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Abstract

In this thesis we study the mass-radius and pressure-radius relations of white
dwarfs and neutron stars. We derive the pressure and energy density in a non-
interacting Fermi gas at T = 0, and construct several different equations of state.
A comparison is made between different numerical algorithms, and a fourth order
Runge-Kutta method is found to be the most suitable option. The Newtonian
equations of stellar structure are derived, and then solved numerically to find a
the mass-radius relation and maximum mass for white dwarfs. Good agreement
with observational data is established. We derive the Tollman-Oppenheimer-
Volkoff equation and solve them numerically to find the mass-radius relation and
maximum mass for neutron stars. The maximum mass found appears to be
significantly lower than expected. Finally the issue of stability and collapse is
addressed.

Notation and Conventions

Metric The signature of the metric is (-, +, +, +)

Units SI units are used, except in the derivation of the Tollman-Oppenheimer-Volkoff
equation, where natural units are used.
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1 Introduction

In 1916 the Estonian astronomer Ernst Öpik estimated the density of several binary
stars, and found that one of them - the star which we today refer to as the white dwarf
40 Eridani B - had a density 25000 times greater than density of the sun. He thought
that such a large density was an impossibility, and took the result as an indication that
something was wrong with his assumptions.1 He was not alone in this view - Arthur
Eddington later said on the subject of the white dwarf Sirius B:2

We learn about the stars by receiving and interpreting the messages
which their light brings to us. The message of the Companion of Sirius
when it was decoded ran: ”I am composed of material 3,000 times denser
than anything you have ever come across; a ton of my material would be a
little nugget that you could put in a matchbox.” What reply can one make
to such a message? The reply which most of us made in 1914 was—”Shut
up. Don’t talk nonsense.”

Today we know that in a star like our sun there is a balance between gravity pulling
inwards, and fusion by-products pushing outwards. However, given time the nuclear
fusion in the core of a star will stop. In a complicated process massive amounts of
gas will be ejected out and away, while the core contracts, leaving a stellar remnant.3

In the case of white dwarfs the exact composition of the core depends greatly upon
the progenitor star. The heavier the star the hotter and denser the core, thus more
readily fusing heavier elements, resulting in a white dwarf comparatively richer in heavy
elements like carbon and oxygen; whereas a lighter star will not burn so hot, and
its remains will consist of comparatively more helium. By contrast, neutron stars -
remnants of stars heavy enough to continue fusion through iron - all share the same
fate.4

In either case, the extremely dense core is now experiencing even greater gravita-
tional forces, with no fusion fueled radiation pressure to counteract it. Yet both white
dwarfs and neutron stars are stable. By which mechanisms are these compact stars
stable against gravitational collapse? This question was answered with the advent of
quantum mechanics - in particular with the formulation of the Pauli exclusion principle
and the discovery of Fermi-Dirac statistics - fermions stubbornly refuse to be clumped
too close together, and this simple fact can be used to explain much about the structure
of compact stars. We will study this balance of power between gravity and the exclusion
principle by deriving the stellar structure equations, and then using numerical methods
to solve them.

When dealing with white dwarfs it is quite sufficient to consider only Newtonian
gravity, but when we consider neutron stars it becomes necessary to employ the general
relativistic equations of Einstein. We will model our compact star as a zero temperature
non-interacting Fermi gas, and then improve upon our model by using successively more
sophisticated numerical methods.
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Figure 1: The Helix Nebula - a stellar remnant. (Courtesy of NASA)

2 Polytropic Equations of State

2.1 Gravitational Equilibrium

We begin by deriving a general result pertaining to the conditions inside a spherically
symmetric star under the influence of its own gravity. Let us assume that there is some
- as of yet unexplained - equal force but opposite force working to counteract gravity,
so that the star is in hydrostatic equilibrium. Consider a thin shell at a radius r within
the sphere in Figure 2, with thickness dr, density ρ(r), and mass per unit area ρdr. If
g(r) is the gravitational acceleration felt at the radius r, then by Newton’s second law
there is a small gravitational force per unit area, gρdr, acting on the shell. We recall
that force per unit area is the definition of pressure. Knowing this and our assumption
of hydrostatic equilibrium, we may equate gρdr to an infinitesimal pressure dP .

Given that the mass M contained within the spherical shell is

M(r) =

∫ r

0

ρ(r′)4πr′2dr′, (1)

we have that the gravitational acceleration g is

g(r) = −GM(r)/r2, (2)

and that the pressure gradient dP/dr is
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r

dr

Figure 2: A spherical shell inside a star.

dP

dr
= gρ = −Gρ(r)M(r)

r2
. (3)

Knowing that the mass M is a function of the density ρ and the radius r, one may
effectively consider equation (3) a differential equation relating the pressure and density
inside a star. This is important to note because it tells us that if we can find some
additional relation between the pressure and the density, then it might be possible to
solve equation (3) analytically. Failing that, one may find an approximate numerical
solution.

2.2 The Pauli Exclusion Principle and the Fermi Gas

An equation relating pressure to density is commonly referred to as an equation of state,
and the most well known among them is perhaps the ideal gas law. In this section we
will consider the quantum analogue to the classical ideal gas, namely the ideal Fermi
gas. The difference between the classical ideal gas and the Fermi ideal gas is that in
the quantum case we take into account the fact that, per the Pauli exclusion principle,
no two fermions ever occupy the same quantum mechanical state.

Assume that we have a cube with lengths l, whose properties allow electrons to
move freely within the boundaries of the box, but to never escape from it. Furthermore
we exclude all interparticle interactions from the potential:

V (x, y, z) =

{
0, 0 < x, y, z < l
∞, otherwise.

(4)
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kx
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Figure 3: Allowed electron positions in k-space.

By separating the variables and applying the boundary conditions one finds the allowed
momenta5

p2 = h̄2k2

= h̄2(k2
x + k2

y + k2
z)

≡ h̄2

(
n2
xπ

2

l2
+
n2
yπ

2

l2
+
n2
zπ

2

l2

)
,

(5)

where each n is an integer, and k is the magnitude of the wave vector. The kx, ky and
kz in equation (5) represent different quantum numbers, and since no two electrons can
occupy the same state, we have that each new electron put into the box needs a different
set of these quantum numbers. A common way to visualize the allowed momenta is to
imagine a three dimensional k-space with axes kx, ky and kz, where the electrons can
only occupy positions at the intersections π

l
(1, 1, 1), π

l
(1, 1, 2), π

l
(1, 2, 1), and so on.

Inserting equation (5) into the relativistic energy momentum relation

E2 = p2c2 + (mc)2c2, (6)
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Figure 4: A visualization of k-space in the large N -limit.

yields
E2 = (h̄k)2c2 + (mc)2c2. (7)

This tells us that electrons with higher k-values have higher energy, and taken together
with the principle that the most probable physical configurations are those where the
energy is at a minimum, we can infer that electrons are most likely to be found as close
to the origin in k-space as they can be without violating the exclusion principle. So for
large numbers of electrons the most probable configurations in k-space would look as
depicted in Figure 4, since if we assume that the thermal energy in the star is low, then
any electrons located outside the shaded region in Figure 4 will quickly settle down into
more energetically favorable positions. The exclusion principle essentially causes the
electrons to fill up one spherical layer after another. We can use this knowledge about
the electron configuration in k-space to relate the maximum value of k to the number
of electrons N , which in turn will allow us to find the electron density N/V .

As seen from Figure 3 the volume of one ’cell’ in k-space is π3/l3 = π3/V . If N is
large then this is to very good approximation the volume per two electrons in k-space,
since we can fit one spin up and one spin down electron into each cell due to the Pauli
exclusion principle. So given some maximum value kF we can say that the total volume
taken up by all the electrons in k-space is
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N
π3

2V
=

1

8

(
4π

3
k3
F

)
. (8)

By equation (5) we may then express the maximum momentum, pF , of a single electron -
known as the Fermi momentum - as a function of the electron number density ne = N/V

p3
F = 3π2h̄3ne, (9)

and the corresponding Fermi energy as

E2
F = (3π2ne)

2/3h̄2c2 + (mec)
2c2. (10)

If we go to the continuum limit in our octant of k-space then a single spherical shell
of thickness dk contains a volume 1

8
(4πk2)dk. Earlier we noted that each state occupies

a volume π3

2V
, so in any given shell the density of states is

1

8
(4πk2)

2V

π3
dk =

V

π2
k2dk. (11)

Each of these states carry an energy [(h̄k)2c2 + (mec)
2c2]1/2, so the energy of a shell of

electrons is

dEe = [k2h̄2c2 + (mec)
2c2]1/2

V

π2
k2dk, (12)

and hence the total energy of the electrons is

Ee =
V

π2

∫ kF

0

[k2h̄2c2 + (mec)
2c2]1/2k2dk. (13)

Dividing by V and substituting u = kh̄
mec

and the relativity parameter uF = kF h̄
mec

yields
the total energy density of the electrons

εe =
1

π2

∫ uF

0

u2

h̄2 (mec)
2

[
u2

h̄2 (mec)
2h̄2c2 + (mec)

2c2

]1/2
mec

h̄
du (14a)

=
m4
ec

5

π2h̄3

∫ uF

0

(u2 + 1)1/2u2du (14b)

=
m4
ec

5

8π2h̄3

[
(2u3

F + uF )(1 + u2
F )1/2 − sinh−1(uF )

]
. (14c)

A special case of this result is when the electrons are non-relativistic, so that kF h̄�
mec. Then uF is always small, and the dominant term in equation (14b) is

εe =
m4
ec

5

π2h̄3

∫ uF

0

u2du =
mec

2

3π2
k3
F . (15)
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If we then re-write equation (9) as k3
F = 3π2ne, we find that the sum of the energy

densities from the electrons and nucleons is

ε = εN + εe =
A

Z
nemNc

2 + nemec
2, (16)

which is exactly what you would expect from non-relativistic matter - the energy density
is the number density times the mass energy. Furthermore, since the mass of the
nucleons is three orders of magnitude larger than the mass of the electron we can to
good approximation write ε = A

Z
nemNc

2, which can be rewritten as

ε =
A

Z

mnc
2

3π2
k3
F . (17)

This then is half of the relationship between pressure and density that we need in order
to solve equation (3), and in Appendix A we derive the other half - the relationship
between the pressure and the Fermi momentum kF ,

P =
m4
ec

5

3π2h̄3

∫ uF

0

(u2 + 1)−1/2u4du, (18)

which has the analytic solution

P =
m4
ec

5

24π2h̄3

[
(2u3

F − 3uF )(1 + u2
F )1/2 + 3 sinh−1(uF )

