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Abstract

The results of a diet intervention study aiming to enlighten dietary carbohydrates role in proinflam-
matory responses have been reviewed in light of a new statistical analyses conducted on the micro-
array data. Two diets, a high-carb (AHC) diet and a moderate-carb (BMC) diet have been studied.
The resulting gene expression data have been analyzed internally at NTNU, and subsequently by
an external partner, KUL. Overlaps and differences between the diets and between the results of
the two analyses performed have been addressed using a system-approach for biological interpre-
tation. The analysis conducted in this project was carried out using a variety of software tools and
is based on an already existing data sets. The gene sets were used for building of a regulatory net-

work and for further analysis, specifically with respect to changes in proinflammatory pathways.

The genes affected by the diets and the processes they influence can indeed be related to proin-
flammatory processes. There have been induced some changes on a transcriptional level in the
participants of the diet intervention study, even though the changes barely are perceived as consid-
erable. Every gene that has been studied shows similar change in both diets, if they are upregulated
in AHC, they are also upregulated in BMC. The same pattern is also observed for downregulation.
After taking KUL’s data into consideration and interpreting the results in a new manner, the con-
nection to a proinflammatory response is weakened compared to what was presented in the initial

study. The tendencies are, however, existing.
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Sammendrag

I'lys av en ny statistisk analyse som har blitt utfert, har resultatene fra et tidligere diettbasert studium
blitt vurdert pa nytt. To dietter, en hoykarbohydratsdiett (AHC) og en moderatkarbohydratsdiett
(BMC) har blitt studert. De resulterende genuttrykksdataene har tidligere vaert analysert internt hos
NTNU, og i etterkant av en ekstern partner, KUL. Likheter og ulikheter mellom diettene, samt
mellom resultatene fra de to analysene som er utfoert, har blitt adressert via en systemtilnarming
for biologisk tolkning. Analysen i dette prosjektet ble utfort pa allerede eksisterende datasett ved
hjelp av en rekke programvareverktoy. Det ble valgt ut noen gener som ble videre brukt i byggingen
av et regulatorisk nettverk og for videre analyse, da spesielt med hensyn til endring i proinflamma-

torisk respons.

Genene som pavirkes av diettene og de prosessene gene pavirker viser seg 4 kunne vare relatert til
proinflammatoriske prosesser. Det har skjedd noen endringer pa transkripsjonsniva hos deltakerne
studien, selv om endringene er minimale. Hvert gen som har blitt studert viser tilsvarende forand-
ring 1 begge dietter. Oppregulerte gener i AHC er ogsa oppregulerte i BMC, og det samme gjelder
for nedregulering. Etter 4 ha tatt med KULs data i betraktningen og tolket resultatene pa en ny
mate, har forbindelsen til en pro-inflammatorisk respons blitt svekket sammenlignet med det som
ble presentert i den opprinnelige studien som var basert kun pa NTNUs data. De samme trekkene

kan likevel observeres til en viss grad.
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1 Introduction

1

Introduction

1.1 Diet and health

Many chronic diseases such as obesity, type 2 diabetes and cardiovascular disease are largely deter-
mined by lifestyle. The last few decades, several different diets have been suggested to achieve a
healthier lifestyle, although many of them are contradictory (Malik & Hu, 2007). Fat quality and
quantity has received a fair amount of attention, whereas carbohydrates’ role has been less studied.
The group of Prof. Berit Johansen has for some years been focusing on the relationship between
diet and health. They have found evidence that several proinflammatory markers are elevated when
a diet relatively high in carbohydrate content is consumed, whereas a so-called balanced diet (ap-
proximately equal amounts of calories from the major nutrient groups carbohydrates, protein and

fat) can alleviate these symptoms (Arbo et al., 2010).

1.2 Inflammatory responses on a pathway level

It has been acknowledged that the key role in inflammatory diseases is played by NF-kappaB/Rel
transcription family (Tak & Firestein, 2001). The NF-xB/Rel family includes NFKB1 (p50/p105),
NFKB2 (p52/p100), p65 (RelA), RelB, and c-Rel (Chen, Castranova, Shi, & Demers, 1999). Nu-
clear factor kappa B (NF-»B) is a dimer, either a homodimer or a heterodimer, which acts as tran-
scription factor (TF) for several genes in response to inflammatory signals (Barnes & Karin 1997).
The dimer is most frequently consisting of either a p50 or a p52 subunit together with p65, in
which the latter contains the transactivation domain (Tak & Firestein, 2001). The NF-xB dimer
exists in an inhibited state in the cytoplasm, physically bound to a NF-xB inhibitory protein (IxB).
Specific IxB kinases (IKKSs) respond to certain activation signals, and do hence phosphorylate the
IxB protein bound to the NF-xB complex, leading to proteolytic degradation of the inhibitory
protein. The free NF-xB can migrate into the nucleus and contribute to the transcription of genes
encoding proinflammatory proteins (Barnes & Karin 1997). Proinflammatory proteins include
cytokines, chemokines, adhesion molecules, matrix metalloproteinases (MMPs), Cox-2 (UniProt

ID: Q05769), and inducible nitric oxide (iNOS) (Tak & Firestein, 2001). The IKIK/NF-»B signaling
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pathway described here is triggered by certain members of the tumor necrosis factor (TNF) cyto-
kine family, such as TNF-a (gene TINF, UniProt ID: P01375), which elicits NF-»B activation (Luo,
Kamata, & Karin, 2005).

Signal, e.g. TNF

Inflammatory proteins

Receptor

7\ ‘ CELL MEMBRANE
B

NF-B &)
Degradation of IxB

Inflammatory proteins

Figure 1. Illustration of the IKIKC/NF-»B signaling pathway produced in Microsoft Word 2016. The
illustration is inspired by Barnes and Karin (1997). An extracellular signal, e.g. TNF, initiates the activa-
tion of IKKs, which phosphorylate IxB in the IxB:NF-«B complex and thus releases NF-»B from its
inhibitor. NF-xB migrates to the nucleus where it acts as a transcription factor for a variety of inflam-

matory proteins.
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1.3  The diet intervention study

In the Johansen Group’s project (Arbo et al., 2010), a small cohort of slightly overweight, but
otherwise healthy men and women in the age range 18-30 participated in the study here referred to
as ‘the diet intervention study’. 32 of the participants completed the study. Each participant com-
pleted two diets of different nutrient composition (carbohydrates:proteins:fats): the AHC diet
(65:15:20) and BMC diet (27:30:43). Both diets lasted for 6 days each, and there was an 8-days
wash-out period between the two diets. Data were collected from the subjects at four time points,
before and after each of the two diet periods. The data consists of fasting blood samples, used for

analyzing blood markers and leukocyte gene expression.

The collected samples underwent a biochemical analysis to measure levels of triglycerides, total
cholesterol, HDL cholesterol, glucose, hemoglobin, total leukocytes, differential count of leuko-
cytes, platelets, hsCRP and uric acid. A protein analysis was also implemented to determine twelve
diabetes related biomarkers (in the classes of cytokines, adipokines, gut hormones and incretins,
and glucose disposal hormones). A microarray analysis was performed on cDNA. All data were
statistically analyzed, including the microarray data. The data was considered significant at P<0.05.
The analysis was performed by Mette Langaas at the Norwegian University of Science and Tech-
nology (NTNU) and is described in Arbo et al. (2010). Langaas’ analysis will from this point for-
ward be referred to as NTNU” analysis.

Brattbakk (Arbo et al., 2010) concluded that the AHC diet induced changes in gene expression to
a much larger extent than the BMC diet, including both up- and downregulation of genes within
the same pathways. The AHC diet resulted in expression of 1370 genes, whereas 843 genes over-
lapped with the BMC diet. All except 10 genes changed in the same direction. Few genes differed
among the two diets, but among them were two growth factors and a regulator of DNA methyla-
tion. Both diets induced stimulation of genes related to apoptosis, proliferation and cancer. How-
ever, genes with relevance to stress and immunity were upregulated by the AHC diet, but down-

regulated by the BMC diet (Arbo et al., 2010).

Subsequently, the microarray data was statistically analyzed by an external partner, Wim de Mulder,
from the Katholieke Universiteit Leuven (KUL), from now on referred to as ‘KUL’ analysis.
NTNU and KUL both considered the data significant at P<0.05, but they used two slightly differ-
ent statistical methods to analyze the microarray data. The difference was mainly in the way cot-
rection for multiple testing was performed, thus yielding slightly different results. Both methods
were based on a Linear Mixed model approach using either the R statistical software package or

the SAS package.
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1.4 A system’s approach for biological understanding

Knowledge and progress in molecular biology has improved a lot until today. The use of genetic,
molecular, and biochemical approaches during the past decades has led to most of the current
knowledge (Kim & Ren, 20006). Different techniques and approaches allow genome sequencing
and high-throughput measurements, enabling collection of comprehensive data and information
regarding the underlying molecules of systems performance. However, the identification of genes
and proteins in an organism is not sufficient to understand its complexity. A system-level under-
standing requires a change in mindset, shifting the focus from genes and proteins, to structure and
dynamics (Kitano, 2002). Systems biology should explain a system on several levels at once; from
molecular pathways and regulatory pathways, through cells and organs, and ultimately to the level

of the whole organism (Wierling, Herwig, & Lehrach, 2007).

The availability of genome sequences has also contributed to the rise of other technologies: the
‘omics’ technologies. ‘Omics’, like transcriptomics and proteomics, are helpful to identify genes
and gene products, as well as the relationships between them. These results should however be
viewed with caution due to a wide occurrence of false-positive and false-negative results. ‘Omics’
depend on annotations, and single annotations are not adequate for a full description of a gene’s
function. To get data that are more informative on relationships and interactions, data from several
separate experiments should be combined and integrated. By systematically identifying interactions
between protein-protein, protein-DNA or protein-RNA, interaction networks could emerge (Ge,
Walhout, & Vidal, 2003). The building of a biological network requires understanding of structure,
function, and dynamics of the individual components, as well as their effect on each other. Studies
of biological networks require mapping of information regarding thousands of proteins, RNAs,
promoter sites, and other macromolecules, all at once. The information is further used to make
network maps, which is generally visualized as nodes representing the biological components, and

edges representing the interaction that connect them (Brasch, Hartley, & Vidal, 2004).

Data integration is an important part of systems biology. Access to databases and public reposito-
ries that store functional high-throughput data and annotations of protein function and biological
pathways is important in the most fundamental step towards a biological network. Among the
many databases that exist, the ones dedicated particulatly to pathways could be an importance
resource (Wierling et al., 2007). By using the information acquired from databases, network models
can be set up to summarize all relevant reactions, interactions, and processes. Models of biological
networks are cornerstones of systems biology (Shannon et al., 2003). There are different software

tools available for modeling, such as Cytoscape (Shannon et al., 2003; Wietling et al., 2007).



1 Introduction

1.5 Aim of master project

Starting with the microarray data from the diet intervention study and the P values produced by
both NTNU and KUL, the aim in this thesis was to identify possible differences based on the two
statistical analyses, and the new data was used to produce annotated networks in Cytoscape. The
networks were built by connecting the different genes together by gene-protein interactions and
protein-protein interaction. The genes and the networks were analyzed using different analysis tools
to allow a biological system interpretation of the previous and the new data. The findings were
compared to those of Hans-Richard Brattbakk, who took part in the initial study with the Berit
Johansen Group. His results can be viewed in Arbo et al. (2010). Possible extensions that can either

confirm the initial conclusion or identify of discrepancies were searched for.
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2 Materials and methods

2

Materials and methods

The analysis conducted in this master thesis was carried out using a variety of software tools and
is based on an already existing data set. The data set is the original gene expression data set pro-
duced using Illumina microarray for the samples from the diet intervention study conducted by the
Johansen Group (Arbo et al., 2010). Two different methods for statistical analysis have been used
on the microarray data, one was conducted at NTNU and the other was performed by KUL. The
results of both statistical approaches were taken into consideration in this thesis, and an effort to
explain the differences have been performed. The initial gene lists ranked by P values were com-
pared using a Correspondence at the Top (CAT) analysis (section 2.1). The two statistical data sets
were, together with the original microarray data, used to compare gene sets and pick out smaller
subsets of genes based on different criteria (section 2.2), for analysis of the gene list subsets with
respect to processes and terms related to the genes (section 2.3), and for interpretation of biological
significance using network building approaches (section 2.4 and 2.5). The gene sets were used for
building of a regulatory network using a data-driven objective (DDO) and further analysis, specif-
ically the response with respect to changes to proinflammatory pathways. A flowchart illustrating

the work done can be viewed in Figure 2.

Gene expression data Narrowing down the DDO approach for network
from the diet mmp gene lists to a smaller wmmp building using the selected
intervention study and selection of genes
[ e Eixtracting information from
different analyses ]_iteramf:ﬁT and data bases about
the entities and the interactions
¢ Building network drafts with
annotations
Comparison of the l
statistical analyses using
CAT analysis Analysis of gene lists Analysis of network

Figure 2. Flowchart overview of the work conducted in this master project.



2 Materials and methods

2.1 Comparing the initial gene lists using CAT analysis

In an attempt to address the similarities and differences between the two statistical analyses con-
ducted on the data produced in the diet intervention study, a CAT analysis was carried out to
compare the gene lists with respect to the P values associated to each gene. The initial gene lists
were ranked purely by P value, from lowest to highest. A CAT analysis compares the correspond-
ence at the top by plotting the proportion of genes in common between two lists against the lists
size, yielding proportion of agreement measures (Irizarry et al., 2005). CAT analysis is often used
for comparing differential gene expression results retrieved from different microarray platforms

(Gupta & Marchionni, 2012), such as the microarray data from the diet intervention study.

The CAT analysis was conducted in RStudio (download from Rstudio.com) using the matchbox R
package (Marchionni & Gupta, 2013). Two different CAT analyses were conducted, using both the
‘equalRank’ parameter, which compare gene ranks only, and the ‘equalStat’ parameter, which take

the genes’ assigned P values into consideration.

2.2 Analysis for selecting genes for the final gene list

The initial data sets contain a large quantity of genes of different statistical significance. Table 1
shows the number of genes in each data set used. To narrow down the selection of genes to an
attainable size, different approaches for comparing the gene lists have been used. By comparing
the most significant genes in both diets (AHC and BMC) based on both statistical analyses (IKUL
and N'TNU), the aim for this part of the thesis is to get a list of the approximately hundred most

significantly up- or downregulated genes.

To further guide the selection of genes, the lists were compared with respect to both the adjusted
P value for the change in gene expression and the fold change (FC) value describing the quantity
of change. Both statistical analyses were used when selecting the genes, thereby increasing the pos-
sibility of including the most significant genes. It is, however, important to keep in mind that the
different statistical approaches can introduce more false positives, which is why the main selection
of genes will be based on the genes of significance in both statistical data sets. Results with P>0.05
have a 5% chance of being a false positive, and in this thesis, genes with a P>0.05 are not consid-
ered. Nonetheless, there are a lot of genes to consider with P<0.05 (Table 1). To narrow down the
number of genes even further, the magnitude of fold change (FC) was taken into account using a

Volcano plot code ran in RStudio.
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Table 1. Number of genes in the initial datasets.

Dataset All genes Genes w/ P<0.05
Gene expression data 27372 -
AHC KUL 3717 3443
BMC KUL 3717 3583
AHC NTNU 3379 3353
BMC NTNU 630 602

2.2.1 Volcano plot

As an initial step to creating a Volcano plot, it is necessary to calculate the fold change (FC) for the
genes analyzed in the diet intervention study. FC is a value which gives information regarding
whether a gene is either upregulated or downregulated between two different experimental groups
and how much the expression levels have changed. By using gene expression data from microarray
(or other approaches yielding expression data), expression values for a control sample and an ex-
perimental sample can be used to calculate the FC. In the diet intervention study, microarray anal-
ysis was used to address the genes’ reponses to the different diets in the participants. In the data
set used here, the gene expression data was presented as log2 values. To calculate the FC, the log2
expression data for each gene in each participant were used by subtracting the initial ‘control” data

(day 0, d0) from the final ‘experimental’ data (day 7, d7) (Equation 1).
log2 FC = d7-d0 (Equation 1)

Log2 FC values were calculated for each microarray probe for all individual participants. The mean
log2 FC value was calculated for each probe by adding the log2 FC values for the particular probe

for each participant and dividing the sum on number of participants.

By using the calculated log2 FC values in combination with the P values from the statistical analyses
conducted by KUL and NTNU, a Volcano plot can be created. A Volcano plot is a graphical
representation in the shape of a scatter plot, where the dots represent genes scattered in two di-
mensions (Cui & Churchill, 2003). The y axis is a negative logl0-transformed axis for P values,

thus placing the genes with the lowest P values in the upper area of the graphical plot. A horizontal
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threshold can be set, placing the genes that are considered statistically significant above the thresh-
old line. Along the x axis, the genes are separated based on the log2 FC — downregulated genes on
the negative axis, and downregulated genes on the positive axis. A pair of vertical threshold lines
is used to delineate the genes with a large enough FC to be included in further analysis. In this way,
genes of statistical significance and a considerably large FC (of your own choice), will be located in
the upper left and/or upper right parts of the plot, making it more intuitive to see which genes to

study further (Cui & Churchill, 2003).

In this thesis, the Volcano plot was produced in RStudio. The code used can be reviewed in Ap-
pendix 1. Instead of using solid lines to separate the dots in the scatter plot, colors (Table 2) were

used to identify which genes fit the different criteria.

Table 2. Color interpretation in the Volcano plots. Genes with *-marked values were not
part of the output file produced by the Volcano plot code.

Color P value Log2 FC value
Black || > 0.05% < 0.38*
Orange > 0.05* >0.38

Red B <0.05 < 0.38*

Green < 0.05 > (.38

Blue B <0.05 > 0.50
Turquoise < 0.05 > 0.68

2.2.2 Cross-ranking of genes based on P value and log2FC value

In addition to the graphical representation the Volcano plot provides, the R code produced files
containing a list with the top genes in each Volcano plot. The top genes were the genes with P<0.05
and a log2 FC>0.38 when writing the code which extracted them from the original data set. How-
ever, in the produced files, the lists were ranked by P value only, and did consequently not give the
full information the Volcano plots represented. Nevertheless, by manually cross-ranking the lists
based on both P value and log2 FC value, the lists will provide similar information to the Volcano
plot. By first ranking the genes from lowest to highest P value (the lowest P value gets rank 1, and

the rank increases by one with each increase in P value), and thereby ranking the genes from highest
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to lowest log2 FC value (giving the highest value a rank 1 etc.), a total rank based on adding the P
value rank to the log2 FC value rank can give information about which genes are both statistically
significant and have a relatively high fold change. This was executed for both AHC and BMC based
on the statistical analysis of both KUL and NTNU.

2.2.3 Selection of statistically significant observations

The four gene lists received after the cross-ranking were used in further comparison (Figure 3),
giving information regarding common and unique genes between the lists. To compare them, a
bioinformatics and research tool (Whitehead Institute for Biomedical Research, 2013) was used.
The lists were compared in different manners, and the result for each single comparison was three
lists of genes: one with the genes unique to the first entry list, one with the genes unique to the
second entry list, and one with the genes common to both entry lists. The comparison was con-
ducted for the combination of the two AHC diets, for the two BMC diets, for AHC and BMC
based on KUL’s statistical data, and for AHC and BMC based on NTNU’s statistical data. In ad-

dition, further comparisons were made to identify the genes unique to each diet.

