
Genetic Basis of Variation in Bill
Morphology in a Free-Living House
Sparrow Metapopulation

Sarah Lundregan

MSc in Biology

Supervisor: Henrik Jensen, IBI
Co-supervisor: Arild Husby, IBI

Ingerid Hagen, IBI

Department of Biology

Submission date: May 2017

Norwegian University of Science and Technology



 



i 
 

Foreword 

I would first like to extend my thanks to my supervisor, Associate Professor Henrik Jensen, and 

co-supervisors, Dr. Ingerid Hagen and Associate Professor Arild Husby, for their invaluable input 

and guidance throughout the course of my study. Your advice has been thought provoking and 

our discussions have been enjoyable and informative. I would like to thank Professor Mette 

Langaas, Professor Øyvind Bakke and Kari Krizak Halle (PhD) for their advice on multiple testing 

correction and for providing the script used for this here. I am also grateful to Dr. Bernt Rønning 

for his coordination of the house sparrow fieldwork and for my training and to all other 

participants who made field season an enjoyable experience.   

The work presented here is built upon the efforts of those involved in the house sparrow 

study system over the past three decades. Completion of this thesis would not have been possible 

without their dedication to collection of such high quality data. I would also like to thank the 

Helgeland residents, whose ongoing cooperation has contributed tremendously to the success of 

the study system. I am grateful for the opportunity that this thesis has given me to participate in 

the ongoing work of the House Sparrow Project at CBD, NTNU.  

Finally, I would like to extend my sincere gratitude to my husband, Hans Kvernsjøli, for 

his support and encouragement throughout the past two years, I couldn’t have done it without 

you! 

 

 

Sarah Lundregan 

Trondheim, May 2017 

  



ii 
 

  



iii 
 

Abstract 

Bill morphology is an ecologically important trait, which shows substantial phenotypic variation, 

is highly heritable and is under selection in many bird species. These characteristics underscore the 

suitability of bill morphology traits for gene mapping analysis and increase the probability that 

evolution of these traits will occur at a rate conducive to generation of ecological and evolutionary 

(eco-evo) feedback. Knowledge of the underlying genetic architecture of bill morphology is 

required to understand the mechanisms driving phenotypic change in these traits and to interpret 

their involvement in eco-evo cycles. Previous studies have revealed several genes which may 

influence bill morphology but total number of causal loci, their locations in the genome and 

magnitude of their individual effects is unknown. Here, the genetic basis of four bill morphology 

traits (bill depth, bill shape, bill length and bill size) was explored using phenotypic and genome-

wide SNP data from a large-scale dataset from an insular house sparrow metapopulation off the 

coast of Northern Norway. Genomic heritabilities for the above bill morphology measures were 

estimated using variance component methods, proportion of variance explained was high and 

broadly in line with previously defined estimates. Chromosome partitioning analyses found 

significant, positive relationship between chromosome size and proportion of variance explained 

for the four examined traits, indicating a polygenic basis for bill morphology. Candidate gene and 

GWA methods were used to search for causal loci. No large effect was observed for any bill 

morphology trait in candidate gene regions, although weak association was detected for ALX1 and 

FGF8 for bill shape and size respectively. GWA analysis revealed a significant locus of small effect 

size on bill depth, situated approximately 1 Mbp away from CRIM1, which exerts upstream control 

over BMP4. Increase in bill depth with hatch year was observed in the Helgeland metapopulation, 

as was increase in the frequency of the allele conferring deeper bills at the significant marker. Bill 

depth may be under positive selection in this metapopulation or covariation of genetic change and 

environmental fluctuations may be driving its increase. This work illustrates both the difficulties 

and advantages of performing association studies in natural populations and attempts to determine 

which approaches may be most likely to result in detection of causal loci.   
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1: Introduction 

Recent years have seen increased interest in the study of the interaction between ecological and 

evolutionary (eco-evo) dynamics, which recognises that adaptive evolution can occur so rapidly 

that it may influence ecological processes and that ecological changes (eg. in population density or 

age structure) may lead to selection and affect rate of adaptation (Lowe et al., 2017, Hendry, 2016). 

Eco-evo feedbacks are bidirectional interactions which may occur at any level of organisation; 

from genes, individuals and populations to communities and ecosystems. Due to hierarchical 

organisation, changes at one level may affect others and the link between genes and ecosystems is 

mediated by population parameters (Hendry, 2012). Population level research is therefore 

invaluable in gaining mechanistic understanding of eco-evo interactions (Lowe et al., 2017). An 

excellent example of such feedback in action is how fluctuating environment and density 

dependence may affect the rate of evolution through stabilising selection toward mean phenotypic 

values due to differential selection at different carrying capacities (Sæther and Engen, 2015). To 

date, several studies have quantified the importance of change in heritable traits for population 

growth and dynamics. For example, Pelletier et al. (2007) demonstrated that distribution of body 

sizes in a population of Soay sheep markedly influenced population growth and in Kinnison et al. 

(2008) it was shown that rapid adaption of invasive Chinook salmon to local habitats influenced 

fitness and survival and altered population growth rates relative to those of non-adapted 

counterparts. A study on Yellowstone wolves used an integral projection model to show that 

environmental change was expected to generate eco-evolutionary change, and that changes in the 

mean environment are likely to affect this species to a greater extent that changes in extent of 

variability (Coulson et al., 2011).  

In birds, bill morphology is an example of an ecologically important trait, which has been 

shown to have substantial phenotypic variation, be highly heritable and be under selection in many 

bird species (James and Zach, 1979, Merilä et al., 2001, Jensen et al., 2008). From Darwin’s finches 

and other passerines to waders and birds of prey, bill form and function vary both between and 

within species in response to a range of ecological factors, including availability of differing food 

sources and interspecific competition (Abzhanov et al., 2006, Riyahi et al., 2013, Soons et al., 2015). 

Species specific and individual differences are the result of trade-offs between various 

environmental factors, cranial skeletal structure and related musculature (Bock, 1966, van der Meij 

and Bout, 2004) as well as genetic architecture and its degree of plasticity. Some birds, for example 

Darwin’s finches (Grant and Grant, 2014) and Hawaiian honeycreepers (Tokita et al., 2017), have 

greater scope for variability whereas raptor bill morphology is constrained by evolutionary 

integration with braincase and body size (Symonds and Tattersall, 2010). Ultimately, individual 
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genetic makeup coupled with plastic response toward environmental conditions will dictate 

phenotype. Bill morphology variation can have important fitness consequences in nature: Subtle 

differences between individuals can affect their relative foraging efficiency (Temeles et al., 2009), 

define dietary niche (Soons et al., 2015) or make the difference between survival and starvation 

(Boag and Grant, 1981).  Bill size has also been positively related to nestling provisioning rate 

(Ringsby et al., 2009, Forstmeier et al., 2001). As a result, birds with particular bill morphologies 

may experience both increased offspring survival and lifetime reproductive success. A core 

principle of eco-evo dynamics is that evolutionary change must be rapid enough for selected 

changes in phenotype to feedback on ecological dynamics on a contemporary time scale; 

heritability of a trait coupled with the strength of selection on said trait determines how closely 

rate of evolutionary change can track environmental changes (DeLong et al., 2016). A landmark 

paper by Grant and Grant (2002) demonstrated that bill morphology of a Darwin’s finch species 

(Geospiza scandens) changed significantly several times over the 30 year study period. Calculation of 

the ratio of phenotypic to population size change showed feedback may occur within 8 generations 

for the heritable traits bill length and depth in this species (DeLong et al., 2016) and that phenotypic 

changes (ie. adaptive phenotypic evolution) were equally as important as changes in island 

productivity for persistence of the species during the study timeframe (Grant and Grant, 2002). 

Approaches like those outlined below that seek to determine the genetic architecture of traits 

implicated in eco-evo dynamics may help to define mechanisms behind these processes in nature. 

Although phenotypes are central to eco-evo dynamics, through selection acting on phenotype and 

phenotype affecting ecology, evolution only occurs when allele frequencies in the genes underlying 

these phenotypes change. Understanding eco-evo dynamics at the genetic level therefore requires 

knowledge of the genetic architecture of the phenotypic traits driving these relationships. 

Heritability is a crucial parameter in determining evolutionary response to selection and 

the extent to which a trait is genetically determined can be evaluated by calculating its 

environmental and genetic component (Speed et al., 2012). Nowadays heritability is usually 

calculated using animal (mixed-effect) models, whereas more traditional methods include parent-

offspring regression or directly measuring response to selection (Wilson, 2008). As well as 

calculating heritability, it is of interest to determine the inheritance type of a trait. Partitioning 

proportion of additive genetic variance explained for a given trait by chromosome facilitates this 

(Yang et al., 2011a, Yang et al., 2011b). Significant regression with a positive slope of chromosome 

effect size on chromosome length is expected to be observed for polygenic inheritance, whereas 

inversion or disruption of this positive linear relationship may occur where large effect quantitative 

trait loci (QTL) are present (Robinson et al., 2013, Santure et al., 2015). As quantitative traits, bill 
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morphology measures are expected to be under polygenic control, with signals of selection 

distributed across many loci (Tiffin and Ross-Ibarra, 2014). Several genes of large effect for bill 

morphology have, however, been identified in some avian species (eg. Abzhanov et al., 2006, 

Brugmann et al., 2010, Mallarino et al., 2011).  

Where a trait is heritable gene mapping may be performed, which involves identification 

of the genomic positions of genes coding for the trait (Conner and Hartl, 2004). This was 

previously accomplished by linkage mapping studies, which first utilised experimental crosses or 

pedigree information to chart recombination events and hence linkage disequilibrium (LD) 

between markers and create the genetic linkage map, a time consuming and costly process. (Slate, 

2005, Schielzeth and Husby, 2014). Once a linkage map is constructed, it is possible to identify 

quantitative trait loci (QTL) that connect phenotypic variation among individuals with both 

phenotype and marker genotype data to single or multiple causal genes (Pardo-Diaz et al., 2015). 

Traditionally, such linkage mapping studies were performed on model organisms or humans, for 

whom data was more easily obtainable and testing was comparably accessible. However, success 

in identifying trait associated genes was often limited, requiring fine mapping by use of an ever-

increasing number of crosses (Mackay et al., 2009). Families with detailed family history were used 

instead of controlled crosses in humans, to perform linkage mapping via estimation of IBD 

probabilities (Schielzeth and Husby, 2014). Some success in identifying QTL was nevertheless 

demonstrated in humans (Almasy and Blangero, 2009), several plant species (Bradshaw et al., 1998, 

Lin and Ritland, 1997) and in Drosophilla (Leips and Mackay, 2000), where genes detected were 

predominantly involved in traits with relatively simple Mendelian inheritance (Conner and Hartl, 

2004). Other early mapping studies were based on candidate genes, selected because of a priori 

hypotheses about association with the trait of interest. This reduced cost and time intensiveness 

of mapping, as smaller regions of the genome were tested, but reproducibility was low and this 

method does not allow identification of novel genes associated with a trait (Tabor et al., 2002). 

Recent advances in next generation and high throughput sequencing technologies have paved the 

way for expansion of genomics research to wild populations, in particular via large scale genotyping 

on single nucleotide polymorphism (SNP) panels (Stapley et al., 2010, Jensen et al., 2014). These 

panels can be utilised in genome wide association studies (GWAS), which exploit historical LD 

between causal genes and genetic markers to uncover trait associations. Because of this, GWAS is 

sometimes called ‘linkage disequilibrium mapping’ (Mackay, 2004). As LD decays exponentially 

with increasing genetic distance, causal genes are more likely to be near to markers which score 

highly for a trait (Wray et al., 2013). Marker densities of more than 500k are possible with high 

density SNP arrays, affording them greater power than linkage mapping studies in line with 



4 
 

increasing resolution. (Ha et al., 2014). Many methods for detecting QTL are available, including 

family based association tests centred on transmission of alleles within pedigrees, linear mixed 

model (LMM) approaches or non-linear methods like Maximum Quasi-Likelihood (Eu-

ahsunthornwattana et al., 2014). LMM association approaches, like those implemented in 

GenABEL (Aulchenko et al., 2007) offer higher power than family based methods, are able to 

control genomic inflation (artificial differences in allele frequencies due to population structure or 

cryptic relatedness, which cause inflated P values) to an appropriate level and are computationally 

efficient. Extensions of the LMM approach to permit repeated measurements, as in RepeatABEL 

(Rönnegård et al., 2016), allow within-individual variation to be fully accounted for and may 

produce more accurate estimates.  