]
. (19)

Again we consider the case of non-relativistic electrons, pF � mec. Then as before uF
is small, and the dominant term in equation (18) is

P =
m4
ec

5

3π2h̄3

∫ uF

0

u4du =
h̄2

15π2me

k5
F . (20)

2.3 Relativistic and Non-Relativistic Polytropes

Inserting equation (17) gives the relationship between the energy density ε = ρc2 and
the pressure P in the non-relativistic case

P =
h̄2

15π2me

(
3π2

mNc2

Z

A

)5/3

ε5/3 ≡ KNRε
5/3, (21)

where we have combined all all the numerical factors into a single parameter. Having
already done the calculation for the non-relativistic case, it is straightforward to use
equations (14) and (18) to show that in the case of relativistic electrons, pF � mec,
the energy density of the electrons is

εe =
h̄c

4π2
k4
F , (22)

and the contribution to the pressure from the electrons is
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P =
h̄c

12π2
k4
F . (23)

Using the identities k3
F = 3π2ne and uF = kF h̄

mec
we can write the total energy density as

ε = εN + εe =
A

Z
nemNc

2 + uF
3

4
nemec

2, (24)

where we have again assumed that the energy density of the nucleons is a constant.
Comparing equation (24) with the analogous non-relativistic expression in equation

(16) reveals a quadratic dependence upon the relativity parameter uF , and through it
the Fermi momentum kF . We can estimate when the contribution of the electrons to
the energy density becomes relevant by looking at a pared down version of equation
(24)

ε

nec2
=
A

Z
mN + uF

3

4
me (25)

Given that the nucleons are roughly 2000 times as massive as the electron, and that
the ration of protons to nucleons is typically close to 1/2, we conclude that for the
electrons to contribute one percent of the total energy density, the relativity parameter
uF must be equal to 5.5. Knowing this one can use the approximation that electrons
do not contribute to the energy density, and as in the non-relativistic case we write
ε = A

Z
nemNc

2. Using this approximation gives us a relationship between the energy
density ε and the pressure P in the relativistic case

P =
h̄c

12π2

(
3π2

mNc2

Z

A

)4/3

ε4/3 ≡ KRε
4/3. (26)

However, we keep in mind that for sufficiently large values of the relativity parameter
uF one may no longer ignore the contribute of the electrons to the energy density.

Collectively we call equations of the form P = Kργ - or, as seen in equations (21) and
(26), P = Kεγ - polytropes, where γ is known as the polytropic exponent. Combining
the general form of a polytropic equation with the differential forms of the equations
of stellar structure, (1) and (3), yields a set of coupled differential equations

P ′ = −GM
c2r2

(
P

K

)1/γ

, (27a)

M ′ = 4π
r2

c2

(
P

K

)1/γ

, (27b)

which, given suitable boundary conditions, may be solved to give the pressure P and the
mass M as functions of the radius r. We shall attempt a numerical solution, but before
that, we will rescale the above expressions, make them dimensionless, and combine
some of the numerical factors.
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3 White Dwarfs

3.1 Scaling and Dimensionless Equations

In general one may scale an equation by dividing all dimensionful variables by a constant
of the same dimension, often refered to as ’the scale’. For instance, we may divide every
mass term by a kilogram, a metric tonne, or - more customarily - by a relevant scale of
the problem, such as the mass of the sun6. One may also do as we did when integrating
over momenta in equation (14), and scale using a parameter created by combining
several dimensionful constants. Restating the problem in a dimensionless form typically
helps us to identify any fundamental scales of the problem, and to pinpoint when a
parameter is small or large.

Taking a cue from equations (14b) and (18) we pick

ε0 =
m4
Nc

5

3π2h̄3 = 5.46 · 1035 J/m3, (28)

to be our energy density scale, but note that this is but one reasonable choice among
many - for instance one might choose me as opposed to mN . The scaled pressure and
energy density are then defined by

P = ε0P̄ , (29)

ε = ε0ε̄. (30)

This turns the polytropes into dimensionless equations of the form

P̄ = K̄ε̄γ, (31)

where the factor K̄ = Kεγ−1
0 becomes the - now dimensionless - constant of propor-

tionality. Similarly we scale the mass by the mass of the sun, M�, and introduce the
constant R0 ≡ GM�/c

2, so that
M = M�M̄. (32)

Putting it all together transforms equations (27) into

P̄ ′ = −αP̄
1/γM̄

r2
, (33a)

M̄ ′ = βP̄ 1/γr2, (33b)

where the constants α and β are, respectively

α =
GM�

c2K1/γε
1−1/γ
0

, (34)

and

β =
4πε

1/γ
0

M�c2K1/γ
. (35)
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3.2 Comparison of Numerical Methods

Later on we shall employ more sophisticated algorithms, but for a first approximation
we combine the coupled differential equations in (33) with the non-relativistic polytrope
in equation (21) and solve them in a straightforward way by repeat application of the
first order finite central difference method

P ′(r) =
P (r + dr)− P (r − dr)

2dr
⇒ (36)

P (r + dr) = 2drP ′(r) + P (r − dr), (37)

in order to get a basic understanding of the shape of the solution. One may use some
combination of solid state physics and astronomical observations of mass and radius
to estimate the central pressure ρc at the center of a white dwarf, and with each step
of the algorithm work our way outward to the edge, where we expect the pressure to
tend towards zero. A typical white dwarf might have an average density on the order
of 4.0 · 108 kg/m37. With the choice of scale in equation (30), this density would be
equivalent to a dimensionless energy density of 6.6 · 10−11. Using equations (21) and
(26) we get an average pressure on the order of 6.0 · 1020 and 1.3 · 1021 - under the
assumption of non-relativistic and relativistic polytrope, respectively.

Figure 5: Pressure as a function of radius for a white dwarf star, as predicted by a first
order finite difference solution of a non-relativistic polytrope - γ = 5/3 , starting with
a central pressure of 2.5 · 1020 Pa.

Using a very conservative estimate of 2.5 · 1020 Pa for the central pressure, we have
in Figure 5 used the first order finite difference approach starting from the center, and
it paints a clear picture. We also performed the integration for 2.5 ·1021 Pa and 2.5 ·1022

13



(a) Stopped at r ≈ 500km, M > 0 (b) Algorithm ended at r ≈ 3000km, M = 0

Figure 6: Pressure as a function of radius for a white dwarf star, as predicted by a first
order finite difference solution of a non-relativistic polytrope, starting at the edge of
the star.

Pa, and found that the integration traces out the same curve, but with a smaller final
radius. Conversely, decreasing the central pressure increases the radius.

In Figure 6 we attempted an alternative approach, and assumed that the star has
some radius R and total mass M - corresponding to those of the white dwarf Procyon
B - and worked inward until either the mass or the radius became zero. In hindsight
one might have predicted that this approach was too naive. Looking at Figure 6a we
see that while the solution appears similar for large values of r, there is no turning
point in the graph and it eventually blows up - which is why we cut off the graph at
r ≈ 500km, as it would otherwise continue upwards for roughly ten additional orders
of magnitude. It is hard to say if the cause of this divergent behaviour is due to the
rather simple algorithm, the fact that at some pressure the non-relativistic polytrope
is no longer applicable, a combination of those two factors, or indeed some error as of
yet unaccounted for.

Figure 6b displays no divergence, but it too stops short of reaching r = 0. The
reason for this is that to assume one radius and one mass is to over-constrain the
problem. Just as one central density is associated with a pair of values, so too is one
radius or one mass. However, the mass and radius are needed at each step of the
algorithm. So, for instance, if we posit a radius R, it becomes necessary to solve a set
of N = R

integration step size
equations, corresponding to the N values of M(r = n · dr). For

this reason we will largely restrict ourselves to algorithms that take the central pressure
as an input parameter, and give the mass and radius as output.

We wish to improve and expand upon the result shown in Figure 5, and the first thing
we do is to implement two higher-order methods; the explicit Runge-Kutta method
known as the 3/8-rule8, and the fourth order implicit linear multistep Adams–Moulton
method9. In table 1 we see how the two higher-order methods compare to our original
’naive’ approach, and the first things to note is that the two first rows are in good
agreement with each other. The step size for the first order central difference method

14



Table 1: Comparison between the output of our numerical algorithms, for a white dwarf
with Pc = 2.5 · 1022 Pascal, and using γ = 5/3.

Algorithm Radius [km] Mass [M�] Step size [km] Run time [s]
Naive 8327 0.78347 0.25 0.14
RK-3/8 8404 0.78350 1.00 0.11
AM-4 8404 0.78350 1.00 6.0
RK-3/8 8406 0.78350 0.02 5.5
AM-4 8300 0.78257 50.0 0.12

was here set to one fourth of the step size of the fourth order Runge-Kutta method
because the latter essentially uses the weighted average of four intermediate points to
compute the new values - a fact reflected in the similar run time of the two implemen-
tations. Furthermore we observe that the most striking difference between the implicit
and the explicit fourth order methods is that the implicit method is, given the same
step size, approximately 50 times slower. The root cause of this disparity is that the
Adams-Moulton method must solve implicit equations of the form

yn+1 = f(yn+1, rn+1, yn, rn, yn−1, rn−1, yn−2, rn−2), (38)

whereas the Runge-Kutta method needs only compute expression of the form

yn+1 = f(yn, rn). (39)

In light of this, we will do as recommended in10, and implement both methods. We may
then compare the results, and if they differ greatly from one another, that will prompt
us to investigate; either revealing an error in implementation, or more seriously, an
instability - or some other pathology - in one of the algorithms. But once the comparison
has been made, we will prefer the less computationally expensive Runge-Kutta method
for those cases where we wish to perform a series of computations.

If we look again at table 1, then on the face of it the naive first order finite difference
method seems to be performing quite well. But if we consider Figure 7 - where we
have plotted a comparison of the naive and the Runge-Kutta method for pressures
approaching zero - we find that the naive algorithm behaves in an oscillatory manner
when P → 0.

3.3 Results from the Polytropic Equation of State

Let us compare our numerical solutions of equations (21) and (26) - that is to say, a
white dwarf where the electrons are assumed to be non-relativistic, and a white dwarf
where the electrons are assumed to be relativistic. In the first case the polytropic
exponent is γ = 5/3, and in the latter it is γ = 4/3. The most notable feature of
Figure 8 is that the polytrope for relativistic electrons converges towards zero pressure
comparatively slowly. This strange behaviour is not entirely unexpected, given that
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Figure 7: Zooming in on the termination of the algorithms.

the edge of a white dwarf is unlikely to be well described by an equation of state for
relativistic electrons.

