
Computation-in-Materio: evolving
computation with light

Kristian Fladstad Normann

Master of Science in Computer Science

Supervisor: Stefano Nichele, IDI

Department of Computer Science

Submission date: February 2017

Norwegian University of Science and Technology

Summary

Evolution-in-Materio is a research field wherein evolutionary algorithms are used to seek
out configurations that allows one to make use of a physical material as a computational
device. The reasons for this are to seek out new viable materials for computation, as well
as to explore the range of usefulness of evolutionary algorithms in computation research.

The project looks at the possibility of developing a frequency discriminator in an amor-
phous silicon solar panel exclusively by applying light onto the solar panel.

This thesis presents successful, albeit unstable ’blinking led’ frequency discriminators
that are evolved in-materio.

i

ii

Sammendrag

I-materio-evolusjon er et forskningsfelt hvor evolusjonære algoritmer brukes til å lete etter
materialkonfigurasjoner som kan brukes til å behandle det fysiske materialet som en bereg-
ningsenhet. Grunnene til dette er en søken etter nye fysiske brukbare beregningsmaterialer,
så vel som det å oppdage nytteomfanget av evolusjonære algoritmer i datamaskinforskn-
ing.

Dette prosjektet ser på mulighetene for å utvikle en frekvens-diskriminator i ’amor-
phous’ silisium solcellepanel ved å anvende lys på solcellepanelet.

Denne oppgaven presenterer vellykkede, dog ustabile ’blinkende lys’ frekvens-diskriminatorer
som er utviklet i-materio.

iii

iv

Acknowledgements

I would like to thank my supervisor Dr. Stefano Nichele for his guidance and support over
the course of this thesis.

v

vi

Contents

Summary i

Sammendrag iii

Acknowledgements v

Table of Contents viii

List of Tables ix

List of Figures xiii

1 Introduction 1
1.1 Assignment Text . 1
1.2 Thesis Overview . 2

2 Background 3
2.1 Novel avenues of computing . 3
2.2 Evolutionary computation . 3

2.2.1 Evolutionary algorithms as tools 5
2.3 Evolution-in-Materio . 5

2.3.1 Eim experiment approaches . 5
2.3.2 History . 7
2.3.3 Nascence . 7
2.3.4 Material substrates . 8

2.4 Frequency discriminator . 9

3 Methodology 11
3.1 Mecobo . 12

3.1.1 Material under test . 13
3.2 Individual . 13

3.2.1 Pins . 13

vii

3.3 Evolutionary algorithm . 14
3.3.1 Fitness function . 15
3.3.2 mutation . 15
3.3.3 Generation selection . 16

3.4 Exploration of strategies . 17
3.4.1 Logic gates . 17
3.4.2 Crossing rate experiment . 23

4 Experiments 27
4.1 Experiment setup . 27

4.1.1 Evolutionary algorithm overview 27
4.1.2 Timing . 28

4.2 Experiment goals . 28
4.2.1 Experiment layout . 28
4.2.2 Representation of results . 29

4.3 An approximately smooth fitness function 29
4.3.1 Results . 29

4.4 A discrete fitness function . 38
4.4.1 Results . 38

4.5 Frequency discriminator: reduced scope 47
4.5.1 ”10” evolution target . 47
4.5.2 ”1010” evolution target . 48

5 Analysis 51
5.1 Viability of approach . 51

5.1.1 The fitness functions . 51
5.1.2 Apparent Ceiling of computations 52
5.1.3 Computation space . 52

5.2 Stability of results . 53
5.2.1 Dependencies between tests . 54
5.2.2 Environmental effects . 54

5.3 Using the Mecobo system . 54
5.4 Design constraints . 54

6 Conclusion 57
6.1 Future work . 57

Bibliography 59

Appendix 63
6.2 Fitness function smoothness curve . 63
6.3 Code repository and experiment results 64

viii

List of Tables

2.1 electrical parameters of the amorphous silicon solar panel 9

3.1 fitness value constituents. Each sub-test of a full fitness function run yields
an increment in one of the buckets. TP means the assessed logic value is
”1” and so is the expected value; the corresponding part of the fitness test
is ”1”. TN means the assessed value is ”0” and expected ”0”. FP means
assessed ”1”, but expected ”0” and FN means assessed ”0”, but expected
”1”. 11

3.2 Experimentally found parameters required for the EA 17
3.3 logic gates inputs and outputs . 19
3.4 individual with high fitness score . 19
3.5 3 good tests and 1 bad . 20
3.6 2 great tests and 2 bad . 20
3.7 Evolutionary algorithm parameters . 21
3.8 Fitness evaluation scheme, used to calculate the constituent parts for the

final single fitness function value for an individual 24
3.9 Experiment parameters . 24
3.10 Fitness evaluation most common in the experiment 25

4.1 General experiment parameters . 28
4.2 General experiment parameters . 48

ix

x

List of Figures

2.1 General behaviour of an evolutionary algorithm 4

2.2 Overview of the Evolution-in-Materio process. Artificial evolution is car-
ried out in simulation in the computer domain with the fitness function
being executed in the physical domain. 6

2.3 Visualization of varied silicon structures 9

2.4 Picture of an amorphous silicon solar panel of same type as the one used
in the project. 10

3.1 Picture of the Mecobo system in action. On the right is the Mecobo hard-
ware system(the green lights are leds for system heartbeat and are not con-
nected to experiments). Pins on the platform are connected by wire to a
led grid on the left on top of the cardboard box. The solar panel is inside,
in an effort to isolate it. Its blue ground and recording wires can be seen at
the bottom and are also connected to the Mecobo. 12

3.2 Overview of the experiment system . 13

3.3 Graphic example representation of an abstracted individual in the evolu-
tionary algorithm . 14

3.4 ER is short for Expected Results and represents the fitness test as a list
of tests, expecting step by step either logical ”1” or ”0”. AR is short for
Assessed Results and represents the list of assessed logic values 16

3.5 average output value in logical ”1” domain 19

3.6 fraction of the ”1” domain covered by the average value 20

3.7 OR gate generated over 130 generations with a population of 40 individuals 21

3.8 AND gate generated over 130 generations with a population of 40 individuals 22

3.9 XOR gate generated over 130 generations with a population of 40 individuals 22

3.10 100 generation evolutionary run with population size 20, attempting to
evolve a discriminator for frequency differences for blinking leds 25

xi

4.1 150 generation evolutionary run with population size 25, attempting to
evolve a discriminator for blinking leds, where the frequency difference
pair is 100Hz and 1000Hz. 30