This era of genome-wide association studies calls into question whether candidate gene 

approaches are still necessary or desirable, but candidate gene studies may result in increased 

statistical power to detect extant associations due to lower number of markers tested (Tabor et al., 

2002). Power depends on sample size and LD between SNPs in the region, combined with minor 

allele frequency (MAF) and effect size of the associated marker (Mackay et al., 2009). Trait 

associated genetic polymorphisms with low MAF or in regions of low LD are unlikely to be 

detected by GWAS but may be via association testing of candidate genes. The regional candidate 

gene approach is also useful to confirm previously demonstrated trait associations and, with deep 

resequencing of candidate regions, to determine causative variants (Wilkening et al., 2009). 

Confirmation of the effects of candidate genes in separate species or populations reveals the extent 

of generality of gene functions across different groups and is important for wider understanding 

of genetic architecture. This approach was successfully used in Haag et al. (2005) where variation 

at the pgi locus had a direct effect on dispersal rate and thereby on metapopulation dynamics in 

the Glanville fritillary butterfly. Follow up studies confirmed the importance of this gene for flight, 

dispersal, and population growth (Hanski and Saccheri, 2006, Niitepõld et al., 2009), linking genetic 

and ecological dynamics in this species. Novel multi-marker methods, which can increase power 

in association studies, may be another way to detect QTL which are missed by traditional single 

marker association methods. One such method is quantitative trait cluster association testing 

(QTCAT), which searches for clusters of markers significantly associated with a given trait. For 

complex traits under polygenic control, multi-marker association methods are expected to be 

superior to single-marker techniques as they mitigate the need for population structure correction 

by accounting for correlation between markers at the same time as associating them with the 

phenotype (Klasen et al., 2016).  
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Challenges regarding adequate sample size, unpredictable LD patterns and ability to define 

sufficient high quality markers are amplified in wild populations of non-model species, due to 

environmental heterogeneity, population structure, and lack of previous genetic studies, 

consequently such work is rare (Jensen et al., 2014). However, studies in natural populations are 

important, as they allow us to examine the genetic basis of ecologically important traits in their 

natural context (Slate et al., 2010). Environment-phenotype interactions are often complex; large 

scale studies in natural populations allow year and age effects over time to be assessed via repeated 

individual measures (Clutton-Brock and Sheldon, 2010). They also aid evaluation of the degree to 

which results from laboratory studies in model species can be extrapolated to natural populations 

and non-model species, and are invaluable to inform management decisions (Stapley et al., 2010).  

Recently, GWA approaches have been successfully utilised in several studies in natural vertebrate 

populations (eg. Johnston et al., 2013, Husby et al., 2015, Santure et al., 2015, Johnston et al., 2011, 

Barson et al., 2015, Johnston et al., 2014). As association mapping relies on historical recombination 

events it does not require multigenerational genetic data, however, long term monitoring systems 

in natural populations are well suited to association study as they monitor phenotypic and 

population data over several years and allow age effects and changes over time to be linked to 

individual genotype (Clutton-Brock and Sheldon, 2010). Ideally a species should also possess 

qualities such as pervasiveness and interesting adaptive history which make it applicable for wider 

ecological study (Ellegren, 2014, Slate et al., 2010), as in the ‘ecological models’ the collared 

flycatcher (Ellegren et al., 2012) and threespine stickleback (Jones et al., 2012).  

A recent study of Darwin’s finch species used whole-genome re-sequencing of 120 

representative individuals to indicate a polygenetic basis for changes in bill morphology and to 

identify a key haplotype, ALX1-b, associated with blunt bills (Lamichhaney et al., 2015). Other 

avian studies have revealed several more genes affecting bill morphology: Bone morphogenic 

protein 4 (BMP4) and calmodulin (Calm1) are differentially expressed in Geozpiza species with 

divergent bill morphologies and regulate bill development in chicken embryos (Abzhanov et al., 

2006, Abzhanov et al., 2004). Transforming growth factor-beta receptor type-2 (TGFbrII) has been 

shown to be differentially expressed in developing premaxillary bone of species with differing bill 

morphologies (Mallarino et al., 2011). Expression of Wnt signalling pathway members, including 

Dickkopf Wnt signalling pathway inhibitor 2 (Dkk2) and frizzled-1 (FZD1), is upregulated in 

species with broad bills and downregulated in those with narrow bills (Brugmann et al., 2010). 

Fibroblast growth factor 8 (FGF8) interacts with other proteins in the frontonasal ectodermal 

zone, including sonic hedgehog (Shh), to induce expression of BMP4 at the proper domain on the 

developing bill, potentially influencing its morphology (Abzhanov and Tabin, 2004, Wu et al., 
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2004). The fibroblast growth factor signalling pathway is important during neural crest (NC) 

migration and pharyngeal endoderm formation, pharyngeal endoderm is important for regulation 

of craniofacial morphogenesis, especially bill formation, in developing chicks (Haworth et al., 

2007). After NC migration both FGF8 and fibroblast growth factor 19 (FGF19) maintain strong 

expression in the pharyngeal endoderm (Kumar et al., 2012). Functional studies like those outlined 

above often involve developmental knockout or knockdown approaches and are the benchmark 

criterion by which association between genes and traits is confirmed (Barrett and Hoekstra, 2011).  

The house sparrow (Passer domesticus) is an ideal candidate for gene mapping studies of traits 

potentially involved in eco-evo dynamics, as much is known about its biology and ecology 

(Anderson, 2006). A natural house sparrow metapopulation exists in Helgeland, northern Norway 

and has been studied extensively since 1993, allowing establishment of a large sample dataset. The 

insular metapopulation covers approximately 1600 km2 and is characterized by relatively low 

dispersal between islands, allowing examination of selection, genetic drift, and gene flow (Holand 

et al., 2011, Jensen et al., 2013, Pärn et al., 2012, Jensen et al., 2008). Genetic and pedigree 

information is available for the majority of individuals, alongside morphological and life history 

data including measurements of bill depth and length (eg. Jensen et al., 2003, Jensen et al., 2004, 

Pärn et al., 2009, Ringsby et al., 2009). Within this system, bill size has been found to correlate with 

rate of feeding of offspring (Ringsby et al., 2009). The same study concluded that parental 

investment, represented by nestling feeding rate, may increase number of successful recruits as 

well as bolstering chances of surviving to recruitment stage. Jensen et al. (2004, 2008) showed that 

bill morphology in adult house sparrows is related to survival and reproductive success, and hence 

that it is under positive selection. It has been shown that bill depth and length measures are highly 

repeatable within the Helgeland system and that the traits are also highly heritable (Jensen et al., 

2003, Jensen et al., 2008). Evidence of a large, additive genetic component to phenotypic variation 

in bill depth and length indicates suitability of the traits for gene mapping analysis. Combined with 

the fact that bill morphology is under selection (Jensen et al., 2008), this increases the chances that 

evolution will occur at a rate conducive to creation of eco-evolutionary feedback (DeLong et al., 

2016). Genes which have previously been related to bill morphology (see above) are therefore of 

particular interest for association studies in the Helgeland metapopulation.  

Genetic data for study individuals is available from 1993-2014 and a 10k SNP microarray 

was recently developed and successfully used to detect population stratification relating to island 

divisions in the Helgeland system (Hagen et al., 2013). This information was used to develop a 

linkage map which was utilised to assemble the house sparrow reference genome into 

chromosomes (Elgvin et al., in press.). Subsequently, a 200k Affymetrix Axiom SNP array (Hagen 
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et al., in prep.-b) was developed. The array includes SNPs within and in the genomic vicinity to 

candidate genes for a diverse range of phenotypic traits in model species and in humans, totalling 

16,827 SNPs on the array. The remaining 183,173 SNPs are distributed evenly across the house 

sparrow genome. SNPs within or in the vicinity of nine genes which, based on the above outlined 

literature, may be related to bill morphology were included on the array: ALX1, BMP4, Calm1, 

Dkk2, FGF8, FGF19, FZD1, Shh and TGFbrII. Functions of these candidate gene were predicted 

using online databases UniProt (Uniprot, 2017) and Ensembl (Yates et al., 2016). Relationships 

between these candidate genes and proteins which directly interact with or regulate them are shown 

in Fig. 1.  

Here, the genetic architecture of four bill morphology traits: bill depth, bill shape, bill 

length and bill size, was investigated using data from the Helgeland metapopulation of house 

sparrows. First, heritability estimates were examined to determine whether the high density, 

genome-wide panel of SNPs captured the additive genetic variance previously estimated for bill 

morphology in house sparrows. If this is the case it would suggest that at least some typed SNPs 

are in LD with genes affecting the traits. Subsequently, chromosome partitioning analysis was 

performed to examine on which chromosomes the genes causing variation in these traits reside. 

As SNPs within and close to a number of candidate genes for bill morphology have been typed in 

this study population, a candidate gene approach was then used to examine whether any of these 

genes explained variation in bill morphology. This was followed by GWA analysis of the whole 

dataset to determine whether: 1) this genome-wide approach would support the findings from 

candidate gene analyses and 2) to determine whether additional regions and candidate genes for 

future studies could be detected. GWAS was performed using single marker methods, 

GRAMMAR-gamma for single measurements and RepeatABEL for repeated individual measures, 

as well as with the multi-marker method QTCAT, which may have greater power than the previous 

methods to detect links between polygenic traits and associated gene regions. Significant markers 

in the Helgeland dataset were tested for enrichment in an independent dataset from a second set 

of house sparrow populations, using the RepeatABEL method, to determine whether significant 

associations in the Helgeland dataset were maintained in these Southern populations. Finally, a 

pathway map was created for a potential causal gene to illustrate its conceivable mechanisms of 

action and possibly indicate new candidate genes for bill morphology.  
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Figure 1: Pathway diagram displaying links between candidate genes for bill morphology (craniofacial development) 
used in this study. Full edges indicate direct protein-protein interaction, dotted edges indicate involvement in the same 
signalling pathway, dashed edges indicate co-expression, bars and arrows indicate negative and positive regulation 
respectively. Nodes are coloured according to main signalling pathway; FZD1, Dkk2 and ALX1 are all involved in the 
Wnt pathway, TGFbrII and BMP4 belong to the BMP signalling pathway, FGF8 and FGF19 are part of the Fgf 
signalling pathway. Calm1 and Shh belong to the calmodulin and sonic hedgehog signalling pathways, which are linked 
to but not part of the signalling pathways for the other genes. Note that CRIM1 was not among the 9 candidate genes, 
but was included in this figure as it falls within ≈ 1 Mbp of a significant SNP found in RepeatABEL GWAS on bill 
depth and it negatively regulates BMP4.  
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2: Methods 

2.1: Study Population 

This study utilises data from a long-term study of a house sparrow metapopulation, consisting of 

18 insular subpopulations in an archipelago at the Helgeland coast in Northern Norway (Fig. 2). 

The house sparrow is a non-migratory passerine bird, which is sexually dimorphic and with a 

lifespan of up to 9 years in Northern Norway (Jensen et al., 2004). The species is sedentary and 

exhibits low dispersal rates, in the insular Helgeland system only around 10% of fledglings that 

recruit into the breeding population are dispersers (Pärn et al., 2009, Pärn et al., 2012). Up to 20% 

of fledglings survive to recruitment (Sæther et al., 1999). House sparrows are often associated with 

human settlements (Anderson, 2006) and are predominantly found at agricultural or residential 

sites in the study system. This improves sampling efficiency and, in conjunction with low dispersal 

rates, allows individuals to be monitored from hatching over consecutive years until they die 

(Billing et al., 2012, Jensen et al., 2004, Jensen et al., 2008, Pärn et al., 2009). This enables repeated 

morphological measurements to be taken, which capture within-individual variation in bill 

morphology (Davis, 1954, Greenberg et al., 2013) (Appendix I; Table I).  

