
Cellular Programming on Machines with
Local Communication Networks

Torkel Berli

Master i datateknologi

Hovedveileder: Gunnar Tufte, IDI

Institutt for datateknologi og informatikk

Innlevert: februar 2017

Norges teknisk-naturvitenskapelige universitet



 



Abstract

Efficient parallel computing is still a difficult goal to achieve, despite being of research
interest for more than half a century. For the past decade, however, the topic has become
increasingly more relevant as a result of emerging obstacles to improvements in the com-
plex von Neumann-based, single-CPU computer. Using many processors to cooperate on
a single task concurrently promises benefits to energy efficiency and computational per-
formance. Programming such many-core systems, however, is challenging.

The primary obstacle for efficiently utilizing a parallel processor is the complexity of pro-
gramming such parallel machines. It has been suggested that humans lack the ability to
manually solve this problem, and that it should be automated. One possibility is to use
methods inspired by artificial life research. By way of self-organization and an evolution-
ary search, efficient behavior in a parallel machine may emerge. A prerequisite for such a
process is a framework of high evolutionary adaptability in which to structure the program.

Evolutionary processes have previously been used with cellular automata to let many sim-
ple processing cells cooperate to solve a problem. In this project, we apply principles
from cellular automata research to program a locally connected, homogeneous multi-core
processor. We propose a framework inspired by both cellular programming and genetic
programming. The framework uses an evolutionary process to automatically structure
software among the processor cores. With three example problems, we demonstrate the
framework’s ability to develop and spread useful behavior among the processor cores over
several generations.

The evolutionary process evaluates correctness of behavior using local information only,
and this is the main challenge for the framework. The problem of writing local fitness
functions that produce a desired behavior on a global level is difficult and requires more
work. While the framework shows desired behavior over evolutionary processes, it is
difficult to conclude its usefulness before further progress in problem representation and
fitness evaluation is made.

i



ii



Sammendrag

Effektiv parallell beregning er fortsatt vanskelig å oppnå, til tross for at forskningsfeltet
er mer enn 50 år gammelt. Det siste tiåret, derimot, har feltet blitt mer relevant igjen på
grunn av en redusert evne til å fortsette forbedringer i kompliserte, von Neuman-baserte
enkjærners prosessorer. Ved å la mange prosessorkjærner samarbeide på en og samme
oppgave, er det sannsynlig at vi kan œke både energieffektivitet og beregningshastiget.
Men å programmere slike parallelle systemer er en utfordring.

Hovedutfordringen i å kunne effektivt utnytte evnen til en parallell prosessor er å overkomme
kompleksiteten i programmene for slike parallelle maskiner. Det har vært foreslått at men-
nesker kanskje ikke evner å løse denne utfordringen manuelt, og at programmeringen må
automatiseres. En mulighet er å benytte metoder inspirert av forskning innen kunstig liv.
Ved hjelp av selv-organisering og evolusjonære metoder, så kan program som evner å ut-
nytte parallellitet på en effektiv måte oppstå. En forutsetning for en slik prosess er et godt
rammeverk som legger til rette for evolusjonære prosesser.

Evolusjonære prosesser har tidligere vært brukt sammen med cellulære automater til å
få mange enkle enheter til å samarbeide for å løse problemer. I dette prosjektet bruker
vi prinsipper lært fra forskning på cellulære automater til å programmere lokalt koblede
mangekjærners prosessorer. Vi presenterer et rammeverk inspirert av cellulær programm-
mering og genetisk programmeringsmetoder. Dette rammeverket bruker en evolusjonær
metode for å automatisk generere struktur i programvare for mangekjærners prosessorer.
Gjennom tre forskjellige problemer demonstrerer vi rammeverkets evne til å utvikle og
spre nyttig oppførsel mellom prosessorkjærnene over mange generasjoner.

Den evolusjonære metoden evaluerer om oppførsel er riktig kun basert på lokal infor-
masjon. Det er hovedutfordringen med dette rammeverket. Problemet ligger i å utvikle
lokale evalueringsmetoder som forårsaker ønsket oppførsel på et globalt nivå. Det kreves
videre forskningsarbeid for å nærme seg en løsning på denne utfordringen. Selv om ram-
meverket viser ønsket oppførsel ved bruk av evolusjonære metoder, så er det vanskelig å
konkludere i hvilken grad rammeverket er godt før forskningen har gjort fremskritt innen
lokale evalueringsmetoder og representasjon av problemfunkjsoner.

iii



iv



Preface

This Master’s Thesis is the final deliverable of the Computer Science program at the De-
partment of Informatics, Norwegian University of Science and Technology. The research
was conducted by Torkel Berli over the last semester of the study program, and was com-
pleted in February 2017. Gunnar Tufte at the Department of Informatics, NTNU served as
supervisor.

Acknowledgements

I would like to thank Gunnar Tufte for being my supervisor for this project. Gunnar has
helped me with forming the goals and direction of this research project, and has helped
me navigate intertwined and at times confusing concepts of artificial life and computer
architecture. I have benefited from his experience and knowledge for this project as well
as previous projects at NTNU.

I would also like to thank Kristian Drsshaug at the Faculty of Information Technology
and Electrical Engineering, NTNU. His support and counsel, and administrative aid, was
important to me for my final year at NTNU. I was always welcome to have a chat if I
needed to, and for that I am grateful.

Lastly, my family deserves mentioning, for they have been critical to my success for the
duration of my studies, particularly for this final project. Mom and Dad have looked
forward when I have looked back, looked up when I have looked down. I am grateful for
their unrelenting support. I am thankful also for the time spent with Bjørnar at the soccer
pitch, at Lerkendal, and at the dinner table.

v



vi



Table of Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Theory 5
2.1 Modern Parallel Processors . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Homogeneous Multi-core Processors . . . . . . . . . . . . . . . 6
2.1.2 Heterogeneous Multi-core Processors . . . . . . . . . . . . . . . 7
2.1.3 Utilizing Multi-core Processors Efficiently . . . . . . . . . . . . 7

2.2 Artificial Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Bio-inspired Computation . . . . . . . . . . . . . . . . . . . . . 12

2.3 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Cellular Computing . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 The Cellular Automaton Model . . . . . . . . . . . . . . . . . . 13
2.3.3 Signals as Emergent Behavior in CA . . . . . . . . . . . . . . . . 15

2.4 Development of Structure in CA . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Uniform vs Non-uniform Rulesets . . . . . . . . . . . . . . . . . 16
2.4.2 Artificial Development . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Cellular Programming . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Cellular Programming Example: Majority Problem . . . . . . . . 18

3 Hardware Platform: Epiphany-III 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



3.2 Epiphany Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 eMesh Network-On-Chip . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 eCore CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The Parallella Mini Computer . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Cellular Programming with Tree Structures 27
4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 CPTS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Genetic Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Evolutionary Operations and Fitness . . . . . . . . . . . . . . . . 31
4.2.3 Continuous Input Configuration . . . . . . . . . . . . . . . . . . 31
4.2.4 Single-phase Input Configuration . . . . . . . . . . . . . . . . . 33
4.2.5 How to Read the Graphs . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Continuous Input: Unchanged Data Stream . . . . . . . . . . . . . . . . 35
4.4 Continuous Input: Inverted Data Stream . . . . . . . . . . . . . . . . . . 36
4.5 Single-phase Input: Maximum Value . . . . . . . . . . . . . . . . . . . . 41

5 Implementation 45
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Host program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Maximum Value Problem on Epiphany . . . . . . . . . . . . . . . . . . . 47

6 Discussion 49
6.1 Structuring a program with the CPTS framework . . . . . . . . . . . . . 50

6.1.1 Unchanged Data Stream Problem . . . . . . . . . . . . . . . . . 50
6.1.2 Inverted Data Stream Problem . . . . . . . . . . . . . . . . . . . 50
6.1.3 Maximum Value Problem . . . . . . . . . . . . . . . . . . . . . 51

6.2 Challenges of the CPTS Framework . . . . . . . . . . . . . . . . . . . . 51
6.2.1 Lack of Global Information . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Uniform Fitness Function with Non-uniform Rules . . . . . . . . 52

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.1 Problem Representation . . . . . . . . . . . . . . . . . . . . . . 52
6.3.2 Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

viii



List of Tables

2.1 An example 3-neighbor transition function of a one dimensional CA. . . . 14

3.1 Epiphany Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Set of inputs for decoding genes of leaf nodes. . . . . . . . . . . . . . . . 30
4.2 Set of functions for decoding genes of internal nodes. . . . . . . . . . . . 30
4.3 List of methods for producing the next generation of genes, based on the

number of better-performing neighbors. . . . . . . . . . . . . . . . . . . 31
4.4 Example of correct behavior for a cell over three time steps, for the ”in-

verted data stream” problem. . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



x



List of Figures

2.1 Multi-core Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Multi-core MIMD system. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Multi-core SIMD system. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Genetic algorithm procedure. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Sexual recombination and mutation. . . . . . . . . . . . . . . . . . . . . 11
2.6 Example mathematical tree structure, a representation used in genetic pro-

gramming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Two-dimensional 4x4 cellular automata showing the von Neumann neigh-

borhood of the center cell. . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Emergent behavior in cellular automata. (Reprinted from [13].) . . . . . . 16
2.9 Diagram showing the relationship between development and evolution.

