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Abstract

A theoretical overview of the stochastic dynamic analysis of a
[floating bridge structure is presented. Emphasis is on the
wave-induced response for waves on the sea surface idealized
as a zero mean stationary Gaussian process. The first-order
wave load processes are derived using linear potential theory
and the structural idealization is based on the Finite Element
Method. A discussion of the frequency response method and
the impulse response method as solution techniques to solve
the equation of motion is presented. A case study of a simpli-
fied floating bridge structure is presented with results from the
frequency response method. The numerical example empha-
sizes the influence from low- and high frequency waves and
[frequency dependence in hydrodynamic added mass and
damping coefficients.
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Introduction

Floating bridges have been around for many thousands
of years and throughout the years, they have been used
as temporary supply lines or for military purposes.
However, it is only during the last three decades or so
that floating bridges are being developed to the degree
of sophistication, so they can be applied as a critical part
of modern infrastructure. Still, compared with land-
based bridges, including cable-stayed bridges, limited
information (Skorpa, 2010) is currently available on
floating bridges and even less on submerged floating
tunnels for transportation. This information is especially
true regarding construction records, environmental con-
ditions, durability, operations and performance of the
structure.

The limited amount of floating bridges currently in the
world is a statement to this fact. Depending on the land-
scape in the proximity of the floating bridge and on the
sea state conditions different types of floating bridges
are used. Only three long span floating bridges are cur-
rently located in difficult sea state conditions and allows
for cars to pass. These are:

i. Hood Canal Bridge (1961) in USA a 2,398 me-
ter long pontoon bridge with a 1,988 meter

long anchored floating portion, it is the longest
floating bridge in the world located in a saltwa-
ter tidal basin, and the third longest floating
bridge overall.

ii. Bergsoysund Bridge (1992) in Norway a 931
meter long pontoon bridge with the longest
span of 106 meters.

iii. Nordhordland Bridge (1994) in Norway is a
combination of a cable-stayed and pontoon
bridge. It is the longest free floating bridge
without anchorage.

As the rough overview indicates, the theoretical and
practical development of floating bridges has been car-
ried out mainly in USA and in Norway with significant
contributions from the industry. In Norway it is mainly
the Norwegian University of Science and Technology
(NTNU), SINTEF the research organisation and the
Norwegian Public Roads Administration (NPRA).

Pioneering studies on floating bridges was carried out
by Hartz in the 1970’s. Around the same time Holand,
Sigbjornsson and Langen carried out similar studies on
stochastic dynamics of floating bridges (Holand, 1972).
Later on in 1980 Sigbjornsson and Langen exemplified
the theory using a model of the Salhus floating bridge
(Langen and Sigbjérnsson, 1980).

In recent years NTNU/SINTEF have led the theoretical
evolution within structural mechanics, fluid structure
interaction and stochastic modelling of environmental
loads applied to the offshore industry in Norway. Many
of the same theories can be directly applied in stochastic
dynamic analysis of floating bridges.

In the present text a dynamic analysis in frequency
domain will be given and theory on stochastic dynamic
modelling of a floating bridge is described, including
challenges regarding frequency-dependent hydrodynam-
ic added mass and damping. Preliminary results will be
given from a frequency domain analysis of the local
stresses on the pontoon.

System Modelling

The linear stochastic dynamic response of a floating
bridge structure can be described using the equation of
motion to capture the dynamics of the structure, poten-
tial theory to find the hydrodynamic added mass and



damping and the wave excitation force from the fluid-
structure interaction and stochastic theory to implement
the randomness of the wave excitation force.

Equation of Motion

The equation of motion describing the linear dynamic
behaviour of the floating bridge is described in time
domain as shown in Eq. 1.
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Here, [M,], [C,] and [K|] are the frequency inde-

pendent structural mass-, damping- and stiffness matri-
ces. The vector notation {u} is the structural response

and the dots above represents derivatives of time . The
vector {g,(¢)} represents the hydrostatic and hydrody-
namic load vector.

For a single harmonic small amplitude wave, {g,(¢)}

can be described as a harmonic wave proportional to
floater motion as shown in Eq. 2. As an extra step in the
equation, the derivatives of the structural response are
derived and collected within the parenthesis.