Figure 2: Islands included in the house sparrow metapopulation study system, Northern Norway (66°N, 13°E). 
Islands shaded black have been continuously followed since monitoring began. The eight populations used in this 
study are circled in green. 
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2.2: Data collection 

Sampling has been ongoing on from 1993 to present in all insular subpopulations in the 

metapopulation. However, due to financial constraints, data used in this study includes only adult 

birds recorded on 8 of the study islands during 6 (5 islands), 11 (2 islands) or 10 (1 island) years 

(Table 1). My participation in sampling thus far was from May to July, 2016. Adult house sparrows 

were captured using mist nets for blood sampling and morphological measurements, including 

measurements for bill depth and bill length. Slide callipers were used to measure these two bill 

morphology traits to the nearest 0.01mm (Jensen et al., 2004, Jensen et al., 2008). During the 

breeding season, May – August (Husby et al., 2006), nestlings were collected from nests between 

the age of 8-13 days, banded for identification with three coloured plastic rings and one metal ring 

displaying identification number, then morphological measurements and blood samples taken 

before replacement into nests. Any un-banded adult or fledged birds captured in mist nests were 

banded as above. Only adult measures from each individual were utilised in this study (Jensen et 

al., 2004, Jensen et al., 2008) and measurements taken outside of the breeding season were not used 

to reduce seasonal intra-individual variation in bill morphology (Anderson, 2006). A linear 

regression method was used to adjust measurements collected by different fieldworkers to an 

internal standard and to control for age and seasonal effects in analyses where one measure per 

individual was needed (Jensen et al., 2008). See Appendix I; Measures Data Adjustment.  

Table 1: Period for which all recorded adult individuals on each island were genotyped on the 200k SNP 
microarray, number of SNP genotyped individuals which passed quality control on each island and number of 
measurements per island.   

Island  Years Individuals Measurements 

Aldra  1998-2013 146 493 

Gjerøy  1998-2013 402 907 

Hestmannøy  1998-2013 717 1709 

Indre Kvarøy  1998-2013 251 556 

Myken  2004-2013 38 54 

Nesøy  1998-2013 98 278 

Selvær  2003-2013 107 124 

Træna  2003-2013 98 118 

TOTAL  16 1857 4239 

 

 

2.3: Genotyping and Quality Control 

Study individuals (Table 1) were genotyped on a custom Affymetrix Axiom 200k SNP array 

(Hagen et al., in prep.-b). The array was developed based on the reference genome for P. domesticus 

(Elgvin et al. in press.) and whole genome sequencing of 33 individuals from 15 populations across 

Norway and Finland, with at least one male and one female from each population. Linkage 
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disequilibrium (LD) decay analysis based on data from the 10k SNP array indicated that 200k SNPs 

would be sufficient to ensure LD between a potential QTL and a marker (Hagen et al., 2013). 

Furthermore, preliminary analysis of LD based on 200k SNP genotype data from the 8 study 

populations suggest that LD decays to background levels between 15-20kb (Hagen et al., in prep.-

a). Between 1993 and 2016, 14,100 individuals (nestlings, fledged juveniles, and adults) were 

recorded on one of the 8 included islands in the Helgeland metapopulation (Nesøy, Myken, Træna, 

Selvær, Gjerøy, Hestmannøy, Indre Kvarøy and Aldra) (Fig. 2). 3150 individuals who were adults 

on these study islands between 1998-2013 were genotyped on the 200k array; of these individuals 

1958 had phenotypic data for bill depth and bill length. Of the 200,000 SNP markers on the array, 

184,804 were categorised as PolyHigh Resolution, Affymetrix’s highest quality class which requires 

good cluster resolution and at least two copies of the minor allele. Only markers ranked as this 

category were used in further quality control analyses.   

Quality control was performed using the GenABEL R package (Aulchenko et al., 2007) 

The dataset was subset to include only individuals with bill morphology data (1958 individuals) 

prior to quality control to ensure the final dataset adhered to quality control parameters.  

Individuals with incorrect sex coding (38) and too high identity by state (IBS > 0.9; 27) were 

removed, as were markers with low call rate (<95%; 197) and low minor allele frequency (<0.01; 

57). If IBS was over threshold for a pair, the individual with lower overall call rate was excluded. 

In total 183,109 markers and 1857 individuals (986 female, 871 male) passed the quality check 

(Table 1). 

 

2.4: Principal Components Analysis 

Principal components analysis using the prcomp base function in R was run on the age and month 

adjusted (Appendix 1; Measures Data Adjustment), centred bill depth and bill length measures to 

derive two principal components: PC1 and PC2 (Table 2). As prcomp utilises single variance 

decomposition, data was mean-centred (equivalent to eigen-decomposition performed on the 

covariance matrix) to ensure the first principle component described the direction of maximum 

variance rather than the data mean (centring ensures PC1 runs parallel to the main direction of the 

data cloud). Here, PC1 is analogous to bill size, as depth and length have a direct relationship; PC2 

is analogous to bill shape, as depth and length have an inverse relationship. No significant 

difference between the sexes was observed (P > 0.1). This process was done separately for single 

and repeated measures data.  
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Table 2: Loadings for each principal component and the proportion of variance (± SD) in bill morphology they 
explain. PC1 is analogous to bill size and PC2 to bill shape. Bill size explains most variation in bill morphology 
between individuals. 

Data  age1billD age1billL Proportion of Variance SD 

Single 
Measures 

PC1 0.200 0.980 0.820 0.549 

PC2 0.980 -0.200 0.180 0.257 

Repeated 
Measures 

PC1 0.186 0.983 0.821 0.596 

PC2 0.983 -0.186 0.179 0.278 

 

 

2.5: Model Selection 

Preliminary exploration of phenotypic data was carried out to identify factors and covariates that 

may influence bill morphology. This was performed separately for single and repeated measures 

data, as packages used for genetic association testing required different types of phenotypic input. 

For single measures data, where repeated measurements for each individual were adjusted to age 

1 in May using a predictive mixed model approach (Appendix I; Measures Data Adjustment), sex, 

island and hatch year showed effect on bill depth and PC2 (hereafter referred to as bill shape). 

Difference between sexes for bill length and PC1 (hereafter referred to as bill size) was small, but 

sex was included as a factor in model selection nevertheless, as sex has previously been found to 

affect all bill morphology traits (Jensen et al., 2003, Jensen et al., 2008). The best linear model with 

smallest AICc (Burnham, 2002) value for bill depth and bill shape included sex, island and hatch 

year as fixed factors. For bill length and bill size the best model did not include sex as a fixed factor 

(Appendix II; Table III). Preliminary exploration of the repeated measures data identified sex, 

island, age, and measurement month as potentially affecting bill morphology. Before further 

analysis, repeated measures data was pruned to remove outliers and to include only measurements 

from May to August. A 7+ age category was also created to mitigate effects on accuracy caused by 

low numbers of individuals in the upper age classes. Models used in AICc model selection were 

constructed using the R package, lme4 (Bates et al., 2015). The best model for bill depth, bill size 

and bill shape included sex, island and month as fixed factors, age as a covariate, and ID as a 

random factor. The best model for bill length was similar, except age was not included as covariate 

(Appendix II; Table III). Interaction effects were not included in any model selection, as prediction 

of how interactions will affect genetic associations is complex, especially where range of variables 

does not naturally encompass zero, running the risk of controlling away any genetic effects 

(Aschard, 2016).  

Genes influencing bill morphology may influence the bill alone, alternatively increases in bill 

dimensions may occur as a result of larger body size, usually strongly correlated with higher body 
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mass (Chaves et al., 2016). In the current dataset, both bill depth (r = 0.18, P < 0.001) and bill 

length (r = 0.17, P < 0.001) showed significant correlation with body mass. Inclusion of body mass 

as a covariate in any gene mapping analyses would thus result in tests for associations between bill 

morphology and marker after variation in bill morphology explained by variation in body mass 

was controlled for (ie. tests would be for bill morphology relative to body mass). Genes which 

affect bill morphology through overall skeletal development are, however, of interest, as increased 

fitness due to greater bill dimensions (Forstmeier et al., 2001, Ringsby et al., 2009) may often be 

gained irrespective of the causal genetics behind altered bill morphology. Body mass was not 

included as a covariate in any model for this reason. 

 

2.6: Heritability 

All heritability estimates derived in this study make use of variance component estimation 

methods. The polygenic function used in conjunction with the GRAMMAR-gamma method in 

GenABEL automatically outputs a value for narrow-sense heritability (Aulchenko et al., 2007). 

Heritability was calculated manually for RepeatABEL and GCTA methods using variance 

component estimates and the formula h2 = Va/Va+Vpe+Vr, where Va is additive genetic variance, 

Vpe is permanent environmental variance and Vr is residual variance. Here, the kinship matrix, 

which specifies the covariance structure for the mixed models, is calculated using IBS at all markers 

in linkage equilibrium (LE) after excluding markers within and close to candidate genes. Utilisation 

of IBS gives several advantages over use of a pedigree to determine relatedness including 

elimination of inaccuracy due to recombination-segregation induced noise, incompleteness of 

pedigree or cryptic relatedness (Speed et al., 2012). Of the three methods used to derive heritability 

estimates, only RepeatABEL permits inclusion of repeated individual measures. Allowing repeated 

measures means variables like age and month can be included, fixed effects alter h2 estimates by 

removing Vpe and this should be kept in mind when evaluating trait heritability estimates (Wilson, 

2008). Inclusion of repeated measures improves accuracy of heritability estimates by taking into 

account within-individual phenotypic variation, which often reduces Va and h2 in line with 

decreasing repeatability of measurements. Observed reductions in Va when using repeated 

measures confirm increased power to correct for circumstances which obscure estimation of Va, 

such as high LD, environmental covariances or selection (Åkesson et al., 2008). The above 

observations indicate that estimates of heritability produced by RepeatABEL will be most accurate. 
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2.7: Genome Partitioning 

A command line software tool, GCTA (Yang et al., 2011a), was used to conduct genome-wide 

complex trait analysis. GCTA allows detection of ‘missing heritability’ which is often due to many 

SNPs with small effect that GWAS cannot detect. Contributions of SNPs to variation in bill 

morphology should be correlated between individuals of similar genotype. GCTA fits 

chromosomal genomic relationship matrices (GRMs) as random effects to calculate the variance 

explained by all SNPs on a chromosome rather than testing association of specific SNPs to a trait. 

Here, average information Restricted Maximum Likelihood (AI REML) models (Gilmour et al., 

1995) with multiple GRMs fitted as random effects were used to give the proportion of variance 

in each of the four bill morphology traits explained by each chromosome. As the GCTA software 

does not support repeated observations, phenotype data adjusted to age one in May was utilised. 

Problems with model non-convergence were addressed by successively removing the smallest 

chromosomes. Controlling for covariates exacerbated model non-convergence meaning more 

chromosomes had to be removed for the model to converge, as did inclusion of principle 

components to define population structure, therefore these components were not used in analyses. 

Proportion of variance explained by each chromosome was subsequently plotted against 

chromosome size (Mbp) to visualise and determine genetic architecture of bill morphology. 

Polygenic traits are expected to be represented by positive relationship between chromosome 

effect size and chromosome length, this positive linear relationship may be disrupted or inverted 

where large effect QTL are present (Robinson et al., 2013). Hence, linear regressions were fitted 

between variance explained by each chromosome and chromosome length, using the stats package 

in R (R Core Team, 2017), to test significance of these relationships (Santure et al., 2015).  

 

2.8: Single Marker Association Analyses 

Prior to association analysis, identity by state (IBS) was calculated for individuals with bill 

morphology data, using all passed autosomal markers minus SNPs in and close to candidate genes 

for bill morphology.  The indep function in PLINK 1.9 with recommended parameters 50 5 2 was 

used to produce a list of markers in approximate LE (Purcell et al., 2007). This list of markers was 

used to compute the IBS (GRM) matrix, both for GenABEL and RepeatABEL analyses, as LD 

between markers can confound relatedness estimates (Eu-ahsunthornwattana et al., 2014, Lopes et 

al., 2013, Santure et al., 2010) and inclusion of candidate markers when calculating the GRM can 

cause loss of power (Yang et al., 2014). The reverse distance matrix, 0.5-⨍, was then computed, 

classic multidimensional scaling (Gower, 1966, Mardia, 1978) performed and k-means clustering 

(Hartigan and Wong, 1979) implemented to define first principal components of variation in the 
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distance matrix for visual determination of population structure and identification of outliers 

(Appendix III; Fig. I). The same reduced set of markers utilised for GRM calculation was used to 

estimate the inflation factor (λ) for use in genomic control (Appendix II; Table IV). P-values were 

subsequently corrected for this inflation factor, if it was greater than 1.00, to account for 

population stratification (Devlin et al., 2001, Hinrichs et al., 2009). Significance thresholds were 

calculated using a custom method (pers. comm. Kari Halle, Mette Langaas, 2017), based on the 

order 3 method outlined in Halle et al., (2016) and adapted for use on traits with Gaussian 

distribution (Appendix I; Multiple Testing Correction). Prior to calculation of significance 

thresholds all SNPs with correlation > 0.999 were removed, order 3 and full order methods were 

then used to determine the local alpha level for GWA and candidate gene association models 

respectively (Appendix I; Multiple Testing Correction).  