(Reimagined from [24], Fig. 5). . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Artificial development of structure in a cellular automata. . . . . . . . . . 17
2.11 Majority problem solved using cellular programming. (Reprinted from [23].) 19

3.1 Overview of the Epiphany Architecture. (Reprinted from [2].) . . . . . . 23
3.2 eMesh network components. (Reprinted from [2].) . . . . . . . . . . . . 24
3.3 eCore processor core components. (Reprinted from [2].) . . . . . . . . . 25
3.4 The Parallella single board computer. . . . . . . . . . . . . . . . . . . . 26

4.1 Evolutionary operations may take place locally within each cell. . . . . . 28
4.2 Example tree structure of a cell’s mathematical behavior, decoded from a

genestring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Flow of data for the continuous input configuration. . . . . . . . . . . . . 32
4.4 Flow of data for the single-phase input configuration. . . . . . . . . . . . 33
4.5 Interpretation of graphs for dominant genes. . . . . . . . . . . . . . . . . 34
4.6 Average cell fitness for the ”unchanged data stream” problem. . . . . . . 36
4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Behavioral tree of the dominant genotype for the ”unchanged data stream”

problem, generations 1-40. . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



4.9 Development of dominant genes for the ”unchanged data stream” problem. 37
4.10 Average cell fitness for the ”inverted data stream” problem. . . . . . . . . 39
4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.12 Behavioral tree of the dominant genotype for the ”inverted data stream”

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.13 Development of dominant genes for the ”inverted data stream” problem,

generations 90-130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.14 Critical section on the ”inverted data stream” problem. . . . . . . . . . . 41
4.15 Average cell fitness for the ”maximum value” problem. . . . . . . . . . . 42
4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.17 Behavioral tree of the dominant genotype for the ”maximum value” problem. 42
4.18 Development of dominant genes for the ”maximum value” problem, gen-

erations 1-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.19 Combined growth of four important genes, generations 1-40. . . . . . . . 44

5.1 Flow of information for the implementation on Epiphany and Parallella. . 46

xii



Chapter 1
Introduction

This chapter explains the motivation for and aim of the research topic presented in this
paper. It describes the goal of the project, and how work was conducted to reach that goal.
It then lays out the structure of the content of this paper.

1



1.1 Background and Motivation

In computer science, finding novel ways of performing computation is an ongoing research
goal. This is motivated by the difficulties of further improving the computational potential
of traditional processors. Traditionally, computers execute a program consisting of a series
of logical operations decided manually by a human programmer, and the program arrives
at a deterministic answer. This method is relatively easy to understand and predict for
humans. We are, however, experiencing stagnation in the technological advances that are
possible with such computing models. The causes of this stagnation includes problems
with power dissipation in processors, an increasing effort required to move data around,
and difficulty in manually exploiting computational parallelism [? ].

In a paper from 2006 [5], several professors from University of California at Berkeley
illustrated how conventional wisdoms of computing research was changing. Processor
performance had increased by 52% per year between 1978 and 2002, but by less than 20%
per year in the following 3 years. Three primary obstacles halted the rapid progression pre-
viously experienced. First, as processors get faster, they produce exponentially more heat.
Processors hit what is referred to as the Power wall, where amount of power spent became
the primary limitation of the speed and size of processors. Second, the speed of process-
ing instructions started outpacing the time to access memory. referred to as the Memory
wall. In other words, moving data around quickly enough became an obstacle for speed-
ing up computation. Third, architecture and compiler innovation had nearly exhausted the
potential for exploiting instruction-level parallelism (ILP) in sequential programs. This is
known as the ILP wall.

The paper from Berkeley is titled The Landscape of Parallel Computing Research, and
parallel computing is seen as the solution to the obstacles above. The size and cost of tran-
sistors has decreased (as predicted by Moore’s infamous paper of 1965 [17]) to the point
where adding more elements to an integrated circuit (IC) is essentially free. Thus, in an
ideal world, we could sustain the previous, enormous growth in computational power by
using an ever increasing number of slower, less power-hungry processing elements. Taking
advantage of many processors is a difficult task, however. To quote the Berkeley profes-
sors: ”This shift toward increasing parallelism is not a triumphant stride forward based on
breakthroughs in novel software and architectures for parallelism; instead, this plunge into
parallelism is actually a retreat from even greater challenges that thwart efficient silicon
implementation of traditional uniprocessor architectures.”

Attempts at creating effective parallel processors started already in modern computer’s
infancy, but the effort has taken much longer than at first anticipated. In a 1996 article
[11], Michael J. Flynn1 takes a retrospective look at this effort since the 1960’s. He notes
that the difficulty in improving performance through parallel processing was greatly un-
derestimated, and that our mathematical way of representing computing problems may
be a fundamental obstacle. He calls for researchers to approach parallel processing by
representing problems in cellular form; an inherently parallel representation difficult to

1Michael J. Flynn is known for his classification of computer architectures from 1966, ”Flynn’s taxonomy”,
which is based on the number of parallel instruction and data streams that the architecture supports.

2



understand for the human mind but tailored to the parallel machine.

As the number of independent processors in a system increases, human ability to manually
write efficient programs for it decreases. In an effort efficiently utilize the computational
resources of vast parallel systems, we must look to automate the problem of programming
such systems. This is a logical conclusion of Michael Conrad’s Trade-off Principle on
programmability of systems [6]. Conrad suggests that the concepts of self-organization
and evolution may be exploited in vast parallel systems to create powerful programs that
are too complex for a human to understand.

Structuring a program by way of self-organization and an evolutionary search represents
the bottom-up approach of artificial life research. Inspired by computation-like phenomena
in biology, such as the collective behavior of ant swarms and neuron interaction in the
brain, the goal is for behavior to emerge out of many simple, locally interacting parts.

In order to utilize evolutionary search to program a system, the system’s framework must
be structured in a way that facilitates this process. One important feature of the framework
is that structural changes to the program may result in small changes to the outcome,
without compromising successful execution. This does generally not hold for traditional
programming frameworks. An evolvable system must also be flexible enough such that a
series of structural changes may result in a wide variety of behaviors. Conrad argues that
cellular models provide the required features of an evolvable system, and as such, have a
higher ceiling for computational efficiency than manually programmable systems.

1.2 Research Goals

For this project, we draw inspiration from previous work within the fields of artificial life,
evolutionary algorithms and cellular automata. We look to program a parallel processor
using techniques developed for cellular automata.

The parallel processor we work with is called Epiphany, and its processor cores are con-
nected with a local communication network. The framework we propose for structuring a
program on Epiphany is a combination of cellular programming and genetic programming.
It mirrors the evolutionary process of cellular programming, suitable for the topology of
the interconnections of the processor array. But the genetic code for cell behavior follows
the genetic programming technique, suitable for a cell with full processor capabilities.

Our immediate goals of the project are:

• Demonstrate that cellular programming may be a framework for structuring software
on machines with local communication networks.

• Run the resulting software on the Epiphany parallel processor.

The Epiphany parallel processor has an interesting grid-like organization of CPU cores,
and we look to explore how cellular computing may benefit from such an architecture. At
the same time, we are interested in how non-traditional computing frameworks, such as
cellular programming, contribute to diversity in modern computer architectures.

3



We note that this effort is a microscopic step towards the long-term goals of these research
themes, and the progress made in this project is of little immediate use outside of research
purposes. Long-term goals include the ability to efficiently utilize massively parallel ma-
chines, to investigate alternative ways of organizing a computer, and to better understand
the computational dynamics of many biological phenomena.

1.3 Thesis Structure

This thesis’ content is divided into six chapters.

• Chapter 2 presents background theory on topics relevant for this thesis, including
modern parallel processor architectures, artficial life, and cellular automata.

• Chapter 3 presents the hardware platform on which we will implement the pro-
gramming framework of chapter 4.

• Chapter 4 describes the programming framework we propose in this thesis, and
show the results of its application to test problems.

• Chapter 5 outlines an implementation of the parallel program on our hardware plat-
form.

• Chapter 6 discusses the results of our findings, outlines important topics of the
framework that needs further work, and gives a conclusion for the project.

4



Chapter 2
Background Theory

This chapter covers background theory for the work presented in this paper. First, we
introduce the academic field of artificial life and important concepts like emergence, self-
organization, and evolution. Next, we describe the paradigm of cellular computing and
the cellular automata model in particular, which is commonly used to model artificial
life phenomena. Last, we look at methods for developing useful structures in cellular
automata.

5



Figure 2.1: Multi-core Processor.

Figure 2.2: Multi-core MIMD system.

2.1 Modern Parallel Processors

The concept of executing a series of instructions by reading and manipulating registers,
known as the von Neumann model, is common to the way all processors perform compu-
tation. But the organization surrounding this execution loop may vary. We can categorize
processor architectures by the number and the variety of processing units they use, and
how these units are coordinated.

A processor system with several processing units, or ”cores”, is called a multi-core pro-
cessor. Each core independently executes a stream of instructions, although some or all of
the cores may share instruction stream. Figure 2.1 serves to clarify these terms. Typically,
the set of cores in a multi-core processor are physically integrated on a single integrated
circuit, known as a chip multiprocessor (CMP).

Computing systems employ more than one processor core for reasons of computational
performance or energy efficiency. Cores may execute separate programs or they may col-
laborate on a single problem. In either case, as the number of processors increase, so does
the difficulty of utilizing the available resources in an efficient manner [6].

2.1.1 Homogeneous Multi-core Processors

Homogeneous multi-core processors are systems in which all cores are equal. This implies
that any workload may be scheduled to any of the system’s cores, and each core must have
the resources to carry out any task. This generalist approach makes scheduling tasks easier,
but cores will often be inefficient at executing its assigned tasks.

6



Figure 2.3: Multi-core SIMD system.

Modern off-the-shelf CPUs typically have from two to eight indentical cores, organized as
shown in Figure 2.2. The system’s interconnection network may vary, but all cores have
access to the same memory. A control unit in each core handles the instruction stream.
This is categorized as a multiple instruction, multiple data (MIMD) system by Flynn’s
taxonomy.

Some homogeneous systems group several cores together to share instruction stream, as in
Figure 2.3. This is categorized as single instruction, multiple data (SIMD), and is a typical
configuration for graphics processors. A SIMD processor is designed for highly specific,
parallelizable problems such as pixel coloring and certain scientific computing problems.

2.1.2 Heterogeneous Multi-core Processors

Heterogeneous multi-core processors include different types of cores on one system in
order to utilize resources more effectively. A task will be scheduled to a specialized pro-
cessing unit, according to the type of computation involved. This specialist approach lets
the system spend less time and energy for a given task, but scheduling tasks to each unit is
more complicated than for homogeneous systems.

One example of a modern heterogeneous processor is ARM’s big.LITTLE [4], designed
for use in mobile devices. It includes a set of high-performance, energy intensive cores
alongside a set of slower, energy efficient cores. Both types run the same programs, and a
scheduler selects which types of cores to use based on the current performance demands.
This configuration lets big.LITTLE switch between energy efficiency and high perfor-
mance on a whim.

2.1.3 Utilizing Multi-core Processors Efficiently

For some highly parallelizable problems, modern parallel machines are very efficient.
Some SIMD machines, like graphics processors, are tailored to a narrow use-case such that
it has precisely the resources required for its expected tasks. The regularity of the SIMD
machine matches the regularity of the parallel algorithms. For general purposes, however,
this type of architecture is limited in its ability to employ its resources efficiently. Less
specialized SIMD architectures (as compared to graphics processors) sacrifice parallelism
for more general purpose relevance.