The explanation for the peculiar straight line in Figure 9 is less obvious, but the
conclusion is clear: For a relativistic white dwarf, the total mass is independent of the
central pressure! From this we conclude that there is an upper limit on the mass of
relativistic white dwarfs, and that making the relativistic region of a white dwarf denser
only makes it smaller, not heavier. This fact may also be derived analytically.4 It is
clear that each polytrope has a limited domain of validity - from Figure 8 we conclude
that a relativistic polytrope predicts a radius that is much too large - in fact we had
to artificially halt the integration because of how slowly the pressure approached zero -
and the fact that the solid line in Figure 9 appears to increase without limit is evidence
that the non-relativistic polytrope does not accurately model the denser regions of a
white dwarf.

3.4 An Equation of State for Arbitrary Relativity

In the previous subsection we saw some of the differences between the two polytropes,
and noted that modeling a white dwarf as purely relativistic, or purely non-relativistic,
is problematic. To explore in more detail the conditions in which each polytrope is a
valid approximation, we have in Figure 10 plotted the non-relativistic polytrope from
equation (21), and the relativistic polytrope from equation (26). In addition, we have
a parametric plot of the analytic expression for pressure in a non-interacting electron
Fermi gas from equation (19), versus the energy density of non-relativistic neutrons,
nemNc

2A/Z, plus the analytic expression for energy density in a non-interacting elec-
tron Fermi gas from equation 14c - as functions of the relativity parameter, uF = kF h̄

mec
.

As expected, we note that for low values of uF the γ = 5/3 plot is equal to, and parallel
with, the parametric plot. When uF → 1 we move out of the the non-relativistic region
the parametric curve levels off, and eventually becomes parallel with the γ = 4/3 curve.

What we want, then, is an equation of state which grows like ε̄5/3 in the non-
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Figure 8: Comparison between white dwarfs with different polytropic exponents.
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Figure 9: Parametric plots of total mass and radius as functions of central pressure.
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Figure 10: Comparison between three different equations of state.

relativistic regime near the outer edge of the white dwarf, and like ε̄4/3 in the relativistic
regime closer to the center of the white dwarf. Given a parametric plot such as the one
in Figure 10, we can fit an expression for arbitrary relativity of the type

ε̄ = ANRP̄
3/5 + ARP̄

3/4, (40)

to the parametric plot by finding suitable coefficients. The choice of these coefficients
will depend on the range of pressures and energy densities we attempt to cover with
our fit. For very small pressures the coefficient ANR will approach the value predicted
by the non-relativistic version of the dimensionless equation for a polytrope, (31),

ε̄ =
(
1/K̄NR

)3/5
P̄ 3/5 = 0.06226P̄ 3/5, (41)

while AR goes to zero. Similarly for large pressures the coefficient AR will approach

ε̄ =
(
1/K̄R

)3/4
P̄ 3/4 = 5.385P̄ 3/4, (42)

while ANR goes to zero. If our curve fit coefficients did not approach these values, that
would have been a clear indication that something was amiss.

We showcase a few possibilities in Table 2, where the relativity parameter u ranges
from zero to the tabulated values. We also show the pressure corresponding to the
tabulated values of the relativity parameter, as predicted by equation 19. These coef-
ficients also depend on the ratio of nucleons to protons, and in computing Table 2 we
have taken this ratio to correspond to iron at 56/26. We make a new plot like the one
in Figure 9, by using two equations of the arbitrary relativity variety found in equation
(40) - one with coefficients computed based on the assumption that A/Z = 56/26, and
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Table 2: Possible values of the curve fit coefficients, as a function of the maximal value
of the relativity parameter on the fitting interval, and with A/Z = 56/26.

u Pressure [Pa] ANR AR

→ 0 → 0 0.06226 0
0.5 2.79 · 1020 0.05913 1.217
1.0 7.41 · 1021 0.05222 2.466
1.5 4.59 · 1022 0.04486 3.394
2.0 1.60 · 1023 0.03840 4.043
4.5 4.71 · 1024 0.01980 5.385
→∞ →∞ 0 6.092
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Figure 11: Parametric plot of two different Equations of State for Arbitrary Relativity,
combined with astronomical observations by the ESA’s Hipparcos satellite.

one with A/Z = 2. In both cases the fit of equation (40) onto (ε̄(u), P̄ (u)) was done
with u ∈ [0, 2.0]. When we compare Figure 9 and Figure 11 we see that for our choice
of coefficients the equation of state in (40) is a better fit for the astronomical data from
the Hipparcos satellite.
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3.5 A Piecewise Equation of State
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Figure 12: Comparison of three different
curve fit EoS,

Although our model now seems to be
in good agreement with the astronomical
data, there is one feature of the relativistic
polytrope which is not reproduced in Fig-
ure 11, namely the mass limit. Even when
we increase the central pressure by sev-
eral orders of magnitude, the mass shows
no sign of any limiting behaviour. We
also tried using different sets of the coeffi-
cients ANR and AR, corresponding to the
intervals uF ∈ [0, 0.5], uF ∈ [0, 1.5] and,
uF ∈ [0, 4.5] - the results of which can be
seen in Figure 12. In the latter case, the
mass grows significantly more slowly as a
function of the central pressure, but it still grows without bound.

A curve fit equation of state does a good job of bridging the gap between the relativis-
tic and non-relativistic equations of state, and we can change the coefficients depending
on which pressure interval we would like to most accurately represent. However, it can
not be correct for both very small and very large pressures, so in an attempt to discern
whether the result of a mass limit is purely a feature of the relativistic polytrope, or if
it applies to all white dwarfs, we turn to the idea of a piecewise equation of state. As
an example to illustrate the concept, we present this function for the energy density

ε̄ =


0.05781P̄ 3/5 P̄ ≤ 1019

0.02828P̄ 3/5 + 4.349P̄ 3/4 1019 ≤ P̄ ≤ 1023

0.005113P̄ 3/5 + 5.549P̄ 3/4 1023 ≤ P̄ ≤ 1026

5.657P̄ 3/4 P̄ ≤ 1026

, (43)

where the non-relativistic polytrope is used for small pressures, the relativistic poly-
trope for large pressures, and several equations of state for arbitrary relativity - with
coefficients corresponding to some subdivided interval of uF - for everything in between.
The advantage of such a scheme is that for small and large pressures, it deviates less
from the true relationship between the energy density and the pressure, compared to
using a single equation of state for arbitrary relativity to cover the entire range of
pressures.

In Figure 13 we have plotted a parametric plot of total mass and radius as functions
of the central pressure, comparing the relativistic polytrope and the curve fit equation
of state to an equation of state of the aforementioned piecewise type. In this particular
case the piecewise equation of state was stitched together using the relativistic and
non-relativistic polytropes, along with nine different curve fit equations of state. It
would appear that while the curve fit equation of state works well in most cases, it fails
to reproduce the Chandrasekhar limit.
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Figure 13: Parametric plot comparing three different kinds of EoS.
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4 Neutron Stars

4.1 The Tolman-Oppenheimer-Volkoff Equation

Under the assumption of spherical symmetry it is known that the Schwarzschild metric
holds outside the boundary of a star11. If we also assume that the star is in hydrostatic
equilibrium then the line element may be written as

dτ 2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2 sin2 θ dφ2, (44)

where we aim to find functions ν(r) and λ(r) such that equation (44) accurately de-
scribes the interior as well as the exterior of the star. In order to determine these
functions we will solve the Einstein field equations

Rµν − 1
2
Rgµν + Λgµν = −8πGTµν , (45)

where the pressure and energy density form the stress-energy tensor Tµν , the Ricci
curvature tensor Rµν and the Ricci curvature scalar R can be computed from the
metric, and the cosmological constant Λ may be neglected since it is not relevant at
this scale. Furthermore, the field equations may be multiplied by gµν , contracting them
and giving us a simpler relation in terms of the curvature scalar and the stress-energy
scalar, R = 8πGT µµ .

In order to do the aforementioned computations of Rµν and R we will first state the
Riemann tensor

Rρ
µνσ ≡ Γρµσ,ν − Γρµν,σ + ΓαµσΓραν − ΓαµνΓ

ρ
ασ , (46)

where Γρµν,σ is ∂σΓρµν , and Γρµν is the Christoffel symbol

Γρµν ≡ 1
2
gρκ(gκµ,ν + gκν,µ − gµν,κ). (47)

The Ricci tensor Rµν is then computed by contracting over two of the indices

Rµν ≡ Rρ
µνρ = Γρµρ,ν − Γρµν,ρ + ΓαµρΓ

ρ
αν − ΓαµνΓ

ρ
αρ , (48)

which may in turn be contracted by an additional multiplication with the inverse metric
gµν , yielding the Ricci scalar R ≡ gµνRµν .

As an example of how this may be done, I will show the details of the calculation
of Rtt in the case of the metric in equation (44). In our case we have

Rtt = Rρ
ttρ = Γρtρ,t − Γρtt,ρ + ΓαtρΓ

ρ
αt − ΓαttΓ

ρ
αρ , (49)

and we will do the calculations term by term, starting with

Γρtρ,t = ∂t
[

1
2
gρκ(gκρ,t + gκt,ρ − gtρ,κ)

]
= 0, (50)

since our assumption of equilibrium - which we shall oft rely on to simplify things - is
equivalent to assuming that nothing depends on t. The next term in equation (49) is

22



− Γρtt,ρ = −∂ρ
[

1
2
gρκ(gκt,t + gκt,t − gtt,κ)

]
= ∂ρ

(
1
2
gρκgtt,κ

)
(51)

where again we have that anything involving a derivative with respect to time drops
out, and we are left with a double sum over κ and ρ, which in the most general case
contains sixteen (not necessarily unique) terms. However since our metric is diagonal
we need only consider gρκ where ρ = κ. Additionally we recall from equation (44) that
gtt = −e2ν(r), which means that only gtt,r survives, and we are left with

− Γρtt,ρ = ∂r
(

1
2
grrgtt,r

)
= −∂r

(
e2(ν−λ)ν ′

)
= −e2(ν−λ)

[
2ν ′(ν ′ − λ′) + ν ′′

]
, (52)

where ν ′ is ∂rν, and the inverse metric grr is 1/grr. The third term in equation (49) is
- after letting the derivatives of the metric with respect to time drop out -