(9,0} == (-0’ [M, ()] +i0[C, ()] +[K,])
{Z, ()" +{Z (o)}
Here, [M,(®)] and [C,(@)] are the frequency depend-

ent hydrodynamic added mass and damping and o is
the angular frequency. [K,] is the restoring stiffness

(@)

assumed frequency independent for small amplitude
motion. {Z, (w)} and {Z (@)} are the complex struc-

tural response amplitude and the complex wave excita-
tion force amplitude, respectively, and i is the imagi-
nary unit. Substituting the expression for the hydrody-
namic action given in Eq. 2 into the equation of motion
in Eq. 1 and rearranging the terms gives the frequency
domain representation of the equation of motion.

{Z,(0)} =[ -0’ [M(0)]+io[C()]+[K] [{Z,(@)} (3)

The inertia, damping and restoring matrices include the
structural terms as well as the hydrodynamic added
mass and damping. The combined system matrices are
hence given as:

[M(@)]=[M]+[M,(@)] “
[C(@)]=[C]+[C,(0)] (6))
[K1=[K,]+[K,] Q)

The response induced by a single harmonic wave is then
obtained by rearranging the terms in Eq. 3 and introduc-
ing the frequency transfer function [H(®)].

{Z,(0); =[H(@)RZ, (@)} (N
[H(0)]=[ -0’ [M(@)] +iolC(@)]+[K]] ®)
By use of the principle of superposition, it is possible

within the framework of linear theory to incorporate a
generalized description of the excitation represented as

the sum of a finite number of harmonic waves. In case
of a random sea state the excitation in frequency domain
can be obtain by Fourier transform of the excitation
time series.

Assuming frequency independent restoring and causali-
ty the wave excitation force can be described in the time
domain as shown in Eq. 9 by use of the convolution
integral.
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Here, r is time lag and [m,] and [c,] are the time

domain representations of the hydrodynamic added
mass and damping found from Fourier transform.

[, 1= [ [V, @) do (10)
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Using the impulse response function, A(:), the response

can be obtained in time domain as a finite sum of sys-
tem responses from hydrodynamic action impulses at
different time steps.

@)} = [ he-0)ltg, (O3 (12)

The impulse response function is found from Fourier
transform of the frequency transfer function in Eq. 8.

(0] =~ [ [H@)e"do (13)

Several methods exist to solve Eq. 9 in time domain.
Such approaches are useful if non-linear behaviour is of
interest.

Description of Sea Waves

For engineering purpose, the wind-generated waves are
approximated as a locally stationary and homogeneous
random field and the sea surface elevation 7({x},?)
becomes a function of time and the two-dimensional
space vector for the horizontal surface at the mean water
level.

+0

n({xh0 = [ €997, (i}, 0) (14)

Here, Z ({x},) is the spectral process of the sea sur-

face elevation and {x}={x_.x,} is the two-

dimensional wave number vector.

The spectral process is, given the assumptions of sta-
tionarity and homogeneity, related to wave spectral
density S, , ({«},®) as described in Eq. 15.
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(15)
=S,, (x},0)dx dk,do

Here, the subscripts » and s refer to points in time and
space. The superscripts 7 and * refer to the mathemat-
ical operations transpose and complex conjugate, re-
spectively. The operation E[-] is the expected value.

The wave spectral density is divided into a cross-
spectral term with 7 #s and auto-spectral terms with

r = s . The auto-spectral density is denoted S, (@,0) .

The wave number vector can be described as a function
of the wave direction & and the modulus « .

cosé
{K}={ }K (16)

sind
Furthermore, within the 1% order Stokes theory x and

w are related through the dispersion relationship given
in Eq. 17.

o” = gk tanh(xh) (17)

Here, g is the gravitational acceleration and / is the
water depth. In the special case of deep water waves the
dispersion relationship can be approximated as
k~@'g . As a result of this approximation the spec-
tral density can be described as a function of wave di-
rection and frequency.

The auto-spectral density is generally a function of the
frequency-dependent directional distribution D(w,8)

and the one-dimensional wave spectral density S, (@) .

For simplicity, the directional distribution is normally
assumed to be frequency-independent as given in Eq.
18.