 

2.8.1: Candidate Genes 

SNPs within 55 Kbp upstream or downstream of candidate genes for bill morphology were 

selected for analysis. An adapted candidate gene approach, which utilised the IBS matrix calculated 

using all SNPs in linkage equilibrium rather than a relatedness matrix calculated using gene-specific 

SNPs, was employed to determine the extent to which SNP variation on or close to these 

functionally relevant genes can explain variation in bill morphology. Models were first fitted using 

the variance covariance matrix produced using the polygenic function combined with the 

GRAMMAR-Gamma approach from the R package GenABEL (Aulchenko et al., 2007). As 

GRAMMAR-Gamma only accepts one value per individual, single measures data with bill 

morphology measurements adjusted to age one in May was used here (Appendix I; Measures Data 

Adjustment). A second R package, RepeatABEL (Rönnegård et al., 2016), was also used to estimate 

candidate gene associations. This package permits phenotypic data with replicates, maximising 

power to detect genetic associations with a trait. The GRM for these models was fitted using the 

GenABEL method, implemented in RepeatABEL. Association analysis in RepeatABEL involves 

estimation of the covariance matrix (V) using an animal model fitted via a hierarchical generalized 

linear model (HGLM) as a first step, followed by the rGLS model which fits each marker as a fixed 

effect, with correlation structure (GRM) and permanent environmental effects (ID) fitted as 

random effects.  
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2.8.2:  GWAS 

GWAS for each trait were conducted using GenABEL and RepeatABEL, as for the candidate 

gene association tests. Autosomal SNPs only were used for GWAS, as analysis of sex 

chromosomes requires special handling during quality control and association analysis (Wise et al., 

2013). The annotated house sparrow genome (Elgvin et al., in press.) was used in conjunction with 

a custom code (Pers. comm. Henrik Jensen, 2017) to determine whether significant SNPs were in 

exonic or intronic parts of genes or within 55 Kbp of an annotated gene. The annotated collared 

flycatcher genome assembly FicAlb1.5 (Kawakami et al., 2014b) was also used to determine 

position of significant SNPs in relation to known genes in Ficedula albicollis. BLAST search was 

performed via Ensembl (Yates et al., 2016) using a sequence derived by alignment against the house 

sparrow genome, which spanned 1000bp either side of the significant SNP.  

 

2.9: Quantitative Trait Cluster Association Test 

Genome wide multi-marker association tests were carried out using the R package QTCAT 

(Klasen et al., 2016). Linear mixed models (as form the basis of the GRAMMAR-Gamma and 

RepeatABEL methods) correct for genetic background and population structure simultaneously 

by using the GRM to model genetic covariance between individuals. Estimation of the random 

effect assumes infinitesimal genetic background, contributed to by many loci with small effect. Use 

of random effects in this manner can cause true associations to be masked by genetic background, 

as the hypothesis tested is restricted to detection of locus effect on phenotype independent of 

population structure or genetic background. QTCAT overcomes the need for population structure 

correction by simultaneously considering correlations between markers whilst making multi-

marker associations. The method also mitigates the need to correct for genetic background, as all 

markers are simultaneously associated to the phenotype. Both these features may increase power 

to detect causal loci by allowing testing of the unrestricted hypothesis; whether a specific locus has 

a significant effect on the trait of interest.  

 As QTCAT does not accept missing genotypes (Klasen et al., 2016), the Java programme 

LinkImpute (Money et al., 2015) was used prior to implementation of QTCAT to impute missing 

genotypes. LinkImpute accepts files in PLINK’s ped and map format. Here input files were subset 

beforehand using PLINK (Purcell et al., 2007) to contain only individuals and markers which 

passed GenABEL quality control. LinkImpute is based on a k-nearest neighbour imputation 

method (LD-kNNi), a major advantage of which is that it is not reliant on phasing or ordered 

markers. LD-kNNi takes into account LD between SNPs when choosing nearest neighbours, only 
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SNPs in high LD with the SNP to be imputed are used to determine nearest neighbour and 

imputation weightings. In control tests, LinkImpute performed well, demonstrating higher 

accuracy and faster runtime than existing methods (Money et al., 2015).  Fixed factors used were 

the same as for GenABEL analysis: sex, island and hatch year were included as fixed factors for 

bill depth and bill shape; island and hatch year were included as fixed factors for bill length and 

bill size.  

 

2.10: Pathway Determination  

Literature search and online methods iHop (Hoffmann and Valencia, 2004) and STRING 

(Szklarczyk et al., 2015) were utilised to determine potential mechanisms of action for genes 

implicated in controlling bill morphology in GWAS and QTCAT. Cytoscape 3.2.1 (Shannon et al., 

2003) was used to produce pathway diagrams (Appendix I; Pathway Determination, Appendix III; 

Fig. V).  

 

2.11 Result Verification 

Significant results were verified in an independent dataset from a second set of house sparrow 

populations on three islands, Leka, Vega and Lauvøya, situated approximately 150 km South of 

the Helgeland system, off the coast of mid-Norway. Quality control was carried out as in the 

Helgeland dataset and the GRM for use in RepeatABEL was created using SNPs in approximate 

LE and with no markers from the candidate set to be tested. For significantly associated candidate 

genes, the same sets of SNPs as tested in the Helgeland metapopulation were used. For our GWAS 

significant marker, SNPs 55 Kbp either side of the marker were tested. Best models selected using 

AICc model selection were the same as for RepeatABEL analyses in the Helgeland metapopulation 

system (Appendix II; Table III).  

 

Unless otherwise stated, all statistical analyses were performed using R version 3.3.3 (R Core Team, 

2017).  
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3: Results 

3.1: Heritability 

All four bill morphology traits showed relatively high heritabilities, ranging from 0.35 in the 

RepeatABEL estimate for bill depth to 0.55 in the GRAMMAR-gamma estimate for bill size. 

Heritabilities of the four studied bill morphology traits from GRAMMAR-gamma, RepeatABEL 

and GCTA are summarised in Appendix II; Table V. RepeatABEL estimates are most precise and 

are utilised as the definitive trait heritability values in this study. Heritability estimates derived using 

this method for bill depth, bill shape, bill length and bill size are 0.35, 0.38, 0.38, and 0.40 

respectively, calculated from GWAS variance components (Table 3).  

 

Table 1: Variance components of RepeatABEL GWAS for bill morphology traits: depth, shape, length, and size, 
alongside trait heritabilities.  

Source of Variance: Additive Genetic Permanent Environment Residual h2 

Bill Depth 0.030 0.020 0.035 0.35 

Bill Shape 0.030 0.014 0.034 0.38 
Bill Length 0.112 0.077 0.108 0.38 

Bill Size 0.125 0.078 0.107 0.40 

 

 

3.2: Genome Partitioning 

Chromosome-wise partitioning of variance using GCTA showed regressions between 

chromosome size and proportion of the variance explained were significant for all bill morphology 

traits: bill depth (Fig. 3A, R2 = 0.17, F(1, 22) = 4.59, P =0.04), bill shape (Fig. 3B, R2 = 0.27, F(1,18) 

= 7.93, P = 0.01), bill length (Fig. 3C, R2 = 0.36, F(1,17) = 9.66, P = 0.006), and bill size (Fig. 3D, 

R2 = 0.23, F(1, 25) = 7.68, P = 0.01). Consequently, this gives substantial evidence toward bill 

morphology being polygenic in nature in this study population. However, despite the positive 

relationships between chromosome effect size and chromosome size, some chromosomes, like 

chromosome 7, appear to explain a relatively large proportion of the variation for all bill 

morphology traits (Fig. 3). Furthermore, other chromosomes, like chromosomes 5 and 18, appear 

to explain a disproportionately large amount of the variation in bill depth and bill shape, but not 

of the variation in bill length and bill size (Fig. 3A, 3B). Similarly, chromosomes 3 and 11 appear 

to explain a disproportionately large amount of the variation only for bill length and bill size Fig. 

3C, 3D. 
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3.3: Candidate Gene Association Analyses 

Following adjustment for genomic inflation (estimated using autosomal SNPs in approximate LE 

and without inclusion of SNPs from candidate genes for bill morphology) one SNP within 55 Kbp 

of ALX1, SNPa174071, passed the single-gene significance threshold for bill shape (P = 0.0009, 

αloc = 0.001) using the GRAMMAR-gamma method in GenABEL (Fig. 4). Appendix II; Table VI 

gives summary statistics for the top 5 SNPs from this scan, SNPs are in significant LD (Fig.4, LD 

between all SNP combinations >0.94). The association was, however, non-significant at the 

threshold for all candidate genes combined (αloc = 0.00009, based on the 768 SNPs in or within 55 

Kbp of candidate genes for bill morphology and which passed quality control). No other SNPs 

within or near candidate genes showed significant association with bill morphology under the 

Figure 3: Relationship between explained variation in bill morphology (± SE) and chromosome size (Mbp). A) Bill 
depth, B) bill shape, C) bill length, D) bill size. 1857 individuals and 183,109 SNPs were used to partition Va in bill 
morphology traits across chromosomes.  
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GRAMMAR-gamma method. Moreover, no significant associations were detected between SNPs 

in or within 55 Kbp of ALX1 and any of the bill morphology traits using the RepeatABEL method 

(P > 0.005, αloc = 0.001). 

 

 

 

Using the RepeatABEL method, a single SNP within 55 Kbp of FGF8, SNPa276021, surpassed 

the single-gene significance threshold for bill size (P = 0.0007, αloc = 0.0009) (Fig. 5) after 

adjustment for genomic inflation factor of 1.01 (Appendix II; Table IV). Appendix II; Table VII 

gives summary statistics for the top 5 SNPs from this scan. Unlike linkage patterns for ALX1, the 

top 5 SNPs in the FGF8 candidate gene analysis were in very low LD (Fig. 5). This association 

was non-significant at the combined candidate gene threshold for bill size (αloc = 0.00009) and was 

not detected using the GRAMMAR-gamma method in GenABEL. FGF8 was the only candidate 

gene tested to show association with bill morphology when using the RepeatABEL method.  

 

 

 

Figure 4: Manhattan-linkage disequilibrium plot for the 55 Kbp flanking regions either side of ALX1. Result derived 
from the GRAMMAR-gamma association test for ALX1 SNPs on bill shape. SNPs are coloured after degree of LD 
with reference marker, SNPa174071 (P = 0.0009). The dashed line represents the single-gene local alpha level for 
ALX1 in relation to bill shape (αloc = 0.001).  
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3.4: GWAS 

No loci were genome-wide significant at trait-specific local alpha levels (Appendix; Table IV) for 

any of the four studied bill morphology measures when using the GRAMMAR-gamma method in 

GenABEL. However, analysis in RepeatABEL revealed a single genome-wide significant SNP, 

SNPa77348, for bill depth on chromosome 3 (Fig. 6, Appendix II; Table VIII). This marker is 

neither within an exon or intron, nor within 55 Kbp of an annotated gene on the house sparrow 

or flycatcher genomes. The significant locus is located in a gene-free region of the annotated house 

sparrow genome, situated between a gene similar to cysteine-rich motor neuron 1 protein (CRIM1, 

1.07 Mbp away) and a gene encoding an unknown protein 125 Kbp away. CCAAT/enhancer-

binding protein zeta is the closest upstream gene of known function to SNPa77348 (CEBPZ, 150 

Kbp away). Genes within approximately 1 Mbp of the suggestive SNP are listed in Appendix II; 

Table X. The candidate SNP is located at 6.33 Mbp on the flycatcher genome (E-value = 0.0, 

alignment = 87.94%), and the closest upstream gene in the flycatcher is CEBPZ. The closest 

downstream gene in the flycatcher is for a lincRNA, ENSFALG00000018842, which is transcribed 

upstream of CRIM1, the closest downstream gene with known function. Several such lincRNA 

variants lie between the candidate SNP and CRIM1 in the flycatcher genome.  