ΓαtρΓ
ρ
αt = 1

4
gακ(gκt,ρ − gtρ,κ)gρk(gkt,α − gαt,k). (53)

Again we make use of the fact that our metric is diagonal, which means that at least
one of the indices must be t lest all the gκts be zero, and this in turn requires that the
matching index in say gακ also must be t. Clearly all the indices can not be t, so the
only question is which two indices should be t. After a bit of trial and error one finds

ΓαtρΓ
ρ
αt = 1

4
gtt(gtt,ρ − gtρ,t)gρk(gkt,t − gtt,k) = −1

4
gttgtt,ρg

ρkgtt,k, (54)

where the only non-zero contribution to the sum is the part where ρ and k are both
equal to r, so that

− 1
4
gttgrr(gtt,r)

2 = −1
4
(−e−2ν)(e−2λ)(−e2ν2ν ′)2 = e2(ν−λ)ν ′

2
. (55)

The final term in equation (49) is

− ΓαttΓ
ρ
αρ = −1

4
gακ(−gtt,κ)gρk(gkα,ρ + gkρ,α − gαρ,k), (56)

where we first note that κ = r is required for gtt,κ to be non-zero. Consequently we
require α = r to avoid gακ being zero, and we must also have ρ = k to avoid gρk being
zero. Taken together this gives us

1
4
grrgtt,rg

ρρ(gρr,ρ + gρρ,r − grρ,ρ) = 1
4
grrgtt,rg

ρρgρρ,r, (57)

where gρρgρρ,r = 2ν ′+ 2λ′+ 2/r+ 2/r, since in this case the indices running over θ and
φ also contribute to the sum. Inserting this into the above equation gives

− ΓαttΓ
ρ
αρ = −e2ν−λν ′(ν ′ + λ′ +

2

r
). (58)

Finally we insert equations (50), (52), (55), and (58) into equation (49), resulting in

Rtt = e2(ν−λ)
(
ν ′λ′ − ν ′′ − ν ′2 − 2ν′

r

)
. (59)
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Similarly one can calculate

Rrr = − ν ′λ′ + ν ′′ + ν ′
2 − 2λ′

r
, (60a)

Rθθ = (1 + rν ′ − rλ′)e−2λ − 1, (60b)

Rφφ = Rθθ sin2 θ, (60c)

from which we can form the quantity

1
2
(−Rttg

tt +Rrrg
rr +Rθθg

θθ +Rφφg
φφ) = e−2λ

(
1

r2
− 2λ′

r

)
− 1

r2
. (61)

The summation in equation (61) can also be performed by taking the Einstein field
equations, and inserting them into the stress-energy tensor for a perfect fluid12

Tµν = Pgµν + (P + ρ)UµUν , (62)

where the four-velocity Uµ is zero for all but the zeroth component. Carrying out the
summation leaves us with the relation

e−2λ

(
1

r2
− 2λ′

r

)
− 1

r2
= −8πGρ, (63)

which we may put into a more suggestive form

e−2λ(1− 2rλ′) =
(
r e−2λ

)′
= 1− 8πGρr2, (64)

and integrate to yield

e−2λ = 1− 2G

r

∫ r

0

4πρ(r′)r′2dr′ = 1− 2GM(r)

r
, (65)

where we have defined M(r) ≡
∫ r

0
4πρ(r′)r′2dr′.

In a similar manner to how we found equation (63) one may also find the relation

e−2λ

(
−1

r2
− 2ν ′

r

)
+

1

r2
= −8πGP. (66)

Inserting the expression we found for e−2λ in equation (65) into equation (66) and
rearranging the terms yields

ν ′ =

[
4πGPr +

GM(r)

r2

] [
1− 2GM(r)

r

]
(67)

We can make further use of the stress-energy tensor for a perfect fluid by enforcing
energy-momentum conservation as well as hydrostatic equilibrium, yielding12

− ∂λP = (P + ρ)∂λ ln(−gtt)1/2, (68)
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and as before only the derivative with respect to r is non-zero, so in our case equation
(68) reads

− P ′ = (P + ρ)ν ′. (69)

We eliminate ν ′ from equation (69) by using the expression we found in equation (67)
to get the Tolman-Oppenheimer-Volkoff equation

P ′ = −GρM
r2

[
1 +

P

ρ

] [
1 +

4πr3P

M

] [
1− 2GM

r

]−1

, (70)

where the explicit dependencies of P , ρ, and M upon r have been suppressed in the
name of brevity.

Now that we have this equation we can try to make sense of it in terms of more
familiar physics. The star being in equilibrium means that for any given volume element
there must be a perfect balance between the outward pressure differential, and the
inward gravitational pull

−∆V P ′ =
GM1∆M2

r2
. (71)

If we consider m1 to be our m(r) and ∆m2 to be the mass of some small volume element,
∆V ρ, then we can divide out the volume element ∆V to get the Newtonian structure
equation

P ′ = −GρM
r2

. (72)

From (72) we may find (70) if we again consider that ~F = −V∇P = −∇U . So we
can view the pressure P as energy per volume, which by the mass energy equivalence
means that for large pressures there is a relativistic correction to the density such that
ρ→ ρ+ P , and m→ m+ 4πr3P , from which we get

P ′ = −G
r2

(ρ+ P )
(
M + 4πr3P

)
. (73)

To complete the picture consider the coefficient of dr in (44), whose inverse we found
in (65). This is the last bracket in (70), which is a general relativistic correction to
the radial distance which reflects the fact that space is contracted by the presence of
energy, meaning that the star has more space in it than one might expect by simply
looking at its radius. Consequently the mass and the gravitational potential are also
greater than Newtonian physics would predict.

It is possible to solve the TOV-equation (70) analytically if we assume a constant
density ρ = ρ0 throughout the star. Our m(r) then evaluates to 4π

3
ρ0r

3, so that (70)
can be rewritten as

P ′ = −4πG

3

(P + ρ0)(3P + ρ0)r

1− 8Gπρ0r2/3
. (74)
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Since we expect P → 0 as r → R we proceed with separation of variables in the
following way ∫ 0

P

dP

(P + ρ0)(3P + ρ0)
= G

∫ R

r

r dr

2Gρ0r2 − 3/4π
, (75)

but note that we could just as well have picked some pressure P (r=0) and integrated
the other way. Performing the integration gives us

1

2ρ0

log

(
P + ρ0

3P + ρ0

)
=

1

4ρ0

log

(
8Gπρ0R

2/3− 1

8Gπρ0r2/3− 1

)
, (76)

and if we let M = 4π
3
ρR3 denote the total mass of the star then the equation above is

equivalent to

P + ρ0

3P + ρ0

=

(
2GM/R− 1

2GMr2/R3 − 1

) 1
2

, (77)

which can be solved for P to yield

P (r)

ρ0

=

(
1−

2GM

R

) 1
2

−

(
1−

2GMr2

R3

) 1
2

(
1−

2GMr2

R3

) 1
2

− 3

(
1−

2GM

R

) 1
2

. (78)

We can extract a simple result from (78) by evaluating the expression at r = 0

P (0)

ρ0

=

(
1−

2GM

R

) 1
2

− 1

1− 3

(
1−

2GM

R

) 1
2

. (79)

From Figure 14 we can see that the pressure asymptotically approaches infinity when
the parameter 2GM

R
becomes too large. This tells us that as the mass increases relative

to the radius, the pressure P in the core of the star starts to dominate over the density
ρ0, causing the star to become increasingly relativistic. We can find an upper bound
for 2GM

R
either by looking at the plot, or by noting that for positive and real values

of P and 2GM
R

the numerator of (79) is always negative, so we must demand that the
denominator also be negative

3

(
1− 2GM

R

) 1
2

> 1 ⇒ 2GM

R
<

8

9
. (80)

Although this result has here only been proven in the special case of constant density,
it can be shown to be true for all stars in a very general way, assuming a non-singular
metric and a monotonically decreasing pressure.13
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Figure 14: Pressure over density at the center of a sphere of uniform density, as a
function of the parameter 2GM

R
.

Given the bound in equation (80), and the relationship between M and R, we can
find an upper bound for the radius

R <
1√

3πGρ0

, (81)

and the mass

M <
4

9

1√
3πG3ρ0

, (82)

of a star of uniform density. In both cases we see that a greater density implies a
smaller star, and that a star of this type can not grow arbitrarily large. Using our
newfound knowledge of this upper limit we can pick some reasonable values of 2GM/R
and plot (78) as a function of r/R. Again we clearly see that as 2GM/R approaches
8/9 the pressure drastically increases. Furthermore we see that in this model the
pressure follows a pattern of being nearly level near the core, before decreasing in
an approximately linear fashion as the radius increases.

There is another analytical solution to the TOV-equation; if we assume that the neu-
trons are relativistic, then equations (14) and (18) yield the ultra-relativistic Equation
of State for a Fermi gas
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Figure 15: Pressure throughout the inside of a sphere of uniform density, for a few
different values of 2GM/R.

P =
ε

3
=
c2ρ

3
, (83)

which enables us to re-write the TOV-equation (70) in terms of the density

ρ′r2

ρ
=

4GM

c2

[
1 +

4πr3ρ

3M

] [
1− 2GM

c2r

]−1

. (84)

We then make the ansatz that ρ is a simple function of the form

ρ = Crn, (85)

so that the derivative of the pressure at r, and the mass contained within r are

ρ′ = Cnrn−1, M = 4π
Cr3+n

(3 + n)
, (86)

respectively. Inserting these into (84) yields, after some simplification,

nr =
4GM

c2

[
1 +

3 + n

3

] [
1− 2GM

c2r

]−1

. (87)

Multiplying by the inverse of the rightmost bracket and collecting like terms results in
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r =
2GM

c2

[
1

3
− 4

n

]
= r3+n 8GπC

c2(n+ 3)

[
1

3
− 4

n

]
. (88)

For this equation to be balanced in powers of r we must have that n = −2, which in
turn fixes the constant C, and leaves us with the solution

ρ =
3c2

56πGr2
. (89)

The first thing to note is that this solution is not physically realizable - it goes to infinity
for small values of r, and only asymptotically approaches zero for large values of r. It
is not surprising that the solution behaves poorly in the non-relativistic regime, but
given the assumption of an ultra-relativistic equation of state, one might have thought
that it would accurately describe the high density regime. Unfortunately, our simple
ansatz left no room for finding monotonically decreasing solutions that did not have
this problem of divergence. Additionally, there are no adjustable parameters other than
the radius. So if we were to take equation (89) seriously, the implication would be that
there is exactly one completely unique solution, and that we should expect all neutron
stars to be exactly the same.

