
Registration in hyperspectral and
multispectral imaging

Stig Viste

Master of Science in Electronics

Supervisor: Lise Lyngsnes Randeberg, IES
Co-supervisor: Asgeir Bjørgan, IET

Department of Electronic Systems

Submission date: January 2017

Norwegian University of Science and Technology

Abstract

Hyperspectral (HSI) and Multispectral (MSI) images consist of multiple images
taken at different wavelengths (bands), often at different times. Analysis of these
images require high accuracy of correlation between the different image bands. As
the image bands are taken at different times, different positions, or both, this entails
that the images must be processed before the images can be analysed. The process
of alignment between two images is referred to as image registration.

A test-set consisting of 40 image bands was created, consisting of wavelengths
in the range of (415-557nm). These images are 1601x1401 pixels, and have
introduced simulating errors, to be corrected by the registration process. This
enables validation of the registration results. Insight Toolkit (ITK), a C++ library,
was explored and implemented for this test-set. ITK was chosen, as this library
contains most known registration methods, and boast high customizability. Six
registration methods were implemented and tested against this image set.

One of these registration methods, Rigid transform, was found to achieve sub-
pixel precision across multiple input parameters, with 0.22 standard deviation from
the true pixel coordinates, and 0.018 standard deviation from the true angular
value. This method has an optimal run time of six hours per image band using one
central processing unit (CPU) core. The remaining five registration methods showed
promise, but were not reliable against the test-set. These registration methods
ranged between 33 and 76 standard deviation from the true pixel coordinates.

Rigid transform was then run on the unknown hyperspectral and multispectral
image sets. Quantifiable accuracy results are not available for these image sets.

i

Sammendrag

Hyperspektrale (HSI) og Multispektrale (MSI) bilder består av flere bilder tatt ved
forskjellige bølgelengder (bånd), ofte ved forskjellige tidspunkt. Analyse av disse
bildene krever høy nøyaktighet og korrelasjon mellom de forskjellige bildebåndene.
Ettersom bildene er tatt ved forskjellige tidspunkt, forskjellige posisjoner, eller
begge, innebærer dette at bildene må prosesseres før bildene kan analyseres.
Justering mellom to bilder er en prosess omtalt som bilderegistrering.

Det ble laget et testsett med 40 bildebånd, med bølgelengder i området (415-
557nm). Disse bildene er 1601x1401 piksler. Det ble lagt inn simulerte feil, som skal
korrigeres for av registreringsprosessen. Dette muliggjør validering av resultatene
fra registreringsprosessen. Insight Toolkit (ITK) er et C++ bibliotek som ble
utforsket og implementert for testsettet. ITK ble valgt, da biblioteket inneholder de
mest kjente og utprøvde registreringsmetodene, og har gode tilpasningsmuligheter.
Seks registreringsmetoder ble implementert og testet med bildesettet.

En av disse registreringsmetodene, Rigid transform, oppnådde presisjon under en
piksel over flere parametre, med 0.22 standardavvik fra korrekte pikselkoordinater,
og 0.018 standardavvik fra korrekt vinkelverdier. Denne metoden hadde en optimal
kjøretid på seks timer per bildebånd med en prosessorkjerne. De gjenværende fem
registreringsmetodene var lovende, men var ikke pålitelige mot testsettet. Disse
registreringsmetodene hadde standardavvik for korrekte pikselkoordinater mellom
33 og 76.

Rigid transform ble deretter benyttet mot ukjente hyperspektrale og multispektrale
bildesett. Kvantifiserbar nøyaktighet for resultatene er ikke tilgjengelig for disse
bildesettene.

ii

Preface

This report is the result of the Master’s thesis conducted during the fall of 2016 and
january 2017, concluding a Master of Science degree in Electronics, Nanoelectronics
and Photonics. The report is submitted to the Department of Electronics and
Telecommunications (IET) at the Norwegian University of Science and Technology
(NTNU). The work is an intersection between modelling, medicine and computer
science.

The work in this thesis is a module in a larger project developed in previous master
thesises[11, 90]. This project was proposed by professor Lise L. Randeberg from
IET at NTNU. During the work with this thesis, I have learned a lot about the
concepts, challenges and limitations image processing faces.

I would like to thank my supervisors professor Lise L. Randeberg and PhD candidate
Asgeir Bjørgan, for their support, guidance and feedback throughout this project.
Thanks to the board members at Omega Verksted for lending me hardware, and
introducing the concept of timeshare to proof-reading. I also want to thank Eline
for letting me vent about the seemingly impossible issues at hand and proof-reading.
Thanks to my parents for showing me the door at the ripe age of nineteen.

Stig Viste
January 2017

NTNU Trondheim

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Previous work . 2
1.3 Objectives . 3
1.4 Contributions . 4
1.5 Method . 4

2 Theory and background 6
2.1 Image formats . 6

2.1.1 Band Interleaved by Pixel . 6
2.1.2 Band Sequential . 7
2.1.3 Band Interleaved by Line . 7
2.1.4 ENVI Standard . 8
2.1.5 RAW . 8

2.2 Image registration . 8
2.2.1 Concepts . 9
2.2.2 Process . 10
2.2.3 Framework . 11
2.2.4 Metrics . 11
2.2.5 Transforms . 13

2.3 Software . 16
2.3.1 DRAMMS . 16
2.3.2 ITK . 16
2.3.3 NiftyReg . 17
2.3.4 OpenCV . 17

2.4 Insight Toolkit . 18
2.4.1 Definitions . 18
2.4.2 Filters . 20
2.4.3 Interpolators . 22
2.4.4 Metrics . 23
2.4.5 Optimizers . 23
2.4.6 Transforms . 24

2.5 Validation . 27

3 Materials and methods 29
3.1 Image files . 29

3.1.1 Hyperspectral images . 29
3.1.2 Multispectral images . 30

3.2 Choice of registration software . 31
3.3 Example methods . 32
3.4 Preliminary testing . 34
3.5 Implementation . 37
3.6 Transforms . 41

iv

3.6.1 Affine . 41
3.6.2 BSpline . 41
3.6.3 Demons . 41
3.6.4 Rigid . 42
3.6.5 Similarity . 42
3.6.6 Translation . 42

4 Results and discussion 43
4.1 Preliminary tests . 45
4.2 Transformation methods . 46

4.2.1 Translation . 47
4.2.2 Affine . 49
4.2.3 BSpline . 50
4.2.4 Demons . 52
4.2.5 Rigid . 53
4.2.6 Similarity . 61

4.3 Summary . 62

5 Conclusion 65
5.1 Future work . 65

Appendix A Code 74
A.1 Read image . 74
A.2 Multispectral images . 77
A.3 Hyperspectral images . 79
A.4 Image registration . 82
A.5 Source code . 90

Appendix B Inheritance diagrams 100
B.1 Includes . 100
B.2 hyperspec_img functions . 101
B.3 hyperspec_mat functions . 102
B.4 multispec_raw functions . 103

Appendix C Hardware 104

Appendix D Software 104

v

List of Figures

2.1 Simple registration problem . 8
2.2 Registration framework . 10
2.3 Basic components of the ITKv4 registration framework 18
2.4 Geometrical definitions . 19
3.1 Hyperspectral images . 30
3.2 Multispectral images . 31
3.3 Extracted images for preliminary testing 34
3.4 Introduced offsets from table 3.3 . 36
3.5 Components of the developed registration software 37
4.1 Registration results using TranslationTransform 48
4.2 Registration results using AffineTransform 49
4.3 Registration results from itk::BSplineTransform 50
4.4 Relaxed registration results from itk::BSplineTransform 51
4.5 Registration results from itk::DemonsTransform 52
4.6 Registration results using Rigid2DTransform 54
4.7 Registration results using Rigid2DTransform, after

TranslationTransform . 55
4.8 Registration results using Rigid2DTransform 56
4.9 Subset of image bands from AOTF 57
4.10 Multispectral images registered with Rigid2DTransform 58
4.11 Input Bacon.mat . 59
4.12 Registration results of Bacon.mat using Rigid2DTransform 60
4.13 Registration results using Similarity2DTransform 61

vi

List of Tables

2.1 Band Interleaved by Line . 6
2.2 Band Sequential . 7
2.3 Band Interleaved by Line . 7
2.4 Insight Toolkit modules . 16
3.1 Example image registrations with default ITKv4 registration methods 32
3.2 Example image registrations with Histogram Matching 33
3.3 Introduced testset with known errors 35
4.1 Maximum accuracy error from pixel translation 43
4.2 Maximum accuracy error from angle translation in image origin . . . 44
4.3 Maximum accuracy error from angle translation in centered image

operation . 44
4.4 Results from preliminary tests . 45
4.5 Strict parameters . 46
4.6 Results from TranslationTransform 47
4.7 Results from Rigid2DTransform . 53
4.8 Results from multiple runs . 62
C.1 Hardware . 104
D.1 Software . 104

vii

Acronyms and Abbreviations

AOTF: Acousto-optical tunable filter
ANTs: Advanced Normalization Tools
API: Application Programming Interface
BIL: Band Interleaved by Line
BIP: Band Interleaved by Pixel
BSQ: Band Sequential
CP: Control Point
CPU: Central Processing Unit
DCMTK: DICOM Toolkit
ENVI: Environment for Visualization
Fixed: Image to be compared to moving image
FPGA: Field Programmable Gate Array
GIMIAS: Graphical Interface for Medical Analysis and Simulation
GPU: Graphics Processing Unit
HSI: Hyper Spectral Imaging
IET: Department of Electronics and Telecommunications
ITK: Insight Toolkit
LBFGS: Limited memory Broyden, Fletcher, Goldfarb and Shannon

minimization
MATIO: MAT File I/O Library
MITK: Medical Imaging Interaction Toolkit
Moving: Image to be registered
MMI: Mattes Mutual Information
MI: Mutual Information
MR: Magnetic Resonance
MS: Mean Squares
MSI: Multispectral Imaging
NC: Normalized Correlation
NMI: Normalized Mutual Information
NTNU: Norwegian University of Science and Technology
OpenCV: Open Computer Vision
PET: Positron Emission Tomography
SPECT: Single Photon Emission Computed Tomography
VTK: Visualization Toolkit
XML: Extensible Markup Language

viii

1 Introduction

1 Introduction

Hyperspectral imaging (HSI) is a technique where each pixel represents the whole
spectrum visible to the camera for all the images, instead of intensity values for red,
green and blue. This technique combines high spectral and spatial information in
one image, divided in image bands, where each image band consist of an image taken
at a specific wavelength[16]. Multispectral imaging (MSI) is a similar technique,
where the whole visible spectrum is replaced with specific wavelengths[9]. While
hyperspectral imaging is widely used for remote sensing, it has also been adopted
for diagnostic purposes in imaging of skin. Various techniques have been developed
for extraction of the information[15, 82, 84, 91].

Using these methods, it is possible to attain both spatial and spectral information
from an object. HSI are three-dimensional images, where the third dimension is
spectral. These images contain a large quantity of information, and multicore CPU,
GPU, or FPGA processing is often used to allow fast processing of the different
images, decreasing the run time[11, 12, 14].

The human skin is the largest organ, covering the entire body. Skin is divided
into layers; epidermis, dermis and hypodermis. Epidermis is the outer layer, and
protects the skin against water loss and external organisms and stimuli. When
exposed to UV-radiation, the epidermis will produce melanin for protection, and
the melanin will affect the tone of the skin. Dermis mainly consists of connective
tissue and blood vessels. This layer supplies nourishment to the skin. Hypodermis
contains fat cells.[29] Light can penetrate through the skin layers and be reflected
back. The reflectance spectrum of the skin layers depends on the wavelength of the
exposed light[3, 55].

A hyperspectral image, of for example an arm, will therefore contain a large quantity
of information about the different skin layers in the arm. This information may be
extracted and used for various purposes; e.g. determining the age of a bruise[83],
characterization of vascular structures[98], and characterizing wounds[22].

1

1.1 Motivation 1 Introduction

1.1 Motivation

Registration is the process of finding the spatial transform that maps points from
one image to the corresponding points in another image. Medical image registration
has many applications both in clinical and research settings. Larger changes in
medical images taken at different times may be detected by visual comparison, for
example PET scans taken months apart. Image registration enables the detection
of subtle changes, by eliminating patient position, movement and motion artifacts.
Optionally, one may remove everything that hasn’t changed between images, using
subtraction. Registration may also be applied to different imaging modalities,
referred to as coregistration, such as combining the information from PET, SPECT
and MR images[13, 109].

Unless the image bands are correctly aligned, any information extracted will be void.
HSI is not instant, but takes some time per image band or image line, depending
on the imaging technique used[11, 59, 90]. Motion artifacts typically occur when
a scanning based technique is used[90]. Then, the camera scans one image line at
all wavelengths at a time. Movement in the object between two image line scans
will skewer the object in the image. With techniques using full spatial images
taken at different wavelengths at different times, small movements and positioning
of the object will impact the final image. Any such eventual movement, positioning
and motion artifacts must be detected and eliminated before HSI analysis is used.
Multispectral images are here taken at different angles, but at the same time. Thus,
these images face a different, but similar, set of restrictions.

This means that we have data sets with alignment errors of different magnitudes,
deformably erroneous images, and possibly a combination.

1.2 Previous work

As the time consumption of the camera scan rate and data processing approaches
zero, movement and motion artifacts will approach extinction. This has been
attempted with FPGAs[34, 102] and GPUs[11, 30, 31, 87, 92, 93, 95]. One of
the data sets is taken using a HySpex VINIR-1600 camera[43]. This camera, with
autofocus[90], uses 30 ms per line. With GPU acceleration, the data processing uses
3.5 ms per line[11], which makes the camera the bottleneck. While this reduces the
amount of artifacts greatly, it is still possible for the object to move enough to
induce artifacts between image lines. The severity of these artifacts depend on how
and how much the object moves.

2

1.3 Objectives 1 Introduction

Image registration has been thoroughly tested with different implementations, such
as CT scans[6, 106, 108] and PET scans[1, 74] using landmark recognition, rigid
transformation in the spatial domain[8], and coregistration between different image
modalities[2, 17, 18, 27, 33, 35, 37, 38, 40, 60, 61, 70, 74]. Several surveys[13, 58,
62–64, 86, 110] have been published, discussing different registration methodology
and implementations. Although many of the publications discuss different topics,
they all agree on two things;

– A perfect image registration method does not exist. It is up to the user to weigh
if the registration method is adequate.

– No method is available for qualitative validation of a registration method. If
such a technique existed, that method would be used in place of the registration
method. Approaches for validation involve testing the registration method on
simulated images, and relating these results to images that are similar to the
simulated images.

1.3 Objectives

The objectives in this master thesis can be categorized as following;

– Implement reading, writing, and registration methods for the supplied data sets,
based on literature on the subject.

– Test and discuss the implemented registration methods, based on the registration
results.

– Validation of the registration methods

Additionally, methods for choosing parameters and registration method will be
created. This will make the developed software more user-friendly.

3

1.4 Contributions 1 Introduction

1.4 Contributions

The intention of this work has been to create an adapted version of open
source image registration software, targeted towards hyper spectral images from
an Acousto-Optic Tunable Filter (AOTF) camera[73], a pushbroom camera[11,
90], a Zyla 5.5 sCMOS camera[59], and multispectral images from a five-camera
system[39]. In order to achieve this, Insight Toolkit (ITK)[52] was used as base.

The following list summarize the contributions made through this thesis:

– Image reader modules have been created. These modules allow multiple inputs
as arguments to the program.

– A framework for easy configuration has been developed. This framework allow
for fast reconfiguration of the image registration process, including registration
method, preprocessing filters and parameters for the optimizer, metric and
transformation.

– Implementation of six different image registration methods have been created,
where four of the image registration methods are rigid, and two of the image
registration methods are deformable.

– Preprocessing filters have been implemented, allowing median and/or gradient
filtering of the images to be registered.

– A test-set of images has been created, giving a method for validating the accuracy
of the implemented image registration methods.

1.5 Method

The work performed in this thesis is based on multiple research methods. Before
the problem could be solved, a study of the image formats, the ITK library, the
MATIO[65] library, and image registration techniques had to be conducted. A plan
for how to resolve each of the issues at hand was devised and discussed before
being carried out, in order to ensure a good solution. The problems at hand
requires in-depth knowledge of the ITK library, as well as an understanding of
image registration concepts, techniques and issues.

A temporary program was developed in order to convert the input image files into
standardized image files, and tested with the different image registration methods
available in the ITK library. The methods with the best registration results were
then implemented in a more adaptive and configurable program, combining the
modules directly, reducing computational cost and memory usage. A subset of
images was extracted from an image set, with introduced errors. This image subset
was tested with the different registration methods using different parameters in
order to find the accuracy of the registration method.

4

1.5 Method 1 Introduction

In general, this thesis is divided into six chapters, in addition to four appendices.
In chapter 2, the theory and background required to understand the content of
the thesis is described. Chapter 3 contains descriptions of the implementation and
development of the program. All relevant results are presented in chapter 4. These
Results are discussed against the validation criteria found in the literature[110] in
chapter 5, and where applicable, a conclusion has been drawn in chapter 6. Chapter
6 also include a section of future works, describing aspects that are interesting to
look into, as well as aspects that should be looked into. The appendices includes
code-listings of the header files in the program, example source code, inheritance
diagrams, and includes overviews of hardware and software used.

5

2 Theory and background

2 Theory and background

This chapter includes some theory and background information explaining different
aspects and issues affiliated with image registration. Chapter 2.1 provides some
theoretical background information for the images provided. Chapter 2.2 aim
to provide in-depth information about the image registration process as well as
common algorithms and methods. Chapter 2.3 gives a short overview over readily
available registration software, while chapter 2.4 gives in-depth information about
ITK and its implementations and adaptions of the methods presented in chapter
2.2.

2.1 Image formats

Image files are composed of digital data in a file format. Many of these file formats
are standardized, such as TIFF, PNG and GIF. These standardized formats store the
image metadata in a known manner, typically as part of the image file, in a header
at the beginning of the file. This image file may then easily be interpreted and
read.[88]

When storing multiple images in one digital file, the different images are referred
to as bands. Each band has its own corresponding identifier. This identifier may
be the wavelength λ the image is taken with, or the camera it is taken from.

2.1.1 Band Interleaved by Pixel

Pixel 1,1 · · · Pixel 1,n

Row 1 B
an

d
1

B
an

d
2

B
an

d
3

· · · B
an

d
1

B
an

d
2

B
an

d
3

...
...

...
...

. . .
...

...
...

Row n B
an

d
1

B
an

d
2

B
an

d
3

· · · B
an

d
1

B
an

d
2

B
an

d
3

Table 2.1: Band Interleaved by Line

Band Interleaved by Pixel (BIP)
stores the first pixel for all bands
in sequential order, followed by
the next pixel for all the bands,
interleaved up to the number of
pixels. For accessing pixel num-
ber 45 in band 3, accessing a
pixel then requires the knowl-
edge of number of bands. If there
are 90 bands, or images, access-
ing pixel number 45 in band 3
is then stored at position 44 ∗
90+45 in a Band-Interleaved-by-
Pixel image. BIP offers optimal performance for spectral access[10]. This is visual-
ized in table 2.1.

6

2.1 Image formats 2 Theory and background

2.1.2 Band Sequential

Band Sequential (BSQ) stores the spatial image of each band in a sequence.
It follows that BSQ offers optimal performance for spatial access, as all pixels
representing the same spatial space is stored sequentially[10]. This is visualized in
table 2.2.

1 to n columns

Rows

1

Band 12
...
n

...

Rows

1

Band n2
...
n

Table 2.2: Band Sequential

2.1.3 Band Interleaved by Line

Band Interleaved by Line, or BIL, stores the first line for all the bands, then the
next line for all the bands, until the last line is stored. If one wants to access
pixel number 45, line 1, in band 3, one must first know the size of the line. If the
line is 1000 pixels wide, pixel number 45, line 1, band 3 is then stored at position
1000 ∗ 2 + 45 in a Band-Interleaved-by-Line image. BIL is a compromise between
BIP and BSQ, and offers good performance for both spectral and spatial access[10].
This is visualized in table 2.3.

1 to n columns 1 to n columns 1 to n columns
Row 1 Band 1 Band 2 Band 3
Row 2 Band 1 Band 2 Band 3

...
...

...
...

Row n Band 1 Band 2 Band 3

Table 2.3: Band Interleaved by Line

7

2.2 Image registration 2 Theory and background

2.1.4 ENVI Standard

The Environment for Visualization (ENVI) standard file format[26] is an image
format that supports BIL, BIP and BSQ directly. It stores the image data in a
binary file, and information about the storage format, data type, image size and
band information in a separate header file. The header file may be easily accessed
in a text viewer, or by an application capable of reading clear text. The supplied
HSI in this thesis are of this format, stored using BIL.

2.1.5 RAW

Images stored in a RAW format do not have any information about the image
stored in the file. Thus, information about the data type and image dimensions
must be known before the image may be extracted. The RAW format is, as the
name depicts, an unaltered version of the image. This means no compression, which
means no loss of accuracy and precision. The MSI images analyzed in this thesis is
stored as BSQ in separate files.

2.2 Image registration

Image registration is a fundamental task in image processing used to match two or
more images. These images may be taken at different times, from different sensors,
from different viewpoints, or at different wavelengths. Most large systems which
evaluate images require some level of registration of the images. Over the years,
a broad range of techniques have been independently studied and developed for
several applications[13, 110].

The extremely simplified registration problem in figure 2.1 illustrates a registration
process where the same object has been pictured at different viewpoints. In this
case, the object has moved closer to the camera.

Figure 2.1: Simple registration problem

8

2.2 Image registration 2 Theory and background

2.2.1 Concepts

In the existing literature, different criteria has been used as basis for aligning two
images. In general, these criteria can be categorized as landmark-, segmentation-,
and intensity-based[28, 62, 103].

Landmark-based registration uses salient features, selected by the user. These
features may be chosen as points, lines or more complex structures such as corners or
crossings. This technique is fast to compute, as the number of features are sparse
compared to the full content of the image. However, this method requires user
interaction for location of the features. This lacks consistency and reproducibility,
in addition to adding more complexity to the usage.

Segmentation-based methods attempt to align the binary structure, i.e. curves,
surfaces or volumes, rigidly or deformably through obtained information from
segmentation. The segmented structure of one image may be aligned to a segmented
structure in the second image or to the unsegmented second image. This criteria
typically requires that the boundaries of the binary structure matches the edges
in the second image. As segmentation-based methods reduce the overall image
information, segmentation yields faster computation than registration using the
full content of the image. One drawback of segmentation-based methods is that the
performance relies on the accuracy of the pre-processing step.

Intensity-based registrations operate directly on the image intensity. They are more
flexible as they use all the available information without reduction of data from user
input or automated segmentation algorithms. This is computationally expensive,
and hence not suited for time-constrained applications. It is therefore common to
use a multi-resolution approach in order to speed up the computational time and
improve the capture range of the algorithm[109].