 

Figure 5: Manhattan-linkage disequilibrium plot for the 55 Kbp flanking regions either side of FGF8. Results are 
derived from the RepeatABEL association test for FGF8 SNPs on bill size. SNPs are coloured after degree of LD with 
reference marker, SNPa276021 (P = 0.0007). Single-gene local alpha level for FGF8 in relation to bill size represented 
by dashed line (αloc = 0.0009). 
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3.5: QTCAT 

Analysis using the multi-marker GWA method, QTCAT, yielded no significant novel or 

confirmatory associations for any bill morphology trait at a FWER of 0.05. Selection frequency 

did not exceed 0.18 for any quantitative trait cluster (QTC), and lowest P value observed for any 

SNP was 0.012. Excluding island and hatch year as fixed factors did not alter the results.  

 

3.6: Result Verification 

If island is included as a fixed factor in analyses, no significant associations are detected in the 

Southern dataset for candidate genes FGF8 and ALX1, nor for the 55 Kbp region either side of 

SNPa77348. Where island was not included as a fixed factor, one marker, SNPa77370, showed 

significant association with bill shape at single marker set significance threshold (P = 0.0031, aloc = 

0.0032) when examining the 55 Kbp region either side of SNPa77348 (Appendix; Table IX, Fig. 

IV). This is in contrast to results from the Helgeland system, where the significant marker was 

associated with bill depth, but bill depth and shape are very highly correlated (r = 0.93, P = <0.001) 

and bill depth explains 98% of the variation in bill shape in the PCA (Table 2). If the significance 

level is calculated based on all 258 markers tested in the Southern dataset, αloc is 0.0004 when the 

same FWER of 0.05 is controlled for. The association between SNPa77370 and bill depth, in the 

model without island as fixed factor, is not significant at this alpha level.   

Figure 6: Manhattan-linkage disequilibrium plot for the 1 Mbp flanking regions either side of top SNP, SNPa77348.  
Results are derived from the RepeatABEL GWAS on bill depth. SNPs are coloured after degree of LD with the 
reference marker. Genes within 1 Mbp of the significant variant are displayed, and closest genes with known function 
are annotated.   
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4: Discussion  

The current analysis of bill morphology variation in the Helgeland metapopulation of free living 

house sparrows provides an interesting comparison to independent findings in other species. 

Heritability estimates for the depth, shape, length, and size of bills (0.35, 0.38, 0.38, 0.40) are high 

and are broadly comparable with previous findings, both in the house sparrow and in other bird 

species. For example, in Jensen et al. (2003) heritabilities for bill length and depth, determined using 

a pedigree reconstructed from microsatellite data in a sub-set of the same metapopulation of house 

sparrows, were 0.48 and 0.32 respectively. Pedigree-based estimates in a wild population of ground 

finch (Geospiza fortis) were 0.79 and 0.56 for bill length and depth, and were 0.66 and 0.83 for 

principal components 1 and 2 of bill morphology, corresponding to bill size and shape as in this 

study (Keller et al., 2001). Analysis of a large collared flycatcher dataset gave heritability estimates 

for bill length and depth as 0.44 and 0.52 (Merilä et al., 2001). Here, definitive values for trait 

heritability were taken from RepeatABEL analyses and were calculated from the variance 

components included in the model, after removing any phenotypic variance explained by fixed 

factors and covariates. Although this does not take into account dominance or epistatic variance, 

Va estimates are likely to be accurate and confirm that there is a substantial genetic component to 

inheritance of bill morphology (Rönnegård et al., 2016).   

GCTA analysis identified genetic architecture of bill morphology as polygenic. Visual 

examination of the relationships between variance explained and chromosome length (Fig. 3) also 

revealed that, whilst some chromosomes (eg. chromosome 7) are important contributors to 

variance explained for all traits, others (eg. chromosomes 5 and 18) are important only for certain 

traits. These results give some substantiation to significant results in our single marker association 

tests. For example, chromosome 1A falls outside the 95% CI for bill shape and this is where ALX1 

is situated. Chromosome 1A is also the location of HMGA2 a locus controlling bill size in Darwin’s 

finches (Chaves et al., 2016, Lamichhaney et al., 2016). The SNP array used here was, unfortunately, 

not enriched for SNPs in this gene region so HMGA2 was not among candidate genes tested. 

Chromosome 5, the strongest outlier for bill depth and bill shape, is where three of our nine 

candidate genes for bill morphology are located: Calm1, FGF19 and BMP4. However, there were 

no significant associations on chromosome 5 in single marker GWA analysis, nor were there in 

analyses using QTCAT. In contrast, chromosome 3 where the GWAS significant marker, 

SNPa77348, is located did not fall outside of the 95% CI for bill depth. This may be because this 

marker had a small effect size, which was not large enough to cause deviation from the linear 

relationship between chromosome size and variance explained. Bill morphology measures are 
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generally agreed to be polygenic in nature (Boag, 1983, Grant and Grant, 1994). An analysis of the 

genetic architecture of quantitative traits in two free-living populations of great tits (Parus major) 

found that the majority of complex traits in wild populations may be influenced by many genes of 

small effect (Santure et al., 2015). Traits tested did not include bill morphology measures but 

included body mass, which is significantly correlated with bill dimensions in our dataset. 

Furthermore, recent studies which utilise genome-wide screens confirm existence of many genes 

with small influence on bill morphology, alongside two large effect loci: HMGA2 for bill size 

(Chaves et al., 2016, Lamichhaney et al., 2016) and ALX1 for bill shape (Lamichhaney et al., 2016, 

Lamichhaney et al., 2015). In this study, polygenic inheritance of bill morphology was suggested 

by candidate gene and GWA tests, in line with results from genome partitioning and with current 

consensus on the genetic architecture of these traits. In candidate gene association tests, markers 

significant at the single gene level were detected near ALX1 (SNPa174071, 0.05% of variance 

explained) and FGF8 (SNPa276021, 0.07% of variance explained) for bill shape and bill size 

respectively. Repeated measures GWAS identified a single significant marker in an intergenic 

region, SNPa77348, which explained 0.05% of the variance in bill depth (Appendix II; Table VIII). 

Markers like these which explain <1% of the variance in a trait are considered to be of low effect 

size (Goddard et al., 2016). This may either be because ALX1 and FGF8 are relatively small effect 

genes in this population closely linked to their respective significant markers, or significant markers 

could be weakly linked to genes further away with larger effects. Results here agree with 

expectations for quantitative traits, which are often explained by many loci with small effects, 

coupled with few loci of median to large effect (Mackay et al., 2009).  

Weak association was detected at the single gene significance level for candidate genes 

ALX1 (P = 0.0009) and FGF8 (P = 0.0007) for bill shape and bill size respectively. That ALX1 

was associated specifically with bill shape is interesting, as it is this measure of bill morphology 

with which ALX1 has previously been linked (Lamichhaney et al., 2015, Lamichhaney et al., 2016). 

Positive values for principal component 2, bill shape, correspond to shorter, blunter bills and 

negative values to longer, more pointed bills (Table 2). Strong LD structure was observed between 

the top five markers for the ALX1 scan on bill shape (Fig. 4), increasing credibility of the 

association as selective sweeps increase LD between neutral loci close to a causative variant 

(Stephan et al., 2006). The weak signal for ALX1 was detected using GRAMMAR-gamma but not 

RepeatABEL and could suggest spurious association, as repeated measurements fully account for 

within-individual variation, reducing chance of type 1 error and lowering incidence of type 2 error 

(Rönnegård et al., 2016). The second candidate gene displaying single-gene significant association, 

FGF8, is involved in production of elongated bill structure during facial development when it is 
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expressed in tandem with Shh (Abzhanov and Tabin, 2004). Artificial overexpression of FGF8 

alone in chick embryos led to reduced chondrogenesis and significant reduction in bill size 

(Abzhanov and Tabin, 2004). Confidence in the relatively weak association observed here is 

improved by its detection in RepeatABEL, which likely has higher power than GenABEL 

(Rönnegård et al., 2016). Conversely, low LD between the associated polymorphism and 

surrounding markers (Fig.5) is not in line with anticipated increase in LD in regions close to 

causative variants if these are under selection (Stephan et al., 2006) and may suggest spurious 

association. Weak associations demonstrated for both the above candidate genes suggest that, if 

the associations are genuine, they contribute only little to the variance in the bill morphology 

phenotypes they affect.  

A single significant marker was detected in RepeatABEL GWAS on bill depth, no 

significant associations were found for any other bill morphology trait, and none were detected 

using the GRAMMAR-gamma method. Our 200k SNP chip has higher marker density compared 

to similar association studies on ecologically important traits in outbred populations (Santure et al., 

2015, Chaves et al., 2016, Johnston et al., 2011), with average distance between markers of 

approximately 6000 bp, affording higher power to detect causal variants. Sample size in the 

Helgeland metapopulation (N = 1857 individuals, N = 4239 measurements) is larger than in the 

majority of studies outlined in Schielzeth and Husby (2014), which should reduce overestimation 

of effect sizes due to the Beavis effect (Slate, 2013). GWA studies in wild populations, humans 

and livestock have often found little evidence for large effect QTL, especially where LD between 

markers is low. This is demonstrated by a recent study in a wild great tit population, where no large 

effect markers for clutch size or egg mass were identified (Santure et al., 2013) and in Husby et al. 

(2015), where only one genome-wide significant SNP explaining 3.9% of the variance in clutch 

size was detected. Evaluation of the highly polygenic human height also provides an excellent 

example; GWAS studies have identified 697 variants which together only explain around 20% of 

the heritability in height (Marouli et al., 2017). In Silva et al. (in press.), where GWAS was carried 

out using house sparrows from a subset of islands in the Helgeland metapopulation genotyped on 

the 10k array described in Hagen et al. (2013) one marker, SNP11485 on chromosome 20, was 

significantly related to bill length. The same marker on the 200k SNP array was not associated with 

bill length in the present study, disparity may be a result of fewer individuals from a smaller subset 

of islands being typed on the 10k array. Rare variants with low MAF (<0.05) and low effect size 

may be missed in GWAS even where marker density and sample size are high (Wilkening et al., 

2009). In light of results suggesting polygenic inheritance for bill morphology traits and for the 

correlated trait body mass in this house sparrow population, it is probable that power to detect 
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such variants was low here. Where large effect variants have previously been identified by GWAS 

in wild populations they related to near Mendelian traits under strong sexual selection like the horn 

type and size in Soay sheep (Johnston et al., 2013, Johnston et al., 2011), traits that captured lifetime 

fitness differences between alternate phenotypes as with age at maturity in Atlantic salmon 

(Johnston et al., 2014, Barson et al., 2015), or those involved in bill morphology dependent 

adaptation to trophic niches and subsequent speciation events as in Darwin’s finches (Chaves et 

al., 2016, Lamichhaney et al., 2015, Lamichhaney et al., 2016). Traits with such characteristics may 

be more likely to yield large effect loci in a GWA study.  