11
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l Volcano plot code in RStudio
Voleano plot Ranked lists of genes with Meroi £ lists:
oing of lists:
diagrams P<0.05 and log2 FC>0.38 KUL + NTNU

l

Comparison of gene lists

AHC KUL <—» AHC NTNU

! }

BMC KUL «——» BMCNTNU

Merged AHC list

Identification of unique and common genes Merged BMC list

All genes imported into Cytoscape
AHC network BMC network

Nodes colored based on whether they were
common between KUL and NTNU in the same
diet, and whether they appear i the opposite diet
as well.

l

Analysis of network Analysis of gene lists

Figure 3. Flowchart illustrating how the selected genes for the final gene lists were fed into the down-

stream analysis.
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2.3 Analysis of gene lists

The selected gene lists (Appendix 3) were analyzed to gain information regarding the genes’ func-
tion as a set. First, an overrepresentation analysis was conducted to identify enriched biological
terms connected to the gene sets. Subsequently, a pathway-based analysis was done, in which the

gene sets were analyzed with respect to biological pathways.

2.5.1 Overrepresentation analysis

As a first step to gaining information about the gene sets, two different overrepresentation analyses
were conducted. An overrepresentation analysis compares a gen set to a random reference set with
the intention of discovering GO terms connected to the genes and that appear more frequently in
the input gene set compared to the reference set. Elevated terms are referred to as overrepresented
terms in a gene set. In this project, the Gene Ontology tools BINGO and ClueGO were used to
achieve overrepresented GO terms in AHC and BMC gene lists. The gene lists were at this point
merged together, thus including both statistical analyses. The two analyses were chosen due to the

differentially organized output they produce.

BiNGO is a Cytoscape plug-in (Cytoscape is described in section 2.4.1) which assesses the
overrepresentation of GO categories in a set of genes (Maere, Heymans, & Kuiper, 2005). The
genes in the test set are connected to relevant GO annotations throughout the GO hierarchy, and
the test set is subsequently compared to a random reference set. Assuming a hypergeometric dis-
tribution, GO terms that appear more frequently in the test set compared to the random reference
set are presented in the results. The results provided by BINGO contain both a visual and text-
based aspect. The visual representation is a hierarchical rendering of the GO tree and the nodes
are labeled with GO terms and are colored based on the P value, which should give an idea of the
relevance of the specific GO term. The text-file is tab-delimited and contains more detailed results,
including analysis options, adjusted P value for each significantly overrepresented GO class, the
number and identities of the test set genes which are annotated to the specific GO classes, as well

as the number of genes annotated to the classes in the reference set (Maere et al., 2005).

ClueGO, also a Cytoscape plug-in, integrates GO terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG)/BioCarta pathways into a network. GO annotates genes to different biological,
cellular, and/or molecular terms in a hierarchical way, while KEGG and BioCarta assign the genes
to different functional pathways. Instead of using the hierarchical ontology tree to link overrepre-

sented GO terms together, which is the case for BINGO, ClueGO uses kappa statistics, which
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indicated the extent to which two GO terms annotate the same genes in the test set, to link the
terms to each other. The result is a functionally organized GO/pathway network, with nodes rep-

resenting the terms, linked together based on a predefined kappa score level (Bindea et al., 2009).

2.5.2 Pathway-based analysis

As a tool for retrieving information regarding the pathways involved in the network, the knowledge
base Reactome (Reactome.org) was used. Reactome is an online curated resource for human path-
way data and analysis tools (Vastrik et al., 2007), and therefore a useful resource to retrieve the
knowledge sought in this thesis. By uploading gene lists in Reactome, the genes are cross-refer-
enced with the Reactome database, which is manually curated, as well as to several external data-
bases, such as UniProtKB. In addition to being a knowledge base, Reactome provides a computa-
tional tool which can aid in the interpretation of microarray data (Vastrik et al., 2007). Uploading
gene lists with both gene identifiers and their respective FC value provide intuitive information of
whether processes and pathways have been affected by the conditions studied in a microarray ex-

periment such as the one performed in the diet intervention study.

The web interface was used in the gathering of pathway knowledge in this project. The selected
gene lists were analyzed separately for subsequent comparison. In addition to analyzing the genes
considered of interest, the full gene lists from the initial data were analyzed as a basis for further
assessment. The pathways connected to the diets was compared between the diets with the inten-
tion of finding possible patterns in common or unique pathways between the different diets as well
as between the lists based on different statistical analyses. The different AHC diets were compared
to each other, and so were the different BMC diets. In addition, the AHC and BMC diets were

compared to each other.

2.4 Networking

With gene lists as a starting point, a DDO approach to network building was performed. DDO is
an approach used for generating information regarding the relationships between genes and/or
proteins identified in an experiment, such as a microarray study, in which the relationships are
typically not well understood (Viswanathan, Seto, Patil, Nudelman, & Sealfon, 2008). In this thesis,
the final gene lists will serve as the identified genes. The first step in DDO pathway construction

is to retrieve information from relevant sources by text-mining. The information gained is further
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used for the construction of a pathway prototype (Viswanathan et al., 2008). The gathered infor-
mation was assembled into a pathway prototype using the pathway building tool Cytoscape version

3.4.0 (download from Cytoscape.org).

2.41 Cytoscape

Cytoscape provide visualization, modeling and analysis of molecular and genetic interaction net-
works (Cline et al., 2007). Biomolecular interaction networks can be integrated in Cytoscape with
high-throughput expression data and other molecular states. Cytoscape is especially useful in con-
junction with large databases of protein-protein, protein-DNA, and genetic interactions for hu-
mans and model organisms. The Cytoscape software allows several different plug-in modules
which extends the use of Cytoscape (Shannon et al., 2003). Networks built in Cytoscape contains
nodes that represent biological entities, such as genes or proteins. These nodes are connected via
edges which represent pairwise interactions. The nodes and edges can be visually modified for
properties such as color, shape and size, which contributes to the visual aspect of Cytoscape (Cline

et al., 2007).

As a first step in the networking process, all genes from the final gene lists were imported into
Cytoscape as nodes. To connect the nodes with edges, which are representing interactions, differ-
ent tools were used. To get a quick idea of which genes to connect, both gene lists were loaded

into GeneMANIA (Genemania.org), a web interface that uses a large resource of available ge-

nomics and proteomics data to create interactive functional association network that can aid in the
search for gene function and relationships. By entering a query gene list, GeneMANIA connects
and extends the list by adding functionally similar genes from publicly available databases (Warde-
Farley et al., 2010). The result from GeneMANIA was considered in the research of protein-protein

and gene-protein interactions.

In addition, two genes were added purely for analysis intentions. REI.A (UniProt ID: Q04200)
and NFKB7 (UniProt ID: P19838) are two of the most common subunits of the NF-xB dimer, and
by attempting to connect them to the network, possible connections might come to light. The
genes were added together with the gene lists in GeneMANIA, and they were considered as a
dimer. In the network, they are referred to as ‘NF-kB complex’, and are connected to all genes with
a connection to either REI.A and/or NFKB7 in GeneMANIA. TNF (UniProt ID: P01375) was

added as well, due to its potential impact on NF-xB activation.
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2.4.2 Text-mining

As an initial step, all genes in the final gene lists were researched as individual genes. The purpose
was to gain an initial and superficial view of the protein products and the processes they are in-
volved in. The task was conducted using the Universal Protein Resource Knowledgebase (Uni-
ProtKB). UniProtKB is a database containing integrated protein information with cross-references
to multiple sources. There are two sections in UniProtKB: Swiss-Prot and TrEMBL, both contain-
ing information extracted from literature and computational analysis, making UniProtKB a rich
knowledgebase. In Swiss-Prot, the information is a manually and continuously annotated by an
expert team of biologists (UniProt Consortium, 2009), which contributes to UniProtKB’s credibil-
ity. It is useful for finding information regarding for example the transcribed protein, synonyms,
subcellular location, and biological processes. The information gained in this step was mainly used

for annotating nodes in Cytoscape.

To gain more specific knowledge of the interactions between the genes, two text mining tools were
used for literature research: Information Hyperlinked over Proteins (IHOP) and LitInspector for
text mining. Litlnspector is a search tool for literature within the NCBI PubMed database (Frisch,
Klocke, Haltmeier, & Frech, 2009). It is a useful tool in gene and signal transduction pathway
mining, and yields results containing PubMed abstracts where the genes, transcription factors and
key words are highlighted. The highlights are color-coded, making it the reading easier and more
efficient. LitInspectot’s ability to consider search results for all synonyms of a gene is advantageous.
Litlnspector provides a high gene recognition quality due to the strategies for homonym resolution
and rejection of ‘non-gene’ abbreviations. The gene recognition is based on the comprehensive
gene synonym list of NCBI’s Entrez Gene. Litlnspector also allows a search of three genes at a
time, where OR or AND functions can help narrow down a search. Because Litlnspector is an
automatic pathway mining tool and not manually curated, the results are always up to date. The
results provide an overview of all possible pathway associations and potential interactions of the
query gene(s). Literature references are provided, so the user can verify the results for him-/herself
(Frisch et al., 2009). However, due to Litlnspectot’s license demand, it was used in a limited trial

time only. The free option iHOP was therefore more frequently used.

iHOP structures and links together biomedical literature from PubMed by using genes and proteins
as hyperlinks, thus making it possible to navigate through the sea of existing literature in one con-
tinuously updated workspace (Hoffmann & Valencia, 2005). iHOP does however only allow one
gene to be searched at a time. To narrow down the search, the connections produced by Gene-

MANIA were prioritized. The information mined through LitInspector and iHOP were used to
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gain information about the nodes and in the attempt to annotate the edges in the Cytoscape net-

works.

2.5 Network-based analysis

A network understanding of a biological system can give insight into connections that are challeng-
ing to discover in any other way. By analyzing the genes and their connections, new insight to their
function may be discovered. The completed networks were analyzed mainly by using different

Cytoscape plug-ins.

2.5.3 Graph-based analysis

NetworkAnalyzer is a Cytoscape plug-in that performs analysis of biological networks and calcu-
lates network topology parameters. These parameters include the diameter of a network, the aver-
age number of neighbors, and the number of connected pairs of nodes. In addition, it calculates
more complex parameters, including node degrees, average clustering coefficients, topological co-
efficients, and shortest path lengths (Smoot, Albrecht, & Assenov, 2016). NetworkAnalyzer was
used to analyze both the AHC and the BMC network. To interpret the results provided by Net-
workAnalyzer, information regarding each parameter was retrieved from the NetworkAnalyzer
Online Help (Max-Planck-Institut fiir Informatik). NetworkAnalyzer provides a summary of sim-
ple parameters in a list, as well as more complex parameters which can be reviewed as graphical

presentations.

The simple parameters include the total number of nodes in the network, as well as how many of them
that are isolated nodes, meaning that they have zero neighbors. The nodes’ average number of neighbors
and the characteristic path length: the expected distance between the nodes (measured in number of
nodes that act as bridges between two specific nodes) are also provided. The clustering coefficient of
the network describes the average cohesiveness of all nodes’ neighborhoods by quantifying the
different node neighborhoods’ chance of being part of a clique where every node is connected to
each other (Albert, 2005). Nodes with less than two neighbors have a clustering coefficient of zero
(Max-Planck-Institut fir Informatik). The nodes are connected through paths of edges, and all
nodes that are connected in pairs are thus connected components of the network. The number of con-
nected components calculated by NetworkAnalyzer give information regarding the network’s con-
nectivity, in which a lower number indicates a stronger connectivity. The network density is a value

between 0 and 1 which indicates the density of edges in the network — zero edges gives a density
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of 0, while a clique where all nodes are connected to each other gives a density of 1(Max-Planck-
Institut fir Informatik). Network heterogeneity is a measurement of hub tendencies in the network

(Dong & Horvath, 2007).

The more complex parameters involve e.g. betweenness centrality and node degree distribution.
The betweenness centrality of a node reflects the influence the node have on the interactions of other
nodes in the network (Yoon, Blumer, & Lee, 20006). The node degree distribution shows the number
of edges linked to the nodes in the network. The node degree distribution can be used to distinguish

between random and scale-free networks (Barabasi & Oltvai, 2004).

2.5.4 Superimposing of data from the microarray onto the networks

To visualize the gene expression data in Cytoscape, the genes’ respective log2 FC values were su-
perimposed onto the two networks. By adjusting the setting in the ‘style’ section in Cytoscape, the
nodes were colored by a color gradient ranging from red (log2 FC = -1.0) to green (log2 FC = 1.0),
with white as a zero-point color (Figure 4). Because several genes had multiple probes on the
microarray, and therefore multiple log2 FC values, the mean log2 FC for these genes were calcu-
lated and used in the data overlay. In addition, the nodes’ size was adjusted based on P value from
both the KUL and the NTNU analysis. The node size is conversely proportional to the P value,
yielding a bigger node as the P value decreases. The biggest nodes are thus the statistically most

significant. The smallest node size was set at P=0.5.

logz FC
-1.0 0 1.0

Figure 4. Log2 FC color gradient used in the network data overlay. A log2 FC of -1.0 indicates a 1x
downregulation in gene expression (halving the number of transcripts), whereas a log2 FC of 1.0 indi-

cates a 1x upregulation in gene expression (doubling the number of transcripts).
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3

Results

In the light of a new statistical analysis of the diet intervention data produced by Berit Johansen’s
group, previous and new results have been addressed and compared. The differences between the
resulting gene lists based on different correction for multiple testing by KUL and NTNU was
attempted enlightened by a CAT analysis. The data were further used in a DDO approach with the

aim of gaining a system understanding of the set of genes that have been affected by the diets.

3.1 CAT analysis

To gain insight into the differences between the two statistical approaches, two different CAT
analyses were performed on the four initial gene lists with respect to both rank (‘equalRank’) and
P values (‘equalStat’). Graphical representation of the results from the CAT analysis can be viewed
in Appendix 2. If the lists compared are completely identical with respect to the genes and their P
values, the correspondence in P values and thus also the ranking by P value should be identical.

That is, ‘equalRank’ analysis and the ‘equalStat’ analysis should yield identical results.

There is a notable difference between the two CAT analyses. The ‘equalRank’ results (Table 3)
show a correspondence that is overall lower than for the ‘equalStat’ results (Table 4) for all four
comparisons. There are, however, observed some similar trends between the ‘equalRank’ and the
‘equalStat’ results. The BMC diets are more similar to each other that the AHC diets, but neither
have a high correspondence, especially when considering the ‘equalRank’ results. The BMC diets
do, correspond considerably based on the ‘equalStat’ results. When reaching top 200, the AHC
diets have a notable correspondence as well. When looking at the top 50 genes in all comparisons,
the correspondence is smallest for ‘KUL AHC-BMC’. In the NTNU analysis, the correspondence
between AHC and BMC (‘NTNU AHC-BMC’) is the highest of all comparisons. There are no data
for the top 1000 in any comparison that include NTNU’s BMC due to the lower number of genes
in the list. In the ‘NTNU AHC-BMC ‘comparisons, no results are presented for top 500 either, the

reason behind this is still unknown.
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Table 3. Results from the CAT analysis performed in RStudio using the ‘matchBox’ package and the
‘equalRank’ parameter. ‘AHC KUL-NTNU’ is the comparison of the two different AHC gene lists based
on the two different statistical analyses performed by KUL and NTNU. ‘BMC KUL-NTNU’ is the
comparison of the two different BMC gene lists based on the two different statistical analyses performed
by KUL and NTNU. ‘KUL AHC-BMC’ is the comparison of AHC and BMC based on the KUL anal-
ysis, while NTNU AHC-BMC’ compares AHC and BMC based on the NTNU analysis.

Top # AHC BMC KUL NTNU
genes KUL-NTNU KUL-NTNU AHC-BMC AHC-BMC
50 0.020 0.080 0.020 0.100

100 0.040 0.150 0.070 0.300

200 0.085 0.360 0.140 0.565

500 0.218 0.896 0.260 -

1000 0.403 - 0.384 -

Table 4. Results from the CAT analysis performed in RStudio using the ‘matchBox” package and the
‘equalStat’ parameter. ‘AHC KUL-NTNU’ is the comparison of the two different AHC gene lists based
on the two different statistical analyses performed by KUL and NTNU. ‘BMC KUL-NTNU’ is the
comparison of the two different BMC gene lists based on the two different statistical analyses performed
by KUL and NTNU. ‘KUL AHC-BMC’ is the comparison of AHC and BMC based on the KUL anal-
ysis, while NTNU AHC-BMC’ compares AHC and BMC based on the NTNU analysis.

Top # AHC BMC KUL NTNU
genes KUL-NTNU KUL-NTNU AHC-BMC AHC-BMC
50 0.604 0.867 0.494 0.982

100 0.866 0.927 0.633 0.983

200 0.946 0.950 0.752 0.975

500 0.972 0.986 0.864 -

1000 0.984 - 0.922 -
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3.2 Analysis for selection of final gene list

To narrow down the selection of genes, the lists were compared with respect to both the adjusted
P value for the change in gene expression and the fold change (FC) value describing the quantity

of change.

3.2.1 Volcano Plots

By using the calculated log2 FC values in combination with the P values from the statistical analyses
conducted by both KUL and NTNU, four different Volcano plots were created — one for each
diet, whereas both diets were analyzed using both statistical datasets. Genes of statistical signifi-
cance and log2 FC > 0.38 are located in the upper left and/or upper right areas of the plots, colored

in green, blue and turquoise (Table 2).

The Volcano plots for AHC (Figure 5) and BMC (Figure 6) show that the majority of the genes
have a log2 FC close to zero. The gene dots are evenly distributed in the plot with respect to the P
values produced by KUL for both AHC and BMC, whereas NTNU’s data have a distinct cut-off
at -log10 P=1.5, corresponding to P=0.05. Overall, there is no remarkable change in gene expres-
sion, regardless of P value. A few genes exceeded the log2 FC>0.68 limit, corresponding to a 70%
change (Table 5). DEF.A3 (UniProt ID: P596606) is downregulated in AHC, and HMG.AT7 (Uni-
Prot ID: P17096) is upregulated in AHC. PKM2 (UniProt ID: P14618) and PKD7P7 (no UniProt
ID) are upregulated in BMC. NRGN (UniProtID: Q92686) and GRIN.A (UniProt ID: Q72429)

are upregulated in both diets.

Table 5. The genes with a log2 FC>0.68 and P>0.05 in the gene lists.