4.2 Comparison between best individual score from evolution and same indi-
vidual run through the fitness function again 10 times. 31

4.3 50 generation evolutionary run with population size 10, attempting to re-
evolve a discriminator for blinking leds, where the frequency difference
pair is 100Hz and 1000Hz. Best individual from original evolution seeded
in and cloned as starting population . 32

4.4 150 generation evolutionary run with population size 25, attempting to
evolve a discriminator for blinking leds, where the frequency difference
pair is 200Hz and 1500Hz. 33

4.5 Comparison between best individual score from evolution and same indi-
vidual run through the fitness function again 10 times. 34

4.6 50 generation evolutionary run with population size 10, attempting to re-
evolve a discriminator for blinking leds, where the frequency difference
pair is 200Hz and 1500Hz. Best individual from original evolution seeded
in and cloned as starting population . 35

4.7 150 generation evolutionary run with population size 25, attempting to
evolve a discriminator for blinking leds, where the frequency difference
pair is 300Hz and 1800Hz. 36

4.8 Comparison between best individual score from evolution and same indi-
vidual run through the fitness function again 10 times. 37

4.9 50 generation evolutionary run with population size 10, attempting to re-
evolve a discriminator for blinking leds, where the frequency difference
pair is 300Hz and 1800Hz. Best individual from original evolution seeded
in and cloned as starting population . 38

4.10 150 generation evolutionary run with population size 25, attempting to
evolve a discriminator for blinking leds, where the frequency difference
pair is 100Hz and 1000Hz. 39

4.11 Comparison between best individual score from evolution and same indi-
vidual run through the fitness function again 10 times. 40

4.12 50 generation evolutionary run with population size 10, attempting to re-
evolve a discriminator for blinking leds, where the frequency difference
pair is 100Hz and 1000Hz. Best individual from original evolution seeded
in and cloned as starting population . 41

4.13 150 generation evolutionary run with population size 25, attempting to
evolve a discriminator for blinking leds, where the frequency difference
pair is 200Hz and 1500Hz. 42

4.14 Comparison between best individual score from evolution and same indi-
vidual run through the fitness function again 10 times. 43

4.15 50 generation evolutionary run with population size 10, attempting to re-
evolve a discriminator for blinking leds, where the frequency difference
pair is 200Hz and 1500Hz. Best individual from original evolution seeded
in and cloned as starting population . 44

xii

4.16 168 generation evolutionary run with population size 25, attempting to
evolve a discriminator for blinking leds, where the frequency difference
pair is 300Hz and 1800Hz. Be advised the y-axis differs from the other
graphs in only showing range 6-8 on the fitness function. 45

4.17 Comparison between best individual score from evolution and same indi-
vidual run through the fitness function again 10 times. 46

4.18 50 generation evolutionary run with population size 10, attempting to re-
evolve a discriminator for blinking leds, where the frequency difference
pair is 300Hz and 1800Hz. Best individual from original evolution seeded
in and cloned as starting population . 47

4.19 Final generation number for successful evolutions that evolved a ”10”
blinking led frequency discriminator . 49

4.20 Final generation number for successful evolutions that evolved a ”1010”
blinking led frequency discriminator . 50

6.1 Distribution of theoretically obtainable fitness scores given a fitness test
with binary representation ”1010101010” and the fitness function F where
F is F = tp∗tn

(tp+fp+1)∗(tn+fn+1) . The beginning left side of the plot shows
all the instances where the numerator is zero and then the plot climbs all
the way up to a maximum score where the correctness buckets look thusly:
tp : 5, tn : 5, fp : 0, fn : 0 making the fraction 5∗5

(5+0+1)∗(5+0+1) →
25
36 ≈ 0.7 as can be seen on the right side of the curve. The curve is not
smooth, but possibly smooth enough to allow for somewhat fluid fitness
score movement. 63

xiii

xiv

Chapter 1
Introduction

This project is an exploration of the viability of using evolutionary algorithms to develop
computation in an unorthodox physial material. The traditional engineering approach
would entail studying the materials to be used, learn how to carefully manipulate them
and then, use a top-down design approach to develop the system. An evolutionary design
process on the other hand, takes inspiration from natural evolution and endeavours to find
functional designs with a ”blind-yet-guided” search for properties to exploit in the system
it is working on.

This thesis explores the possibility of using Evolution-in-Materio to generate compu-
tation in an amorphous silicon solar panel by using controlled exposure of light. This is
in an effort to learn if it is actually possible to develop a genuine system through merely
applying light in a controlled manner.

1.1 Assignment Text

Keywords: Evolution in Materio, Cellular Automata, Evolutionary Computation, Com-
plexity.

In this research project we try to exploit computational properties of unconventional
materials (materials usually not considered as a computational substrate). Such materials
may offer computation at extreme low cost and may also enable us to do computation that
is hard (or impossible) on a von Neumann stored program machine. Previously investi-
gated materials are carbon nanotubes/polymer composites, liquid crystals, gold nanopar-
ticles. Currently we explore possible computational properties of solar panels (thin film
amorphous silicon). In 2010 a first version of a platform was made. This system consists
of a PCB, including an Atmel microcontroller and a Xilinx FPGA that acts as an interface
between a PC and a material. The goal of the project is: Investigate the possibility of doing
computation with light (LEDS / lasers) in amorphous silicon solar panels.

1

Chapter 1. Introduction

1.2 Thesis Overview
The experiments presented in this thesis are all variations of blinking led frequency dis-
criminator. The differences are between fitness function differences and differing [high
frequency, low frequency] pairs. The working hypothesis is that Evolution-in-Materio is
feasible for the material-under-test, going by the experimental process laid out in Chapter
3 and Chapter 4.

The thesis is laid out ass follows: This chapter presents the central point of the project
and the assignment text. Then follows the background chapter. It lays out the themes of
evolutionary computation, Evolution-in-Materio state of the art and modern approaches to
material substrates for research in Evolution-in-Materio. Then follows the Methodology
chapter, detailing the developed evolutionary algorithm, how individuals are represented
and lastly some of the experimental strategies that led up to the final experiments. After
that comes the Experiments chapter, showing all the experimental results. Then follows the
Analysis chapter, with a critical attempt at understanding the results. Finally a conclusion
is drawn with some suggestions for future work.

