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Abstract

Herein, a study on the hydrodynamic modelling of pontoon bridges is presented, with the Bergsøysund Bridge as a representative
example. The model relies on the finite element method and linearized potential theory. The primary emphasis is placed on the
stochastic response analysis within the framework of the power spectral density method. The quadratic eigenvalue problem is solved
using a state-space representation and an iterative algorithm. The contribution of the fluid-structure interaction to the overall modal
damping is investigated. Response effects due to changes in the sea state are studied. A frequency-independent approximation of
the hydrodynamic coefficients is presented and discussed.
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1. Introduction

Although the history of floating bridges may be traced back
as far as 2000 BC [1], only in recent decades have floating
bridges begun to be developed to a sufficient degree of sophis-
tication such that they can be applied as critical components of
modern infrastructure. Compared with land-based bridges, in-
cluding cable-stayed bridges, only limited information on float-
ing bridges is currently available, particularly regarding con-
struction records, environmental conditions, durability, opera-
tions and performance. This is clear from the fact that only ap-
proximately twenty long floating bridges currently exist through-
out the world. The major trends in the development of floating
bridges and other very large floating structures (commonly ab-
breviated VLFSs) have been presented by Wang et al. [2] and
Wang and Wang [3].

The state-of-the-art design philosophy for floating bridges
in 1997 was outlined by Moe [4]. It was remarked that standard
engineering practices were not directly applicable to floating
bridges. A verified design code for floating bridge design would
drastically reduce the effort required during the planning stage
and would thus increase the potential economic advantages of
floating bridges over many alternative bridge concepts. From a
broader perspective, a unifying, efficient, and reliable method
for simulating the behaviour of floating bridges is the primary
goal.

The Norwegian Public Roads Administration (NPRA) is
currently investigating possible technological solutions for a
ferry-free Coastal Highway Route E39 along the western coast
of Norway. This route stretches 1100 km between the cities of
Kristiansand and Trondheim and requires multiple crossings of
deep and wide fjords. The ferry-free crossings of these deep
fjords represent considerable engineering challenges that are
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difficult or impossible to solve using existing bridge technol-
ogy; pontoon-type floating bridges have been proposed as fea-
sible options.

Of all existing floating bridges, only a few rely on discretely
distributed pontoons, whereas the remainder are based on con-
tinuous pontoon girders. The majority of these bridges are also
provided with additional stiffness through side-mooring. Only
two long-span end-supported floating bridges exist in the world:
the Bergsøysund Bridge and the Nordhordland Bridge, both
relying on discretely distributed pontoons and both located in
Norway. In connection with the planning of these structures,
interest in the stochastic dynamic behaviour of floating bridges
flourished in certain research communities, who combined the
knowledge from the highly developed Norwegian offshore in-
dustry with knowledge gained during the construction of the
floating bridges found in the State of Washington, USA, and in
British Columbia, Canada. Much of this pioneering work can
be credited to the research groups of Holand and Hartz (see,
e.g., [5, 6, 7, 8, 9, 10, 11]) and Borgman [12]. The method-
ology was further developed, elaborated and exemplified by
Sigbjörnsson [13] and by Langen and Sigbjörnsson [14].

Since the remarkable efforts contributed to the methodology
in the ’70s and early ’80s, few case studies have been performed
on real floating bridges. The effects of the flexibility of the su-
perstructure of a pontoon bridge were studied by Kumamoto et
al. [15], who emphasized the relevance of such a study in regard
to the design of the Yumeshima-Maishima (Yumemai) Bridge
in Osaka, Japan, around the year 2000. This unique bridge is
described in [16] and is the successor to the previous massive
research project concerning VLFSs in Japan: the Mega-Float.
Seif and Inoue [17] performed a conceptual case study of the
Bergsøysund Bridge, in which the response of the bridge was
simulated in the time domain for various wave directions and
spreading indices for a specified crest length.

Morris et al. [18] performed a frequency-domain analysis
of the planned William R. Bennett Floating Bridge in British
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Columbia. Among other relevant contributions of more recent
vintage are [19] and [20].

Floating bridges play a modest role in modern infrastruc-
ture, partly because of the limited knowledge of the uncertain-
ties that arise with increased spans. The longest existing float-
ing bridges are moored to the seabed and rely on continuous
pontoon solutions. However, individual pontoons are benefi-
cial in many cases, and for deep straits such as fjords, it is not
practically feasible to incorporate anchoring. From this kind
of design follows a greater importance of the correlation of the
wave action field.

An intermediate study concerning the stochastic modelling
of the dynamic behaviour of the Bergsøysund Bridge was per-
formed by Kvåle et al. [21]. The cited paper presents a similar
study of the Bergsøysund Bridge; however, the current paper
is far more elaborate and extensive, with respect to both the
model and the interpretation of the analyses. The current pa-
per presents a two-part combined model of the Bergsøysund
Bridge, in which the fluid-structure interaction is considered us-
ing linear potential theory and the superstructure is represented
by a finite element (FE) model consisting of beams and shells.
The presented model serves as a basis for evaluating and dis-
cussing the damping contribution from the fluid-structure inter-
action. The effects of changes in the sea state, as represented by
the crest length and the significant wave height, are studied in
terms of both the wave excitation and the global response of the
bridge. Because of the discretely distributed pontoons used in
the bridge design, the wave excitation acts at only a few well-
separated points. Thus, the correlation of the wave action on
the bridge is an important issue and a vital aspect of this paper.
With time-domain analyses in mind, the memory effect in the
contribution from the fluid-structure interaction is avoided by
applying two different frequency-independent approximations,
and the resulting errors are discussed.