Gene list Downregulated genes Upregulated genes

AHC NTNU - NRGN, HMGAT
KUL DEFA3 NRGN, HMGAT1, GRINA

BMC NTNU - NRGN, GRINA, PKM2, 1.OC339047 (PKD1P1)
KUL - NRGN, GRINA, PKM2, .OC339047 (PKD1P1)
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Figure 5. Volcano plot produced in R studio using: A) KUL's statistical data for AHC, which initially
contained 3717 genes. 79 of the input genes are colored in either green, blue or turquoise, and these are
the genes considered of interest. B) NTNU's statistical data for AHC, which contained 3379 genes ini-
tially. 78 of the input genes are colored either in green, blue or turquoise. The log2 FC can be viewed
along the X axes, while the Y axes show the -log10 of adjusted P values from the respective diet.
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Figure 6. Volcano plot produced in R studio using A) KUL's data for BMC, which initially contained
3717 genes. 104 of the input genes are colored in green, and thus considered of interest. No genes are
blue or turquoise. B) NTNU's data for BMC, which contained 630 genes initially. 60 of the input genes
are colored in either green, blue or turquoise, and are thus of interest. The log2 FC can be viewed along
the X axes, while the Y axes show the -log10 of adjusted P values from the respective diet.
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3.2.2 Cross-ranking and comparison of lists

The four gene lists produced by the Volcano plot code were cross-ranked, resulting in four lists in
which the genes were ranked based on the combination of low P value and high log2 FC (Appen-
dix 3). The gene lists were compared with respect to the genes they contained to gain information
about unique and common genes between the diets. The number of genes in each category is
summarized in the Venn diagrams shown in Figure 7. The genes involved in each category can be
reviewed in Appendix 4. The two AHCs have more genes in common than the two BMCs. The
BMCs have a distribution similar to the AHC vs. BMC comparisons. The two statistical analyses
could thus seem to agree in which genes that are of significance in AHC, but the new analysis by
KUL adds 50 new genes to BMC. In total, there are now more genes assigned to BMC than AHC.

Many genes are common between the two diets.

A) AHC B) BMC
( 60 | D (\42 | 15
gL NTNU %L NTNU

C) KUL D) NTNU

28 41 | 51 43 27 ] 30
AHC > BMC AHC > BMC

Figure 7. Venn diagrams showing ovetlap between the different gene lists after cross-ranking based on
both P value and log2 FC. A) AHC based on the P values produced by KUL (left) vs. AHC based on
the P values produced by NTNU (right). The respective genes can be viewed in Table 18. B) BMC
based on the P values produced by KUL (left) vs. BMC based on the P values produced by NTNU
(right). The respective genes can be viewed in Table 19. C) AHC (left) vs. BMC (right) based on the P
values produced by KUL. The respective genes can be viewed in Table 20. D) AHC (left) vs. BMC
(right) based on the P values produced by NTNU. The respective genes can be viewed in Table 21.
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3.3 Analysis of gene lists

The selected gene lists (Appendix 3) were analyzed to gain information regarding the genes’ func-
tion as a set. An overrepresentation analysis was conducted to identify enriched biological terms

connected to the gene sets using both ClueGO and BiNGO.

3.3.1 Opverrepresentation analysis

The results from the ClueGO analysis (Table 6) show that different GO terms which are featured
in the two diets. For AHC, the overrepresented terms include homotypic cell-cell adhesion, platelet
aggregation, response to gamma radiation, negative regulation of response to DNA damage stim-
ulus, and negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage.
The genes connected to these terms are upregulated, except for the protein kinase C substrate-
encoding gene PLLEK (UniProt ID: P08567), as well as the Serine/threonine-protein kinase gene
PRKDC (UniProt ID: P78527). The overrepresented terms in BMC are connected to type I inter-
feron production, interleukin-12 production, interferon-beta production, regulation of cytokine bi-
osynthetic process, and regulation of toll-like receptor signaling pathway. The genes associated with
the overrepresented terms of highest significance in BMC were mostly downregulated, except from
the genes A4ARRB2 (UniProt ID: P32121), LGALS9 (UniProt ID: O00182) and CD4 (UniProt ID:
P01730), which were upregulated.

The full list of overrepresented terms for AHC is shown in Figure 8 and for BMC in Figure 9,
and the associated GO IDs, P values and genes can be viewed in Appendix 5. The term group
colored in the colder purple is the most prominent in AHC. These terms are all connected to cell
cycle control. It is the three same genes (BTGZ2, UniProt ID: P78543; PRKDC, UniProt ID: P78527;
RBM38, UniProt ID: QIH0Z9) that are associated to all terms involved in cell cycle control. The
group colored in red is involved in apoptosis and response to DNA damage, and the warmer purple
is types of cell-cell adhesions. In BMC, the groups are of other categories. Cell cycle response is
still represented, but in to a lesser extent than in AHC. Other terms are presented, with groups

connected to e.g. lymphocytes, interleukins, the TNF superfamily, interferons, and TLR signaling.

The BINGO analysis output included an extensive list of GO terms (Appendix 6), in which many
were comprehensive and general terms in the GO hierarchy, e.g. ‘positive regulation of biological
processes’. The analysis did not yield many significantly overrepresented GO terms of interest.
Nevertheless, a few terms associated with inflaimmation were elevated (Table 7). The pattern of

up- and downregulated genes is not as apparent here. The terms are mainly similar between the
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diets, but the genes associated to them and the P values differ to some extent, as well as some terms

being unique to the different diets. ‘Platelet aggregation’ is mentioned for AHC, which is common

for the ClueGO and the BINGO analyses. The top unique term assigned to BMC is ‘regulation of

ERK1 and ERK2 cascade’. The remaining terms are common between the diets. The most signif-

icant terms are connected to metabolism in both diets.

Table 6. The significantly most prominent GO terms from the ClueGO overrepresentation analysis.

The table is an excerpt from the tables in appendix showing all overrepresented terms and attributing

data. The remaining data can be viewed in Appendix 5.

GO Term Associated Genes
AHC homotypic cell-cell adhesion ALLOX12, FERMT3, ITGAZB,
ITGB3, PLLEK
platelet aggregation ALOXT712, FERMT3, ITGAZB,
ITGB3, PLLEK
response to gamma radiation BCL.21.1, HSF1, PRKDC
negative regulation of response to DNA damage stimulus BCI.21.1, CD44, CD74, HSF1
regulation of intrinsic apoptotic signaling pathway in re- BCL2L7, CD44, CD74
sponse to DNA damage
negative regulation of intrinsic apoptotic signaling pathway BCL2L7, CD44, CD74
in response to DNA damage
BMC type I interferon production IRF1, POLR3H, PRKDC, RNF216,

interleukin-12 production

regulation of type I interferon production

regulation of interleukin-12 production

positive regulation of type I interferon production
interferon-beta production

regulation of interferon-beta production

positive regulation of cytokine biosynthetic process

regulation of toll-like receptor signaling pathway

TICAMT
ARRB2, IRF1, LGALSY

IRF1, POLR3H, PRKDC, RNF216,
TICAMT

ARRB2, IRF1, LGALSY

IRF1, POLR3H, PRKDC, TICAM1
IRF1, RNF216, TICAMT1

IRF1, RNF216, TICAMT

CD4, IRF1, TICAM1

ARRB2, IRF1, TICAM1
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Table 7. An excerpt of GO terms from the BINGO overtepresentation analysis. The remaining data

can be viewed in Appendix 6.

GO Term Associated Genes
AHC platelet aggregation PLEK, FERMT3
response to stress RBM38, TSC22D4, CD74, BITG2, PRKDC,
ITGB3, DEFA4, PI.EK, TPM1, F13.A1,
DEFA3, 1.SP1, MTF1, HSF1, MKNK2, CD44,
TNRC6A, FERMT3, BCI.2L.1
positive regulation of cytokine-mediated CD74, AGPATT
signaling pathway
wound healing ITGB3, PLEK, TPM1, F13.A41, CD44, FERMT3
negative regulation of DNA damage re- CD74, CD44
sponse, signal transduction by p53 class
mediator
homotypic cell-cell adhesion PILEK, FERMT3
hemostasis ITGB3, PLEK, F13A1, FERMT?3
T cell activation FKBP1A4, CD74, PRKDC, IRF1
T cell differentiation CD74, PRKDC, IRF1
leukocyte differentiation CD74, PRKDC, IRF1, JUNB
BMC regulation of ERK1 and ERK2 cascade ~ CD74, I'EGEB, ARRB2, DUSP6, CD44

leukocyte activation

T cell activation

immune system process

positive regulation of cytokine-mediated
signaling pathway

T cell differentiation

negative regulation of DNA damage re-
sponse, signal transduction by p53 class
mediator

immune system development

regulation of response to stress

lymphocyte differentiation

FKBP1A, CD74, CD4, WBP1, PRKDC,
IMPDHT, IRF1, TICAM1

FKBP1A, CD74, CD4, WBP1, PRKDC, IRF1

CD74, WBP1, PRKDC, I1.1R2, NCF4, TCF7,
PLEK, TICAM1, RASGRP4, FKBP1.A, CD4,
IMPDHT, IRF1, POLR3H, JUNB

CD74, AGPATT

CD74, CD4, PRKDC, IRF1
CD74, CD44

CD74, CD4, PRKDC, IRF1, PLEK, JUNB,
RASGRP4

CD74, PLEK, VEGFB, ARRB2, TICAMT,
RTN4, CD44

CD74, CD4, PRKDC, IRF1
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Figure 10. Visual representation of the results of the BINGO analysis performed on the merged AHC
gene list. The P values shown as a yellow-to-orange color gradient is based on a hypergeometric statistical
test with Benjamini-Hochberg false discovery rate (FDR) correction. The data and visualizations were
produced using the BINGO app in Cytoscape. A blow-up of the area showing the most significant GO

terms is shown.
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Figure 11. Visual representation of the results of the BINGO analysis performed on the merged BMC
gene list. The P values shown as a yellow-to-orange color gradient is based on a hypergeometric statistical
test with Benjamini-Hochberg false discovery rate (FDR) correction. The data and visualizations were

produced using the BINGO app in Cytoscape.
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3.3.2 Pathway-based analysis using Reactome

A pathway-based analysis was conducted, in which the gene sets were analyzed with respect to
biological pathways. When analyzing the selected gene lists with the genes log2FC in the Reactome
Pathway Database, few pathways (Table 8) were discovered to significantly change as a response
to the diets. The results were, however, similar for both diets, regardless of statistical analysis. “The
Rho GTPase cycle’ and ‘Insulin-like Growth Factor-2 mRNA Binding Proteins
(IGF2BPs/IMPs/VICKZs) bind RNA” are the top two pathways regardless of diet and statistical

analysis.

The same analysis was performed on the full gene lists from the initial datasets to see if the results
were different from that based on only the selected genes. The affected pathways for the full gene
lists (Table 9) were indeed different from those for the selected ones. One pathway prominent
compared to the others: ‘Neutrophil degranulation’, which has an evidently lower FDR compared
to all other pathways, and which does appear in three out of four gene lists. The only exception is
the BMC diet based on NTNU’s statistical data, in which ‘Neutrophil degranulation” does not ap-

pear.

3.4 Networks

To get an idea of whether there is a system level component suggesting coordinated function to
the genes in the gene sets, a network was built for each of the diets: one for AHC (Figure 12) and
one for BMC (Figure 13). The nodes are colored based on the genes’ category after comparison
of the cross-ranked gene lists (T'able 10), and the edges are based on how GeneMANIA presented
the interactions. Most of the genes that were in common between the diets (green nodes) are con-
nected through interactions in the networks, at least for BMC. AHC did, on the other hand, not
need as many ‘filler’ nodes to connect the genes in the gene list, and only 29 nodes are isolated
from the network (Table 13). The BMC network has 57 isolated nodes, but most of them are from
KUL’s analysis only, and a few from N'TNU’s analysis only. 20 ‘filler’ nodes have been introduced
by GeneMANIA to connect the genes in the BMC gene list. The edges connecting the nodes are

not equal nor directed.
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Table 8. The pathways significantly affected by the diets according to the Reactome Pathway Database.

The data used is the gene lists containing a selected genes in Appendix 3 for each diet and each statistical

analysis, as well as the log2 FC for each respective gene.

Diet Statistics Pathways FDR
AHC NTNU Rho GTPase cycle 1.00E-5
Insulin-like Growth Factor-2 mRNA Binding Proteins
(IGF2BPs/IMPs/VICKZs) bind RNA 2.09E-5
KUL Rho GTPase cycle 7.24E-6
Insulin-like Growth Factor-2 mRNA Binding Proteins
(IGF2BPs/IMPs/VICKZs) bind RNA 7.24E-6
Interleukin-4 and 13 signaling 3.43E-1
Platelet degranulation 3.43E-1
Signaling by Rho GTPases 3.82E-1
Alpha-defensins 3.82E-1
Synthesis of 12-eicosatetraenoic acid derivatives 4.58E-1
BMC NTNU Rho GTPase cycle 1.31E-6
Insulin-like Growth Factor-2 mRNA Binding Proteins
(IGF2BPs/IMPs/VICKZs) bind RNA 7.25E-6
Signaling by Rho GTPases 4.83E-2
KUL Rho GTPase cycle 5.48E-5
Insulin-like Growth Factor-2 mRNA Binding Proteins
(IGF2BPs/IMPs/VICKZs) bind RNA 5.86E-5
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Table 9. The pathways significantly affected by the diets according to the Reactome Pathway Database.
The data used is the full gene lists containing the all gene lists from the initial datasets for each diet and

each statistical analysis, as well as the log2 FC for each respective gene.

Diet Statistics ~ Pathways FDR
AHC NTNU Neutrophil degranulation 9.27E-7
KUL Neutrophil degranulation 1.50E-8

Antigen processing: Ubiquitination & Proteasome degradation 9.87E-1
PD- 1 signaling 9.87E-1
Abortive elongation of HIV- 1 transcript in the absence of Tat 9.87E-1
Prostacyclin signaling through prostacyclin receptor 9.87E-1
Translocation of ZAP-70 to immunological synapse 9.87E-1
ERKSs are inactivated 9.87E-1
TCF7L2 mutant don’t bind CTBP 9.87E-1
HDAC:s deacetylate histones 9.87E-1
Sema4D induced cell migration and growth-cone collapse 9.87E-1
Insulin receptor recycling 9.87E-1
Misspliced GSK3beta mutants stabilize beta-catenin 9.87E-1
Tat-mediated HIC elongation arrest and recovery 9.87E-1
Pausing and recovery of Tat-mediated HIV elongation 9.87E-1
MAP2K and MAPK activation 9.87E-1

BMC NTNU Formation of the ternary complex, and subsequently, the 43S
complex 2.71E-3
Rho GTPase cycle 2.71E-3
L13a-mediated translational silencing of Ceruloplasmin expres-
sion 2.71E-3
Formation of a pool of free 40S subunits 8.64E-3
GTP hydrolysis and joining of the 60S ribosomal subunit 9.09E-3
Ribosomal scanning and start codon recognition 1.09E-2
Peptide chain elongation 2.57E-2
SRP-dependent cotranslational protein targeting to membrane 4.28E-2
HSF1-dependent transactivation 4.28E-2

KUL Neutrophil degranulation 1.50E-8
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Table 10. Color interpretation for the network presentations.

Color Meaning

Dark green Common to both gene lists of the particular diet, and do not appear in any of
the gene lists for the other diet (Table 22 for AHC, Table 23 for BMC).

Light green Common to both gene lists of the particular diet, but does also appear in at
least one gene list for the other diet (see the ‘Common for both lists’ columns
in Table 18 and Table 19).

Dark blue Appear in the particular diet based on NTNU’ data only (see the ‘Unique for
NTNU’s analysis’ columns in Table 18 and Table 19).

Light blue Appear in the particular diet based on KUL’s data only (see the “‘Unique for
KUL’s analysis’ columns in Table 18 and Table 19).

Red Selected from text-mining

Orange Introduced by GeneMANIA

Table 11. Isolated nodes in the network presentations. The isolated nodes represent genes that did not
have an apparent connection to any of the other genes, and thus did not get connected to the network.

They were, however, included in the analysis.

AHC BMC

CSDAPT, Coorf25, CHCHD10, ABTB1, AGPATT, C6orf136, CLIC3, CORO7, C701f149,
DDXT111.1, EAM100A4, GPX1P1,  CNOT7, CHMP6, CD68, DEFA3, FKBP1.A, FAM58A,
GRINA, GPR162, INOSOE, II.7TR2, INF2, JUNB, KLAA1267, L. RG1, L.OC339047,
JUNB, LRGT, LY6E, L.SP1, LSP1, LUGE, 1.OC440353, .OG100130751,
LOCT100130751, LOC407835, L.OC728888, MED16, MKINK2, MTF1, NPIPL.2,
MTF1, MKNK2, NPIPB12, NINJ1, NIPSNAPT1, PLEK, PANX2, PNPI A2,
NPIPB11, NPIPB15, PDKP1, RPI.36AP49, RASGRP4, RPL.13P12, RNF220, SFRS18,
PHF1, P2RY13, RASGRP4, S1.A,  SL.A, SH3BP1, TSPANT1S8, TGOLN2, TSC22D4,
SH3BPT1, TSC22D4, TNRC6A4, TOP3B, TP53113, UCP2, IVEGFB, 1VAMPZ2, WBP1,
IVNNZ2 ZFP106, ZGPAT, ZNF746
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3.5 Network-based analysis

3.5.1 Graph-based analysis

The network was analyzed using NetworkAnalyzer, yielding different values and graphs providing
information regarding the network’s properties. A summary of the simple parameters provided can
be viewed in Table 13. Among the complex parameters are betweenness centrality, which appears
to be similar for AHC (Figure 14 A) and BMC (Figure 14 B). The most prominent difference is
the node with 15 neighbors in AHC, with a relatively high betweenness centrality. This node is
identified as the NF-xB complex. In BMC, the NF-xB complex have 5 neighbors, in which 2 of
them are genes introduced to the network by GeneMANIA. NF-xB is also more connected in
AHC compared to BMC. Several genes have multiple neighbors, and the genes with 8 or more
neighbors are presented in (Table 12). The node degree distributions are similar for the two diets

(Figure 15), which both show a decrease at the in number of nodes as the node degree increases.

Table 12. Nodes with eight or more neighbors. Hight neighbors was chosen as a cut-off because it is
~half of the number of neighbors for the most connected node, which have fifteen. Node names, asso-

ciated UniProt IDs and number of neighbors are given in the table.

AHC BMC

NF-kB - 15 POLR3H  (UniProt ID: Q9Y535) 10
MBNL1  (UniProt ID: QINR56) 10 MBLNT (UniProt ID: QINRS56) 8
TPM7  (UniProt ID: P09493) 9 SMARCC2  (UniProt ID: Q8TAQ2) 8
LIMST  (UniProt ID: P48059) 8 YWHAE  (UniProt ID: P62258) 8
ITGB3  (UniProt ID: P05106) 8
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Table 13. Summary of the parameters provided by the graph-based analysis performed for both AHC

and BMC in Cytoscape using the NetworkAnalyzer plug-in. The isolated nodes were included in all

analyses.