7



The graphics processor is an example of a parallel machine for which the programmer
is responsible for proper utilization of resources. Parallelizable sections of the program
are manually specified to run in a SIMD manner, often through a parallel programming
framework such as OpenCL. The responsibility of parallelization falls on the program-
mer in many other situations also, such as for heterogeneous multi-core processors with
more than one ISA. Processors with different ISA may not run the same programs, so the
programmer must choose which processor to write software for.

Note also that parallel algorithms for programmable systems are constrained by the need
to coordinate the parallel execution in non-parallelizable portions of the program (see Am-
dahl’s Law). This restricts their potential for efficiency as the number of parallel elements
scale up.

For systems in which the programmer is responsible for parallelization, a theory relating
the programmability of the system to its potential computational efficieny claims that these
two properties are bound by a trade-off principle [6]. In other words, a programmable,
vastly parallel system cannot achieve high computational efficiency. In order to achieve
efficiency, the vastly parallel system must be evolutionary adaptable. And its programs
must self-organize through a variation and selection process, according to the theory.

2.2 Artificial Life

The academic field of artificial life studies systems and processes that exist in our natural
environment using simplified models. In contrast to traditional biology which primarily
studies such phenomena through empirical investigation, artificial life seeks to recreate the
phenomena and understand them at a conceptual level. Through simulation of a variety of
life-like models, this study may advance our knowledge of the logical principles of life,
separated from the peculiarities of life in our natural environment. Methods of modelling
include computer simulations, robotics, and biochemistry.

How the vast number of non-living molecules that make up our body manages to col-
lectively create a living, self-aware human being is not well understood. This mystery
involves several yet unanswered questions in biology, such as how multicellular replica-
tion evolved, and what are the requirements for conciousness. These, among many others,
are yet unanswered questions that are likely to benefit from analysis of artificially living
systems [25]. But research in artificial life contributes not only to answer open questions
in biology, it may also improve our ability to perform computation using biology-inspired
models.

2.2.1 Emergence

Advances in computer technologies opened the door for simulation of larger and more
powerful models that can capture the complex interactions of natural life systems. Natural
life systems exist both at microscopic scales as with cell biology, and at large scales such

8



as populations in an ecosystem. Common to these systems is that order emerges out of in-
teractions between a vast number of individual elements. We can define this phenomenon
as follows:

Emergence is a dynamical process in which global behavior or structure arises
from local interactions between individual parts in a system.

Emergent properties develop over time, at a macro-level of a dynamical system. These
properties cannot be described by the behavior of local parts, i.e. at the micro-level, with-
out also considering the context with which they interact.

As an example, traffic congestion can be considered an emergent property of the collection
of vehicles in an area with high traffic density [16]. While the drivers would like to avoid
congestion, their behaviors inevitably influence each other. The phenomenon emerges
in the interaction between the drivers as they brake, accelerate, and manouver to avoid
collision and navigate the road network. Congestion forms over time, and may spread
across the road network or die out.

Emergent behavior is not directed by a central source of control, and no single element
can be critical to its success. The individual behaviors of all elements of the system gives
rise to its collective behavior, and as such, the system is robust in the presence of failure
or damage. While failure in parts of the system may reduce performance of the emergent
behavior, the distributed responsibility of control ensures graceful degradation. In the
example of traffic congestion, removing any one vehicle does not significantly impact the
emergent behavior.

The concept of emergence appears extensively in fields such as artificial life and evolu-
tionary biology [9]. It is also found in other disiplinces, such as economics, chemistry, and
ecology. Despite an increasing interest from multiple disciplines for the past 20-30 years,
the theory of how emergent behaviors form is not well understood [7].

2.2.2 Self-organization

Self-organization is another property of dynamical systems, and it often occurs in combi-
nation with emergence. It may be defined as follows [9]:

Self-organization is a dynamical and adaptive process where systems aquire
and maintain structure themselves, without external control.

Here, ’structure’ is some form of order, whether it is spatial, temporal, or functional in
nature. A self-organizing system is able to autonomously increase its order over time in a
way that promotes a certain function or property. That it does so ’without external control’
does not mean without external input, but rather without direct control from an external
agent.

A self-organizing system is adaptive, able to change or maintain its structure in the face of
disturbances or changing contexts. This implies that the system cannot exhibit too much
order. With an exessively high degree of order, the system’s structure will be too static.
An adaptive system must also consider a variety of different behaviors and choose which

9



path to take. With a low degree of order, the system will be uncontrollable. To be able to
respond meaningfully to variations in context, a self-organizing system must balance on
the edge of order and chaos [12][15].

2.2.3 Evolution

Evolution is the process by which the genetic codes of a population of organisms change
and adapt over successive generations. In biology, evolution by natural selection is a source
of a species’ adaptation to the environment, as well as the formation of new species. In
computer science, evolutionary algorithms are used to apply the principles of evolution to
solve optimization problems.

Evolution is driven by two main processes: variation and selection. Variation takes place
when a new specimen, with its unique genetic code, is introduced to the population. For
example, variation in the human species takes place through sexual reproduction, by form-
ing the genetic code of the child from a combination of the parents’ genetic code. Mutation
in genes is also a source of variation, and higher mutation rate results in more variation.

Selection is the process by which an evolving population adapts to its environment. It
takes place when some specimen are more than average likely to reproduce and pass on its
genes to the next generation, causing those genes to be selected for. Natural selection is
based on the well-known principle of ”survival of the fittest”. Fitness is the term used to
describe how good a particular specimen is, i.e. how well-adapted it is to its environment.

Evolutionary algorithms work by applying variation and selection to a population of po-
tential solutions, or ”artificial organisms”. The goal is to let the population of solutions
improve over many generations to produce better and better results. Fitness, in this case,
is a score based on how well suited a solution is to solving the problem at hand. Selection
is achieved by prioritizing high-fitness solutions for recombination and survival into the
next generation.

Each solution or organism, also known as phenotype, in an evolutionary algorithm is a
product of a form of genetic code, or genotype. The genotype may be represented by a
simple bit string. Operators for performing variation and selection in this genetic code
varies between different evolutionary algorithms. One of the most popular evolutionary
algorithms is the genetic algorithm (GA), illustrated in Figure 2.4 to show the typical
process of artificial evolution.

The GA starts with a more or less random initial population. Individuals in this generation
are evaluated by a fitness function to receive a numerical score for its fitness. Next it gen-
erates a full set of new individuals to form the next generation. A new individual is created
by choosing two parent individuals and combining sections of each of their genotypes into
a new offspring genotype, a process known as sexual recombination. Parents are selected
probabilistically based on their fitness score. Each new genotype may also, with low prob-
ability, be selected for mutation of one or more genes. The complete set of new offspring
individuals form a new generation, and the process is repeated.

10



Figure 2.4: Genetic algorithm procedure.

Figure 2.5: Sexual recombination and mutation.

11



3
4 + cos (A)

Figure 2.6: Example mathematical tree structure, a representation used in genetic programming.

Evolutionary algorithms are particularly useful for problems for which it is difficult to
engineer a solution, but easy to evaluate if a potential solution is good or not. Programming
highly parallel systems is one such example [6].

Evolutionary algorithms are also a tool for investigating the underlying dynamics of the
evolutionary process. Philosophically, evolution relates to ’why’ certain phenomena or
traits appear, in contrast to emergence and self-organization which relates to the ’how’.
For example, evolution may explain why humans have eyes, while emergence and self-
organization may explain how our visual system works.

2.2.4 Genetic Programming

Genetic programming is a technique used with evolutionary processes to evolve a function
in the form of a mathematical tree structure. Its fitness is based on the function’s ability to
perform a desired computation. An example tree structure and its corresponding function
is shown in Figure 2.6. Mapping genotypes to mathematical tree structures in a way that
facilitates evolution is challenging, and subject to ongoing research.

2.2.5 Bio-inspired Computation

Artificial life research is relevant for computer science in attempting to discover and un-
derstand novel ways with which to perform computation [8]. Many systems we find in our
natural environment process information in a parallel and distributed manner. We refer to
it as emergent computation when systems of locally interacting parts process information
in a global manner (ref. Section 2.2.1). Examples of this include collective food gathering
[18] and nest-building [14] in ant societies, and processing of nerve impulses by neurons
in the brain [21].

Computational systems in biology consist of parts that may fail, or that may be non-
deterministic. It performs reliable computation with unreliable parts, and has properties

12



such as adaptation and robustness in the face of changing circumstances or failure. This
is a key difference between biological systems and a bio-inspired machine. A machine
consists of reliable parts.

2.3 Cellular Automata

Since the 1990’s, researchers have explored cellular models for their potential for perform-
ing computation. Cellular models rely on a high degree of parallelism, and researchers
hope that such models have computational potential that exceeds the limitations of tradi-
tional, sequential methods [22]. The most influential cellular model is the cellular automa-
ton (CA).

2.3.1 Cellular Computing

The computational paradigm of cellular computing is based on three main principles: sim-
plicity, vast parallelism, and locality [22]. It utilizes the computational potential of a vast
network of simplified processors (cells) that can only interract locally, i.e. with a relatively
small number of other nearby cells. The set of other cells that a cell can communicate with
is referred to as its neighborhood.

The lack of a central source of control, guidance, or communication is the key factor that
separates cellular computing from traditional computing. Each processing element com-
municates with a constant number of other units, regardless of how many processing ele-
ments the system has in total. This is a great advantage over traditional, centrally directed
computing models, as it lets cellular machines scale without increasing communication
overhead. Furthermore, parallel computation in traditional computing models is based on
solving independent sub-problems. Thus, the potential parallel speedup such models can
achieve is bound by the portion of parallelizable work (see ”Amdahl’s Law”). The fully
distributed models of cellular computing are not bound by such restrictions, primarily be-
cause cells do not coordinate at a single processing unit.

2.3.2 The Cellular Automaton Model

Cellular automata are a special case of cellular models. Its cells are arranged in a fixed
array of one, two or three dimensions forming a line, rectangle, or a box respectively. The
state of each cell has a discrete value, and all cells update their state synchronously, over
discrete time steps.

