Another particular-

ity of this micro-benchmark is that it uses parallel FOR operations to express parallelism

compared to the explicit task creation of Stress and MemStress.

D.5 Results

Before investigating the task management operations individually, we first take a look at

the parallel executions as a whole. To quantify the energy-efficiency of each execution we

use the Energy-Delay Product (EDP) metric. EDP ensures a balanced comparison among

the test systems by putting equal weight on both energy consumption and performance. To

allow a better visualization of all results in Fig. D.1 we normalized our results. For each

benchmark, we normalized to the maximum value of each pair of executions (Wool and

TBB) across all core counts. Consequently, it is unfair to compare the values of different

benchmarks in Fig. D.1. Stress (dashed lines) and MM (dashed and dotted lines) show the

typical trend of a compute-intensive application: execution time (and consequently EDP)

decreases with the core count. MemStress shows the exactly opposite trend: more cores

translate into more conflicts in accessing the memory which leads to longer execution

time (and higher EDP values). The high concurrency for hardware resources has also

an effect on the amount of parallel overhead in Wool. In Fig. D.1, the Wool version of

MemStress overtakes the TBB version for the 12-core platform. This happens because the

overhead of stealing grows with the core count which is discussed later in this section.

There are two challenges that need to be addressed when parallelizing an application:

ensuring a balanced workload and reducing the parallel overhead. Both Wool and TBB

use work-stealing to distribute tasks among the worker threads and both mechanisms

achieve a good balance. If there are enough tasks to be executed, both libraries will

distribute them among available threads which ensures a good use of hardware resources.

The functions/methods we studied in this paper are all part of the parallelization overhead.

132



(a) Stress

(b) MemStress

(c) MM

Figure D.2: Energy footprint
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The number of times these functions are called as well as the way they manage data impact

the performance of the application and ultimately the energy-efficiency of the system.

We estimate the power requirements of the system when executing these functions and

computed the energy footprint of each of them.

Fig. D.2 and D.3 show the results of our energy footprint study. Fig. D.2 shows the energy

footprint of the task management operations while Fig. D.3 shows how much of the total

execution’s energy all the task management operations account for (in percentage). For

a better visualization of MM’s results in both Fig. D.2 and D.3, we used a logarithmic

scale.

In Fig. D.2 is apparent that for both libraries, the energy footprint for task spawning and

synchronization does not increase with core count. This happens because the number of

spawns and syncs is related to the size of the input set which we kept constant across all

simulation platforms.

The stealing operations on the other hand show an increase of the energy footprint with the

core count. This is due to the fact that stealing operations can be unsuccessful. A failed

attempt forces the thief (the thread that is trying to steal) into a spinning cycle before it

can try to steal again. Attempting to steal work from a thread with an empty queue or

race conditions between two thieves are the most common situations for an unsuccessful

steal for Wool. Stealing can also fail if the victim thread has no tasks marked as stealable.

Wool has a very aggressive stealing mechanism which translates into a large number of

unsuccessful attempts.

In Wool, each worker thread tries to execute the tasks in its pool in LIFO order. It can

happen that a synchronization operation may fail because the task was stolen by another

thread. In this situation, the current thread will try to steal work from the thief thread in

order to keep busy (the leapfrogging technique). This means that a thread may be forced

to steal tasks even if his own pool is not empty.

As the number of races for hardware resources increases with the core count, so is the

number of unsuccessful steals. This means that stealing operations take up a larger part of

the execution as the number of cores increases (see Fig. D.2). This can be seen in Fig. D.1

also. There, the high number of unsuccessful steals in the Wool version of MemStress
gives it a higher EDP value than the TBB version for the 12-core platform.

TBB has a different approach for task stealing and execution. As mentioned before, the

scheduling loop that runs on each worker thread consists of 3 nested loops (see Algo-

rithm 4). In addition, after several unsuccessful attempts, a thief will suspend execution

and wait for the main thread to generate more work. As a result, TBB applications per-

form far less stealing operations than Wool ones. Also, the number of TBB steals does not

increase with the core count as fast as the Wool ones. This means that for high number of

cores, stealing will not be the dominant task management operation in the execution (see

Fig. D.2).

Fig. D.2 also shows a big difference between the energy footprint of Wool’s sync operation
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(a) Stress

(b) MemStress

(c) MM

Figure D.3: Energy footprint - percentage of the total execution
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for the three benchmarks. Because of stealing, there can be more than one worker who

tries to acquire a task. To ensure a “first come first served” order during races, the sync

operation includes a memory fence. This fence forces the current worker thread to wait

for the completion of all memory operation issued up to the current time before it can

try to acquire the task. For Stress and MM there are few such memory operations so the

syncs are fast. However, for MemStress many memory accesses are issued and the sync

operations spend a lot of time waiting for their completion. In this regard, there is a big

potential for energy-efficiency improvements in Wool.

Finally, the results of MM give us an insight into the role the tasks granularity plays in the

parallelization overhead. MM creates a relative small number of tasks compared to the

other two benchmarks (899 vs 32767 tasks) which means there are more races in acquiring

the tasks. Again, the aggressive stealing makes Wool “waste” a lot of energy on failed

attempts. Stealing operations become the dominant starting with the 2-core system, when

120 mJ are consumed for stealing, 70 μJ for spawning and 37 μJ for synchronization.

Spawns and syncs consumption does not increase much with the core count but stealing

ends up consuming 11.5 J for the 12-core system, 15.3% out of the total consumption

(see Fig. D.3). By contrast TBB consumes 473 μJ for spawning, 32 μJ for the Get task()
method and 134.2 mJ for stealing for the 12-core system. These results show that TBB is

better suited to deal with coarse task granularity than Wool.

In Fig. D.3, both Stress and MM show the same trend as in Fig. D.2. The overhead of

stealing grows with the core count (for both libraries) and in Wool’s case it becomes the

dominant component.

Because MemStress is a memory bound application, increasing the number of cores does

not lead to a reduction of execution time. When you couple this with the fact that power

requirement increases with core count you end up with a trend for energy consumption

similar with the EDP trend in Fig. D.1. The trend of MemStress in Fig. D.3 can be

explained by the fact that the energy footprint of the task management operations does

not increase that much with core count (see Fig. D.2) while the total energy consumption

of the application does.

D.6 Related work

To the best of our knowledge, there is no other study that quantifies the energy consump-

tion of parallel overhead for any TBP libraries. Instead, many authors have focused on

characterizing and improving existing parallel libraries from the performance point of

view or doing comparative studies of several libraries.

Vandierendonck et al. advocate the use of TBP models with nested task spawning for

writing general-purpose programs [18]. The authors developed a Cilk-like language to

express parallel pipelines and extended a Cilk-like scheduler to recognize and enforce

argument dependency types on task spawns. This programming model enhances the ease
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of programming parallel pipelines by expressing the parallelism densely.

Contreras and Martonosi study and characterize some of the overheads of Intel’s TBB

[4]. They concluded that task management operation can have a detrimental effect on the

performance of parallel execution for core counts higher than 8 cores. The authors also

note that random stealing fails to scale with increasing core counts and that alternative

policies that consider the current state of the runtime library can improve performance in

these situations.

Podobas et al. do a performance comparative study of several TBP libraries, including

Wool [16]. They use both micro-benchmarks and a subset of the BOTS suite to char-

acterize application performance and the costs for task creation and stealing. The study

concludes that Wool has the lowest overhead for task spawning and task stealing.