Parameter AHC BMC
Clustering coefficient 0.094 0.092
Connected components 30 59
Network diameter 6 8
Network radius 4 1
Network centralization 0.159 0.080

Shortest paths

Characteristic path length
Average number of neighbors
Number of nodes

Network density

Network heterogeneity

Isolated nodes

2863 (42%)
3212
2.265

83

0.028
1.213

29

4832 (29%)
3.596
1.860

129

0.015
1.387

57
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Figure 14. Graphical presentation of the betweenness centrality (In-Betweenness) for the nodes in the
finished A) AHC and B) BMC networks. Each dot in the graph represents a node in the network. The
horizontal axes show the number of neighbors, and thus give information regarding connectivity. The
vertical axes show the betweenness centrality, which refers to the number of times a node acts as a bridge
along the shortest path between two other nodes. The graphical results are produced using the Net-
workAnalyzer plug-in in Cytoscape.
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Figure 15. Graphical presentation of the node degree distribution for the nodes in the finished A) AHC
and B) BMC networks. Each dot in the graph represents a node in the network. The horizontal axes
show the node degree. The vertical axes show the number of nodes in the network possessing the given

node degrees. The fitted line in blue is an y = ax> power law.
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3.5.2 Superimposing of gene expression data from the microarray

To visualize the gene expression data in Cytoscape, the genes’ respective log2 FC values were su-
perimposed onto the two networks, together with the P values from both statistical analyses. The
result was two visually different network presentations for each diet, four networks in total. The
log2 FC values for AHC and BMC do not differ remarkably from each other. There are no genes
that are downregulated in one diet and upregulated in the other, or the other way around. The only
difference is how up- or downregulated the genes are. The P values from the KUL analysis and the
NTNU analysis appear to be similar for AHC (Figure 16 and Figure 17), whereas they differ
distinctly for BMC (Figure 18 and Figure 19). The difference in P value is most notable in the
isolated genes. However, when reviewing the log2 FC calculations, the same trend is observed
between the diets for the unique genes as for the common genes. The difference is not as extensive
for genes connected to the network. The genes that are unique to each diet is not comparable in

these results, but they trend the same.

The NFkB complex is a yellow node due to it being a protein complex. However, when looking at
the calculated log2 FC values, the NFKB7 gene has a log2 FC = -0.08187448 in AHC and log2 FC
=-0.158690111 in BMC. No data were found for REI.A. The NF-xB complex can thus be con-
sidered downregulated in both diets, but to a higher extent in BMC compared to AHC. No data
were found for IKBKG either. However, a gene encoding another subunit of the IKK complex,
IKBKB (UniProt ID: 014920), was found in the data sets. IKBKB has a log2 FC = -0.138284136 in
AHC, and a log2 FC = -0.10641215 in BMC. The transcribed protein participates in phosphoryla-
tion of NF-kappaB inhibitors, such as IKK, and IKK-related kinases, e.g. TBK7 (UniProt ID:
QY9UHD?2). TBKT plays an essential role in regulation of inflammatory responses to foreign agents,
and have a log2 FC = -0.120653312 in AHC and -0.211656389 in BMC. The gene encoding the
cytokine TNF, which is known to be involved in inflammatory responses by inducing NF-xB acti-
vation, is also downregulated in both diets (log2 FC = -0.164197696 in AHC, -0.37691091 in BMC).
Even though not included in the network, the different TNF receptors in the data sets (IINFRSF74,
TNFRSF17, TNFRSF19, TNFRSF4, and TNFRSFY) are downregulated in both diets as well.

The most downregulated gene in both AHC and BMC, but to a greater extent in BMC, is IRF7
(UniProt ID: P10914). IRF7 encodes the transcriptional regulator ‘Interferon regulatory factor 17,
which function as an activator for several genes involved in anti-viral response, anti-bacterial re-
sponse, anti-proliferative response, apoptosis, immune response, DNA damage responses and

DNA repair.
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Figure 16. The finished AHC network and the isolated nodes with overlay of log2 FC and P value data.
The log2 FC values used ate the calculated mean values for each gene and are visualized according to
the color gradient down to the left. The P values used are produced by KUL. The bigger node, the lower
P value. The yellow nodes were not identified in the initial data set and does hence not have any values
dedicated to them.
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Figure 17. The finished AHC network and the isolated nodes with overlay of log2 FC and P value data.
The log2 FC values used are the calculated mean values for each gene and are visualized according to
the color gradient down to the left. The P values used are produced by NTNU. The bigger node, the
lower P value. The yellow nodes were not identified in the initial data set and does hence not have any

values dedicated to them.
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Discussion

In the diet intervention study described by Arbo et al. (2010), results indicate that NF-»B was
activated in response to AHC and inhibited in response to BMC, and that this suggests NF-»xB
having a key role in regulating the early diet specific changes in the current study. The pathways
mentioned as most notably exhibiting gene expression changes due to the diets, are connected to
processes such as apoptosis, proliferation/cell cycle regulation, and stress/immunity. The genes
highlighted in the study is said to be part of these processes. However, it is also mentioned that
very few genes showed differential regulation by the two diets: the overlap between AHC and BMC
is described as extensive, and the majority of the genes changed in the same direction in both diets.
In this thesis, both discrepancies and consensus to the initial conclusions have occurred. Through-
out this discussion, the discoveries done will be assessed and compared to the discoveries Arbo et

al. (2010) where appropriate.

The first observation that comes to mind is the difference in gene lists: just six of the genes (IRF7,
BCIL.21.1, BTG2, NAPTL1, F13A1, and CD44) mentioned in Arbo et al. (2010) appear in either
gene list produced in this thesis. The results from Arbo et al. (2010) are based on NTNU’s analysis
only, whereas the results in this thesis are a combination of NTNU’s and KUL’s analyses — a factor
that possibly could contribute to the results. When addressing the difference between NTNU and
KUL, the CAT analysis showed that the gene ranks differed greatly, at least for AHC, even though
the statistical (‘equalStat’) CAT analysis could indicate some similarities. The substantial difference
in ‘equalRank’ and ‘equalStat’ results is believed to be due to a bigger possibility of having the same
P value compared to having the exact same rank in the gene list. The CAT analysis also show that
the different diets share statistical data, which corresponds to the statement of Arbo et al. (2010),
saying that there is indeed an extensive overlap between AHC and BMC. Regardless, the different
FDR corrections used in the two analyses seem to have produced different results that affect the
final significant genes. The statistical differences could be a contributing factor to the differences

in selected genes.

The gene lists in this thesis are based on both P value and log2 FC. It is, however, important to

keep in mind that a P=0.05 not necessarily should be an absolute cut-off, even though this is done
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in this thesis. It could be interesting to experiment with different cut-offs for P value. The elimi-
nation of genes with a log2 FC<0.38 was a randomly chosen gene expression change, calculated to
fit a 40% up- or downregulation, still a minor change. All values in the diet intervention study had
a log2 FC<1, meaning no genes met the criteria of a two-fold up or downregulation. However,
even minor changes in gene expression can contribute to major changes in cellular response, and
thus result in bigger changes in an organism. In addition, it is likely that not all leukocytes in the
analyzed blood samples exhibit a response to inflammation. If only a smaller fraction of the leuko-
cytes displays relatively substantial changes, the response could possibly be ‘diluted’” due to numer-
ous non-affected cells. Regardless, not many genes met the requirements, as can be viewed in the

Volcano plots.

Most of the genes were eliminated due to log2 FC close to zero. In the log2 FC plot, the mean log2
FC for each gene was yet to be calculated. Using mean values would most likely yield even more
results close to zero. A reason behind the low log2 FC values could be that AHC and BMC did not
affect the participants considerably. However, it could be considered that the relatively short time-
line of the diet intervention study may contribute. Even though the cells in our bodies respond
quickly to environmental changes, a 7-days diet might not be considered extensive enough to cover
potential long-term effects of a specific diet. A longer intervention study, as well more participants
in the study, among them normal-weight people, could be considered. Due to the already existing
overweight of the participants in the diet intervention study, it could be reasonable to believe that
inflammatory processes were already in action as the study began, thus resulting in small changes.
When reviewing the initial gene expression data, e.g. NFKB7 was found to be among the top 200

most expressed genes on day 0 for AHC.

Regardless, the genes exceeding the limits using non-average log2 FC values are more numerous
in the BMCs. This could indicate that the system as a whole was more affected by BMC than it was
to AHC, which suggests a possibility of the individuals having a diet relatively high in carbohydrates
to begin with. On average, Norwegians have a diet consisting of 47% carbohydrates
(Helsedirektoratet, 2016), which is relatively high compared to the BMC diet. It can thus be as-
sumed that the reduction in dietary carbohydrates could results in a bigger transcriptome change
than continuing a higher-carb diet. Gene expression was nevertheless changed in both diets, which
might indicate that the participants in the diet intervention study reacted to being on a diet, regard-
less of which one. In addition to log2 FC, the Volcano plots provided information regarding P
values. An interesting observation with respect to P value is the obvious cut-off in both NTNU
analyses, in which the data seem to have been modified by removing almost every gene with a

P>0.05, which could affect the basis of comparison for the CAT analysis performed prior to the
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Volcano plots. The criteria behind this removal is not known. Regardless of the cut-off, only genes

with P<0.05 were included in the final gene lists for further analysis.

When addressing the genes that met the log2 FC>0.68 criteria, there number of genes are similar
for AHC and BMC, and the genes are partially the same as well. However, in the upregulated
category, HMGAT (UniProt ID: P17096) is more prominent in AHC. HMGAT is involved in reg-
ulation of mRNA transcription and processing. The kinase PKM2 (UniProt ID: P14618), and the
pseudogene PKD7P7 (no UniProt ID) are more prominent in BMC. DEFA3 (UniProt ID:
P59666), which encodes a neutrophil defensin, is downregulated in AHC. DEF.A3 is indirectly

connected to NF-»B in the final AHC network, whereas it is isolated in the final BMC network.

The genes in the final gene lists were built into two networks, one for each diet. Here, both statis-
tical analyses were included in the same networks. The gene lists contain few genes in common
with Arbo et al. (2010), even though the addition of REI.4, NFKB7 and TINF due to their proin-
flammatory properties made them easier to compare to Arbo et al.’s (2010) results. In Arbo et al.
(2010), an upregulation of REI.4 for AHC, and a downregulation for NFKB7 in BMC is described.
There is also described a downregulation of TNF in AHC, but no change in TINF expression in
BMC. In this thesis, TINF is downregulated in both diets, even though it is slightly less downregu-
lated in AHC. NF-»B is described by Arbo et al. (2010) as downregulated in BMC, probably due
to the downregulation in NFKB7, which supposedly lay the foundation of the conclusion saying
that BMC alleviates proinflammatory symptoms. What is not mentioned is that NFKB7 is down-
regulated also in AHC. No data were found for REI.A, which made double-checking of upregula-
tion in AHC difficult. In this thesis, the difference in NF-»B expression is thus not perceived as
remarkable, even though it is indeed downregulated in BMC. REI.A4 and NFKB7 does not neces-
sarily need to be upregulated for NF-B activity to increase, it is possible that genes encoding IKKs
are upregulated instead, and thus activating already existing NF-xB. However, only one such gene
was identified during the analysis in this thesis: IKBKB, which was downregulated in both diets, and
even slightly more downregulated in AHC compared to BMC. Consequently, the alleviating effects
of BMC on proinflammatory responses are not striking in this thesis, even though the possibility

is not disregarded.

Nevertheless, NF-xB does stand out in AHC in the graph-based analysis conducted on the net-
work. NF-xB are more connected in AHC compared to BMC, and the betweenness centrality of
NF-»B in AHC, meaning the influence it has on the other interactions in the network, is also
relatively high compared to every other node in either of the networks. NF-xB can thus be said to

inhibit hub properties, meaning that the genes in the AHC gene sets are more connected to NF-
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#B than the genes in the BMC gene sets. This might indicate a correlation between the AHC gene
sets and proinflammatory response. The node degree distribution in both AHC and BMC leads
toward a scale-free network, not a random one, which makes it believable to think that both net-
works are representable for a biological system containing hubs (Albert, 2005). Several genes in the
network did actually inhibit hub properties. In AHC, these genes were mainly connected to integ-
rins and actin-binding, while the genes in BMC mainly were connected to transcriptional regulation.
POLR3H (UniProt ID: Q9Y535), the node with the most neighbors in BMC, is an RNA polymer-
ase III subunit involved in recognition of bacteria and DNA viruses, could be considered as in-
volved in inflammatory response. So cans the integrin-related genes in AHC, which can contribute
to leukocytes’ adhesion to the blood vein walls during inflammation (Gahmberg et al., 1998). It is,
however, important to remember that the networks mainly were annotated using GeneMANIA,
and that the text-mining approach did not contribute much to ensure the connections between the

results.

To get an idea of the connections without analyzing each gene, the processes they are involved in
were analyzed. Arbo et al. (2010) did the same, and highlighted apoptosis, proliferation/cell cycle
regulation, and stress/immunity as prominent processes. Using ClueGO, BINGO and Reactome,
to some extent related results were observed in this thesis. The most prominent processes associ-
ated with the AHC gene list are connected to cell-cell adhesions, cell cycle control, apoptosis, and
response to DNA damage. For BMC, processes involving lymphocytes, intetleukins, the TNF su-
perfamily, interferons, and TLR signaling are prominent, but the genes connected to them are
mainly downregulated. Common for both diets are “The Rho GTPase cycle’, ‘Insulin-like Growth
Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA’, and ‘Neutrophil
degranulation’. Rho GTPases act as molecular switches in response to extracellular signals. By act-
ing together with the actin cytoskeleton, it can induce change in cell morphology, chemotaxis and
cell cycle progression (Hall, 1998). The expression of IGF2BP family members has been implicated
in various cancers (Bell et al., 2013). Four of the genes that are associated with control IGF2BPs
(CTNNB1, MYC, TCF4, NFKBT) are mentioned in Arbo et al. (2010). Neutrophils are critical
inflammatory cells that cause tissue damage in a range of diseases and disorders (Lacy, 2006). They
mature as a response to the appropriate cytokines and release a variety of substances through
degranulation, including antimicrobial proteins and enzymes, reactive oxygen espies and cytokines,
and in this way, kill extracellular bacteria and recruit additional leukocytes to the region of infec-
tion/inflammation. An interesting observation here, is that Rho GTPases are involved in signaling

pathways which can lead to Ca**-dependent neutrophil degranulation. These processes can thus be
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said to be connected to apoptosis, proliferation/cell cycle regulation, and stress/immunity, which

makes Arbo et al. (2010) and this thesis concur to some extent.

The approaches for interpretation of data in this thesis and in Arbo et al. (2010) differ, which
further might have contributed to the differences in results. However, based on the differences
identified between the NTNU and KUL gene lists, the new analysis conducted can be said to affect
the results. After taking KUL’s data into consideration and interpreting the results in a new manner,

the connection to proinflammatory response is weakened compared to presented results in Arbo

et al. (2010).
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Conclusion

The genes that were affected in response to the diets, and the processes they influence, can be
related to proinflammatory processes. However, the connection is not striking. There have been
induced some changes on a transcriptional level in the participants of the diet intervention study,
but the changes are barely perceived as considerable. Every gene that has been studied have
changed in the same manner in both diets. After taking KUL’s data into consideration and inter-
preting the results in a new manner, the connection to proinflammatory response is weakened
compared to what was presented in Arbo et al. (2010). The tendencies are, however, existing, mak-
ing this an interesting subject for further studies. Dietary diseases are still a rising problem, and
addressing them properly could be a crucial step for avoiding them in the future. Further research

and a more extensive diet intervention study could possibly lead to new knowledge of the subject.
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Appendix 1

CAT analysis

This code is written for analysis using the ‘equalStat’ parameter. To run the code using ‘equalRank’,

change method = “equalStat” tomethod = “equalRank” in every computeCat function.

library (matchBox)

FHFFFHFHH A 444 Diet A NTNU vs Diet A Wim #####FF 44444444
datal <- read.csv(file = "Diet A NTNU.csv", header = T, sep = ";",
stringsAsFactors = F)

datal <- na.omit (datal)

datal$Padj.dietA <- as.numeric(datal$Padj.dieth)
datal$log2FC mean dietA <- as.numeric(datal$log2FC mean dietA)
data2 <- read.csv(file = "Diet A Wim.csv", header = T, sep = ";",
stringsAsFactors = F)

data2 <- na.omit (dataZ2?)

data2$Padj.dietA <- as.numeric(data2$Padj.dieth)
data2$1og2FC _mean dietA <- as.numeric(data2$log2FC mean dietA)

#Data merge

datal <- filterRedundant (datal, idCol = "Name", byCol = "Padj.dietA",
decreasing = F)
data2 <- filterRedundant (data2, idCol = "Name", byCol = "Padj.dietA",

decreasing = F)

mergel <- merge(datal, data?2, by = "Name", all.x = F)
mergel$log2FC mean dietA.x <- NULL
mergel$log2FC mean dietA.y<- NULL

View (mergel)

CAT <- computeCat (mergel, size = nrow(mergel), idCol = "Name", de-
creasing = F, method = "equalStat")

plotCat (CAT, whichToPlot = 1l:length (CAT))

View (CAT)

write.table (CAT, file = "AvsA equalStat.csv", sep = ";", col.names =
T, row.names = F, quote = F)

FHHHHHFFHHHHFFH4HHF Diet B NTNU vs Diet B Wim #####F#H44FFHE4HF44
datal <- read.csv(file = "Diet B NTNU.csv", header = T, sep = ";",
stringsAsFactors = F)

datal <- na.omit (datal)

datal$Padj.dietB <- as.numeric (datal$Padj.dietB)
datal$log2FC mean dietB <- as.numeric(datal$log2FC mean dietB)
dataz <- read.csv(file = "Diet B Wim.csv", header = T, sep = ";",
stringsAsFactors = F)

data?2 <- na.omit (data?)

data2$Padj.dietB <- as.numeric (data2$Padj.dietB)
data2$10og2FC mean dietB <- as.numeric(data2$1og2FC mean dietB)

#Data merge
datal <- filterRedundant (datal, idCol = "Name", byCol = "Padj.dietB",
decreasing = F)
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data2 <- filterRedundant (dataz2, idCol = "Name", byCol = "Padj.dietB",
decreasing = F)
mergel <- merge(datal, data?2, by = "Name", all.x = F)

View (mergel)
mergel$log2FC mean dietB.x <- NULL
mergel$log2FC mean dietB.y<- NULL

CAT <- computeCat (mergel, size = nrow(mergel), idCol = "Name", de-
creasing = F, method = "equalStat")

plotCat (CAT, whichToPlot = 1l:length (CAT))

View (CAT)

write.table (CAT, file = "BvsB equalStat.csv", sep = ";", col.names =
T, row.names = F, quote = F)

#HHHFHAHH A FHAH A 4SS Diet A NTNU vs diet B NTNU ######## 44444444444
datal <- read.csv(file = "Diet A NTNU.csv", header = T, sep = ";",
stringsAsFactors = F)

datal <- na.omit (datal)

datal$Padj.dietA <- as.numeric(datal$Padj.dieth)
datal$log2FC mean dietA <- as.numeric(datal$log2FC mean dietA)
data2 <- read.csv(file = "Diet B NTNU.csv", header = T, sep = ";",
stringsAsFactors = F)

data?2 <- na.omit (data?2?)

data2$Padj.dietB <- as.numeric (data2$Padj.dietB)
data2$1og2FC _mean dietB <- as.numeric(data2$log2FC mean dietB)