Popular approaches include correlation ratios and the information theoretic measure
of mutual information [21, 105].

9

2.2 Image registration 2 Theory and background

2.2.2 Process

Regardless of the methods used, the majority of registration methods consists of
the following steps[64, 86, 89, 110];

• Feature detection
• Feature matching
• Tranform model estimation
• Image resampling and transformation

For the first step, salient and distinctive objects are detected. These objects may be
regions, edges, contours, intersections, corners, etc, as described in chapter 2.2.1,
and may be detected manually or automatically. For further processing, these
features need to be represented by their point representatives. These representatives
are called control points (CP) in the literature.

The second step is matching these CPs between the moving and fixed images,
and establish this correspondence for further use. Various feature descriptors and
similarity measures along with spatial relationships in the features are used.

Next, a transformation model is estimated using the established feature correspon-
dence. When the transformation model is estimated, the moving image is finally
transformed using the transformation model. Any image values in non-integer co-
ordinates need to be computed by an appropriate interpolation technique before
the image may be resampled.

The basic components of a registration framework are depicted in figure 2.2, and
consists of two input images, a transform, a metric, an interpolator, and an
optimizer.

Figure 2.2: Registration framework

10

2.2 Image registration 2 Theory and background

2.2.3 Framework

The optimizer will iteratively search for the optimal solution by evaluation of the
metric at different positions of the transform parameter search space. The basic
input to an optimizer is a metric object or a cost function. The metric is initialized,
and the optimization algorithm started. Once the optimization stop condition has
been reached, the transform and final parameters are ready for extraction[54, 77].

The objective of an initializer is to simplify the computation of the center of rotation
and the translation required to initialize certain transforms. The initializer accepts
two images and a transform as inputs, and returns an initial start position for the
metric.

Interpolation is a technique for determining the value between two prescribed values,
and it is believed that the Babylonians used linear interpolation for determining
the movement of astronomical objects in the centuries before the common era[75].
Several interpolation methods are simple, yet effective. Nearest neighbor is simple
rounding; If x = 0 contains the value 7, and x = 1 contains the value 230, x = 0.49
will contain value 7. Just as nearest neighbour assumes discrete values, linear
interpolation never assumes discrete values, and is the straight line between the
prescribed values. For the coordinates (x0, y0) and (x1, y1), equation 2.1 describes
this line.

y − y0
x− x0

=
y1 − y0
x1 − x0

(2.1)

For the previously used x values, x = 0.49 contain value 7 + (230 − 7) ∗ 0.51 =
120.73[72].

2.2.4 Metrics

The metric component is a critical element in the registration framework, and the
selection of which metric to use is highly dependent on the registration problem to
be solved. The matching metric controls most parts of the registration process as
it handles fixed, moving and virtual images as well as fixed and moving transforms
and interpolators. Typically, the metric samples points within a defined region
of the virtual lattice. For each point, the corresponding fixed and moving image
positions are computed using the initial transform and the moving transform with
specified parameters.

11

2.2 Image registration 2 Theory and background

Mean squares is a simple adaption of Mean Squared Error commonly used in
probability. Equation 2.2 computes the mean squared pixel-wise difference in
intensity between image A and image B over a user-defined region. This metric
is simple to compute and has a large capture radius.

MS(A,B) =
1

N

N∑
i=1

(Ai −Bi)2 (2.2)

This metric relies on the assumption that intensity representing the same
homologous point must be the same in image A and B, and is thus restricted
to images of the same modality. Any linear changes in the intensity result in a poor
match value. Poor matches result in large values, whereas the optimal value of the
metric is zero.

Mutual information (MI) is defined in terms of entropy[80, 94]. H(A) and H(B)
are the entropies of random variables A and B such that

H(X) = −
∫
pX(x) log(pX(x))dx (2.3)

Then the joint entropy of A and B becomes

H(A,B) =

∫
pAB(a, b) log(pAB(a, b))dadb (2.4)

If A and B are independent, then

H(A,B) = H(A) +H(B)

If A and B are dependent, then

H(A,B) < H(A) +H(B)

The difference, I(A,B), is the Mutual Information;

I(A,B) = H(A) +H(B)−H(A,B) (2.5)

MI measures how much information one random variable in image A tells about
another random variable in image B. An advantage of MI is that the form of
the dependency does not have to be specified. This allows modelling of complex
mapping between two images, and is thus well suited for multimodal registration.

12

2.2 Image registration 2 Theory and background

Equation 2.6 computes pixel-wise cross-correlation and normalizes it by the square
root of the autocorrelation of the images.

NC(A,B) = −1 ·
∑N

i=1(Ai ·Bi)√∑N
i=1A

2
i ·
∑N

i=1B
2
i

(2.6)

The −1 factor is used to optimize the metric when its minimum is reached. Optimal
value is hence −1, and misalignment result in small measure values. The use of
this metric is limited to images with the same image modality. The metric has a
relatively small capture radius, and is insensitive to multiplicative factors between
image A and B.

Changes in overlap of very low-intensity regions of an image can disproportionately
contribute to the mutual information. This may be solved using an alternative
normalization, as shown in equation 2.7. This measure involves normalizing mutual
information with respect to the joint entropy of the overlap volume[41, 97].

NMI(A,B) = 1 +
I(A,B)

H(A,B)
=
H(A) +H(B)

H(A,B)
(2.7)

When images A and B have virtually identical fields of view, mutual information
and normalized mutual information have been shown to perform equivalently[42].

2.2.5 Transforms

Transforms encapsulate the mapping of points and vectors from an input space to an
output space. The mapping may support simple translation, rotation and scaling.
Transforms are general and can be used for applications other than registration.

The concept of demons was introduced by Maxwell in the 19th century in order to
illustrate a paradox of thermodynamics. Assume a gas composed of a mixture of
two types of particles a and b, separated by a semi-permeable membrane containing
a set of “demons”. These demons distinguish between the particles, and only allow
a particles to diffuse to the first side, and b particles to diffuse to the second side.
In the end, the first side only contains a particles, and the second side only contains
b particles. This corresponds to a decrease of entropy, which contradicts the second
principle of thermodynamics. As the demons generate a higher amount of entropy
to recognize the particles, the total entropy increases, and the paradox is solved.

13

2.2 Image registration 2 Theory and background

Demons is a diffusion model transformation, using the concept of attraction. A
point P in the model M is attracted by all the points P ′ in S which are similar.
If K(P, P ′) is a similarity criterion, and D(P, P ′) a function of the distance, the
induced force ~f on P by the attraction of all the points of S can be written as

~f(P) =
∑
P ′∈S

K(P, P ′)

D(P, P ′)
~PP ′ (2.8)

M is thus deformed according to these forces.

A special method is optical flow, which may be used to find small deformations in
temporal sequences of images. At a given point P , s is the intensity function in S
and m the intensity in M . The basic hypothesis of optical flow is to consider that
the intensity of a moving object is constant with time, which for small misplacement
give the optical flow equation;

~v · ~∇s = m− s (2.9)

In order to sufficiently define the velocity ~v, it is possible to consider that the end
point of ~v is the closest point of the hypersurface m, with respect to spatial (x, y, z)
translations, and in turn obtaining local values of ~v;

~v =
(m− s)~∇s

(~∇s)2
(2.10)

This equation is unstable for small values of ~∇s, giving infinite values for ~v. Ideally,
small ~∇s should give solutions close to zero. A solution to this problem may be
found by multiplying equation 2.10 with (~∇s)2/((~∇s)2 + (m − s)2), which gives
equation 2.11.

~v =
(m− s)~∇s

(~∇s)2 + (m− s)2
(2.11)

With this expression, the optical flow can be calculated in two steps: Instantaneous
optical flow, and then regularize the deformation field[23, 100, 101].

Euler Transform is a rigid transformation in two-dimensional space, and is composed
of a plane rotation and a two-dimensional translation. The rotation is applied first,
followed by the translation, as expressed in equation 2.12.

[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

]
·
[
x
y

]
+

[
Tx
Ty

]
(2.12)

Here, θ is the rotation angle and (Tx, Ty) are the components of the translation.

14

2.2 Image registration 2 Theory and background

The Identity transform, shown in equation 2.13, is a NULL operation, asM ∗I =M .

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (2.13)

A requirement imposed on the transform classes by the registration framework is
the computation of their Jacobians, as the metrics in general require the knowledge
of the Jacobian in order to compute Metric derivatives[54]. The Jacobian is a matrix
(2.14) whose elements are the partial derivatives of the output point with respect
to the array of parameters that defines the transform[51].

J =


δx1
δp1

δx1
δp2

· · · δx1
δpm

δx2
δp1

δx2
δp2

· · · δx2
δpm

...
...

. . .
...

δxn
δp1

δxn
δp2

· · · δxn
δpm

 (2.14)

Here, {pi} are the transform parameters and {xi} are the coordinates of the output
point. The Jacobian can be noted as J(X), where X = {xi}.

The use of transform Jacobians enable efficient computation of metric derivatives.
If Jacobians are not available, metric derivatives have to be computed using finite
differences at a price of 2M evaluations of the metric value, whereM is the number
of transform parameters.

Sometimes the term is used to refer to the determinant of a matrix representing the
derivatives of output point coordinates with respect to input point coordinates.

Equation 2.15 illustrates the effect of a scaling transform on a 3D point.x′y′
z′

 =

S1 0 0
0 S1 0
0 0 S1

 ·
xy
z

 (2.15)

15

2.3 Software 2 Theory and background

2.3 Software

Image registration has seen a surge of development during the last twenty years.
Since then, multiple image registration software have been developed, many of
which are still maintained. The most readily available software are presented here,
giving some insight into the different focuses the developers keep in mind; ease of
use versus complexity, optionality and availability.

2.3.1 DRAMMS

DRAMMS is an open source application. When compiled, DRAMMS will take two
images as inputs, and output the deformation as well as the registered image[79].
DRAMMS supports NIFTI and ANALYSE 7.5 image formats, with data types
unsigned char, uint8, int8, short, int16, uint16, int32, float or float32.

The input images are at first subject to attribute extraction and selection. Then
they are weighted with mutual-saliency. Finally, a numerical optimization is
applied, and the registered image is output[25].

2.3.2 ITK

ITK is a large open-source object-oriented software system for image processing,
segmentation and registration[53]. Unlike most available software, ITK does not
come with any graphical user interface or command line tools, but is first and
foremost an extensive library for image registration. In place of command line tools
or graphical user interface, well documented examples are available at a source code
level[49].
A large number of modules are available, categorized as follows;

Name Content

Core Central definitions and classes.
Third party Various third-party libraries, such as I/O for spesific files.
Filtering Image filters, laplacian, gaussian, etc.
IO Reading, writing, transforming and geometry.
Bridge Classes that connect with other libraries.
Numerics Collection of numerical modules, optimization, statistics, etc.
Registration Classes for registration of images or other data structures.
Segmentation Classes for segmentation of images or other data structures.
Video Classes for I/O and processing of static and real-time data.

Table 2.4: Insight Toolkit modules

16

2.3 Software 2 Theory and background

2.3.2.1 ANTs

ANTs is a wrapping for ITK, which aims to simplify and unify the available tools
that exists in ITK. For the end-user, this is done through the command line or
scripting. ANTs uses R[81] and ANTsR[4] in order to calculate the registrations[7].

2.3.2.2 Elastix

National Library of Medicine Insight Segmentation and Registration Toolkit
(ITK)[52] is an open-source software system. Elastix is a command-line application
largely based on ITK. The most popular transforms, metrics and optimizers from
ITK are included, and Elastix aims for simplicity and ease of use. It is also possible
to use Elastix as third party library[56, 57].

2.3.2.3 GIMIAS

Graphical Interface for Medical Analysis and Simulation (GIMIAS) is a framework
designed for fast prototyping in clinical evaluations. It provides a graphical
interface, and a simple API, allowing the creation of plug-ins for different
applications. GIMIAS is built on ITK, VTK, DCMTK and MITK, and supports
image formats normally used in medical image analysis; Analyze, CGNS, DICOM,
GDF and XML[48].

2.3.3 NiftyReg

NiftyReg is an open source application developed at University College London for
use with Nifti or Analyze images. It supports both CPU and GPU implementations,
and is able to perform rigid, affine and non-linear registration[76].

2.3.4 OpenCV

Open Computer Vision (OpenCV) is a large open source project in image
processing. Although OpenCV initially was not created for image registration, there
is a module available for image registration[45] which implements direct alignment.
That is, it uses pixel values directly in order to register two or more images.

17

2.4 Insight Toolkit 2 Theory and background

2.4 Insight Toolkit

Of the image registration software readily available, ITK provides the most
methods, in addition to being highly customizable.

Figure 2.3: Basic components of the ITKv4 registration framework

Figure 2.3 illustrates various Insight Toolkit version 4 (ITKv4) registration
components. Boxes with solid borders show the process objects. Boxes with dashed
borders show the data objects[54].

The Metric class controls most parts of the registration process, as it handles the
images, interpolators, and transforms in order to evaluate the intensity values in the
images at each physical point of the virtual space. The metric cost function then
evaluates the fitness value and derivatives, which are passed to the optimizer, which
in turn updates the parameters of the moving transform based on the outputs of
the cost function. This process will be repeated until the convergence criteria are
met.

2.4.1 Definitions

Although ITK may be used for general image processing, the primary purpose of the
toolkit is processing of medical imaging. Information associated with the physical
spacing between pixels and the position of the image in space with respect to a
common coordinate system is mandatory, and particularily so for different image
modalities.

18

2.4 Insight Toolkit 2 Theory and background

A pixel is considered as a rectangular region surrounding the pixel center, where the
pixel center has a value assumed to exist as a dirac delta function. This region can be
viewed as the Voronoi region of the image grid. Pixel spacing is measured between
the pixel centers, and can be different along each dimension. The rectangle with
corners in pixel centers is the Delaunay region, which is used for linear interpolation
of image values. The image origin is associated with the coordinates of the first
pixel in the image. This is illustrated in figure 2.4. The pixels have associated
intensities, which for float numbers are between (0.0,1.0). An intensity of 0.5 will
visualized be gray, 0.0 is black and 1.0 white.

Figure 2.4: Geometrical definitions

Note that this is a non-grid position since the values are non-integers. This means
that the gray value to be assigned to the output image pixel I = (1, 2) must be
computed by interpolation of the input image values.

For centered image operations, the image origin, spacing and size is used to calculate
the center of the image, as shown in 2.16

Center[dim] = Origin[dim] + Spacing[dim] ∗ Size[dim]/2.0 (2.16)

Where, dim is the dimensions X, Y and Z for three dimensional, respectively.
Simple translations in ITK includes offset in (x,y) coordinates, rotation and scaling.
Offsets in (x,y) coordinates simply moves the image origin, or center, by a number of
pixels. Rotation is applied around the image origin. In centered image operations,
the image center is placed at the image origin before rotation is applied. First,
offsets for (x,y) equal to −Center[x, y] is applied, then the image rotation is applied,
then offsets for (x,y) equal to Center[x, y] is applied. This minimizes possible
precision errors discussed in chapter 2.5, as well as simplifying the operations, as
all operations apply to the image center. Scaling is applied to the spacing, and
effectively increases both Voronoi- and Delaunay regions.

19

2.4 Insight Toolkit 2 Theory and background

2.4.2 Filters

An image filter is image processing that changes the content of an image. ITK
features a large range of filters, including smoothing filters, edge detection, casting,
fast fourier transform (FFT), rescaling and geometrical transformations. The
filters implemented in chapter 3 is presented here. The ITK book “Design and
Functionality” has the following to say about ChangeInformationFilter; “This
one is the scariest and most dangerous filter in the entire toolkit. You should not
use this filter unless you are entirely certain that you know what you are doing.
In fact if you decide to use this filter, you should write your code, then go for a
long walk, get more coffee and ask yourself if you really needed to use this filter.
If the answer is yes, then you should discuss this issue with someone you trust and
get his/her opinion in writing. In general, if you need to use this filter, it means
that you have a poor image provider that is putting your career at risk along with
the life of any potential patient whose images you may end up processing”[54]. It
follows some of the filters should not be used unless deemed absolutely necessary.

itk::SubtractImageFilter is a pixel-wise subtraction of two images. output[x, y, z] =
image1[x, y, z]− image2[x, y, z], where the output is the difference between image1
and image2. This filter is excellent for visualizing the effect of an image registration,
or visualizing changes in a patient in a period of time, for example visualizing how
much an abdominal growth has grown in two months.

The magnitude of the image gradient is extensively used in image analysis,
mainly to help determine the contours and the separation of homogeneous regions.
The itk::GradientMagnitudeImageFilter computes the magnitude of the image
gradient at each pixel location using a simple finite differences approach.

itk::GradientMagnitudeRecursiveGaussianImageFilter computes the magni-
tude of the image gradient at each pixel location. The user selects a value for
σ, which chooses the size of convolution with a Gaussian kernel. Then, the deriva-
tive of the Gaussian kernel is calculated. This filter will work with any image
dimensions, as the components may be separated against the different dimensions.

20

2.4 Insight Toolkit 2 Theory and background

itk::RescaleIntensityImageFilter linearly scales the pixel values in such a way
that the minimum and maximum values of the input are mapped to minimum and
maximum values provided by the user. This is a typical process for forcing the
dynamic range of the image to fit within a particular scale and is common for
image display. The linear transformation applied by this filter can be expressed as;

outPixel = (inPixel− inMin) ∗ outMax− outMin
inMax− inMin

+ outMin (2.17)

Where outMin and outMax are set by the user, and inMin and inMax are found in
the input image.

itk::MeanImageFilter computes the value of each output pixel by finding the
mean pixel intensity of the surrounding pixels. This algorithm is sensitive to
outliers in the surrounding pixels. itk::MeanImageFilter is a precursor to
itk::MedianImageFilter, and is commonly used as a simple approach for noise
reduction.

itk::MedianImageFilter is commonly used as a more robust approach for noise
reduction. This filter is particularly efficient against salt-and-pepper noise. In
other words, it is robust in the presence of outliers in the surrounding outliers.
itk::MedianImageFilter computes the value of each output pixel as the statistical
median of the surrounding pixels. The size of the neighborhood is defined along
every dimension by passing an object that defines the size with the corresponding
values. The value on each dimension is used as the semi-size of a rectangular box.
For example, in 2D a radius of 2 will result in a 5x5 neighborhood.

21

2.4 Insight Toolkit 2 Theory and background

2.4.3 Interpolators

When image transforms yields translations where the pixel coordinates are not
integer, but is placed somewhere in the spacing between pixel coordinates,
interpolation is required in order to fit the pixels to the grid, as shown in figure 2.4.

itk::NearestNeighborInterpolateImageFunction simply uses the intensity of
the nearest grid position. That is, it assumes that the image intensity is constant
throughout the Voronoi regions. This interpolation scheme is cheap as it does not
require any floating point computations.

itk::LinearInterpolateImageFunction assumes that intensity varies linearly
between pixel coordinates. Unlike nearest neighbor interpolation, the interpolated
intensity is spatially continuous. However, the intensity gradient will be
discontinuous at grid positions.

ITK features a direct implementation of the linear interpolation in chapter 2.2.3. By
default, itk::LinearInterpolateImageFunction assumes that all pixel values are
inside the image bounds. The first pixel, is set to coordinates (0, 0). The function
then iterates through the consecutive pixel coordinates. This iteration process is
shown in equation 2.18 and 2.19.

For a simple interpolation where one of the coordinates are integer, equation 2.18

pixel = pixeln + (pixeln+1 − pixeln) ∗ distance (2.18)

Where distance is the offset from the grid. When both coordinates are integer,
equation 2.19 applies.

value = value0x0 + (value0x1 − value0x0) ∗ distance (2.19)

Where value0x0 and value0x1 are found from equation 2.18 using coordinates x and
y, respectively.

itk::BSplineInterpolateImageFunction represents the image intensity using B-
spline basis functions. When an input image is first connected to the interpolator,
B-spline coefficients are computed using recursive filtering. Intensity at positions
not intersecting with pixel coordinates is computed by multiplying the B-spline
coefficients with shifted B-spline kernels within a small support region of the
position.

22

2.4 Insight Toolkit 2 Theory and background

2.4.4 Metrics

The metrics in chapter 2.2.4 are available as objects in itk::ImageToImageMetricv4
in ITK, and measure how well the transformed moving image matches the fixed
image by comparing the intensities. The objects implemented in chapter 3 are
itk::MeanSquaresImageToImageMetricv4 and
itk::MattesMutualInformationImageToImageMetricv4, and function as shown in
chapters 2.2.4 and 2.2.4, respectively.

2.4.5 Optimizers

Optimization algorithms in ITK are encapsulated as objects in
itk::ObjectToObjectOptimizer. The basic input in registration is the metric
classes, which provide a search space for the metric to be evaluated in.
Parameters may at any time be retrieved using the GetCurrentPosition() function
provided. itk::RegularStepGradientDescentOptimizerv4 advances parameters
in the direction of the gradient. A bipartition scheme computes the step size. The
optimizer is also used for Versor[36] transforms parameters. The translational part
of the transform parameters are updated in vector space. itk::LBFGSOptimizerv4
is an adaptor to an optimizer in vnl, which is an implementation of “Limited
memory Broyden, Fletcher, Goldfarb and Shannon minimization” (LBFGS)[69],
shown in 2.20

Ki = Ki−1 +
γγT

γT δ
− (Ki−1δ)(Ki−1δ)

T

δTKi−1δ
(2.20)

Where Ki, or the next iteration step, is dependent on the previous iteration step.

23

2.4 Insight Toolkit 2 Theory and background

2.4.6 Transforms

In ITK, itk::Transform objects encapsulate the mapping between points and
vectors from an input space to an output space. Back transforms are provided
if the transform is invertible.

itk::AffineTransform creates a transform specified by a N × N matrix and a
N × 1 vector where N is the space dimension. The set of transform coefficients
can be represented in a vector space of dimension (N + 1) × N , which allows
optimizers appropriate use on this search space. Equation 2.21 illustrates the effect
of itk::AffineTransform in 2D space.

[
x′

y′

]
=

[
M00 M01

M10 M11

]
·
[
x− Cx
y − Cy

]
+

[
Tx + Cx
Ty + Cy

]
(2.21)

The coefficients M are typically in a range of {−1, 1}, but are not restricted to this
interval. The translation coefficients are related to the image size and pixel spacing,
and can therefore be in the order of [−100 : 100], or in extreme cases larger.