When moving to the numerical solution, we expect some of the characteristics of
these analytical solutions to feature. Specifically, the pressure should behave as in
Figure 15 for small r, given that the very core of the star experiences the greatest
pressure, and thus the smallest density gradient.

4.2 Numerical Results

We proceed in much the same way as we did for white dwarfs - first using a polytropic
equation of state, with γ = 5/3, to model a neutron star; and then finding an equation
of state for arbitrary relativity by curve fitting a function of the form

ε̄(P̄ ) = ANRP̄
3/5 + ARP̄ (90)

to a parametric plot of the pressure, from equation 19, versus the analytic expression for
energy density, from equation (14c) - with the neutron mass mN replacing the electron
mass me, so that the equations describe a neutron Fermi gas. Again we emphasise that
the coefficients in equation (90) will depend on the range of the input parameter, uF ,
and present a few choice values in Table 3. In either case, the assumption that we can
write the energy density as a function of pressure lets us rewrite the TOV-equation (70)
in terms of the pressure. If we also introduce the constant

δ =
4πε0
M�c2

, (91)

we can put the TOV-equation into dimensionless form

P ′ = −αε̄(P̄ )M̄

r2

[
1 +

P̄

ε̄(P̄ )

] [
1 + δr3 P̄

M̄

] [
1− 2M̄R0

r

]−1

. (92)
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Table 3: Possible values of the curve fit coefficients, as a function of the maximal value
of the relativity parameter on the fitting interval.

kF h̄
mN c

Pressure [ε0] ANR AR
0.5 0.0058 2.625 2.603
1.0 0.15 2.613 2.670
1.5 1.0 2.583 2.736
2.0 3.3 2.539 2.789
2.5 8.6 2.487 2.831
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(a) Pressure as a function of radius.
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Figure 16: Comparison between pressure and mass as functions of radius for four dif-
ferent combinations of equation of state and gravitational model.

Looking at Figure 16 we see that though they are not identical, the shape of the
graphs are very similar in all four cases. In particular, the pressure of a non-relativistic
polytrope under the effects of Einstein gravity is very nearly identical to the pressure of
the curve fit equation of state under Newtonian gravity. On the other hand it is clear
from looking at the mass plots that Newtonian gravity is not a good approximation, as
it leads to a mass estimate which is twice as large as the general relativistic prediction.

And to better pinpoint for which central pressures the polytropic approximation
fails, we look at the parametric plot in Figure 17, where although there is no one clear
point of departure, we feel confident in saying that the deviation is small for central
pressures below 0.001ε0, and significant for central pressures in excess of 0.01ε0. We
can make this more precise by comparing the equation of state in (90) with the non-
relativistic polytrope for a neutron star in equation 21

ε̄(P̄ ) = 2.613P̄ 3/5 + 2.670P̄ , (93)

ε̄(P̄ ) =

(
P̄

K̄

)3/5

= 2.627P̄ 3/5, (94)

and calculating when the central pressure predicted by the polytrope deviates by more
than, say, 10%. We find that this happens when the central pressure exceeds 0.0033ε0.
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Figure 17: Parametric plot of Neutron star masses and radii for two different EoS, one
a curve fit for arbitrary relativity, and the other a non-relativistic polytrope.

Figure 17 also highlights that, to good approximation, there is a logarithmic rela-
tionship between the central pressure and the arc length of the curve. Similarly, the
mass is proportional to the logarithm of the central pressure, and the radius is inversely
proportional logarithm of the central pressure. Finally there is the striking fact that
there appears to be a maximum mass, and in contrast to what we found for white dwarfs
the maximum mass corresponds to a single radius - solutions with smaller radius than
the radius corresponding to the maximum mass are less massive. Figure 18 implies that
the cause of this discrepancy is that our model for white dwarfs was at the time not
fully relativistic. Moreover, our result for the maximum mass is significantly smaller
than more realistic estimates.4
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Figure 18: Comparison between parametric plots of mass as a function of radius for
neutron stars with four different combinations of equation of state and gravitational
model, and one plot of a white dwarf with general relativistic corrections and a piecewise
equation of state
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4.3 Limiting Mass and Stability

In Figures 13 and 17 we have seen that our models predict a limiting mass of white
dwarfs and neutron stars. However, one can imagine a situation where more mass is
imparted to, say, a neutron star by accretion from its binary partner14 - thus pushing
it above the mass limit. Since our model does not admit the existence of such a star,
we conclude that a star pushed above the limiting mass no longer conforms to the as-
sumptions underpinning our model - that the star is a non-interacting zero temperature
Fermi gas in hydrostatic equilibrium. If the latter assumption isn’t true then the star
must be in the process of collapsing or expanding. Dropping the first assumption and
allowing for interactions introduces, among other things, the possibility of reactions
that change the constituents of the star. Specifically, we know that in the case of white
dwarfs it is possible for protons to capture electrons, thus becoming neutrons. Indeed,
this neutronization is the conventional explanation for what happens when a white
dwarf collapses into a neutron star4 - though it is worth noting that another likely fate
of a white dwarf gaining mass through accretion is to explode in a nova, dispersing
some of the material involved15.

There is one argument we can make based on our model, based on the idea that
an equilibrium can be either stable or unstable. Some equilibriums are stable against
perturbations, while others are not. The canonical example of an unstable equilibrium
is a ball perched on top of a hill - untouched it will forever remain on that one flat
spot, but give it the slightest push and it will tumble down the hill. We will show
how the configurations to the left of the maximum mass in Figure 17 are unstable
against gravitational collapse. Such a star would have smaller radius and greater density
than the corresponding star to the right of the mass limit. To make the argument
more clear let us look at the simplified graph in Figure 19, where we have sketched
a parametrization in terms of mass and central pressure rather than mass and radius.
Imagine a neutron star with greater radius - thus per the central pressure annotations
in Figure 17 it is a neutron star with smaller central pressure - and with the benefit
of foreknowledge dub it S for stable. Then imagine that it is compressed for some
reason or the other. This new configuration, S̄, has greater density and an increased
degeneracy pressure when compared to S, but it has the same mass. If S̄ had more mass,
it would be in hydrostatic equilibrium and fit on the line as the star S ′. This tells us
that in the compressed star S̄ the degeneracy pressure can not be weaker than gravity -
otherwise the more massive star S ′, which experiences an equal or greater gravitational
self-attraction S̄ and the same pressure, would not be in equilibrium. Thus the balance
of forces in S̄ is such that degeneracy pressure will cause the star would bounce back
after being compressed, returning it to S.

For the star sagaciously named U the situation is different. If the star is compressed
then the density and thus the degeneracy pressure increases, as was the case for S.
However, when comparing Ū to the equilibrium configuration U ′ with the same pressure
one finds that gravity is comparatively stronger in Ū . Thus the overall situation is
reversed when compared to S̄ - instead of degeneracy pressure acting to return Ū to U ,

33



Pc

M

UŪ
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Figure 19: A schematical representation of the relationship between the total mass M ,
and the central pressure Pc of neutron stars. Configurations to the left of the maximum
mass are in an unstable equilibrium.

gravity acts to further compress Ū .

5 Summary and Conclusions

We have modeled white dwarfs and neutron stars as a non-interacting Fermi gas at
zero temperature, supported against gravitational collapse by electron and neutron
degeneracy pressure, respectively. With a non-relativistic polytropic equation of state,
P = Kε5/3, this model produced white dwarf radii and masses which fit observational
data for low mass white dwarfs. Using a relativistic polytropic equation of state, P =
Kε4/3, reproduced the Chandrasekhar limit, but gave no predictions for low mass white
dwarfs. This showed that a simple polytropic equation of state worked well in the
regime it was made for, but that the difference in conditions within a white dwarf are
too large to be wholly described by such a simple equation of state.

We curve fit an equation of state of the form P = ANRε
5/3 + ARε

4/3 to a plot
of the analytical values of pressure and density, resulting in better agreement with
the observational data. However, this curve fit equation of state did not exhibit the
limiting mass predicted by the Chandrasekhar limit, so to further improve our model
we introduced a piecewise equation of state, composed of several curve fit equations of
state - each covering a limited range of pressures and densities. The result of this added
complexity was a plot which showed agreement with observational data, and exhibited
the same limiting mass predicted by Chandrasekhar. This shows that modeling a white
dwarf as a non-interacting Fermi gas at zero temperature is a good approximation.

In contrast, our model of neutron stars significantly undershoots observational data
on neutron star masses, to the point where the heaviest neutron star is twice as light as

34



the heaviest white dwarf. That’s not to say that our model isn’t useful - the comparisons
we made between different approximations to the same equations of state show that
there are significant differences between polytropic and curve fit equations of state, and
our comparisons between neutron stars under the effect of Newtonian gravity on the
one hand and Einstein gravity on the other make it clear that neutron stars are objects
best described in the context of a general relativistic theory.

For both types of compact stars discussed herein we found a maximum mass, above
which we should not expect to find stars described by our model. Taken together with
the fact that configurations with central densities equal to or greater than the maximum
mass can be shown to be in an unstable equilibrium, it seems likely that any star above
the maximum mass will undergo some kind of transformation - either shedding mass,
or collapsing.

Finally, we showed that the simplest explicit integrator of ordinary differential equa-
tions - the Euler method - grows unstable when the pressure approaches zero. We did
not observe any such behaviour from the 4th order explicit Runge-Kutta method, nor
from the 4th order implicit Adams-Moulton method. For similar step sizes the implicit
method was roughly fifty times slower than the explicit method.

6 Where Do We Go From Here?

The fact that the maximum mass of a neutron star, as predicted by our non-interacting
model, fell short of the observational data whereas the predicted radii and masses of
the white dwarfs were in good agreement indicates that we can not ignore interactions
if we wish to accurately model a neutron star. Therefore an obvious next step would
be to find some way to incorporate nucleon-nucleon interactions in our model. This
is a difficult task, in part because quantum field theory is a complicated machinery,
but also because neutron stars are the only place in the universe where neutrons are
packed so closely together. On the other hand this makes it a very interesting field of
study - since such dense configurations of matter are not well understood, we can use
observational data from neutron stars to check whether our models are correct.

Additionally we considered our neutron stars to be made exclusively out of neutrons,
but in reality there is an admixture of neutrons, protons, and electrons in most of the
star - all of whom must obey the requirement of global electric neutrality. ??. Closer to
the core there may be exotic hadrons and degenerate quark matter. In the case of white
dwarfs we briefly touched on the fact that their composition varies from star to star -
some are richer in heavier nuclei, while others have a comparatively greater proportion
of light nuclei. Either of these possibilities would be worth exploring in greater detail.