2

Chapter 2
Background

2.1 Novel avenues of computing

The process of computing can occur in all sorts of forms, but the most common one is
in the form of transistor based von Neumann[17] silicon microchips. That field has gone
through decades of optimizations in speed of computation, throughput, cache-miss han-
dling and energy efficiency, but the core model[9] is quite the same.

There are generally speaking, two approaches to unconventional computing. There is
the effort of implementing well known modes of computation in new material substrates,
which might allow for improved physical computers, yet still be compatible with the
wealth of existing software. An example of such an event is the invention and subsequent
transition to transistor-based solid state logic from vacuum-tube based computers[20].
Then there is the avenue of alternative models of computation. Developing systems like
cellular automata[10], [28] and [29]. Extremely parallel systems that might possibly be
appropriate for developing interesting new software, but unlikely to be very compatibe
with pre-existing Von Neumann based systems.

2.2 Evolutionary computation

Evolutionary computation is the general term for the type of computation where an opti-
mizing/searching/adapting process takes place that is guided by some meta-heuristic func-
tion.

One such algorithm is the genetic algorithm. Conceptually reminiscent of Darwinian
evolution by natural selection, it is an algorithm type where the underlying problem is
attempted solved by creating a population of different abstracted individuals and simulat-
ing a cycle of life and death for the population; generating a new generation on the basis
of a fitness function. But where the fitness function in natural selection could be seen
as a function of successful survival and mating, the fitness function in the genetic algo-
rithm will instead relate to the underlying problem attempted to solve. With the differing

3

Chapter 2. Background

individuals representing solution attempt for the problem, receiving a fitness score that
seeks to represents how good a solution the individual is. A general example evolutionary
algorithm can be seen in figure 2.1.

Figure 2.1: General behaviour of an evolutionary algorithm

Initialize

The initialization of the population will typically mean either beginning at some start point
chosen by the caller of the algorithm, or simply randomizing the population.

Evaluate

Now each individual in the population is evaluated by the fitness function. If the goal is to
derive a circuit that can perform the logical operation XOR on two 1-bit logical inputs and
each individual is a circuit, then the evaluation function might run all the possible inputs
on an individual and assign scores based on correctness/errors.

Termination condition

The algorithm will ideally run until at least some individual has a high enough fitness
score that corresponds to a successful design from the view of the caller of the algorithm.
However, there is inherently no guarantee that any individual will achieve a high enough
fitness score and so one might add some maximum number of allowed iterations before
terminating.

Select

In each iteration, a number of current individuals are selected to function as parents for the
next generation or merely be promoted to the next generation. This could mean picking
only one individual, the one with the best fitness score, some n number of top individuals
or possibly probabilistic ones.

4

2.3 Evolution-in-Materio

Recombine

Recombination or crossover is the part of the algorithm where offspring individuals are
created from parents. Its use may be stochastic by e.g. pairwise iterating over the par-
ents and have the offspring probabilistically inherit from one or the other. Alternatively
Recombine might not be used at all.

Mutate

The offspring is then typically subjected stochastically to one or more changes.

2.2.1 Evolutionary algorithms as tools
Evolution as an engineering and research tool is novel because it provides an orthogonal
insight into development of new designs. That is, it differs from normal top-down re-
search/engineering thinking. Where normal, human design strategies tend to try to strate-
gize and lay overarching plans for how to reach a goal, an evolutionary approach is one
that is blind, yet guided by a fitness function that all individuals(be they actual individuals
or abstractions over the actual problem) are selected by.

Referring back to section 2.1, evolutionary algorithms present something of a third
approach to computing research. By tapping into the workings of an evolutionary algo-
rithm while seeking to design a computational system, then the scope of possible solutions
might be increased. This could well be the case whether a brand new type of system is
attempted developed, as in the case of this project, but can just as well be the case in the
development of traditional systems. An example of the latter is the development of an
X-band antenna[16] by NASA for use on NASA’s Space Technology 5 (ST5) spacecraft.
An evolutionary algorithm was set to search for an antenna design and managed to come
up with a more performant design than the ones designed by humans.

2.3 Evolution-in-Materio
Evolution-in-Materio (EiM)[22] is a computer research area that consists of research into
interesting and unorthodox physical on the one hand, and substrates to act as computing
materials on the other, using evolutionary algorithms as a means of implementing the com-
putations in the materials, see figure 2.2.

2.3.1 Eim experiment approaches
The paper ”Evolution-in-materio: Evolving computation in materials”[22] describes how
there are different types of approaches to an evolutionary development of a system.

Entirely in software

Entirely digital systems. The EA works on some software problem, e.g. difficult types of
search and optimization problems.

5

Chapter 2. Background

Figure 2.2: Overview of the Evolution-in-Materio process. Artificial evolution is carried out in
simulation in the computer domain with the fitness function being executed in the physical domain.

Evolving the blueprint

The software evolution of a physical product. This can refer to a blueprint, as in the case
with the NASA antenna [16]. What becomes notable here is the necessity of having a clear
understanding of the environment the finished product will be in. Failure to account for
stress, heat, pressure etc. that real world physical objects are subjected to, can render a
design useless. This means that there is some amount of pressure to account for such in
the selection process.

Evolving the physical object in intervals

Evolution entirely in physical material would be getting close to biological evolution by
natural selection. Or as with Pask, a case of evolution guided by an overmind. However,
an intermediate method of approach(called embodiment level 2.5 in [22]) between the
”Evolving the blueprint” approach and ”entirely in the physical objects” is one where the
current state of the design is run as a physical object on e.g. a generation by generation
basis, or individual by individual basis. The major two-fold reason for this(and likely the
reason why much of the research in the field of EiM is done in this way) is that it allows
for powerful software abstractions that maintain a model of the developing system as it
develops. This way, the system can be iteratively tested, giving valuable feedback to the
model, possibly allowing it to implicitly take in to account the various physical complexi-
ties and stresses that the physical evolved object is subjected to(likely much better than the

6

2.3 Evolution-in-Materio

”Evolving the blueprint” approach). This gives a real world viability to the system much
more immediately.