When using itk::AffineTransform, optimizer will start by focusing on removing
large translations errors. This makes it computationally expensive for large
deviations. Thus, it would be more optimal to use itk::AffineTransform for
registration tasks that have had coarse registration, using other transformation
methods first. This will decrease the size of the translation coefficients, and remove
a relatively high computational cost.

itk::BSplineDeformableTransform is specifically designed for solving deformable
registration problems. The transform generates a deformation field where a
deformation vector is assigned to every point in space. The deformation vectors are
computed by BSpline interpolation from the deformation values of points located
in the BSpline grid. The BSpline deformable transform is not flexible, and is not
able to account for large rotations, shearing or scaling differences. In order to
compensate for this, an arbitrary transform known as “Bulk” transform is applied
to points before they are mapped with the displacement field.

This transform does not provide functionality for anything other than mapping
points, as the variations of a vector under a deformable transform depend on the
location of the vector in space. A large number of parameters are involved with
this transform, and is therefore well suited for use with itk::LBFGSOptimizer or
itk::LBFGSBOptimizer[54, 67, 68, 85].

24

2.4 Insight Toolkit 2 Theory and background

ITK implements a version of Thirion’s “demons” algorithm, described in chapter
2.2.5. In this implementation, each image is viewed as a set of iso-intensity
contours. The orientation and magnitude of the displacement is derived from the
instantaneous optical flow equation 2.9:

~D(~X) · ~∇f(~X) = −(m(~X)− f(~X)) (2.22)

Where f(~X) is the fixed image, m(~X) is the moving image, and ~D(~X) is the
displacement or optical flow between the images.

For registration, the projection of the vector on the direction of the intensity
gradient is used with the normalized equation 2.11 such that:

~D(~X) = − (m(~X)− f(~X))~∇f(~X)

‖~∇f‖2 + (m(~X)− f(~X))2/K
(2.23)

Here, K is a normalization factor that accounts for imbalance between intensities
and gradients. K is computed as the mean squared value of the pixel spacings.
Starting with an initial deformation field ~D0(~X), the equation is updated such that
the field at the N-th iteration is given by:

~DN (~X) = ~DN−1(~X)− (m(~X + ~DN−1(~X))− f(~X))~∇f(~X)

‖~∇f‖2 + (m(~X + ~DN−1(~X))− f(~X))2
(2.24)

itk::Euler2DTransform is a direct implementation of Euler Transform (2.2.5), and
is described by equation 2.12. As ITK places image origins in the corners of images,
itk::Euler2DTransform is rarely used directly, as this transform always uses the
origin of the coordinate system as the center of rotation.

itk::IdentityTransform instantiates equation 2.13, and is mainly used for
debugging purposes, as it is a NULL operation. It is particularly useful when a
transform should not affect the output of the process, or when methods that require
a transform is used.

25

2.4 Insight Toolkit 2 Theory and background

itk::CenteredRigid2DTransform is an implementation of
itk::Euler2DTransform (2.4.6), with an additional specified center of rotation as
a rigid transformation in two-dimensional space. Thus, the center of rotation may
be placed in the middle of the image, in place of the corner. The initial parameters
must be passed to the transform; center of rotation and angle of rotation. The
rotations are measured in radians, and are in the range of [−π, π]. The center of
rotation and the output translations are measured in millimeters, and their actual
values vary depending on the image modality of the moving and fixed images.
The transformation function on an input (x, y), mapped to (x′, y′) is expressed in
equation 2.25

[
x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
x− Cx
y − Cy

]
+

[
Tx + Cx
Ty + Cy

]
(2.25)

Here, θ is the rotation angle, (Cx, Cy) are the rotation center coordinates, and
(Tx, Ty) are the translation components.

itk::ScaleTransform implements equation 2.15, where S1 is replaced with Si in
the following way for different image types:

~P ′ = T (~P) : ~P ′i =
~Pi · ~Si

~V ′ = T (~V) : ~V ′i = ~Vi · ~Si
~C ′ = T (~C) : ~C ′i =

~Ci/~Si

Where ~P ′ is point, ~V ′ is vector, and ~C ′ is covariant vector.

As can be seen, points and vectors are transformed by multiplication of each one of
their coordinates by the scale factor. Covariant vectors are transformed by dividing.
Thus, if a covariant vector was orthogonal to a vector, this orthogonality will be
preserved after the transformation.

Scale transforms introduce some issues to the optimizer, as the optimizer typically
manage the parameter space as a vector space, where the basic operation is addition.
Gradient descent optimizers have trouble updating step length, since the effect of
an additive increment on a scale factor diminishes as the factor grows.

Then, scaling is better treated in the frame of a logarithmic space where additions
result in regular multiplicative increments of the scale.

itk::ScaleLogarithmicTransform is a small deviation of itk::ScaleTransform
(2.4.6), as the parameters factors in this class are passed as logarithms.
Multiplicative variations are thus additive variations in the logarithm of the scaling
factors.

26

2.5 Validation 2 Theory and background

itk::Similarity2DTransform is a rigid transformation in two-dimensional space,
like Rigid Transform (2.4.6), with an isotropic scaling factor. The transformation
applied to an input (x, y), mapped to (x′, y′) is expressed in equation 2.26. λ is
a scaling factor, θ the angle of rotation, (Cx, Cy) the coordinates of the rotation
center, and (Tx, Ty) the components of the translation.

[
x′

y′

]
=

[
λ 0
0 λ

]
·
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
x− Cx
y − Cy

]
+

[
Tx + Cx
Ty + Cy

]
(2.26)

As such, itk::Similarity2DTransform is a transformation that combines
itk::ScaleTransform (2.4.6) and itk::Euler2DTransform (2.4.6) with an offset
(Cx, Cy) for the rotation center.

itk::TranslationTransform is a simple, yet very useful transformation. It maps
all points by appending a vector to them. Vectors and covariant vectors remain
unchanged as they are not associated with a specific position in space. As it
is simple, it has the advantage of being fast to compute and have parameters
that are easily interpretable. The transform work by resolving the translational
misalignment between the input images.

2.5 Validation

In image registration, it is only possible to supply a measure of accuracy by reference
to phantom studies, simulations or other registration methods. If a method for
quantifying registration accuracy does get developed, that method should be used
for registration processes, as the information to be verified is the information one
wants to retrieve from the registration process. As such, it is rather paradoxical.
The validation of a registration embodies more than verification of the accuracy,
and includes the following[62];

– Precision
– Accuracy
– Stability
– Reliability
– Resource requirements
– Complexity
– Assumption verification
– Clinical use

Precision is defined as the systematic error, obtainable when the registration
algorithm is supplied with idealized input. Thus, a simple optimization algorithm
with a resolution of two pixels is expected to perform with a precision within two
pixels given ideal inputs, such as two identical images. Systematic errors in general

27

2.5 Validation 2 Theory and background

are defined as errors that are not determined by chance, but are introduced by
an inaccuracy in the system[99]. Systematic errors are predictable and typically
constant or proportional to the true value. If the cause of systematic error is
identifiable, it can usually be eliminated. Typical causes for systematic errors are
imperfect measurement- or observation methods.

Whereas precision is a system property, accuracy applies to the specific instance of
registration. Accuracy is a more direct measure, referring to the true error in the
images. In hyperspectral imaging, complete accuracy is achieved when the exact
same part of an object is represented in the same pixel coordinates in all image
bands, for all pixel coordinates. In clinical practice, a ground truth for accuracy
is unavailable, and must be emulated by reference to another measure. Ground
truth may be achieved using simulated images (synthetic), or by simulating images
which emulate the clinical acquisition (software phantom). Pre-clinical and clinical
evaluations using cadavers or patient images may be used in order to approximate
a ground truth.

Stability, or robustness, refers to the basic requirement that small variations in the
input should result in small variations in the output. If two input images are aligned
in a slightly varied orientation, the algorithm should converge to approximately
the same result. Reliability is a requirement that the algorithm should behave as
expected, given reasonable inputs. That is, inputs which is expected to work well
with the components of the registration process. Resource requirements apply to
the effort involved in the registration process, and is closely linked to the algorithm
complexity. These items impact computation time and resource constraints. Any
assumptions and clinical use should be verified before the registration is put into
practice; Does the registration work satisfactory? Does it outweigh available
alternatives?

Ideally, all validation criteria should be satisfied. As increased precision and
accuracy generally lead to larger resource requirements and/or higher algorithm
complexity, this ideal is unrealistic. The weighting of each criterion is highly
dependent on the application, and whether the registration process is working
optimally is hence a matter of judgement.

For the image set with simulated errors, it is possible to completely verify or discard
the different methods, as the ideal output is known. Precision and accuracy will be
evaluated by calculation of the standard deviation and mean offset versus the ideal
output. Stability and reliability will be evaluated by changing some parameters and
multiple tests. Resource requirements and complexity will be evaluated from the
run time. For the other image sets, partly validation by reference to the simulated
image set is possible using assumption verification.

28

3 Materials and methods

3 Materials and methods

This chapter start by giving an overview of the images analyzed in this thesis.
Next, the methods available in ITK is presented with examples. Lastly, the
implementation of the methods available through ITK is described.

3.1 Image files

Due to the nature of HSI and MSI, all images presented in this thesis have been
normalized post registration. The normalization was done using ImageMagick[47],
using a filter that scales the intensity across the image, setting the maximum pixel
intensity to 1.0.

3.1.1 Hyperspectral images

Three sets of hyperspectral images are to be registered. The first set has the file
format .img, and is BIL interleaved. The images origin from a HySpex VINIR-
1600 camera[43], developed and manufactured by Norsk Elektro Optikk, which
is a line-scanning camera using a push-broom technique. The camera features
autofocusing[90], and each image file consists of 1600 pixels (samples), 2678 lines
and 160 wavelengths (bands)[11]. This set is assumed to be perfectly aligned in
the spectral regime in the first 70 bands, which allows this image set to be used as
reference for validation. One of the image bands from this image set can be seen in
figure 3.1a.

The second set has the file format .mat, and is BSQ interleaved. The images
origin from a Zyla 5.5 sCMOS camera, produced by Andor technology from Belfast
UK. The object in these images has been moved around at random. Thus, this
image set is unsuited for validation, as perfect registration results are of unknown
characteristics. Each image file consists of 6 to 11 image bands, with 2162x2560
pixels, where the last image band is a reference background image at wavelength
λ = 666nm[59]. The image files consists of two matrices, where the first contain
header information; number of images, image dimensions, wavelengths, use of
compression and data type. The second matrix contain the images, and use MATLAB
formatting; x in MATLAB is y in C++[66]. Example image can be seen in figure 3.1b.

The third set is also stored in the .img format with BIL interleave. Each image
band consists of 1000 pixels (samples), 1000 lines and 91 wavelengths (bands).

29

3.1 Image files 3 Materials and methods

These images origin from an Acousto-optical tunable filter (AOTF) camera system.
Without precise knowledge of distance between camera and object, in addition to
no knowledge about what correct registration in this set should be, the registration
results from these images will not be verifiable. In conjunction with ethical
standards and accordance, these images have been anonymized, inserting a black
band across the eyes. The center image band from this set can be seen in figure
3.1c.

(a) Pushbroom
2678x1600 pixels

(b) Zyla
2162x2560 pixels

(c) AOTF
1000x1000 pixels

Figure 3.1: Hyperspectral images

3.1.2 Multispectral images

The multispectral images are stored in separate .raw containers. The images origin
from a five camera system, described in [39], which is currently under peer review.
The cameras have bandpass filters with center wavelengths of 360nm, 475nm,
560nm, 580nm, and 650nm. These images are unsigned short, with 1024x768
pixels. Similar to the third hyperspectral image set, the object is between 30 and
60 cm away from the camera, and the registration results are similarly not verifiable.
The images supplied are visible in figure 3.2.

30

3.2 Choice of registration software 3 Materials and methods

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5

Figure 3.2: Multispectral images

3.2 Choice of registration software

None of the available libraries directly supports the image formats dealt with in
this task. That is, no native support for .img or .mat, and little to no support for
.raw, in existing image registration software. This means that creating readers and
handlers for these formats is a given, regardless of choice of library. Supported file
formats may then be disregarded as a justification of use of library.

The implementation of alignment must be considered. Given from chapters 1 and
2.2.1, segmentation-based registration is the optimal solution for the hyperspectral
images, wheres the multispectral images may be segmentation-based or deformable
image registration problems, depending on how large the angles between the
cameras and object are. Of the readily available registration software, ITK offers all
of the functionability necessary, in addition to having better documentation than
any other available image registration software.

31

3.3 Example methods 3 Materials and methods

3.3 Example methods

ITK may be compiled with example code. There are twenty image registration
examples, and seventeen deformable image registration examples. The transform,
optimizer and metric used in the different examples are summed up in table 3.1
and 3.2

Name1 Transform Optimizer Metric

IR1.cxx Translation Gradient Descent Mean Squares
IR2.cxx Translation Gradient Descent Mutual Information
IR3.cxx Translation Gradient Descent Mean Squares
IR4.cxx Translation Gradient Descent Mutual Information
IR5.cxx Rigid 2D Gradient Descent Mean Squares
IR6.cxx Rigid 2D Gradient Descent Mean Squares
IR7.cxx Similarity 2D Gradient Descent Mean Squares
IR8.cxx Rigid 3D Gradient Descent Mean Squares
IR9.cxx Affine Gradient Descent Mean Squares
IR10.cxx Translation Amoeba Match Cardinality
IR11.cxx Translation One Plus One Mutual Information
IR12.cxx Rigid 2D2 Gradient Descent Mean Squares
IR13.cxx Rigid 2D Gradient Descent Mutual Information
IR14.cxx Rigid 2D One Plus One NMIH3

IR15.cxx Translation One Plus One NMIH3

IR16.cxx Translation Amoeba NMIH3

IR17.cxx4 Translation Amoeba NMIH3

IR18.cxx Translation Gradient Descent Gradient Difference
IR19.cxx Affine Amoeba Match Cardinality
IR20.cxx Affine5 Gradient Descent Mean Squares
DR4.cxx BSpline LBFGS Correlation
DR6.cxx BSpline LBFGS Mean Squares
DR7.cxx BSpline5 LBFGSB Mean Squares
DR8.cxx BSpline5 LBFGSB Mutual Information
DR12.cxx BSpline LBFGSB Mutual Information
DR13.cxx BSpline Gradient Descent Mutual Information
DR14.cxx BSpline5 Gradient Descent Mutual Information
DR15.cxx Multiple56 Gradient Descent Mutual Information

1. ImageRegistration shortened to IR.
2. The same as IR6.cxx, but with a mask applied before registration.
3. Normalized Mutual Information Histogram.
4. Small changes to parameters from IR16.cxx.
5. In three dimensional space.
6. This example makes use of Affine, Versor Rigid 3D and BSpline.

Table 3.1: Example image registrations with default ITKv4 registration methods

32

3.3 Example methods 3 Materials and methods

In table 3.1, all the examples make use of the default registration method shipped
with ITKv4. Here, the transform, optimizer and metric of choice are listed, as it
is these parameters that are the main source of difference between the examples.
In table 3.2, histogram matching is used in all of the examples. The registration
methods are listed, as they are the primary source of interest.

Name1 Registration Method

DR1.cxx FEM
DR2.cxx Demons
DR3.cxx Symmetric Forces Demons
DR5.cxx Level Set Motion
DR11.cxx FEM2

DR16.cxx Multi Resolution, PDE and Symmetric Forces Demons2

1. DeformableRegistration shortened to DR.
2. In three dimensional space.

Table 3.2: Example image registrations with Histogram Matching

Where DeformableRegistration9.cxx and DeformableRegistration10.cxx have
been omitted due to third party dependencies. DeformableRegistration17.cxx
has been omitted, as it is essentially a duplicate of DeformableRegistration16.cxx.

ImageRegistration1.cxx and ImageRegistration3.cxx are essentially the same,
where ImageRegistration1.cxx has a minimalistic setup, and should, according
to the ITK book[54] be considered as a “Hello World” example.

33

3.4 Preliminary testing 3 Materials and methods

3.4 Preliminary testing

For the preliminary tests, the example code described in chapter 3.3 were used.
This proved to be an effective way to quickly prototype the different registration
methods provided by ITK, but required some setup. The HSI was read into a
float array using the code in appendix A.1. Now, a float array held the entire
hyperspectral image. In this case, 90 bands. The center band was chosen and
written to a file “fixed.tif”, using the functions in lines 91 and 102 in A.3. The
second image, “moving.tif”, for the purpose of testing, was moved 200 pixels to the
right. This was done with a modification of the same functions. An additional mask
was created, as some of the examples required an additional mask input. This was
chosen to be a gradient filter, “gradient.tif”, as described in lines 94 and 277 in A.4.
An additional test set was created, where a median filter, as described in lines 91
and 280 in A.4 was applied to the center band first. The output test images are
aptly named “median_fixed.tif”, “median_moving.tif” and “median_gradient.tif”.
The images are pictured in figure 3.3

(a) fixed.jpg (b) moving.jpg (c) gradient.jpg

(d) median_fixed.jpg (e) median_moving.jpg (f) median_gradient.jpg

Figure 3.3: Extracted images for preliminary testing

The output images from the registration process was then opened with the fixed
input image in ImageJ, and the difference was calculated. The results from the
area of interest are presented in table 4.4. The area of interest is defined as the

34

3.4 Preliminary testing 3 Materials and methods

area between [0 + 100,image-width−100], as the moving image was moved 100
pixels to the right. The area between 0 and 100 pixels will have no equivalent
point in the moving image, and the area between image-width−100 and image-
width will be out of bounds for the moving image. No parameters were changed.
These results give a starting point for further development. Note that some of
these examples are legacy mode, described in 2.3.2, and will therefore not be
considered. The hyperspectral images should in theory not be deformable problems,
but the multispectral images are both rigid and deformable problems. Thus, rigid,
similarity and affine transforms will be further investigated. BSpline transform will
be investigated, as it was the deformable registration transform with the best results
from the preliminary tests. Additionally, Demons transform will be tested further.
The Demons transform has received a lot of attention in the last two decades.

As described in 2.4.6, translation transform does not include parameters for scaling
or angles. This makes it fast to compute, but due to the lack of these parameters
will never be an adequate registration method on its own. It should, however, be
optimal as an optional coarse registration before the other registration methods
are applied. In theory this should for certain image sets optimize both run time
and results, as the larger translations in x- and y-coordinates are handled by this
method.

For the different transforms, it is introduced errors to certain image bands in
a known test set. “Lise_arm_before_occlusion_mnf_inversetransformed.img” is
reduced to 40 image bands, and has 1601x1401 pixels. The following bands now
has the following offsets, where the remaining bands are perfectly aligned:

Band Offset X Offset Y Angle

2 -100 100 0
4 -200 100 0
6 -200 100 0
8 -200 200 0
10 0 0 20
12 0 0 40
14 0 0 -60
16 0 0 -20

Table 3.3: Introduced testset with known errors

35

3.4 Preliminary testing 3 Materials and methods

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16 (i) Band 20 (fixed)

Figure 3.4: Introduced offsets from table 3.3

36

3.5 Implementation 3 Materials and methods

3.5 Implementation

The main function takes in a number of arguments *argv[]. These arguments are
presumed to be files, and using the function strstr from the <string> library, it
recognizes the file format and appends the input arguments to the corresponding
function. The entirety of the main function can be found in A.5, listing 1. All other
parameters are read from a configuration file.

For Matlab hyperspectral files; hyperspec_mat (A.3, line 81), ENVI standard
hyperspectral files; hyperspec_img (A.3, line 76), and raw multispectral files;
multispec_raw (A.2, line 12). It is assumed that raw files are multispectral, and
ENVI standard and Matlab files are hyperspectral, as this is a prerequisite. For
arguments not affiliated with these functions, a cerr message is returned, and
the program exits. Common for these corresponding functions, is that they make
use of conf_err_t params_read() function, declared in A.3; lines 13, 54, 65 and
68, which returns values from a configuration file into a struct, containing all
parameters and settings. In A.5, listing 2, these configuration parameters are read
into params.

When the registration process is done, the results are written to files of the same
format as the input. The flow of the program is illustrated in figure 3.5, where the
use of filtering is optional, and metric, optimizer and interpolator depends on the
chosen transform method through the configuration file.

Figure 3.5: Components of the developed registration software

37

3.5 Implementation 3 Materials and methods

Making use of the functions available through readimage.h and matio.h, .img and
.mat containers are read into a float array, respectively. In A.5, listing 3 this is
done for .img, and in A.5, listing 4 this is done for .mat.

This array contain the full hyperspectral image, and will need to be split into
separate images. This is done with functions readITK and readMat, in A.3 lines 91
and 118. These functions write a band i from the float array into an ITK image
pointer of the same dimensions. In order to do any registration, two input images
are needed, a fixed image and a moving image. For ease of use, the center band has
been chosen as the fixed image for the registrations; If the fixed and moving images
both were to be variable, a flaw in one registration would manifest itself in the next
registration. Next, pre-defined settings contained in the configuration file decides
whether a median filter and/or gradient filter is applied to the images, and the
images are sent to the transform. The returned transform is applied to the unfiltered
moving image and saved to a float array, using writeITK and writeMat in A.3 lines
102 and 130. If difference output is enabled in the configuration file, an additional
float array is prepared, containing the difference between the transformed moving
image and the fixed image. When all the bands are processed and registered, the
float array, now containing all the registered bands, are saved to file using the
functions available through readimage.h (A.5, listing 5) and matio.h (A.5, listing
6).

Unlike the hyperspectral images, the multispectral images does not contain any
metadata information in a header, as described in chapter 2.1.5. The raw files are
simply binary data files that can be read as long as the metadata is known. For
the raw images, it is known that the images are 1024 pixels wide, and 768 pixels
high. It is also known that the data type is unsigned short. Then, it is possible to
read the image into an unsigned short array making use of the iostream library.
This is done in the function readRaw, A.2, line 34, which reads a raw file into a
temporary array, which is read into an ITK image pointer. This function is shown
in full in A.5, listing 14.

The ITK image pointer is returned to the main function, but as this is of data type
unsigned short, and the registration methods only handle float data types, this
will need to be cast to a float image. This is done using CastFloatImage, declared
in A.4 line 285, and shown in A.5, listing 10.

As there is only one image per file in this case, the first input to the program is
chosen as the fixed image, and all other images are chosen as moving images. The
output images are written to file with the fstream library, and the output names
are set as the configuration file depicts, with an additional number corresponding
to the order of the input. This is done using the function in A.2, line 47.

38

3.5 Implementation 3 Materials and methods

The general pipeline structure of ITK is visualized in figure 2.3, and depends heavily
on typedefs and templates. The implementation is somewhat different in the
developed program, with the optional filtering, as visualized in figure 3.5. Any
chosen filtering only impacts the transform parameters, not the output transformed
image. This is done by applying the unfiltered images when resampling the moving
image with the moving transform. If the filtered images where to be used as base
for the output, information loss would be introduced to the registration results.

All of the library modules are loaded, A.4 lines 12 to 59, and all transforms,
registrations, optimizers and filters are typedef’d in lines 87 to 229. These
typedefs depend on the image dimensions and image data types defined in lines
82 to 85. These definitions depend on the data types of the hyperspectral and
multispectral images to be registered.