Li and Martinez studied the power-performance implications of running parallel applica-

tions on CMPs [12]. Using both an analytical model and detailed simulations, the authors

show that parallel computing can bring significant power savings and still meet a given

performance target. These savings can be achieved through judiciously selections of the

granularity and voltage/frequency levels which illustrates the dependency of the optimum

operating point on multiple interacting factors.

D.7 Conclusions

Due to limitations like the power wall, the memory wall and the ILP wall, CPU develop-

ment could not longer follow the performance increase trend the superscalar architecture

enjoyed. The CMP architecture was introduced to mitigate these development constraints

and to provide a performance increases for new generations of CPUs. This new hardware

architecture can not be fully exploited with traditional sequential programming and paral-

lelization needs to be employed. To ensure the best utilization of the hardware resources

and an increased energy-efficiency of the system, parallelization overhead needs to be ad-

dressed. In this paper, we investigated the energy footprint of some basic parallelization

operations for two parallel libraries. We used micro-benchmarks to isolate and measure

the parallelization operation for both compute and memory intensive executions.

Our results show that Wool parallelized benchmarks have a smaller energy footprint com-

pared to the TBB versions. This is not surprising, since one of Wool’s development goals

was to have a small parallel overhead. However, the parallelization approach used in

Wool is far from being the most energy-efficient. The stealing mechanism is very aggres-

sive and the number of unsuccessful steals grows exponentially with the core count. This

approach makes the energy cost of stealing operations increase with the core count. In

contrast, TBB has a far more “peaceful” implementation for task stealing. Threads that

fail to acquire work several times enter a sleep state and are awoken by the main thread

when work becomes available. This translates into significantly less failed steals com-

pared to Wool executions. However, TBB is a much more complex library and includes
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more constructs to help the programmer express parallelism in more ways. It also has

a higher abstraction level to hide this complexity from the programmer. All these re-

quire more “management operations” (many others than those studied in this paper) that

translates into a longer execution times.

In regard to other parallelization functions, our results show that both libraries handle well

operations like task spawning and task synchronization. There is no indication that these

task management operations do not scale well with the core count for either libraries. With

better care for the data structures used in Spawn() and Get_task() methods, the results of

TBB can be significantly improved.

With this research we want to promote a more energy aware parallel programming. We

think that by designing parallel software that can better exploit current multi-core chips,

we can address an issue that has increased in importance over the last years in ICT field:

energy consumption. Developing parallelization libraries that can scale with core counts

and that have a dynamic approach to solving workload imbalance is a first step towards

that goal. TBB and Wool both qualify in this respect, but both of them can be improved

from an energy-efficiency point of view. We think this topic is promising and will continue

our study in future work.
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Abstract
With the wide adoption of Chip Multiprocessors (CMPs), software developers need to

switch to parallel programming to reach the performance potential of CMPs and max-

imize their energy efficiency. Management overheads due to parallelization can cause

sub-linear speedups and increase the energy consumption of parallel programs. In this

paper, we investigate the parallelization overheads of Intel TBB with a particular focus

on its victim selection policy. We implement an “all knowing” oracle victim selection

scheme as well as a pseudo-random scheme and compare them against TBB’s default

random selection policy. We also break down TBB’s parallelization overheads and report

how basic operations like task spawning, task stealing and task de-queuing impact the en-

ergy footprint. Our experiments show that failed task stealing is by far the highest energy

consumer. In fact, the oracle victim selection policy can reduce the application energy

footprint by 13.6% compared to TBB’s default policy.
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E.1 Introduction

Energy consumption has become the main challenge for almost all systems in the infor-

mation world, from HPC to embedded devices. Architects and developers are trying to

find solutions for problems ranging from reducing the high cost of operation of data cen-

ters to maximizing the battery life of mobile and embedded systems. For over 20 years,

techniques like transistor-speed scaling, pipelining, out-of-order execution and specula-

tion have increased CPU performance at a rate of 50% per year [3]. However, diminish-

ing returns from transistor scaling and power budget limitations has almost removed the

single-core performance improvement trend.

The introduction of Chip Multiprocessors (CMPs) enabled the mitigation of development

constraints like the power wall and the ILP wall. CMPs allow chip designers to utilize

the increasing transistor count available with each new generation without increasing the

power budget [10]. However, to fully take advantage of this architecture, parallel soft-

ware is required since the performance potential of CMPs lies in exploiting thread level

parallelism. This places a new burden on the software developers because there is no

widely adopted programming model that facilitates easy parallelization. In this work, we

focus on Task Based Programming (TBP) which is a parallel programming model that has

received significant attention recently [6, 8, 13, 21].

To reduce the impact of parallelization overheads, a necessary first step is to identify the

root cause of such overheads. To this end, we investigate the extra instructions added by

parallelization management and the energy consumption of these instructions which we

refer to as the energy footprint. More precisely, the energy footprint is the energy spent

for executing the given application or section of code in the context of the test system.

In our experiments, we utilize Intel’s Thread Building Blocks (TBB) [21] library for par-

allelization. TBB is a C++ template library designed to help programmers create portable,

parallel applications using task parallelism. It was designed to avoid the low level pro-

gramming inherent in the direct use of threading packages such as pthreads [21].

To allow for extensive and noninvasive measurements, we use a performance simulator

and a power estimation tool in our study. We implement two victim selection policies in

addition to TBB’s random policy and report the performance and energy overheads of 5

PARSEC benchmarks [2]. We also break down TBB’s overheads and look into basic TBP

operations like task spawning, task stealing and task de-queuing. In our results, failed

steals are the highest contributor to the overheads’ energy footprint. With more accurate

victim selection, the energy footprint of the application can be reduced by up to 13.6%.

E.2 Intel TBB

The concept of parallel programming is almost as old as the computer itself. Over the

years, many parallel languages have been developed and a multitude of research was done
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Figure E.1: Components of TBB’s task scheduler

in an effort to improve raw performance and maximize hardware utilization [19]. With

the majority of those approaches, one factor was often overlooked: the composability

of the resulting solution. Composability of an applications refers to its ability to run

efficiently side by side with other applications and being able to cope with the fact that it

does not have exclusive access to the hardware resources [18]. In today’s multi-core era,

if parallel applications are not developed to dynamically scale and take advantage of all

the resources that are available to them, the overall efficiency of the system suffers. In this

work we focus on Intel’s TBB version 4.1.1., which was design to ensure a high degree

of composability.

TBB allows parallelism to be annotated both explicitly, by calling the spawn() method,

and implicitly, through some templates like parallel_for or parallel_reduce. Tasks get

created by the spawn() method and then added to the calling thread’s task queue inside

the arena (see Fig. F.1). From the arena the task is available for execution by its owner

thread or by other workers through stealing. A task can instantiate and spawn other tasks

resulting a hierarchical task tree.

When an application thread instantiates the tbb::task_scheduler_init object, that thread

becomes a TBB master thread (MT). All threads created by TBB to help complete the

work of the MT are called worker threads. The Resource Management Layer (RML)

is the component that hosts the pool of worker threads and gets instantiated first (see

Fig. F.1). No worker threads are created at this point, this being postponed until the first

task is spawned.

Next a Market component is instantiated. This component was added in version 3.0 of

TBB to ensure the composability of the framework. It guarantees that the work (the tasks)

of one MT are isolated from other MTs that may be executing on the same machine.

The role of the market is to assign workers to the arenas of each MT. The limit of the

total number of workers available is set to 1 less than the maximum of the argument

of the tbb::task_scheduler_init constructor and the total number of logical CPUs on the
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executing system.

