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The tracker that you see in Figure C.1 is the third revision of the Tracker, which means

we had two earlier designs containing similar or different components for testing. In

Figure C.1b the electronic components and sensors are exposed and the third revision

Tracker contains the following components:

1. Teensy MCU

2. GNSS and Compass

3. IMU

4. Barometer

5. Data Logger (SD)

6. Control switches and LEDs

7. Speaker (for audio feedback)

8. Wireless transmitter

9. Electronic battery and charging circuit

This is far from the final revision of the Tracker. Further work is required to make it a

lot smaller and attach additional buttons for the user to signal the Pixcuckoo that they

wish the drone to takeoff, land or to follow the user. It also needs to be fully dust and

water proof if it is to be used for activities such as skiing, biking or for watersports.



Appendix D

Kalman Cheat Sheet

This appendix provides a brief overview of the Kalman Filter theory and the different

Kalman related variables used throughout the thesis.

Prediction

1. Project the state ahead

x′
t+1|t = Fx′

t|t + Q +But (D.1)

Calculate the rough estimate of x′ at timestep t + 1. This value is updated in the

Measurement Update step of the algorithm.

2. Project the error covariance ahead

P ′
t+1|t = FP t|tF

T + R (D.2)

Calculate a measure of the estimated accuracy of the state estimate which is used for

computing the Kalman Gain in Equation D.3. This estimate scorrected in step 3 of the

Measurement Update after the observation is known (Equation D.5).

Measurement Update

1. Compute Optimal Kalman Gain

Kt = P ′
t|t−1H

T (HP ′
t|t−1H

T + R)−1 (D.3)
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The Kalman gain is a function of the relative certainty of the measurements and the

current state estimate, so that it works as a bias towards either state estimation or

measurements.

2. Update the estimate via zt

xt|t = x′
t|t−1 + Kt(zt −Hxt|t−1) (D.4)

This value is the estimation of x at timestep t (this is the improved estimation value we

are going to use and is the output of the algorithm at this timestep).

3. Update the error covariance

P t|t = (I −KtH)P ′
t|t−1 (D.5)

We now recalculate the error covariance P t which is used in the next timestep (t + 1)

in the Prediction step 2 (Equation D.2).

Ft Transition Model A matrix that describes how the state estimates affect each other

between iterations. For example, velocity would affect the position estimation for

the next iteration. This model is constant and normally does not change over time.

Q Process Noise A matrix containing the environmental noise influence. This models

any noise that is not in the observations.

Rt Observation Noise in timestep t This represents how much noise there is in each

sensor and if they affect each other. A high noise indicates that the sensor is more

unreliable and will be less weighted when making state estimates.

Ot Observations made in timestep t This vector contains all the observations made

in timestep t. These observations contain noise as indicated by Rt.

Ht Observation Model The Observation Model describes how each observation af-

fects a state estimate. For example, a GPS receiver would affect the state estimates

of both positions and heading while a compass would only affect heading.

Xt State estimate in timestep t This is the state estimate produced by the Kalman

Filter in a given timestep. This value is the data fused estimate which is more

accurate than the noisy observations given by Ot.
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Zt Noisy State Estimate Zt denotes the uncorrected state estimate. The error co-

variance Pt is used to calculate the corrected state estimate Xt.

Kt Kalman Gain The Kalman Gain matrix is calculated each timestep and contains

how much weight is but on each observation. This essentially fuses each observation

together to produce a new and more accurate estimation.

Pt Error Covariance Each iteration the Kalman algorithm calculates the error covari-

ance in state estimates which are used to correct future estimates.

B Signal Input Model Signal input model describes how the signal input affects the

state estimates each iteration.

ut Signal Input The signal input represents external input that is modeled by the

state transition model F . This could for example be control input from the pilot

controlling position or gravity pulling the position towards the earth.
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