On the computational side of things we might have spent more time comparing
different algorithms - in particular it would have been interesting to find out more
about the conditions under which an algorithm for solving the TOV-equation exhibits
instability. One might ask if it is primarily the order and step size of the algorithm
which is to blame, or if there is there some pathological equation of state which may -
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for instance - make the 4th order Runge-Kutta methods unstable.
Finally there is the question of rotation and magnetic fields - conservation of angular

momentum and magnetic flux cause neutron stars to spin up to 716 times per second16,
and have magnetic fields up to 17 orders of magnitude greater than the magnetic field
of the earth. The spin acts to further stabilise the star against gravitational collapse,
and the magnetic field has implications for the structure of the star.
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Appendices

A Pressure of a non-interacting Fermi gas

From the first law of thermodynamics, dE = dQ− PdV , we get the relation

P = −∂E
∂V

, (95)

if we assume that the temperature is constant. We may recast this relation in terms of
the energy density and the number density, and then use the chain rule to expand the
terms

P = −
∂(Nε/n)

∂(N/n)
= −

∂(Nε/n)/∂n

∂(N/n)/∂n
= −(∂N/∂n)ε/n+N(∂(ε/n)/∂n)

1
n
(∂N/∂n)−N/n2

. (96)

This expression can be simplified by noting that since N/n is a constant, the partial
derivative ∂N/∂n is zero, and thus

P = n2∂(ε/n)

∂n
= n

dε

dn
− ε. (97)

Since we are assuming that the electrons are non-relativistic, it follows that the heavier
nucleons are also non-relativistic. Therefore we may consider the energy density of the
nucleons to be completely dominated by their rest energy, εN = nemN

A
Z
c2, and treat

εN as a constant. Under this assumption we have that

P = n2
e

∂(εe/ne + nemN
A
Z
c2/ne)

∂ne
= n2

e

∂(εe/ne)

∂ne
, (98)

which, if we plug in the integral form of equation (14), becomes

P = n2
e

m4
ec

5

π2h̄3

∂

∂ne

[
1

ne

∫
(u2 + 1)1/2u2du

]
. (99)

This expression looks rather thorny, but we will show that it can be put into a nice
form. Applying the product rule, and ignoring the the numerical factors, yields

P ∝ − 1

n2
e

∫
(u2 + 1)1/2u2du+

1

ne

∂

∂ne

∫
(u2 + 1)1/2u2du. (100)

Since u is related to ne through kF , there exists a substitution U =
(
n

2/3
e χ2 + 1

)1/2
χ3

3
,

where χ = h̄
mec

(3π2)1/3, such that∫
(u2 + 1)1/2u2du =

∫
Udne = Une −

∫
ndU. (101)

Hence
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P ∝ − 1

n2
e

(
Une −

∫
ndU

)
+

1

ne

∂

∂ne

∫
Udne, (102)

which by the fundamental theorem of calculus simplifies to

P ∝ 1

n2
e

∫
nedU. (103)

Restoring numerical factors and reverting the transformation gives us the result

P =
m4
ec

5

3π2h̄3

∫ uF

0

(u2 + 1)−1/2u4du. (104)
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B Python Scripts

To save space I have not included all the code. Notably there are no plotting routines
included, and the script for finding the coefficients for the Arbitrary Relativity equation
of state was left out.

compactStar.py

from constant s import ∗
from HipparcusGaia import h ipparcus

import time
import math
import numpy as np
from sc ipy . opt imize import f s o l v e
from sc ipy . opt imize import c u r v e f i t as f i t

’ ’ ’
This s c r i p t works by f i r s t c r e a t i n g an ob j e c t in the c l a s s ” Star ” , and

then c a l l i n g one o f the i n t e g r a t i o n methods de f ined with in the c l a s s .
For example the sequence o f l i n e s

NeutronAE = Star ( s t a r =’neutron ’ , a r e l=True , g r e l=True )
R, M, P = NeutronAE .RK38( )

f i r s t c r e a t e s a c l a s s ob j e c t and a s s i g n s i t the name ”NeutronAE ” , uses
the c l a s s method i n t e g r a t o r RK38 on i t , which c r e a t e s v e c t o r s with
radius , mass , and p r e s s u r e s o f the g iven ” Star ” ob j e c t and a s s i g n s the

output o f that method to the v a r i a b l e s R, M, P.
’ ’ ’

c l a s s Star ( ob j e c t ) :
’ ’ ’ Parameters o f the star , and o f the i n t e g r a t i o n a lgor i thm ’ ’ ’
de f i n i t ( s e l f , s t a r=’ neutron ’ , a r e l=True , p i e c e w i s e=False ,

g r e l=True , gamma=5.0/3 .0 , p r e s su r e =0, AR default=2) :
s e l f . s t a r = s t a r #Type o f s tar , white or neutron
s e l f . a r e l = a r e l #a r e l = False −> Polytrope EoS ,

a r e l = True −> Arbi t raty R e l a t i v i t y EoS
s e l f . AR default= AR default #Contro l s which c o e f f i c i e n t s are used

in the AR EoS f o r white dwarfs
s e l f . p i e c e w i s e = p i e c e w i s e #Piecewi se EoS
s e l f . g r e l = g r e l #General R e l a t i v i t y
s e l f . gamma = gamma #Poly t rop i c index
s e l f . nu = 1.0/gamma

i f s e l f . s t a r == ’ white ’ :
s e l f . dr = 1000 .0 #s t e p s i z e in meters
s e l f . Pc = 2.5∗10∗∗22 #l o o s e l y based on average dens i ty
s e l f .A = 52 .0 #number o f protons in Iron
s e l f . Z = 26 .0 #number o f neutron i s I ron
s e l f .RMAX = 2.0∗10∗∗7 #maximum rad iu s
’ ’ ’ These va lue s are based on curve f i t t i n g to a parametr ic
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p lo t o f ( e (u) ,P(u) )
with u in the i n t e r v a l {0 , relParam } ,
and relParam = [ 0 . 5 , 1 . 0 , 1 . 5 , 2 . 0 , 2 . 5 , 4 . 5 ]
Generated by ArRelWD. py ’ ’ ’

s e l f .AR = [ [ 0 . 0 5 4 9 0 8 6 1 , 1 . 1 2 9 9 9 7 8 ] , [ 0 . 0 4 8 4 8 8 0 9 , 2 . 28982439 ] ,
[ 0 . 04165437 , 3 . 15 205 892 ] , [ 0 . 03 5655 86 , 3 . 75509996 ] ,
[ 0 . 03069424 , 4 . 17 828 088 ] , [ 0 . 01 8378 73 , 5 . 0 0 1 1 0 4 4 6 ] ]

’ ’ ’ Corresponding va lue s o f P(u) ’ ’ ’
s e l f . Pcut = [2 .79∗10∗∗20/ eps i l on0 , 7 .41∗10∗∗21/ eps i l on0 ,

4 .59∗10∗∗22/ eps i l on0 , 1 .60∗10∗∗23/ eps i l on0 ,
4 .14∗10∗∗23/ eps i l on0 , 4 .71∗10∗∗24/ e p s i l o n 0 ]

’ ’ ’ . . . with u in the i n t e r v a l { relParam [ n ] , relParam [ n + 1 ] } . . .
relParam = [ 0 . 1 , 0 . 2 , 0 . 35 , 0 . 5 , 1 . 0 , 1 . 5 , 2 . 5 , 4 . 5 , 7 . 0 ,

1 0 . 0 ]
Generated by ArRelWDPiecewise . py ’ ’ ’

s e l f .AR2 = [ [ 0 . 0 5 7 2 8 5 6 4 , 0 . 3 950 2537 ] , [ 0 . 05 616 687 ,
0 . 79267173 ] ,

[ 0 . 05429222 , 1 . 25 990 663 ] , [ 0 . 04 7912 68 , 2 . 36464381 ] ,
[ 0 . 03923298 , 3 . 38 943 866 ] , [ 0 . 02 8284 18 , 4 . 34864880 ] ,
[ 0 . 01646565 , 5 . 09 516 187 ] , [ 0 . 00 9217 69 , 5 . 42361918 ] ,
[ 0 . 00511335 , 5 . 5 5 9 4 1 3 4 8 ] ]

s e l f . Pcut2 = [10∗∗17 , 3 .1∗10∗∗18 , 4 .9∗10∗∗19 , 2 .79∗10∗∗20 ,
7 .41∗10∗∗21 ,

4 .59∗10∗∗22 , 4 .14∗10∗∗23 , 4 .71∗10∗∗24 ,
2 .83∗10∗∗25 , 1 .19∗10∗∗26 ]

s e l f . Anr , s e l f . Ar = s e l f .AR[ s e l f . AR default ]
#TODO: look in to making Anr and Ar depend on the

pr e s su r e
#probably b e t t e r to implement in the s o l v e r
#DONE − but the cur rent implementation through

eps ( ) i s s low

e l i f s t a r == ’ neutron ’ :
s e l f . dr =10.0
s e l f . Pc = 2.5∗10∗∗34 #e p s i l o n 0 = 5.46∗10ˆ35 , r e f e r e n c e

value
s e l f .A = 26 .0
s e l f . Z = 26 .0
s e l f .RMAX = 10∗∗5/2
s e l f .AR = [ [ 2 . 6 2 5 2 7 6 1 8 , 2 . 60312049 ] ,

[ 2 . 61292102 , 2 . 66 981 139 ] , [ 2 . 58 2868 78 , 2 . 73583722 ] ,
[ 2 . 53879713 , 2 . 78 944 920 ] , [ 2 . 48 6659 57 , 2 . 8 3 0 5 8 3 9 4 ] ]
#r e l a t i v i t y parameter <= 0 . 5 , 1 . 0 , 1 . 5 , 2 . 0 , 2 . 5

s e l f . c u t o f f = [ 0 . 0 0 5 8 , 0 . 15 , 1 . 0 , 3 . 3 , 8 . 6 ]
s e l f . Anr , s e l f . Ar = s e l f .AR[ 0 ]

’ ’ ’ Po ly t rop i c constant o f p r o p o r t i o n a l i t y ’ ’ ’
s e l f .KWDNR = hbar ∗∗2/(mE∗15∗np . p i ∗∗2) ∗ ( ( s e l f . Z∗3∗np . p i ∗∗2) /( s e l f .
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A∗mN∗c ∗∗2) ) ∗∗ ( 5 . 0 / 3 . 0 )
s e l f .KWDUR = hbar∗c /(12∗np . p i ∗∗2) ∗(3∗np . p i ∗∗2∗ s e l f . Z/(mN∗c∗c∗ s e l f

.A) ) ∗∗ ( 4 . 0 / 3 . 0 )
i f gamma == 5 . 0 / 3 . 0 and s t a r == ’ white ’ :

s e l f .K = s e l f .KWDNR

e l i f gamma == 4 . 0 / 3 . 0 and s t a r == ’ white ’ :
s e l f .K = s e l f .KWDUR

e l i f gamma == 5 . 0 / 3 . 0 and s t a r == ’ neutron ’ :
s e l f .K = hbar ∗∗2/(mN∗15∗np . p i ∗∗2) ∗ ( ( s e l f . Z∗3∗np . p i ∗∗2) /( s e l f .