Figure 2.7 illustrates a 4x4 CA in 2D with a neighborhood of 5 cells (including itself).
This neighborhood format is called the von Neumann neighborhood of a two dimensional
CA. Similarly, the von Neumann neighborhood of a one dimensional CA includes 3 cells:
Center, West, and East.

13



Figure 2.7: Two-dimensional 4x4 cellular automata showing the von Neumann neighborhood of the
center cell.

Table 2.1: An example 3-neighbor transition function of a one dimensional CA.

Rule Table
C W E Next state
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Bit string

0 0 1 1 1 0 1 1

Integer

59

14



Each cell takes as input the current state of the cells in its neighborhood, and at each time
step updates its own state according to a transition function. This transition function is
traditionally implemented as a look-up table (LUT), defining the cell’s next state for each
possible combination of inputs. Table 4.2 shows an example rule table for a binary cell
with a neighborhood of 3 cells. It has 2 possible states and 3 inputs, and therefore 2 entries
for which a ”next state” value is defined. These values may be represented in compressed
form as a simple bit string, as shown.

The cells of a CA may have an arbitrary number of possible states. However, binary cells
are the norm, as in Table 4.2. Increasing the granularity of the state space or increasing the
neighborhood of each cell leads to extreme increases in the total number of possible input
combinations. Since CA cells often use LUTs for implementation, and the size of each
LUT scales proportionally with input combinations, it is often practical to use simple CAs
for experiments. Furthermore, the type of dynamical behavior found in CAs with more
than two states per cell does not seem to be qualitatively different from the behavior of
binary CAs [27].

A CA in which all cells are defined by the same transition function is referred to as a
uniform CA. A non-uniform CA on the other hand has independent transition functions in
each of its cells. Sometimes a third category, quasi-uniform, is used. The cells of a quasi-
uniform CA are predominantly of one or two main transition functions. but the array may
also contain a few ’gaps’, small collections of cells that use other transition functions.
Non-uniform CAs are discussed in section 2.4 below.

Note that, in practice, the CA is of finite size. Instead of specifying a static input from
the border of the cell array (e.g. ”West” input for the west-most row of cells), the CA will
typically wrap around, connecting its edges. A CA in one dimension will therefore form a
circle, while a CA in two dimensions will form a torus.

2.3.3 Signals as Emergent Behavior in CA

Research from [13] on emergent behavior in CAs illustrate the ability of locally interacting
cells to develop collective behavior at a larger scale. When drawing the behavior of a one-
dimensional CA over time, as seen in Figure 2.8, we can identify different domains in its
behavior. The left picture in the figure shows how the pattern of states in the CA form
idenfifiable domains, and the right picture draws the border between these domains.

Black domains identify areas of black cell dominance initially, and white domains identify
white cell dominance. The borders between these domains can be seen as signals propa-
gating over the cell array, as a form of communication. When these communication signals
connect, the cell array makes a decision of what domain to proceed with. This domain and
signal behavior is a form of emergent behavior in the CA.

15



Figure 2.8: Emergent behavior in cellular automata. (Reprinted from [13].)

2.4 Development of Structure in CA

So far, our discussion of CAs has been limited to CAs with uniform rulesets. In this sec-
tion, we discuss non-uniform CAs and ways of handling their more complicated rulesets.

2.4.1 Uniform vs Non-uniform Rulesets

Uniform CAs are easily identified by their rule. The length of the decoded rule may vary
depending on neighborhood size, but it is nonetheless relatively easy to read, modify,
and store. Rule 59 from Table 4.2, for example, only consists of 8 bits, while a two-
dimensional CA with von Neumann neighborhood will have a 32-bit rule. Because of the
easy representation, applying a genetic algorithm to a population of uniform CAs is quite
accessible.

A non-uniform CA, however, must be described by all the individual rules in the array, one
rule for each cell. We can refer to the set of rules and their distribution across the cells as
the structure of the CA. The process of generating a structure that performs some function
is the equivalent of ”programming” the non-uniform CA.

If we attempt to apply a genetic algorithm to the direct representation of an entire non-
uniform CA, the search space becomes undesirably large. Furthermore, a potential solu-
tion of the genetic algorithm, the resulting structure, will be specific to one particular size
and shape.

Instead of treating the entire non-uniform CA as one artificial organism directly, it is pos-
sible to organize the problem in a way that dynamically generates structure in the CA. Two
such methods are covered in the sections below. The first method is a compact represen-
tation of how the structure can develop over time, inspired by multicellular organisms in
biology. The second method treats each cell as a separate adaptive organism.

16



Figure 2.9: Diagram showing the relationship between development and evolution. (Reimagined
from [24], Fig. 5).

Figure 2.10: Artificial development of structure in a cellular automata.

2.4.2 Artificial Development

In traditional evolutionary algorithms, the genotype of an artifical organism is a string
of bits that map directly into its phenotype. In biology, however, a cell’s DNA does not
structurally describe the organism. Instead, developmental processes in each cell use in-
formation in the DNA to grow a multicellular organism from a fertilized egg (which is
simply one large cell). Modelling this aspect of biology in computing systems is known
as artificial development [26]. Figure 2.9 illustrates the relationship between development
and evolution.

The process of artificial development in a CA is shown in Figure 2.10. The figure shows
four timesteps of a CA with uniform rulesets, but with four possible state values: X, Y, Z,
and e. Each of these states represent a transition function for a non-uniform, binary CA.
The distribution of the four states is the equivalent of the structure in a non-uniform CA.

In the figure, e represents an empty transition function, i.e. one that does not change its
state. The first time step includes an X only, and the development process is defined by
a set of rules that govern how this X seed should develop. With each time step of this
development process, structure for the non-uniform CA emerges.

Mapping genotype to phenotype in an developmental model serves as an indirect, com-

17



pact way of describing a potentially large and complex structure. This property is helpful
for successful evolution because small changes to the genotype will have the potential to
produce sufficiently varied structures [10].

2.4.3 Cellular Programming

Cellular programming was introduced by Sipper as an evolutionary algorithm with which
to program non-uniform CAs [23]. Instead of treating each CA as an artificial organism
to evolve, it treats each individual cell as a separate artificial organism. The population of
organisms in the evolutionary process is simply made up of all the cells of a single CA. An
interesting property of cellular programming is that well-performing cells tend to spread
their genes over time. In other words, structure develops in the CA dynamically. This is
property is shared with artificial development.

Algorithm 1 shows pseudo-code for the cellular programming process, as given by Sipper.
Cells initially receive a random genotype. The CA is then given an initial state config-
uration and set to run a set number of time steps. When time steps are completed, the
performance of each cell is evaluated based on the fitness function. Several more initial
configurations may be tested, with a new fitness evaluation each time.

The next step is to perform evolutionary operations on the population of cells, including
sexual recombination and mutation to form a variety of behaviors for the next generation.
The new generation is then evaluated in a similar manner, over several initial configura-
tions. Over time, through many generations, a structure of high-fitness cells emerges in
the CA.

2.4.4 Cellular Programming Example: Majority Problem

Sipper solved, in [23], the majority problem in one-dimensional CAs using cellular pro-
gramming. The CA operates correctly if it can settle on an all-black or all-white state,
depending on which cell type is in the majority at the initial condition. A graph of one of
his solutions is shown in Figure 2.11. The squares show the state of the one-dimensional
CA over time for two different initial conditions, one majority white and one majority
black.

The lines below the squares have different colors for different sections of genotypes. There
we can identify both growth and differentiation in gene selection. The rule space is semi-
uniform, with all but a few cells having the same rules. The small sections of different rules
are critical for the correct behavior of the CA, however. We can see how the uncommon
rules help break up the emergent communication signals, and essentially make a decision
of whether black is dominant or white is dominant.

18



Figure 2.11: Majority problem solved using cellular programming. (Reprinted from [23].)

19



Algorithm 1 Pseudo-code of the cellular programming algorithm. (As given in [23])

for each cell i in CA do in parallel
initialize rule table of cell i
fi = 0 { fitness value }

end parallel for
c = 0 { initial configurations counter }
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel

if cell i is in the correct final state then
fi = fi + 1

end if
end parallel for
c = c+ 1
if c mod C = 0 then { evolve every C configurations }

for each cell i do in parallel
compute nfi(c) { number of fitter neighbors }
if nfi(c) = 0 then

rule i is left unchanged
else if nfi(c) = 1 then

replace rule i with the fitter neighboring rule, followed by mutation
else if nfi(c) = 2 then

replace rule i with the crossover of the two fitter neighboring rules,
followed by mutation

else if nfi(c) > 2 then
replace rule i with the crossover of two randomly chosen fitter
neighboring rules, followed by mutation (this case can occur if
the cellular neighborhood includes more than two cells)

end if
fi = 0

end parallel for
end if

end while

20



Chapter 3
Hardware Platform: Epiphany-III

This chapter introduces hardware platform that we use for the experiments in this project.
The processor for which we apply the cellular programming algorithm is a parallel pro-
cessor architecture called Epiphany. We present the architecture in a top-down, informal
manner and focus on the features that make it suitable for cellular programming, such as
its manycore approach and local interconnect network.

21



3.1 Introduction

3.1.1 Brief History

The Epiphany architecture was invented in 2008 by Andreas Olofsson, with the goal of
being a high-performance energy-efficient manycore architecture for use in real-time em-
bedded systems [20]. Outside of performance and energy constraints, Olofsson wanted his
architecture to scale to ”thousands of cores”, be easy to program, and require only a small
team of engineers to implement. He designed each processor core as simple as possible,
and connected them with a 2D mesh network.

Olofsson founded Adapteva to attempt to bring to life this architecture as a general purpose
processor. The first product based on the Epiphany architecture was a 16-core System-on-
Chip released in 2011 (”Epiphany-III”). Later that year, Adapteva completed and produced
in low volume a 64-core version (”Epiphany-IV”), and built the first prototype of a 1024-
core version. In 2016 due to funding from Defense Advanced Research Projects Agency
(DARPA), Adapteva was able to successfully produce its latest version, Epiphany-V, which
consists of 1024 cores and is scaled up from 32-bit to 64-bit [19].

The 16-core Epiphany-III shares a lot of its history and success with a small single-board
computer called Parallella, which we will look at in Section 3.3.

3.1.2 Motivation

The Epiphany processor is used in this project for its grid based, locally connected, many-
core architecture, and its accessibility in terms of hardware requirements and programma-
bility. The layout of its cores and interconnection is structured much like a 2D CA with a
von Neumann neighborhood.