This project makes use of the latter approach. Each individual in the population is
tested physically during the run of the fitness function, in an effort to incorporate the
presumed varied capacitance and resistance in the amorphous silicon.
This work will make use of mecobo[19]. It is a hardware experiment platform (see figures
3.1 and figure 3.2, chapter 3.1) that makes it easier to connect to some physical material
so that the evolutionary algorithm may be run on it to create computation. Specifically, it
allows one to connect electrodes to the material that act as input, output and configuration
wires.

2.3.2 History
Evolution-in-Materio can roughly be said to have started with the work of Gordon Pask
in 1958 when he was able to develop a set of dendritic wires to behave as frequency
discriminators[24]. Pask’s endeavor was to develop a device that could distinguish be-
tween various types of sound or magnetic fields. The manner by which he achieved this,
was through training his dendritic wires by what today is most recognizable as something
resembling a hill-climbing algorithm. Changing some resistor values at a time and evalu-
ating the system on a trial and error approach. A development method that was quite new
at the time. In the end the device could be discriminate between tones of 50Hz and 100Hz.

The field does have some more modern beginnings as well though. The term itself was
coined in 2002[21], but the most modern beginning was likely in 1996 with Thompson.
Thompson was able to successfully use artificial evolution on a field programmable gate
array (FPGA) to make a square waves discriminator that could discriminate between 1kHz
and 10kHz waves[27]. An interesting aspect of that evolutionary run is that Thompson dis-
covered that the evolved design relied on more than just the logical domain. It depended
on physical properties of the FPGA. While in isolation, such an unexpected development
might be a detriment for a design, it does showcase part of the reason for conducting
evolution-in-materio experiments in the first place. Recognizing that the evolution might
surprise.

2.3.3 Nascence
NAnoSCale Engineering for Novel Computation using Evolution(NASCENCE) was an
Evolution-in-Materio research project with the stated goal: ”The aim of this project is to
model, understand and exploit the behaviour of evolving nanosystems (e.g. networks of
nanoparticles, carbon nanotubes or films of graphene) with the long term goal to build
information processing devices exploiting these architectures without reproducing indi-
vidual components”[4].

Mecobo open source experimental platform

The Mecobo platform is a hardware and software platform for experiments in Evolution-
in-Materio, developed by Lykkebø et al[19]. It is designed so that it can be used with all

7

Chapter 2. Background

sorts of physical substrates, see figure3.1, chapter 3.1. The system allows for applying
controlled, finely specified electrical inputs onto whatever material-under-test.

2.3.4 Material substrates
The research into the physical materials that underlie computation is interesting first and
foremost because there is no comprehensive knowledge on the computability of matter in
general. This could be very important, as understanding what physical properties can be
exploited in computation could result in great advantages over current computers, not to
mention potential improvements in current computers themselves from a greater under-
standing of silicon based computers and their properties. By finding other mediums of
performing computation we might also be able to find ways of building computers that do
not have to rely on highly exhaustible resources like rare metals.

The NASCENCE project has a website listing the attributes of the ”ideal material”[7]

• Has a complex, configurable, semi-conducting structure

• Responds instantly and consistently to a wide range of voltages

• Relaxes into an un-configured or random state when voltage is removed

• Robust to changes in the environment (light, heat, electromagnetic signals etc)

• Consistent between devices

Some examples of such mediums are liquid crystal, water[11] and carbon nanotubes-based
computers[23].

Liquid crystal computers

Liquid crystal has been shown repeatedly to be a very interesting substrate for compu-
tation. They have been used to evolve logic gates[13], a robot controller[15] and a tone
discriminator[14].
The special thing about liquid crystal as a computation medium is that it can exist in
a mesomorphic state(having properties of liquids and of solid crystal). The material is
somewhat stable, but can be altered by induced current. In terms of ”The ideal material”,
this makes for a slight challenge, as the material may relax into a different state when the
input current stops being applied. This may warrant developing some manner of a ”reset”
functionality should complex development be undertaken. On the other hand this behavior
may be seen as an advantage if the state transitions can be found exploitable.

Carbon nanotube robot controller

In [23], Mohid and Miller were able to evolve a sophisticated robot controller for a swarm
bot that was able to move quite well in actual physical settings with obstacles.

8

2.4 Frequency discriminator

Max power 0.5W
Working voltage 1.5V
Working current 250mA

Table 2.1: electrical parameters of the amorphous silicon solar panel

Specifically, single-walled carbon nanotubes are interesting because they may exhibit
varied electrical conductivity and semiconducting capabilities. This makes them very in-
teresting as a computation medium research subject. For example by arranging many of
them in a random network and experimenting on them to see if they can act as some spe-
cific type of computing device[26]

Solar panels

This project uses solar panels(purchased on Alibaba[5]) as the substrate for computation.
An interesting aspect of this is that they can be viewed as already having a skeletal struc-
ture in place when it comes to computation. That is, they can receive photons as input and
subsequently output a current. Amorphous silicon forms a continuous random network,
see figure 2.3. On account of this randomness, some of the atoms have a dangling bond,
which yields anomalous electrical behaviour. What remains then is to investigate the capa-
bilities of amorphous silicon solar panels and whether it is possible to exploit the potential
varied capacitive and resistive properties in the material for computational use.

The solar panel is subject to the constraints in table 2.1 and can be seen in figure 2.4.

Figure 2.3: Visualization of varied silicon structures

2.4 Frequency discriminator
In its simplest form, a frequency discriminator is a device that, when presented with one
of two signals, returns a different response for each signal. Specifically in this project, the
amorphous silicon solar panel is evolved to output different signals based on a given pair
of frequencies of blinking leds.

9

Chapter 2. Background

Figure 2.4: Picture of an amorphous silicon solar panel of same type as the one used in the project.

10

Chapter 3
Methodology

The approach when conducting the experiments has been to construct a base evolutionary
algorithm and alter parameters for differing experiments.

The experiments all followed the same procedure of creating a starting population of
individuals that each represent an electrical configuration. Then they were run through the
evolutionary algorithm, that would either end if any individual reached maximum fitness
score or a given maximum number of generations. At this point the best performing indi-
vidual would be logged.

The fitness function is what is specifically run on the Mecobo. The abstract pin values
of an individual are issued as particular electrical signals on the corresponding physical
pins. The configuration pins run with their values and the input pin is configured with the
fitness test. Over the course of such a run the recording pin records the voltage output from
the solar panel for analysis.