The registration process needs to be initialized with a TransformationType::Pointer,
a MetricType::Pointer, and a OptimizerType::Pointer. The
TransformationType::Pointer needs to be initialized with the fixed and moving
images, and the parameters has to be set for the OptimizerType::Pointer. When
this is done, the RegistrationType::Pointer can be initialized with the images,
the optimizer, metric and other optional parameters such as smoothing and shrink-
ing. A sample initialisation is presented in A.5, listing 7.

The registration process needs some further parameters, which is passed from the
params struct. A sample preparation is presented in A.5, listing 8. Now the
registration is ready, and can be passed to the CommandIterationUpdate::Execute
class, appendix A.5, listing 9 and 11 lines 63 through 79, which handles the iteration
process of the optimizer.

The different RegistrationType templates apply the current transforma-
tion to the InitialTransform when registration->Update() is run. This
is done in a try catch block, in order to catch exceptions if any-
thing should go wrong (A.5, listing 11). This process will run until
registration->GetOptimizer()->GetStopConditionDescription() reaches the
set parameters, defined in the configuration file.

When the stop condition has been reached, the TransformationType::Pointer
set for the RegistraionType::Pointer will contain the necessary transformation
in order to tranform the moving image to overlap the fixed image. The
TransformationType::Pointer also contain all the translation parameters, which
can be extracted using the available ->Get() functions, as shown in A.5, listing 12.

39

3.5 Implementation 3 Materials and methods

When the transformation is found, it still needs to be applied to the moving image.
This may be done with a ResampleFilterType::Pointer. This filter requires,
as a minimum, the moving image and the transformation as inputs, but it is
convenient to also pass the fixed image. The origin, spacing, size and direction of the
output image is retrieved from the fixed image, and the transformation is applied
to the moving image. Now, the output registered image may be retrieved using
resample->GetOutput(), where resample is a ResampleFilterType::Pointer. A
sample resample filter is available in A.5, listing 13.

The sample code in listings 7 through 13 will, given corresponding typedefs
in 2.2 be directly applicable for itk::CenteredRigid2DTransform. Thus, this
sample code is used as a foundation for the different transforms, except for
itk::BSplineTransform, which require additional tweaking as this is a deformable
registration method.

40

3.6 Transforms 3 Materials and methods

3.6 Transforms

3.6.1 Affine

In order to make use of itk::AffineTransform, an optimizer and metric must be
chosen. From tables 3.1 and 4.4, the affine example with the best result makes use
of Descent Gradient optimizer, and Mean Square metric. itk::AffineTransform
is declared in A.4 lines 154 through 161.

In addition to the sample code in listings 7 through 13, itk::AffineTransform
also supports scaling. Thus, the code in A.5, listing 12 needs to be replaced with
the code in A.5, listing 15

3.6.2 BSpline

itk::BSplineTransform is a deformable registration method that makes use of an
optimizer and metric, which must be chosen. From tables 3.1 and 4.4, the BSpline
example with the best result makes use of the LBFGS optimizer, and Mean Square
metric. itk::BSplineTransform is declared in A.4 lines 104 and 169 through 182.

Although some of the sample code in listings 7 through 13 may be used,
itk::BSplineTransform makes use of the LBFGS optimizer, requiring the extra
code in A.5, listing 16, and the parameters is aquired using the code in A.5, listing
17

3.6.3 Demons

itk::DemonsRegistrationFilter makes use of a filter which matches areas of the
input fixed and moving images. With the matching filter, the demons registration
calculates a displacement field which is passed to another filter, which warps the
moving image onto the fixed image. This warper makes use of an interpolator,
which removes the necessity for additional resampling of the output image. These
filters are declared in A.4 lines 189 through 199, and the source code is available in
21.

41

3.6 Transforms 3 Materials and methods

3.6.4 Rigid

itk::CenteredRigid2DTransform also require an optimizer and metric to be
chosen. From tables 3.1 and 4.4, the rigid example with the best re-
sult makes use of Descent Gradient optimizer, and Mean Square metric.
itk::CenteredRigid2DTransform is declared in A.4 lines 130 through 136.

itk::CenteredRigid2DTransform directly makes use of the code in A.5, listings 7
through 13, where TransformType is defined as itk::CenteredRigid2DTransform.

3.6.5 Similarity

Similarly for itk::CenteredSimilarity2DTransform, an optimizer and metric
must be chosen. From tables 3.1 and 4.4, the similarity example with
the best result makes use of Descent Gradient optimizer, and Mean Square
metric.itk::CenteredSimilarity2DTransform is declared in A.4 lines 142 through
148.

In addition to defining the TransformType as itk::CenteredSimilarity2DTransform
in the code in A.5, listings 7 through 13, the additional parameters in the
similarity transform must be accounted for. This is done using function
finalSimilarityParameters, declared in A.4 line 293, available in A.5, listing
18.

3.6.6 Translation

From tables 3.1 and 4.4, the translation examples with the best results make use of
Descent Gradient optimizer, Mean Square metric and Mattes Mutual Information.
As this transform mainly is used for coarse transformations due to lack of angular
translations, this transform needs an additional class for tracking the iterations.
Although this is not strictly necessary, it is defined as good code ethics[54], and
removes the possibility for mix ups in the iteration tracker between transforms.

The additional metric and transform is declared in A.4 lines 114 and 117. Choosing
the metric is done in the configuration file, and is implemented using the code in
A.5, listing 19. As this transform is intended as a coarse pre-registration step, the
optimizer is passed a relaxation factor, available in A.5, listing 20. This massively
decreases run time, but limits accuracy of the transformation.

The additional iteration class is initiated as shown in A.5, listing 22.

42

4 Results and discussion

4 Results and discussion

An efficient and reliable registration method is necessary for information extraction
in hyperspectral and multispectral imaging. The results of the proposed methods,
with regards to the validation methods described in chapter 2.5, will here
be presented. The image results have been brightened, as described in 3.1.
Additionally, a grid has been added for visual inspection. The thickness of the
grid is two pixels, and the grid size is set to 100x100 pixels.

Before the main results are presented, some equations regarding the rounding of
the results will be evaluated. The result for each method is presented within its
own chapter, with comparisons and precision evaluation in chapter 4.3.

Precision of distance in equation 2.18 is crucial for the accuracy of pixeln. From the
definitions used in ITK, chapter 2.4.1, the size of spacing between pixels are vital,
as this will impact the interpolation. In the images to be registered, the spacing
size is of unit spacing, or [1,1]. This simplifies further calculations.

The maximum impact is found, with pixel values of float type, when the pixel
values for n and n + 1 are 0 and 1, respectively. In the transformations, angles
impact the accuracy more than translations in x and y coordinates. Assuming an
image of dimensions 1600x1600 pixels, and a transformation origin in (0,0), the
translation in the image extremities can be calculated using trigonometric funtions
(equation 4.1) and pythagoras (equation 4.2)

tanα =
opposite
adjacent

(4.1)

h2 = c21 + c22 (4.2)

Combining equations 2.18 and 4.2, using pixeln = 0, pixeln+1 = 1 yields;

error =
√
c21 + c22 (4.3)

Inserting for c1 = c2 = c in equation 4.3 is presented in table 4.1

c value distance offset % error in pixel value

0.5000 0.707 70.7%
0.0500 0.071 7.1%
0.0050 0.007 0.7%
0.0005 0.001 0.1%

Table 4.1: Maximum accuracy error from pixel translation

43

4 Results and discussion

Combining equations 2.18, 4.1 and 4.2, using pixeln = 0, pixeln+1 = 1 and image
dimensions XxY pixels yields;

error =
√
(X ∗ tanx)2 + (Y ∗ tanx)2 (4.4)

Insertions for x in equation 4.4, using image dimensions 1600x1600, is presented in
table 4.2.

x value distance offset % error in pixel value

0.05000 1.975 197.5%
0.00500 0.198 20.0%
0.00050 0.020 2.0%
0.00005 0.002 0.2%

Table 4.2: Maximum accuracy error from angle translation in image origin

In centered image rotations, this accuracy error is decreased, as the variables for
X and Y in equation 4.4 is half the dimensions of the image. Insertions for x in
equation 4.4, using image dimensions 1600x1600 in a centered image operation is
presented in table 4.3.

x value distance offset % error in pixel value

0.05000 0.987 98.7%
0.00500 0.099 9.9%
0.00050 0.010 1.0%
0.00005 0.001 0.1%

Table 4.3: Maximum accuracy error from angle translation in centered image
operation

As can be seen in tables 4.1 and 4.3, using three decimal points for pixel coordinates
and four decimal points for angle translations gives a maximum error rate of 1.7%
for the pixel values in the image extremities, and 0.7% in the center of rotation.

44

4.1 Preliminary tests 4 Results and discussion

4.1 Preliminary tests

The example code is written with casting and resampling filters, which makes some
image conversion necessary before the code can be run. This is described in chapter
3.4. When the images are of int type, the results in table 4.4 are retrieved from
running the example code with the images in figure 3.3, and should therefore be
easily reproducable.

From table 4.1, presenting the offsets using two decimals yields a maximum
additional error rate of 7.1%. For the preliminary testing, this is an acceptable
possible error rate.

Name1 Mean2 StdDev3 Max4

IR1.cxx 0.49 0.50 1
IR3.cxx 0.49 0.50 1
IR4.cxx 0.71 0.75 67
IR5.cxx 36.40 40.07 255
IR6.cxx 0.66 0.69 87
IR7.cxx 0.79 0.81 113
IR9.cxx 0.46 0.50 6
IR10.cxx 26.73 34.68 255
IR11.cxx 0.57 0.59 42
IR12.cxx 0.50 0.53 43
IR13.cxx 30.17 37.89 232
IR14.cxx 0.50 0.50 4

Name1 Mean2 StdDev3 Max4

IR15.cxx 0.49 0.50 1
IR16.cxx 0.49 0.50 9
IR17.cxx 40.58 41.36 252
IR18.cxx 26.96 34.66 255
IR19.cxx 25.76 33.83 255
DR2.cxx 26.55 34.69 255
DR3.cxx 24.85 34.24 255
DR4.cxx 2.62 2.51 233
DR5.cxx 22.72 30.25 255
DR6.cxx 0.66 0.88 99
DR12.cxx 1.27 1.47 230
DR13.cxx 3.91 4.18 228

1. Image Registration = IR, Deformable
Registration = DR
2. Mean deviation
3. Standard deviation
4. Maximum pixel value, 0-255

Table 4.4: Results from preliminary tests

Using the image analysis functions in ImageJ, the difference between the input
fixed and the output transform was calculated. If the input moving image were
to be completely registered, the difference image should be completely black. The
histogram function in ImageJ was then used to extract information about mean
pixel value, standard deviation of pixel values, and maximum pixel value.

45

4.2 Transformation methods 4 Results and discussion

4.2 Transformation methods

Parameter Value

Median1 1
Gradient1 0
Angle2 0.0
Scale2 1.0
Learning rate3 0.1
Step length4 0.0001
Iterations4 10000
Translation Scale3 0.001
numberOfLevels3 1

1. Filtering of images, where 1 is on and 0 is off
2. Initial parameters applied to moving image
3. Speed and rate of the optimizer
4. Stop conditions; maximum iterations and step length

Table 4.5: Strict parameters

From table 4.4, using the
overview of the example
files in tables 3.1 and
3.2, the optimal transform
is the translation trans-
form. This is expected,
as this transform handles
rigid transforms in (x, y)
coordinates, which is the
introduced errors to be
corrected. Close behind
are Affine transform, Rigid
2D transform and Sim-
ilarity transform. The
best deformable registra-
tion method is BSpline.
Similar for all these meth-
ods is that they use the
Gradient Descent optimizer
and Mean Squares metric, with the exception of BSpline that makes use of the
LBFGS optimizer, and translation transform using Mutual Information metric.
The second best deformable registration method is Demons, which makes use of
Histogram Matching. The program will therefore use these methods as base for
further evaluation.

For qualitative results, the parameters in table 4.5 are set for all methods. Learning
rate and step length are the stop conditions for the optimizer, and will be varied
throughout the testing. Median filtering will be used with a small radius for noise
removal. Initial angle and scale are the initial orientation of the initial transform,
and is set equal to the input filtered image to be registered. Similarly, the number
of level controls scaling through the optimizer process, and is set equal to the initial
transform.

46

4.2 Transformation methods 4 Results and discussion

4.2.1 Translation

The results of the translation transform, using parameters as described in 4.5, is
presented in 4.6, and visualized in 4.1.

Band Iterations X1 Y2

1 10 0.999 -0.037
2 1387 27.564 -103.911
3 4 0.400 -0.007
4 8 0.208 -0.290
5 3 0.300 -0.009
6 6 0.195 -0.300
7 4 0.399 -0.026
8 8 0.241 -0.127
9 9 0.894 -0.100
10 717 26.954 -65.223
11 15 0.723 -0.097
12 2239 113.833 -185.393
13 10 0.445 -0.069
14 7141 409.304 -491.747
15 10 0.222 -0.056
16 1005 -85.749 -48.004
17 2 0.088 -0.026
18 5 0.057 -0.024
19 8 0.026 -0.019
20 10 0.003 -0.017

1. Translation in X-direction
2. Translation in Y-direction

Table 4.6: Results from TranslationTransform

The relaxation factor allows the
metric to accept results which
are considered “close enough”.
These can be seen in figures 4.1a,
4.1b, 4.1c and 4.1d. As expected,
the introduced angular errors are
not caught by translation trans-
form. This leads to large er-
rors in the resulting transforms,
which can be seen in figures 4.1e,
4.1f, 4.1g and 4.1h.

While the translation transform
appears to be bad at correcting
the introduced misplacement, it
does not introduce new misplace-
ment were none was created ei-
ther.

With a run time of approxi-
mately 68 cpu hours, this trans-
formation method is much faster
to compute compared to the
other transformation methods.
In this way of calculating, it
should take approximately 68
hours to complete the registra-
tion process when using a single core processor. However, this assumes that the
speed of the single core processor is equal to the speed of the cores used when test-
ing (appendix C). Similarily, using 30 cores should speed up the process, making it
finish in less than three hours.

47

4.2 Transformation methods 4 Results and discussion

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.1: Registration results using TranslationTransform

48

4.2 Transformation methods 4 Results and discussion

4.2.2 Affine

Using the parameters defined in 4.5, the optimizer stop condition for
itk::AffineTransform is “Maximum number of iterations exceeded”. The fact
that the optimizer stop due to the maximum iterations being met means that the
registration has failed, as the metric does not meet the set criteria for recognized
differences in the images. On a side-note, this also means very long run time.

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.2: Registration results using AffineTransform

49

4.2 Transformation methods 4 Results and discussion

4.2.3 BSpline

Using the parameters defined in 4.5, itk::BSplineTransform reaches the stop
condition for the optimizer at iterations between 7 and 400. The returned transform
parameters are of the deformable field, not any translation in x- or y-direction,
or angle translation. While the image-set to be registered are not deformable
image problems, the preliminary tests did show some promise. The results from
itk::BSplineTransform are illustrated in figure 4.3, and quite clearly show that
this registration method is not suited for the testset.

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.3: Registration results from itk::BSplineTransform

50

4.2 Transformation methods 4 Results and discussion

Using more relaxed parameters, specifically setting learning rate to 1.5, minimum
step length to 0.05 and number of levels (scaling) to 3, shows better results, as
shown in figure 4.4. Better results is a liberal term, but applies as the shape of the
arm is somewhat maintained through the images, and the birthmark on the arm
“only” doubles, not triples as evident in figure 4.3g.

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.4: Relaxed registration results from itk::BSplineTransform

51

4.2 Transformation methods 4 Results and discussion

4.2.4 Demons

As with itk::BSplineTransform, itk::DemonsRegistrationFilter returns a
deformable field. This deformable field is a warping field, and not comparable to
the rigid transformation types. Comparing the left side of the registration output
in figures 4.5e, 4.5f and 4.5h with the fixed image band in figure 3.4i, it is evident
that this transformation method does work to some degree, but lacks the larger
translation parameters necessary for complete registration. This is evident in the
far left areas of these image bands, where the edge of the image object has been
transformed to approximately the same angle and position as in the fixed image.

While this registration method does not output correctly aligned image bands, this
method shows promise for use in multi-modal or deformable image registration
problems, where the larger translations has prviously been handled by a rigid
registration method.

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.5: Registration results from itk::DemonsTransform

52

4.2 Transformation methods 4 Results and discussion

4.2.5 Rigid

Using the parameters defined in table 4.5 yields the results for
itk::CenteredRigid2DTransform shown in table 4.7.

Band I1 X2 Y3 Angle4

1 875 0.18 0.37 0.020
2 1912 100.60 -100.82 0.008
3 1753 0.11 0.38 0.014
4 2123 200.64 -100.80 0.018
5 2312 -0.07 0.36 0.021
6 1945 200.55 -100.77 0.021
7 2112 -0.13 0.33 0.022
8 2652 200.51 -200.72 0.021
9 1742 -0.16 0.34 0.019
10 472 14.12 0.42 -20.053
11 1316 -0.19 0.30 0.015
12 466 27.32 -6.62 -40.022
13 1162 -0.15 0.23 0.009
14 1141 -19.82 -27.96 59.914
15 973 -0.13 0.15 0.005
16 617 -11.89 -7.05 20.035
17 781 -0.08 0.08 0.002
18 735 -0.06 0.06 0.001
19 622 -0.04 0.05 -0.001
20 536 -0.02 0.03 -0.001

(a) Rigid2D

I1 X2 Y3 Angle4

839 -0.82 0.41 0.023
5000 72.28 -44.37 -0.004
1761 -0.29 0.39 0.014
1870 200.43 -100.54 0.017
2323 -0.37 0.37 0.021
1964 200.35 -100.47 0.021
2103 -0.55 0.36 0.022
2640 200.27 -200.59 0.020
1599 -1.06 0.44 0.019
1232 -10.16 58.80 -20.053
1230 -0.91 0.40 0.015
2208 -58.36 130.81 -40.019
1089 -0.59 0.30 0.008
2344 -74.77 92.85 -139.556
967 -0.36 0.20 0.005
1329 62.55 35.14 20.041
777 -0.16 0.11 0.002
718 -0.12 0.09 0.001
613 -0.07 0.07 0.000
535 -0.02 0.05 -0.001

(b) Rigid2D after
TranslationTransform

1. Number of iterations
2. Translation in X-direction
3. Translation in Y-direction
4. Translation angle in degrees

Table 4.7: Results from Rigid2DTransform

As can be seen from table 4.7a, rigid transform using the parameters in table 4.5
correctly locate the introduced misplacement and corrects them on a sub-pixel
level. This can be seen visually by noticing the placement of the birth mark
compared to the overlaid grid in figure 4.6. Rigid transform also correctly locates
the misplacement where translation transform has been applied first, in most of the
image bands.

53

4.2 Transformation methods 4 Results and discussion

However, this transform is not able to locate the additionally introduced
misplacement in the image bands where an angular offset was introduced, when
translation transform has been applied first. That is, image bands 10, 12, 14 and
16. The translation transform moves these image bands partly out of the search
space, making the optimizer stop due to the maximum iterations being met. This
may be due to the mean square metric finding improvements for correlating points
where part of the image still is partly outside the search space, effectively tricking
it to search in the wrong direction. This is evident in figures 4.7e, 4.7f, 4.7g and
4.7h, where the metric has moved in the wrong direction the longest in figure 4.7g.

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.6: Registration results using Rigid2DTransform

54

4.2 Transformation methods 4 Results and discussion

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.7: Registration results using Rigid2DTransform, after
TranslationTransform

55

4.2 Transformation methods 4 Results and discussion

Results from Rigid2DTransform using parameters in table 4.5, but changing
learning rate from 0.1 to 2.0 is seen in figure 4.8. Image bands 2, 10, 12, 14, and 16
are not registered correctly. What is interesting here, is that the failure to correctly
register the image bands shown in figures 4.8b, 4.8c and 4.8d persists for rigid
transformation using learning rates above 0.7. The high learning rate contributes
to the metric diverging from the correct solution, resulting in transformations as
seen in 4.8.

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.8: Registration results using Rigid2DTransform

56

4.2 Transformation methods 4 Results and discussion

4.2.5.1 AOTF

The images from the AOTF camera was run with Rigid2DTransform using the
parameters in table 4.5. Some of the results are presented in figure 4.9, as these
consist of 91 image bands. The run time was 37 hours, or approximately 0.4 hours
per image band with one cpu core. Some misalignment are detectable visually in
the first 20 bands.

(a) Band 30 (b) Band 31 (c) Band 32 (d) Band 33

(e) Band 34 (f) Band 35 (g) Band 36 (h) Band 37

(i) Band 38 (j) Band 39 (k) Band 40 (l) Band 41

(m) Band 42 (n) Band 43 (o) Band 44 (p) Band 45

Figure 4.9: Subset of image bands from AOTF

57

4.2 Transformation methods 4 Results and discussion

4.2.5.2 Five-camera

The raw images from the five-camera system in figure 3.2 has been tested with
Rigid2DTransform, using a learning rate of 1.0 and minimum step length of 0.01.
The results are presented in figure 4.10, where image 2 has been set as the first
input, and thus becomes the reference (fixed) image. Image 2 in figure 3.2 becomes
image 1 in 4.10, and vice versa. Lowering learning rate and minimum step length
lead to poor registration results, effectively moving the entire image out of bounds.

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5

Figure 4.10: Multispectral images registered with Rigid2DTransform

These images are both rigid and deformable registration problems, as the cameras
have different angles towards the object. Any rigid transform will thus never be
completely accurate. With the exception of image 2, which is moved partly out of
the image, the images are aligned approximately correctly at the ears, hairline and
eye protection device. A decent solution would be rigidly registering the images,
then correct the remainder with a deformable image registration method.

58

4.2 Transformation methods 4 Results and discussion

4.2.5.3 Zyla

Bacon.mat (figure 4.11) from the Zyla 5.5 sCMOS camera [59] was run with
Rigid2DTransform using the parameters in table 4.5, results in figure 4.12.

(a) Band 1 (b) Band 2 (c) Band 3

(d) Band 4 (e) Band 5 (f) Band 6 (fixed)

(g) Band 7 (h) Band 8 (i) Band 9

(j) Band 10 (k) Band 11

Figure 4.11: Input Bacon.mat

59

4.2 Transformation methods 4 Results and discussion

(a) Band 1 (b) Band 2 (c) Band 3

(d) Band 4 (e) Band 5 (f) Band 7

(g) Band 8 (h) Band 9 (i) Band 10

Figure 4.12: Registration results of Bacon.mat using Rigid2DTransform

The run time for this registration was 437 cpu hours, or roughly 44 hours per
image band. While there are no visually detectable errors in these results, it is not
possible to validate this registration further. As the grid size is 100x100 pixels, the
images are too large to qualitatively judge whether deviations of one to ten pixels
are present from a true registration. The accuracy and precision of the results must
be judged through clinical use by the researcher using these images[59].