2. Outline of the theoretical model

A floating bridge is a complex structure, requiring theories
from multiple scientific fields for the establishment of a com-
plete numerical model. This section serves to outline the theo-
retical and mathematical framework needed for such a model.
The frequency-domain equations of motion are established in
Section 2.1. To solve these equations of motion with regard to
the response, the power spectral density method is introduced
in Section 2.2. The load acting on the structure is established
through a random, Gaussian representation of the sea surface,
which is established in Section 2.3 in the form of spectral den-
sities. Furthermore, the load spectral densities are computed
based on the sea surface spectral densities, as discussed in Sec-
tion 2.4. To obtain a useful interpretation of the global system,
a modal study is beneficial. Because of the self-exciting na-
ture of a floating bridge, particular attention must be paid to the
eigenvalue solution, as shown in Section 2.5.

2.1. Equations of motion
Within the framework of a finite element method (FEM)

formulation, the equations of motion for a floating structure can

be written as follows (see, e.g., Naess and Moan [22]):

[Ms]{ü(t)} + [Cs]{u̇(t)} + [Ks]{u(t)} = {ph(t)} (1)

where t is the time; [Ms], [Cs] and [Ks] are the structural mass,
damping and stiffness matrices, respectively; {u(t)} is the dis-
placement vector; and {ph(t)} is the total hydrodynamic action,
including both the fluid-structure interaction and the wave ac-
tion. The floating elements contribute via forces from the inter-
action between the water and the structure. The total hydrody-
namic action can be formally expressed as follows:

{ph(t)} =

∫ ∞

−∞

[mh(t−τ)]{ü(t)}dτ+
∫ ∞

−∞

[ch(t−τ)]{u̇(t)}dτ+[Kh]{u(t)}+{p(t)}

(2)
Here, [mh(t)] and [ch(t)] are the time-domain representations
of the added hydrodynamic mass and the added hydrodynamic
damping, respectively; and {p(t)} represents the wave excitation
forces. The first three terms on the right-hand side are models
of the fluid-structure interaction forces. The time-domain repre-
sentation of the added mass, [mh(t)], is related to the frequency-
dependent hydrodynamic mass, [Mh(ω)], as follows:

[mh(t)] =
1

2π

∫ ∞

−∞

[Mh(ω)]eiωtdω (3)

Similarly, for the hydrodynamic damping, the following holds:

[ch(t)] =
1

2π

∫ ∞

−∞

[Ch(ω)]eiωtdω (4)

The restoring forces, however, are assumed to be independent
of frequency. This implies that the frequency-domain and time-
domain representations are identical. Here, the angular fre-
quency is denoted by ω, and i ≡

√
−1.

The wave excitation force, {p(t)}, is modelled herein as a
homogeneous, stochastic, Gaussian process. The literature sup-
ports the validity of this assumption for the case of deep water
and moderate wave heights (see, e.g., [23]). It follows that the
response process inherits the properties of Gaussianity and ho-
mogeneity. It is assumed that the displacement and force pro-
cesses can be expressed using generalized harmonic decompo-
sition [24] as follows:

{u(t)} =

∫ ∞

−∞

eiωt{dZu(ω)} (5)

{p(t)} =

∫ ∞

−∞

eiωt{dZp(ω)} (6)

where {Zu(ω)} and {Zp(ω)} are the spectral processes corre-
sponding to the response vector and the wave excitation force
vector, respectively. The equations of motion can now be re-
written in the frequency domain as follows:(

−ω2[M(ω)] + iω[C(ω)] + [K]
)
{dZu(ω)} = {dZp(ω)} (7)

The fluid-structure interaction gives rise to inertia, damping and
restoring forces. Hence, the system mass, damping and restora-
tion (stiffness) are expressed as follows:
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[M(ω)] = [Ms] + [Mh(ω)] (8)
[C(ω)] = [Cs] + [Ch(ω)] (9)
[K(ω)] = [Ks] + [Kh] (10)

By applying linearized potential theory, numerical values
can be established for the wave excitation process, the hydrody-
namic restoration matrix, the frequency-dependent added damp-
ing matrix and the frequency-dependent added mass matrix.
This will be further discussed in Section 2.4. For further de-
tails regarding the establishment of the equations of motion, the
reader is referred to [22].

2.2. Solution technique - the power spectral density method
The probabilistic properties of the response and wave exci-

tation processes can be fully described in terms of the cross-
spectral density, provided that the mean value is zero. The
cross-spectral densities of the displacement response, {u(t)}, and
the wave action process, {p(t)}, can be expressed as follows
[25, 13, 26]:

[S u(ω)]dω = E
(
{dZu(ω)} · {dZu(ω)}H

)
(11)

[S p(ω)]dω = E
(
{dZp(ω)} · {dZp(ω)}H

)
(12)

where the Hermitian operator ()H is introduced to represent
the complex conjugate and matrix transpose and E () is the ex-
pectation operator. Combining Equations 11 and 12 with Equa-
tion 7 results in the following well-known expression:

[S u(ω)] = [H(ω)][S p(ω)][H(ω)]H (13)

This represents the power spectral density method and en-
ables the computation of the response spectral densities given
the spectral densities of the applied wave action.