A∗mN∗c ∗∗2) ) ∗∗gamma

e l i f gamma == 1 . 0 :
s e l f .K = 1 . 0 / 3 . 0

i f a r e l == True :
s e l f .K, s e l f . gamma, s e l f . nu = 1 . 0 , 1 . 0 , 1 . 0

’ ’ ’ S ca l i ng and non−d i m e n s i o n a l i s a t i o n ’ ’ ’
s e l f . a lpha = R0/( s e l f .K∗∗ s e l f . nu∗ e p s i l o n 0 ∗∗(1.0−1.0/ s e l f . gamma) )
s e l f . beta = 4∗np . p i /(mS∗c∗c ) ∗( e p s i l o n 0 / s e l f .K) ∗∗ (1 . 0/ s e l f . gamma)
s e l f . d e l t a = 4∗np . p i /(mS∗c∗c ) ∗ e p s i l o n 0

’ ’ ’ De fau l t p r e s su r e value , or input p r e s su r e va lue ’ ’ ’
i f p r e s su r e != 0 :

s e l f . Pc = pre s su r e

s e l f . P0 = s e l f . Pc/ e p s i l o n 0

’ ’ ’ D i f f e r e n t i a l Equations ’ ’ ’
de f dPdr ( s e l f , r ,M,P) :

i f s e l f . a r e l == 0 : #Assuming po lyt rope
i f s e l f . g r e l == 1 : #Ignor ing gene ra l r e l a t i v i s t i c

e f f e c t s
re turn − s e l f . a lpha ∗M∗P∗∗ s e l f . nu/ r ∗∗2∗(1+P∗∗(1− s e l f . nu ) ∗R0

/ s e l f . alpha ) ∗(1+ s e l f . d e l t a ∗P/M∗ r ∗∗3) /(1−2∗M∗R0/ r )
e l i f s e l f . g r e l == 0 :

re turn − s e l f . a lpha ∗M∗P∗∗ s e l f . nu/ r ∗∗2

e l i f s e l f . a r e l == 1 :
i f s e l f . g r e l == 1 :

re turn − s e l f . a lpha ∗M∗ s e l f . eps (P) / r ∗∗2∗(1+P/ s e l f . eps (P) )
∗(1+ s e l f . d e l t a ∗P/M∗ r ∗∗3) /(1−2∗M∗R0/ r )

e l i f s e l f . g r e l == 0 :
re turn − s e l f . a lpha ∗M∗ s e l f . eps (P) / r ∗∗2

de f eps ( s e l f ,P) :
i f s e l f . p i e c e w i s e == False :

i f s e l f . s t a r == ’ neutron ’ :
r e turn s e l f . Anr∗P∗∗ ( 3 . 0 / 5 . 0 ) + s e l f . Ar∗P
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e l i f s e l f . s t a r == ’ white ’ :
r e turn s e l f . Anr∗P∗∗ ( 3 . 0 / 5 . 0 ) + s e l f . Ar∗P∗∗ ( 3 . 0 / 4 . 0 )

e l i f s e l f . p i e c e w i s e == True :
i f s e l f . s t a r == ’ neutron ’ :

de f ana l p ( t , P) :
r e turn P − ( 1 . 0 / 8 . 0 ∗ ( (2∗ t ∗∗3 − 3∗ t ) ∗(1+ t ∗∗2) ∗∗0 .5 +

3∗np . a r c s inh ( t ) ) )
de f ana l e ( t ) :

r e turn 3 . 0 / 8 . 0 ∗ ( (2∗ t ∗∗3 + t ) ∗(1+ t ∗∗2) ∗∗0 .5 − np
. a r c s inh ( t ) )

re turn ana l e ( f s o l v e ( anal p , P∗∗0 .20 , args=(P) ) )

e l i f s e l f . s t a r == ’ white ’ :
i f P <= s e l f . Pcut2 [ 0 ] / e p s i l o n 0 :

r e turn ( s e l f .KWDNR∗ e p s i l o n 0 ∗∗ (5 .0/3 .0 −1 .0) )
∗∗(−3.0/5.0) ∗P∗∗ ( 3 . 0 / 5 . 0 )

e l i f s e l f . Pcut2 [ 0 ] / e p s i l o n 0 < P and P <= s e l f . Pcut2 [−1]/
e p s i l o n 0 :
f o r i in range ( l en ( s e l f . Pcut2 [ : −1 ] ) ) :

i f s e l f . Pcut2 [ i ] / e p s i l o n 0 < P and P <= s e l f . Pcut2
[ i +1]/ e p s i l o n 0 :
s e l f . Anr , s e l f . Ar = s e l f .AR2[ i ]

r e turn s e l f . Anr∗P∗∗ ( 3 . 0 / 5 . 0 ) + s e l f . Ar∗P∗∗ ( 3 . 0 / 4 . 0 )
e l i f s e l f . Pcut2 [−1]/ e p s i l o n 0 < P:

return ( s e l f .KWDUR∗ e p s i l o n 0 ∗∗ (4 .0/3 .0 −1 .0) )
∗∗(−3.0/4.0) ∗P∗∗ ( 3 . 0 / 4 . 0 )

de f dMdr( s e l f , r ,P) :
i f s e l f . a r e l == 0 :

re turn s e l f . beta ∗ r ∗∗2∗P∗∗ s e l f . nu
i f s e l f . a r e l == 1 :

re turn s e l f . beta ∗ r ∗∗2∗ s e l f . eps (P)

’ ’ ’ D i f f e r e n t i a l Equation s o l v e r s ’ ’ ’
de f RK38( s e l f ) :

R,M,P = s e l f .AM1(RMAX=s e l f . dr )
dr = s e l f . dr
r = dr
whi l e r < s e l f .RMAX and P[−1] > 0 :

’ ’ ’ Runge−Kutta 3/8 ’ ’ ’
t ry :

p1 = s e l f . dPdr ( r ,M[−1] ,P[−1])
m1 = s e l f . dMdr( r ,P[−1])
p2 = s e l f . dPdr ( r+dr /3 ,M[−1]+ dr∗m1/3 ,P[−1]+ dr∗p1 /3)
m2 = s e l f . dMdr( r+dr /3 ,P[−1]+ dr∗p1 /3)
p3 = s e l f . dPdr ( r+dr ∗2/3 ,M[−1]+ dr∗(−m1/3 +m2) ,P[−1]+ dr∗(−

p1/3 +p2 ) )
m3 = s e l f . dMdr( r+dr ∗2/3 ,P[−1]+ dr∗(−p1/3 +p2 ) )
p4 = s e l f . dPdr ( r+dr ,M[−1]+ dr ∗(m1 − m2 + m3) ,P[−1]+ dr ∗( p1
− p2 + p3 ) )

m4 = s e l f . dMdr( r+dr ,P[−1]+ dr ∗( p1 − p2 + p3 ) )
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M. append (M[−1] + dr /8∗(m1+3∗m2+3∗m3+m4) )
P. append (P[−1] + dr /8∗( p1+3∗p2+3∗p3+p4 ) )
r = r + dr
R. append ( r )

except ValueError :
break

R,M,P = cut (R,M,P)
return R,M,P

de f BEuler ( s e l f , p , r ,M1, P1) :
r e turn p − P1 − s e l f . dr∗ s e l f . dPdr ( r ,M1+s e l f . dr∗ s e l f . dMdr( r , p ) ,p )

de f Trapezo ida l ( s e l f , p , r ,M1, P1) :
r e turn p − P1 − s e l f . dr /2 . 0∗ ( s e l f . dPdr ( r ,M1+s e l f . dr∗ s e l f . dMdr( r , p

) ,p ) + s e l f . dPdr ( r ,M1, P1) )

de f AM S3 P( s e l f , p , r ,M1,M2,M3, P1 , P2 , P3) :
’ ’ ’ Inte rmed iate Pressure Computation in AM4 ’ ’ ’
r e turn p − P1 − s e l f . dr /24 .0∗ (9∗ s e l f . dPdr ( r ,M1

+ s e l f . AM S3 M(p , r , P1 , P2 , P3) ,p)
+ 19∗ s e l f . dPdr ( r−s e l f . dr ,M1, P1)
− 5∗ s e l f . dPdr ( r−2∗ s e l f . dr ,M2, P2)
+ s e l f . dPdr ( r−3∗ s e l f . dr ,M3, P3) )

de f AM S3 M( s e l f , p , r , P1 , P2 , P3) :
’ ’ ’ Inte rmed iate Mass Computation in AM4 ’ ’ ’
r e turn s e l f . dr /24 .0∗ (9∗ s e l f . dMdr( r , p )

+ 19∗ s e l f . dMdr( r−s e l f . dr , P1)
− 5∗ s e l f . dMdr( r−2∗ s e l f . dr , P2)
+ s e l f . dMdr( r−3∗ s e l f . dr , P3) )

de f AM1( s e l f ,RMAX) :
’ ’ ’Adams−Moulton − backward Euler , s=0 ’ ’ ’

R,M,P = [ 0 ] , [ 0 ] , [ s e l f . P0 ]
r , PP = 0 , P[−1] #PP i s the

Pressure Pred i c to r
whi l e r < RMAX and P[−1] > 0 :

r = r + s e l f . dr
#Note the f l o a t − np . f l o a t 6 4 s lows down RK38 by 15 , and

AM4 by 2
P. append ( f l o a t ( f s o l v e ( s e l f . BEuler , PP, args=(r ,M[−1] ,P[−1]) ) )

)
M. append (M[−1] + s e l f . dr∗ s e l f . dMdr( r ,P[−1]) )
R. append ( r )
PP = P[−1] + s e l f . dr∗ s e l f . dPdr (R[−1] ,M[−1] ,P[−1]) #