For traditional, binary CAs, each cell is generally implemented using a simple rule table.
In contrast, each ”cell” on Epiphany has much more powerful computational ability. For
the cellular programming approach (Section 2.4.3), cells on Epiphany are therefore able to
carry out the evolutionary operations internally, in parallel with each other. Furthermore,
it lets us explore CA capabilities when cell behavior is not limited to binary values and a
look-up-table.

3.2 Epiphany Architecture

This section describes the three core components of the Epiphany architecture: its mem-
ory system, CPU, and interconnect network. The official architecture reference [2] is the
primary source for the information in this section, and can be referenced for further details
about Epiphany.

22



Figure 3.1: Overview of the Epiphany Architecture. (Reprinted from [2].)

3.2.1 Overview

Epiphany is a homogeneous multi-core processor consisting of a two-dimensional grid of
computing nodes, as shown in Figure 3.1. The grid structure is easily scalable; the 32-bit
system used by Parallella can scale to 4096 nodes on a single chip, limited by the number
of memory address bits it uses.

Nodes contain a floating-point RISC CPU named eCore and some local SRAM. Each node
is connected to its four closest neighbors (north, south, east, and west) by an efficient on-
chip communication network named eMesh. In addition, all nodes share a single bus for
accessing off-chip memory. Communication is handled by a DMA module and a network
interface module included in each mesh node.

Some of the primary goals for the Epiphany architecture were energy-efficiency, floating-
point performance, scalability, and ease of programmability. These goals strongly influ-
enced the design decisions of its components. Features not included in the design were
left out primarily to save energy or limit the amount of wires and logic. Small and simple
components was important for the ability to scale to a large grid of nodes on a single chip.
Epiphany’s creator Olofsson discusses design decisions and trade-offs in more detail in
[20].

3.2.2 Memory Architecture

Epiphany uses a distributed shared memory model; each node in the mesh contains a
memory unit of up to 1MB, and all CPUs can directly address the memory unit of any
node in the mesh. The first 12 bits of a memory address specify a node1, and the last 20

1Note that the 12 bits that specify a node sets a hard limit of the amount of nodes that the 32-bit architecture
can scale to, namely 212 = 4096 cores.

23



Table 3.1: Epiphany Address Space

Bits 31..20 19..0

Address Mesh Node Local

Figure 3.2: eMesh network components. (Reprinted from [2].)

bits specify the memory address local to that node.

In an effort to limit the complexity and real estate of each node, no cache is included.
Instead, the memory unit in each node is divided into four memory banks that support
simultaneous instruction fetching, data fetching, and intercore communication.

3.2.3 eMesh Network-On-Chip

Epiphany’s Network-On-Chip (NoC), eMesh, is its most defining feature. It consists of
three independent 2D mesh networks with nearest-neighbor connections. The three net-
works have separate internode communication responsibilities as follows: the cMesh per-
forms on-chip writes, the xMesh performs off-chip writes, and rMesh handles all read
requests.

Epiphany is highly optimized for moving data between nodes on the same chip by per-
forming write requests using the cMesh. Such data transfers operate on a fire-and-forget
basis. The data is written to the receiving node’s memory space with no ”handshake” or
other transaction protocol required. A read request on data located at another local node
uses the rMesh to notify the source node, which in turn performs a write request of the

24



data using the cMesh. Notably, this read transaction is an order of magnitude slower than
the efficient write operation.

A routing module (Figure 3.2) at each node handles the stepwise flow of data through the
mesh, using an address-based packet switching scheme. Message packets get routed by a
deterministic path through the mesh network: first to the correct row, then to the correct
column. This process, along with separate read and write networks, ensures no deadlocks
in the eMesh. Routing has a sincle cycle latency per node. The networks also provide a
multicast option.

The eMesh does not wrap around the edges to form a torus of nodes. Instead, it includes
I/O links at each edge of its 2D mesh. This is designed to connect several Epiphany chips
together to create a larger 2D grid of nodes, or to interface with other chips such as FPGAs.

3.2.4 eCore CPU

Figure 3.3: eCore processor core components. (Reprinted from [2].)

Epiphany’s eCore is an in-order, dual-issue processor core that includes a floating-point
unit (FPU), an interger arithmetic logic unit (ALU), and a 64-word register file (Figure
3.3). The register file may be read and written by the ALU, FPU, and a load/store instruc-
tion simultaneously. eCore CPU supports a bare-bones 32-bit instruction set architecture
(ISA) and a variable length 8-stage instruction pipeline.

3.3 The Parallella Mini Computer

In 2013, Adapteva made the 16-core Epiphany-III processor widely available as part of a
small single board computing eco-system called Parallella. The project was crowd-funded

25



Figure 3.4: The Parallella single board computer.

through Kickstarter with the promise of making parallel, high performance computing af-
fordable, open-source, and easy to use [1]. By 2014, Epiphany based Parallella computers
had been delivered to over 200 universities around the world [20].

Parallella is used in the project of this paper for writing and running software on the
Epiphany processor. The kit is supported by a software development kit (SDK) [3], and
Epiphany is programmable in C/C++.

3.3.1 Hardware

Parallella uses a Zynq-7010 ARM System-On-Chip (SoC) that runs Linux, and the Epiphany
processor functions as a co-processor. The board also includes off-chip RAM, Eternet,
HDMI, USB, and Micro-SD storage.

The ARM CPU is typically responsible for loading software to run on Epiphany, circum-
venting the need for peripheral development tools.

26



Chapter 4
Cellular Programming with Tree
Structures

This chapter describes the framework we propose for programing our parallel machine.
The framework is applied to two different methods of giving input and reading output.
Results are gathered in simulation, and they are shown at the end of this chapter for three
different test problems. Chapter 6 further discusses these results.

27



Figure 4.1: Evolutionary operations may take place locally within each cell.

4.1 Introduction and Motivation

The framework we propose for structuring a program on a parallel processor with local
communication network is a combination of cellular programming and genetic program-
ming. It mirrors the evolutionary process of cellular programming, suitable for the topol-
ogy of the interconnections of the processor array. But the genetic code for cell behavior
follows the genetic programming technique, suitable for a cell with full processor capabil-
ities.

We will refer to the method as ”cellular programming with tree structures”, or CPTS for
short. A cell’s behavior is defined by a tree structure of mathematical operations where
each internal node is an operand and each leaf node is an input value.

CPTS is an experiment in applying concepts of CA computation to a locally connected
multi-core processor and, at the same time, take advantage of the multi-core processor’s
extended computational capabilities. Cells in a traditional CA has a 1-bit state value,
and it’s behavior is implemented with a simple LUT. When each cell is instead a processor
core, we can move from bit behavior to mathematical operations on floating point numbers,
i.e. from discrete state values to continuous state values.

Cellular programming was chosen as the evolutionary framework for generating structure
in our multi-core processor program because its evolutionary operations are local to each
processor, or cell. For cellular programming on a LUT-based CA, these evolutionary op-
erations must be executed on one or more capable processors external to the CA. For a
multi-core processor, however, cells have the computational ability to perform evolution-
ary operators locally, in parallel. This is illustrated in Figure 4.1 which shows a cell array
in one dimension at the top, and indicates each cell’s behavior over time. Each cell will
execute its own evolutionary operations in between sets of time steps.

We use this framework on three simple problems in order to demonstrate its ability to
generate a useful structure over the cell array. In particular, we look for a proliferation

28



of useful genes over several generations. We show results from three different problems,
using two different input configurations. The three problems include:

• propagating an input stream through the machine unchanged

• propagating a modified input stream through the machine

• performing a calculation on a data set

For all three test problems, we limit the size of the cell array to 16 cells in order to match
the scale of the Epiphany-III processor.

4.2 CPTS Framework

Our CPTS framework consists of a genetic coding system inspired by genetic program-
ming, explained in Section 4.2.1, and cellular programming as the evolutionary procedure,
explained in Section 4.2.2. We use two different input configurations for the framework.
The first configuration operates on a continuous stream of input signals, and the second
configuration receives all input before any calculation is performed. These two configura-
tions are explained in Section 4.2.3 and Section 4.2.4, respectively.

4.2.1 Genetic Coding

The genetic code of a cell in our CPTS framework specify a tree of mathematical opera-
tions; each leaf node is an operand and each internal node is an operator. Operands may
be any of the cell’s input signals or zero, and operators are chosen from a predetermined
list.

Each node in the tree has a gene associated with it. Our one-dimensional CPTS framework
builds a tree with five nodes: three 2-bit genes encode the choice of input for each leaf
node, and two 2-bit genes encode the type of function to use for each internal node. Table
4.2 shows the mapping of internal node genes, and Table 4.1 shows the mapping for leaf
node genes.

Figure 4.2 shows an example tree structure, and how the corresponding 10-bit genotype
is decoded. Input genes i1, i2, i3 and function genes f1, f2 are ordered from left to right
in the genotype as well as in the mathematical tree structure, as shown. By consulting the
two tables of gene mapping for inputs and functions, we arrive at the tree structure in the
illustration.

The topology of the tree structure is predetermined, and all functions have exactly two
inputs. Both inputs to a function is a floating point number, and all functions produce a
floating point number. Note that an important property of the genetic goding is that any
combination of bits in the genotype will allow the program to run.

29



Table 4.1: Set of inputs for decoding genes of leaf nodes.

code input choice

00 center input (self)

01 left input

10 right input

11 zero ( 0.0 )

Table 4.2: Set of functions for decoding genes of internal nodes.

code name function

00 add f(x, y) = x+ y

01 subtract f(x, y) = x− y

10 difference f(x, y) = |x− y|

11 maximum f(x, y) = max(x, y)

Genotype:

Gene sections:

11 01 00 01 00

i 1 i 2 i 3 f 1 f 2

Figure 4.2: Example tree structure of a cell’s mathematical behavior, decoded from a genestring.

30



Table 4.3: List of methods for producing the next generation of genes, based on the number of
better-performing neighbors.

number of higher-
fitness neighbors new genotype check for mutation

none no change yes

one adopt the better genestring yes

two or more
sexual recombination of two
randomly picked parents yes

4.2.2 Evolutionary Operations and Fitness

The evolutionary process of our CPTS framework mirrors Sipper’s algorithm for cellular
programming from Section 2.4.3. For one type of input configuration, however, we modify
the point in the algorithm at which fitness is calculated. Each problem requires a custom
fitness function. This is covered in the sections below.