Here, GWAS significant marker for bill depth, SNPa77348 on chromosome 3, was situated 

in a gene-free region 1.07 Mbp away from CRIM1, and close to a protein of unknown function 

and a gene analogous to CEBPZ. CEBPZ plays an important role in response to environmental 

stimuli via a transcriptional process involving heat-shock factors (Musialik et al., 2014), but has not 

been connected to craniofacial or skeletal development in any species. CRIM1 inhibits BMP 

receptor activation and subsequent BMP signalling by direct binding with BMP4 and BMP7 (Kolle 

et al., 2003, Wilkinson et al., 2003). This illustrates a plausible mechanism through which CRIM1 

could influence bill morphology via upstream action, as BMP4 expression has previously been 

linked with bill phenotype (Abzhanov et al., 2006, Abzhanov et al., 2004, Wu et al., 2004). LD 

between a significant neutral locus and a causative variant is one means by which significant 

markers like ours that do not code for missense mutations can indicate causative genes in GWAS 

(Stephan et al., 2006). LD range in a population dictates how far from a gene a trait the associated 

variant may be (Backström et al., 2006). Previous studies on LD in wild bird populations show that 

its range is very dependent on effective population size (Ne), as is expected from the theory and is 

widely observed in the animal breeding community (Charlesworth and Charlesworth, 2010). Li 

and Merila (2010) reported high levels of LD which spanned several mega bases in the Siberian jay 

which has a small Ne, whereas studies of linkage disequilibrium on the Z-chromosome in the 

migratory collared flycatcher reported LD which fell to background level at 500 Kbp (Backström 

et al., 2006) or at distances as close as 17 Kbp (Kawakami et al., 2014a). LD range in the Helgeland 

metapopulation of house sparrows is longest in Aldra, an inbred subpopulation, and shortest in 

Hestmannøy, the largest subpopulation. LD varies by chromosome, but on average falls to 

background levels after 15-20 Kbp (Hagen et al., in prep. -a). Although LD may be up to 10-fold 

higher in genomic islands of differentiation (Kawakami et al., 2014a) SNPa77348 is likely too 

distant from CRIM1 to be linked with a causal variant within the gene. The distance is also too 

great for the significant variant to be in or in LD with a promotor region for CRIM1 (Cho, 2012).  
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Intergenic, non-coding SNPs linked with a phenotype often imply regulatory function 

(Lamichhaney et al., 2016). Our significant marker is approx. 150Kb away from a protein of 

unknown function, which one could speculate is involved in regulation of CRIM1. Alternatively, 

our significant SNP could be in or in LD with a marker in an enhancer element for CRIM1, 

regulatory proteins bind to enhancers which then function via DNA looping and may be more 

than 1 Mbp from the promoter they act upon (Cho, 2012). A study by Chan et al. (2010) revealed 

adaptive evolution of the pelvic region in sticklebacks was governed by regulatory changes in Pitx1, 

caused by recurrent deletion mutations in its Pel enhancer region. Their findings underscore how 

major morphological changes can occur due to variation in intergenic DNA regions, relatively far 

from the actual gene affecting the trait. In the current study, BLAST against the flycatcher genome 

assembly revealed several lincRNAs close to the significant variant, SNPa77348, which are 

transcribed upstream of CRIM1. Analogous sequences in the house sparrow genome may 

influence BMP4 levels via upstream control of CRIM1 and the significant variant found here may 

represent, or be in LD with, a causal variant in one of these lincRNAs (Hrdlickova et al., 2014). 

Brodie et al. (2016) suggest that, although SNPs are more likely to be relevant when they are closer 

to genes, causative genes may be found up to 2 Mbp away. This could occur if SNPs are markers 

for large structural variations like copy number variants, inversions, or balanced translocations. 

These structural variations can affect gene expression, but the latter two cannot be detected using 

a SNP microarray and detection of copy number variants is unlikely unless a microarray is designed 

for this purpose (McCarroll, 2008, Shaffer et al., 2007). Finally, synonymous mutations in an exon 

(also not relevant to our significant marker) can affect speed of protein folding, altering structure 

and accordingly, function (Hunt et al., 2009).  

In this dataset, linear regression of age 1 May adjusted bill depth on hatch year, the trait 

with which marker SNPa77348 was associated, explains 1% of the variation (R2 = 0.01, F(2, 1780) 

= 7.9, P = 0.0004) and indicates that bill depth is increasing by 0.004 mm each year in this house 

sparrow metapopulation (β = 0.004 ± 0.001, t = 3.33, P <0.001). The significant marker appears 

to have an additive effect on bill depth, where heterozygotes on average show an intermediate 

phenotype relative to the two homozygous genotypes and the minor allele (T) is associated with 

deeper bills (Appendix III; Fig. IIIC). Linear regression of MAF on hatch year for this marker, 

with sex as fixed factor is significant (R2 = 0.01, F(2, 1780) = 11.04, P < 0.001), and shows increase 

an in the T allele frequency of 0.86% per year (β = 0.0086 ± 0.002, t = 4.603, P <0.001) (Appendix 

III; Fig. IIID). Bill size, which is contributed to by both bill length and depth, has previously been 

linked to increased fitness in this Helgeland metapopulation of house sparrows (Ringsby et al., 

2009, Jensen et al., 2008). Using data from a sub-set of the populations used here, from the period 
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1993-2002 (which is mostly before the period in the present study), Jensen et al. (2008) found that 

observed response to selection on bill depth was negative for both sexes, which is not in agreement 

with predictions based on the strength and direction of selection acting on bill depth and correlated 

morphological traits. Results from Steinsland and Jensen (2010) suggested a weak positive 

relationship between bill depth breeding values and cohort, but this result was not replicated in 

Holand et al. (2013). In Holand et al. (2011) bill depth was shown to differ between different 

populations along the Norwegian coast, although the relative influence of drift was likely to be 

higher than that of selection for this phenotype. More broadly, bill morphology may directly affect 

survival in several avian species through interaction with diverse ecological and environmental 

factors, which give different bill phenotypes an advantage in different environments. Structural 

correspondence between bill morphology and food plants, as in the Hawaiian hummingbird, can 

affect foraging efficiency and indicate co-adaptation; evolution of bill morphology in 

hummingbirds may be driven by differing subsets of flowers in different environments (Temeles 

et al., 2009). In Darwin’s finches, large birds with big bills better survived a drought on Daphne 

Major Island, as they were more able to crack the large seeds which were more abundant in these 

conditions (Boag and Grant, 1981). Conversely, Lamichhaney et al. (2016) found that bill size was 

under negative selection in the medium ground finch during a drought, in part due to niche 

competition with the large ground finch. In our Helgeland metapopulation of house sparrows, bill 

size is correlated with rate of feeding of offspring in female house sparrows and parental 

investment represented by this feeding rate may increase successful recruitment (Ringsby et al., 

2009). In insular avian populations in general, larger bill and body size may improve survival 

through expanding dietary niche (Grant, 1965, Scott et al., 2003).  

Taken together, these studies indicate that directional selection on bill phenotype, 

particularly in insular populations, is possible and even commonplace. In the study 

metapopulation, high heritability and significant positive association between bill depth and hatch 

year, coupled with additive genetic effect of marker SNPa77348 with its plausible link to CRIM1, 

suggests that evolution of deeper bills has occurred in this system between 1997 and 2012. This 

may have been a result of selection for deeper bills, but a significant association between hatch 

year and bill depth may also be a function of fluctuating environmental conditions covarying with 

genetic change. Between 1995-2010 in Troms, Northern Norway, average temperature in May 

increased by around 2.5 °C, representing an increase of 0.19 °C per year (Barrett, 2011). Insect 

prey species and abundance fluctuates in line with temperature and season (Schwagmeyer and 

Mock, 2003), it is possible that insect abundance increased and frequency of different insect species 

changed in line with increasing temperatures in this time period. Better diet, particularly during 



29 
 

development, may lead to increased average body mass (Ringsby et al., 2009) and increase in bill 

dimensions because these traits appear to be both phenotypically and genetically correlated (Jensen 

et al., 2003, Jensen et al., 2008). Alternatively, greater adult bill depth values may be due to 

proportional increase in insect prey relative to seeds, which reduces wear on the bill (Greenberg et 

al., 2013). Here, body mass was not included as a covariate in the association analyses, despite 

positive correlation with bill dimensions, as any mechanism through which bill morphology may 

evolve is of interest. Inclusion of body mass as covariate in future analyses will help determine 

whether the implicated region affects bill development directly or whether the association is 

mediated by body size and may help unravel the complex mechanisms through which genes and 

environment interact to influence bill morphology changes in this study population 

No significant association was found between any QTC and bill morphology traits using 

QTCAT analysis. This is unexpected, as the multi-marker association method should increase 

power to detect associations by removing the need for the GRM to correct for relatedness and 

population structure, hence permitting testing of the unrestricted hypothesis. This implies that the 

significant association between the SNPa77348 gene region and bill depth detected in 

RepeatABEL analysis should have also been detected in QTCAT. However, QTCAT does not 

permit use of repeated measures in the usual manner, by including ID as a random effect. Ability 

to account for within-individual variation may explain why association was only detected by 

RepeatABEL analysis, as this form of variation may be an important contributor to bill 

morphology variation in this population and therefore should be properly accounted for. It is 

possible to include repeated individual measures with the QTCAT method by numbering repeated 

measures for each individual and including measurement number as a covariate (Klasen et al., 

2016). This is something that could be explored in further analysis, and may improve detection 

power in QTCAT where within-individual variation is important.  

ALX1 and FGF8 candidate gene SNPs were tested for association with bill morphology 

in a second set of island populations, as were the SNPs 55 Kbp either side of the significant marker, 

SNPa77348, from the RepeatABEL GWAS. No significant association was observed for either 

candidate gene for any bill morphology trait in this second set of populations, regardless of whether 

island was included as a fixed factor in analysis. This reduces confidence in the weak associations 

for these candidate genes detected in the Helgeland metapopulation. It is possible that effect of 

these genes may be population dependent in house sparrows, or that smaller sample size in the 

Southern populations could have reduced power to detect weak effects. Significant association was 

detected between SNP a77370 and bill shape only where island was not included as a fixed factor 

in the analysis (Appendix; Table IX, Fig. IV). Migration between the islands is all but non-existent 
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in the Southern populations (Skjelseth et al., 2007) which may explain the apparent greater 

influence of island in this dataset (see Appendix I; Population Structure for further details). The 

association was not significant if αloc was computed using all 258 markers used in result verification, 

therefore evidence for association with bill shape in the Southern dataset is weak and should be 

interpreted with caution.  

Somewhat surprisingly, none of the candidate loci previously related to bill morphology in 

genome-wide scans or in functional expression studies were strongly associated with variation in 

bill morphology here (Appendix III; Fig. II). This illustrates the problems often associated with 

replicating candidate gene-trait associations in subsequent studies; detecting such relationships can 

be difficult, even with a large, high-quality dataset like in this study. This may simply be due to 

species or population-specific differences in the genetic architecture of bill morphology traits. 

While candidate genes examined in functional studies may govern development of diverse bill 

shapes between species (as evidenced by differential expression between Geospiza type; Abzhanov 

et al., 2006, Mallarino et al., 2011), or when artificially expressed (Abzhanov et al., 2006, Abzhanov 

and Tabin, 2004), natural variation in developmental expression of these genes in the free-living 

metapopulation of house sparrows may not be so substantial. Alternatively, expression may be 

governed by polymorphisms in genes which regulate the differentially expressed gene(s) (Mundy, 

2016), it is then these upstream polymorphisms that are detectable by GWAS (but not by the 

candidate gene approach). Detection of the significant marker in the CRIM1 gene region here 

gives some support to this hypothesis, based on function of CRIM1 as an upstream regulator of 

BMP4 (Wilkinson et al., 2003). Difference in approaches used may also influence results: 

Lamichhaney et al. (2015, 2016) performed pairwise ZFst scans in 15 Kbp windows across the 

whole genome, taking advantage of speciation to contrast large, medium, and small-billed finches, 

resulting in increased power to detect association compared to single marker GWAS. Haplotype 

association analysis of the region with highest ZFst, which overlaps ALX1, was then performed, 

again increasing power substantially compared to single marker association (Lamichhaney et al., 

2015). Analysis in the house sparrow did not permit separation by species into bill size categories 

for Fst scans and accurate haplotype association analysis requires phased data. The BSLMM 

approach utilised by Chaves et al. (2016) purportedly yields less conservative P values than LMM 

methods like GRAMMAR-gamma and RepeatABEL when individuals are closely related or where 

strongly associated markers contribute to a significant proportion of variation in the phenotype 

(Zhou and Stephens, 2012). Preliminary analysis of the Helgeland dataset by postdoc Jostein Gohli, 

using the BSLMM method implemented in GEMMA, yielded a large proportion of SNPs in the 

collected MCMC samples with non-zero slopes, both for bill depth and bill length. Markers with 



31 
 

non-zero β have a measurable effect on their associated phenotype. Using a conservative posterior 

inclusion probability (PIP) cut-off of 0.1, as suggested in Chaves et al. (2016), Comeault et al. (2014) 

and Riesch et al. (2017), three markers were significantly associated with bill depth. The marker 

with the highest PIP for this trait is SNPa77348 on chromosome 3 (γ = 0.36, β = 0.05), increasing 

confidence in the association between the same marker and trait detected in RepeatABEL analysis 

here. Several significant markers were also detected in Gohli’s analysis on bill length, whereas none 

were detected using LMM methods for this trait. BSLMM may represent a workable method for 

detection of significant associations with quantitative traits where marker effect size is low.   