That analysis consists of first transforming the buffer of recorded voltage points from
the solar panel into something more analyzable, and the second part consists of taking the
”treated” buffer and counting up four counters used to determine the fitness score of an
individual, see figure 3.1. In a given run of the fitness function, these counters are incre-
mented in accordance with a comparison between the assessed logic values of the treated
buffer and expected logic result. The counters are then used to calculate the fitness score
of the relating individual.

True Positive(TP)
True Negative(TN)
False Positive(FP)
False Negative(FN)

Table 3.1: fitness value constituents. Each sub-test of a full fitness function run yields an increment
in one of the buckets. TP means the assessed logic value is ”1” and so is the expected value; the
corresponding part of the fitness test is ”1”. TN means the assessed value is ”0” and expected ”0”.
FP means assessed ”1”, but expected ”0” and FN means assessed ”0”, but expected ”1”.

11

Chapter 3. Methodology

3.1 Mecobo

The Mecobo platform[19] is a hardware/software system for conducting EiM experiments.
The hardware system allows for issuing and reading arbitrary electrical patterns on ex-
posed pins. By connecting pins to the leds and the solar panel by wire, see figure 3.1,
experiments can be conducted where the leds emit controlled light patterns onto the solar
panel, and the solar panel voltage can be recorded for analysis and be used in the experi-
ments.

Figure 3.1: Picture of the Mecobo system in action. On the right is the Mecobo hardware system(the
green lights are leds for system heartbeat and are not connected to experiments). Pins on the platform
are connected by wire to a led grid on the left on top of the cardboard box. The solar panel is inside,
in an effort to isolate it. Its blue ground and recording wires can be seen at the bottom and are also
connected to the Mecobo.

The total system, see figure 3.2, is a client/server pair that uses thrift[1] for commu-
nication, allowing the user to write the evolution experiment as a python[2] script, and
by running it, have thrift send it to the server. Server and client both used the Ubuntu[3]
operating system. Server side, the Mecobo[19] part of the script is turned into an elec-
trical specification for the pins to be used. Some are used for issuing electrical signals
to induce the material-under-test and some can read voltage values from the material at
specific points. The experiment platform was Mecobo v4.1[6].

12

3.2 Individual

Figure 3.2: Overview of the experiment system

3.1.1 Material under test
The material under test is an amorphous silicon solar panel, see chapter 2.3.4: Material
substrates. The field of Evolution-in-Materio[22] entails less focus, if not none on studying
the capabilities of the solar panel. Instead, the project works with the hypothesis that is
may be possible to induce controlled varied resistance and capacitance in the amorphous
silicon structure. The evolutionary algorithm then uses the fitness function to search for
such a configuration that is meant to achieve the overarching computation goal.

3.2 Individual
The devised evolutionary algorithms in this project work on a population of individuals.
An individual here is an abstraction over a set of electrical pins. Specifically, it can be seen
as consisting of three parts:

• a collection of electrical pins on the Mecobo system

• a time range for each of those pins

• and a set of voltage patterns for each of those pins over the course of that time

The constructor function for an individual takes as argument, a list of pin numbers to use,
the number of configuration pins to create and the number for input pins to be created.
This function randomly assigns the different types of pins accordingly.

3.2.1 Pins
The pins belonging to the abstract individual are input and configuration. In addition there
are pins for electrical grounds and a recording pin connecting the Mecobo and the solar
panel; allowing for reading voltage points during runs of the fitness function. The ground
and recording pins are constant set for all experiments and are thus not subjected to the
evolutionary algorithm.

13

Chapter 3. Methodology

Input pin

The input pin, or pins, depending on the required number of input pins for the given
experiment, is a pin that is run with the fitness function(FF). That is, the FF might be
testing the solar panel on its ability to discriminate between two differing frequencies of a
blinking led, where the current experiment works with a set pair of frequencies to test.

The FF may be represented as something like ”1010”. This means ”high frequent
signal, then low frequent signal, twice” in succession. Each with equal time slice. Looking
at figure 3.3(ignoring input pin 2) considering input pin 1, each quarter slice of the time
between t start and t end will be assigned the corresponding frequency signal.

Figure 3.3: Graphic example representation of an abstracted individual in the evolutionary algorithm

Configuration pin

The configuration pins act as the genotype of the evolutionary algorithm. Upon initial-
isation, after being assigned to some physical pins, each configuration pin is assigned a
list of randomly constructed ”voltage commands”. That is, a time-wise sequential list of
varied electrical commands throughout the given fitness function run; a visual example of
which can be seen in figure 3.3, ”Config 1,2,k”. It is primarily through manipulation of the
configuration pins, that the evolutionary algorithm works towards improved fitness scores.

3.3 Evolutionary algorithm

The evolutionary algorithm developed in this project is a simple genetic algorithm in which
a starting population of individuals is constructed either by randomly generating each in-
dividual, or by seeding in a pre-existing individual and cloning it. Then that population
enters an evolution loop for the duration of the experiment. The main experiments typi-
cally had a ceiling of 150 generations or if the maximum fitness score was achieved. At
either point the loop would break and final logging would be conducted before finishing.

14

3.3 Evolutionary algorithm

3.3.1 Fitness function
The fitness function is where the hardware meets the individual-under-test. It entails run-
ning the given input pin with the fitness test. At the same time, the configuration pins are
run with their current state of frequencies and the recording pin is run at its given record-
ing frequency. Then, during analysis, the buffer of recorded values is split up in slices
corresponding to the parts of the fitness test and each part gets analyzed and evaluated
accordingly.

Splitting the output buffer

When the physical part of the experiment is over, the output buffer contains sampled volt-
age point data from the solar panel. This is then passed to an analysis function that splits
up the buffer in slices corresponding to the fitness test. If the experiment is about evolving
a frequency discriminator and the fitness test was ”10” where ”1” denotes a high frequent
signal and ”0” denotes a low frequent signal than the output buffer is accordingly split
in two. The buffer slices that correspond to each fitness test part are then sent along for
analysis.

Frequency domination assessment

Each solar panel voltage buffer slice that corresponds to a specific frequency sub-test is
then used to calculate the fourier transform of that slice via the Fast Fourier Transform[12].
That fourier transform is inspected to find the Dominating frequency, which in turn is
compared to the average value of the high frequency, low frequency pair used for that
particular experiment. The transformed buffer slice is then assigned an assessed logic
value based on the function in equation 3.1.