#Data merge

datal <- filterRedundant (datal, idCol
decreasing = F)

data2 <- filterRedundant (data2, idCol = "Name", byCol
decreasing = F)

"Name", byCol "Padj.dietA",

"Padj.dietB",

mergel <- merge(datal, data?2, by = "Name", all.x = F)
View (mergel)

mergel$log2FC mean dietA <- NULL
mergel$log2FC mean dietB<- NULL

CAT <- computeCat (mergel, size = nrow(mergel), idCol = "Name", de-
creasing = F, method = "equalStat")

plotCat (CAT, whichToPlot = 1:length (CAT))

View (CAT)

write.table(CAT, file = "NTNU AvsB equalStat.csv", sep = ";",
col.names = T, row.names = F, quote = F)

FHfdHHAFHE 44 E444% Diet A Wim vs diet B Wim ##&#####d#4#4444444
datal <- read.csv(file = "Diet A Wim.csv", header = T, sep = ";",
stringsAsFactors = F)

datal <- na.omit (datal)

datal$Padj.dietA <- as.numeric (datal$Padj.dietA)
datal$log2FC mean dietA <- as.numeric(datal$log2FC mean dietA)
dataz <- read.csv(file = "Diet B Wim.csv", header = T, sep = ";",
stringsAsFactors = F)

data?2 <- na.omit (data?)

data2$Pad]j.dietB <- as.numeric (data2$Padj.dietB)
data2$10g2FC mean dietB <- as.numeric(data2$1og2FC mean dietB)
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#Data merge

datal <- filterRedundant (datal, idCol = "Name", byCol = "Padj.dietA",
decreasing = F)

data2 <- filterRedundant (dataz2, idCol = "Name", byCol = "Padj.dietB",
decreasing = F)

mergel <- merge (datal, data2, by = "Name", all.x = F)

View (mergel)
mergelSlog2FC mean dietA <- NULL
mergel$log2FC mean dietB<- NULL

CAT <- computeCat (mergel, size = nrow(mergel), i1dCol = "Name", de-
creasing = F, method = "equalStat")

plotCat (CAT, whichToPlot = 1l:length (CAT))

View (CAT)

write.table (CAT, file = "Wim AvsB equalStat.csv", sep = ";", col.names
= T, row.names = F, quote = F)
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Volcano plot code

The code is here presented using AHC NTNU as an example. Smaller changes were made with
respect to data read, x axis limits (x1im) in the plot function, and to output file data to fit the

different data sets.

data <- read.csv("Up-Down regulated genes/Diet A NTNU.csv", header =
T, sep = ";", stringsAsFactors = F)

data$Padj.dietA <- as.numeric(data$Padj.dietA)
data$log2FC mean dietA <- as.numeric(data$log2FC mean dietA)

View (data)

#Volcano plot
with (data, plot(log2FC mean dietA, -loglO(Padj.dietA), pch=20,
main="Volcano plot", xlim=c(-1,1)))

#pval<.05 in red
with (subset (data, Padj.dietA<.05 ), points(log2FC mean dietA, -
logl0 (Padj.diethA), pch=20, col="red"))

#log2FC > 0.38 in orange

with (subset (data, abs(log2FC mean dietA)>0.38), points(log2FC mean di-
etA, -loglO(Padj.dietA), pch=20, col="orange"))
#1log2FC > 0.38 & pval < 0.05 in green

with (subset (data, Padj.dietA<.05 & abs(log2FC mean dietA)>0.38),
points (1log2FC mean dietA, -1loglO(Padj.dietA), pch=20, col="green"))

#log2FC > 0.5 & pval < 0.05 in blue
with (subset (data, Padj.dietA<.05 & abs(log2FC mean dietA)>0.5),
points (log2FC mean dietA, -loglO(Padj.dietA), pch=20, col="blue"))

#1log2FC > 0.68 & pval < 0.05 in turquoise

with (subset (data, Padj.dietA<.05 & abs(log2FC mean dietA)>0.68),
points (log2FC mean dietA, -1loglO(Padj.dietA), pch=20, col="tur-
quoise"))

#Get values with pval < 0.05 & log2FC > 0.38 and save them in a csv
file

outputdata <- data.frame (subset (data, data$Padj.dietA<.05 &

abs (1log2FC_mean_dietA)>0.38))

write.table (outputdata, file = "SumDietANTNU.csv", sep = ";", quote =
F, col.names = T, row.names = F)

#Labels on blue and turquoise points

library(calibrate)

with (subset (data, Padj.dietA<.05 & abs(log2FC mean dietA)>0.5),
textxy (log2FC mean dietA, -loglO(Padj.dietA), labs=Name, cex=.5))
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Parameter: ‘equalRank’
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Figure 20. CAT plots produced using the ‘equalRank’ parameter. The initial gene lists for AHC and
BMC were ranked from lowest to highest P value based on both KUL’s and NTNU’s analysis. The
statistical analyses were compared for both AHC (A) and BMC (B), and the diets were compared with
respect to both KUL’s (C) and NTNU’s (D) analysis.
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Parameter: ‘equalStat’
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Figure 21. CAT plots produced using the ‘equalStat’” parameter. The initial gene lists for AHC and BMC

were assigned P values based on both KUL’s and NTNU’s analysis. The statistical analyses were com-
pared for both AHC (A) and BMC (B), and the diets were compated with respect to both KUL’s (C)

and NTNU’s (D) analysis.
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Table 14. Gene list for AHC based on the statistical data produced by NTNU. The genes are cross-
ranked based both adjusted P value and log2FC.

Gene name Full name Log2 FC P adj
NRGN Neurogranin 0,785874310 0,000416813
DEFA3 Neutrophil defensin 3 -0,610251398 0,000440140
DEFA3 Neutrophil defensin 3 -0,605390274 0,000544368
IRF1 Interferon regulatory factor 1 -0,675673049 0,000739848
HMGAT High mobility group protein HMG-I/HMG-Y 0,720552454 0,000952637
USF2 Upstream stimulatory factor 2 0,592587182 0,000846877
1.OC339047 PKD1P1, polycystin 1, transient receptor po- 0,585702484 0,001133337
tential channel interacting pseudogene 1
MS4A7 Membrane-spanning 4-domains subfamily A 0,453569231 0,000440140
member 7
INOSOE INO80 complex subunit E 0,494609234 0,000875831
CD74 HLA class II histocompatibility antigen gamma 0,610058629 0,001358704
chain
DEFA3 Neutrophil defensin 3 -0,577178692 0,001210528
CISA Lysosomal protective protein 0,454658501 0,000670523
PKM?2 Pyruvate kinase PKM 0,432231814 0,000416813
GRINA Protein lifeguard 1 0,658108966 0,002061457
LGALSY Galectin-9 0,472252278 0,000799075
PKM?2 Pyruvate kinase PKM 0,612912508 0,002223474
SL.A Src-like-adapter -0,426170797 0,000161766
PKM?2 Pyruvate kinase PKM 0,576699093 0,001367842
F13A1 Coagulation factor XIII A chain 0,437756665 0,000614478
PARV'B Beta-parvin 0,534067931 0,001676121
ITGB3 Integrin beta-3 0,454658488 0,001071993
CD74 HLA class II histocompatibility antigen gamma 0,473993051 0,001199907
chain
AGPATT 1-acyl-sn-glycerol-3-phosphate acyltransferase 0,479608446 0,001425995
alpha
LRGT Leucine-rich alpha-2-glycoprotein -0,418436100 0,000544368
LY6E Lymphocyte antigen 6E 0,410461033 0,000440140
TSC22D4 TSC22 domain family protein 4 0,474919175 0,001869523
KCTD20 BTB/POZ domain-containing protein 0,438229436 0,001236490
KCTD20
PACST Phosphofurin acidic cluster sorting protein 1 0,524744470 0,003366308
ITGA2B Integrin alpha-IIb 0,538815645 0,003906013
AES Amino-terminal enhancer of split 0,423910891 0,000972378
OLFM4 Olfactomedin-4 -0,404168686 0,000508319
HNRNPL Heterogeneous nuclear ribonucleoprotein L 0,445439227 0,001482677
VAMP2 Vesicle-associated membrane protein 2 0,423697080 0,001156693
SH3BP1 SH3 domain-binding protein 1 0,477171837 0,003386707
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GPR162
DEFA4
CSDAPT
C6orf25
LOC407835

LOC100130751

SMARCC2
LOC441481
CD44

LSP1
RNF11
P2RYT3
NPIPL?

ATP610C

L.OC440353

DEFA3
ALOX12
NA

HSF1
FKBP1A
RBM38
GPR177
JUNB
RBM38
PHF1
UBAT1
MGC13005
TCF7
FAM100A
PI3

TPM1
PRKDC

NA

RTN4
ZFP361.2
IVNN2
RASGRP4
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Probable G-protein coupled receptor 162
Neutrophil defensin 4

Y-box binding protein 3 pseudogene 1
Protein G6b

Mitogen-activated protein kinase kinase 2
pseudogene

?

SWI/SNF complex subunit SMARCC2
Glutathione peroxidase pseudogene 1
CD44 antigen

Lymphocyte-specific protein 1

RING finger protein 11

P2Y purinoceptor 13

Nuclear pore complex-interacting protein fam-
ily member B15

V-type proton ATPase 16 kDa proteolipid sub-

unit

Nuclear pore complex-interacting protein fam-
ily, member B12

Neutrophil defensin 3

Arachidonate 12-lipoxygenase, 12S-type
NA

Heat shock factor protein 1

Peptidyl-prolyl cis-trans isomerase FKBP1A
RNA-binding protein 38

Protein wntless homolog

Transcription factor jun-B

RNA-binding protein 38

PHD finger protein 1

Ubiquitin-like modifier-activating enzyme 1
DEAD/H box polypeptide 11 like 2
Transcription factor 7

UBA-like domain-containing protein 1
Elafin

Tropomyosin alpha-1 chain
DNA-dependent protein kinase catalytic subu-
nit

NA

Reticulon-4

mRNA decay activator protein ZFP36L.2
Vascular non-inflammatory molecule 2

RAS guanyl-releasing protein 4

-0,401875699
-0,400345191
0,503435985
0,442302300
0,429529180

0,499233130
0,432116237
0,388188831
0,391022569
0,492140242
0,404962157

-0,395416151
0,445598057

0,441933012

0,491915598

-0,415970243
0,421899028
0,429270723
0,405140744
0,454590780
0,431626935

-0,380182909
0,433985735
0,403290280
0,394063652
0,386653768
0,415587209
0,383192704
0,406552150

-0,412886761
0,397098167

-0,389142526

0,380750645
0,389556194
0,401825338
-0,418381380
0,407536012

0,000614478
0,000608033
0,006040751
0,003295502
0,002299286

0,006277245
0,002840447
0,000750171
0,000923949
0,007030275
0,001364963
0,001156693
0,005280867

0,005193471

0,019692591

0,003091785
0,003371446
0,004627177
0,002703660
0,010237587
0,007810615
0,001355033
0,034682590
0,004501506
0,003139440
0,002239957
0,006353142
0,002407958
0,005978949
0,006540036
0,005062518
0,003991718

0,002881443
0,004731738
0,005999468
0,049977201
0,018248677
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LOC728888

BCL.2L1
MKNK2

MTF1
RPS15A4
BTG2
TAF15

Nuclear pore complex-interacting protein fam-
ily member B11

Bcl-2-like protein 1

MAP kinase-interacting serine/threonine-pro-
tein kinase 2

Metal regulatory transcription factor 1

40S ribosomal protein S15a

Protein BTG2

TATA-binding protein-associated factor 2N

0,409530835

0,402780979
0,380763132

0,380650086
-0,387166063
0,386849900
-0,382570254

0,021993817

0,014786532
0,005221225

0,005908555
0,007810615
0,044598663
0,040225811
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Table 15. Gene list for AHC based on the statistical data produced by KUL. The genes are cross-ranked
based on both adjusted P value and log2FFC.

Gene name Full name Log2 FC P adj
GRINA Protein lifeguard 1 0,693714416 9,00E-05
DEFA3 Neutrophil defensin 3 -0,688533497 9,00E-05
LGALSY Galectin-9 0,504723422 9,00E-05
L.OC100130751 2 0,509230068 9,00E-05
PACST Phosphofurin acidic cluster sorting protein 1 0,547518324 2,00E-04
PKM?2 Pyruvate kinase PKM 0,638477671 4,00E-04
NRGN Neurogranin 0,813561724 0,0013
DEFA3 Neutrophil defensin 3 -0,683434566 8,00E-04
PKM?2 Pyruvate kinase PKM 0,602777934 5,00E-04
L.OC339047 PKD1P1, polycystin 1, transient receptor potential 0,600776281 5,00E-04
channel interacting pseudogene 1
DEFA3 Neutrophil defensin 3 -0,656440818 0,0011
USF2 Upstream stimulatory factor 2 0,610103656 5,00E-04
CSDAPT Y-box binding protein 3 pseudogene 1 0,5238600651 4,00E-04
CD74 HLA class II histocompatibility antigen gamma 0,644901231 0,0014
chain
DEFA3 Neutrophil defensin 3 -0,491143066 3,00E-04
SH3BP1 SH3 domain-binding protein 1 0,491773789 3,00E-04
CD74 HLA class II histocompatibility antigen gamma 0,499640611 5,00E-04
chain
RBM3§ RNA-binding protein 38 0,443326181 1,00E-04
NA NA 0,420055129 9,00E-05
JUNB Transcription factor jun-B 0,446964244 3,00E-04
ITGA2B Integrin alpha-IIb 0,548291436 0,0016
VAMP2 Vesicle-associated membrane protein 2 0,429148495 9,00E-05
LY6E Lymphocyte antigen 6E 0,41983234 9,00E-05
INOSOE INO8O complex subunit E 0,514833778 0,0019
FKBP1A Peptidyl-prolyl cis-trans isomerase FKBP1A 0,48287916 0,0015
CHCHD10 Coiled-coil-helix-coiled-coil-helix domain-contain- 0,400503305 9,00E-05
ing protein 10, mitochondrial
MTF1 Metal regulatory transcription factor 1 0,409039501 9,00E-05
TSC22D4 TSC22 domain family protein 4 0,500044547 0,002
HMGAT High mobility group protein HMG-I/HMG-Y 0,753453878 0,014
UBAT1 Ubiquitin-like modifier-activating enzyme 1 0,405837951 9,00E-05
PLLEK Pleckstrin -0,412199074 3,00E-04
CD44 CD44 antigen 0,4091406 2,00E-04
HNRNPL Heterogeneous nuclear ribonucleoprotein L 0,453977066 0,0016
SL.A Src-like-adapter -0,43439385 0,0013
TCF7 Transcription factor 7 0,394141612 9,00E-05
PARVB Beta-parvin 0,552513807 0,0103
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LOC407835

LSPT1
AES
KCTD20
BCL.2L1
AGPATT

MS4A47

F13A1
MGC13005
OLFM4
ITGB3
TPMT1

LSP1
LOC440353

FAM100A4
FERMT?3
ATP610C
RASGRP4
PRKDC
PKM2

NA
DEFA4
LOC728888

NA

PHF1
LRG1
RNF11
RPS15A4
TAF15
LOC441481
MBNLT
Cb6orf25
NPIPL.2

ALOXT12
UNCT19
RBM3§8
P2RY73

80

Mitogen-activated protein kinase kinase 2 pseudo-

gene
Lymphocyte-specific protein 1

Amino-terminal enhancer of split

BTB/POZ domain-containing protein KCTD20
Bcl-2-like protein 1

1-acyl-sn-glycerol-3-phosphate acyltransferase al-
pha

Membrane-spanning 4-domains subfamily A mem-
ber 7

Coagulation factor XIII A chain

DEAD/H box polypeptide 11 like 2
Olfactomedin-4

Integrin beta-3

Tropomyosin alpha-1 chain

Lymphocyte-specific protein 1

Nuclear pore complex-interacting protein family,
member B12

UBA-like domain-containing protein 1

Fermitin family homolog 3

V-type proton ATPase 16 kDa proteolipid subunit
RAS guanyl-releasing protein 4

DNA-dependent protein kinase catalytic subunit
Pyruvate kinase PKM

NA

Neutrophil defensin 4

Nuclear pore complex-interacting protein family
member B11

NA

PHD finger protein 1

Leucine-rich alpha-2-glycoprotein

RING finger protein 11

40S ribosomal protein S15a

TATA-binding protein-associated factor 2N
Glutathione peroxidase pseudogene 1
Muscleblind-like protein 1

Protein G6b

Nuclear pore complex-interacting protein family
member B15

Arachidonate 12-lipoxygenase, 125-type
Protein unc-119 homolog A
RNA-binding protein 38

P2Y purinoceptor 13

0,44216574

0,387701197
0,418898738
0,454878769
0,39073649
0,50148461

0,488745772

0,459969266
0,453141108
-0,421921671
0,469310517
0,39725809
0,527715236
0,510410873

0,425056575
0,381980726
0,457511459
0,430568816
-0,388675954
0,45165739
0,454916319
-0,451712509
0,418731158

-0,39033558
0,417839553
-0,410246032
0,426046797
-0,407962228
-0,403342564
0,392583677
0,38759471
0,443570248
0,438134884

0,428000375
-0,389845145
0,411545073
-0,405606709

0,0015

9,00E-05
6,00E-04
0,0028
1,00E-04
0,0076

0,0039

0,0036
0,0031
0,0015
0,0059

4,00E-04
0,0241
0,0406

0,0021
3,00E-04
0,0127
0,0036
5,00E-04
0,0086
0,0176
0,0128
0,0034

0,0014
0,0035
0,0032
0,0076
0,0024

0,002
0,0017
0,0014
0,0214
0,0148

0,011
0,0015
0,0048
0,0058
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LIMS?

GPR762
IRF?
TNRC6A
RTN4
YWHAE

LIM and senescent cell antigen-like-containing do-
main protein 1

Probable G-protein coupled receptor 162
Interferon regulatory factor 2

Trinucleotide repeat-containing gene 6A protein
Reticulon-4

14-3-3 protein epsilon

0,384457939

-0,409735238
0,391549298
0,385622248
0,409769226
0,385477237

0,0019

0,019

0,008
0,0039
0,0474
0,0239
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Table 16. Gene list for BMC based on the statistical data produced by NTNU. The genes are cross-
ranked based on both adjusted P value and log2FFC.