Lack of large effects on bill morphology in candidate gene regions may be explained by 

non-genetic control mechanisms for expression of candidate genes, low effective population size 

or rapid LD decay. Developmental expression of previously identified candidate genes for bill 

morphology may be under epigenetic control, as has been suggested for BMP4 by species-specific 

epimutations in the BMP pathway in Darwin’s finches (Skinner et al., 2014). This form of regulation 

is, however, not detectable by any genetic association method. Alternatively, rapid LD decay in 

our house sparrow population may affect the probability of detecting extant effects, as high marker 

density on the 200k SNP chip coupled with marker enrichment in candidate gene regions increases 

probability of detection (Hagen et al., in prep. -b). Population structure may also play a role, if 

different markers are in LD with a causative variant in different populations then this will reduce 

power to detect the association. Low Ne in subpopulations could also pose a problem if alleles are 

fixed in smaller populations due to drift and this covaries with environmental effects on bill 

morphology (Conner and Hartl, 2004). These factors bring us full circle to the relative importance 

of environment and genes to bill morphology in our free-living house sparrow population, and 

more broadly to relative contributions to phenotypic diversity in nature. Despite the unique 

challenges presented by quantitative genetic studies in such populations, these types of study allow 

examination of the genetic basis of ecologically important traits in their natural context and may 

aid in unravelling complex, environment-phenotype-genotype interactions and shed light on the 

mechanisms driving selection and adaptive evolution. Studies which examine these links in 

keystone species, such as the Atlantic salmon (Barson et al., 2015, Johnston et al., 2014) or 

Yellowstone wolf (Coulson et al., 2011) may help predict spatiotemporal variation in selection and 

population fluctuations beyond the study system, aiding management decisions. Such work is 

important and conclusions invaluable even if detecting associations in natural populations may be 

more problematic than anticipated.  



32 
 

5: Conclusion 

Results presented here support previous characterisation of bill morphology as highly heritable 

and governed by polygenic genetic architecture. A significant locus of small effect size on bill depth 

was identified, which may explain a small proportion of the variation in this trait. The locus is 

approximately 1 Mbp away from CRIM1, a gene which negatively regulates BMP4. One can 

hypothesise that the significant marker may be in LD with an enhancer element or lincRNA which 

is an upstream regulator of CRIM1, and may influence BMP4 expression via this pathway. 

Furthermore, increase in bill depth with hatch year was observed in the Helgeland metapopulation, 

as was increase in the frequency of the allele conferring deeper bills at the significant marker. Bill 

depth may be under positive selection in the Helgeland metapopulation or, alternatively, 

fluctuating environmental conditions covarying with genetic change may be driving variation. 

Weak associations were also detected for candidate genes ALX1 and FGF8 in the Helgeland 

dataset for bill shape and size respectively. All associations detected here warrant exploration in 

additional populations.  

 This work illustrates the difficulties involved in discovering loci for quantitative traits in 

natural populations. Careful selection of highly variable traits, with high heritability that are ideally 

under strong selection or are associated with niche adaptation and speciation may increase 

probability of detecting large effect variants.  Where within-individual variation contributes highly 

to phenotype, association methods which allow repeated measures should be considered. 

Alternatively, recently developed multi-marker and BSLMM methods may improve chances of 

identifying genes for highly polygenic traits. Future work should seek to determine whether 

variants identified here affect bill morphology alone or if they act via alteration of body mass. 

Despite difficulties encountered in uncovering genes for ecologically important traits in natural 

populations, candidate gene and GWA studies can, on occasion, provide valuable insights into 

eco-evo dynamics in such populations. Consequently, association studies are likely to remain a 

valuable investigative tool in eco-evo research for the foreseeable future.  
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Appendix 

I: Addendum 

 

Measures Data Adjustment 

Adult individuals were measured to the nearest 0.01 mm for bill depth and length, these 

measurements were performed by several different fieldworkers. After an initial training period, 

each fieldworker measured approximately 30 adult individuals together with Thor Harald Ringsby 

or another experienced fieldworker (Kvalnes et al., in press.). Subsequently, all linear measurements 

were adjusted according to T. H. R. by adding mean differences when found significant (P < 0.05) 

using paired T-tests. Further, many morphology measures, including those for bill morphology, 

show seasonal and age-related variation. Therefore, only summer (May – August) measures were 

used and phenotypic data was adjusted to a predicted value for age one in May to produce single 

measures data for use with the GCTA, GRAMMAR-gamma and QTCAT methods. Linear mixed 

effects models with age and age2 as covariates were used to age standardise, month was also 

included as a fixed factor. Year, cohort and ring number were fitted as random intercepts with ring 

number as a random slope to partition within-individual variation. Likelihood ratio tests of nested 

models were used to determine significance of age and month effects for each trait. If effects were 

significant, predicted values from the model were used to adjust measurements to age one in May 

before calculation of individual means (Kvalnes et al., in press.).  

 

Population Structure 

Genetic variation in the small, stochastic subpopulations in the Helgeland system is likely to be 

structured due to genetic drift and limited gene flow. House sparrow microenvironment is 

dissimilar between agricultural and residential islands, and annual conditions vary between islands 

(Pärn et al., 2012). The adaptive landscape may also vary between islands for this reason. Difference 

in bill morphology is observed between subpopulations, as evidenced by presence of island as a 

fixed factor in all best models determined via AICc model selection (Appendix II; Table III). 

Controlling for island as a fixed factor could, however, control away the variation which 

encompasses association between bill morphology phenotype and genotype. Inclusion of hatch 

year as a fixed factor may pose a similar problem if bill morphology is under directional selection. 

To evaluate the extent of this effect on power to detect extant associations, GWA analyses were 

run both with and without island and hatch year as fixed factors. As expected, P value estimates 
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for GWAS run without including these factors were marginally lower (results not shown), but this 

did not yield any additional significant associations under either the GRAMMAR-gamma or 

RepeatABEL method. Inclusion of island and hatch year as fixed factors in main analysis cannot 

explain why more large effect loci were not detected in the Helgeland study system.    

 In the Southern study system, inclusion of island as a fixed factor in analysis did 

alter results. SNPa77370 showed significant association with bill shape at the single marker set 

significance level if island was not included as a fixed factor, but the link disappeared if island was 

included in the analysis. Population structure may be more important in the Southern population 

as a consequence of low migration between islands. This could be particularly important if the 

CRIM1 gene region is under differential selection on different islands due to differences in 

environment, as including island as a fixed factor may then control away the effect we are interested 

in. The association between the CRIM1 region and the interrelated bill depth and bill shape may 

be preserved across populations in P. domesticus, but strength of its influence may be controlled by 

environmental factors. If the association is genuine it is several orders of magnitude weaker in the 

Southern dataset than in the Helgeland metapopulation. 

Aside from QTCAT, methods used control for relatedness between individuals by 

including the GRM as a random effect. Stratified relatedness as a consequence of differing 

environment between islands poses a problem for this approach, as modelling of the covariance 

between individuals in this manner tests the restricted hypothesis of locus effect on phenotype 

independent of population structure or genetic background. QTCAT deals effectively with this 

issue by simultaneously associating all markers to the phenotype (Klasen et al., 2016). That no 

significant QTC was detected using this method may be because repeated measures cannot be 

included in the model as a random effect. Significant association between bill depth and marker 

SNPa77340 in this study was only revealed using RepeatABEL, suggesting within-individual 

variation is an important contributor to bill morphology variation in this population and should 

be properly accounted for.  

 

Multiple Testing Correction 

Multiple testing within a gene region is a problem in candidate gene studies due to LD, which may 

result in false positives and type-1 error. Two commonly used adjustments are Bonferroni (1936) 

and Benjamini Hochburg (FDR) correction (Benjamini and Hochberg, 1995). The first is a family-

wise error rate (FWER) correction which rejects null hypotheses with P value less than the desired 
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significance level (eg. 0.05) divided by the number of tests (here number of SNPs tested), ensuring 

that the probability of at least one false positive is less than 0.05. This type of correction is however 

conservative, increases the chance of type-2 error and substantially decreases power for detection 

of true significant results (Glickman et al., 2014). False discovery rate (FDR) is a less conservative 

alternative, which ranks obtained P values and calculates significance based on comparison of each 

pi with a fraction of 0.05 (k/n of eg. 0.05 for k= 1,2…n). This produces a result more conservative 

than simply comparing all P values to a chosen significance level, but less conservative than 

Bonferroni which compares all P values to 0.05/n. FDR gives the assurance that, at an FDR of 

0.05, at most 5% of significant results were false positives (Glickman et al., 2014).  

Although FDR increases power compared to Bonferroni adjustment, both methods in fact 

result in very conservative P values and reduced power. An alternative can be derived if correlation 

between markers, which reduces statistical independence, is taken into account. Based on early 

effective number of tests (Meff ) calculation approaches (Cheverud, 2001, Nyholt, 2004) and using 

various methods to determine extent of correlation between markers, (Chen and Liu, 2011, 

Galwey, 2009, Gao et al., 2008, Li and Ji, 2005) an estimate for Meff can be calculated and used in 

place of n in the Bonferroni or Šídák correction. There is, however, no mathematical justification 

that FWER, the probability of making at least one type-I error, is controlled using this approach. 

Alternatively, a method based on allelic tests can be used, where main output is estimation of a 

local alpha level (αloc) and FWER is controlled if distribution of test statistics is monotonically sub-

Markovian of order k (it is reasonable to assume this condition is satisfied in GWA data) (Halle et 

al., 2016, Moskvina and Schmidt, 2008). Custom methods (pers. comm. Halle, K., Langaas, M. 

Bakke, Ø), based on the order k FWER approximation method outlined in Halle et al. (2016) and 

adapted for traits with Gaussian distribution, are used here. This approximation method conditions 

on the previous k-1 neighbouring SNPs across the selected region. Firstly, one of each pair of 

SNPs which are in perfect LD (r > 0.99) is removed, as these pairs represent duplicated tests and 

lower the αloc unnecessarily. The mean is then imputed for genetic covariates and kth order 

approximation for the score test is used to produce a vector of score statistics (T). Our collection 

of m null hypotheses (no association between phenotype and genotype at marker k) are then tested 

with corresponding score statistics, using a closed form equation to be solved for αloc (Halle et al., 

2016). For candidate genes, a full order method was used to control for FWER, this utilises the 

Genz Bretz algorithm (Genz, 1992; possible for up to 1000 SNPs) and conditions on all SNPs in 

the candidate gene. For GWAS, an order 3 approximation, which utilises the Miwa algorithm 

(Miwa et al., 2003), was used to control for FWER. As the value for αloc is dependent on the 

response variable and covariates defined in the score test model, different values were computed 
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for all traits (see Appendix II; Table III for best models used). This was done individually for each 

candidate gene (as different markers are included). Finally, αloc for all candidate genes combined 

was defined for each bill morphology trait, as candidate gene SNPs should surpass this significance 

level for the association to be truly valid.  

 

Pathway Determination  

Pathway analysis was carried out for the gene CRIM1 as it was plausibly linked with bill depth in 

RepeatABEL analysis in the Helgeland dataset. Online methods iHop (Hoffmann and Valencia, 

2004) and STRING (Szklarczyk et al., 2015) were utilised to discover genes which may be 

functionally linked to CRIM1, first in Gallus gallus, then in all species. Subsequently, evidence for 

these links was manually curated to confirm that links discovered via text mining were valid. Genes 

whose products were involved in protein-protein interactions, positive or negative regulation 

(either via direct binding or through upstream mechanisms) or co-expression with CRIM1 were 

retained and a pathway diagram containing these genes was produced in Cytoscape 3.2.1 (Shannon 

et al., 2003). Candidate genes which were examined in this study were added to the diagram, where 

links could be drawn between them and CRIM1 or its associated genes. Subsequently, available 

literature on genes in the pathway diagram was examined to uncover additional links between 

nodes. Genes were categorised into those which have been previously related to craniofacial 

development, those which have been previously been implicated in skeletal development but not 

craniofacial development specifically, and genes with no previous link to skeletal or craniofacial 

development. Genes in the first and second categories may especially be worth examining for 

association with bill morphology in subsequent studies. See Appendix III; Fig. V.  
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II: Supplementary Tables 

 

Table I: Descriptive statistics for bill morphology traits in the Helgeland metapopulation of house sparrows (N = 
1857 individuals, N = 2439 measurements).   
 

Trait Mean  SD  
Within 

Individual 
Variance 

Between 
Individual 
Variance 

Total 
Variance 

Bill Depth 8.146 0.277 0.04 0.15 019 

Bill Shape -0.002 0.260 0.04 0.13 0.17 

Bill Length 13.702 0.539 0.12 0.64 0.76 

Bill Size -0.004 0.547 0.12 0.66 0.78 

 

 

 

Table II: Descriptive statistics for bill morphology traits in the Southern populations of house sparrows (N = 710 
individuals, N = 1343 measurements).   
 