Assessed logic value =

{
0 if Dominating frequency < logical high+logical low

2

1 else
(3.1)

Full individual assessment

In order to be able to calculate the final fitness value for the individual, one must iterate
through all the slices of the fft treated solar panel voltage buffer data, calculate the assessed
logic value, see equation 3.1, thereby creating a list of assessed logic values.

Then what remains is to count up the four fitness constituent ”buckets”, see table 3.1.
This is done by step-wise iterating over the list of assessed logic values in tandem with the
actual fitness test and incrementing the appropriate counter depending on match, see the
algorithm in figure 3.4. When this is complete the counters are passed to the final fitness
score calculator.

3.3.2 mutation
Mutation of an individual occurs in the following manner. First, a random number of con-
figuration pins are selected. Then, each of the selected pins are reassigned a randomized

15

Chapter 3. Methodology

Figure 3.4: ER is short for Expected Results and represents the fitness test as a list of tests, expect-
ing step by step either logical ”1” or ”0”. AR is short for Assessed Results and represents the list of
assessed logic values

frequency, subject to the experiment frequency constraints.

Frequency constraints

The main experiments make use of digital signals with specified voltage frequencies.
Specifically, the configuration pins and the input pin. The possible assignable frequency
range for a pin was set to the range 1Hz to 2500 Hz. Specifically, on the Mecobo system
this means that the given pins will play square waves with the given frequency as the cycle
time[6].

3.3.3 Generation selection

The generation-to-generation selection is a simple scheme where the best individual in a
generation is promoted to the next generation and cloned such that the number of individ-
uals in the population is constant. In that new generation, every individual, except one, is
mutated.

16

3.4 Exploration of strategies

Parameter value
Min. amplitude value 40
Min. V oltmecobo value -3.43V
Max. amplitude value 190
Max. V oltmecobo value 2.45
logical 1 max value 0.267
logical 0 min value -0.015
logical threshold, between high and low, average 0.126

Table 3.2: Experimentally found parameters required for the EA

3.4 Exploration of strategies
Over the course of the project, several approaches were taken in an attempt to evolve
computation in the solar panel. What follows are briefly, two of the attempted strategies.

3.4.1 Logic gates

The first approach was to try to evolve the logic gates OR, AND and XOR in the solar panel
where the signals sent to Mecobo were of type Constant(which means analog signal) and
assign the signals amplitudes.

Description

Through some experimenting with different frequencies and amplitudes(Mecobo software
parameters for giving a pin voltage and time commands) it became clear that an amplitude
range of [40, 190] was what gave the most useful and discernible results. Specifically, by
reading the ”mecobo user manual.txt” on the mecobo development site[6] it was found
that the mecobo amplitude range was [0, 255], which corresponds to a voltage range of
[−5V, 5V]. This means that the amplitude range of [40, 190] corresponds to the voltage
range [−3.43V, 2.45V].

At this point, in order to meaningfully evolve the logic gates it became necessary to
find parameters for a maximum and minimum value such that logical ”1” and ”0” could
be assigned on a spectrum. This was achieved by running one test where the maximum
number of possibly assigned pins(and thereby LEDs) were all turned on at maximum am-
plitude and taking the average of the recorded output. Then one where all were turned on
at the minimum amplitude and taking the average(see table 3.2).

With these tests done it was possible to perform the EA using the established param-
eters (see table 3.2). For the sake of simplification, the output range was divided into two
equal halves for the logical ”0” and ”1” decoding(see logical threshold, table 3.2).

With that done it became possible to represent the inputs ”0” and ”1” in the system.
Some assigned pin(and subsequently led) would for the input ”1” then be assigned a con-
stant voltage with amplitude 190(2.45V) over the course of the entire test, and accordingly,

17

Chapter 3. Methodology

the ”0” input would denote amplitude 40(-3.43V).

The representation of an individual in this experiment was the same as in section3.2,
with two exceptions.

1. The configuration pins could contain differing amplitude values over the course of
differing time-slices, subject to the global time of the fitness test, as the example in
figure 3.3 shows.

2. The mutation scheme, which worked chronologically as follows:

(a) The individual has a 90% chance of randomly switching the place of two pins
in use(e.g. from figure 3.3, switching pin 1: input 1, and pin4: config 2)

(b) Then the individual will pick randomly a pin number it uses and see if the
pin is a config pin. If it is, there is a 90% chance of calling the [time, volt]
sequence mutation function of that pin. If this happens, one of the [time,volt]
sequence slices is picked at random(e.g. time,volt slice ”v6” in pin 4 figure
3.3). Then there is first a 70% chance of getting a new random volt assigned.
Then there is a 70% chance of the time, volt slice to expand or contract by up
to one thousandth of the total time range.

Fitness function

The tests in these experiments were centered around evolving OR, AND and XOR gates.
As such, the test of an individual was a set of four tests where the logic gate was tested
against the expected [input,output] pairs, see table 3.3.
The fitness score for an individual is calculated by finding the average value of the output
recording points assigned by summing the following parts:

1. does the average value of the output recordings place it in the correct half of the
spectrum? If so, the score is assigned 2 points, see figure 3.5. If it is not, then the
score is assigned -2 points.

2. Then a score is assigned based on how well, or bad the score is in terms of how
close the average value is to the max or min values, see figure 3.6. If the average
was correct from the previous part, then the assigned value now is a fractional value
in the area [1.0, 2.0] and correspondingly for a wrong average, [−2.0,−1.0].

3. Since there are four input,output tests for the logic gates, see table 3.3, each of which
is scored on the two previous points, the final score, all of their part sums summed
together, may also receive a final bonus if all the tests succeeded. This bonus is 1.5
points.

This means that the theoretical best individual may achieve a score of 4*2 + 4*2 + 1.5 =
17.5 fitness score and the worst theoretical score is 4*-2 + 4*-2 + 0 = -16

What follows are three example scores for individuals under this fitness scheme:
high value individual: An individual with 4 correct and very high fractional score on the
tests can expect something in the vicinity of the score in table 3.4:

18

3.4 Exploration of strategies

Figure 3.5: average output value in logical ”1” domain

Table 3.3: logic gates inputs and outputs

Input 1 Input 2 OR AND XOR
0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Three good scores and one bad

An individual that scores decently on three of the tests but badly incorrect on one might
score similar to table 3.5

Two excellent scores and two barely incorrect

An individual that scores very well on two of the tests and just barely incorrect on two
might score similar to table 3.6

Table 3.4: individual with high fitness score

test input 00 01 10 11 part sum
correctness score 2 2 2 2 8
fractional score 1.8 1.83 1.84 1.92 7.39

bonus 1.5 1.5
Total Fitness score 16.89

19

Chapter 3. Methodology

Figure 3.6: fraction of the ”1” domain covered by the average value

Table 3.5: 3 good tests and 1 bad

test input 00 01 10 11 part sum
correctness score 2 2 2 -2 4
fractional score 1.8 1.83 1.84 -1.8 3.67

bonus 0 0
Total Fitness score 7.67

Experiments

Lastly, the EAs are called using the parameters in table 3.7.