With each new generation the population of genotypes, in our case the set of cell behaviors,
is modified. Table 4.3 lists the methods by which a cell modifies its own genotype. The
method depends on the number of neighbors that have a higher fitness score. If a cell has
the highest fitness score in its neighborhood, it keeps its genotype for next generation. If
a cell has one higher-fitness neighbor, it copies that cell’s genotype. And if a cell has two
or more neighbors with higher fitness score, it generates a new genotype based on sexual
recombination of two of those neighbors.

After the new genotype is chosen, regardless of which method is used, it has a small
chance of mutation. If a mutation occurs, it means that one or more bits in the genotype
are flipped.

The evolutionary process of a cell is local to the cell, and so is the information available
to it for the purpose of determining fitness. This means that the fitness function has access
to input values of its cell’s two neighbors only (in one dimension), in addition to the cell’s
own state. We do, however, allow the fitness function to store a limited history of previous
input values.

4.2.3 Continuous Input Configuration

The first of two input configurations we use, we refer to as continuous input configuration.
In this setup, the one-dimensional parallel processor array receives a continuous stream of
input signals at one end, and it produces a continuous output signal at the other end. Figure
4.3 illustrates this dynamic. A data stream enters the machine from the left, propagates
through the set of cells with each time step, and exits at the right side.

Note that in this configuration, the processor array does not wrap around to form a circle.

31



Figure 4.3: Flow of data for the continuous input configuration.

Instead, the left-most processor receives the external input signal. We have chosen to give
the right-most processor a static input of 0.0 as its right-hand neighbor.

In Sipper’s algorithm, fitness is calculated once for each generation, after the CA has
completed its execution steps. Each cell’s final state is compared with the correct result.
In contrast, with a continuous input configuration, cells are not defined by their final state.
Each cell performs some kind of function on an ongoing stream of input signals, and must
be evaluated based on its performance at each stage of the input stream. Therefore, each
cell’s fitness score is modified at each time step of the machine. Algorithm 2 shows, in
simplified pseudo-code, how this process proceeds and at what point fitness is measured.

Algorithm 2 Simplified pseudo-code for CPTS with continuous input configuration.

initialize cell array with random genotypes
while not done do

initialize continuous input data stream
intialize cell array with random initial states
for N time steps do

for each cell do in parallel
perform one time step
compute fitness based on next state of the cell

end parallel for
end for
for each cell do in parallel

perform evolutionary operations (crossover, mutation)
end parallel for

end while

32



Figure 4.4: Flow of data for the single-phase input configuration.

4.2.4 Single-phase Input Configuration

We refer to our second input configuration as single-phase input configuration. This
matches Sipper’s original cellular programming work more closely with respect to how
input and output is handled and how fitness is calculated (see Section 2.4.3). In this case
the cell array wraps around to form a circle by connecting the right-most cell’s output to
the left-most cell’s input.

The flow of information for this configuration is illustrated in Figure 4.4. An input signal
is initially loaded onto the one-dimensional cell array, after which the machine takes no
further external input. After the machine has completed all time steps, the final state of all
cells is read as output.

Fitness for a cell is calculated based on the value of its final state, i.e. once per input signal.
This is illustrated in Algorithm 3, for comparison with the continuous input configuration.

4.2.5 How to Read the Graphs

The behavior of the CPTS framework for the three tests below are illustrated using graphs
of how dominant genes spread throughout the one-dimensional cell array. Using Figure

33



Algorithm 3 Simplified pseudo-code for CPTS with single-phase input configuration.

initialize cell array with random genotypes
while not done do

initialize state of all cells according to input data
for N time steps do

for each cell do in parallel
perform one time step

end parallel for
end for
for each cell do in parallel

compute fitness based on final state of the cell
end parallel for
for each cell do in parallel

perform evolutionary operations (crossover, mutation)
end parallel for

end while

Figure 4.5: Interpretation of graphs for dominant genes.

34



4.5, we quickly explain how to read these graphs.

The graph is a two-dimensional array of squares that illustrate the presence of a particular
gene over several generations. Each row of squares corresponds the set of rules for one
generation, with the first generation at the top of the graph. Each column corresponds to
the rule for one cell over many generations.

In our graphs, the processor array is 16 cells wide: cell number 1 to the left and cell
number 16 to the right, as indicated above the graph. If a square is colored, it means that
the particular gene is present in the corresponding cell for that generation.

The gene whose presence the graph shows is given below the graph. In the example graph,
i 1 = 11 means that if the gene for i 1 has a value of ”11” for a rule in the cell array, the
corresponding square is colored. The semantic meaning of that gene is ”zero” (as input),
also indicated below the graph.

By reading the graph going down, we can see how the presence of a particular gene devel-
ops over time.

4.3 Continuous Input: Unchanged Data Stream

Our first setup that demonstrates the evolutionary behavior of the CPTS framework is a
problem of passing a data stream through the machine unchanged, using a continuous
input configuration. The framework arrives at a stable solution for this problem relatively
quickly. In the example we show, the machine shows correct behavior after 35 generations.

The input data stream consists of data points on a sine curve. With a cell array that is 16
cells wide, we compare input data at timestep X with output data at timestep X + 16. If
the output data matches the input data, the machine behaves correctly.

Each cell’s responsibility is to propagate data towards the right. The fitness function is
evaluated after each time step, and is defined as follows:

Fitness function: Unchanged Data Stream

function FITNESS
if new state equals previous state then

fitness = 0.0
else if new state equals left input then

fitness = 1.0
else

fitness = 0.0
end if

end function

The fitness function first checks to see if the cell’s state is modified for the next time step.
This is done in order to not reward static values giving high fitness score futher down

35



Figure 4.6: Average cell fitness for the ”unchanged data stream” problem.

the line of cells. (In particular, a static state of 0.0 for several consecutive cells would
otherwise be rewarded with high fitness.) As long as state is modified, the fitness function
gives a score of 1.0 if the cell’s new state is set to the same value as its left input. Note that
for this fitness function, there are several possible genotypes that will produce the desired
output.

The final fitness for each cell, after all time steps are completed, is read as an average
of its fitness scores for all time steps. The average final fitness score for all cells in the
machine is plotted from generation 1 to generation 40 in Figure 4.6. Note that this is not
an evaluation of the output result of the machine, but rather a measure of average cell
performance. The figure shows that, at generation 35, all cells report a perfect fitness. For
this particular problem, that also means that the machine collectively produces the desired
output: an unchanged data stream.

One genotype spreads over most of the cells for the first 40 generations. It provides a fit-
ness score of 1.0. Figure 4.8 shows its genotype, the decoded mathematical tree structure,
and the equivalent mathematical function. As indicated by the figure, the genotype causes
the cell to set its next state to the same value as its left input.

Figure 4.9 shows a graph of how each gene of the dominant genotype spreads across the
cell array from generation 1 to generation 40. The full genotype is not represented in every
cell, but the remaining cells exhibit the same behavior from a slightly different genotype.

4.4 Continuous Input: Inverted Data Stream

For our second problem, the machine also receives a continuous input signal and needs to
propagate this signal towards the right, but in addition we want to modify this signal. The
goal of the machine is to invert the input signal such that positive input values are output

36



Dominant genotype: 11 11 01 00 10
i 1 i 2 i 3 f 1 f 2

Figure 4.8: Behavioral tree of the dominant genotype for the ”unchanged data stream” problem,
generations 1-40.

Dominant genotype: 11 11 01 00 10
i 1 i 2 i 3 f 1 f 2

Figure 4.9: Development of dominant genes for the ”unchanged data stream” problem.

37



Table 4.4: Example of correct behavior for a cell over three time steps, for the ”inverted data stream”
problem.

time step left input cell state right input

x 3.0 - -

x+ 1 - 3.0 -

x+ 2 - - −3.0

as equivalent negative values, and vice versa. This problem is a bit more complicated than
the first, and the solution is not stable. It illustrates important aspects of the framework
that we discuss further in Chapter 6.

As for the previous problem, the input data stream consists of data points on a sine curve.
With a cell array that is 16 cells wide, we compare input data at timestep X with output
data at timestep X + 16. If the output data is a reflection of the input data, with respect to
the x-axis, the machine behaves correctly.

On a local level, a cell wants to invert its left input signal, but only if its right neighbor
does not also invert the signal. The cell can check for this behavior in its right neighbor.
Table 4.4 shows this in a simple 3-step progression, in a situation where the center cell
correctly does not invert the signal. This behavior gives a fitness score of 1.0 in the fitness
function below.

Fitness function: Inverted Data Stream
function FITNESS

if new state equals previous state then
fitness = 0.0

else if right input equals inverted left input of two steps ago then
fitness = 1.0

else if new state equals inverted previous state then
fitness = 0.5

else if new state equals previous state then
fitness = 0.5

else
fitness = 0.0

end if
end function

The fitness function makes use of a short history of input values from the left, in addition
to input value from the right. If the signal is inverted only once for the center cell and the
right neighbor combined, the cell gets a perfect fitness score. Otherwise, if the cell itself
either inverts the signal or passes on the signal unchanged, it receives half fitness score.

The total fitness score of one generation of cells is calculated in a similar manner as for the

38



Figure 4.10: Average cell fitness for the ”inverted data stream” problem.

previous problem; it is an average of the individual cell performances. A graph of fitness
from generation 1 to generation 250 is shown in Figure 4.6.

As we can see, average fitness tends to stall at a value of 0.5. At this point, cells generally
behave in a uniform manner, either inverting the signal at each cell or passing on the signal
unchanged. With an even number of cells, the result is the same: an unchanged signal is
output by the machine. Average fitness reaches 0.5 at generation 126.

One well-performing genotype spreads in the array over the generations leading up to
generation 126. Figure 4.12 illustrates the behavior of this genotype: the left input signal
is inverted. Figure 4.13 shows the presence of each of its genes from generation 90 to
generation 130. As we can see, four of the genes have already been established as useful
genes, and the evolutionary process develops the last useful gene, i 3, over this period.

The most critical generations in this test, however, take place shortly after generation 200.
As we can see from Figure 4.10, a short section of generations have over 0.5 in average
fitness score here. We know that a small number of cells get a perfect fitness score by
collaborating with their neighbor to invert the signal only once over two cells.