Finally, the Arena associated with calling MT gets allocated. An arena encapsulates all

the tasks and the execution resources (worker threads) available to a MT. Each arena is

assigned a number of slots representing the number of workers the arena requires to per-

form its parallel tasks. This is defined as 1 less than the minimum of the argument of the

tbb::task_scheduler_init constructor and the total number of workers available (limit set

by the market). Because several MTs can coexist, the total number of workers requested

by all arenas can be greater than the number of workers available in the RML’s pool. In

this situation, the market will allot workers proportionally to each MT’s request.

All these components and limits are created only once, during the first instance of the

tbb::task_scheduler_init object in the current execution. If an MT is not the first one to

call the task scheduler, it will only create a new arena that will comply with the limitation

imposed by the market. Upon creation or destruction of an arena, the worker threads can

migrate between the active arenas.

After they are created, each worker thread runs a scheduling procedure called wait_for_all()
consisting of 3 nested loops. The inner loop is executing the current task by calling its

execute() method. TBB is a continuation-passing style library which means that the com-

pletion of this task returns a pointer to the next task that needs to be executed. If a new

task is not referenced, the inner loop exits. In the middle loop the get_task() method tries

to dequeue the local task queue using a LIFO order. If successful, the inner loop is called

again. If unsuccessful because the queue is empty, the middle loop exits and the outer

loop invokes the stealing mechanism by calling the receive_or_steal_task() method.

E.3 The stealing mechanism

E.3.1 The TBB implementation

Stealing is part of the receive_or_steal_task() method. This method includes some other

techniques to find a new task to execute than just stealing: mailing tasks via task-to-

thread affinity mechanism, reload offloaded non-priority tasks, reload tasks abandoned by

other workers. Receive_or_steal_task() method runs an infinite loop and calls each of the

above mentioned mechanisms, stealing being the last one. Before a steal is attempted, a

victim thread is selected randomly from the current arena. If the attempt is successful,

the method returns and the scheduler re-enters the inner loop. If unsuccessful, a failure

counter is incremented and the execution pauses before looping back. Also, if the failure

counter surpasses a given threshold (default value is 100), the current worker thread is

freed and returns to the RML.

The first step when a steal is performed is to use the lock_task_pool() method and try to

get a lock on the victim. If the lock_task_pool() fails, the worker thread goes through

a 5 steps exponential backoff. After 5 fails, the current thread yields its resources and
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waits for its next time slot to try again locking the same victim. This locking mechanism

assures the high composability of TBB we discussed in Section E.2. However, since we

simulate 1 thread / hardware core, the yielding function returns immediately and the thief

thread will continue to try to lock its victim.

A stealing attempt can fail for several reasons. The most common situation is selecting

from a victim with an empty task queue. Applications with an unbalanced workload

distribution face this problem often.

Race contention is also a common situation for failure. When 2 or more threads are trying

to get exclusive access to the same task queue by calling the lock_task_pool(), only one

can succeed. A thief can return from the lock_task_pool() only if it either succeeds or the

victim’s task queue has been depleted.

A special situation is when a thief thread is competing for access with the owner thread

of that task queue. If there are more than 1 task in the queue, there is no race contention

because the thief will steal at one end while the owner will dequeue the other. However,

if there is only 1 task in the queue, the owner thread will have priority and the thief will

backoff even if it already acquired the lock.

E.3.2 The oracle selection scheme

In an attempt to set an upper bound for the performance gain, we first implemented an

“all knowing” scheme we call oracle selection. This method leverages on the fact that

we use a simulator and not a real machine and it provides TBB with information that

would be otherwise very “expensive” to obtain. We created a data structure to store the

occupancy of all tasks queues in the arena as well as the level of congestion for each

queue (the number of workers trying to steal from this queue). This structure is stored

outside the simulated memory space in our simulator and is updated by the application

through specialized instructions called markers. Since we do all this computation outside

the simulated environment, our TBB application sees the victim selection as an extremely

fast procedure. The queue with available tasks for stealing and with the lowest congestion

level is selected as victim. This oracle scheme provides very fast and accurate results, but

it is not optimal. There are still situations when updates to our structure do not propagate

fast enough and the selected victim ends up creating conflicts.

E.3.3 The pseudo-random selection scheme

The second selection method we implemented is a pseudo-random scheme inspired by

the Wool library [8]. For the first stealing attempt, we randomly select a task queue.

If stealing from this victim fails, we then start a loop and sequentially scan the other

active task queues, excluding the one of the current thread. In this way we will first

try to steal from all possible queues before looping back in the receive_or_steal_task()
and selecting a new random victim. Also, we removed the call to the yielding function
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Table E.1 Main characteristics of modeled processor

Core Cache Main mem.

#cores
1-,2-,4-,

Size Assoc.
8-,16-cores

Clock
2.66 GHz L1 i/dCache #cores x 32KB 4/8

frequency
Size

2/4/8/

Instruction
x86-64 L2 Cache #cores x 256KB 8

16/32 GB

set

Dispatch
4 L3 Cache

2/4/8/
16

width 16/32 MB

Window size 128

from the lock_task_pool() and forced the method to return after the 5 steps exponential

backoff. This approach eliminates the conflicts caused by the immediate return of the

yielding function, but it will also make the stealing mechanism a bit more aggressive

since it allows it to select new victims faster. It is worth mentioning that by doing this,

we did not eliminate TBB’s composability feature since yielding is implemented in more

than one place.

E.4 Methodology

E.4.1 Simulation tools

We performed our experiments using a parallel, x86 computer architecture simulator

called Sniper [4]. Sniper uses the interval core model [11] and Graphite simulation infras-

tructure [17] to provide fast and accurate simulations. Our model is based on a Nehalem-

based Xeon 5500-series multi-core CPU (code name Gainestown) with a clock frequency

of 2.66 GHz and 3 levels of cache. Table F.1 lists the main characteristics of the modeled

processor.

The performance results from Sniper are fed into a power estimation tool called McPAT

[15]. An important characteristic of McPAT is its ability to model dynamic, static and

short-circuit power. Because we use only one CPU model, for a given core count the

static power is a constant value. This is why for all our experiments we computed the

energy footprint using only the dynamic power.

E.4.2 Benchmarks

For our experiments, we used the default TBB implementations of Blackscholes, Body-
track, Fluidanimate, Streamcluster and Swaptions benchmarks with the medium input set
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Figure E.2: Executed number of instructions and speedup

from the PARSEC suite [2]. Collectively, these benchmarks express parallelism both ex-

plicitly as well as through some templates like parallel_for, parallel_reduce and pipelines.

They also employ some special TBB constructs like cache affinity partitioners and cache

allocators. All these provide a wide test base for our study.

Parallelization was done using TBB version 4.1.1. which we customized in order to iso-

late and measure the overheads introduced by task spawning, task de-queuing and task

stealing. We added special instructions called markers in the beginning and at the end

of each function of interest to allow us to make measurements on the enclosed region of

code.

To ensure statistically stable results, we performed 10 simulations of each benchmark

for every core count. We averaged the performance results before estimating the power

requirements. We computed the standard deviation (σ) of the execution time for each 10

simulation set as a percentage out of the average value for the set. Our results show a σ
that ranges between 0.09% and 14.1% with no outliers (an outlier is a value that is above

or below 3σ±average value).