Trait Mean  SD  
Within 

Individual 
Variance 

Between 
Individual 
Variance 

Total 
Variance 

Bill Depth 8.096 0.272 0.04 0.12 0.16 

Bill Shape 0.015 0.247 0.04 0.10 0.14 

Bill Length 13.557 0.503 0.13 0.43 0.56 

Bill Size -0.010 0.516 0.13 0.46 0.59 

 

 

 

Table III: AICc best models for each of the four bill morphology traits for both single and repeated measures data. 

Models within Δ2 AICc of the best model for each trait are shown in grey. id is individual ID as determined by ring 

number.  

Method Trait Model AICc Δ AICc 

GRAMMAR-

gamma 

Bill Depth BillD ~ sex + island + hatchyear 437.59 0 

Bill Shape PC2 ~ sex + island + hatchyear 132.84 0 

Bill Length BillL ~ island + hatchyear 3235.46 0 

Bill Size 
PC1 ~ island + hatchyear 3218.35 0 

PC1 ~ sex + island + hatchyear 3220.34 1.99 

RepeatABEL 

Bill Depth BillD ~ sex + age + island +month + (1|id) 247.63 0 

Bill Shape PC2 ~ sex + age + island + month + (1|id) -83.92 0 

Bill Length 
BillL ~ sex + island + month + (1|id) 6035.43 0 

BillL ~ sex + age + island +month + (1|id) 6037.13 1.70 

Bill Size  

PC1 ~ sex + age + island + month +(1|id) 6092.31 0 

PC1 ~ age + island + month + (1|id) 6093.69 1.38 

PC1 ~ sex + island + month + (1|id) 6093.86 1.55 
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Table IV: Genomic inflation factor (λ) for each bill morphology trait, GenABEL and RepeatABEL estimates. Local 

alpha level (αloc) for each trait estimated using single-measures data and the full order method for all candidate gene 

SNPs, or the order 3 method to derive genome-wide αloc.   

Trait λ (GenABEL) λ (RepeatABEL) Candidate Gene αloc Genome-Wide αloc 

Bill Depth 1.01 ± 0.0001 1.05 ±3.60e-5 0.00009 3.14e-7 
Bill Shape 0.97 ±0.1500 1.01 ± 5.25e-5 0.00013 3.14e-7 

Bill Length 1.01 ± 0.0001 1.03 ±5.74e-5 0.00010 3.15e-7 

Bill Size 0.99 ±0.2590 1.01 ± 5.02e-5 0.00009 3.14e-7 

 

 

 

Table V: Heritability estimates from different packages for the four studied bill morphology traits.  

Trait h2 (GRAMMAR-gamma) h2 (RepeatABEL) h2 (GCTA) 

Bill Depth 0.531 0.35 0.52 

Bill Shape 0.545 0.38 0.53 

Bill Length 0.497 0.38 0.52 

Bill Size 0.496 0.40 0.53 

 

 

 

Table VI: Summary statistics for the top 5 SNPs associated with bill shape for ALX1 in the GenABEL analysis. 

GenABEL lambda estimate for bill shape = 0.97 so inflation was not corrected for here. Top SNP is significant at 

the single gene significance level, αloc = 0.001. For each SNP the table shows its name, chromosome, position (bp), 

the reference allele A1, effect allele A2, minor allele frequency, estimated effect size of A2 with standard error, 

adjusted P value, marker call rate, and Hardy-Weinburg P value.  

SNP Chromosome Position A1 A2 MAF Effect (SE) P value Call Rate HWE P value 

SNPa174071 1A 38525018 C A 0.11 0.049 ±0.015 0.0009 0.993 0.727 

SNPa174122 1A 38496160 C T 0.14 0.044 ±0.015 0.0032 1.000 0.843 

SNPa174126 1A 38492884 C T 0.13 0.044 ±0.015 0.0032 0.990 0.548 

SNPa174084 1A 38517324 G A 0.11 0.046 ±0.016 0.0037 0.996 0.646 

SNPa174087 1A 38515244 T C 0.11 0.046 ±0.016 0.0038 0.999 0.646 

 

 

 

Table VII: Summary statistics for the top 5 SNPs associated with bill size for FGF8 in the RepeatABEL analysis. 

Effect size and P value corrected for λ = 1.01. Top SNP is significant at the single gene significance level, αloc = 

0.0009. For each SNP the table shows its name, chromosome, position (bp), the reference allele A1, effect allele A2, 

minor allele frequency, estimated effect size of A2 with standard error, adjusted P value, marker call rate, and Hardy-

Weinburg P value. 

SNP Chromosome Position A1 A2 MAF Effect (SE) P value Call Rate HWE P value 

SNPa276021 6 13375629 C T 0.44 -0.067 ±0.020 0.0007 0.992 0.962 

SNPa276015 6 13382614 G T 0.33 -0.041 ±0.020 0.0447 0.993 0.091 

SNPa275990 6 13396985 C T 0.17 0.049 ±0.025 0.0498 0.998 0.568 

SNPa275995 6 13395062 A G 0.19 0.045 ±0.025 0.0628 0.997 0.877 

SNPa275994 6 13396178 T G 0.20 0.043±0.024 0.0718 0.997 1.000 
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Table VIII: Summary statistics for the top 5 SNPs associated with bill depth in the RepeatABEL GWAS. Effect 

size and P value corrected for λ=1.05. Top SNP is significant at Bonferroni genome-wide significance level, αloc = 

3.14e-7. For each SNP the table shows its name, chromosome, position (bp), the reference allele A1, effect allele A2, 

minor allele frequency, estimated effect size of A2 with standard error, adjusted P value, marker call rate, and Hardy-

Weinburg P value. 

SNP Chromosome Position A1 A2 MAF Effect (SE) P value Call Rate HWE P value 

SNPa77348 3 21541818 C T 0.39 0.052 ±0.010 1.208e-7 0.996 0.408 

SNPa77303 3 21474218 T G 0.36 0.049 ±0.011 1.655e-6 0.995 0.013 

SNPa500795 4 1474181 A G 0.12 -0.067 ±0.015 3.825e-6 0.995 0.541 

SNPa196812 7 21744692 G A 0.15 0.063 ±0.015 5.665e-6 0.993 0.073 

SNPa101419 3 94810097 A G 0.35 -0.046 ±0.011 1.035e-5 0.999 0.913 

 

 

Table IX: Summary statistics for the top 5 SNPs associated with bill shape in the Southern population. λ = 1 for 

this trait. Results where island was not included as a fixed factor are presented in black and results where island was 

included as fixed factor are presented below in grey for comparison. When island is not included as a fixed factor, 

SNPa77370 is significant at the single marker set significance level (αloc, = 0.0032) but not at the level for all SNPs 

tested in this dataset (αloc = 0.0004).  

SNP Chromosome Position A1 A2 MAF Effect (SE) P value Call Rate HWE P value 

SNPa77370 3 21566606 T C 0.16 
-0.053 ±0.018 0.0031 

0.999 0.067 
-0.049 ±0.018 0.0054 

SNPa77351 3 21544510 G T 0.41 
0.040 ±0.014 0.0048 

0.993 0.816 
0.037 ±0.014 0.0077 

SNPa77332 3 21520307 T C 0.32 
0.043 ±0.015 0.0052 

0.997 0.904 
0.037 ±0.015 0.0139 

SNPa77349 3 21542748 C T 0.45 
0.034 ±0.014 0.0173 

1.000 0.541 
0.031 ±0.014 0.0266 

SNPa77347 3 21540984 G A 0.34 
0.025 ±0.014 0.1012 

0.999 0.947 
0.024 ±0.015 0.1196 

 

 

 

Table X: Genes within 1 Mbp of SNPa77348, which was significantly associated with bill depth in RepeatABEL 

GWAS. SNPa77348 position = 21541818 bp, closest upstream flanking gene with known function is CEBPZ and 

downstream is CRIM1. The closest upstream gene codes for a protein of unknown function.  

Gene Position (bp) Analogous Gene 

IV00_00011376 20469672 Cysteine-rich motor neuron 1 protein (CRIM1) 

IV00_00011398 21691531 Protein of unknown function 

IV00_00011399 21691544 CCAAT/enhancer-binding protein zeta (CEBPZ) 
IV00_00011400 21706132 NADH dehydrogenase [ubiquinone] assembly factor 7 (NDUFAF7) 

IV00_00011401 21715543 Serine/threonine-protein kinase D3 (PRKD3) 

IV00_00011404 21765455 Glutaminyl-peptide cyclotransferase (QPCT) 

IV00_00011405 21778947 Zinc transporter 6 (SLC30A6) 

IV00_00011407 21802297 Spastin SPAST) 

IV00_00011408 21839922 Protein dpy-30 homolog (Dpy30) 
IV00_00011409 21863121 Protein Memo1 (Memo1) 

IV00_00011414 21941050 3-oxo-5-alpha-steroid 4-dehydrogenase 2 (SRD5A2) 

IV00_00011415 21982413 Protein ELYS (AHCTF1) 

IV00_00011418 22042867 Saccharopine dehydrogenase-like oxidoreductase (SCCPDH) 

IV00_00011421 22083275 Consortin (CNST) 

IV00_00011422 22128457 Dimethyladenosine transferase 2%2C mitochondrial (TFB2M) 
IV00_00011431 22538506 Kinesin-like protein 26B (KIF26B) 
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III: Supplementary Figures 

Figure I: Multidimensional scaling (k = 4) of the genomic relatedness matrix with each point representing one of 
1857 individuals typed on 183109 SNPs. k = 4 was chosen as increasing number of dimensions beyond this point 
did not result in greater differentiation between islands by cluster. Genetic differences are partially sub-population 
related; grey points represent only individuals from Aldra and light green points only individuals from Gjerøy and 
Hestmannøy. Black points represent individuals from Nesøy, Træna, Selvær, Gjerøy, Hestmannøy, Indre Kvarøy 
and Aldra. Dark green points represent individuals from all the previous islands, plus Myken. The Aldra population 
is inbred and most genetically distinct.  

 

 

Figure II: Manhattan plot of repeated measures GWAS scan for bill depth (N= 4239 measurements) on 183109 
SNPs. No SNPs on chromosome 16 or Z are included and neither are markers without a position (those with a zero 
value for chromosome). ‘Chromosome’ 30 is a linkage group with no chromosome name. Position of markers on 
the X axis corresponds to their bp position on their chromosome. Local alpha level when FWER of 0.05 is 
controlled for is 3.14e-7 (dotted line).  



IX 
 

 
Figure III: Phenotypic and marker data exploration for bill depth and the marker significantly associated with this 
trait by RepeatABEL GWAS in the Helgeland metapopulation, SNPa77348. A: Mean adult bill depth (± SE ) for 
hatch years 1997-2012. B: Frequency of the minor allele, T, (± SE ) for each island. C: Genotype phenotype 
relationship  and D: mean frequency (± SE) of the minor allele, T, by hatchyear. Regression of hatch year on bill 
depth is signifcant (β = 0.004 ± 0.001, t = 3.33, P <0.001). Regression of hatch year on MAF is also signifcant (β = 
0.0086 ± 0.002, t = 4.603, P < 0.001).  
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Figure IV: Manhattan-linkage disequilibrium plot for the 55 Kbp flanking regions either side of SNPa77348 in the 
Southern dataset. SNPa77348 is highlighted in orange. Result is derived from the RepeatABEL association test for 
bill shape where island was not included as a fixed factor, λ = 1 for this trait. SNPs are coloured after degree of LD 
with reference marker, SNPa77370 (P = 0.0031). The dashed line represents the single-marker set significance 
threshold (αloc = 0.00032) where FWER is controlled to 0.05. 
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Figure V: Pathway diagram displaying links between CRIM1, plausibly identified as affecting bill depth by 
RepeatABEL GWAS in the Helgeland study system, and associated genes. Full edges indicate direct protein-protein 
interaction, dashed edges indicate co-expression, and bars and arrows indicate negative and positive regulation 
respectively. Nodes were categorised according to their potential for involvement in governing bill morphology. 
Green nodes represent genes which have previously been linked to craniofacial development in the literature, grey 
nodes indicate genes which have been linked to skeletal development but not to craniofacial development 
specifically, and white nodes indicate genes with no previous link to either craniofacial or skeletal development. 
Especially, genes represented by nodes coloured green or grey may be worth investigation for association with bill 
morphology in future candidate gene studies.  

 

 

 

 