60

4.2 Transformation methods 4 Results and discussion

4.2.6 Similarity

Using the parameters in table 4.5, the results for itk::Similarity2DTransform are
as shown in 4.13. As with Affine transform, discussed in 4.2.2, the stop condition is
the number of iterations, however, the results are more accurate. Nonetheless, this
highlights the issue of applying transformations that includes scale as a parameter,
perhaps especially in registration problems where the scale is already correct. The
affine transform has two variables for scaling, whereas similarity transform has one.

(a) Band 2 (b) Band 4 (c) Band 6

(d) Band 8 (e) Band 10 (f) Band 12

(g) Band 14 (h) Band 16

Figure 4.13: Registration results using Similarity2DTransform

61

4.3 Summary 4 Results and discussion

4.3 Summary

The program was tested with different parameters. The results and specific run
times are presented in table 4.8. While it becomes quite clear from the results
presented in table 4.8 that rigid transform provide better results than the other
transformation methods for this specific task, it is worth noticing that the run time
decreases for smaller learning rates.

A two-layered approach has been implemented as an option in order to speed up
the run time, where a coarse registration using translation transform is used before
the true transformation is applied. This has shown to increase run time, as well as
resulting in false registrations in the image bands with angular offsets. However, this
method has provided faster run time in the image bands without angular offsets.
In images with offsets in (x,y)-directions, and no other offsets, this approach is
valuable in terms of reduced run time.

As previously stated in chapters 4.2.3 and 4.2.4, the final parameters for the BSpline
and Demons transforms are not comparable to the rest, as these consist of a
summary of the deformation field itself.

Method LR1 MSL1 Run time2 Pixels3 Pixels4 Angle3 Angle4

Affine 1.0 0.0010 >500 33.88 39.15 21.262 12.044
Affine 0.1 0.0001 >500 37.59 33.52 7.699 8.739
Rigid 2.0 0.0001 296 20.45 28.96 75.860 82.924
Rigid 1.0 0.0001 287 8.64 25.11 11.258 29.749
Rigid 1.0 0.0010 275 7.90 26.64 11.282 29.750
Rigid 0.9 0.0001 269 1.16 3.31 0.025 0.020
Rigid 0.8 0.0001 322 0.96 2.68 0.026 0.020
Rigid 0.7 0.0001 247 0.34 0.22 0.025 0.020
Rigid 0.6 0.0001 245 0.34 0.22 0.024 0.018
Rigid 0.5 0.0001 244 0.33 0.22 0.024 0.019
Rigid 0.1 0.0001 255 0.33 0.23 0.024 0.019
Similarity 1.0 0.0010 >500 71.20 56.67 5.711 9.735
Translation 0.1 0.0001 68 75.94 118.55 - -
Translation5 0.1 0.0001 67 75.97 118.64 - -

1. Parameters; Learning rate and Minimum step length
2. Run time based on a single core processor, measured in hours
3. Mean offset from true value
4. Standard deviation from true value
5. Using Mattes Mutual Information metric

Table 4.8: Results from multiple runs

62

4.3 Summary 4 Results and discussion

The run time decreases for smaller learning rates, and the reasoning for this
decrease in run time appears to be due to faster convergence on the true corrections
when the learning rate is sufficiently low. With higher learning rates, the metric
diverges around its stop condition, and thus spends a longer time, or even makes
it impossible, to reach the correct value. This, however, does not hold true for the
rigid transformation using 0.1 as learning rate. This may indicate that the optimal
learning rate for this image-set is slightly below 0.5, or at 0.5. Another indication
that 0.5 is a more optimal value for the learning rate than 0.1 is the slightly lower
standard deviation when using 0.5 versus 0.1.

Initially it was assumed from the literature that increased accuracy and precision
would also lead to increased run time. This, however, has been shown to not
hold true. The metric has been shown to converge faster to the true registration
results when using an optimally small learning rate. That is, when the learning
rate is large, the metric will diverge around the true registration result, leading
to an increased number of iterations, and thus resulting in an increased run time.
This especially holds true for affine, similarity and translation, where the increased
number of parameters without fault leads to divergence in the metric, resulting in
the maximum number of iterations being met before the minimum step length.

As the computational cost of the program is quite high, the results presented in
table 4.8 are the results available at time of writing this thesis, where the testing
period started roughly two months before. The virtual machine supplied by Omega
Verksted[78] roughly a month before the thesis deadline drastically sped the testing
along.

It is also worth noting that the large mean offset and standard deviation from
true value in rigid transforms using learning rate 0.8 through 1.0 is due to faulty
registration results in image bands 4, 6 and 8, as seen in figures 4.8b, 4.8c and 4.8d,
respectively, with only small margins of error in the other bands.

Although optimal results are possible, mean square metric may be unsuitable for
this kind of hyperspectral imaging. As stated from the literature in chapter 2.2.4,
mean square metric has a large capture radius. In images with similar intensities
across the image, this may lead to erronous detections, as the average intensity
change between the images may be very similar in different regions of the images,
resulting in the faulty results mentioned in the previous paragraph. This is also
evident in the translation transform, where the optimizer does reach the minimum
step length, although it has no concept of angular translations.

The literature essentially agrees with these results; More transformation parameters
increases the difficulty for the metric and optimizer to converge on the true
transformation result. This is clearly shown in the results from the Affine and
Similarity transforms. Furthermore, sub-pixel registration as achieved with the
Rigid transform is expected with reliable and accurate registration methods.

63

4.3 Summary 4 Results and discussion

Due to lack of computing power, further in-depth testing of affine and similarity
transformations has been omitted, as even with 30 cores at disposal, a single run
with affine transform takes five days to complete. With the exception of a few days,
the virtual machine has been running the program without pause.

Whether the registration method has decent resource requirements, or is applicable
in clinical use has to be weighted by the end-user, as this is highly dependent on
the end-users goal and requirements of the method. In the test set with induced
errors, any assumption verification is moot, as the errors to be corrected are known.

In the other image sets, however, assumption verification is very much relevant,
as general information about camera distance, pixel size relative to real world
scale, and how large movement in the objects are present between image bands are
unknown. Thus, visual verification, combined with clinical use is necessary in these
image sets. With clinical use, information extraction of the object in question after
registration, comparing this information with information obtained through other
means will give a strong indication whether these images are registered correctly.

64

5 Conclusion

5 Conclusion

The registration methods providing additional parameters have proven to be
unsuccessful in correctly registering the image bands. Whether this is due to a
bad choice of metric, or is due to no introduced errors along these parameters, or a
combination, is not possible to conclude. However, it is reasonable to assume that a
combination is the plausible source of error, as better metric values when applying
these parameters will lead to divergence from the true registration result.

While BSpline deformable registration initially showed some promise in the
preliminary testing, this method is unsuitable for the provided image sets. This may
be due to the implementation of a metric which is highly unsuitable for HSI, but
not enough available information exist in order to draw this conclusion. Demons
deformable registration is similarly unsuited for the simulated image set, as the
method does not handle large translations.

The rigid transformation satisfy the validation methods presented in chapter 2.5.
With sub-pixel precision of the introduced errors, the registration method is
accurate. Similarly, the introduced errors are variations in the input, and result
in similar variations in the output, and the method is thus stable. The method is
reliable for several parameter inputs, and the method has low complexity. That
is, a relatively low number of variable parameters for the metric. The fastest
computational time for the method which correctly registers the images was found
to be approximately six hours with one processor core, using images of 1601x1401
pixels.

5.1 Future work

Mattes Mutual Information metric has been implemented for the translation
transform, and show similar results as Mean Square metric. However, several
additional metrics are available in the ITK library. It is possible that some of these
provide better results when using the Affine-, Similarity- or BSpline transforms.
While the computational time didn’t allow for the testing of these metrics at this
time, it is something worth looking into.

Some implementations of the ITK library has been developed for use with
GPU processing. At this time, four filters has been implemented, where
Demons Deformable registration is the only registration method[50]. Additionally,
implementations using CUDA has been developed for use with ITK, although the
latest available package is from 2010[19]. While this may require re-writing alot of
code, this is something definitely worth looking into, as, according to NVidia, four
GPUs in the Tesla 10 series is roughly equivalent to 230 processing cores[71].

65

References References

References

[1] J. Anderson, “A rapid and accurate method to realign pet scans utilizing image edge
information.”, Journal of nuclear medicine: Official publication, Society of Nuclear
Medicine, vol. 36, no. 4, pp. 657–669, 1995.

[2] J. L. Andersson, A. Sundin, and S. Valind, “A method for coregistration of pet and
mr brain images”, 1995.

[3] E. Angelopoulou, “The reflectance spectrum of human skin”, Technical Reports
(CIS), p. 584, 1999.

[4] Antsr by stnava, http://stnava.github.io/ANTsR/, (Accessed on 01/06/2017).

[5] Arch linux, https://www.archlinux.org/, (Accessed on 12/16/2016).

[6] T. Ault and M. Siegel, “Frameless patient registration using ultrasonic imaging”,
Medical robotics and computer assisted surgery, pp. 74–81, 1994.

[7] B. B. Avants, N. J. Tustison, M. Stauffer, G. Song, B. Wu, and J. C. Gee, “The
insight ToolKit image registration framework”, Frontiers in Neuroinformatics, vol.
8, Apr. 2014. doi: 10.3389/fninf.2014.00044. [Online]. Available: http://dx.
doi.org/10.3389/fninf.2014.00044.

[8] P. K. Banerjee and A. Toga, “Image alignment by integrated rotational and
translational transformation matrix”, Physics in medicine and biology, vol. 39, no.
11, p. 1969, 1994.

[9] S. Baronti, A. Casini, F. Lotti, and S. Porcinai, “Multispectral imaging system for
the mapping of pigments in works of art by use of principal-component analysis”,
Applied optics, vol. 37, no. 8, pp. 1299–1309, 1998.

[10] Bil, bip, and bsq raster files, http://desktop.arcgis.com/en/arcmap/10.3/
manage- data/raster- and- images/bil- bip- and- bsq- raster- files.htm,
(Accessed on 12/07/2016).

[11] A. Bjørgan, Master’s thesis; estimation of skin optical parameters for real-time
hyperspectral imaging applications using gpgpu parallel computing, 2013.

[12] G. Bonanno, G. Puy, Y. Wiaux, R. B. van Heeswijk, D. Piccini, and M. Stuber,
“Self-navigation with compressed sensing for 2D translational motion correction in
free-breathing coronary MRI: A feasibility study”, PLOS ONE, vol. 9, no. 8, X.
Yang, Ed., e105523, Aug. 2014. doi: 10.1371/journal.pone.0105523. [Online].
Available: http://dx.doi.org/10.1371/journal.pone.0105523.

[13] L. G. Brown, “A survey of image registration techniques”, ACM Computing Surveys,
vol. 24, no. 4, pp. 325–376, Dec. 1992. doi: 10.1145/146370.146374. [Online].
Available: http://dx.doi.org/10.1145/146370.146374.

[14] J. Burger and A. Gowen, “Data handling in hyperspectral image analysis”,
Chemometrics and Intelligent Laboratory Systems, vol. 108, no. 1, pp. 13–22, Aug.
2011. doi: 10.1016/j.chemolab.2011.04.001. [Online]. Available: http://dx.
doi.org/10.1016/j.chemolab.2011.04.001.

[15] C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classi-
fication. Springer, 2003, isbn: 0306474832.

[16] ——, Hyperspectral imaging: Techniques for spectral detection and classification.
Springer Science & Business Media, 2003, vol. 1.

66

http://stnava.github.io/ANTsR/
https://www.archlinux.org/
http://dx.doi.org/10.3389/fninf.2014.00044
http://dx.doi.org/10.3389/fninf.2014.00044
http://dx.doi.org/10.3389/fninf.2014.00044
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/bil-bip-and-bsq-raster-files.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/bil-bip-and-bsq-raster-files.htm
http://dx.doi.org/10.1371/journal.pone.0105523
http://dx.doi.org/10.1371/journal.pone.0105523
http://dx.doi.org/10.1145/146370.146374
http://dx.doi.org/10.1145/146370.146374
http://dx.doi.org/10.1016/j.chemolab.2011.04.001
http://dx.doi.org/10.1016/j.chemolab.2011.04.001
http://dx.doi.org/10.1016/j.chemolab.2011.04.001

References References

[17] C.-T. Chen, C. A. Pelizzari, G. T. Chen, M. D. Cooper, and D. N. Levin, “Image
analysis of pet data with the aid of ct and mr images”, in Information processing in
medical imaging, Springer, 1988, pp. 601–611.

[18] J.-S. Chou, S.-Y. J. Chen, G. S. Sudakoff, K. R. Hoffmann, C.-T. Chen, and
A. H. Dachman, “Image fusion for visualization of hepatic vasculature and tumors”,
in Medical Imaging 1995, International Society for Optics and Photonics, 1995,
pp. 157–163.

[19] Citk, https://code.google.com/archive/p/cuda-insight-toolkit/, (Accessed
on 12/19/2016).

[20] Cmake, https://cmake.org/, (Accessed on 12/07/2016).

[21] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal,
“Automated multi-modality image registration based on information theory”, In:
Bizais, 1995.

[22] M. Denstedt, B. S. Pukstad, L. A. Paluchowski, J. E. Hernandez-Palacios, and L. L.
Randeberg, “Hyperspectral imaging as a diagnostic tool for chronic skin ulcers”, in
SPIE BiOS, International Society for Optics and Photonics, 2013, 85650N–85650N.

[23] Y. Diez, A. Oliver, X. Llado, and R. Marti, “Comparison of registration methods
using mamographic images”, in 2010 IEEE International Conference on Image
Processing, Institute of Electrical and Electronics Engineers (IEEE), Sep. 2010.
doi: 10.1109/ICIP.2010.5653325. [Online]. Available: http://dx.doi.org/10.
1109/ICIP.2010.5653325.

[24] Doxygen: Main page, http://www.stack.nl/~dimitri/doxygen/, (Accessed on
01/06/2017).

[25] Dramms image registration software, https://www.cbica.upenn.edu/sbia/
software/dramms/, (Accessed on 01/06/2017).

[26] Envi capabilities - image analysis - envi products | harris geospatial, http://www.
harrisgeospatial . com / ProductsandSolutions / GeospatialProducts / ENVI /
ENVICapabilities.aspx, (Accessed on 12/07/2016).

[27] A. C. Evans, S. Marrett, J. Torrescorzo, S. Ku, and L. Collins, “Mri-pet correlation
in three dimensions using a volume-of-interest (voi) atlas”, Journal of Cerebral Blood
Flow & Metabolism, vol. 11, no. 1 suppl, A69–A78, 1991.

[28] J. M. Fitzpatrick, D. L. Hill, and C. R. Maurer Jr, “Image registration”, Handbook
of medical imaging, vol. 2, pp. 447–513, 2000.

[29] S. Fox, Fundamentals of Human Physiology. McGraw-Hill Science/Engineering/-
Math, 2008, isbn: 0077226356.

[30] V. Fresse, D. Houzet, and C. Gravier, “Evaluation of cpu and gpu architectures
for spectral image analysis algorithms”, in IS&T/SPIE Electronic Imaging,
International Society for Optics and Photonics, 2011, pp. 78720M–78720M.

[31] V. Fresse, D. Houzet, and C. Gravier, “Gpu architecture evaluation for multispectral
and hyperspectral image analysis”, in Design and Architectures for Signal and Image
Processing (DASIP), 2010 Conference on, IEEE, 2010, pp. 121–127.

[32] Gcc, the gnu compiler collection - gnu project - free software foundation (fsf),
https://gcc.gnu.org/, (Accessed on 12/07/2016).

67

https://code.google.com/archive/p/cuda-insight-toolkit/
https://cmake.org/
http://dx.doi.org/10.1109/ICIP.2010.5653325
http://dx.doi.org/10.1109/ICIP.2010.5653325
http://dx.doi.org/10.1109/ICIP.2010.5653325
http://www.stack.nl/~dimitri/doxygen/
https://www.cbica.upenn.edu/sbia/software/dramms/
https://www.cbica.upenn.edu/sbia/software/dramms/
http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/ENVI/ENVICapabilities.aspx
http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/ENVI/ENVICapabilities.aspx
http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/ENVI/ENVICapabilities.aspx
https://gcc.gnu.org/

References References

[33] Y. Ge, J. M. Fitzpatrick, J. R. Votaw, S. Gadamsetty, R. J. Maciunas, R. M. Kessler,
and R. A. Margolin, “Retrospective registration of pet and mr brain images: An
algorithm and its stereotactic validation.”, Journal of computer assisted tomography,
vol. 18, no. 5, pp. 800–810, 1994.

[34] C. Gonzalez, J. Resano, A. Plaza, and D. Mozos, “Fpga implementation of
abundance estimation for spectral unmixing of hyperspectral data using the image
space reconstruction algorithm”, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 5, no. 1, pp. 248–261, 2012.

[35] A. Hamadeh, P. Sautot, S. Lavallée, and P. Cinquin, “Towards automatic
registration between ct and x-ray images: Cooperation between 3d/2d registration
and 2d edge detection”, Medical robotics and computer assisted surgery, pp. 39–46,
1995.

[36] W. R. Hamilton, Elements of quaternions. Longmans, Green, & Company, 1866.

[37] P. F. Hemler, P. A. van den Elsen, T. S. Sumanaweera, S. Napel, J. Drace, and J. R.
Adler, “A quantitative comparison of residual error for three different multimodality
registration techniques”, in Information processing in medical imaging, Ile Berder,
France: IPMI, Kluwer, 1995, pp. 251–62.

[38] P. F. Hemler, T. Sumanaweera, P. A. van den Elsen, S. Napel, and J. Adler, “A
system for multimodality image fusion”, in Computer-Based Medical Systems, 1994.,
Proceedings 1994 IEEE Seventh Symposium on, IEEE, 1994, pp. 335–340.

[39] P. Henriquez, B. J. Matuszewski1, Y. Andreu-Cabedo1, L. Bastiani, S. Colantonio,
G. Coppini, M. D’Acunto, R. Favilla, D. Germanese, D. Giorgi, P. Marraccini,
M. Martinelli, M.-A. Morales, M. A. Pascali, M. Righi, O. Salvetti, M. Larsson,
T. Stromberg, L. L. Randeberg, A. Bjorgan, G. Giannakakis, M. Pediaditis, F.
Chiarugi, E. Christinaki, K. Marias, and M. Tsiknakis, “Mirror mirror on the wall...
an unobtrusive intelligent multisensory mirror for well-being status self-assessment
and visualization”, 2017.

[40] D. L. Hill, Combination of 3D medical images from multiple modalities. University
of London, 1994.

[41] D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image
registration”, Physics in medicine and biology, vol. 46, no. 3, R1, 2001.

[42] M. Holden, D. L. Hill, E. R. Denton, J. M. Jarosz, T. C. Cox, and D. J. Hawkes,
“Voxel similarity measures for 3d serial mr brain image registration”, in Biennial
International Conference on Information Processing in Medical Imaging, Springer,
1999, pp. 472–477.

[43] Hyspex, norsk elektro optikk, http://www.hyspex.no/, (Accessed on 12/19/2016).

[44] Hyview, https://ntnu-bioopt.github.io/software/hyview.html, (Accessed
on 12/07/2016).

[45] (2015). Image registration open source computer vision, OpenCV, [Online].
Available: http://docs.opencv.org/3.1.0/db/d61/group__reg.html (visited
on 09/27/2017).

[46] Imagej documentation, https : / / imagej . nih . gov / ij / docs / index . html,
(Accessed on 12/07/2016).

[47] Imagemagick, https://www.imagemagick.org/script/index.php, (Accessed on
12/22/2016).

68

http://www.hyspex.no/
https://ntnu-bioopt.github.io/software/hyview.html
http://docs.opencv.org/3.1.0/db/d61/group__reg.html
https://imagej.nih.gov/ij/docs/index.html
https://www.imagemagick.org/script/index.php

References References

[48] Introduction to gimias, http : / / gimias . org / index . php / whatisgimias /
introduction, (Accessed on 12/08/2016).

[49] Itk/examples - kitwarepublic, https://itk.org/Wiki/ITK/Examples, (Accessed
on 12/08/2016).

[50] Itk/release 4/gpu acceleration - kitwarepublic, https : / / itk . org / Wiki / ITK _
Release_4/GPU_Acceleration, (Accessed on 12/19/2016).

[51] C. G. J. Jacobi, Gesammelte Werke, Herausgegeben auf Veranlassung der Königlich
Preussischen Akademie der Wissenschaften, 2. New York: Chelsea Publishing Co,
1969 (1881).

[52] H. J. Johnson, M. M. McCormick, and L. Ibanez, Introduction and Development
Guidelines, 4th ed., T. I. S. Consortium, Ed., ser. The ITK Software Guide.
The Insight Toolkit (ITK), May 2016. [Online]. Available: https://itk.org/
ItkSoftwareGuide.pdf.

[53] H. J. Johnson, M. M. McCormick, and L. Ibanez, The itk software guide book 1:
Introduction and development guidelines, Kitware, Inc., 2015.

[54] H. J. Johnson, M. M. McCormick, and L. Ibanez, The itk software guide book 2:
Design and functionality, Kitware, Inc., 2015.

[55] A. D. Kim and M. Moscoso, “Light transport in two-layer tissues”, Journal of
Biomedical Optics, vol. 10, no. 3, 2005. doi: 10 . 1117 / 1 . 1925227. [Online].
Available: http://dx.doi.org/10.1117/1.1925227.

[56] S. Klein, M. Staring, K. Murphy, M. Viergever, and J. Pluim, “Elastix: A toolbox
for intensity-based medical image registration”, IEEE Transactions on Medical
Imaging, vol. 29, no. 1, pp. 196–205, Jan. 2010. doi: 10.1109/tmi.2009.2035616.
[Online]. Available: http://dx.doi.org/10.1109/TMI.2009.2035616.

[57] S. Klein and M. Staring, “Elastix the manual”, in Elastix the manual, Elastix, Sep.
2015. [Online]. Available: http://elastix.isi.uu.nl/download/elastix_
manual_v4.8.pdf.

[58] H. Lester and S. R. Arridge, “A survey of hierarchical non-linear medical image
registration”, Pattern recognition, vol. 32, no. 1, pp. 129–149, 1999.

[59] M. Liland, Characterization of atopic dermatitis in children’s health (working title),
Feb. 2017.

[60] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodal-
ity image registration by maximization of mutual information”, IEEE transactions
on Medical Imaging, vol. 16, no. 2, pp. 187–198, 1997.

[61] J. A. Maintz, P. A. van den Elsen, and M. A. Viergever, “Registration of spect
and mr brain images using a fuzzy surface”, in Medical Imaging 1996, International
Society for Optics and Photonics, 1996, pp. 821–829.