E.5 Results

Parallelization overheads often account for the sub-linear speedups of parallel implemen-

tation. While this still means that the work gets done faster, the energy required to com-

plete the parallel execution is often equal or greater than the serial one. In Section E.5.1

we quantify these overheads as the difference in number of executed instructions between

parallel and serial executions. We also break down the the overheads and see how task

spawning, task de-queuing and task stealing impact the parallel execution and its energy

footprint. For better visualization Fig. E.3 is plotted with logarithmic scale on the vertical

axis. Finally, in Section E.5.2 we look into what performance and energy efficiency gains

we can achieve by modifying the victim selection policy.
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Figure E.3: Energy footprint for task management operations

E.5.1 Parallel overheads

Blackscholes employs TBB’s parallel_for template for all the options in the input portfo-

lio. Tasks are created by dividing these options on to the thread workers. This benchmark

uses an auto partitioning algorithm to control the granularity of the tasks in order to han-

dle work imbalance as well as possible. In Fig. E.2 you can see that the overheads are

almost constant across the core count. This shows how small the parallel section is com-

pared to the serial one and also why we see only a 5.8 speedup on the 16 core execution.

Fig. E.3 breaks down the overheads and shows the energy footprint of the task spawn-

ing, task de-queuing and task stealing. Because we kept the input set constant across all

core counts, our total number of tasks increases as we scale up the number of execution

threads, but tasks also become finer. This has two consequences: the energy footprint for

spawning increases from 2 to 16 cores (see Fig. E.3) and the overhead to useful work ratio

per task increases with the core count. Fig. E.3 shows the same trend for the get_task()
method. Second, we have the high number of stealing attempts. The energy footprint for

failed steals is highest among what we measured and the trend is: more cores means more

conflicts which leads to more failed attempts. Successful stealing has a smaller footprint

but the same trend.

Bodytrack uses a 2 stage TBB pipeline construct to process the input images. In each stage

parallel_for templates are used to divide the workload into parallel tasks. The difference

compared to Blackscholes is that a special parameter of the parallel_for template, the

grain size, is used to ensure a minimum size for each task. Similar with Blackscholes,

Fig. E.2 shows a low parallel/sequential ratio as well as a sub-linear speedup. Because

Bodytrack has larger sequential regions throughout the execution, the average number of

threads that are active during the execution is lower than for the other benchmarks. This

means that the worker threads return to RML (see Fig. F.1) because of work starvation

more times. However, before returning, they attempt to steal 100 times each and fail

which drives up the energy footprint (see Fig. E.3).

Fluidanimate computes the interactions between the particles of an incompressible fluid.
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Figure E.4: Victim selection policies - comparison of overheads

Its input set, a matrix describing the positions of the particles, is divided into a grid of

size N*M = the number of threads. For 2 threads we have a 1*2 grid, for 4 threads we

have a 2*2 grid, for 8 threads we have 2*4 grid and for 16 threads we have a 4*4 grid.

For each particle in the grid, the interactions with all its neighbors on the 8 surrounding

directions are computed. When parallelized, this translates into larger lists of tasks that

can be spawned for a square grid compared to a rectangular one. For this reason, our 4-

and 16-cores simulations show fewer calls to the get_task() method and considerable less

attempts to steal when compared to the 2- and 8-cores respectively (see Fig. E.3).

The Streamcluster results are the best in terms of speedup when comparing the parallel

version to the serial one (see Fig E.2). This happens because the input set does not fit

into the cache hierarchy and there is a lot of access to main memory when executed se-

quentially. The parallel tasks use much smaller blocks of data with higher spacial locality.

Coupled with the use of TBB’s cache allocators, this results in almost no misses for the

L3 cache. Spawning and get_task() follow the same trend as those of Bodytrack because

of the same reason: the parallel_for as well as the parallel_reduce templates are used to-

gether with the grain size parameter. Again, failed steals have the largest energy footprint

among what we measured for this benchmark (see Fig. E.3).

Swaptions spawns over 600000 tasks, the largest number among all of our test applica-

tions. Like Bodytrack and Streamcluster, the parallel_for templates are prevented from

dividing the workload too thin. In Fig. E.2 we can see that overheads grow with the core

count which shows a higher parallel/sequential ratio than for the first 3 benchmarks. In

Fig. E.3 we can see how failed stealing footprint grows significantly as the number of

conflicts grows with the core count.

E.5.2 Improving task stealing

TBB uses a random victim selection policy. While fast and easy to implement, this ap-

proach is not fair: the same victim can be selected several times even if it is not the best
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Figure E.5: Victim selection policies - comparison of total energy footprint

candidate [7]. Because we account part of the failed stealing attempts in our experiments

to this exact scenario, we looked into changing the selection policy in order to improve

performance and energy efficiency.

Fig. E.4 shows an overall decrease in the number of executed instructions for our ora-

cle scheme. The results for both our victim selection methods in Fig. E.4 are normal-

ized against TBB’s random results. Benchmarks that have a small number of total tasks

like Blackscholes, Bodytrack and Fluidanimate see only a marginal improvement in both

Fig. E.4 and Fig. E.5. There are numerous phases during the execution of these bench-

marks when all queues are empty. However, these phases are don’t last enough to retire

the workers meaning that they just waste energy trying to steal. Both Streamcluster and

Swaptions show better results with the oracle selection in both Fig. E.4 and Fig. E.5.

Our results with the pseudo-random victim selection are also mixed. Overall we recorded

an increase with all “bad” metrics like the number of failed stealing attempts, the number

of conflicts and backoffs. However, the sequential scanning for victims is “cheaper” in

terms of executed instructions than the default method which can be seen in Fig. E.4.

Again, in terms of energy footprint Blackscholes, Bodytrack and Fluidanimate performed

only marginally better or even worse than the default random selection. Streamcluster is

the only benchmarked that showed improvements in all our test (see Fig. E.5). It is also

worth mentioning that for 16-cores we recorded in average 2.14 times more failed stealing

attempts than the default method. For Swaption, Fig. E.5 shows improvements for 2- to

8-cores but not for the 16-cores execution, where we recorded in average 4.27 times more

failed stealing attempts than the default method. This shows that our pseudo-random

implementation can be a bit too aggressive.
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E.6 Related Work

The energy efficiency of parallel systems and the overheads parallelization brings have

been the subject of many studies. Reducing the power requirements of multi-core CPUs,

improving the energy efficiency of big parallel systems or reducing the overheads of par-

allel implementations have been explored by many researchers and plenty of solutions

have been found. However, to the best of our knowledge, none of them tries to quantify

the energy consumption of parallel overheads.

Li and Martinez studied the power-performance implications of running parallel applica-

tions on CMPs [14]. Using both an analytical model and detailed simulations, the authors

show that parallel computing can bring significant power savings through judiciously se-

lections of the granularity and voltage/frequency levels.

Contreras and Martonosi study and characterize some of the overheads of Intel’s TBB

[7]. They concluded that task management operation can have a detrimental effect on

the performance of parallel execution. The authors also note that random stealing fails to

scale with increasing core counts and that alternative policies can improve performance.

Bhattacharjee and Martonosi propose a thread criticality predictor which they build using

memory hierarchy statistics [1]. The authors implement this predictor in two different

applications. First, they implement it into TBB’s task scheduler and show that task steal-

ing can be improved over the original random approach. Second, they use the predictor

to guide DVFS and to reduce dynamic energy in barrier-based applications. The authors

conclude that the thread criticality predictor offers good accuracy at very low hardware

overhead.

Podobas et al. do a performance comparative study of several TBP libraries, including

TBB [20]. They use both micro-benchmarks and a subset of the BOTS suite to charac-

terize application performance and the costs for task creation and stealing. The study

concludes that Wool has the lowest overhead for task spawning and task stealing. How-

ever, our previous study showed Wool to be far more aggressive when stealing than TBB

which means that as we scale up the core number, Wool will perform worse [12].