S, (@,0) =S, (0)D(0) (18)

Due to the coherency between point r» and s the ex-
pression for the cross-spectral density given in Eq. 19 is
a bit more complicated and is formulated by assuming

deep water waves.
S, (@,0)=S, (0)Coh, , (0)

|o|x (@)
—i

Coh,, (@)= j D(@)e ¢

(Axcosf+Aysin0) (19)
do

Here, Ax and Ay are the horizontal distances between
point » and s.

The directional distribution is commonly characterised
by a bell shaped function centered around the mean
wave direction. The simplest and one of the most com-
monly applied functional forms is the so-called cos-2s
distribution, given in Eq. 20 for a specific mean wave
direction.

25-1 2 _
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Here, s is the spreading parameter, I'(:) is the Gamma

function and &, is the mean wave direction.

Fluid Structure Interaction

The current analysis of floating bridges is based on the
assumption of water being incompressible, non-viscous
and irrotational. Then, within the framework of poten-
tial theory, the flow field is governed by Laplace’s
equation, given in Eq. 21 for Cartesian coordinates.
2 2 2
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Here, @ is the velocity potential and x, y and z are

Cartesian coordinates. Hence, the basic problem at hand
is to find the solution of the Laplace’s equation in terms
of the velocity potential.

Assuming no current and by virtue of the principle of
superposition the velocity potential can be obtained the
linear problem given in Eq. 22.

3
=g + @ + i
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diffraction problem radiation problem

Here, ¢, and ¢, represents the velocity potential from
the incident- and diffracted waves, respectively. ¢,

represents the velocity potential per unit velocity from
radiated waves and #, represents the time derivative of

the complex motion of the body in the water and togeth-
er they represent the velocity potential from radiated
waves ¢, =¢,u, when the body is oscillating in the

k'th degree of freedom.

From 1° order Stokes theory the velocity potential for
the incident wave is known. To obtain a physical legiti-
mate solution for the other seven velocity potentials in
Eq. 22 the Laplace’s equation in Eq. 21 must be satis-
fied together with the free-surface boundary condition at
the mean water level, the kinematic boundary conditions
at the seabed and on the wetted body surface and the
radiation condition. Using the indirect boundary integral
formulation and applying Green’s second identity it is
possible to obtain solutions for each of the seven veloci-
ty potentials and the pressure p can then be obtained

through Bernoulli’s equation.

op
=—pgz—p— 23
p=-pg pa[ (23)

Here, p represents the water density, z is the vertical
position from the mean water level and ¢ represents

any of the seven velocity potentials. Applying specific
velocity potentials in Eq. 23 and integrating the hydro-
dynamic pressure over the wetted body surface it is
possible to obtain expressions for the wave excitation
force and the hydrodynamic added mass and damping
when comparing to the equation for steady-state har-
monic rigid body motion is given in Eq. 24.

6
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Here, the index notations of Eqs. 4~6 is applied. The
diffraction problem describes the scenario of a fixed



body in incident waves. By only including ¢, and ¢, in
Eq. 23 it is possible to obtain the hydrodynamic action
by integrating the hydrodynamic pressure over the wet-
ted body surface S, .

q, =_inJ(¢o+¢7)nde (25)
S,
Here, n, represents the component of the surface nor-

mal vector in the direction of the k'th degree of free-
dom. Comparing the expression with Eq. 24 the force is
identified as the wave excitation force.

The radiation problem describes the scenario of a body
oscillating in calm sea. Using the same approach the
hydrodynamic action from a body oscillating in calm
water can be found.

q; = —iw,oujjqﬁinde
5
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Comparing the expression with Eq. 24 the hydrodynam-
ic added mass and damping can be identified.

Hydrodynamic Interaction between Pontoons

A floating bridge may have multiple pontoons such as
the Bergsoysund Bridge. The total length of the bridge
is around 931 meters and the longest span between each
pontoon is 106 meters. An issue for such a multi-body
floating bridge system is the hydrodynamic interaction
between the pontoons. A straightforward way of ac-
counting for this effect is to solve for the velocity poten-
tial with all the pontoons hydrodynamically coupled.
This can be done by extending the radiation part of Eq.
22 to include » bodies, where » is the number of pon-
toons. The corresponding radiation potential will in-
clude 6. components. Generally speaking, the interac-
tion effects may result to extra peaks on the added mass,
damping coefficients, and wave loads, as shown by
Xiang and Faltinsen (2011) by studying a side-by-side
two floaters system. The peaks can be related to the
piston and sloshing modes of the restricted water body
between the floaters, for which more comprehensive
analysis can be found in Faltinsen and Timokha (2009).