OR gate:
The OR gate experiment (see figure 3.7) found a computationally stable solution quickly,

and an absolute best individual on the 77th generation with fitness score 17.09.

Table 3.6: 2 great tests and 2 bad

test input 00 01 10 11 part sum
correctness score 2 2 -2 -2 0
fractional score 1.95 1.94 -1.05 -1.02 1.82

bonus 0 0
Total Fitness score 1.82

20

3.4 Exploration of strategies

Table 3.7: Evolutionary algorithm parameters

Parameter configuration
population size 40
Number of maximum generations 130
Number of pins assigned to an individual 6(2 input, 4 config)

Figure 3.7: OR gate generated over 130 generations with a population of 40 individuals

AND gate:
The AND gate experiment (see figure 3.8) found a computationally stable, though

incomplete solution quickly. From generation 27 to the absolute best individual on gener-
ation 128 at a fitness score of 7.96

XOR gate:
The XOR gate experiment (see figure 3.9) found a computationally stable, though in-

complete solution quickly by generation 21, and an absolute best individual on the 60th
generation with fitness score 7.70.

The initial randomization does much of the job. This has likely to do with a big spread
from the randomization initialization function and that the population size of 40 is big
enough to get a wide variety of fitness values. After that though there is little improvement
on the best individual. Though as all three tests show, a lot of changes still occur in
the populations and short steps of changes can lead the worst individual measurement to
plunge.

21

Chapter 3. Methodology

Figure 3.8: AND gate generated over 130 generations with a population of 40 individuals

Figure 3.9: XOR gate generated over 130 generations with a population of 40 individuals

22

3.4 Exploration of strategies

3.4.2 Crossing rate experiment
The second approach was to try to make a frequency discriminator by using a crossing
rate scheme. Attempting to assess differing frequencies by finding an appropriate crossing
point and counting crossings over it.

Description

The crossing rate experiment works as follows: By slicing the output buffer(of recorded
voltage measurements from the solar panel) corresponding to each sub test of the input test.
The next part is to iterate through each slice and calculate the average voltage(AVG)in the
slice and use that as a constant for the crossing rate scheme. After that, each recording
point in the slice is evaluated step-by-step and it is observed whether the transition from
one point to the next crosses the AVG line. Each crossing increments a crossing counter,
see equation 3.2.

A simple example would be if the average voltage value is 0.39 volt. Point 1 from
the recording buffer slice has value 0.6 volt and point 2 has value 0.31 volt. That means
that there is a crossing. However, if point 2 has value 0.45, there is not a crossing and the
crossing counter is not incremented

Crossing counter (CC) = CC + 1 if crossing (3.2)

Once the slice of the output buffer has been evaluated, a crossing rate fraction is calcu-
lated by taking the crossing rate and dividing it by the n number of crossings in the buffer
slice, see 3.3.

Crossing Rate (CR) =
CC

n
(3.3)

Individual configuration

Each individual is structured with a simple time-slice system. Each of its pins, except the
designated input pin, is allotted one frequency over the course of the entire time span of
the fitness test.

Fitness function

The fitness function is in effect, a collection of calculations. Each calculated for each
individual in a generation.

Then, another threshold is created to denote the point where a crossing rate is consid-
ered logical ’high’ or ’low’. This threshold was set to 10% for the CR, or 0.1.

With each slice of the output samples going through this calculation, the individual un-
der test gets assigned four counters for seeing how it performs in the final fitness function
calculation. That is, whether the crossing rate of each slice is evaluated to logical 0 or 1,
and whether that was the expected result or not(the expectation being the corresponding
value in the input vector, see table 3.9), see table 3.8.

23

Chapter 3. Methodology

expected result actual result counter
1 1 true positive += 1
1 0 false negative +=1
0 1 false positive +=1
0 0 true negative += 1

Table 3.8: Fitness evaluation scheme, used to calculate the constituent parts for the final single
fitness function value for an individual

Table 3.9: Experiment parameters

Parameter value
Input vector 1010101010
Input: logical low frequency 20
Input: logical high frequency 500

Finally those four counters are used in formula 3.4 to calculate the fitness function of
the individual.

Fitness function value =

{
tp+tn
fp+fn if fp+ fn is not 0
10 if fp+ fn is 0

(3.4)

Generation selection scheme

The generation selection scheme is the same as the one in section 3.3.3.

Mutation

The mutation scheme is the same as the one in section 3.3.2.

Result and analysis

The test for the system used the parameters in table 3.9.
As can be seen in figure 3.10, some span in the fitness space occurred, but it never

climbed beyond a fitness value of 1.5. Individuals were mostly centered around the fitness
evaluation in table 3.10. The quick stagnation in the fitness function seems to likely have to
do with a mismatch between expected output behaviour and the actual output. In the first
part of the fitness function, a voltage threshold is set at 0.05V as a point where the number
of crossings are counted. This might still be a good idea, but not with a constant value
when the output values have such varied widely different values across the entire test, with
large chunks being way over. Instead of a constant 0.05V value, maybe a function could
be used. Creating such a function however, seems a bit like having to solve the issue in
one way, in order to be able to solve the problem in this way.

24

3.4 Exploration of strategies

Figure 3.10: 100 generation evolutionary run with population size 20, attempting to evolve a dis-
criminator for frequency differences for blinking leds

true positive: 0
true negative: 5
false positive: 0
false negative: 5

Table 3.10: Fitness evaluation most common in the experiment

25

Chapter 3. Methodology

26

Chapter 4
Experiments

During this thesis, a series of experiments were conducted in an effort to ascertain the
feasibility of amorphous silicon solar panels as a physical medium of computation. The
arrived upon manner of computation for this study was a series of attempts at evolving a
frequency discriminator using an ”input” led blinking at different frequencies.