The direct task stack is a TBP algorithm for extremely fine grained parallel applications

[9]. Its implementation in the Wool library shows very low overheads for task creation

and task stealing. The experimental result show that Wool significantly outperforms other

implementations like Cilk++, TBB or OpenMP for extremely fine grained parallel appli-

cations (tens of cycles/task).

Vandierendonck et al. advocate the use of TBP models with nested task spawning for

writing general-purpose programs [22]. The authors developed a Cilk-like language to

express parallel pipelines and extended a Cilk-like scheduler to recognize and enforce

argument dependency types on task spawns. This programming model enhances the ease

of programming parallel pipelines.

Chen et al. do a study to evaluate TBB’s scalability against Pthreads implementations
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and to measure some of TBB’s overheads [5]. Their results show possible bottlenecks

that limit the scalability of TBB. They also show that TBB runtime overheads increase

with core counts and in the current implementation will become the main performance

bottleneck when scaling to tens of cores.

Ami Marowka introduces TBBench, a micro-benchmark suite designed for Intel’s TBB

[16]. TBBench is designed to measure the overheads associated with parallel_for and

parallel_reduce constructs and mutual exclusion mechanisms like Mutex, Spin_mutex and

Queuing_mutex. The experimental results show that TBB’s mutual exclusion mechanisms

and scheduler exhibit less overheads than the equivalent OpenMP constructs.

E.7 Conclusion

Intel’s TBB is a runtime library designed to encourage programmers to create portable,

parallel applications using task parallelism. TBB was developed to dynamically scale

on the existing resources, employing task stealing to deal with workload imbalance. Re-

cently, the ICT sector is facing concerns about energy consumption and TBB has the

potential of addressing these issues.

In the current study, we quantified the management overheads involved in parallelizing an

application using TBB. We experimented with three victim selection policies. Using the

“all knowing” oracle selection method, we saw a reduction of up to 60% in the number

of executed instructions which translates into a 13% reduction in energy consumption

compared to random victim selection. The pseudo-random also showed overall better

results than the random scheme, with up to a 5% reduction in the energy footprint. We

also looked at individual TBB operations like task spawning, task stealing and task de-

queuing. Among these, we observed that the task stealing mechanism scales worst with

core count and creates the highest energy footprint.

The results in this work suggest that there is a potential for improving the energy efficiency

of victim selection policies. However, it is still unclear how to reach this potential with a

practical implementation. We plan to investigate this and other issues in future work.
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Abstract
The wide adoption of Chip Multiprocessors (CMPs) in almost all ICT segments has trig-

gered a change in the way software needs to be developed. Parallel programming max-

imizes the performance and energy efficiency of CMPs, but also comes with a new set

of challenges. Parallelization overheads can account for sub-linear speedups and can in-

crease the energy consumption of applications. In past experiments we looked at specific

operations such as spawning new tasks, dequeuing the task queue and task stealing for

Intel TBB. Our results showed that failed steals account for the largest overhead. In this

work, we focus on TBB’s victim selection policy. We implement a new occupancy-aware

policy and we improve the implementation of the pseudo-random policy we proposed in a

previous paper. We compare the results of our new policies against an “oracle scheme” as

well as against TBB’s random victim selection approach. Our results show improvements

in execution times and energy-efficiency of up to 11.23% and 14.72% respectively when

compared to TBB’s default policy.
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F.1 Introduction

With Chip Multiprocessors present in almost any computing device today, software devel-

opers need to leverage the potential of this hardware and move towards parallel implemen-

tations. Parallel programming is a challenge mainly because there is no widely adopted

programming model that facilitates easy parallelization. Parallel software development

requires tools and methodologies to reduce time-to-market and maintenance effort. Over

the last years, industry and academia have developed several parallel libraries that aim at

improving application portability and programming efficiency [6, 13, 14, 21].

The introduction of CMPs almost a decade ago has enabled the mitigation of development

constraints like the power wall and the ILP wall [8]. The performance potential of CMPs

lies in exploiting thread level parallelism which means that parallel software is required to

fully take advantage of this architecture. Intel’s Thread Building Blocks (TBB) [21] is a

runtime library designed to encourage software developers to create portable, parallel ap-

plications with task parallelism. TBB was developed to dynamically scale on the existing

resources and employs task stealing to deal with workload imbalance. It was designed to

allow developers to focus on parallelizing their code by providing a runtime system that

handles parallelism management.

The cost of TBB’s dynamic parallelism management is increased parallelization over-

head. Developers may have to harness fine-grained parallelism from their applications in

order to fully utilize a CMP’s resources and this can incur high parallelization overheads.

Understanding and limiting these overheads is a necessary step towards scalable and more

efficient runtime parallel libraries. To this end, we investigate the extra instructions added

by parallelization management and the energy consumption of these instructions which

we refer to as the energy footprint. More precisely, the energy footprint is the energy spent

for executing the given application or section of code in the context of the test system.

Our paper makes the following important contributions:

• We continue our study of the parallelism management costs of TBB [10, 11] and

their impact on a CMP’s energy efficiency. To allow for extensive and noninvasive

measurements under increasing core counts, we use a performance simulator and a

power estimation tool in our study.

• Extending our study into victim selection policies [11], we show that we can reduce

thread contention and improve both execution times and the energy-efficiency of a

parallel application when making an informed selection rather than a random one.

• We do a comparative study of several selection policies to show that with increasing

core counts, the random victim selection policy employed by TBB is a serious

performance bottleneck.

Our experiments show that parallelization overheads can cause sub-linear speedups lead-

ing to an increased energy consumption for parallel applications. In this paper, we look

into mitigating the impact of these overheads and thereby reducing thread contention for

163



n worker threads

RML

Market

Arena Arena Arena

Worker
threads

Assigned
workers Arena

slots

MT1 MT2 MT3

Task 
queues

Figure F.1: Components of TBB’s task scheduler

hardware resources. By changing TBB’s random victim selection policy to an occupancy-

aware or even to a pseudo-random policy we can achieve better performance or improved

energy efficiency.

The paper is organized as follows: Section F.2 gives a general description of Intel TBB

and its mechanisms for parallelizations. Section F.3 presents more details about the victim

selection policy used in TBB as well as the policies we propose. The simulation tools and

the benchmarks used in our experiments are described in Section F.4. In Section F.5, we

present our study of the victim selection policies. Section F.6 presents the related work

and Section F.7 concludes the paper.

F.2 Intel TBB

The concept of parallel programming is almost as old as the computer itself, yet it is

a challenge for most developers. In today’s multi-core era the overall efficiency of the

system suffers if parallel applications are not developed to dynamically scale and take

advantage of all the resources that are available to them. Over the years, many parallel

languages have been developed and a multitude of research was done in an effort to im-

prove performance and maximize hardware utilization [20]. With the majority of those

approaches, one factor was often overlooked: the composability of the resulting solution.

Composability of an application refers to its ability to run efficiently side by side with

other applications and to be able to cope with the fact that it does not have exclusive

access to the hardware resources [19]. We see this characteristic as a requirement for

efficient exploitation of CMPs. For this reason, we focus on Intel’s TBB version 4.1.1,

which was designed to provide a high degree of composability.

Figure F.1 gives an overview of the structures TBB maintains in order to create and bal-

ance its parallel executing threads. The library allows parallelism to be annotated both
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explicitly and implicitly. Explicit task creation is achieved through the use of methods

like spawn() which gives the programmer complete control over the work performed by

each task. Implicit task creation makes use of some templates like parallel_for or paral-
lel_reduce which make code writing faster but gives control of the task creation over to

the TBB library. Tasks are created and then added to the calling thread’s task queue inside

the arena (see Figure F.1). From the arena the task is available for execution by its owner

thread or by other workers through stealing. A task can instantiate and spawn other tasks

resulting in a hierarchical task tree.