2.3. Modelling the sea surface
The sea surface elevation is modelled as a scalar quantity

given as a function of the location in space {x} and time t, and
it is an inherently random process. This is discussed in detail
in Kinsman’s book [27]. A thorough review of the stochastic
modelling of directional seas can be found in [28]. The sea sur-
face can be expressed mathematically in terms of the following
integral:

η({x}, t) =

∫
exp (i{κ} · {x} − iωt) dZη({κ}, ω) (14)

where {κ} = {κx κy} is the wave number vector, ω is the fre-
quency, and Zη is the spectral process corresponding to the sea
surface elevation. For stationary and homogeneous random fields,
the spectral process is related to the wave spectral density as
follows:

E
(
dZηr ({κ}, ω)dZηs ({κ}, ω)H

)
= dGηrηs ({κ}, ω) (15)

= S ηsηr ({κ}, ω)dκxdκydω

where the indices r and s correspond to two points in space
(and generally also time), Gηrηs ({κ}, ω) denotes the spectral dis-
tribution, and S ηrηs ({κ}, ω) is the corresponding spectral density.
In polar coordinates, the wave number vector can be expressed
as follows:

{κ} =

{
cos θ
sin θ

}
κ (16)

Here, θ refers to the wave direction and κ is the modulus
of the wave number vector. Within the framework of Airy
wave theory, the wave number and wave frequency are related
through the dispersion relation:

ω2 = gκ tanh(κh) (17)

where g is the acceleration of gravity and h is the water depth.
For deep-water waves, tanh(κh) ≈ 1. Hence, the cross-spectral
density can be expressed as a function of the wave frequency
and wave direction. The two-dimensional auto-spectral den-
sity is obtained from the cross-spectral density by merging the
points r and s. For a homogeneous stochastic wave field, the
two-dimensional wave spectral density is a function that is in-
dependent of the considered point in space:

S ηrηr (ω, θ) = S ηsηs (ω, θ) (18)

This implies that the auto-spectral density can be expressed as a
function of frequency and direction, i.e., S η(ω, θ); this quantity
is commonly referred to as the directional wave spectral density
and is traditionally written as follows:

S η(ω, θ) = S η(ω)D(ω, θ) (19)

where S η(ω) is the so-called one-dimensional wave spectral
density and D(ω, θ) is the directional distribution. The cross-
spectral density of the water elevation can then be expressed
as follows for deep-water waves, under the assumption that the
directional function is independent of the frequency [13]:

S ηrηs (ω) = S η(ω)
∫ π

−π

D(θ) exp
(
−i
|ω|ω

g
(∆x cos θ + ∆y sin θ)

)
dθ

(20)
Here, ∆x and ∆y represent the distance between the points r and
s and the mean wave direction is taken to be zero. The integral
term expresses the coherency between the wave heights at the
two points.

2.4. Fluid-structure interaction

The hydrodynamic forces acting on a submerged body due
to a stochastic sea wave can be expressed using the following
equation:

{dZh(ω)} = {dZp(ω)}−
(
−ω2[Mh(ω)] + iω[Ch(ω)] + [Kh]

)
{dZu(ω)}

(21)
The vector {dZp(ω, θ)} denotes the wave-induced process, which
can be related to the wave process dZη(ω, θ) as follows:

{dZp(ω, θ)} = {Qr(ω, θ)}dZη(ω, θ) (22)
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Here, {Qr(ω, θ)} denotes the hydrodynamic transfer function
that relates the wave-induced force process and the wave am-
plitude process, where r refers to the spatial location of an
element, i.e., a pontoon. The total hydrodynamic action pro-
cess {dZh(ω)} describes the fluid-structure interaction and the
wave action induced by the prescribed sea state. Hydrodynamic
transfer functions and fluid-structure interaction contributions
are commonly established based on potential theory or experi-
ments in wave basins. Panel methods are used to simulate the
flow field around a body based on the superposition of known
potential flow solutions. In this manner, simulations of the sub-
merged body exposed to a wave of unit height with varying fre-
quency and direction can yield both the hydrodynamic transfer
functions and the hydrodynamic coefficients (mass, damping,
and stiffness). The reader is referred to [29] for a thorough de-
scription of the application of potential theory to obtain these
quantities. It is important to note that under the assumption of
potential flow, all viscous effects are disregarded. Furthermore,
potential flow methods are fundamentally based on superposi-
tion, making them linear by nature.

Finally, the cross-spectral density matrix corresponding to
the wave excitation acting between two selected points can be
written as follows:

[S pr ps (ω)] =

∫
θ

{Qr(ω, θ)}S ηrηs (ω, θ){Qs(ω, θ)}Hdθ (23)

Here, {Qr(ω, θ)} is the directional wave excitation transfer func-
tion for element r and {Qs(ω, θ)} is the directional wave excita-
tion transfer function for element s. The matrix in Equation
23 corresponds to the six local degrees of freedom (DOFs) of
points r and s and is included as a sub-matrix within the full
cross-spectral density matrix corresponding to the wave excita-
tion of all points of interest.