[62] J. Maintz and M. A. Viergever, “A survey of medical image registration”, Medical
Image Analysis, vol. 2, no. 1, pp. 1–36, Mar. 1998. doi: 10.1016/S1361-8415(01)
80026-8. [Online]. Available: http://dx.doi.org/10.1016/S1361-8415(01)
80026-8.

[63] T. Makela, P. Clarysse, O. Sipila, N. Pauna, Q. C. Pham, T. Katila, and I. Magnin,
“A review of cardiac image registration methods”, IEEE Transactions on Medical
Imaging, vol. 21, no. 9, pp. 1011–1021, Sep. 2002. doi: 10.1109/TMI.2002.804441.
[Online]. Available: http://dx.doi.org/10.1109/TMI.2002.804441.

69

http://gimias.org/index.php/whatisgimias/introduction
http://gimias.org/index.php/whatisgimias/introduction
https://itk.org/Wiki/ITK/Examples
https://itk.org/Wiki/ITK_Release_4/GPU_Acceleration
https://itk.org/Wiki/ITK_Release_4/GPU_Acceleration
https://itk.org/ItkSoftwareGuide.pdf
https://itk.org/ItkSoftwareGuide.pdf
http://dx.doi.org/10.1117/1.1925227
http://dx.doi.org/10.1117/1.1925227
http://dx.doi.org/10.1109/tmi.2009.2035616
http://dx.doi.org/10.1109/TMI.2009.2035616
http://elastix.isi.uu.nl/download/elastix_manual_v4.8.pdf
http://elastix.isi.uu.nl/download/elastix_manual_v4.8.pdf
http://dx.doi.org/10.1016/S1361-8415(01)80026-8
http://dx.doi.org/10.1016/S1361-8415(01)80026-8
http://dx.doi.org/10.1016/S1361-8415(01)80026-8
http://dx.doi.org/10.1016/S1361-8415(01)80026-8
http://dx.doi.org/10.1109/TMI.2002.804441
http://dx.doi.org/10.1109/TMI.2002.804441

References References

[64] P. Markelj, D. Tomaževič, B. Likar, and F. Pernuš, “A review of 3D/2D registration
methods for image-guided interventions”, Medical Image Analysis, vol. 16, no. 3,
pp. 642–661, Apr. 2012. doi: 10.1016/j.media.2010.03.005. [Online]. Available:
http://dx.doi.org/10.1016/j.media.2010.03.005.

[65] Mat file i/o library, https://sourceforge.net/projects/matio/, (Accessed on
01/11/2017).

[66] Matlab documentation, https://www.mathworks.com/help/matlab/, (Accessed
on 12/19/2016).

[67] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank, “Pet-ct
image registration in the chest using free-form deformations”, IEEE transactions on
medical imaging, vol. 22, no. 1, pp. 120–128, 2003.

[68] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid
multimodality image registration”, in Medical Imaging 2001, International Society
for Optics and Photonics, 2001, pp. 1609–1620.

[69] H. Matthies and G. Strang, “The solution of nonlinear finite element equations”,
International Journal for Numerical Methods in Engineering, vol. 14, no. 11,
pp. 1613–1626, 1979, issn: 1097-0207. doi: 10.1002/nme.1620141104. [Online].
Available: http://dx.doi.org/10.1002/nme.1620141104.

[70] C. R. Maurer Jr, G. B. Aboutanos, B. M. Dawant, R. A. Margolin, R. J. Maciunas,
and J. M. Fitzpatrick, “Registration of ct and mr brain images using a combination
of points and surfaces”, in Medical Imaging 1995, International Society for Optics
and Photonics, 1995, pp. 109–123.

[71] Medical imaging | nvidia, http://www.nvidia.com/object/medical_imaging.
html, (Accessed on 12/19/2016).

[72] E. Meijering, “A chronology of interpolation: From ancient astronomy to modern
signal and image processing”, Proceedings of the IEEE, vol. 90, no. 3, pp. 319–342,
Mar. 2002. doi: 10.1109/5.993400. [Online]. Available: https://doi.org/10.
1109%5C%2F5.993400.

[73] Miniature spectral imaging camera - gooch & housego, https://goochandhousego.
com/miniature-spectral-imaging-camera/, (Accessed on 01/23/2017).

[74] P. Neelin, J. Crossman, D. Hawkes, Y. Ma, and A. Evans, “Validation of an mri/pet
landmark registration method using 3d simulated pet images and point simulations”,
Computerized medical imaging and graphics, vol. 17, no. 4, pp. 351–356, 1993.

[75] O. Neugebauer, A history of ancient mathematical astronomy. Springer Science &
Business Media, 2012, vol. 1.

[76] Niftyreg, http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg, (Accessed
on 12/08/2016).

[77] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business
Media, 2006.

[78] Omega verksted, https://omegav.no/, (Accessed on 01/13/2017).

[79] Y. Ou, A. Sotiras, N. Paragios, and C. Davatzikos, “Dramms: Deformable
registration via attribute matching and mutual-saliency weighting”, Medical Image
Analysis, vol. 15, no. 4, pp. 622–639, Aug. 2011. doi: 10.1016/j.media.2010.07.
002. [Online]. Available: http://dx.doi.org/10.1016/j.media.2010.07.002.

70

http://dx.doi.org/10.1016/j.media.2010.03.005
http://dx.doi.org/10.1016/j.media.2010.03.005
https://sourceforge.net/projects/matio/
https://www.mathworks.com/help/matlab/
http://dx.doi.org/10.1002/nme.1620141104
http://dx.doi.org/10.1002/nme.1620141104
http://www.nvidia.com/object/medical_imaging.html
http://www.nvidia.com/object/medical_imaging.html
http://dx.doi.org/10.1109/5.993400
https://doi.org/10.1109%5C%2F5.993400
https://doi.org/10.1109%5C%2F5.993400
https://goochandhousego.com/miniature-spectral-imaging-camera/
https://goochandhousego.com/miniature-spectral-imaging-camera/
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
https://omegav.no/
http://dx.doi.org/10.1016/j.media.2010.07.002
http://dx.doi.org/10.1016/j.media.2010.07.002
http://dx.doi.org/10.1016/j.media.2010.07.002

References References

[80] J. Pluim, J. Maintz, and M. Viergever, “Mutual-information-based registration of
medical images: A survey”, IEEE Transactions on Medical Imaging, vol. 22, no. 8,
pp. 986–1004, Aug. 2003. doi: 10.1109/tmi.2003.815867. [Online]. Available:
http://dx.doi.org/10.1109/TMI.2003.815867.

[81] R: The r project for statistical computing, https : / / www . r - project . org/,
(Accessed on 01/06/2017).

[82] L. L. Randeberg, I. Baarstad, T. Løke, P. Kaspersen, and L. O. Svaasand,
“Hyperspectral imaging of bruised skin”, Proc. SPIE, vol. 6078, 2006. doi: 10.
1117/12.646557. [Online]. Available: http://dx.doi.org/10.1117/12.646557.

[83] L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel
approach to age determination of traumatic injuries by reflectance spectroscopy”,
Lasers in surgery and medicine, vol. 38, no. 4, pp. 277–289, 2006.

[84] L. L. Randeberg, E. L. P. Larsen, and L. O. Svaasand, “Characterization of
vascular structures and skin bruises using hyperspectral imaging, image analysis
and diffusion theory”, Journal of Biophotonics, vol. 3, no. 1-2, pp. 53–65, 2010,
issn: 1864-0648. doi: 10.1002/jbio.200910059. [Online]. Available: http://dx.
doi.org/10.1002/jbio.200910059.

[85] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes,
“Nonrigid registration using free-form deformations: Application to breast mr
images”, IEEE transactions on medical imaging, vol. 18, no. 8, pp. 712–721, 1999.

[86] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent range image
registration methods with accuracy evaluation”, Image and Vision Computing, vol.
25, no. 5, pp. 578–596, May 2007. doi: 10.1016/j.imavis.2006.05.012. [Online].
Available: http://dx.doi.org/10.1016/j.imavis.2006.05.012.

[87] S. Sanchez and A. Plaza, “Real-time implementation of a full hyperspectral
unmixing chain on graphics processing units”, in SPIE Optical Engineering+
Applications, International Society for Optics and Photonics, 2011, 81570F–81570F.

[88] K. Sayood, “Digital image formats”, in Digital Image Forensics: There is More to
a Picture than Meets the Eye, H. T. Sencar and N. Memon, Eds. New York, NY:
Springer New York, 2013, pp. 79–121, isbn: 978-1-4614-0757-7. doi: 10.1007/978-
1-4614-0757-7_3. [Online]. Available: http://dx.doi.org/10.1007/978-1-
4614-0757-7_3.

[89] R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing,
3rd ed. Academic Press, Sep. 2006, isbn: 9780123694072.

[90] S. T. Seljebotn,Master’s thesis; continuous autofocus for line scanning hyperspectral
camera, 2012.

[91] P. Seroul, M. Hébert, M. Cherel, R. Vernet, R. Clerc, and M. Jomier, “Model-
based skin pigment cartography by high-resolution hyperspectral imaging”, Journal
of Imaging Science and Technology, 2016.

[92] J. Setoain, M. Prieto, C. Tenllado, and F. Tirado, “Gpu for parallel on-
board hyperspectral image processing”, International Journal of High Performance
Computing Applications, vol. 22, no. 4, pp. 424–437, 2008.

[93] J. Setoain, C. Tenllado, M. Prieto, D. Valencia, A. Plaza, and J. Plaza,
“Parallel hyperspectral image processing on commodity graphics hardware”, in 2006
International Conference on Parallel Processing Workshops (ICPPW’06), IEEE,
2006, 8–pp.

71

http://dx.doi.org/10.1109/tmi.2003.815867
http://dx.doi.org/10.1109/TMI.2003.815867
https://www.r-project.org/
http://dx.doi.org/10.1117/12.646557
http://dx.doi.org/10.1117/12.646557
http://dx.doi.org/10.1117/12.646557
http://dx.doi.org/10.1002/jbio.200910059
http://dx.doi.org/10.1002/jbio.200910059
http://dx.doi.org/10.1002/jbio.200910059
http://dx.doi.org/10.1016/j.imavis.2006.05.012
http://dx.doi.org/10.1016/j.imavis.2006.05.012
http://dx.doi.org/10.1007/978-1-4614-0757-7_3
http://dx.doi.org/10.1007/978-1-4614-0757-7_3
http://dx.doi.org/10.1007/978-1-4614-0757-7_3
http://dx.doi.org/10.1007/978-1-4614-0757-7_3

References References

[94] C. Shannon, “A mathematical theory of communication, bell system technical
journal 27: 379-423 and 623–656”, Mathematical Reviews (MathSciNet): MR10,
133e, 1948.

[95] T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and
A. Skaugen, “An airborne real-time hyperspectral target detection system”, in SPIE
Defense, Security, and Sensing, International Society for Optics and Photonics,
2010, 76950A–76950A.

[96] Stigvis/registration, https://github.com/stigvis/registration, (Accessed on
12/11/2016).

[97] C. Studholme, D. L. Hill, and D. J. Hawkes, “An overlap invariant entropy measure
of 3d medical image alignment”, Pattern recognition, vol. 32, no. 1, pp. 71–86, 1999.

[98] L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson,
“Tissue parameters determining the visual appearance of normal skin and port-
wine stains”, Lasers in Medical Science, vol. 10, no. 1, pp. 55–65, 1995.

[99] J. R. TAYLOR, Introduction To Error Analysis. Palgrave. 1997. Palgrave, 1997,
isbn: 093570275X.

[100] J.-P. Thirion, “Image matching as a diffusion process: An analogy with maxwell’s
demons”, Medical image analysis, vol. 2, no. 3, pp. 243–260, 1998.

[101] J.-P. Thirion, “Non-rigid matching using demons”, in Computer Vision and Pattern
Recognition, 1996. Proceedings CVPR’96, 1996 IEEE Computer Society Conference
on, IEEE, 1996, pp. 245–251.

[102] D. Valencia and A. Plaza, “Fpga-based hyperspectral data compression using
spectral unmixing and the pixel purity index algorithm”, in International Conference
on Computational Science, Springer, 2006, pp. 888–891.

[103] M. A. Viergever, J. A. Maintz, S. Klein, K. Murphy, M. Staring, and J. P. Pluim,
“A survey of medical image registration–under review”, Medical Image Analysis,
vol. 33, pp. 140–144, 2016.

[104] Vimdoc : The online source for vim documentation, http://vimdoc.sourceforge.
net/, (Accessed on 12/07/2016).

[105] P. Viola and W. M. Wells III, “Alignment by maximization of mutual information”,
International journal of computer vision, vol. 24, no. 2, pp. 137–154, 1997.

[106] M. Y. Wang, J. M. Fitzpatrick, and C. R. Maurer Jr, “Design of fiducials for accurate
registration of ct and mr volume images”, in Medical Imaging 1995, International
Society for Optics and Photonics, 1995, pp. 96–108.

[107] Yed - graph editor, https : / / www . yworks . com / products / yed, (Accessed on
01/09/2017).

[108] M. M. Yeung, B.-L. Yeo, S.-P. Liou, and A. Banihashemi, “Three-dimensional image
registration for spiral ct angiography”, in Computer Vision and Pattern Recognition,
1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, IEEE,
1994, pp. 423–429.

[109] T. S. Yoo, Ed., Insight into Images: Principles and Practice for Segmentation,
Registration, and Image Analysis, 1st ed. A K Peters/CRC Press, Aug. 2004, isbn:
9781568812175.

72

https://github.com/stigvis/registration
http://vimdoc.sourceforge.net/
http://vimdoc.sourceforge.net/
https://www.yworks.com/products/yed

References References

[110] B. Zitová and J. Flusser, “Image registration methods: A survey”, Image and Vision
Computing, vol. 21, no. 11, pp. 977–1000, Oct. 2003. doi: 10 . 1016 / S0262 -
8856(03)00137-9. [Online]. Available: http://dx.doi.org/10.1016/S0262-
8856(03)00137-9.

73

http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1016/S0262-8856(03)00137-9

A Code

A Code

The source code is available as a zipped archive, or directly on github[96]. All
declarations happen in the header files, which are appended. They are also available
in the zipped archive.

A.1 Read image

1 /∗
∗ Copyright 2015 Asge i r Bjorgan , L i s e Lyngsnes Randeberg , Norwegian

Un ive r s i ty o f Sc i ence and Technology
3 ∗ Dis t r ibut ed under the MIT License .

∗ (See accompanying f i l e LICENSE or copy at
5 ∗ http :// opensource . org / l i c e n s e s /MIT

∗/
7

#i f n d e f READIMAGE_H_DEFINED
9 #de f i n e READIMAGE_H_DEFINED

#inc lude <vector>
11 #inc lude <boost / regex . h>

#inc lude <s td i o . h>
13 #inc lude <s t d l i b . h>

#inc lude <s td i n t . h>
15 #inc lude <s t r i n g . h>

#inc lude <s t r i ng >
17 #inc lude <iostream>

19 /∗ I n t e r l e ave , BIL or BIP . BSQ not supported . ∗/
enum in t e r l e ave_t {BIL_INTERLEAVE, BIP_INTERLEAVE} ;

21

/∗ Container f o r hype r spe c t r a l header f i l e . ∗/
23 s t r u c t hyspex_header {

/// I n t e r l e a v e o f image
25 i n t e r l e ave_t i n t e r l e a v e ;

///Number o f p i x e l s in the across−t rack ax i s
27 i n t samples ;

///Number o f wavelength bands
29 i n t bands ;

///Number o f l i n e s in the image (along−t rack)
31 i n t l i n e s ;

/// Of f s e t o f the image data from s t a r t o f the hype r spe c t r a l f i l e
33 i n t o f f s e t ;

///Wavelengths
35 std : : vector<f l o a t > wlens ;

///Datatype o f va lue s in hype r spe c t r a l f i l e
37 i n t datatype ;

} ;

74

A.1 Read image A Code

39 /∗ Image subset convenience s t r u c t f o r s p e c i f y i n g a subset o f the
hype r spe c t r a l image f i l e f o r read ing . ∗/

s t r u c t image_subset {
41 /// Star t p i x e l in the sample d i r e c t i o n

i n t start_sample ;
43 ///End p i x e l in the sample d i r e c t i o n

i n t end_sample ;
45 /// Star t p i x e l in the l i n e d i r e c t i o n

i n t s t a r t_ l i n e ;
47 ///End p i x e l in the l i n e d i r e c t i o n

i n t end_line ;
49 /// Star t wavelength band

in t start_band ;
51 ///End wavelength band

in t end_band ;
53 } ;

55 /∗ Errors . ∗/
enum hyperspectra l_err_t {

57 /// Su c c e s s f u l
HYPERSPECTRAL_NO_ERR,

59 /// F i l e not found
HYPERSPECTRAL_FILE_NOT_FOUND,

61 ///Could not f i nd the reques ted property in the header f i l e
HYPERSPECTRAL_HDR_PROPERTY_NOT_FOUND,

63 /// I n t e r l e a v e in header f i l e not supported by t h i s so f tware
HYPERSPECTRAL_INTERLEAVE_UNSUPPORTED,

65 ///Datatype in hype r spe c t r a l image not supported
HYPERSPECTRAL_DATATYPE_UNSUPPORTED,

67 // /???
HYPERSPECTRAL_FILE_READING_ERROR

69 } ;

71 /∗∗ Read header in fo rmat ion from f i l e .
∗ \param f i l ename Filename

73 ∗ \param header Output header conta ine r
∗ \ return HYPERSPECTRAL_NO_ERR on suc c e s s ∗/

75 hyperspectra l_err_t hyperspectral_read_header (const char ∗ f i l ename ,
s t r u c t hyspex_header ∗header) ;

77 /∗∗ Read hype r spe c t r a l image from f i l e .
∗ \param f i l ename Filename

79 ∗ \param header Header , a l r eady read from f i l e us ing
hyperspectral_read_header

∗ \param image_subset Sp e c i f i e d image subset
81 ∗ \param data Output data , p r e a l l o c a t ed to necce s sa ry s i z e (bands∗

samples ∗ l i n e s , get i t from header (or in t h i s case , c a l c u l a t e i t
from the s p e c i f i e d subset)) . P i x e l s are acce s s ed by data [SAMPLES∗
BANDS∗ line_number + SAMPLES∗band_number + sample_number] .

∗ \ return HYPERSPECTRAL_NO_ERR on suc c e s s ∗/
83 hyperspectra l_err_t hyperspectral_read_image (const char ∗ f i l ename ,

s t r u c t hyspex_header ∗header , s t r u c t image_subset subset , f l o a t ∗
data) ;

75

A.1 Read image A Code

85 /∗∗ Overloaded ve r s i on o f hyperspectral_read_image where i t i s n ’ t
necce s sa ry to supply subset in format ion , the f u l l image w i l l be
read .

∗ \param f i l ename Filename
87 ∗ \param header Header in fo rmat ion

∗ \param data Output image data
89 ∗ \ return HYPERSPECTRAL_NO_ERR on suc c e s s ∗/

hyperspectra l_err_t hyperspectral_read_image (const char ∗ f i l ename ,
s t r u c t hyspex_header ∗header , f l o a t ∗data) ;

91

/∗∗ Write header in fo rmat ion to f i l e .
93 ∗ \param f i l ename Filename

∗ \param bands Number o f bands
95 ∗ \param samples Number o f samples (across−t rack)

∗ \param l i n e s Number o f l i n e s (along−t rack)
97 ∗ \param wlens Wavelength array ∗/

void hyperspectra l_write_header (const char ∗ f i l ename , i n t bands , i n t
samples , i n t l i n e s , s td : : vector<f l o a t > wlens) ;

99

/∗∗ Write hype r spe c t r a l image to f i l e .
101 ∗ \param f i l ename Filename

∗ \param bands Bands
103 ∗ \param samples Samples

∗ \param l i n e s Lines
105 ∗ \param data Image data ∗/

void hyperspectral_write_image (const char ∗ f i l ename , i n t bands , i n t
samples , i n t l i n e s , f l o a t ∗data) ;

107 #end i f

includes/readimage.h

76

A.2 Multispectral images A Code

A.2 Multispectral images

1 /∗
∗ Copyright 2016 St i g Viste , Norwegian Un ive r s i ty o f Sc i ence and

Technology
3 ∗ Dis t r ibut ed under the MIT License .