Figure 4.14 shows what happens in this critical section, from generation 200 to generation
220. The presence of a cell that does not invert the signal, but passes it on unchanged,
gives two cells a fitness score of 1.0. This also causes the machine to behave correctly: the
input signal is inverted in the output at the other end of the machine.

The higher fitness of the non-inverting cell causes its genes to spread, and to propagate
towards the right in the cell array. Despite being responsible for correct behavior on a
global level, the genotype soon goes extinct, and the machine returns to its previous uni-
form behavior. While the framework is able to produce a globally correct solution for this
problem configuration, the solution is unstable.

39



Dominant genotype: 11 01 01 01 11
i 1 i 2 i 3 f 1 f 2

Figure 4.12: Behavioral tree of the dominant genotype for the ”inverted data stream” problem.

Dominant genotype: 11 01 01 01 11
i 1 i 2 i 3 f 1 f 2

Figure 4.13: Development of dominant genes for the ”inverted data stream” problem, generations
90-130.

40



Figure 4.14: Critical section on the ”inverted data stream” problem.

4.5 Single-phase Input: Maximum Value

Our third and final problem demonstrates the framework’s ability to structure a solution
for a simple problem with the single-phase input configuration. Input consists of a set of
randomized, positive floating point numbers, and the cell array will agree on the largest
number in the array. After the machine has completed all time steps, correct behavior
would result in all cells holding the same state, with a value equal to the largest input. The
fitness function is as follows:

Fitness function: Maximum Value
function FITNESS(max input)

if new state > max input then
fitness = 0.0

else
fitness = 1.0− new state

max input
end if

end function

Each generation is evaluated on several set of randomized input data, and a fitness score is
given to each cell once per input set. The average fitness score of a cell for all input sets
are used for the evolutionary process. The combined fitness score for a single generation
is the average score of all its cells.

The framework arrives at a stable, globally correct solution at generation 30. A graph of
fitness for the first 40 generations is shown in Figure 4.15. One genotype with correct
behavior spreads quickly throughout the cell array. This dominant genotype is illustrated
in Figure 4.17. Its functionality is to compare the center cell and its left neighbor, and
choose the largest value.

Figure 4.18 plots the growth of the set of genes of the dominant genotype for the first 40
generations. The growth of i2, i3, f1, and f2 largely overlap, indicating that these genes
combine to produce correct behavior, but do not necessarily contribute towards a good

41



Figure 4.15: Average cell fitness for the ”maximum value” problem.

Dominant genotype: 00 01 01 11 11
i 1 i 2 i 3 f 1 f 2

Figure 4.17: Behavioral tree of the dominant genotype for the ”maximum value” problem.

42



Dominant genotype: 00 01 01 11 11
i 1 i 2 i 3 f 1 f 2

Figure 4.18: Development of dominant genes for the ”maximum value” problem, generations 1-40.

solution by themselves. A graph of their combined growth is included with Figure 4.19
for comparison.

43



Combination of genes: * 01 01 11 11
i 1 i 2 i 3 f 1 f 2

Figure 4.19: Combined growth of four important genes, generations 1-40.

44



Chapter 5
Implementation

This chapter gives an overview of the implementation created for the Epiphany processor.
It is an implementation of the maximum value problem from Chapter 4.

45



Figure 5.1: Flow of information for the implementation on Epiphany and Parallella.

5.1 Overview

The program developed by the CPTS framework for the maximum value problem is im-
plemented on the Epiphany processor. It is a simple demonstration of how the program
runs in hardware. The evolutionary procedure of the CPTS framework is not included.
The implementation is designed to run on the Parallella single-board computer that hosts a
16-core Epiphany processor. Parallella facilitates development and execution of programs
on Epiphany.

The implementation includes two programs written in C. The first program is run by the
host processor, the ARM SoC. The second program is executed by Epiphany, and contains
the parallel structure created by the CPTS framework. The flow of information between
the different units in our implementation is illustrated in Figure 5.1.

46



5.2 Host program

The host processor’s primary responsibilities are to start the parallel program on Epiphany,
read its results, and eventually terminate the program. Much like a CPU typically offloads
work to a GPU by giving it a function or a small program to run, the host processor on
Parallella offloads the parallel program to Epiphany. It performs necessary initializations
in order for the Epiphany to execute its program, such as allocating memory space, and it
points Epiphany to the designated parallel program.

While the parallel program runs, the host processor reads the state values of the cells and
prints them to the console for each time step. The host program also decides when to
terminate the parallel program, although this is not a requirement. The parallel program
may also be set to terminate on its own, according to some condition.

Procedure for the primary responsibilities of the host program on Parallella.

determine number of iterations (N)
initialize the parallel processor
allocate shared memory for storing results
load parallel program onto the parallel processor
for N iterations do

read state of processor array from shared memory
print state to console

end for
terminate the parallel program

5.3 Maximum Value Problem on Epiphany

The parallel program is run on Epiphany, and solves the maximum value problem de-
scribed in Section 4.5. The tasks performed by the parallel program is listed in the pseudo-
code below. It is run in the same manner by each cell, with the exeption of how it calculates
the memory address of its two neighbors.

Each cell gets its input values by reading the state of its neighboring cells. Each cell’s
value is located in its own local, physical memory, but the address space is shared among
all cells as well as the host processor. A cell can therefore directly address the memory
used by its neighboring nodes. And when it does so, the compiler asks the source node to
send the required data, in this case the state value, by the eMesh to the requesting node.

The fitness function mirrors the uniform set of rules arrived at in the stable state of the
maximum value problem. It chooses as its next state the highest of its own state and its
left input.

The structure of how cells are connected for the one-dimensional cell array is illustrated
in Figure 5.1 above. It is a simple left-to-right, top-to-bottom system, with the last cell

47



Procedure for the maximum value problem on Epiphany.

initialize position in the cell array
initialize variables for shared memory
state = random floating point number
while not terminated do

left input = read value from local (physical) memory of left neighbor
right input = read value from local (physical) memory of right neighbor
if left input > state then

next state = left input
end if
synchronize all cells
state = next state

end while

connected to the first cell. These connections lead to more than necessary movement of
data through the cell network. Other methods are more efficient, and should be considered
for a more carefully constructed implementation. Efficient implementation in hardware
is not the focus of this project, and the Epiphany program is created for demonstration
purposes only.

48



Chapter 6
Discussion

This chapter provides a discussion of the CPTS framework based on the results laid out in
Chapter 4. It includes a section on future work needed for the framework, and a section
for hardware implementation. The final section gives concluding remarks for this project.

49



6.1 Structuring a program with the CPTS framework

The CPTS framework was able to program the cellular structure of our homogeneous pro-
cessor array for three test problems. All test problems showed growth of useful genes over
several generations. Through self-organization and an evolutionary process, the frame-
work exploited different functions to reach the desired behavior.

As in all self-organizing systems, there is no inherently defined end to the framework’s
execution. The self-organizing process will run until terminated. As such, non-stable
solutions may exist. This is exemplified in the inverted data stream problem.

6.1.1 Unchanged Data Stream Problem

For the unchanged data stream problem, the framework arrives at a solution fairly quickly.
The responsibility of each cell is clearly defined: its input data from the left side must be
passed towards the right. Constructing a working fitness function is therefore relatively
straight forward.

The fitness function assigns a binary score at each time step; 0.0 for incorrect behavior
and 1.0 for correct behavior. A cell’s final fitness is calculated as an average of the score
received at each step. When a cell is occasionally correct, the average fitness score repre-
sents partial correctness. This lets the evolutionary process identify useful genes without
yet arriving at a fully correct solution.

The solution reached by the framework is a stable solution that solves this problem on a
global scale.

6.1.2 Inverted Data Stream Problem

For the inverted data stream problem, the machine must modify its input signal. This
problem illustrates the challenge in developing correct behavior on a global scale with a
framework with local communication only. The machine manages to structure a correct
solution, but that solution is not stable.

As stated, the goal of this work is to explore a framework with fitness functions that have
access to local information only. The fitness of a cell must be judged according to the
values available to the cell from its left and right inputs. And a lack of global information
prevents the framework from consistently producing the desired global behavior for this
problem.

When the structure reaches a uniform behavior in which all cells either invert the signal
or propagate the signal unchanged, the structure is largely stable. This is because the
fitness function gives partial credit for these behaviors. And the fitness function produces
a value of 1.0 only if the cell cooperates with its right neighbor to invert the signal only
once combined. With a fitness of 1.0 for cooperation, that particular behavior tends to get
copied towards the right, and once again cause a double invertion or no invertion. The

50



cooperating behavior eventually disappears. The structure then returns to its semi-stable
state.

The improved behavior, when a section of two consecutive cells invert the signal only once,
is an example of differentiation in gene selections. The non-uniform behavior performs
better, and is preferred fitness-wise, compared with the uniform behavior. The gene differ-
entiation propagates to the right and fades because the fitness function does not maintain
the desired structure over a larger section of cells.

6.1.3 Maximum Value Problem

The maximum value problem, using a single-phase input configuration, is set up similarly
to cellular programming on CAs. Once cell states are set, the closed loop of cells runs
until terminated, and the final state of cells is evaluated based on a pre-determined answer.
Cells must communicate with each other in order to reach a consensus. The flow of infor-
mation between the cells is less restrictive since input and output are not time-constrained
nor directionally dependant. Nevertheless, the solution to the problem propagates in one
direction only.

This problem exemplifies a class of problems that has a local behavior that directly con-
tributes to a global, coordinated effort. Equal fitness evaluation encourages even behavior
among the different cells, and the even behavior results in a globally acceptable solution.
As we discuss later in this chapter, achieving diverse cell behavior that collectively coop-
erate to achieve a result is difficult, and is reliant on excellent fitness evaluation.

6.2 Challenges of the CPTS Framework

Constructing a framework for self-organizing a program on a parallel machine is difficult.
We can identify two major challenges that must be addressed in this type of framework.
The two challenges relate to a lack of global communication and the effectiveness of a
uniform fitness function for all cells. Nevertheless, these challenges must be overcome,
not circumvented, in order to make progress towards the goals of this research topic.

6.2.1 Lack of Global Information

Cellular programming evaluates each cell individually, using information available to that
cell only. The limited scope of the fitness function’s knowledge has implications for the
type of problems the framework is able to solve. This is illustrated by the inverted input
data problem in Chapter 4. While a cell can evaluate the collective correctness of its
immediate neighborhood, it has no knowledge of the size of the cell array. Therefore, it
cannot ensure global correctness.