2.5. Eigenvalue solution
When damping is not neglected, the eigenvalues and eigen-

vectors become complex. The eigenvalue problem then reads
as follows: (

λ2[M(ω)] + λ[C(ω)] + [K]
)
{u} = {0} (24)

Because the mass and damping matrices are non-linear func-
tions of frequency, the eigenvalue problem is, in general, non-
linear and must be solved in an iterative manner. First, the fre-
quency dependence is disregarded. Then, Equation 24 can be
re-written in state-space as follows:{
{u̇}
{ü}

}
+

[
[0] −[I]

[M]−1[K] [M]−1[C]

] {
{u}
{u̇}

}
=

{
{0}

[M]−1{p}

}
(25)

In condensed form, this reads as follows:

{ż} + [A]{z} = {Q} (26)

This results in the following solution for the state-space vari-
able:

{z} =

2N∑
r=1

{qr}eλr t (27)

Table 1: Pseudocode of the iterative algorithm used to solve the eigenvalue
problem.

INPUT N, tolerance
FOR n = 1 to 2N

ω = 0
diff = tolerance + 1
WHILE diff > tolerance

Solve eigenvalue problem for chosen ω⇒ λr and {qr}

Sort λr, and correspondingly sort {qr}

ω0 = ω

ω = |λn| (n = r)
di f f = |ω0 − ω|

END
Store eigenvalue λn = λr and eigenvector {qn} = {qr}

END

where {qr} and λr are the eigenvector and eigenvalue, respec-
tively, corresponding to solution r of Equation 26. It is as-
sumed that the eigenvalues are sorted such that {qr+N} and λr+N

are complex conjugates of {qr} and λr, respectively. This can
further be re-written in this compact manner, representing the
displacements only:

{u} = [Ψ]{g} (28)

where [Ψ] is the modal transformation matrix that contains the
complex mode shapes and {g} represents the generalized DOFs.

Because of the frequency dependency of the matrices that
form the eigenvalue problem, it is a non-linear problem, which,
in this case, is solved by iteration. The iterative procedure used
for this purpose is illustrated by the pseudocode presented in
Table 1. The main workings of this algorithm are identical to
those of the algorithms used to solve similar problems related
to the wind loads on suspension bridges, as described by Agar
[30].

The eigenvalues for an under-critically damped and frequency
independent SDOF problem are as follows:

λr = −ξrωr ±

√
1 − ξ2

rωri (29)

This results in the following well-known relations:

ωr = |λr | (30)

ξr = −
<(λr)
|λr |

(31)

where ωr and ξr are the undamped natural frequency and
the critical damping ratio, respectively, of mode r.

3. Case study: The Bergsøysund Bridge

The Bergsøysund Bridge is a 931 m long floating bridge that
crosses the strait between Aspøya and Bergsøya, located on the
northwestern coast of Norway. This bridge consists of a steel
truss supported by 7 discretely distributed light-weight concrete
pontoons, as shown in Figure 1 and Figure 2. The geography
surrounding the bridge is depicted in the map shown in Figure
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Figure 1: The Bergsøysund Bridge. Photograph: K. A. Kvåle.
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Figure 2: Overhead view of the Bergsøysund Bridge, including the chosen pon-
toon numbering.

3. As indicated in Figure 4, the depth of the strait at all pontoon
locations except one is approximately equal to or greater than
100 meters; therefore, it is reasonable to model the problem us-
ing deep-water waves. No mooring is present, which makes this
bridge a very interesting case study: the Bergsøysund Bridge is
one of the longest end-supported floating bridges in the world.

3.1. Two-part combined model

In the computational set-up, which is illustrated in Figure
5, the problem is divided into two sub-structures: (i) an Abaqus
FE model representing all structural contributions, including
the inertia of the pontoons themselves and the constant buoy-
ancy provided by the pontoons, and (ii) a DNV HydroD WADAM
hydrodynamic model, excluding static contributions due to grav-
ity and hydrostatics.

The FE model consists of the steel frame and the tension
rods at both abutments, both represented by linear beam ele-
ments, as well as the bridge deck, represented by shell elements.
A rendering of this model is shown in Figure 6. The neoprene
bearings at the ends of the bridge are modelled as linear springs.

The hydrodynamic contributions are considered separately
for each pontoon. The pontoons are modelled with their nat-
ural waterlines near those indicated in the design plans for the
bridge.

The set-up of the model is described step by step below,
corresponding to the numbering indicated in Figure 5:

1. The beams and shells in the FE model define the struc-
tural system matrices [Ms] and [Ks]. Additionally, the in-
ertia of the mass of the pontoons themselves, [Mh0], and
the frequency-independent buoyancy (stiffness) from the
hydrodynamic model, [Kh], are included. Note that the
stiffness contributions corresponding to each pontoon, [Kh,i],
must be transformed and summed; both of these tasks are
performed in the FE software.