In practice, the relative dimensions of the pontoons
compared to the distance between them will govern
whether the interaction effects should be accounted for
or not. A simple estimation is referred to in Xiang
(2012) where two pontoons are considered to be hydro-
dynamically interacting when the following equation is
satisfied:

L+L Y B, +B Y\
DAB SDINT:\/(IS A2 B] +(6 A2 BJ (27)

Here L,, L,, B, and B, are the length and width of

pontoon A and B, respectively. The equation is based
on the experience of the author’s calculation on coupled
motions of two interacting ships, Xiang (2012). The

hydrodynamic interaction effects will generally be in-
significant out of this range. Using the Bergseysund
Bridge as an example, 34 m and 20 m the length and
width of both pontoons, we get D, =130.4 m. This

means that we have to consider the pontoons hydrody-
namically dependent on each other. In addition, the
pontoons are interacting with each other mechanically
through the bridge structure.

Solution Strategy

It is commonly assumed within the field of civil engi-
neering structural dynamics, that structural damping is
very small and hence can be neglected when calculating
the natural frequencies and natural modes of a classical-
ly damped system. In the case of fluid structure interac-
tion there is significant contributions to the damping
from hydrodynamic damping [C,(®)] and so the sys-
tem instead is categorised as a non-classically damped
system. Procedures exists to calculate this higher order
eigenvalue problem by use of the state-space approach.
The solution consists of complex eigenvalues and com-
plex eigenvectors.

In the context of this article, the dynamic response is
calculated using the direct frequency response method
with the structure subjected to a set of unit amplitude
wave with periods ranging from 1 second to 15 seconds.

Direct Frequency Response Method

The frequency domain representation applies the com-
plex frequency transfer function [H ()] given in Eq. 8
to obtain solutions in the frequency domain. The re-
sponse amplitude {Z, (®)} is a complex quantity de-

scribing the amplitude and the phase angle of the dy-
namic response. By splitting the load into a real part
{Z,r.(®)} and an imaginary part {Z , (@)} the solu-

tion can be as shown in Eq. 28.

{Z,(0)} =[H(@){Z, z. (@)} + 1 H(@){Z, ,, (@)}

g.Im

(28)

Case Study

Description of Floating Bridge Model

The model is a simplified floating pontoon bridge with
pontoon dimensions equal to the pontoons used in the
mid sections of the Bergseysund Bridge. The model
consists of a truss system made up of four beam types
and two pontoons, see Fig. 1 where the x-, y- and z-

axis corresponds to surge, sway and heave, respectfully.
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Figure 1. Bridge layout

The total length of the model is 896 meters and the
pontoons are located 297 meters from each end. A more
detailed look at the truss system is given in Fig. 2.



Figure 2. Truss system

The four beams are modelled as hollow circular cross-
sections with outer diameter and thickness given in
Table 1.

Table 1: Beam element properties

Outer diameter ~ Thickness

[m] [m]
Beam 1 9.50E-01 5.00E-02
Beam 2 9.50E-01 4.50E-02
Beam 3 5.00E-01 1.50E-02
Beam 4 2.00E-02 2.00E-03

The mass properties of the pontoon is listed in Table 2.
Here, r, represents the radius of gyration around the

J'th axis.
Beam 4 is given relatively small dimensions in order to

make the bridge system more flexible on the horizontal
direction.

The pontoon shown in Fig. 2 is 6.98 meter high and is
made of lightweight concrete with a modulus of elastici-
ty of 50 MPa.

Table 2. Pontoon mass properties

M rxx Vyy rzz
[ke] [m] [m] [m]
1.37E+06 1.01E+01 6.80E+00 1.15E+01

Supports are located at each end of the floating bridge
model and modelled as fixed in all degrees of freedom.

Numerical Analysis

Due to the hydrodynamic added mass and damping, it is
crucial to know the correct pontoon draft before com-
mencing the dynamic analysis. Therefore, a static analy-
sis is first carried out.