∗ (See accompanying f i l e LICENSE or copy at
5 ∗ http :// opensource . org / l i c e n s e s /MIT

∗/
7

#i f n d e f MULTISPEC_H_DEFINED
9 #de f i n e MULTISPEC_H_DEFINED

11 // Read . raw f i l e s
void multispec_raw (

13 // Number o f inputs
i n t argc ,

15 // Inputs
char ∗argv []) ;

17

#inc lude " r e g i s t r a t i o n . h"
19 // Create raw i t k conta ine r

UintImageType : : Po inter rawContainer (
21 // Image width

i n t xs i z e ,
23 // Image he ight

i n t y s i z e) ;
25

// Create f l o a t i t k conta ine r
27 ImageType : : Po inter imgContainer (

// Image width
29 i n t x s i z e ,

// Image he ight
31 i n t y s i z e) ;

33 // Read raw image to i t k conta ine r
UintImageType : : Po inter readRaw(

35 // Pointer to wr i t e to
UintImageType∗ const itkimg ,

37 // Image number
i n t i ,

39 // Image width
i n t xs i z e ,

41 // Image he ight
i n t ys i z e ,

43 // F i l e to read from
char ∗argv) ;

45

77

A.2 Multispectral images A Code

// Write images from i t k conta ine r to raw format
47 void writeRaw (

// Pointer to read from
49 UintImageType∗ const itkimg ,

// Image number
51 i n t i ,

// Image width
53 i n t x s i z e ,

// Image he ight
55 i n t y s i z e ,

// Output name
57 std : : s t r i n g name) ;

#end i f // MULTISPEC_READ_H_DEFINED

includes/multispec.h

78

A.3 Hyperspectral images A Code

A.3 Hyperspectral images

/∗ Copyright 2016 St i g Viste , Norwegian Un ive r s i ty o f Sc i ence and
Technology

2 ∗ Dis t r ibut ed under the MIT License .
∗ (See accompanying f i l e LICENSE or copy at

4 ∗ http :// opensource . org / l i c e n s e s /MIT ∗/
#inc lude <iostream>

6 #inc lude <sstream>
#inc lude <s t r i ng >

8 #inc lude <s t r i n g . h>
#i f n d e f HYPERSPEC_H_DEFINED

10 #de f i n e HYPERSPEC_H_DEFINED

12 // Container f o r r e g i s t r a t i o n parameters
s t r u c t reg_params {

14 // Reg i s t r a t i on method
i n t regmethod ;

16 // Reg i s t r a t i on output name
std : : s t r i n g reg_name ;

18 // Output from d i f f
i n t d i f f_con f ;

20 // D i f f output name
std : : s t r i n g diff_name ;

22 // Median f i l t e r
i n t median ;

24 // Leve l o f median f i l t e r i n g
i n t rad iu s ;

26 // Gradient f i l t e r
i n t g rad i ent ;

28 // Leve l o f g rad i en t f i l t e r i n g
i n t sigma ;

30 // I n i t i a l t rans form angle
f l o a t ang le ;

32 // I n i t i a l t rans form s c a l e
f l o a t s c a l e ;

34 // Learning ra t e o f r e g i s t r a t i o n
f l o a t l r a t e ;

36 // Minimum step length be f o r e complet ion
f l o a t s l eng th ;

38 // Maximum number o f i t e r a t i o n s
i n t n i t e r ;

40 // Res i z ing
unsigned i n t numberOfLevels ;

42 // Trans la t i on s c a l e
double t r a n s l a t i o nS c a l e ;

44 // I n i t i a l Trans la t i on trans form
in t t r a n s l a t i o n ;

46 // Choose between mutual in fo rmat ion and mean squares
i n t metr ic ;

48 // Option f o r suppre s s ing i t e r a t i o n outputs
i n t output ;

50 } ;

79

A.3 Hyperspectral images A Code

52

// Errors
54 enum conf_err_t {

// Su c c e s s f u l
56 CONF_NO_ERR,

// F i l e not found
58 CONF_FILE_NOT_FOUND,

// Read e r r o r
60 CONF_FILE_READING_ERROR

} ;
62

// Functions
64 // Read con f i g (params . conf)

conf_err_t params_read (s t r u c t reg_params ∗params) ;
66

// Retr i eve va r i ab l e from con f i g
68 std : : s t r i n g getParam (

// Var iab le name
70 std : : s t r i n g confText ,

// Var iab le va lue
72 std : : s t r i n g property) ;

74 // Read a hype r spe c t r a l . img f i l e and
// output a r e g i s t r a t e d . img f i l e

76 void hyperspec_img (
const char ∗ f i l ename) ;

78

// Read a hype r spe c t r a l . mat f i l e and
80 // output a r e g i s t r a t e d . mat f i l e

void hyperspec_mat (
82 const char ∗ f i l ename) ;

84 #inc lude " r e g i s t r a t i o n . h"
// Create an image po in t e r f o r . img

86 ImageType : : Po inter imageContainer (
// Get s i z e o f image from . hdr

88 s t r u c t hyspex_header header) ;

90 // Read an image in to an image po in t e r from . img
ImageType : : Po inter readITK (

92 // Pointer to wr i t e to
ImageType∗ const itkimg ,

94 // Float to read from
f l o a t ∗ img ,

96 // Image band
in t i ,

98 // Image s to rage format
s t r u c t hyspex_header header) ;

100

80

A.3 Hyperspectral images A Code

// Write an image from an image po in t e r to a f l o a t ∗
102 f l o a t ∗ writeITK (

// Pointer to read from
104 ImageType∗ const itkimg ,

// Float to wr i t e to
106 f l o a t ∗ image ,

// Image band
108 i n t i ,

// Image s to rage format
110 s t r u c t hyspex_header header) ;

// Create an image po in t e r f o r . mat
112 ImageType : : Po inter imageMatContainer (

// Image width
114 unsigned xSize ,

// Image he ight
116 unsigned y s i z e) ;

// Read an image in to an image po in t e r from . mat
118 ImageType : : Po inter readMat (

// Pointer to wr i t e to
120 ImageType∗ const itkmat ,

// Image band
122 i n t i ,

// Image width
124 unsigned xSize ,

// Image he ight
126 unsigned ySize ,

// Float to read from
128 f l o a t ∗hData) ;

// Write an image from an image po in t e r to a f l o a t ∗
130 f l o a t ∗ writeMat (

// Pointer to read from
132 ImageType∗ const itkmat ,

// Float to wr i t e to
134 f l o a t ∗hData ,

// Image band
136 i n t i ,

// Image width
138 unsigned xSize ,

// Image he ight
140 unsigned yS ize) ;

// Write f l o a t ∗ to . mat
142 void outMat (

// Output f l o a t
144 f l o a t ∗hData ,

// Output name
146 std : : s t r i n g outname ,

// Wavelengths
148 matvar_t ∗wavelengthsd ,

// Dimensions
150 matvar_t ∗HSId) ;

#end i f // HYPERSPEC_READ_H_DEFINED

includes/hyperspec.h

81

A.4 Image registration A Code

A.4 Image registration

1 /∗
∗ Copyright 2016 St i g Viste , Norwegian Un ive r s i ty o f Sc i ence and

Technology
3 ∗ Dis t r ibut ed under the MIT License .

∗ (See accompanying f i l e LICENSE or copy at
5 ∗ http :// opensource . org / l i c e n s e s /MIT

∗/
7

#i f n d e f REGISTRATION_H_DEFINED
9 #de f i n e REGISTRATION_H_DEFINED

11 // In s i gh t Too lk i t
#inc lude " itkImage . h"

13

// Image r e g i s t r a t i o n
15 #inc lude " itkImageRegistrat ionMethodv4 . h"

#inc lude " itkMattesMutualInformationImageToImageMetricv4 . h"
17 #inc lude " itkMeanSquaresImageToImageMetricv4 . h"

#inc lude " itkRegularStepGradientDescentOpt imizerv4 . h"
19

// Deformable image r e g i s t r a t i o n
21 #inc lude " itkBSpl ineTransform . h"

#inc lude " itkBSplineTransformParametersAdaptor . h"
23 #inc lude " itkCorre lat ionImageToImageMetr icv4 . h"

#inc lude " itkLBFGSOptimizerv4 . h"
25 #inc lude " itkMemoryProbesCol lectorBase . h"

#inc lude " i tkTimeProbesCol lectorBase . h"
27

// Demons
29 #inc lude " i tk ImageReg ion I t e ra to r . h"

#inc lude " i tkDemonsReg i s t ra t i onF i l t e r . h"
31 #inc lude " itkHistogramMatchingImageFi l ter . h"

#inc lude " itkWarpImageFi lter . h"
33

// F i l t e r i n g
35 #inc lude " i tkBinaryThresho ld ImageFi l t e r . h"

#inc lude " i tkMedianImageFi l ter . h"
37 #inc lude " i tkGradientMagnitudeRecurs iveGauss ianImageFi l ter . h"

39 // Transform
#inc lude " i tkAf f ineTrans fo rm . h"

41 #inc lude " i t kBSp l i n eT r an s f o rm In i t i a l i z e r . h"
#inc lude " i tkCenteredSimi lar i ty2DTrans form . h"

43 #inc lude " itkCenteredRigid2DTransform . h"
#inc lude " i t kCen t e r edTran s f o rmIn i t i a l i z e r . h"

45 #inc lude " itkCompositeTransform . h"
#inc lude " i tk Ident i tyTrans fo rm . h"

47 #inc lude " i tkTrans formToDisp lacementFie ldFi l t e r . h"
#inc lude " i tkTrans lat ionTrans form . h"

49

82

A.4 Image registration A Code

// Image I /O
51 #inc lude " i tkCas t ImageF i l t e r . h"

#inc lude " i tk ImageFi l eWr i te r . h"
53 #inc lude " itkImageMaskSpatia lObject . h"

#inc lude " i tkResampleImageFi l ter . h"
55

// Image ope ra t i on s
57 #inc lude " i t kRe s c a l e I n t en s i t y Imag eF i l t e r . h"

#inc lude " i t kSqua r edD i f f e r enc e ImageF i l t e r . h"
59 #inc lude " i t kSubt ra c t ImageF i l t e r . h"

61 // Introduce a c l a s s that w i l l keep track o f the i t e r a t i o n s
#inc lude "itkCommand . h"

63 c l a s s CommandIterationUpdate : pub l i c i t k : : Command {
pub l i c :

65 typede f CommandIterationUpdate S e l f ;
typede f i t k : : Command Supe r c l a s s ;

67 typede f i t k : : SmartPointer<Se l f > Pointer ;
itkNewMacro (S e l f) ;

69

protec ted :
71 CommandIterationUpdate () {} ;

73 pub l i c :
typede f i t k : : RegularStepGradientDescentOptimizerv4<double>

OptimizerType ;
75 typede f const OptimizerType ∗

OptimizerPointer ;

77 void Execute (i t k : : Object ∗ c a l l e r , const i t k : : EventObject & event)
ITK_OVERRIDE;

void Execute (const i t k : : Object ∗ object , const i t k : : EventObject &
event) ITK_OVERRIDE;

79 } ;

81 // I n s t a n t i a t i o n o f input images
const unsigned i n t Dimension = 2 ;

83 typede f f l o a t PixelType ;
typede f unsigned char CharPixelType ;

85 typede f unsigned shor t UintPixelType ;

87 typede f i t k : : Image< PixelType , Dimension > ImageType ;

typede f i t k : : Image< UintPixelType , Dimension >
UintImageType ;

89

83

A.4 Image registration A Code

// F i l t e r s
91 typede f i t k : : MedianImageFilter<

ImageType ,
93 ImageType >

MedianFilterType ;
typede f i t k : : GradientMagnitudeRecurs iveGauss ianImageFi lter<

95 ImageType ,
ImageType >

GradientFi l terType ;
97 typede f i t k : : Shr inkImageFi l ter<

ImageType ,
99 ImageType >

Shr inkFi l te rType ;

101 // Reg i s t r a t i on
typede f i t k : : RegularStepGradientDescentOptimizerv4<

103 double>
OptimizerType ;

typede f i t k : : LBFGSOptimizerv4
OptimizerBSplineType ;

105 typede f i t k : : MeanSquaresImageToImageMetricv4<
ImageType ,

107 ImageType > MetricType
;

109 // I n i t i a l i z a t i o n o f trans form types

111 // Trans la t i on
typede f i t k : : RegularStepGradientDescentOptimizerv4<

113 double >
TOptimizerType ;

typede f i t k : : Translat ionTransform<
115 double ,

Dimension >
TTransformType ;

117 typede f i t k : : MattesMutualInformationImageToImageMetricv4<
ImageType ,

119 ImageType >
TMetricType ;

typede f i t k : : ImageRegistrationMethodv4<
121 ImageType ,

ImageType ,
123 TTransformType >

TRegistrationType ;
typede f OptimizerType : : ParametersType

TParametersType ;
125 typede f i t k : : CompositeTransform<

double ,
127 Dimension >

CompositeTransformType ;

84

A.4 Image registration A Code

129 // Rigid
typede f i t k : : CenteredRigid2DTransform<

131 double >
TransformRigidType ;

typede f i t k : : Cent e r edTrans f o rmIn i t i a l i z e r <
133 TransformRigidType ,

ImageType ,
135 ImageType >

Trans f o rmRig id In i t i a l i z e rType ;
typede f i t k : : ImageRegistrationMethodv4<

137 ImageType ,
ImageType ,

139 TransformRigidType >
Regi s t rat ionRig idType ;

141 // S im i l a r i t y
typede f i t k : : CenteredSimilar ity2DTransform<

143 double >
TransformSimilar i tyType ;

typede f i t k : : Cent e r edTrans f o rmIn i t i a l i z e r <
145 TransformSimilar ityType ,

ImageType ,
147 ImageType >

Tran s f o rmS im i l a r i t y I n i t i a l i z e rType ;
typede f i t k : : ImageRegistrationMethodv4<

149 ImageType ,
ImageType ,

151 TransformSimilar i tyType >
Reg i s t r a t i onS im i l a r i t yType ;

153 // Af f i n e
typede f i t k : : Aff ineTransform<

155 double ,
Dimension >

TransformAffineType ;
157 typede f i t k : : Cent e r edTrans f o rmIn i t i a l i z e r <

TransformAffineType ,
159 ImageType ,

ImageType >
Trans f o rmAf f i n e In i t i a l i z e rType ;

161 typede f i t k : : ImageRegistrationMethodv4<
ImageType ,

163 ImageType ,
TransformAffineType >

Reg i s t ra t i onAf f ineType ;
165

85

A.4 Image registration A Code

// BSpline
167 const unsigned i n t Spl ineOrder = 3 ;

typede f double CoordinateRepType ;
169 typede f i t k : : BSplineTransform<

CoordinateRepType ,
171 Dimension ,

Spl ineOrder > TransformBSplineType ;
173 typede f i t k : : ImageRegistrationMethodv4<

ImageType ,
175 ImageType >

Registrat ionBSpl ineType ;
typede f i t k : : BSp l i n eTran s f o rmIn i t i a l i z e r <

177 TransformBSplineType ,
ImageType >

In i t i a l i z e rBSp l i n eType ;
179 typede f TransformBSplineType : : ParametersType ParametersBSplineType

;
typede f i t k : : BSplineTransformParametersAdaptor<

181 TransformBSplineType >
BSplineAdaptorType ;

typede f i t k : : Reg i s t rat ionParameterSca l e sFromPhys i ca lSh i f t<
183 MetricType > ScalesEst imatorType ;

185 // Demons
typede f i t k : : DemonsReg i s t rat ionFi l ter<

187 ImageType ,
ImageType ,

189 DisplacementFieldType >
DemonsFilterType ;

typede f i t k : : HistogramMatchingImageFilter<
191 ImageType ,

ImageType >
MatchingFilterType ;

193 typede f i t k : : WarpImageFilter<
ImageType ,

195 ImageType ,
DisplacementFieldType > WarperType

;
197 typede f i t k : : L inear Interpo late ImageFunct ion<

ImageType ,
199 double >

LinInterpo latorType ;

86

A.4 Image registration A Code

201 // Image cas t ing , because r e g i s t r a t i o n s only supports f l o a t
typede f i t k : : CastImageFi l ter<

203 UintImageType ,
ImageType > CastFi l te rFloatType ;

205 typede f i t k : : CastImageFi l ter<
ImageType ,

207 UintImageType > CastFi l terUintType ;
typede f i t k : : Re s ca l e In t en s i t y ImageF i l t e r <

209 UintImageType ,
UintImageType > RescalerUintType ;

211 typede f i t k : : Re s ca l e In t en s i t y ImageF i l t e r <
ImageType ,

213 ImageType > RescalerFloatType ;

215 // Set up outputs and wr i t e r s
typede f i t k : : Subtract ImageFi l te r<

217 ImageType ,
ImageType ,

219 ImageType > Di f f e r enc eF i l t e rType ;
typede f i t k : : ResampleImageFilter<

221 ImageType ,
ImageType > ResampleFilterType ;

223 typede f i t k : : ImageFi leWriter<
ImageType > WriterType

;
225 typede f i t k : : ImageFi leWriter<

UintImageType >
UintWriterType ;

227

// Set up opt imize r
229 typede f OptimizerType : : ScalesType OptimizerScalesType ;

231 // Generic handlers , f l o a t
Reg i s t rat ionRig idType : : Po inter r e g i s t r a t i onR i g i dCon ta i n e r (

233 ImageType∗ const f ixed ,
ImageType∗ const moving ,

235 OptimizerType : : Po inter opt imize r) ;
Reg i s t r a t i onS im i l a r i t yType : : Po inter r e g i s t r a t i o nS im i l a r i t yCon t a i n e r (

237 ImageType∗ const f ixed ,
ImageType∗ const moving ,

239 OptimizerType : : Po inter opt imize r) ;
Reg i s t ra t i onAf f ineType : : Po inter r e g i s t r a t i o nA f f i n eCon t a i n e r (

241 ImageType∗ const f ixed ,
ImageType∗ const moving ,

243 OptimizerType : : Po inter opt imize r) ;
Trans f o rmRig id In i t i a l i z e rType : : Po inter i n i t i a l i z e rR i g i dCon t a i n e r (

245 ImageType∗ const f ixed ,
ImageType∗ const moving ,

247 TransformRigidType : : Po inter trans form) ;

87

A.4 Image registration A Code

Tran s f o rmS im i l a r i t y I n i t i a l i z e rType : : Po inter
i n i t i a l i z e r S i m i l a r i t y C o n t a i n e r (

249 ImageType∗ const f ixed ,
ImageType∗ const moving ,

251 TransformSimilar i tyType : : Po inter trans form
) ;

Tran s f o rmAf f i n e In i t i a l i z e rType : : Po inter i n i t i a l i z e r A f f i n e C o n t a i n e r (
253 ImageType∗ const f ixed ,

ImageType∗ const moving ,
255 TransformAffineType : : Po inter trans form) ;

ResampleFilterType : : Po inter resampleRig idPo inter (
257 ImageType∗ const f ixed ,

ImageType∗ const moving ,
259 TransformRigidType : : Po inter trans form) ;

ResampleFilterType : : Po inter r e s amp l eS im i l a r i t yPo in t e r (
261 ImageType∗ const f ixed ,

ImageType∗ const moving ,
263 TransformSimilar i tyType : : Po inter trans form

) ;
ResampleFilterType : : Po inter r e sampleAf f inePo in te r (

265 ImageType∗ const f ixed ,
ImageType∗ const moving ,

267 TransformAffineType : : Po inter trans form) ;
ResampleFilterType : : Po inter resampleBSpl inePointer (

269 ImageType∗ const f ixed ,
ImageType∗ const moving ,

271 TransformBSplineType : : Po inter trans form) ;
D i f f e r en c eF i l t e rType : : Po inter d i f f F i l t e r (

273 ImageType∗ const moving ,
ResampleFilterType : : Po inter resample) ;

275

// Image f i l t e r i n g
277 ImageType : : Po inter g r a d i e n tF i l t e r (

ImageType∗ const f ixed ,
279 i n t sigma) ;

ImageType : : Po inter medianFi l t e r (
281 ImageType∗ const f ixed ,

i n t rad iu s) ;
283

88

A.4 Image registration A Code

// Image I /O
285 CastFi l te rFloatType : : Po inter castFloatImage (

UintImageType∗ const img) ;
287 CastFi l terUintType : : Po inter castUintImage (

ImageType∗ const img) ;
289

// Pr in t ing parameters
291 void f ina lR ig idParamete r s (TransformRigidType : : Po inter transform ,

OptimizerType : : Po inter opt imize r) ;
293 void f i n a l S im i l a r i t yPa r ame t e r s (TransformSimi lar ityType : : Po inter

transform ,
OptimizerType : : Po inter opt imize r) ;

295 void f i na lA f f i n ePa ramet e r s (TransformAffineType : : Po inter transform ,
OptimizerType : : Po inter opt imize r) ;

297

// Image r e g i s t r a t i o n s
299 #inc lude " hyperspec . h"

TransformRigidType : : Po inter r e g i s t r a t i o n 1 (
301 ImageType∗ const f ixed ,

ImageType∗ const moving ,
303 reg_params params) ;

TransformSimilar i tyType : : Po inter r e g i s t r a t i o n 2 (
305 ImageType∗ const f ixed ,

ImageType∗ const moving ,
307 reg_params params) ;

TransformAffineType : : Po inter r e g i s t r a t i o n 3 (
309 ImageType∗ const f ixed ,

ImageType∗ const moving ,
311 reg_params params) ;

TransformBSplineType : : Po inter r e g i s t r a t i o n 4 (
313 ImageType∗ const f ixed ,

ImageType∗ const moving ,
315 reg_params params) ;

CompositeTransformType : : Po inter t r a n s l a t i o n (
317 ImageType∗ const f ixed ,

ImageType∗ const moving ,
319 reg_params params) ;

321 #end i f // REGISTRATION_H_DEFINED

includes/registration.h

89

A.5 Source code A Code

A.5 Source code

Part of the source code is included here, and illustrates a typically pipeline structure
in ITK

1 i n t main (i n t argc , char ∗argv []) {

3 i f (argc < 2) {
c e r r << "Usage : " << argv [0] << " hyperspectral_image_path" <<
endl ;

5 e x i t (1) ;
}

7

char ∗ f i l ename = argv [1] ;
9

// F i l e format r e c o gn i t i o n and run c o r r e c t func t i on
11 i f (s t r s t r (f i l ename , "raw")) {

// F i l e i s . raw , s ee s r c / mult i spec . cpp
13 multispec_raw (argc , argv) ;

} e l s e i f (s t r s t r (f i l ename , "img")) {
15 // F i l e i s . img , s ee s r c / hyperspec . cpp

hyperspec_img (f i l ename) ;
17 } e l s e i f (s t r s t r (f i l ename , "mat")) {

// F i l e i s . mat , s ee s r c / hyperspec . cpp
19 hyperspec_mat (f i l ename) ;

} e l s e {
21 // Unknown format

c e r r << "Current ly supported f i l e formats : img , mat , raw" << endl ;
23 e x i t (1) ;

}
25 }

Listing 1: main()

1 s t r u c t reg_params params ;
conf_err_t reg_errcode = params_read (¶ms) ;

Listing 2: Read configuration

s t r u c t hyspex_header header ;
2 hyperspectra l_err_t hyp_errcode

= hyperspectral_read_header (f i l ename , &header) ;
4

// Read hype r spe c t r a l image
6 f l o a t ∗ img = new f l o a t [header . samples ∗header . l i n e s ∗header . bands] () ;

hyp_errcode = hyperspectral_read_image (f i l ename , &header , img) ;

Listing 3: Read .img to float

90

A.5 Source code A Code

1 // Read mat po in t e r
mat_t ∗matfp ;

3

// Open f i l e
5 matfp = Mat_Open(f i l ename ,MAT_ACC_RDONLY) ;

i f (NULL == matfp) {
7 f p r i n t f (s tde r r , "Error opening MAT f i l e %s \n" , f i l ename) ;

e x i t (1) ;
9 }

11 // Read mat matrix
matvar_t ∗HSId = Mat_VarRead(matfp , "HSI") ;

13 // Read to f l o a t array
f l o a t ∗hData = sta t i c_cas t <f l o a t ∗>(HSId−>data) ;

Listing 4: Read .mat to float

hyperspectra l_write_header (params . reg_name . c_str () , header . bands ,
2 header . samples , header . l i n e s , header . wlens) ;

hyperspectral_write_image (params . reg_name . c_str () , header . bands ,
4 header . samples , header . l i n e s , out) ;

Listing 5: Write .img to file

// Prepare
2 s i ze_t dim3d [3] = { HSId−>dims [0] , HSId−>dims [1] , HSId−>dims [2] } ;

outname += " . mat" ;
4

mat_t ∗matout ;
6

// Write
8 matout = Mat_CreateVer (outname . c_str () ,NULL,MAT_FT_MAT5) ;

Mat_VarWrite (matout , wavelengthsd , MAT_COMPRESSION_ZLIB) ;
10

matvar_t ∗HSIout = Mat_VarCreate ("HSI" , MAT_C_SINGLE, MAT_T_SINGLE,
HSId−>rank , dim3d , s ta t i c_cas t <void∗>(hData) , 0) ;