Figure 3: Map section showing the geography surrounding the bridge. c©
Kartverket (www.kartverket.no). Two map sections from Kartverket are
combined in this figure.
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Figure 4: Water depth profile across the strait, with annotations indicating pon-
toon locations.
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2. A modal analysis of the FE model is performed, yielding
the modal transformation matrix, [ΦI], and the natural
frequencies, ωI

n.
3. The modal quantities are used to establish the modal sys-

tem matrices, [M̃I] and [K̃ I], corresponding to a pres-
elected number of vibration modes. Rayleigh damping
is enforced to establish the modal damping matrix, [C̃I],
with mass and stiffness proportionality constants of α =

β = 5 ·10−3. The assumed values of these parameters cor-
respond to a very lightly damped steel structure, i.e., with
damping in the range of 0.5 to 1.0% of critical damping.

4. The seven pontoons of the bridge can be classified into
three types (1 and 7; 2 and 6; 3, 4 and 5) based on the
physical properties arising from their geometries and bal-
lasting; thus, three different pontoon models are needed.
The hydrodynamic stiffness contributions from each pon-
toon are not included here because they are considered as
part of the FE model. The hydrodynamic mass and damp-
ing matrices representing the contributions of the individ-
ual pontoons are therefore the only contributions that are
considered as part of sub-structure II. The discretization
used for the hydrodynamic system matrices is provided
in Table 2.

5. To form the total mass and damping contributions, the
pontoon-wise matrices corresponding to sub-structure II
are transformed into the global DOFs and summed.

6. The global mass and damping from sub-structure II are
transformed into the modal space defined by sub-structure
I using the modal transformation matrix [ΦI].

7. The total modal system matrices are established by sum-
ming the contributions from sub-structures I and II. These
matrices are used to establish the modal frequency-domain
transfer function, [H̃(ω)].

8. The numerical functions for the one-dimensional wave
spectral density and the spreading function are established
based on the chosen models (in this case, the one-parameter
Pierson-Moskowitz spectrum for the one-dimensional wave
spectral density and cos-2s for the spreading function).
The numerical two-dimensional wave spectral density is
established.

9. Based on the same three hydrodynamic analyses as those
used to establish the hydrodynamic mass, damping and
stiffness, the hydrodynamic transfer function, {Qr(ω, θ)},
is established. The discretization used for the hydrody-
namic transfer function is provided in Table 2.

10. Equation 23 is solved numerically for all combinations of
pontoons (72). At this point, the hydrodynamic transfer
function is transformed into the global coordinate system.

11. The sub-matrices are stacked to form the total load spec-
tral density matrix.

12. The load spectral density matrix is transformed into the
modal space defined by sub-structure I.

13. The power spectral density method (Equation 13) is used
to establish the displacement spectral densities.

14. Finally, the response spectral density is transformed from
modal into physical DOFs.

Figure 6: Rendering of the FE model.

Table 2: Properties of the discretization used in the hydrodynamic analysis. The
angle is defined as the angle between the positive local x axis of the pontoon
and the wave direction.

Variable Range Increment Affected quantities

Freq. [rad/s] [7.5 · 10−2, 4] 7.5 · 10−2 {Qr(ω, θ)}, [Mh(ω)], [Ch(ω)]
Angle [o] [0,350] 10 {Qr(ω, θ)}

3.2. Modal parameters

By employing the algorithm introduced in Table 1, the frequency-
dependent eigenvalue problem was solved, yielding the natural
frequencies, damping estimates and mode shapes. The natu-
ral frequencies presented are the undamped ones. The resulting
mode shapes were used to sort the modes according to their
displacement type into horizontally transversal (H), vertically
transversal (V), torsional (T), and combinational (C) modes.
The natural frequencies and critical damping ratios for 10 se-
lected modes are presented in Table 3, and the corresponding
mode shapes are presented in Figure 7.

The critical damping ratios of modes near 1 rad/s are found
to be close to 12%. Compared with land-based steel structures,
this ratio is very high. In the context of systems with signifi-
cant hydrodynamic contributions, however, these damping val-
ues are not abnormally high. The high damping will affect the
response spectral densities and result in blunt peaks at frequen-

Table 3: Undamped natural frequencies (and periods) and damping ratios ob-
tained from the eigenvalue solution.

Period Frequency Damping

Mode no. T [s] ω [rad/s] f [Hz] ξ [%] Type

1 10.7498 .5845 0.0930 1.792 H
2 7.1048 .8844 0.1408 1.298 C
3 6.1071 1.029 0.1637 11.80 V
4 5.9411 1.058 0.1683 10.66 V
5 5.2002 1.208 0.1923 7.418 C
6 5.1062 1.231 0.1958 9.234 H
7 4.3032 1.460 0.2324 3.155 V
8 3.8206 1.645 0.2617 1.115 T
9 3.3254 1.890 0.3007 6.696 H
10 3.3201 1.893 0.3012 1.078 V
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Sub-structure II: Hydrodynamic modelSub-structure I: FE model Load model

13

14

Figure 5: Basic structure of the calculation set-up. The sub-index h0 corresponds to the frequency-independent contributions from the hydrodynamic model; the
superindices I and II correspond to sub-structures I and II, respectively; and ∼ indicates modal quantities.

cies corresponding to these modes.
Additionally, the critical damping ratios and natural fre-

quencies for all eigenvalues between 0 and 3 rad/s are presented
in Figure 8, along with the assessed Rayleigh damping men-
tioned above. From this figure, it is evident that hydrodynamic
frequency-dependent damping contributes strongly to the over-
all damping of the structure. Upon investigation, Figure 8 also
shows that the damping ratios are clearly dependent on the type
of mode. Notably, mode 9 has a significantly higher frequency
than mode 6, despite their similarity. This is explained by the
fact that mode 9 also includes a translational movement, result-
ing in a higher strain energy and, consequently, a higher fre-
quency.