A TBB master thread (MT) is an application thread that instantiates the tbb::task_sched-
uler_init object. All threads created by TBB to help complete the work of the MT are

called worker threads. The Resource Management Layer (RML) is the component that

hosts the pool of worker threads and gets instantiated first (see Figure F.1). No worker

threads are created at this point, this being postponed until the first task is spawned.

Continuing top-down in Figure F.1, the Market is instantiated. This component was added

in version 3.0 of TBB to ensure the composability of the framework. It separates the

workload (the tasks) of one MT from other MTs that may be executing on the same

machine. The role of the market is to assign workers to the arenas of each MT. The limit

of the total number of workers available is set to 1 less than the maximum of the argument

of the tbb::task_scheduler_init constructor and the total number of logical CPUs on the

executing system.

The last structure to be created is the Arena associated with calling MT. An arena en-

capsulates all the tasks and the execution resources (worker threads) available to a MT.

Each arena is assigned a number of slots representing the number of workers that arena

requires to complete its parallel tasks. This is defined as 1 less than the minimum of

the argument of the tbb::task_scheduler_init constructor and the total number of workers

available (limit set by the market). Because several MTs can coexist, the total number of

workers requested by all arenas can be greater than the number of workers available in the

RML’s pool. In this situation, the market will allot workers proportionally to each MT’s

request.

All these components and limits are created once, during the first instance of the tbb::task_
scheduler_init object in the current execution. If an MT is not the first one to call the task

scheduler, it will create a new arena that will comply with the limitation imposed by the

market. Upon creation or destruction of an arena, the worker threads can migrate between

the active arenas.

After they are created, each worker thread runs a scheduling procedure called wait_for_all()
consisting of 3 nested loops. The inner loop executes the current task by calling its ex-
ecute() method. TBB is a continuation-passing style library which means that the com-

pletion of this task returns a pointer to the next task that needs to be executed. If a new

task is not referenced, the inner loop exits. In the middle loop the get_task() method tries

to dequeue the local task queue in a LIFO order. If successful, the inner loop is called

again. If unsuccessful because the queue is empty, the middle loop exits and the outer
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loop invokes the stealing mechanism by calling the receive_or_steal_task() method.

F.3 The stealing mechanism

F.3.1 The TBB implementation

The receive_or_steal_task() method is part of the outer loop in the scheduling procedure

and it looks for all work available at this level. This includes: tasks mailed via the task-to-

thread affinity mechanism, reload offloaded non-priority tasks or reload tasks abandoned

by other workers. If none of these calls return a task to execute, a steal is attempted from

a randomly selected victim thread in the current arena. If the attempt is successful, the

method returns and the scheduler re-enters the inner loop of the scheduling procedure. If

unsuccessful, a failure counter is incremented and the execution pauses before looping

back to the beginning of receive_or_steal_task() method. Also, if the failure counter

surpasses a given threshold (default value is 100) and the arena is still empty, the current

worker thread is freed and returns to the RML.

When attempting a steal, the thief must first get a lock on the victim’s queue using the

lock_task_pool() method. If that fails, the thief goes through a 5 step exponential backoff.

After 5 fails, the current thread yields its resources and waits for its next time slot to try

to lock the same victim again. This locking mechanism assures the high composability of

TBB we discussed in Section F.2. However, the most common situation is when only one

thread is running on each hardware core, making the yielding function return immediately.

This means that the thief thread will continue trying to lock its victim. In our experiments,

we match the simulated number of threads to the simulated number of cores which makes

us face this locking issue.

The most common situation for stealing failure is due to selecting a victim with an empty

task queue. Applications with an unbalanced workload distribution face this problem

often. The default random selection policy in TBB cannot prevent against this type of

failures.

Race contention is also a common situation for failure. When two or more threads are

trying to get exclusive access to the same task queue by calling the lock_task_pool(), only

one can succeed. A thief can return from the lock_task_pool() only if it either succeeds

or the victim’s task queue has been depleted. This means that the thread who did not

acquire the lock will wait around until that lock is freed or until the victim queue has been

emptied.

A special situation is when a thief thread is competing for access with the owner thread

of that task queue. If there is more than one task in the queue, there is no race contention

because the thief will steal at one end while the owner will dequeue the other. However,

if there is only one task in the queue, the owner thread will have priority and the thief will

backoff.
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F.3.2 The oracle selection scheme

In an attempt to see how much performance can be improved by tuning the victim se-

lection, we introduced an “all knowing” scheme we call the oracle selection [11]. This

method leverages on the fact that we use a simulator and not a real machine. Thus, we

can provide TBB with information that would be otherwise very “expensive” to obtain.

Outside the simulated memory space, we created a data structure that stores the occu-

pancy of each task queue in the arena as well as their level of congestion (the number

of workers trying to steal from each queue). This structure is updated by the application

through specialized instructions called markers that only our simulator recognizes and

executes. Since we do all this computation outside the simulated environment, our TBB

application sees the victim selection as an extremely fast, zero-overhead procedure. The

scheme selects as victim the queue with some available tasks for stealing and with the

lowest congestion level. Even though this oracle scheme provides very fast and accurate

results, it is not perfect. For our simulator there are still a few situations when updates

to our structure do not propagate fast enough and the selected victim ends up creating

conflicts.

F.3.3 The pseudo-random selection scheme

Our second selection method is a pseudo-random scheme inspired by the Wool library [6].

This policy was also introduced in [11], but for this paper we improved its implementation

and tuned its performance. For the first stealing attempt, we randomly select a task queue.

If stealing from this victim fails, we then start a loop and sequentially scan the other

active task queues, excluding the one of the current thread. In this way we will first try

to steal from all possible queues before looping back in the receive_or_steal_task() and

selecting a new random victim. There are two major benefits to this approach. First,

all the stealing attempts during the sequential scan are very cheap in terms of number

of instructions, reducing the overheads. Second, we can conclude much earlier than the

TBB implementation that an arena is out of work and we can put a worker thread to sleep

sooner. To tune our implementation even further, we removed the call to the yielding

function from the lock_task_pool(). This forces the method to return after the 5 steps

exponential backoff and eliminates the conflicts caused by the immediate return of the

yielding function. However, this makes the stealing mechanism a bit more aggressive

since it allows it to select new victims faster.

F.3.4 The occupancy-aware selection scheme

This method is inspired by the oracle scheme and tries to find the task queue with the

most work available to steal from. In contrast to the oracle scheme, we now select our

victim based solely on the level of occupancy of the task queues. Also, in contrast to

our “all knowing” policy, this scheme is implemented fully in the TBB library and can
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Table F.1 Main characteristics of modeled processor

Parameter Value

Core

Clock frequency 2.66 GHz

Instruction set x86-64

Dispatch width 4

Window size 128

Core count 1,2,4,8,16,32 cores

Cache

Size Assoc.