This issue could quite easily be solved by introducing a small amount of global information
to the fitness functions. But while global information is possible to do, it is not relevant

51



for the goal of this research. We aim to solve problems at the global scale using local
interactions exclusively. Cellular programming seems to be limited to a class of problems
where each cell’s contribution to the solution can be evaluated locally.

Note that this restriction does not exclude interesting cooperative behavior or differenti-
ation on gene selections, however. In the cellular programming research with CAs (see
Section 2.4.4), cells communicated and agreed on behavior at a global scale by way of
local communications.

6.2.2 Uniform Fitness Function with Non-uniform Rules

While our cellular array may include a variety of differently behaving rules, the fitness
function is uniform across all cells. That causes cells tend to strive for uniform behavior,
and brings into question the usefulness of a non-uniform rule environment. We know from
previous work with CAs that cellular programming with uniform fitness functions may
produce varying cell behaviors that lead to successful collective cooperation. Achieving
this dynamic requires more work in structuring fitness functions and problem representa-
tions in our framework.

Uniform fitness functions is a necessity for this research. If we use varying fitness func-
tions for our cell array, we are essentially programming the machine manually. The prin-
ciple of self-organization would not be present, and the result would not be relevant for
our goals.

6.3 Future Work

Introducing the CPTS framework and demonstrating its features on the test problems of
Chapter 4 is only a minor step in the direction of our overarching research goals. The
framework needs a significant amount of further work for it to be useful for solving inter-
esting problems, and the challenges ahead are difficult to solve. The most important work
going forward with framework involves problem representation and fitness functions. Fur-
ther exploration into these topics was out of reach for this project.

6.3.1 Problem Representation

A critical attribute of frameworks of this type is evolutionary adaptability: its ability to
self-organize through a variation and selection process. While a cellular model forms a
good basis on which build an evolutionary adaptable framework, more research is required
on how to effectively represent behaviors and functionality.

The framework must be flexible enough to support a large variety of behaviors, and it must
facilitate gradual changes in behavior. The choices for cell neighborhood, tree topology,
and gene mapping play a role these aspects. Whether non-static tree topologies, to name

52



an example, may lead to greater flexibility in the framework is one of many possible paths
to explore.

6.3.2 Fitness Functions

Constructing a fitness function for local behavior, that will ultimately result in a desired
global behavior, is a difficult problem. A better understanding of what makes for a suc-
cessful fitness function is critical to the usefulness of non-programmable, evolvable frame-
works.

While the issue of problem representation relates to the framework in general, the fitness
function is specific to the problem we want to solve. Select problems may be able to exploit
more easily available fitness functions, but in order to apply the concepts investigated in
this project to a broad set of problems, we require more research in how to evaluate local
cells effectively.

6.4 Implementation

Implementation of the program structured by the CPTS framework is primarily for demon-
stration purposes. Currently, obstacles like effective problem representation and fitness
evaluation limit the CPTS framework’s usefulness. As such, further work should be con-
centrated primarily on making progress in those areas. When promising results are found,
a complete implementation that incorporates the principles shown in this project can result
in a working prototype in hardware.

6.5 Concluding Remarks

In this project we introduced a cellular programming-based framework designed for ho-
mogeneous parallel processors. We demonstrated its ability to spread useful genes and
develop a global behavior based on local interactions and evaluations. The results show
that the self-organizing process of the framework can program such a processor array. The
software organized by the framework was executed on the Epiphany parallel processor.

Three different problem configurations were solved by the framework, but not all of the
solutions were stable. Global information is unavailable to the cells, correct local behav-
ior may not necessarily guarantee correct global behavior. The problems also illustrate
challenges involving problem representation in the framework and contruction of effective
fitness functions at the local level. It is difficult to conclude the potential of this framework
without further progress with respect to these challenges.

53



54



Bibliography

[1] Adapteva. Parallella kickstarter project. https:
//www.kickstarter.com/projects/adapteva/
parallella-a-supercomputer-for-everyone/, 2012.

[2] Adapteva. Epiphany architecture reference, 2013. Available at http://www.
adapteva.com/docs/epiphany_arch_ref.pdf.

[3] Adapteva. Epiphany sdk reference, 2013. Available at http://adapteva.com/
docs/epiphany_sdk_ref.pdf.

[4] ARM. big.little technology moves towards fully heterogeneous global task
scheduling, 2013. Available at https://www.arm.com/files/pdf/
big_LITTLE_technology_moves_towards_fully_heterogeneous_
Global_Task_Scheduling.pdf.

[5] K. Asanovi, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape
of parallel computing research: A view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, Dec 2006.

[6] M. Conrad. The universal turing machine (2nd ed.). chapter The Price of Pro-
grammability, pages 261–281. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1995.

[7] P. A. Corning. The re-emergence of emergence: A venerable concept in search of a
theory. Complexity, 7(6):18–30, 2002.

[8] J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Proceed-
ings of the National Academy of Sciences, 92(23):10742–10746, 1995.

[9] T. De Wolf and T. Holvoet. Engineering self-organising systems. chapter Emergence
Versus Self-organisation: Different Concepts but Promising when Combined, pages
1–15. Springer-Verlag, Berlin, Heidelberg, 2005.

55

https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone/
https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone/
https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone/
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://adapteva.com/docs/epiphany_sdk_ref.pdf
http://adapteva.com/docs/epiphany_sdk_ref.pdf
https://www.arm.com/files/pdf/big_LITTLE_technology_moves_towards_fully_heterogeneous_Global_Task_Scheduling.pdf
https://www.arm.com/files/pdf/big_LITTLE_technology_moves_towards_fully_heterogeneous_Global_Task_Scheduling.pdf
https://www.arm.com/files/pdf/big_LITTLE_technology_moves_towards_fully_heterogeneous_Global_Task_Scheduling.pdf


[10] R. Doursat, H. Sayama, and O. Michel. A review of morphogenetic engineering.
Natural Computing, 12(4):517–535, 2013.

[11] M. J. Flynn. Parallel processors were the future ... and may yet be. Computer,
29(undefined):152,151, 1996.

[12] F. Heylighen. The science of self-organization and adaptativity. The Encyclopedia
of Life Support Systems, pages 1–26, 2001.

[13] W. Hordijk, J. P. Crutchfield, and M. Mitchell. Mechanisms of emergent computation
in cellular automata. In International Conference on Parallel Problem Solving from
Nature, pages 613–622. Springer, 1998.

[14] A. Khuong, G. Theraulaz, C. Jost, A. Perna, and J. Gautrais. A computational
model of ant nest morphogenesis. In Proceedings of the Eleventh European Con-
ference on the Synthesis and Simulation of Living Systems, Advances in Artificial
Life, ECAL2011, pages 404–411, 2011.

[15] C. G. Langton. Computation at the Edge of Chaos: Phase Transitions and Emergent
Computation. Physica D, 42:12–37, 1990.

[16] E. Manley and T. Cheng. Understanding road congestion as an emergent property of
traffic networks. In Proc of 14th World Multi-conference on Systemics, Cybernetics
and Informatics, pages 25–34, 2010.

[17] G. E. Moore. Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Cir-
cuits Society Newsletter, 11(5):33–35, Sept 2006.

[18] M. Moses, T. Flanagan, K. Letendre, and M. Fricke. Ant colonies as a model of
human computation. In Handbook of human computation, pages 25–37. Springer,
2013.

[19] A. Olofsson. Epiphany-v: A 1024 processor 64-bit risc system-on-chip, 2016. Avail-
able at http://www.parallella.org/docs/e5_1024core_soc.pdf.

[20] A. Olofsson, T. Nordström, and Z. Ul-Abdin. Kickstarting high-performance energy-
efficient manycore architectures with epiphany. In 2014 48th Asilomar Conference
on Signals, Systems and Computers, pages 1719–1726. IEEE, 2014.

[21] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, editors. Paral-
lel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations. MIT Press, Cambridge, MA, USA, 1986.

[22] M. Sipper. The Emergence of Cellular Computing. Computer, 32(7):18–26, 1999.

[23] M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming
Approach. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

56

http://www.parallella.org/docs/e5_1024core_soc.pdf


[24] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, and A. Stauffer.
A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems.
Evolutionary Computation, IEEE Transactions on, 1(1):83–97, 1997.

[25] C. Taylor and D. Jefferson. Artificial life as a tool for biological inquiry. Artificial
Life, 1(1 2):1–13, 1993.

[26] G. Tufte. From Evo to EvoDevo: Mapping and Adaptation in Artificial Development.
Evolutionary Computation, (October):219–238, 2009.

[27] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

57



58


	Introduction
	Background and Motivation
	Research Goals
	Thesis Structure

	Background Theory
	Modern Parallel Processors
	Homogeneous Multi-core Processors
	Heterogeneous Multi-core Processors
	Utilizing Multi-core Processors Efficiently

	Artificial Life
	Emergence
	Self-organization
	Evolution
	Genetic Programming
	Bio-inspired Computation

	Cellular Automata
	Cellular Computing
	The Cellular Automaton Model
	Signals as Emergent Behavior in CA

	Development of Structure in CA
	Uniform vs Non-uniform Rulesets
	Artificial Development
	Cellular Programming
	Cellular Programming Example: Majority Problem


	Hardware Platform: Epiphany-III
	Introduction
	Brief History
	Motivation

	Epiphany Architecture
	Overview
	Memory Architecture
	eMesh Network-On-Chip
	eCore CPU

	The Parallella Mini Computer
	Hardware


	Cellular Programming with Tree Structures
	Introduction and Motivation
	CPTS Framework
	Genetic Coding
	Evolutionary Operations and Fitness
	Continuous Input Configuration
	Single-phase Input Configuration
	How to Read the Graphs

	Continuous Input: Unchanged Data Stream
	Continuous Input: Inverted Data Stream
	Single-phase Input: Maximum Value

	Implementation
	Overview
	Host program
	Maximum Value Problem on Epiphany

	Discussion
	Structuring a program with the CPTS framework
	Unchanged Data Stream Problem
	Inverted Data Stream Problem
	Maximum Value Problem

	Challenges of the CPTS Framework
	Lack of Global Information
	Uniform Fitness Function with Non-uniform Rules

	Future Work
	Problem Representation
	Fitness Functions

	Implementation
	Concluding Remarks

	Bibliography