3.3. Load modelling

The hydrodynamic analysis yielded the discretized direc-
tional wave excitation transfer function {qr(ω, θ)}, introduced
in Equation 23. Figure 9 shows the transfer function vector for
the middle pontoon in the model. The discretization used for
the hydrodynamic transfer function is presented in Table 2.

The one-parameter Pierson-Moskowitz wave spectral den-
sity suggested in [31] was used as the one-dimensional wave
spectral density in the current case study. In this spectral den-
sity, the parameters of the generalized Pierson-Moskowitz spec-
tral density are represented in terms of the significant wave

height Hs as follows:

S η(ω) =
A
ω4 · exp

(
−B
ω5

)
(32)

where A = αg2, B = 3.11/H2
s , α = 0.0081, and g is the ac-

celeration of gravity. The significant wave height Hs is defined
as the mean wave height of the highest third of the wave (in a
time series), which is often denoted by H1/3. Furthermore, the
significant wave height is related to the variance of the wave
height process as follows: Hs = 4ση. The relationship between
the peak wave period and the significant wave height in this
spectral density model is plotted in Figure 17 together with the
measured data from a report by Veritec [32] regarding the sea
state at the bridge site. This figure supports the assertion that
this spectral density formulation is appropriate for the current
case study.

The cos-2s distribution [33] was selected as the directional
distribution D(θ):

D(θ) = C cos2s
(
θ − θ0

2

)
(33)

where C is a normalization constant to ensure that
∫

D(θ)dθ =

1; s is the spreading parameter, which characterizes the crest
length of the waves; θ0 is the angle of the mean wave direction;
and θ is assumed to lie within the range corresponding to valid
states of the modelled sea state, i.e., −π/2 < θ − θ0 < π/2. The
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From side:
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(a) ω1 = 0.5845 rad/s

From side:
From top:

(b) ω2 = 0.8844 rad/s

From side:
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(c) ω3 = 1.029 rad/s

From side:
From top:

(d) ω4 = 1.058 rad/s

From side:
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(e) ω5 = 1.208 rad/s

From side:
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(f) ω6 = 1.231 rad/s

From side:
From top:

(g) ω7 = 1.460 rad/s

From side:
From top:

(h) ω8 = 1.645 rad/s

From side:
From top:

(i) ω9 = 1.890 rad/s

From side:
From top:

(j) ω10 = 1.893 rad/s

Figure 7: Mode shapes obtained from the eigenvalue problem, corresponding
to the natural frequencies and critical damping ratios presented in Table 3 and
Figure 8.
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Figure 9: Wave excitation transfer function for the middle pontoon obtained
in the hydrodynamic analysis, where the rows correspond to the local degree
of freedom as follows (from the top): x, y, z, θx, θy, and θz. The left column
represents the real part, and the right column represents the imaginary part.

mean wave angle, defined as the angle between the global x axis
and the local y axis of the midmost pontoon, was chosen such
that the bridge was symmetrically loaded, i.e., 90o.

The resulting directional distributions, for a mean angle of
90o and various spreading parameters, are shown in Figure 11.

3.4. Sea-state effects

Changes in the spreading parameter s, the significant wave
height Hs and the mean wave heading angle θ0 directly affect
the excitation of the structure. The effects on the response, par-
ticularly the correlation between response quantities, are more
complex. Parameter studies based on simulations were per-
formed to assess the effect of the parameters that characterize
the sea state on the response.

3.4.1. Significant wave height
For the one-dimensional Pierson-Moskowitz spectral den-

sity used in this study, an increase in the significant wave height
results in a lower peak frequency of the spectral density. This
will, in turn, result in a higher excitation level and a lower peak
frequency of the wave action. This effect is illustrated in Fig-
ure 10 for significant wave heights corresponding to 1-year,
10-year and 100-year sea states, as reported in [32], together
with the modal damping ratios and natural frequencies from the
eigenvalue solution. From this figure, it is clear that the peak
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Figure 10: Damping ratios and one-parameter Pierson-Moskowitz wave spec-
tral densities corresponding to sea states of given return periods: Hs = 1.41 m
for the 100-year sea state, Hs = 1.15 m for the 10-year sea state, and Hs = 0.90
m for the 1-year sea state [32].
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Figure 12: Effects on the variance of selected responses with an increasing
significant wave height for a spreading parameter of s = 3 and a mean wave
heading angle of θ0 = 90o.

frequency of the wave action and the modes with the highest
damping correspond better for higher significant wave heights.
This means that for higher significant wave heights, the more
highly damped modes are more strongly excited and therefore
contribute more significantly to the overall response than in the
case of lower significant wave heights. The high damping plays
a crucial role in limiting the response of the structure, but high
damping levels should not be regarded as strictly beneficial;
high damping affects the correlations between the responses at
different locations in the structure, potentially leading to larger
local stress variations. During the design of a floating bridge,
this effect should be taken into consideration.