L1 iCache/dCache #cores x 32KB 4/8

L2 Cache #cores x 256KB 8

L3 Cache 2/4/8/16/32/64 MB 16

Main memory
Size 2/4/8/16/32/64 GB

be used outside of our simulated environment. We use a 2-dimensional array to store

the occupancy level of the queues, with each thread logging separately information about

tasks that it spawned, tasks that it stole or tasks that it executed. In this way we eliminate

the possibility of races on writing and the need for a locking mechanism. To increase

selection speed, we also do the scanning of the array with no locks. All these ensure that

this approach is fast enough to work with TBB. However it also means that a snapshot of

the occupancy array will not always be accurate. Since the congestion level of the task

queues are not monitored (like the oracle policy does), a queue can be selected as victim

by several thieves at the same time. To make sure the thieves will first deplete the tasks

of this victim before attempting a new selection, we used the default TBB approach for

the lock_task_pool() function. A thief will not return from this function unless it either

acquired the lock or the task queue is empty. With this selection scheme, just like with the

pseudo-random one, we can find out faster than the default TBB approach that an arena

is out of work.

F.4 Methodology

F.4.1 Simulation tools

We performed our experiments using a parallel, x86 computer architecture simulator

called Sniper [3]. Sniper uses the interval core model [9] and Graphite simulation in-

frastructure [18] to provide fast and accurate simulations. Our model is a Nehalem-based

Xeon 5500-series multi-core CPU (code name Gainestown) with a clock frequency of

2.66 GHz and 3 levels of cache. The simulations do not include an operating system

and no mechanism for frequency and/or voltage control is used. Table F.1 lists the main

characteristics of the modeled processor.
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The performance results from Sniper are fed into a power estimation tool called McPAT

[16]. An important characteristic of McPAT is its ability to model dynamic, static and

short-circuit power. Dynamic power refers to the power required by a circuit to switch

from one logical state to the other. For each system component, dynamic power is defined

as: powerdynamic ∼ AF · C · V 2
dd · f , where AF is the activity factor, C is the total load

capacitance, Vdd is the supply voltage and f is the clock frequency [12]. Switching cir-

cuits also dissipate short-circuit power which McPAT modeles analytically. Static power

is caused by current leakage during periods of non-activity. McPAT estimates leakage

current using models of real-world CMOS circuits.

A recent study shows that McPAT’s area and power models can have significant errors

[24]. The authors assess McPAT’s estimations against measurements of an IBM POWER7

CMP. They note that read/write port overestimates caused by high issue width and mod-

eling of simultaneous multithreading (SMT) are two of the major sources of error they

observed. For this reason, our measurements are only marginally affected by these errors

since our modeled CPU has a relative low issue width (4 compared to 8 for the POWER7)

and no SMT enabled.

To account for both active and idle core time, we use the dynamic power and static power

(totaling subthreshold and gate leakage) outputted by McPAT for each core. In estimating

the energy footprint, we multiply these by the active runtime and the idle time respectively

of the cores to get a measure of the energy they use. Adding them all together gives us

the CPU energy usage.

F.4.2 Benchmarks

For our experiments, we used the default TBB implementations of Blackscholes, Body-
track, Fluidanimate, Streamcluster and Swaptions benchmarks with the simlarge input set

from the PARSEC suite [2]. All of them were built using the 4.1.1 version of TBB. Col-

lectively, these benchmarks express parallelism both explicitly as well as implicitly and

employ some special TBB constructs like cache affinity partitioners and cache allocators.

They provide a wide test base for our study.

Blackscholes uses the Black-Scholes partial differential equation to analytically calculate

the prices for a portfolio of European options. The differential equation is implemented

numerically and parallel_for templates are employed to divide the work among worker

threads. In order to improve cache affinity, a TBB affinity partitioner is used.

Bodytrack is a computer vision application which tracks a human body with multiple

cameras. It uses pipeline parallelism and parallel_for templates to express parallelism.

Fluidanimate simulates an incompressible fluid for interactive animation purposes. It

uses an extension of the Smoothed Particle Hydrodynamics method to describe the fluid.

Parallelism is annotated explicitly through spawn(task_list).

Streamcluster is a mining application that tries to solve the online clustering problem.
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Parallelism is annotated explicitly through spawn(task_list) as well as using parallel_for
and parallel_reduce templates. TBB’s cache allocators are also used to optimize access

to shared data.

Swaptions uses the Heath-Jarrow-Morton framework to price a portfolio of swaptions.

Price computation is achieved through the Monte Carlo simulation. Swaptions uses par-
allel_for templates and cache allocators to express parallelism and optimize access to

shared data.

Our experiments are meant to study the impact of the victim selection policy on the overall

performance of the parallel execution. To that end, we want to minimize all possible

interference on our test policies and quantify their impact as accurately as possible. To

eliminate context switching on the simulated cores, we always match their number with

the number of parallel threads. Also, we simulated only one benchmark at a time. It will

be very difficult (if not impossible) to account for the effects of thread interleaving when

two or more applications are executed at the same time.

To account for the non-deterministic simulation of Sniper, we performed 10 simulations of

each benchmark for every core count. We averaged the performance results (μ) and used

these to estimate the power requirements. We also computed the standard deviation (σ) of

the execution time for each of the 10 simulation set. In none of our experiments we found

any outliers, where an outlier is a value beyond 3σ ± μ. For Blackscholes, Bodytrack,

Fluidanimate and Streamcluster, our results show a σ/μ in the 0.012% - 1.83% range.

Swaptions, due to its use of the Monte Carlo simulation has a higher variability between

simulation, with σ/μ in the 1.18% - 14.73% range.

F.5 Results

As described by Amdahl’s law, the maximum expected speedup of parallelization is lim-

ited by the sequential fraction of the program. When managing overheads are taken into

consideration, this theoretical maximum becomes even harder to achieve. As we showed

in our previous study, these overheads become larger as we scale the core count [11].

Even though with parallel executions the work gets done faster, the energy required to

complete it is often equal or greater than the sequential execution.

F.5.1 Parallelization overheads

As mentioned in Section F.2, each worker thread runs a scheduling procedure containing

an infinite nested loop. This loop tries to execute tasks from its own queue or to obtain

some work through the receive_or_steal_task() method. By default, the receive_or_steal_
task() method loops a maximum of 100 times in an attempt to obtain a task before report-

ing that the arena is empty and returning the thread to RML. This means that each time

170



0

5

10

15

20

25

30

35

40

0
5E+09
1E+10

1.5E+10
2E+10

2.5E+10
3E+10

3.5E+10
4E+10

4.5E+10
5E+10

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Blackscholes Bodytrack Fluidanimate Streamcluster Swaptions

Speedup 

# 
of

 e
xe

cu
te

d 
in

st
ru

ct
io

ns
 

Serial Overheads Speedup

Figure F.2: Overheads and speedups for the default random selection policy

a steal fails, the receive_or_steal_task() will loop to the beginning adding overheads and

delay to the execution.

A very simple way to see what trend parallelization overheads form as you scale up the

number of cores is to look at the execution statistics reported by TBB. There you can

see how many times each parallel thread successfully stole a task, how many times it

failed, how many times out of those fails was due to conflicts with other threads and

many other. Looking at these statistics for the default TBB implementation, it becomes

apparent that random victim selection policy is a serious bottleneck for high core counts.

For applications with high numbers of parallel tasks like Swaptions, failed tasks range

from an average of 40000 for 2-cores executions to almost 18 millions for 32-cores ones.

That translates into 38.18% increase in instruction count when compared to the serial

execution (see Figure F.2). A detailed analysis of the results presented in Figure F.2,

including a breakdown of the overheads and a discussion on speedups, can be found in

[11].