From equilibrium between the pontoon mass and buoy-
ancy from the displaced water, the initial draft of the
pontoon is found. The static analysis is then carried out
by replacing the pontoons with a vertical spring stiffness
from the waterplane area and the water density. Apply-
ing gravitational loads to the static model the vertical

displacement is computed. The final draft of the pon-
toon is 4.56 meters found by combining the result from
the static analysis with the initial draft.

The hydrodynamic restoring, added mass and damping
is calculated using a boundary element method soft-
ware. A panel model of the pontoon surface as the one
in Fig. 3 is created and given as input to the software.
The panel model used consists of 2384 panel elements
and is subjected to 60 unit amplitude waves with peri-
ods 7 ={1:0.25:15} seconds each with a wave direc-

tion of 90 degrees from the global x -axis corresponding
to sway. The water depth is set equal to 1000 meters.

Figure 3. Panel- and structural model of pontoon

The mesh size of the panel model is roughly 1.00 meter,
which according to Faltinsen (1990), requires a mini-
mum wavelength of 8.00 meter or in this case an equiv-
alent wave period of approximately 2.26 seconds.

From the analysis, information of the hydrodynamic
added mass and damping as a function of frequency is
illustrated in Fig. 4 as normalised values. Normalization
factors are f, =5.55E+06 and f, =1.74E+06 for add-

ed mass and damping, respectively.

Period [s]

Figure 4. Normalized hydrodynamic added mass and
damping in y-direction (sway) for one pontoon

Choosing a damping ratio of ¢ =0.05 the Rayleigh
damping is calibrated using the first two horizontal
undamped  natural  periods 7, =41.0ls and
T, =21.95s found from solving the classical eigenval-
ue problem.

From the sway response of the midpoint of the floating
bridge, it can be checked whether appropriate structural
damping is applied. It is important to have a sufficiently
low mass proportional damping in order not to damp out
the wave response.



Results

From the dynamic analysis carried out in the frequency
domain it is possible to obtain some preliminary results
of the stress distribution in the pontoon. The stress re-
sponse from a set of 60 unit amplitude mono-chromatic
beam sea waves have been analysed and special charac-
teristics of the special and frequency distribution of von
Mises stress has been observed.
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Below

Front-bottom view

Top view

Figure 5. Von Mises stress on pontoon for mono-
chromatic wave excitation force with 7 =1.75s.
Units in Pa

At high frequency waves (period in the range of 1 sec-
ond to 3 seconds) the largest stresses in the pontoon are
located in the front part of the pontoon and on the cor-
ners connecting the front vertical concrete plates to the
top- and bottom concrete plates, see Fig. 5. Maximum
values are in the range of 0.07 MPa.
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Figure 6. Von Mises stress on pontoon for mono-
chromatic wave excitation force with 7 = 8.50s.
Units is Pa

Instead, at lower frequencies the largest von Mises
stress is located exclusively around the connection point
between the pontoon and the vertical beam as illustrated
in Fig. 6. The stresses are in this case as high as 164
MPa. It is believed that the high stress is a result of the
high wave loads on the pontoon under long waves.

The minimum stresses at the low frequency wave exci-
tation is roughly the same order as the stresses from the
high frequency wave excitation force.

Conclusion and Further Work

The paper has presented general theory on solutions of
the equation of motion in both time- and frequency
domain and has explained how to incorporate the ran-
domness of the sea state into the design using stochastic
theory. Also a brief discussion of how potential theory
and boundary element methods can be used when deal-
ing with a non-classically damped system such as a
floating bridge structure.

A case study of a simplified floating bridge structure
has been presented and preliminary results of the stress
distribution on the pontoon is shown.

From the preliminary analysis in frequency domain it
can be concluded from the results given in Figs. 5~6
that the joint between the pontoon and the beam bridge
structure is crucial in the design of the pontoon and, if
not thoughtfully carried out, can generate high stresses
in the pontoon surface elements.

Although the simplified pontoon bridge is made to re-
semble a realistic floating bridge structure, many details
are lost in the simplification, such as a proper connec-
tion between pontoon and bridge deck. Future work
includes more pontoons and a stochastic dynamic analy-
sis in frequency and time domain.
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