The response was simulated for various significant wave
heights. The resulting standard deviations of the heave mo-
tion and horizontally transversal motion of pontoons 4 and 6
are shown in Figure 12. This figure reveals a significant in-
crease in the horizontally transversal response of pontoon 6 as
the significant wave height increases. This increase in response
originates from the excitation of the first mode of vibration, the
mode shape of which is presented in Figure 7a. As the signif-
icant wave height increases, the frequency content of the wave
excitation process will shift downwards, as shown in Figures 10
and 17. This shift in frequency content excites the first vibra-
tional mode, which is otherwise located in the low-level tail of
the one-dimensional wave spectral density, and, in turn, signif-
icantly affects the response.

3.4.2. Crest length
The crest length is controlled by the spreading parameter s

that appears in the directional distribution. In the current case
study, the spreading parameter s was selected based on quanti-
tative judgement and site observations. To obtain a more accu-
rate measure of this quantity, wave recordings would be needed;
however, such an effort is considered to be outside the scope
of this study. The three values used for s in this survey (3,

30 and 1000) are considered to represent short-crested, fairly
long-crested and long-crested sea conditions. Particular atten-
tion is focused on the value of s = 3, as on-site observations
imply that a short-crested representation is the most realistic.
To more clearly illustrate the effect of the spreading parameter
on the sea surface, representations of the sea surface for s = 3,
s = 30, and s = 1000 are shown in Figures 13-15. The cor-
relations between the wave height at the midmost pontoon and
those along the rest of the bridge are shown in the same figures
for the corresponding sea states.

These figures show that the correlations between the wave
heights are very low; only when the waves are long-crested is
there a non-zero wave-height correlation between neighbour-
ing pontoons. As a result of the low correlation between the
wave heights, the cross-spectral densities between the wave ex-
citations of the different pontoons are very small and can be
neglected for the types of sea states assumed at the bridge loca-
tion. Note that the correlation plots are also highly dependent
on the chosen one-dimensional wave spectral density. As the
significant wave height, which controls the form of the wave
spectral density, increases, the highly correlated region expands
dramatically in the directions both parallel and normal to the
wave propagation.

The significant wave heights in the locations of other po-
tential floating bridges may be far larger than those measured
around the Bergsøysund Bridge, and therefore, it is important
to understand the correlations between wave actions on differ-
ent pontoons.

By simulating the responses for various spreading parame-
ters, the statistics of the responses in various DOFs of the model
were established. The standard deviations of the heave motion
and horizontally transversal motion of pontoons 4 and 6 for
varying s are shown in Figure 16. This plot reveals a decrease in
the response in terms of the horizontally transversal motion and
an increase in the vertical motion. As the sea surface becomes
more long-crested, the wave-excitation correlation increases;
the pontoons are excited more simultaneously. This will, in
turn, increase the response of the symmetric modes; however,
it may also reduce the intensity of the antisymmetric modes of
vibration. This is the cause of the somewhat unexpected be-
haviour in response to an increased crest length observed in the
figure.

3.5. Bridge response due to typical sea state
The one-year sea state reported by Veritec, represented by

a significant wave height of Hs = 0.90 m, is considered in the
following. Furthermore, the crest length is chosen to be charac-
terized by a spreading parameter of s = 3.

Figures 18 and 19 present the resulting power spectral den-
sities and coherences of the responses in the vertical and hor-
izontal directions, respectively, for pontoons 3, 4 and 5; the
corresponding statistics are summarized in Tables 4 and 5. The
response spectral densities are represented with respect to the
local DOFs of pontoon 4. The vertical displacement responses
are found to have low correlation values in general, a finding
that is supported by the low coherence values between the ver-
tical responses at the natural frequencies of the vertical modes
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(a) Sea surface representation.

(b) Correlation with the wave height at the midmost pontoon.

Figure 13: Sea surface representation and correlation with the wave height at
the midmost pontoon for a sea state characterized by Hs = 0.9 m, θ0 = 90o and
s = 3.

(a) Sea surface representation.

(b) Correlation with the wave height at the midmost pontoon.

Figure 14: Sea surface representation and correlation with the wave height at
the midmost pontoon for a sea state characterized by Hs = 0.9 m, θ0 = 90o and
s = 30.

(a) Sea surface representation.

(b) Correlation with the wave height at the midmost pontoon.

Figure 15: Sea surface representation and correlation with the wave height at
the midmost pontoon for a sea state characterized by Hs = 0.9 m, θ0 = 90o and
s = 1000.
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Table 4: Covariances [mm2] and correlation coefficients (above the diagonal)
for the heave responses of the three midmost pontoons. The statistics corre-
spond to Figure 18.

Pontoon 3 Pontoon 4 Pontoon 5

Pontoon 3 1959 0.640 0.0825
Pontoon 4 1373 2345 0.640
Pontoon 5 161.5 1373 1959

of the bridge. The spectra that show the horizontal displace-
ment responses do not share this tendency: high coherence is
observed at and around the peaks representing the natural fre-
quencies of the horizontal modes of the structures, and the hor-
izontal response variables exhibit high correlations. The incon-
sistencies in the damping ratios between the horizontal and ver-
tical modes, as shown in Figure 8, are likely the cause of this
result.