Gene name Full name log2FC P adj
LOC339047 PKD1P1, polycystin 1, transient receptor poten- 0,719047197 0,023662603
tial channel interacting pseudogene 1
IRF1 Interferon regulatory factor 1 -0,851221871 0,030740429
NRGN Neurogranin 0,693988488 0,023662603
GPR162 Probable G-protein coupled receptor 162 -0,594660328 0,030740429
CD44 CD44 antigen 0,601589625 0,030868901
HMGAT High mobility group protein HMG-I/HMG-Y 0,849385448 0,034174367
MBNL1 Muscleblind-like protein 1 0,491176575 0,021168067
LRGT Leucine-rich alpha-2-glycoprotein -0,502168085 0,030740429
TSC22D4 TSC22 domain family protein 4 0,530444619 0,031574297
AES Amino-terminal enhancer of split 0,513955387 0,031574297
NA NA 0,466875965 0,021168067
SL.A Src-like-adapter -0,449542273 0,012249425
LOC100130751 » 0,577752335 0,033521227
NAPTLT Nucleosome assembly protein 1-like 1 0,447204759 0,001834412
SMARCC2 SWI/SNF complex subunit SMARCC2 0,613911398 0,034766813
NPIPL.2 Nuclear pore complex-interacting protein family 0,484031392 0,030740429
member B15
PACS1 Phosphofurin acidic cluster sorting protein 1 0,635109786 0,039777016
F13A71 Coagulation factor XIII A chain 0,425507141 0,000875432
PKM?2 Pyruvate kinase PKM 0,696306324 0,041855689
AGPATT 1-acyl-sn-glycerol-3-phosphate acyltransferase al- 0,462504414 0,031574297
pha
TCF7 Transcription factor 7 0,570017223 0,041585990
CNOT7 CCR4-NOT transcription complex subunit 7 0,484389023 0,034766813
IRF2BP2 Interferon regulatory factor 2-binding protein 2 0,419109830 0,022588768
ZFP106 Zinc finger protein 106 0,403313303 0,018724670
RNF216 E3 ubiquitin-protein ligase RNF216 -0,460638149 0,033521227
NPHP3 Nephrocystin-3 0,456527638 0,033513026
PHF17 PHD finger protein 1 0,532610196 0,042016778
CMPKT UMP-CMP kinase 0,395463361 0,018331504
GRINA Protein lifeguard 1 0,683058276 0,046578562
INOSOE INO80 complex subunit E 0,593056361 0,042936300
ITGA2B Integrin alpha-1Ib 0,380515578 0,012917413
YWHAE 14-3-3 protein epsilon 0,518190842 0,042792212
BCIL.21.1 Bcl-2-like protein 1 0,445082955 0,033585124
USF2 Upstream stimulatory factor 2 0,620980601 0,048240776
SALL3 Sal-like protein 3 0,499933159 0,042196521
CENPT Centromere protein T 0,471299008 0,040314785
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BRD7
BCL7B

Céorft7
DYRKTB

WBP1
PRKDC
DUSPs
SFRST18
II.71R2
PKM2
FAM58A4
ABTB1

SLC43A42

PDK4

CLDNT15
TICAMT1
CHCHD10

NIPSNAPT
PHF1
NPIPL?

RASGRP4
ZNF746
POLR3H

ATP2B4

84

Bromodomain-containing protein 7

B-cell CLL/lymphoma 7 protein family member
B

Uncharacterized protein C6orf47

Dual specificity tyrosine-phosphorylation-regu-
lated kinase 1B

WW domain-binding protein 1

DNA-dependent protein kinase catalytic subunit
Dual specificity protein phosphatase 6
Arginine/serine-rich protein PNISR
Interleukin-1 receptor type 2

Pyruvate kinase PKM

Cyclin-related protein FAM58A

Ankyrin repeat and BTB/POZ domain-contain-
ing protein 1

Large neutral amino acids transporter small subu-
nit 4

[Pyruvate dehydrogenase (acetyl-transferring)] ki-
nase isozyme 4, mitochondrial

Claudin-15

TIR domain-containing adapter molecule 1
Coiled-coil-helix-coiled-coil-helix domain-contain-
ing protein 10, mitochondrial

Protein NipSnap homolog 1

PHD finger protein 1

Nuclear pore complex-interacting protein family
member B15

RAS guanyl-releasing protein 4
Zinc finger protein 746

DNA-directed RNA polymerase II1 subunit
RPC8

Plasma membrane calcium-transporting ATPase 4

0,397385011
-0,521813957

-0,400437718
0,487147376

-0,438271783
-0,467379753
0,394407562
0,442511784
-0,432111307
0,517749706
-0,397985023
-0,477831942

-0,404969761

0,448341027

-0,383796373
-0,440487334
0,41723006

-0,448288528
0,384062734
0,391624837

0,424935155
-0,394959174
-0,380141385

0,385870842

0,031574297
0,046686351

0,032929123
0,043999479

0,034766813
0,042792212
0,031574297
0,040219449
0,037447629
0,048373968
0,034766813
0,048373968

0,040587624

0,044476083

0,034766813
0,042936300
0,042792212

0,046814842
0,039338506
0,041772349

0,047121020
0,044054224
0,045763314

0,048918385
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Table 17. Gene list for BMC based on the statistical data produced by KUL. The genes are cross-ranked
based on both adjusted P value and log2FFC.

Gene name  Full name Log2 FC P adj
PKM2 Pyruvate kinase PKM 0,696306324 0,0012
USF2 Upstream stimulatory factor 2 0,620980601 0,0011
YWHAE 14-3-3 protein epsilon 0,518190842  5,00E-04
PKM2 Pyruvate kinase PKM 0,517749706  5,00E-04
FKBP1A Peptidyl-prolyl cis-trans isomerase FKBP1A 0,671873555 0,0017
GRINA Protein lifeguard 1 0,683058276 0,0023
LGALSY Galectin-9 0,513059354  8,00E-04
PHF17 PHD finger protein 1 0,532610196  9,00E-04
PLLEK Pleckstrin -0,633049378 0,0026
LSP1 Lymphocyte-specific protein 1 0,603393027 0,0021
CENPT Centromere protein T 0,471299008 6,00E-04
LY6E Lymphocyte antigen 6E 0,462036682 6,00E-04
TGOLNZ? Trans-Golgi network integral membrane protein 2 -0,449519043 3,00E-04
SMARCC?2 SWI/SNF complex subunit SMARCC2 0,613911398 0,0044
CD44 CD44 antigen 0,601589625 0,0039
LOCA40353 bNeLrlC]l;f; potre complex-interacting protein family, mem- 0.590926133 0,0033
RTN4 Reticulon-4 0,566005247 0,0032
IMPDHT1 Inosine-5'-monophosphate dehydrogenase 1 -0,444833702  5,00E-04
MBNIL.1 Muscleblind-like protein 1 0,491176575 0,0013
NPHP3 Nephrocystin-3 0,456527638 8,00E-04
JCPAT Zinc ﬁng.er CCCH-type with G patch domain-contain- 0446692663 7,00E-04
ing protein
GPR162 Probable G-protein coupled receptor 162 -0,594660328 0,0063
DYRKIB Dual specificity tyrosine-phosphorylation-regulated ki- 0487147376 0,0017
nase 1B
CTDSP? Carboxy—terminal domain RNA polymerase 11 polypep- 0,505736138 0,0019
tide A small phosphatase 1
HSF71 Heat shock factor protein 1 0,636529652 0,0103
PDKA [Pyruvate dehydrogen@e (acetyl-transferring)] kinase 0448341027 9.00E-04
isozyme 4, mitochondrial
PKM?2 Pyruvate kinase PKM 0,672293787 0,0116
TCF7 Transcription factor 7 0,570017223 0,0066
ucr2 Mitochondrial uncoupling protein 2 0,507509426 0,0027
LSP1 Lymphocyte-specific protein 1 0,537230057 0,0046
FINRNPUL i;cefogeneous nuclear ribonucleoprotein U-like pro- 0438970522 9,00E-04
HMGAT High mobility group protein HMG-I/HMG-Y 0,849385448 0,014
ZFP361.2 mRNA decay activator protein ZFP361.2 0,587802035 0,0092
AES Amino-terminal enhancer of split 0,513955387 0,0042
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NA
RNF216

LOC339047
NA
MKNK2
NINJ1
ABTB1

ARRB2
RTN4
INF2

LOC728888
NRGN
C200rf149

VAMP2
TSPANTS

CHCHD10

PANX2
TSC22D4
PACS1
INOSOE

MED16

VEGFB
FKBP1A
RPIL.36.A4P49
CMPKT
DUSPs
RPI.73P12
RASGRP4
HNRNPL
AGPATT
CHMP6
CD68
PRKDC

NPIPL.2

MTF1
ATP2B4
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NA
E3 ubiquitin-protein ligase RNF216

Polycystin 1, transient receptor potential channel inter-
acting pseudogene 1

NA

MAP kinase-interacting serine/threonine-protein ki-
nase 2

Ninjurin-1

Ankytin repeat and BTB/POZ domain-containing pro-

tein 1
Beta-arrestin-2
Reticulon-4
Inverted formin-2

Nuclear pore complex interacting protein family mem-
ber B11

Neurogranin

Pancreatic progenitor cell differentiation and prolifera-

tion factor

Vesicle-associated membrane protein 2
Tetraspanin-18

Coiled-coil-helix-coiled-coil-helix domain-containing
protein 10, mitochondrial

Pannexin-2

TSC22 domain family protein 4

Phosphofurin acidic cluster sorting protein 1

INO80 complex subunit E

Mediator of RNA polymerase II transcription subunit
16

Vascular endothelial growth factor B
Peptidyl-prolyl cis-trans isomerase FKBP1A
Ribosomal protein L36a pseudogene 49
UMP-CMP kinase

Dual specificity protein phosphatase 6
Ribosomal protein 1.13 pseudogene 12

RAS guanyl-releasing protein 4

Heterogeneous nuclear ribonucleoprotein L
1-acyl-sn-glycerol-3-phosphate acyltransferase alpha
Charged multivesicular body protein 6
Macrosialin

DNA-dependent protein kinase catalytic subunit

Nuclear pore complex-interacting protein family mem-

ber B15
Metal regulatory transcription factor 1

Plasma membrane calcium-transporting ATPase 4

0,466875965
-0,460638149

0,719047197
0,553203808
0,469126564
-0,532026589
-0,477831942

0,505803769
0,405850611
-0,417067674

0,474417327
0,693988488
0,541121232

0,587794541
-0,402539211

0,417230060

-0,403778469
0,530444619
0,635109786
0,593056361

-0,411724432

-0,405185547
0,592831615
0,383858855
0,395463361
0,394407562

-0,449870438
0,416862274
0,508626578
0,462504414

-0,428867696
0,423481253

-0,467379753

0,484031392

0,429124710
0,385870842

0,0018
0,0016

0,0180
0,0090
0,0025
0,0073
0,0034

0,0052
6,00E-04
9,00E-04

0,0045
0,0351
0,0112

0,0141
8,00E-04

0,0013

9,00E-04
0,018
0,0375
0,0290

0,0013

0,0012
0,0317
7,00E-04
0,0012
0,0011
0,0057
0,0018
0,0138
0,0095
0,0037
0,0031
0,0111

0,0129

0,0056
0,0016
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CTorf27
RASGRP4
TCF7
LRGT
SH3BP1
NA
SALLS3
Cborf136
TIALT
C1301f27
BCL2L1
CD74
POLR3H
TLALT
SLC43A42
NCF4
CORO7
TICAM1
C6orf47

NPIPL?

F13A1
CTSL1
TP53113
CLIC3
RNF220
PNPLA2
KLAA1267
IRF2BP2
JUNB
CD4
DEFA3
PHF1
TOP3B
ITGA2B

BRCA1-associated ATM activator 1

RAS guanyl-releasing protein 4

Transcription factor 7

Leucine-rich alpha-2-glycoprotein

SH3 domain-binding protein 1

NA

Sal-like protein 3

Uncharacterized protein C60rf136

Nucleolysin TIAR

Testis-expressed protein 30

Bcl-2-like protein 1

HLA class II histocompatibility antigen gamma chain
DNA-directed RNA polymerase 11 subunit RPC8
Nucleolysin TIAR

Large neutral amino acids transporter small subunit 4
Neutrophil cytosol factor 4

Coronin-7

TIR domain-containing adapter molecule 1
Uncharacterized protein C6orf47

Nuclear pore complex-interacting protein family mem-
ber B15

Coagulation factor XIII A chain

Cathepsin L

Tumor protein p53-inducible protein 13
Chloride intracellular channel protein 3

E3 ubiquitin-protein ligase RNF220
Patatin-like phospholipase domain-containing protein 2
KATS regulatory NSL complex subunit 1
Interferon regulatory factor 2-binding protein 2
Transcription factor jun-B

T-cell surface glycoprotein CD4

Neutrophil defensin 3

PHD finger protein 1

DNA topoisomerase 3-beta-1

Integrin alpha-1Ib

-0,452368688
0,424935155
0,565927333

-0,502168085
0,563846541
0,537495435
0,499933159

-0,383182004
0,433213340
0,383802088
0,445082955
0,438487679

-0,380141385
0,463591856

-0,404969761

-0,428062793
0,390991772

-0,440487334

-0,400437718

0,391624837

0,425507141
-0,439978410
-0,393590650
-0,407891983
-0,419772074

0,428958369

0,437244256

0,419109830

0,414445837

0,384500142
-0,385115300

0,384062734
-0,395243472

0,380515578

0,0106
0,0045
0,0456
0,0258
0,0467
0,0439
0,0281
0,0016
0,0099
0,0019
0,0131
0,0126
0,0019
0,0368
0,0078
0,0128
0,0073
0,0290
0,0096

0,0082

0,0192
0,0352
0,0098
0,0134
0,0283
0,0387
0,0440
0,0410
0,0396
0,0183
0,0250
0,0260
0,0373
0,0483
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A.4  Results of the comparison of gene lists after cross-ranking
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Table 18. Unique and common genes after comparing the two gene lists for AHC produced by the
Volcano plot code, based on both KUL’s analysis (Table 15) and NTNU’s analysis (Table 14). The lists

are ranked alphabetically.

Unique for KUL’s analysis

Unique for NTNU’s analysis

Common for both lists

CHCHD10
FERMT3
IRF2
LIMST
MBNLT
PILEK
TNRC6A
UNCT19
YWHAE

BTG2
CTSA
GPR177
HSF1

IRF1
MKNK2
PI3
SMARCC?
IVINN2
ZFP361.2

AES
AGPATT
ALOX12
ATP6V0C
BCL2L1
Céorf25
CD4#4
CD74
CSDAP1
DEFA3
DEFA4
F13A1
FAM100A
FKBP1A
GPR162
GRINA
HMGAT
HNRNPL
INOSOE
ITGA2B
ITGB3
JUNB
KCTD20
LGALS9
LOC100130751
LOC339047
LOC407835
LOC440353
LOC441481
LOC728888

LRGT
LSP1
LY6E
MGC13005
MS4A47
MTF1
NA
NPIPL.2
NRGN
OLFM4
P2RY73
PACST
PARI’B
PHF1
PKM?2
PRKDC
RASGRP4
RBM38
RNF11
RPS715A4
RTN4
SH3BP1
SL.A
TAF75
TCF7
TPM1
TSC22D4
UBAT
USF2
VAMP2
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Table 19. Unique and common genes after compating the two gene lists for BMC produced by the
Volcano plot code, based on both KUL’s analysis (Table 17) and NTNU’s analysis (Table 16). The lists
are alphabetically ordered.

Unique for KUL’s analysis

Unique for NTNU’s analysis Common for both lists

ARRB2
C1301127
C200rf149
Céorf136
C7orf27
CD4

CD68

CD74
CHMP6
CLIC3
CORO7
CTDSP1
CTSL1
DEFA3
FKBP1A
HNRNPL
HNRNPULT
HSF1
IMPDH1
INF2
JUNB
K1LAA1267
LGALSY
L.OC440353
LOC728888
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LSP1
LY6E
MED16
MKNK2
MTF1
NCF#
NINJ1
PANX2
PLEK
PNPLA2
RNF220
RPL13P12
RPL36AP49
RTN4
SH3BP1
TGOLN2
TIALT
TOP3B
TP53113
TSPAN1S
UCP?
1ZAMP2
IVEGFB
ZFP361.2
ZGPAT

BCL7B ABTB1 MBNLT
BRD7 AES NA
CLDNT75 AGPATT NPHP3
CNOT7 ATP2B4 NPIPL.2
FAM58A BCL.2L1 NRGN
ILLTR2 Céorf47 PACST
IRF1 CD44 PDK4
LOC100130751 CENPT PHFT
NAPTLT CHCHD10  PKM?2
NIPSNAPT CMPKT POLR3H
SFRS718 DUSPs PRKDC
SL.A DYRKTB RASGRP4
WBP1 F13A1 RNF216
ZFP106 GPR162 SALL3
ZNF746 GRINA SLC43A42
HMGAT SMARCC2
INOSOE TCF7
IRF2BP2 TICAMT1
ITGAZB TSC22D4
LOC339047 USF2
LRGT YWHAE
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Table 20. Unique and common genes after comparing the two gene lists for AHC (Table 15) and BMC
(Table 17) based on KUL’s analysis only. The lists are alphabetically ordered.

Unique for AHC Unique for BMC Common for both lists
ALOX12 ABTBT MKNK2 AES LSP1
ATP610C ARRB2 NCF4 AGPATT LYGE
Cborf25 ATP2B4 NINJ71 BCL2L7 MBNLT
CSDAPT C1301f27 NPHP3 CD44 MTF1
DEFA4 C200rf149 PANX2 CD74 NA
FAM100A4 Céorf136 PDK4 CHCHD10 NPIPL2
FERMT3 Céorft7 PNPIL.A2 DEFA3 NRGN
IRF2 C7orf27 POLR3H F13A1 PACST
ITGB3 CD4 RNF216 FKBP1.A4 PHF1
KCTD20 CD68 RNF220 GPR162 PKM?2
LIMS? CENPT RPL713P12 GRINA PLEK
LOC100130751 CHMP6 RPI 36.A4P49 HMGAT PRKDC
LOC407835 CLIC3 SALL3 HNRNPL.  RASGRP4
LOC441481 CMPK1 SLC43A42 INOSOE RTN4
MGC13005 CORO7 SMARCC? ITGA2B SH3BP1
MS4A7 CIDSP1 TGOLN?Z2 JUNB TCEF7
OLFM4 CTSL1 TIALT LGALSY TSC22D4
P2RY73 DUSPs TICAM1 LOC339047 USF2
PARVB DYRKTB TOP3B LOC440353  1VAMP2
RBM3§8 HNRNPULT TP53113 LOC728888 YWHAE
RNF11 HSF1 TSPANTS LRGT

RPS15A4 IMPDHT1 ucr2

SLA INF2 IVEGFB

TAF15 IRF2BP2 ZFP361.2

TNRC6A KLAA1267 ZGPAT

TPM1 MED16

UBAT

UNC119
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Table 21. Unique and common genes after comparing the two gene lists for AHC (Table 14) and BMC
(Table 16) based on NTNU’s analysis only. The lists are alphabetically ordered.

Unique for AHC Unique for BMC Common for both lists
ALOX12 LSP1 ABTB1 AES
ATP610C LYGE ATP2B4 AGPATT
BIG2 MGCT13005 BCL7B BCL2L7
Cborf25 MKNK2 BRD7 CD44
CD74 MS4A7 Céorft7 F13A1
CSDAPT MTF1 CENPT GPR17162
CcIsA OLFM4 CHCHD10 GRINA
DEFA3 P2RYT13 CLDNT5 HMGAT
DEFA4 PARIV'B CMPK1 INOSOE
FAM100A4 PI3 CNOT7 IRF1
FKBP1.A4 RBM38 DUSPs ITGA2B
GPR177 RNF11 DYRKT7B LOC100130751
HNRNPL RPS15A4 FAM58A4 LOC339047
HSF1 RTN4 ILLTR2 LRGT
ITGB3 SH3BP1 IRF2BP? NA
JUNB TAF15 MBNLT NPIPL.2
KCTD20 TPM1 NAPTLT NRGN
LGALSY UBAT NIPSNAPT PACST
LOC407835  1VAMP2 NPHP3 PHF1
LOC440353  IVNNZ2 PDK4 PKM2
LOC441481  ZFP361.2 POLR3H PRKDC
LOC728888 RNF216 RASGRPA4
SALL3 SLA
SEFRS718 SMARCC2
SLC43A42 TCF7
TICAM1 TSC22D4
WBP1 USF2
YWHAE
ZFP106
ZNF746
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Table 22. The genes common in AHC for both statistical analyses, and which does not appeat in any
BMC. The list is alphabetically ordered.