With the occupancy-aware selection scheme we wanted to reduce the overheads by re-

moving all (or as many as possible) failed tasks caused by conflicts. Although we man-

aged to do that, the overall overheads are generally higher than those of the random se-

lection experiments. This is due to the fact that we scan the occupancy array for each

steal attempt and this adds up fast. For all our low core counts (2 or 4) results there is not

enough contention among threads in order to balance-out the added number of instructions

of the scanning operation. In addition, some benchmarks like Blackscholes, Bodytrack

and Fluidanimate have low numbers of total tasks to execute which again makes it hard

to make up for the overhead of the scanning operation.

In the case of the pseudo-random selection policy, things are almost the opposite of

occupancy-aware scheme: we generally have more failed steal attempts, but overall the
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Figure F.3: Total execution times relative to the random selection policy

overheads are lower. This is explained by the fact that the pseudo-random policy is far

more aggressive in trying to find new work, but due to our sequential scanning implemen-

tation each attempt is cheaper. Also, the receive_or_steal_task() method returns much

faster reducing the overheads even further.

F.5.2 Victim selection policies - comparative study

The main issue faced by the random selection policy is its inability to scale. For high

core counts or when we are dealing with very fine parallelism which forces the worker

threads to steal often, random selection causes overheads to grow exponentially. We de-

veloped the occupancy-aware and the pseudo-random schemes to address this limitation,

by adding some information gathering in the selection process. By doing this we in-

creased the work the threads need to do, so the added performance has to pay for this as

well. Because of its very simple nature, the random victim selection policy remains hard

to outperform in situations when race contention among threads are rare (see Figure F.3).

Our occupancy-aware policy proves to be great in theory but difficult in practice. Our re-

sults show that it manages to significantly reduce the conflicts among threads. However,

our implementation relies on scanning the occupancy array for each steal attempt which

proves to be very costly. In addition, we implemented some guards against conflicts with

the main thread which proved to have unexpected effects in some situations (see the 2-

core results for Streamline in Figure F.4). What becomes apparent when looking at the

results in Figure F.3 and F.5 is that we can’t always afford the added complexity. However,

when there is enough congestion for this policy to make a difference, it can reduce exe-

cution time with up to 11.23% and the energy footprint with up to 7.83% (see Figure F.4

and F.6).

The pseudo-random selection is much lighter in terms of extra-work compared to the

172



0.8

1

1.2

1.4

1.6

1.8

2

2.2

2 4 8 16 32 2 4 8 16 32

Streamcluster Swaptions

Re
la

tiv
e 

ex
ec

ut
io

n 
tim

e 

Oracle OA Pseudo

Figure F.4: Total execution times relative to the random selection policy

occupancy-aware policy, but is also more aggressive. Our results with this scheme show

that it can only be marginally faster than the default random selection, but it constantly

does better in terms of energy-footprint (see Figure F.3, F.4, F.5 and F.6). This happens

because with this policy it is very easy to identify the situations when there is no work to

be done by the worker threads. By putting them to sleep sooner, we save energy. In this

way it manages to reduce the energy footprint with up to 14.72%.

F.6 Related Work

The energy efficiency of parallel systems and the overheads parallelization brings have

been the subject of many studies. Reducing the power requirements of multi-core CPUs,

improving the energy efficiency of big parallel systems or reducing the overheads of par-

allel implementations have been explored by many researchers and plenty of solutions

have been found.

Li and Martinez studied the power-performance implications of running parallel applica-

tions on CMPs [15]. Using both an analytical model and detailed simulations, the authors

show that parallel computing can bring significant power savings through judiciously se-

lections of the granularity and voltage/frequency levels.

Contreras and Martonosi study and characterize some of the overheads of Intel’s TBB

[5]. They concluded that task management operation can have a detrimental effect on

the performance of parallel execution. The authors also note that random stealing fails to

scale with increasing core counts and that alternative policies can improve performance.

Bhattacharjee and Martonosi propose a hardware thread criticality predictor which they

build using already-accessible on-chip information like memory statistics [1]. The au-
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Figure F.5: Energy footprint relative to the random selection policy

thors test this predictor in two different scenarios. First, they use it to assist TBB’s task

scheduler and show that task stealing can be improved over the original random approach.

Second, they use the predictor to guide DVFS and to reduce dynamic energy in barrier-

based applications. The authors conclude that the thread criticality predictor offers good

accuracy at very low hardware overhead.

Podobas et al. do a performance comparative study of several parallelization libraries,

including TBB [22]. They use both micro-benchmarks and a subset of the BOTS suite

to characterize application performance and the costs for task creation and stealing. The

study concludes that Wool has the lowest overhead for task spawning and task stealing.

However, our previous study showed Wool to be far more aggressive when stealing than

TBB which means that as we scale up the core number, Wool will perform worse [10].

The direct task stack is a TBP algorithm for extremely fine grained parallel applications

[7]. Its implementation in the Wool library shows very low overheads for task creation

and task stealing. The experimental results show that Wool significantly outperforms

other implementations like Cilk++, TBB or OpenMP for extremely fine grained parallel

applications (tens of cycles/task).

Vandierendonck et al. advocate the use of TBP models with nested task spawning for

writing general-purpose programs [23]. The authors developed a Cilk-like language to

express parallel pipelines and extended a Cilk-like scheduler to recognize and enforce

argument dependency types on task spawns. This programming model enhances the ease

of programming parallel pipelines.

Chen et al. do a study to evaluate TBB’s scalability against Pthreads implementations

and to measure some of TBB’s overheads [4]. Their results show possible bottlenecks

that limit the scalability of TBB. They also show that TBB runtime overheads increase

with core counts and in the current implementation will become the main performance
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Figure F.6: Energy footprint relative to the random selection policy

bottleneck when scaling to tens of cores.

Ami Marowka introduces TBBench, a micro-benchmark suite designed for Intel’s TBB

[17]. TBBench is designed to measure the overheads associated with parallel_for and

parallel_reduce constructs and mutual exclusion mechanisms like Mutex, Spin_mutex and

Queuing_mutex. The experimental results show that TBB’s mutual exclusion mechanisms

and scheduler exhibit less overheads than the equivalent OpenMP constructs.

F.7 Conclusion

Intel’s TBB is a runtime library designed to encourage programmers to create portable,

parallel applications using task parallelism. TBB was developed to dynamically scale on

the existing resources, employing task stealing to deal with workload imbalance. How-

ever, as CPU’s core counts are ever-increasing, TBB proves to have a performance bottle-

neck in its use of a random victim selection policy.

Continuing our previous study [11], we propose two alternatives for the victim selection

process. Based on the “all knowing” oracle scheme, we developed an occupancy-aware

policy to reduce the number of failed steals. However, our implementation proved to be

too complex and in many situation we recorded an overall increase in overheads. Nev-

ertheless, for applications with very high thread contention, this scheme proved to be

very beneficial, reducing the execution time and the energy footprint with up to 11.23%

and 7.83% respectively. We think that our implementation can be improved and we will

pursue this in future work.

The pseudo-random victim selection is the second policy we experimented with. The

implementation in this paper is a refinement of the one in [11] and it showed better energy
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footprints across the board when compared to the default TBB scheme. Even though it

copes better in situations with many races between threads than the random one, the

pseudo-random selection’s performance is still affected in such scenarios.

With this work we showed that TBB can be improved for both performance and energy

efficiency, even though not always at the same time. The results of our occupancy-aware

scheme can be improved and we plan to do this in future work. Also, seeing how the

pseudo-random approach performs well under low core counts, we are also considering a

combined selection policy. The idea is to use each scheme for the core counts that they

perform best. Based on our experiments so far, for core counts of 2 to 8 pseudo-random

could be used and occupancy-aware for anything above. However, a more extensive test-

ing needs to be done on a larger number of benchmarks before confirming this threshold.
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