12 Mat_VarWrite (matout , HSIout , MAT_COMPRESSION_ZLIB) ;

14 Mat_VarFree (wavelengthsd) ;
Mat_VarFree (HSIout) ;

16 Mat_VarFree (HSId) ;
Mat_Close (matout) ;

Listing 6: Write .mat to file

91

A.5 Source code A Code

1 OptimizerType : : Po inter opt imize r = OptimizerType : : New() ;
MetricType : : Po inter metr ic = MetricType : : New() ;

3 Registrat ionType : : Po inter r e g i s t r a t i o n = Registrat ionType : : New()
;
TransformType : : Po inter trans form = TransformType : : New() ;

5 Trans f o rmIn i t i a l i z e rType : : Po inter
i n i t i a l i z e r = Trans f o rmIn i t i a l i z e rType : : New() ;

7

r e g i s t r a t i o n −>SetMetr ic (metr ic) ;
9 r e g i s t r a t i o n −>SetOptimizer (opt imize r) ;

r e g i s t r a t i o n −>SetFixedImage (f i x ed) ;
11 r e g i s t r a t i o n −>SetMovingImage (moving) ;

13 i n i t i a l i z e r −>SetTransform (trans form) ;
i n i t i a l i z e r −>SetFixedImage (f i x ed) ;

15 i n i t i a l i z e r −>SetMovingImage (moving) ;

17 // S e l e c t c en te r o f mass mode
i n i t i a l i z e r −>MomentsOn() ;

19

// Compute the cente r and t r a n s l a t i o n
21 i n i t i a l i z e r −>In i t i a l i z eT r an s f o rm () ;

23 transform−>SetAngle (params . ang le) ;
r e g i s t r a t i o n −>Set In i t i a lT ran s f o rm (trans form) ;

25 r e g i s t r a t i o n −>InPlaceOn () ;

Listing 7: Initialize registration

92

A.5 Source code A Code

1 OptimizerScalesType op t im i z e rS ca l e s (transform−>
GetNumberOfParameters ()) ;

3 op t im i z e rS ca l e s [0] = 1 . 0 ;
op t im i z e rS ca l e s [1] = params . t r a n s l a t i o nS c a l e ;

5 op t im i z e rS ca l e s [2] = params . t r a n s l a t i o nS c a l e ;
op t im i z e rS ca l e s [3] = params . t r a n s l a t i o nS c a l e ;

7 op t im i z e rS ca l e s [4] = params . t r a n s l a t i o nS c a l e ;

9 opt imizer−>SetSca l e s (op t im i z e rS ca l e s) ;
opt imizer−>SetLearningRate (params . l r a t e) ;

11 opt imizer−>SetMinimumStepLength (params . s l eng th) ;
opt imizer−>SetNumberOfIterat ions (params . n i t e r) ;

13

// Create the command obse rver and r e g i s t e r i t with the opt imize r
15 CommandIterationUpdate : : Po inter obse rver = CommandIterationUpdate : :

New() ;
opt imizer−>AddObserver (i t k : : I t e ra t i onEvent () , obse rve r) ;

17

// Optional : Shr ink ing and/or smoothing , s e t to 0
19 Regis t rat ionRig idType : : ShrinkFactorsArrayType shr inkFactor sPerLeve l ;

sh r inkFactor sPerLeve l . S e tS i z e (1) ;
21 shr inkFactor sPerLeve l [0] = 1 ;

23 Regis t rat ionRig idType : : SmoothingSigmasArrayType
smoothingSigmasPerLevel ;

smoothingSigmasPerLevel . S e tS i z e (1) ;
25 smoothingSigmasPerLevel [0] = 0 ;

27 r e g i s t r a t i o n −>SetNumberOfLevels (params . numberOfLevels) ;
r e g i s t r a t i o n −>SetSmoothingSigmasPerLevel (smoothingSigmasPerLevel) ;

29 r e g i s t r a t i o n −>SetShr inkFactorsPerLeve l (shr inkFactor sPerLeve l) ;

Listing 8: Passing parameters to the optimizer

1 void CommandIterationUpdate : : Execute (i t k : : Object ∗ c a l l e r , const i t k : :
EventObject & event) {

Execute ((const i t k : : Object ∗) c a l l e r , event) ;
3 }

5 void CommandIterationUpdate : : Execute (const i t k : : Object ∗ object , const
i t k : : EventObject & event) {

Opt imizerPointer opt imize r = sta t i c_cas t < OptimizerPointer >(ob j e c t
) ;

7 i f (! i t k : : I t e ra t i onEvent () . CheckEvent (&event)) {
re turn ;

9 }
std : : cout << opt imizer−>GetCurrent I t e ra t ion () << " " ;

11 std : : cout << opt imizer−>GetValue () << " " ;
std : : cout << opt imizer−>GetCurrentPos it ion () << std : : endl ;

13 }
}

Listing 9: CommandIterationUpdate

93

A.5 Source code A Code

CastFi l te rFloatType : : Po inter c a s t F i l t e r = CastFi l te rFloatType : : New()
;

2 c a s tF i l t e r −>SetInput (image) ;
c a s tF i l t e r −>Update () ;

Listing 10: Cast unsigned short to float

1 t ry {
r e g i s t r a t i o n −>Update () ;

3 cout << "Optimizer stop cond i t i on : "
<< r e g i s t r a t i o n −>GetOptimizer ()−>

GetStopCondit ionDescr ipt ion ()
5 << endl ;

}
7 catch (i t k : : ExceptionObject & e r r) {

c e r r << "ExceptionObject caught ! " << endl ;
9 c e r r << er r << endl ;

e x i t (1) ;
11 }

Listing 11: Registration update

1 TransformType : : ParametersType
f ina lParamete r s = transform−>GetParameters () ;

3

const double f i n a lAng l e = f ina lParamete r s [0] ;
5 const double f ina lRotat ionCenterX = f ina lParamete r s [1] ;

const double f ina lRotat ionCenterY = f ina lParamete r s [2] ;
7 const double f i na lTran s l a t i onX = f ina lParamete r s [3] ;

const double f i na lTran s l a t i onY = f ina lParamete r s [4] ;
9

const unsigned i n t numberOfIterat ions = opt imizer−>
GetCurrent I te rat ion () ;

11 const double bestValue = opt imizer−>GetValue () ;

Listing 12: Get parameters from transform and optimizer

1 ResampleFilterType : : Po inter resample = ResampleFilterType : : New() ;
resample−>SetTransform (trans form) ;

3 resample−>SetInput (moving) ;
resample−>SetS i z e (f ixed−>GetLargestPoss ib leReg ion () . GetSize ()) ;

5 resample−>SetOutputOrigin (f ixed−>GetOrigin ()) ;
resample−>SetOutputSpacing (f ixed−>GetSpacing ()) ;

7 resample−>SetOutputDirect ion (f ixed−>GetDirect ion ()) ;
resample−>SetDefau l tP ixe lVa lue (0 .0) ;

9 resample−>Update () ;

Listing 13: Apply transform to moving image

94

A.5 Source code A Code

1 // Open images
FILE ∗ f i d = fopen (argv , " rb") ;

3 unsigned shor t ∗ in_data = new unsigned shor t [x s i z e ∗ y s i z e] () ;
i n t read_bytes = f r ead (in_data , s i z e o f (uint16_t) , x s i z e ∗ ys i z e , f i d) ;

5

// One p i x e l at a time
7 f o r (i n t j =0; j<y s i z e ; j++){

f o r (i n t k=0; k<x s i z e ; k++){
9 UintImageType : : IndexType p ixe l Index ;

p ixe l Index [0] = k ;
11 p ixe l Index [1] = j ;

itkraw−>SetP ixe l (p ixe l Index , in_data [x s i z e ∗ j + k]) ;
13 }

}
15

f c l o s e (f i d) ;
17 de l e t e [] in_data ;

r e turn itkraw ;
19 }

Listing 14: Read raw files

1 const TransformAffineType : : ParametersType
f ina lParamete r s = transform−>GetParameters () ;

3

const double f ina lRotat ionCenterX = transform−>GetCenter () [0] ;
5 const double f ina lRotat ionCenterY = transform−>GetCenter () [1] ;

const double f i na lTran s l a t i onX = f ina lParamete r s [4] ;
7 const double f i na lTran s l a t i onY = f ina lParamete r s [5] ;

9 const unsigned i n t numberOfIterat ions = opt imizer−>
GetCurrent I te rat ion () ;

const double bestValue = opt imizer−>GetValue () ;
11

// Compute r o t a t i on ang le and s c a l i n g
13 vnl_matrix<double> p (2 , 2) ;

p [0] [0] = (double) f i na lParamete r s [0] ;
15 p [0] [1] = (double) f i na lParamete r s [1] ;

p [1] [0] = (double) f i na lParamete r s [2] ;
17 p [1] [1] = (double) f i na lParamete r s [3] ;

vnl_svd<double> svd (p) ;
19 vnl_matrix<double> r (2 , 2) ;

r = svd .U() ∗ vnl_transpose (svd .V()) ;
21 double ang le = std : : a s in (r [1] [0]) ;

Listing 15: Parameters for itk::AffineTransform

95

A.5 Source code A Code

1 unsigned i n t numberOfGridNodesInOneDimension = 8 ;
TransformBSplineType : : MeshSizeType meshSize ;

3 meshSize . F i l l (numberOfGridNodesInOneDimension − Spl ineOrder) ;
t r a n s f o rm I n i t i a l i z e r −>SetTransformDomainMeshSize (meshSize) ;

5

// Sca l e e s t imator
7 ScalesEst imatorType : : Po inter s ca l e sEs t imato r = ScalesEst imatorType : :

New() ;
s ca l e sEs t imator−>SetMetr ic (metr ic) ;

9 s ca l e sEs t imator−>SetTransformForward (t rue) ;
s ca l e sEs t imator−>SetSmal lParameterVar iat ion (1 .0) ;

11

// Set Optimizer
13 opt imizer−>SetGradientConvergenceTolerance (params . s l eng th) ;

opt imizer−>SetLineSearchAccuracy (1 .2) ;
15 opt imizer−>SetDefaultStepLength (1 .5) ;

opt imizer−>TraceOn () ;
17 opt imizer−>SetMaximumNumberOfFunctionEvaluations (params . n i t e r) ;

opt imizer−>SetSca l e sEst imator (s ca l e sEs t imato r) ;
19

// Add time and memory probes
21 i t k : : TimeProbesCol lectorBase chronometer ;

i t k : : MemoryProbesCollectorBase memorymeter ;
23

cout << " Sta r t i ng Reg i s t r a t i on " << endl ;
25

t ry
27 {

memorymeter . S ta r t (" Reg i s t r a t i on ") ;
29 chronometer . S ta r t (" Reg i s t r a t i on ") ;

31 r e g i s t r a t i o n −>Update () ;

33 chronometer . Stop (" Reg i s t r a t i on ") ;
memorymeter . Stop (" Reg i s t r a t i on ") ;

35 }

Listing 16: Additional parameters for itk::BSplineTransform

96

A.5 Source code A Code

1 // Report the time and memory taken by the r e g i s t r a t i o n
chronometer . Report (cout) ;

3 memorymeter . Report (cout) ;

5 OptimizerType : : ParametersType f ina lParamete r s = transform−>
GetParameters () ;

7 cout << "Last Transform Parameters " << endl ;
cout << f ina lParamete r s << endl ;

Listing 17: Retrieving parameters for itk::BSplineTransform

TransformSimilar i tyType : : ParametersType f ina lParamete r s =
transform−>GetParameters () ;

2

const double f i n a l S c a l e = f ina lParamete r s [0] ;
4 const double f i n a lAng l e = f ina lParamete r s [1] ;

const double f ina lRotat ionCenterX = f ina lParamete r s [2] ;
6 const double f ina lRotat ionCenterY = f ina lParamete r s [3] ;

const double f i na lTran s l a t i onX = f ina lParamete r s [4] ;
8 const double f i na lTran s l a t i onY = f ina lParamete r s [5] ;

10 const unsigned i n t numberOfIterat ions = opt imizer−>
GetCurrent I te rat ion () ;
const double bestValue = opt imizer−>GetValue () ;

12

// Pr int r e s u l t s
14 const double f i na lAng l e InDegree s = f i na lAng l e ∗ 180 .0 / i t k : : Math

: : p i ;

16 std : : cout << "Result =" << std : : endl ;
s td : : cout << " Sca l e = " << f i n a l S c a l e << std : :
endl ;

18 std : : cout << "Angle (rad ians) " << f ina lAng l e << std : : endl ;
s td : : cout << "Angle (degree s) " << f ina lAng l e InDegree s << std : :
endl ;

20 std : : cout << "Center X = " << f ina lRotat ionCenterX << std : :
endl ;
s td : : cout << "Center Y = " << f ina lRotat ionCenterY << std : :
endl ;

22 std : : cout << " Trans la t i on X = " << f ina lTrans l a t i onX << std : :
endl ;
s td : : cout << " Trans la t i on Y = " << f ina lTrans l a t i onY << std : :
endl ;

24 std : : cout << " I t e r a t i o n s = " << numberOfIterat ions << std : :
endl ;
s td : : cout << "Metric va lue = " << bestValue << std : :
endl ;

Listing 18: Retrieving parameters for itk::CenteredSimilarity2DTransform

97

A.5 Source code A Code

1 i f (params . metr ic == 1) {
TMetricType : : Po inter t ransMetr i c =

3 TMetricType : : New() ;
t r an sReg i s t r a t i on−>SetMetr ic (t ransMetr i c) ;

5 transMetr ic−>SetNumberOfHistogramBins (24) ;
} e l s e {

7 MetricType : : Po inter t ransMetr i c =
MetricType : : New() ;

9 t r an sReg i s t r a t i on−>SetMetr ic (t ransMetr i c) ;
}

Listing 19: Choose metric for translation transform

transOptimizer−>SetRe laxat ionFactor (0 . 1) ;

Listing 20: Relaxation factor passed to optimizer

1 // Matcher
MatchingFilterType : : Po inter matcher = MatchingFilterType : : New() ;

3 matcher−>SetInput (moving) ;
matcher−>SetReferenceImage (f i x ed) ;

5 matcher−>SetNumberOfHistogramLevels (2048) ;
matcher−>SetNumberOfMatchPoints (9) ;

7 matcher−>ThresholdAtMeanIntensityOn () ;

9 // F i l t e r
DemonsFilterType : : Po inter f i l t e r = DemonsFilterType : : New() ;

11 CommandIterationUpdate2 : : Po inter obse rver = CommandIterationUpdate2 : :
New() ;

f i l t e r −>AddObserver (i t k : : I t e ra t i onEvent () , obse rve r) ;
13 f i l t e r −>SetFixedImage (f i x ed) ;

f i l t e r −>SetMovingImage (matcher−>GetOutput ()) ;
15 f i l t e r −>SetNumberOfIterat ions (params . n i t e r) ;

f i l t e r −>SetStandardDeviat ions (1 . 0) ;
17 f i l t e r −>Update () ;

19 // Warper
WarperType : : Po inter warper = WarperType : : New() ;

21 LinInterpo latorType : : Po inter i n t e r p o l a t o r = LinInterpo latorType : : New()
;

23 warper−>SetInput (moving) ;
warper−>Se t I n t e r p o l a t o r (i n t e r p o l a t o r) ;

25 warper−>SetOutputSpacing (f ixed−>GetSpacing ()) ;
warper−>SetOutputOrigin (f ixed−>GetOrigin ()) ;

27 warper−>SetOutputDirect ion (f ixed−>GetDirect ion ()) ;
warper−>SetDisp lacementFie ld (f i l t e r −>GetOutput ()) ;

Listing 21: Demons transform

98

A.5 Source code A Code

template <typename TRegistrat ion>
2 c l a s s Registrat ionInterfaceCommand : pub l i c i t k : : Command{

pub l i c :
4 typede f Registrat ionInterfaceCommand S e l f ;

typede f i t k : : Command Supe r c l a s s ;
6 typede f i t k : : SmartPointer<Se l f > Pointer ;

itkNewMacro (S e l f) ;
8

protec ted :
10 Registrat ionInterfaceCommand () {} ;

12 pub l i c :
typede f TReg i s t rat ion Regis trat ionType ;

14

void Execute (i t k : : Object ∗ object , const i t k : : EventObject & event
) ITK_OVERRIDE{

16 Execute ((const i t k : : Object ∗) ob j e c t , event) ;
}

18

void Execute (const i t k : : Object ∗ object , const i t k : : EventObject &
event) ITK_OVERRIDE{

20 i f (! (i t k : : Mu l t iReso lu t i on I t e ra t i onEvent () . CheckEvent (&event
))) {

re turn ;
22 }

24 cout << "\nObserving from c l a s s " << object−>GetNameOfClass () ;
i f (! ob ject−>GetObjectName () . empty ()) {

26 cout << " \"" << object−>GetObjectName () << "\"" << endl ;
}

28

const Regist rat ionType ∗ r e g i s t r a t i o n = sta t i c_cas t <const
Reg is trat ionType ∗>(ob j e c t) ;

30 unsigned i n t cur r entLeve l = r e g i s t r a t i o n −>GetCurrentLevel () ;
typename Regist rat ionType : :

ShrinkFactorsPerDimensionContainerType shr inkFacto r s =
32 r e g i s t r a t i o n −>

GetShrinkFactorsPerDimension (cur r entLeve l) ;
typename Regist rat ionType : : SmoothingSigmasArrayType

smoothingSigmas =
34

r e g i s t r a t i o n −>GetSmoothingSigmasPerLevel () ;

36 cout << "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" << endl ;
cout << " Current multi−r e s o l u t i o n l e v e l = " << cur rentLeve l

<< endl ;
38 cout << " shr ink f a c t o r = " << shr inkFacto r s << endl ;

cout << " smoothing sigma = " << smoothingSigmas [
cu r r entLeve l] << endl ;

40 cout << endl ;
}

42 } ;

Listing 22: Iteration tracking for translation transform

99

B Inheritance diagrams

B Inheritance diagrams

The diagrams was generated using Doxygen[24].

B.1 Includes

in
cl
ud
es
/r
eg
is
tr
at
io
n.
h

in
cl
ud
es
/h
yp
er
sp
ec
.h sr
c/
hy
pe
rs
pe
c.
cp
p

sr
c/
m
ul
tis
pe
c.
cp
p

in
cl
ud
es
/m
ul
tis
pe
c.
h

sr
c/
af
fin
e.
cp
p

sr
c/
bs
pl
in
e.
cp
p

sr
c/
re
gi
st
ra
tio
n.
cp
p

sr
c/
rig
id
.c
pp

sr
c/
si
m
ila
rit
y.
cp
p

sr
c/
tr
an
sl
at
io
n.
cp
p

m
ai
n.
cp
p

100

B.2 hyperspec_img functions B Inheritance diagrams

B.2 hyperspec_img functions

hyperspec_img

params_read

hyperspectral_read
_header

hyperspectral_read
_image

imageContainer

readITK

medianFilter

gradientFilter

writeITK

registration1

resampleRigidPointer

diffFilter

registration2

resampleSimilarityPointer

registration3

resampleAffinePointer

registration4

resampleBSplinePointer

hyperspectral_write
_header

hyperspectral_write
_image

getParam

translation

getBasename

getValue

getWavelengths

getMatch

registrationRigidContainer

initializerRigidContainer

finalRigidParameters

registrationSimilarityContainer

initializerSimilarityContainer

finalSimilarityParameters

registrationAffineContainer

initializerAffineContainer

finalAffineParameters

101

B.3 hyperspec_mat functions B Inheritance diagrams

B.3 hyperspec_mat functions

hyperspec_mat

params_read

imageMatContainer

readMat

medianFilter

gradientFilter

writeMat

registration1

resampleRigidPointer

diffFilter

registration2

resampleSimilarityPointer

registration3

resampleAffinePointer

registration4

resampleBSplinePointer

outMat

getParam

translation

registrationRigidContainer

initializerRigidContainer

finalRigidParameters

registrationSimilarityContainer

initializerSimilarityContainer

finalSimilarityParameters

registrationAffineContainer

initializerAffineContainer

finalAffineParameters

102

B.4 multispec_raw functions B Inheritance diagrams

B.4 multispec_raw functions

multispec_raw

params_read

rawContainer

imgContainer

readRaw

writeRaw

castFloatImage

medianFilter

gradientFilter

registration1

resampleRigidPointer

diffFilter

registration2

resampleSimilarityPointer

registration3

resampleAffinePointer

registration4

resampleBSplinePointer

castUintImage

getParam

translation

registrationRigidContainer

initializerRigidContainer

finalRigidParameters

registrationSimilarityContainer

initializerSimilarityContainer

finalSimilarityParameters

registrationAffineContainer

initializerAffineContainer

finalAffineParameters

103

D Software

C Hardware

Laptop: Asus Zenbook UX302LG

Memory: 8GB DDR3L 1300MHz
CPU: Intel i7-4500U 1.8GHz dual core

Server: Unbranded

Memory: 6GB DDR3 2133MHz
CPU: Intel i7-930 2.8GHz quad core

Virtual Machine: Xenserver 7

Memory: 32GB DDR2 Sun Fire X4600 M2
CPU: AMD Opteron 8356 2.3GHz 30 core

Table C.1: Hardware

D Software

Arch Linux: Unix based operating system, 64-bits.[5]
CMake: Open source, cross platform, build process

manager.[20]
GCC: Open source compiler system.[32]
Doxygen: Tool for generation of documentation[24]
Hyview: Hyperspectral image viewer, available

from NTNU IET.[44]
ImageJ: Java-based image processing applica-

tion.[46]
ImageMagick: Image manipulation and conversion pro-

gram[47]
Matlab: Programming language developed by

Mathworks[66]
Vim: Vi IMproved, text editor for Unix sys-

tems.[104]
yEd: Open source, cross platform, graph edi-

tor.[107]

Table D.1: Software

104

	Introduction
	Motivation
	Previous work
	Objectives
	Contributions
	Method

	Theory and background
	Image formats
	Band Interleaved by Pixel
	Band Sequential
	Band Interleaved by Line
	ENVI Standard
	RAW

	Image registration
	Concepts
	Process
	Framework
	Metrics
	Transforms

	Software
	DRAMMS
	ITK
	NiftyReg
	OpenCV

	Insight Toolkit
	Definitions
	Filters
	Interpolators
	Metrics
	Optimizers
	Transforms

	Validation

	Materials and methods
	Image files
	Hyperspectral images
	Multispectral images

	Choice of registration software
	Example methods
	Preliminary testing
	Implementation
	Transforms
	Affine
	BSpline
	Demons
	Rigid
	Similarity
	Translation

	Results and discussion
	Preliminary tests
	Transformation methods
	Translation
	Affine
	BSpline
	Demons
	Rigid
	Similarity

	Summary

	Conclusion
	Future work

	Appendix Code
	Read image
	Multispectral images
	Hyperspectral images
	Image registration
	Source code

	Appendix Inheritance diagrams
	Includes
	hyperspec_img functions
	hyperspec_mat functions
	multispec_raw functions

	Appendix Hardware
	Appendix Software