Genes

ALOX12
ATP61/0C
C6orf25
CSDAP1
DEFA4
FAM100A
ITGB3
KCTD20
LOC407835
LOC#41481
MGC13005
MS4A47
OLFM4
P2RY13
PARIB
RBM38
RNF71
RPS75A4
TAF15
TPM1
UBAT
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Table 23. The genes common in BMC for both statistical analyses, and which does not appear in any
AHC. The list is alphabetically ordered.

Genes

ABTB1
ATP2B4
C6orft7
CENPT
CMPK1
DUSPs
DYRKTB
IRF2BP2
NPHP3
PDK4
POLR3H
RNF216
SALL3
SLC43A42
TICAMT
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A.5 ClueGO results
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Table 24. Results from the ClueGO overrepresentation analysis for a merged gene list for AHC. The
analysis is conducted on a gene list merge of the AHC based on KUL’s analysis and of the AHC based

on NTNU’s analysis. The given P values are corrected values, and both are corrected using Bonferroni

step down. The terms are sorted with respect to ontology groups. Ontology source: GO_BiologicalPro-
cess-GOA_23.02.2017_10h01. The analysis was performed in Cytoscape using the ClueGO plug-in.

Term P Group P
GO ID GO Term value value Associated genes
1903313  positive regulation of mRNA  7,9E-3 3,9E-3 /BTG2, HSF1, ZFP361.2]
metabolic process
33077 T cell differentiation in thy-  2,7E-3 5,4E-3 J/CD74, PRKDC, ZFP361.2]
mus
34446 substrate adhesion-depend- 4,0E-3 2,0E-3 JFERMT3, ITGB3, LIMST,
ent cell spreading OLFM4/]
2260 lymphocyte homeostasis 2,7E-3 9,0E-3 [CD74, LGALSY,
TSC22D4]
70228 regulation of lymphocyte 11,0E-3 9,0E-3 J[CD74, LGALSY,
apoptotic process TSC22D4]
34109 homotypic cell-cell adhesion  150,0E-6 81,0E-6 JALOX12, FERMT3,
ITGAZB, ITGB3, PLEK]
70527 platelet aggregation 33,0E-6 81,0E-6 [ALOX12, FERMT3,
ITGAZB, ITGB3, PLEK]
10332 response to gamma radiation  12,0E-3 930,0E-6 /BCL2L1, HSF1, PRKDC]
2001021 negative regulation of re- 1,6E-3 930,0E-6 [/BCL2L.1, CD44, CD74,
sponse to DNA damage HSF1]
stimulus
1902229 regulation of intrinsic apop-  5,4E-3 930,0E-6 /BCL2L1, CD44, CD74]
totic signaling pathway in re-
sponse to DNA damage
1902230 negative regulation of intrin-  3,3E-3 930,0E-6 /BCL2L1, CD44, CD74]
sic apoptotic signaling path-
way in response to DNA
damage
72395 signal transduction involved ~ 4,9E-3 7,4E-3 /BTG2, PRKDC, RBM38]
in cell cycle checkpoint
72401 signal transduction involved ~ 7,1E-3 74E-3 /BTGZ2, PRKDC, RBM38]
in DNA integrity checkpoint
72413 signal transduction involved ~ 8,8E-3 7,4E-3 /BTG2, PRKDC, RBM38]
in mitotic cell cycle check-
point
72422 signal transduction involved ~ 7,1E-3 7,4E-3 /BTG2, PRKDC, RBM38]
in DNA damage checkpoint
1902403 signal transduction involved ~ 8,8E-3 7,4E-3 /BTG2, PRKDC, RBM38]

in mitotic DNA integrity
checkpoint
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1902400

intracellular signal transduc-
tion involved in G1 DNA
damage checkpoint

10,0E-3

7,4E-3

/BTG2, PRKDC, RBM38]

1902402

signal transduction involved
in mitotic DNA damage
checkpoint

8,8E-3

74E-3

/BTG2, PRKDC, RBM38]

72431

signal transduction involved
in mitotic G1 DNA damage
checkpoint

10,0E-3

74E3

/BTG2, PRKDC, RBM38]
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Table 25. Results from the ClueGO overrepresentation analysis for a merged gene list for BMC. The
analysis is conducted on a gene list merge of the BMC based on KUL’s analysis and of the BMC based

on NTNU’s analysis The given P values are corrected values, and both are corrected using Bonferroni

step down. The terms are sorted with respect to ontology groups. Ontology source: GO_BiologicalPro-
cess-GOA_23.02.2017_10h01. The analysis was performed in Cytoscape using the ClueGO plug-in.

Term P Group

GO ID GO Term value P value Associated genes

33077 T cell differentiation in thymus 7,4E-3 7,4E-3 J/CD74, PRKDC, ZFP361.2]

46686 response to cadmium ion 23,0E-3  11,0E-3  [FAM58A, HSF1, MTF1)]

1903313  positive regulation of mRNA meta- 28,0E-3  11,0E-3  /CNOT7, HSF1, ZFP361.2]
bolic process

45744 negative regulation of G-protein cou- 24,0E-3  3,8E-3 [ARRB2, ATP2B4, PL.LEK]
pled receptor protein signaling path-
way

50848 regulation of calcium-mediated sig- 17,0E-3  3,8E-3 [ATP2B4, CD4, FKBP1A,
naling PLEK]

43276 anoikis 13,0E-3  43E-3 [AES, BCL.2L.1, PDK4]

2000209  regulation of anoikis 7,2E-3 4,3E-3 [AES, BCL.21.1, PDK4]

10332 response to gamma radiation 30,0E-3  49E-3 /BCL2L.1, HSF1, PRKDC]

2001021  negative regulation of response to 10,0E-3  4,9E-3 /BCL2L1, CD44, CD74,
DNA damage stimulus HSF1]

1902229  regulation of intrinsic apoptotic sig- 24,0E-3  4,9E-3 /BCL2L1, CD44, CD74]
naling pathway in response to DNA
damage

1902230  negative regulation of intrinsic apop- 13,0E-3  4,9E-3 /BCL2L1, CD44, CD74]
totic signaling pathway in response to
DNA damage

2260 lymphocyte homeostasis 7,4E-3 13,0E-3  [CD74, LGALSY,

TSC22D4]

32722 positive regulation of chemokine 29,0E-3  13,0E-3  /CD74, LGALSY, TICAMT1]
production

46596 regulation of viral entry into host cell 13,0E-3  13,0E-3  /CD4, CD74, LGALS9]

46598 positive regulation of viral entry into  570,0E-  13,0E-3  /CD4, CD74, LGALSY]
host cell 6

70228 regulation of lymphocyte apoptotic 26,0E-3  13,0E-3  /CD/4, LGALSY,
process TSC22D4]

32612 interleukin-1 production 13,0E-3  3,6E-3 [ARRBZ, IIL1R2, LGALSY]

32615 interleukin-12 production 26,0E-3  3,6E-3 [ARRB2, IRF1, LGALSY]

32652 regulation of interleukin-1 produc- 29,0E-3  3,0E-3 [ARRBZ, ILL1R2, LGALSY]
tion

32655 regulation of interleukin-12 produc- 29,0E-3  3,6E-3 [ARRBZ, IRF1, LGALSY]
tion

1903556  negative regulation of tumor necrosis  30,0E-3  3,6E-3 [ARRB2, HSF1, LGALSY]

factor superfamily cytokine produc-
tion
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32720 negative regulation of tumor necrosis  28,0E-3  3,0E-3 [ARRB2, HSF1, LGALSY]
factor production
34121 regulation of toll-like receptor signal- 26,0E-3  3,0E-3 JARRBZ, IRF1, TICAMT]
ing pathway
32606 type I interferon production 10,0E-3  520,0E- /IRF7, POLR3H, PRKDC,
6 RNF216, TICAM1]
32615 intetleukin-12 production 26,0E-3  520,0E- [ARRB2, IRF1, LGALSY]
6
32479 regulation of type 1 interferon pro- 10,0E-3  520,0E-  /IRF!, POLR3H, PRKDC,
duction 6 RNF216, TICAM1]
32655 regulation of interleukin-12 produc- 29,0E-3  520,0E-  [ARRB2, IRF1, LGALSY]
tion 6
32481 positive regulation of type I inter- 12,0E-3  520,0E- /IRF7, POLR3H, PRKDC,
feron production 6 TICAMT]
32608 interferon-beta production 30,0E-3  520,0E-  /IRF1, RNF216, TICAMT1)]
6
32648 regulation of interferon-beta produc- 28,0E-3  520,0E-  /IRF7, RNF216, TICAMT]
tion 6
42108 positive regulation of cytokine bio- 18,0E-3  520,0E-  /CD4, IRF1, TICAM]T]
synthetic process 6
34121 regulation of toll-like receptor signal- 26,0E-3  520,0E-  [ARRB2, IRF1, TICAMT1]
ing pathway 6
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Table 26. BINGO overrepresentation analysis results for AHC. The analysis is conducted on a gene list
merge of the AHC based on KUL’s analysis and of the AHC based on NTNU’s analysis. The P values
are corrected using Benjamini-Hochberg FDR.

GOID GO Term P value Associated genes
48518 positive regulation of bi- 1.6445E-3 YWHAE BITG2 PRKDC ITGB3 PILEK
ological process ALOX12  AGPAT!T RASGRP4 RTN4
RPS15A4 HSF1 LGALSY9 GPR177 JUNB
RBM38 CD74 SMARCC2 TPM1 HMGAT
USF2 FKBP1A IRF1 MTF1 CD44 BC1.21.1
48522 positive regulation of 2.1619E-3 YWHAE RBM38 CD74 SMARCC2 PRKDC
cellular process ITGB3 PLEK TPM1 HMGA? ALOXI12
AGPAT1! USF2 RASGRP4 RTN4 FKBP1A
RPS15A IRF1 MTF1 LGALS9 GPR177 JUNB
CD44 BCI.2L.1
6950 response to stress 2.0238E-2 RBM38 TSC22D4 CD74 BTG2 PRKDC ITGB3
DEFA4 PLLEK TPM1 F13A1 DEFA3 1L.SP1
MITF1 HSF1 MKNK2 CD44 TNRC6A
FERMT3 BCI.21.1
70527 platelet aggregation 2.0238E-2 PLEK FERMT3
3229 ventricular cardiac mus- 2.0238E-2 FKBPIA TPM1 LYGE
cle tissue development
55010 ventricular cardiac mus- 2.0238E-2 FKBP1.A TPM1 1.Y6E
cle tissue morphogenesis
3208 cardiac ventricle mor- 2.0238E-2 FKBP1.A TPM1 1.Y6E
phogenesis
1961 positive regulation of cy- 2.0238E-2 CD74 AGPATT
tokine-mediated signal-
ing pathway
42060 wound healing 2.0238E-2 ITGB3 PLLEK TPM1 F13A1 CD44 FERMT3
35468 positive regulation of sig- 2.0238E-2 FKBPIA CD74 ITGB3 1.GALSY9 AGPATT
naling pathway GPR177 CD44 RASGRP4
60415 muscle tissue morpho- 2.0238E-2 FKBPI1A TPMT1 1.Y6E
genesis
55008 cardiac muscle tissue 2.0238E-2 FKBPI1A TPMT1 1.Y6E
morphogenesis
48731 system development 22173E-2 YWHAE CD74 BTG2 MBNL1 SMARCC?2
PRKDCITGB3 PLLEK TPM1 USF2 RASGRP4
RTN4 NRGN AES FKBP1A IRF1 MTF1
HSF1 JUNB CD44 1.Y6E BCI.21.1
43518 negative regulation of 2.2173E-2  CD74 CD44
DNA damage response,
signal transduction by
p53 class mediator
60255 regulation of macromol- 2.2173E-2 YWHAE BTG2 PRKDC ITGB3 PHF1 TCF7
ecule metabolic process SIL.A ALOX712 ZFP361.2 HSF1 MKNK2
JUNB RBM38 TSC22D4 CD74 MBNLT
SMARCC2 HMGAT USF2 AES FKBP1A
IRF1 MTF71 IRF2 CD44 TNRC6.A BCI.21.1
3231 cardiac ventricle devel- 2.2173E-2 FKBPI1A TPM1 1.Y6E
opment
35303 regulation of 2.2173E-2 YWHAE FKBP1A PLEK
dephosphorylation
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48513 organ development 22173E-2 YWHAE CD74 MBNL! PRKDC ITGB3
PILEK TPM1 USF2 RASGRP4 RTN4 AES
FKBP1A IRF1 HSF1 JUNB CD44 LYGE
BCI.21.1
10647 positive regulation of cell 2.2173E-2 FKBPIA CD74 ITGB3 1L.GALSY9 AGPATT
communication GPR177 CD44 RASGRP4
60136 embryonic process in- 2.2385E-2 HSF71 JUNB
volved in female preg-
nancy
3206 cardiac chamber mot- 2.2385E-2 FKBPIA TPM1 LYGE
phogenesis
50896 response to stimulus 2.2385E-2 BTG2 PRKDC ITGB3 PLEK TCF7 Fi13A71
ALLOX12 LSP1 RASGRP4 RTN4 RPS15A4
HSF1 MKNK2 JUNB RBM38 TSC22D4 CD74
DEFA4 TPM1 DEFA3 USF2 AES MTF1
UNC119 CD44 TNRC6.A FERMT3 BCI.21.1
51704 multi-organism process 2.2453E-2 YWHAE RPS15A PACST ITGB3 DEFA4
HSF1 HMGAT DEFA3 PI3 JUNB ATP61°0C
30097 hemopoiesis 2.3214E-2 CD74 PRKDC IRF1 PLLEK JUNB RASGRP4
34109 homotypic cell-cell adhe- 2.3850E-2 PLEK FERMT?3
sion
10604 positive regulation of 2.4665E-2 FKBP1A CD74 SMARCC2 PRKDC ITGB3
macromolecule meta- IRF1 MTF1 HMGAT ALOX12 JUNB USF2
bolic process CD44
10608 posttranscriptional regu- 2.4665E-2 RBM38 PRKDC MKNK2 SI.A ZFP361.2
lation of gene expression TNRC6A
3205 cardiac chamber devel- 2.5333E-2 FKBPI1A TPM1 1.Y6E
opment
19222 regulation of metabolic 2.5333E-2 YWHAE BTG2 PRKDC ITGB3 PHF1 PLLEK
process TCF7 SILLA ALOXT12 ZFP361.2 HSF1
MKNK2 JUNB RBM38 1T85C22D4 CD74
MBNL1 SMARCC2 TPMi1 HMGAT USF2
AES FKBP1IA IRF1 MTF1 IRF2 CD44
TNRC6A BCL.21.1
31529 ruffle organization 2.5439E-2 PLEK TPM1
45767 regulation of anti-apop- 2.5439E-2 BTG2 RTN4 BCIL.21.1
tosis
80090 regulation of primary 2.6914E-2 YWHAE BTG2 PRKDC ITGB3 PHF1 PLLEK
metabolic process TCF7 SI.A ZFP361.2 HSF1 MKNK2 JUNB
RBM38 TSC22D4 CD74 MBNI.1 SMARCC2
TPM1 HMGA1 USF2 AES FKBP1A IRF1
MTF1 IRF2 CD44 TNRC6.A
48534 hemopoietic or lym- 2.9431E-2 CD74 PRKDC IRF1 PLLEK JUNB RASGRP4
phoid organ develop-
ment
6928 cellular component 2.9995E-2 YWHAE VNNZ2 PRKDC ITGB3 TPM1
movement ALOXT12 1.SP1 CD44
48856 anatomical structure de- 2.9995E-2 YWHAE CD74 BTG2 MBNLT SMARCC2
velopment PRKDCITGB3 PLLEK TPM1 USF2 RASGRP4
RTN4 NRGN AES FKBP1A IRF1 MTF1
HSF1 JUNB CD44 1.Y6E BCIL.21.1
43516 regulation of DNA dam- 2.9995E-2 CD74 CD44

age response,  signal
transduction by p53 class
mediator
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7596 blood coagulation 2.9995E-2 ITGB3 PLLEK F13A1 FERMT3
50817 coagulation 2.9995E-2 ITGB3 PILLEK F13A1 FERMT3
32502 developmental process 2.9995E-2 YWHAE BITG2 PRKDC ITGB3 PLEK
RASGRP4 RTN4 NRGN HSF?! GPR177
JUNB CD74 MBNL1 SMARCC2 TPM1 USF2
AES FKBP1A IRGT1 IRF1 MTF1 CD44
LY6E IIMST1 BCL.21.1
50794 regulation of cellular pro- 2.9995E-2 YWHAE BTG2 PRKDC ITGB3 PHF1 PLLEK
cess TCF7 S1.A AILLOX12 AGPAT1 ZFP361.2
RASGRP4 RTN4 NRGN RPS15A4 SH3BP1
HSF1 MKNK2 L.GALS9 GPR177 JUNB
RBM38 TSC22D4 CD74 MBNIL.1 SMARCC?2
TPM71 HMGAT USF2 AES FKBP1A IRF71
MTF1 IRF2 UNC119 CD44 TNRC6A
FERMT3 BCI.2L.1
48646 anatomical structure for- 2.9995E-2 FKBP1.A PRKDC ITGB3 TPM1 JUNB CD44
mation involved in mor- RTN4
phogenesis
9893 positive regulation of 2.9995E-2 FKBP1A CD74 SMARCC2 PRKDC ITGB3
metabolic process IRF1 MTF1 HMGAT ALOX712 JUNB USF2
CD44
2520 immune system develop- 2.9995E-2 CD74 PRKDC IRF1 PLEK JUNB RASGRP4
ment
1775 cell activation 2.9995E-2 FKBP1.A CD74 PRKDC IRF1 PL.LEK FERMT3
9967 positive regulation of sig- 2.9995E-2 FKBPIA CD74 1.GALSY9 GPR177 CD44
nal transduction RASGRP4
7599 hemostasis 3.1372E-2 ITGB3 PLLEK F13A1 FERMT?3
23056 positive regulation of sig- 3.1494E-2 FKBP1A CD74 1.GALSY9 GPR177 CD44
naling process RASGRP4
6458 'de novo' protein folding 3.4132E-2 FKBP1A CD74
48523 negative regulation of cel- 3.4352E-2 YWHAE RBM38 CD74 BTG2 SMARCC?
lular process ITGB3 PLEK TPM1 HMGA1 ALOXI12
RTN4 AES IRF2 HSF1 CD44 TNRC6A
BC1.2L1
9628 response to abiotic stim- 3.8122E-2 TSC22D4 BTG2 PRKDC HSF1 UNCI119
ulus JUNB BCL2L1
31323 regulation of cellular met- 3.8122E-2 YWHAE BTG2 PRKDC I'TGB3 PHF1 PLLEK
abolic process TCF7 SLLA ZFP361.2 HSF1 MKNK2 JUNB
RBM38 TSC22D4 CD74 MBNL1 SMARCC2
TPM1 HMGAT USF2 AES FKBPI1A IRF1
MTF1 IRF2 CD44 TNRC6.A4
42110 T cell activation 3.8378E-2 FKBP1.A CD74 PRKDC IRF7
7275 multicellular  organismal 3.9614E-2 YWHAE CD74 BTG2 MBNL1 SMARCC2
development PRKDCITGB3 PLLEK TPM1 USF2 RASGRP4
RTN4 NRGN AES FKBP1A IRF1 MTF1
HSF1 GPR177 JUNB CD44 1.Y6E BCl1.21.1
14706 striated muscle tissue de- 3.9614E-2 FKBP1.A MBNIL.7 TPM1 1.Y6E
velopment
50832 defense response to fun- 3.9614E-2 DEFA4 DEFA3
gus
7229 integrin-mediated signal- 3.9614E-2 ITGB3 PLLEKITGAZ2B
ing pathway
50731 positive  regulation of 4.0213E-2 CD74 ITGB3 CD44
peptidyl-tyrosine  phos-