Pred i c t i on f o r the next i t e r a t i o n
R,M,P = cut (R,M,P)
return R, M ,P
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de f AM2( s e l f ,RMAX) :
’ ’ ’Adams−Moulton − Trapezoidal , s=1 ’ ’ ’

R, M, P = s e l f .AM1(RMAX=s e l f . dr ) #us ing the lower
order method f o r the f i r s t s tep

r = s e l f . dr
whi l e r < RMAX and P[−1] > 0 :

r = r + s e l f . dr
#p r e d i c t o r
PP = P[−1] + s e l f . dr∗ s e l f . dPdr ( r−s e l f . dr ,M[−1] ,P[−1])
#c o r r e c t o r
P. append ( f s o l v e ( s e l f . Trapezoidal , PP, args=(r ,M[−1] ,P[−1]) ) )
M. append (M[−1] + s e l f . dr∗ s e l f . dMdr( r ,P[−1]) )
R. append ( r )

R,M,P = cut (R,M,P)
return R, M ,P

de f AM4( s e l f ) :
’ ’ ’Adams−Moulton − 4 th order , s=3 ’ ’ ’

R, M, P = s e l f .AM2(RMAX=3∗ s e l f . dr ) #us ing the lower order
methods f o r the f i r s t s t ep s

r = 3∗ s e l f . dr
whi l e r < s e l f .RMAX and P[−1] > 0 :

r = r + s e l f . dr
#p r e d i c t o r
PP = P[−1] + s e l f . dr∗ s e l f . dPdr ( r−s e l f . dr ,M[−1] ,P[−1])
#c o r r e c t o r
P. append ( f s o l v e ( s e l f . AM S3 P , PP, args=(r ,M[−1] ,M[−2] ,M[−3] ,P

[−1] ,P[−2] ,P[−3]) ) )
M. append (M[−1] + s e l f . AM S3 M(P[−1] , r ,P[−2] ,P[−3] ,P[−4]) )
R. append ( r )

R,M,P = cut (R,M,P)
return R, M ,P

’ ’ ’ Helper f u n c t i o n s ’ ’ ’

de f cut (R,M,P) :
#cuts away unphys i ca l va lue s o f P, a long with the corre spond ing r and

M
whi le P[−1] < 0 or math . i snan (P[−1]) == True :

R,M,P = R[0 : −1 ] ,M[0 : −1 ] ,P[0 : −1 ]
re turn R,M,P

de f parametricRandM ( star , i t e r a t i o n s ) :
#computes R, M, P f o r i n c r e a s i n g va lue s o f the c e n t r a l p r e s su r e
radius , mass , p r e s su r e = [ ] , [ ] , [ ]
f o r i in range ( i t e r a t i o n s ) : #195+30

s t a r . P0=s t a r . P0∗1 .08
R, M, P = s t a r .RK38( )
rad iu s . append (R[ −1 ]/1000 .0)
mass . append (M[−1])
p r e s su r e . append (P [ 0 ] )

r e turn radius , mass , p r e s su r e
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HipparcusGaia.py Observational data from the Hipparcus satellite

hipparcus = ( [ [ 0 . 6 1 2 , 0 . 0 8 8 ] , [ 1 . 2 3 7 , 0 . 0 6 8 ] ] ,
[ [ 0 . 5 9 7 , 0 . 1 8 2 ] , [ 1 . 3 8 7 , 0 . 1 9 6 ] ] ,
[ [ 0 . 5 8 7 , 0 . 0 6 0 ] , [ 1 . 1 4 4 , 0 . 0 2 5 ] ] ,
[ [ 0 . 4 9 0 , 0 . 0 8 0 ] , [ 1 . 0 3 4 , 0 . 0 5 9 ] ] ,
[ [ 0 . 9 3 5 , 0 . 1 5 3 ] , [ 0 . 8 4 0 , 0 . 0 4 9 ] ] ,
[ [ 0 . 7 0 6 , 0 . 1 1 7 ] , [ 1 . 4 0 8 , 0 . 0 9 6 ] ] ,
[ [ 0 . 5 1 0 , 0 . 0 6 0 ] , [ 1 . 2 3 9 , 0 . 0 4 5 ] ] ,
[ [ 0 . 8 0 6 , 0 . 1 0 6 ] , [ 1 . 0 0 5 , 0 . 0 3 1 ] ] ,
[ [ 0 . 7 2 5 , 0 . 1 0 4 ] , [ 1 . 3 7 8 , 0 . 0 5 9 ] ] )

constants.py

c = 299792458 # m/ s
hbar = 1.0545718∗10∗∗(−34) # J s
G = 6.674∗10∗∗(−11) # mˆ3 kgˆ−1 sˆ−2
eV = 1.6021766∗10∗∗(−19) # J
mP = 1.673∗10∗∗(−27) # kg
mN = 1.673∗10∗∗(−27) # kg
mE = 9.109∗10∗∗(−31) # kg
mS = 1.9891∗10∗∗30 # kg
rS = 6.957∗10∗∗8 # m

R0 = G∗mS/c ∗∗2
e p s i l o n 0 = mN∗∗4∗ c ∗∗5/(3∗3.14159265359∗∗2∗ hbar ∗∗3)

ArRelWE.py Finds the coefficients for the Arbitrary Relativity equation of state.

from sc ipy . opt imize import c u r v e f i t as f i t
import numpy as np
from constant s import ∗
A, Z = 52 , 26 #52 , 26
e p s i l o n 0 = mE∗∗4∗ c ∗∗5/(3∗np . p i ∗∗2∗hbar ∗∗3)
const = 3∗np . p i ∗∗2∗Z/(mN∗c ∗∗2∗A)
de f ArRel (x , Anr , Ar) : #energy dens i ty as a

func t i on o f p r e s su r e
re turn (Anr ) ∗x ∗∗ ( 3 . 0 / 5 . 0 ) + (Ar) ∗x ∗∗ ( 3 . 0 / 4 . 0 )

de f p( t ) :
r e turn 1 . 0 / 8 . 0 ∗ ( (2∗ t ∗∗3 − 3∗ t ) ∗(1+ t ∗∗2) ∗∗0 .5 + 3∗np . a r c s inh ( t ) )

de f e ( t ) :
r e turn 3 . 0 / 8 . 0 ∗ ( (2∗ t ∗∗3 + t ) ∗(1+ t ∗∗2) ∗∗0 .5 − np . a r c s inh ( t ) ) +

mN/mE∗A/Z∗ t ∗∗3

de f pRel ( energydens i ty ) :
r e turn hbar∗c /(12∗np . p i ∗∗2) ∗( const ∗ energydens i ty ) ∗∗ ( 4 . 0 / 3 . 0 )

de f pNonRel ( energydens i ty ) :
r e turn hbar ∗∗2/(15∗np . p i ∗∗2∗mE) ∗( const ∗ energydens i ty ) ∗∗ ( 5 . 0 / 3 . 0 )

’ ’ ’ P l o t t i ng rou t in e ’ ’ ’
import matp lo t l i b . pyplot as p l t
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import matp lo t l i b as mpl

f i g , ax = p l t . subp lo t s ( 1 , 1 )

I = [ 0 . 5 , 1 . 0 , 1 . 5 , 2 . 0 , 2 . 5 , 4 . 5 ]
imax = 100000
T = np . l i n s p a c e ( 0 . 0 0 1 , I [−1] , imax ) #t i s the r e l a t i v i t y parameter k∗

hbar/mc
P = np . array ( [ p ( t ) f o r t in T] ) ∗(mE/mN) ∗∗4 #xdata
E = np . array ( [ e ( t ) f o r t in T] ) ∗(mE/mN) ∗∗4 #ydata
s = i n t ( l en (P) ∗2 . 0 / 5 . 0 ) #use to zoom in
ax . p l o t (P [ : s ] ,E [ : s ] )
f o r i in I :

popt , pcov = f i t ( ArRel , P [ : i n t ( imax∗ i / I [−1]) ] , E [ : i n t ( imax∗ i / I
[−1]) ] )

p r i n t ’ Dimens ion les s p r e s su r e = { : . 3 } ’ . format ( e p s i l o n 0 ∗(mN/mE)
∗∗4∗P[ i n t ( l en (P) ∗ i / I [−1]) −1])

p r i n t popt
#E f i t = np . array ( [ ArRel (p , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] ) f o r p in P ] )
E f i t = np . array ( [ ArRel (p , popt [ 0 ] , popt [ 1 ] ) f o r p in P ] )
ax . p l o t (P [ : s ] , E f i t [ : s ] )
ax . t ex t (P [ : s ] [ −1 ] , E f i t [ : s ] [ −1 ] , r ’ $\ f r a c {k F \hbar}{m e c}$ = %s ’

%i )

ax . g e t x a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t s c i e n t i f i c ( Fa l se )
ax . yax i s . s e t m a j o r f o r ma t t e r ( mpl . t i c k e r . Sca larFormatter ( useMathText=True ,

u s e O f f s e t=False ) )
ax . s p i n e s [ ’ r i g h t ’ ] . s e t c o l o r ( ’ none ’ )
ax . s p i n e s [ ’ top ’ ] . s e t c o l o r ( ’ none ’ )
ax . xax i s . s e t t i c k s p o s i t i o n ( ’ bottom ’ )
ax . s p i n e s [ ’ bottom ’ ] . s e t p o s i t i o n ( ( ’ data ’ , 0 ) )
ax . yax i s . s e t t i c k s p o s i t i o n ( ’ l e f t ’ )
ax . s p i n e s [ ’ l e f t ’ ] . s e t p o s i t i o n ( ( ’ data ’ , 0 ) )
#l a b e l s and t h e i r p o s i t i o n s
ax . s e t x l a b e l ( r ’ p r e s su r e ’ )
ax . s e t y l a b e l ( r ’ energy dens i ty ’ )
ax . xax i s . s e t l a b e l c o o r d s ( 1 . 0 5 , 0 . 0 4 )
ax . yax i s . s e t l a b e l c o o r d s ( 0 . 0 0 5 , 1 . 0 1 )
#text s i z e
ax . xax i s . l a b e l . s e t s i z e (30)
ax . yax i s . l a b e l . s e t s i z e (30)
ax . t i ck params ( a x i s=’ both ’ , which=’ major ’ , l a b e l s i z e =15)
ax . t i ck params ( a x i s=’ both ’ , which=’ minor ’ , l a b e l s i z e =12)

p l t . show ( )
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