3.6. Simplified frequency-independent hydrodynamic model

When general non-linearities are added to the problem, a
time-domain representation is close to inevitable. To properly
include the fluid-structure interaction, convolution integrals must
be solved, which is considered to be a computationally expen-
sive procedure. For this reason, approximations of the frequency-
dependent coefficients as constant have received some atten-
tion in the literature. The success of simplifying the frequency-
dependent hydrodynamic coefficients as independent of frequency
is highly dependent on the wave action process; a narrow-banded
process with a long characteristic period is much more likely to

Table 5: Covariances [mm2] and correlation coefficients (above the diagonal)
for the horizontally transverse responses of the three midmost pontoons. The
statistics correspond to Figure 19.

Pontoon 3 Pontoon 4 Pontoon 5

Pontoon 3 3919 0.897 0.702
Pontoon 4 5225 8662 0.897
Pontoon 5 2752 5224 3919
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Figure 18: Cross-spectral densities of the heave responses of the three midmost
pontoons. The three black curves shown above the diagonal represent the co-
herence between the responses, and the blue and red/dotted curves denote the
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be amenable to this type of simplification. Several procedures
for this purpose have been suggested, but the emphasis here is
placed on approximating the frequency-dependent coefficients
as constant based on their values at (i) the peak frequency cor-
responding to the one-dimensional wave spectral density and
(ii) the weighted average frequency corresponding to the maxi-
mum peaks of the auto-spectral densities of the response, based
on an exact frequency-domain solution. The weighted average
of approximation (ii) is computed as follows:

ωtot =
1∑N

i=1 Wi

N∑
i=1

Wi · ωi (34)

Here, the frequency corresponding to the largest value of the
auto-spectral density S i,i(ω) is denoted by ωi, N is the total
number of DOFs, and the weighting coefficients Wi are defined
as follows:

Wi =

√
max

(
S i,i(ω)

)
(35)

A comparison of the standard deviations and correlation co-
efficients corresponding to the heave and horizontally transver-
sal responses of pontoons 3 and 4 is presented in Table 6. To
complement this table, the corresponding spectral densities are
presented in Figure 20. Both the figure and the table show that
the second approach generally outperforms the first. However,
the results obtained using both procedures are rather crude, their
greatest shortcoming being that they both underestimate and
overestimate the response and the correlations.

4. Concluding remarks

The potential of floating bridges for application as part of
modern infrastructure is not fully utilized today, primarily due
to the limited knowledge of their dynamic behaviours as their
lengths are increased. Linear frequency-domain simulations
were performed in a case study of the 23-year-old Bergsøysund
Bridge in Norway, with emphasis on the response spectral den-
sities determined using the power spectral density method and
the modal parameters resulting from the complex and non-linear
eigenvalue problem. The effects of different sea states and how
they affect the response of the bridge were discussed.

The high damping contribution from the fluid-structure in-
teraction results in low coherence and correlation between the
heave response quantities along the bridge span. With damp-
ing levels as high as 12% for lateral modes, this result is as
expected.

For a realistic 1-year sea state, a low correlation between
the wave heights at the locations of the different pontoons was
found; the action on each pontoon can therefore be consid-
ered independent. When the significant wave height increases
to higher levels, however, the pontoons are exposed to cor-
related wave excitation. The correlation of the wave action
amplifies the response of the modes with symmetric proper-
ties but may reduce the response of the antisymmetric modes.
The geometry of the bridge also plays a crucial role in how
strongly correlated the pontoon action becomes. Because the
first mode of vibration has a frequency located in the tail of the
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(a) Heave component.
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Figure 20: Comparison of spectral densities obtained from exact and approxi-
mate solutions.
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Table 6: Comparison of the standard deviations determined through exact computation with the standard deviations obtained using two different constant approxi-
mations of the frequency-dependent mass and damping matrices corresponding to the fluid-structure interaction. Approximation (i) uses the values of the matrices
at the frequency corresponding to the peak of the one-dimensional wave spectral density, whereas approximation (ii) utilizes the matrix values at the average of the
square-root-weighted frequencies corresponding to the peaks of the response spectral density obtained from an exact frequency-domain solution.

Standard deviation [mm] Correlation coefficient

Component Pontoon Exact Approx. (i) Approx. (ii) Exact Approx. (i) Approx. (ii)

Heave No. 3 44.26 56.42 42.76 0.640 0.716 0.700No. 4 48.43 61.34 46.75

Horizontal No. 3 62.60 58.15 61.81 0.897 0.876 0.883No. 4 93.07 84.46 91.31

one-dimensional wave spectral density for low and medium sig-
nificant wave heights, its contribution to the global behaviour
requires a rather large significant wave height.

The approximation of the fluid-structure interaction contri-
butions as constant for a frequency corresponding to the weighted
average frequency of the peak auto-spectral densities obtained
from an exact frequency-domain solution, termed approxima-
tion (ii), performed decently for a realistic 1-year sea state. The
performance of this approximation is expected to be signifi-
cantly enhanced when the wave excitation process is less broad-
band in nature. The constant approximation of the frequency-
dependent fluid-structure interaction contributions lacks consis-
tency; it both underestimates and overestimates the response
and must therefore be used with caution.

Verification of the calculation models used for floating bridges
is important to ensure reliable analyses. To verify the model
and quantify its uncertainties, experimental data regarding the
behaviour of the bridge should be recorded and analyzed.
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