phorylation

107



Appendix 6

48738 cardiac muscle tissue de- 4.0213E-2 FKBPIA TPM1 LYGE
velopment
48585 negative regulation of re- 4.1514E-2 CD74 CD44 RKTN4 AES
sponse to stimulus
2244 hemopoietic progenitor 4.1514E-2 PRKDC PLLEK
cell differentiation
2521 leukocyte differentiation 4.1514E-2 CD74 PRKDC IRF1 JUNB
1701 in utero embryonic devel- 4.2954E-2 MBNL71 HSF1 JUNB LYG6E BCL2L.1
opment
31325 positive regulation of cel- 4.2954E-2 FKBPIA CD74 SMARCC2 PRKDC ITGB3
lular metabolic process IRF1 MTF1 HMGAT JUNB USF2 CD44
30217 T cell differentiation 4.2954E-2 CD74 PRKDC IRF1
32233 positive regulation of ac- 4.2954E-2 PLEK TPM1
tin filament bundle as-
sembly
60537 muscle tissue develop- 4.2954E-2 FKBP1A MBNL1 TPM1 LLY6E
ment
65007 biological regulation 4.3739E-2 YWHAE BTG2 PRKDC ITGB3 PHF1 PLLEK
TCF7 Fi13A1 SILLA ALOX12 AGPATI
ZFP361.2 RASGRP4 RTN4 NRGN RPS715A4
SH3BP1 HSF1 MKNK2 ILLGALS9 GPR177
JUNB RBM38 1T85C22D4 CD74 MBNLT
SMARCC2 TPM1 HMGAT? USF2 AES
FKBP1A IRF1 MTF1 IRF2? UNC119 CD44
TNRC6A L.Y6E FERMT3 BCIL.21.1
32268 regulation of cellular pro- 4.3739E-2 YWHAE FKBP1A CD74 ITGB3 MKNK2
tein metabolic process SLLA CD44 TINRC6A
10740 positive regulation of in- 4.4347E-2 FKBP1A CD74 1.LGALSY9 GPR177 CD44

tracellular protein kinase
cascade
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Table 27. BINGO overrepresentation analysis results for BMC. The analysis is conducted on a gene list
merge of the BMC based on KUL’s analysis and of the BMC based on NTNU’s analysis. The P values

are corrected using Benjamini-Hochberg FDR.

GOID GO Term P value Associated genes
70372 regulation of ERK1  4.1199E-3 CD74 VEGEB ARRB2 DUSP6 CD44
and ERK2 cascade
48522 positive regulation 4.1199E-3 YWHAE PRKDC PLEK ARRB2 AGPAT1T RTIN4
of cellular process RASGRP4 TLALT LGALS9 JUNB CD74 SMARCC2
HMGAT VEGEB DYRKTB NAPTLT TICAM1 USF2
DUSP6 FKBP1.A CD4 CNOT7 MTF1 IRFT CD44
BCIL.2L71 PNPLA2
48518 positive regulation 4.1199E-3 YWHAE PRKDC PILLEK ARRB2 AGPAT1T RTIN4
of biological process RASGRP4 TLALT HSF1 LGALSY JUNB CD74
SMARCC2 HMGAT VEGEFB DYRK1B NAPTL1T TI-
CAMT USF2 DUSP6 FKBP1.4A CD4 CNOT7 MTF1
IRF1 CD44 BCL.21.1 PNPL.A2
31323 regulation of cellular  4.1199E-3 YWHAE PRKDC PHF1 TCF7 PLEK SI.41 ARRB2
metabolic process MED16 ZFP361.2 TIALT SALL3 HSF1 MKINK2
PDK4 ZNF746 BRD7 JUNB TSC22D4 CD74
MBNL1 ZGPAT SMARCC2 HMGAT VEGEB
DYRKT1B IRF2BP2 TICAM1 USF2 DUSP6 AES
FKBP1A CD4 CNOT7 HNRNPULT CTDSP1 MTF1
IRF1 CD44 PNPL.A2
19222 regulation of meta-  4.1199E-3 YWHAE PRKDC PHF1 TCF7 PLEK S1.4 ARRB2
bolic process MED16 ZFP361.2 TIALT SALL3 HSF1 MKINK2
PDK4 ZNF746 BRD7 JUNB TSC22D4 CD74
MBNL1 ZGPAT SMARCC2 HMGAT VEGEB
DYRKT7B IRF2BP2 TICAM1 USF2 DUSP6 AES
FKBP1.A CD4 CNOT7 HNRNPULT1 CTDSPT MTF1
IRF7 CD44 BCL.21.1 PNPL.A2
1775 cell activation 41199E-3  FKBP1.A CD74 CD4 WBP1 PRKDC IMPDHT IRF1
PLEK TICAMT
9967 positive regulation 41199E-3  FKBP1A CD74 CD4 VEGEB LGALS9 ARRB2 TI-
of signal transduc- CAM1 RASGRP4 CD44
tion
60255 regulation of macro- 4.1199E-3 YWHAE PRKDC PHF1 TCF7 SI.A ARRB2 MED16
molecule metabolic ZFP361.2 TIALT SALL3 HSF1 MKNK2 ZNF746
process BRD7 JUNB TSC22D4 CD74 MBNL1 ZGPAT
SMARCC2 HMGAT VEGEFB DYRK1B IRF2BP2 TI-
CAM1T USF2 AES FKBP1A CD4 CNOT7 HNRN-
PULT CTDSPT MTF1 IRF1 CD44 BCL2L1
23056 positive regulation 41199E-3  FKBP1A CD74 CD4 VEGEFB LGALS9 ARRB2 TI-
of signaling process CAM1 RASGRP4 CD44
70374 positive regulation 4.1199E-3 CD74 VEGEFB ARRB2 CD44

of ERK1 and ERK2
cascade
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80090 regulation of pri- 4.1199E-3 YWHAE PRKDC PHF1 TCF7 PLLEK SI.A ARRB2
mary metabolic pro- MED16 ZFP361.2 TLAL1 SALIL3 HSF1 MKNK2
cess ZNF746 BRD7 JUNB TSC22D4 CD74 MBNLT

ZGPAT SMARCC2 HMGAT VEGFB DYRKTB
IRF2BP2 TICAM1 USF2 AES FKBP1A CD4
CNOT7 HNRNPUL7? CTDSP1 MTF1 IRF1 CD44
PNPI.A2

45321 leukocyte activation  5.2736E-3 FKBP1.A CD74 CD4 WBP1 PRKDC IMPDHT1 IRF1
TICAMT

35468 positive regulation 5.2736E-3 FKBP1A CD74 CD4 VEGFB ILGALSY9 ARRB2 TI-
of signaling pathway CAMT1 AGPATT RASGRP4 CD44

42110 T cell activation 5.2736E-3 FKBP1.A CD74 CD4 WBP1 PRKDC IRF1

43393 regulation of protein  6.6083E-3 FKBP1.A ARRB2 TICAM1 AES
binding

31325 positive regulation 6.6083E-3 CD74 SMARCC2 PRKDC HMGAT IVEGFB
of cellular metabolic DYRK1B TICAM1 USF2 FKBP1.A CD4 CNOT7
process MTF1 IRF1 JUNB CD44 PNPI.A2

46649 lymphocyte activa- 6.6083E-3 FKBP1.A CD74 CD4 WBP1 PRKDC IMPDHT1 IRF1
tion

10647 positive regulation 7.8333E-3 FKBP1A CD74 CD4 VEGFB LGALSY9 ARRB2 TI-
of cell communica- CAM1 AGPATT RASGRP4 CD44
tion

9893 positive regulation 1.0856E-2 CD74 SMARCC2 PRKDC HMGAT IVEGFB
of metabolic pro- DYRK1B TICAM1 USF2 FKBP1.A CD4 CNOT7
cess MTF71 IRF1 JUNB CD44 PNPL.A2

10468 regulation of gene 1.0994E-2 PRKDC PHF1 TCF7 SI.A ARRB2 MED16 ZFP361.2
expression TIALT SALL3 HSF1 MKNK2 ZNF746 BRD7 JUNB

TSC22D4 MBNL1 ZGPAT SMARCC2 HMGAT
VEGFB DYRKI1B IRF2BP2 TICAM1 USF2 AES
CNOT7 HNRNPUL? CTDSP1 MTF1 IRF1 BC1.21.1

10604 positive regulation 1.3966E-2 CD74 SMARCC2 PRKDC HMGAT VEGFB
of macromolecule DYRKI1B TICAMT71 USF2 FKBP1A CD4 CNOT7
metabolic process MTF1 IRF1 JUNB CD44

2376 immune system pro- 1.4447E-2 CD74 WBP1 PRKDC IL.1R2 NCF4 TCF7 PLLEK TI-
cess CAM1 RASGRP4 FKBP1.A CD4 IMPDHT1 IRF1

POILR3H JUNB

10740 positive regulation 1.4590E-2 FKBP1A CD74 VEGFB LGALS9 ARRB2 TICAMT1
of intracellular pro- CD44
tein kinase cascade

6357 regulation of tran- 1.4590E-2 SMARCC2 PRKDC TCF7 MED16 USF2 AES
scription from RNA TIAL7 CNOT7 CTDSP1 MTF1 IRF1 BRD7 JUNB
polymerase 1I pro-
moter

1961 positive regulation 1.5980E-2 CD74 AGPATT

of cytokine-medi-
ated signaling path-

way
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50731 positive regulation 1.5980E-2 CD74 CD4 VEGEFB CD44
of peptidyl-tyrosine
phosphorylation
30097 hemopoiesis 1.6667E-2 CD74 CD4 PRKDC IRF1 PLEK JUNB RASGRP4
9966 regulation of signal ~ 1.7396E-2 CD74 ZGPAT PLEK VEGEB ARRB2 TICAMT
transduction AGPATT RASGRP4 DUSP6 FKBP1.A CD4
LGALS9 CD44
23051 regulation of signal-  1.7866E-2 CD74 ZGPAT PLEK VEGEB ARRB2 TICAMT
ing process AGPATT RASGRP4 DUSP6 FKBP1.A CD4
LGALS9 CD44
30217 T cell differentiation  1.7900E-2 CD74 CD4 PRKDC IRF1
43518 negative regulation ~ 1.9279E-2 CD74 CD44
of DNA damage re-
sponse, signal trans-
duction by p53 class
mediator
10627 regulation of intra-  1.9279E-2 ~ FKBP1A CD74 VEGIFB LGALS9 ARRB2 TICAM1
cellular protein ki- DUSP6 CD44
nase cascade
60136 embryonic process 2.4907E-2 HSF1 JUNB
involved in female
pregnancy
48534 hemopoietic or lym-  2.4907E-2 CD74 CD4 PRKDC IRF1 PLEK JUNB RASGRP4
phoid organ devel-
opment
31326 regulation of cellular 2.5949E-2 ~ PRKDC PHF1 TCF7 PLEK SI.4 ARRB2 MED16
biosynthetic process TIALT SALL3 HSF1 MKNK2 PDK4 ZNF746 BRD7
JUNB TSC22D4 ZGPAT SMARCC2 HMGAT
DYRKT1B IRF2BP2 TICAM1 USF2 AES CD4
CNOT7 HNRNPULT CTDSP1 MTF1 IRF1
48585 negative regulation ~ 2.5949E-2 CD74 ARRB2 RTIN4 CD44 AES
of response to stim-
ulus
2521 leukocyte differenti-  2.5949E-2 CD74 CD4 PRKDC IRF1 JUNB
ation
35303 regulation of 2.5949E-2 YWHAE FKBP1A PLEK
dephosphorylation
48513 organ development  2.5949E-2 YWHAE CD74 MBNL1 PRKDC PLEK VEGIB
USF2 RTN4 RASGRP4 AES FKBP1A CD4 SALL3
IRF1 NINJ1 HSF1 NPHP3 JUNB CD44 I.YGE
BCL2L1
9889 regulation of bio- 2.06824E-2  PRKDC PHF1 TCF7 PLEK SI.A ARRB2 MED16
synthetic process TIALT SALL3 HSF1 MKNK2 PDK4 ZNF746 BRD7
JUNB TSC22D4 ZGPAT SMARCC2 HMGAT
DYRKT1B IRF2BP2 TICAMT USF2 AES CD4
CNOT7 HNRNPULT CTDSP1 MTF1 IRF1
2520 immune system de-  2.9088E-2 CD74 CD4 PRKDC IRF1 PLEK JUNB RASGRP4

velopment
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50730 regulation of pep- 2.9088E-2 CD74 CD4 VEGEB CD44
tidyl-tyrosine phos-
phorylation
31399 regulation of protein  3.2407E-2 YWHAE FKBP1A CD74 CD4 IV'EGFB ARRB2 TI-
modification pro- CAMT1 CD44
cess
32268 regulation of cellular  3.4952E-2 YWHAE FKBP1.A CD74 CD4 MKNK2 V'EGFB
protein metabolic SL.A ARRB2 TICAMT CD44
process
51252 regulation of RNA  3.5150E-2 TSC22D4 MBNL1 ZGPAT SMARCC2 PRKDC
metabolic process TCF7 HMGAT DYRK1B MED16 USF2 ZFP361.2
AES TIALT CNOT7 CIDSP1 MTF1 IRF1 HSF1
ZNF746 BRD7 JUNB
43410 positive regulation 3.5150E-2 CD74 VEGEFB ARRB2 CD44
of MAPKKK cas-
cade
10557 positive regulation 3.9190E-2 CD4 SMARCC2 CNOT7 PRKDC MTF1 IRF1
of macromolecule HMGAT DYRKTB TICAMT1 JUNB USF2
biosynthetic process
19058 viral infectious cycle  3.9907E-2 CD4 HMGAT USF2
50794 regulation of cellular  3.9907E-2 YWHAE CLIC3 PHF1 PLEK SI.A ARRB2 MED16
process NRGN TLALT SAILL3 PDK4 1L.GALSY JUNB
T8C22D4 MBNL1 ZGPAT SMARCC2 DYRKTB TI-
CAM1 DUSP6 AES HNRNPULT CTDSP1 MTF1
IRF1 CD44 PRKDC TCF7 AGPATT RIN4 ZFP361.2
RASGRP4 SH3BP1 HSF1 MKNK2 ZNF746 NPHP3
BRD7 CD74 HMGAT VEGEB IRF2BP2 NAPTL1
USF2 FKBP1.A CD4 CNO17 BCL.2L.1 PNPL.A2
10556 regulation of macro- 4.2622E-2 ~ PRKDC PHF1 TCF7 SI.A ARRB2 MED16 TLALT
molecule biosyn- SALL3 HSF1 MKINK2 ZNF746 BRD7 JUNB
thetic process TSC22D4 ZGPAT SMARCC2 HMGAT DYRK1B
IRF2BP2 TICAM1 USF2 AES CD4 CNOT7 HNRN-
PUL7T CITDSP1 MTF1 IRF1
43516 regulation of DNA  4.2770E-2 CD74 CD44
damage response,
signal transduction
by p53 class media-
tor
50896 response to stimulus  4.3178E-2 ZFP106 WBP1 PRKDC NCF4 TCF7 PLEK F13A1
ARRB2 L.SP1 RTN4 RASGRP4 TIALT HSF1
MKNK2 UCP2 JUNB TSC22D4 CD74 IL1R2
DEFA3 TICAMT USF2 DUSP6 AES C70ORF27 CD4
HNRNPULT IMPDHT MTF1 NINJ7 POLR3H
CD44 BCL.21.1
34645 cellular macromole-  4.4898E-2 TOP3B WBP1 HMGAT VEGFB SL.A NAPTL1

cule biosynthetic

process

ARRB2 MED16 USF2 ABTB1 CD4 IRF1 POLR3H
JUNB
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31401 positive regulation 4.5884E-2 FKBP1A CD74 CD4 VEGFB TICAM1 CD44
of protein modifica-
tion process
6268 DNA unwinding in-  4.5884E-2 TOP3B HMGAT
volved in replication
768 syncytium for- 4.5884E-2 DYRKTB CD44
mation by plasma
membrane fusion
45893 positive regulation 4.5884E-2 SMARCC2 CNOT7 PRKDC MTF1 IRF1 HMGAT
of transcription, DYRKT7B JUNB USF2
DNA-dependent
30098 lymphocyte diffet- 4.5884E-2 CD74 CD4 PRKDC IRF1
entiation
80134 regulation of re- 4.6308E-2 CD74 PLLEK VEGFB ARRB2 TICAM1 RTN4 CD44
sponse to stress
43408 regulation of MAP-  4.6308E-2 CD74 VEGFB ARRB2 DUSP6 CD44
KKK cascade
51254 positive regulation 4.6308E-2 SMARCC2 CNOT7 PRKDC MTF1 IRF1T HMGAT
of RNA metabolic DYRKT7B JUNB USF2
process
9059 macromolecule bio-  4.6308E-2 TOP3B WBP1 HMGAT IVEGFB SI.A NAPTL.1
synthetic process ARRB2 MED16 USF2 ABTB1 CD4 IRF1 POLLR3H
JUNB
44249 cellular biosynthetic ~ 4.6527E-2 TOP3B CD74 WBP1 HMGAT IVEGFB ATP2B4 S1.A
process NAPTLT ARRB2 MED16 AGPAT1 USF2 ABTB1
CD4 IMPDHT IRF1 CMPK7 POLLR3H JUNB
31328 positive regulation 4.6527E-2 CD4 SMARCC2 CNOT7 PRKDC MTF1 IRF1
of cellular biosyn- HMGAT DYRKTB TICAMT JUNB USF2
thetic process
6458 'de novo' protein 4.6527E-2 FKBP1A CD74
folding
32091 negative regulation 4.6527E-2 ARRB2 AES

of protein binding
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