In the following sections the setup for the experiments is first laid out in detail. Then
follows the main experiments. Finally follows a set of experiments devised to respond to
some of the issues found in the main experiments.

4.1 Experiment setup

The conducted experiments are all variations of the approach that employs the Fast Fourier
Transform, as described in chapter 3.3.1, Fast Fourier Transform. The first two rounds of
experiments are about evolving a tone discriminator subject to a fitness function test where
each individual is tested on how well they can discriminate on the test ”1010101010”. That
is, a sequential test where the input pin runs with equal time, alternating between a given
relative high frequent digital signal and a relative low frequent signal.

4.1.1 Evolutionary algorithm overview

The experiments are conducted using a custom made evolutionary algorithm made in
python[2]. The algorithm is quite simple. The initial population of individuals is con-
structed by random generation of the starting frequency and assigned pins to use. Each
individual is then tested on the Mecobo[19], thereby giving the individuals their fitness
score. The best individual is then promoted to the next generation where it is cloned so
that the population size is constant from generation to generation. Then, all individuals
save one is mutated.

These experiments are subject to a set of constraints, see figure 4.1.

27

Chapter 4. Experiments

max generation 150
population size 25
frequency pairs (low, high) (100, 1000), (200, 1500), (300, 1800)
fitness test time 5 seconds
fitness test 1010101010
Sampling frequency 100kHz
Configuration pin frequency range [1Hz, 2.5kHz]
Number of input pins 1
Number of configuration pins 6

Table 4.1: General experiment parameters

Mutation scheme

When mutating a population of individuals all individuals are subjected to the same pro-
cedure. The pins to be mutated for each individual are random-generated, constrained by
the number of configuration pins. For each of those pins there is a 40% that the pin gets a
new random-generated frequency in the range of [1Hz, 2.5kHz]

4.1.2 Timing
The fitness function runs for a time of 5 seconds, see table 4.1, and a fitness test of
”1010101010”, each sub test is allotted 0.5 seconds each. The sampling frequency on
the recording pin is at 100kHz, putting the sample size of the voltage output buffer at 500
000 voltage points for each test. Between each run of the fitness function there is a pause
of 100ms to let the solar panel power down.

4.2 Experiment goals
The experiments revolve around making a frequency discriminator. That is, to evolve an
electrical configuration such that the amorphous silicon solar panel may output voltage in
recognition of whether it is seeing the relative low or relative high frequency signal.

4.2.1 Experiment layout
The experiments are structured as follows: The first and second round differ in using two
different fitness functions. Each round tests the three frequency pairs in figure 4.1.

Each such test entails first evolving a frequency discriminator by randomized starting
population. Then the best evolved individual from that evolutionary run is re-tested by
running it through the fitness function again 10 times in order to assess reproducibility
and stability of the result. Finally a new smaller evolutionary run of population 10 and
maximum generation count 50 is conducted where the starting population is initialised
as 10 copies of the best individual from the original evolutionary run. This is to assess
whether the new evolution behaves differently, possibly reaching the old best fitness value
fast, or at all.

28

4.3 An approximately smooth fitness function

Last and third round of experiments entail running a large amount of evolutions of
relatively simpler fitness tests.

4.2.2 Representation of results
The graphs representing evolutionary runs are shown with fitness values per generation the
course of the evolutionary run. Each generation has the fitness value of the best, median
and worst individual.

The re-evolution graphs also contain a line denoting the best fitness value from the
original evolution.

The the final evolution runs of simpler fitness tests are presented with histograms de-
picting final generation number for successful evolution.

4.3 An approximately smooth fitness function
This round of experiments employs a modified version of the fitness function used in[8],
see equation 4.1. The values tp,tn,fp,fn are the same fitness constituent counters as in the
algorithm in figure 3.4.

The domain of the fitness values is non-uniformly distributed in the range [0, 25/36 ≈
0.699]. A graph of this domain can be seen in appendix 6.2

Fitness function =
tp× tn

(tp+ fp+ 1)× (tn+ fn+ 1)
(4.1)

4.3.1 Results
Frequency pair: (100Hz, 1000Hz)

The high, low frequency pair of 100Hz, 1000Hz experiment, see figure 4.1. The evo-
lutionary run generally hits an apparent ’ceiling’ on the fitness values early at 0.25, but
finds briefly a higher scoring configuration between generations 87 and 102. Alternating
between 0.34285714285714286 and 0.37037037037037035.

29

Chapter 4. Experiments

Figure 4.1: 150 generation evolutionary run with population size 25, attempting to evolve a dis-
criminator for blinking leds, where the frequency difference pair is 100Hz and 1000Hz.

Tested stability

The test of stability, see figure 4.2 indicates inability to achieve score as good as best
logged score from evolution. In addition the fitness values are erratic, likely indicating
unstable result.

30

4.3 An approximately smooth fitness function

Figure 4.2: Comparison between best individual score from evolution and same individual run
through the fitness function again 10 times.

Re-evolution

The re-evolution, see figure 4.3 does not improve beyond the fitness value 0.25 at fitness
constituents (3, 3, 2, 2). That is the same value that the original evolution largely topped
out on. However, the values of the median and worst individuals throughout the evolution-
ary run, indicate exploration in the configuration space.

31

Chapter 4. Experiments

Figure 4.3: 50 generation evolutionary run with population size 10, attempting to re-evolve a dis-
criminator for blinking leds, where the frequency difference pair is 100Hz and 1000Hz. Best indi-
vidual from original evolution seeded in and cloned as starting population

Frequency pair: (200Hz, 1500Hz)

The evolutionary run for the frequency pair of 200Hz, 1500Hz experiment, see figure 4.4
generally hits a ’ceiling’(the blue line) on the fitness values early at fitness value 0.46875,
fitness constituents (3, 5, 0, 2). However, it is generally not a lasting one and the search
falls almost immediately to a general level of a lower value.

32

4.3 An approximately smooth fitness function

Figure 4.4: 150 generation evolutionary run with population size 25, attempting to evolve a dis-
criminator for blinking leds, where the frequency difference pair is 200Hz and 1500Hz.

Tested stability

The test of stability, see figure 4.5 indicates inability to achieve score as good as best
logged score from evolution. In addition the fitness values are erratic, likely indicating
unstable result.

33

Chapter 4. Experiments

Figure 4.5: Comparison between best individual score from evolution and same individual run
through the fitness function again 10 times.

Re-evolution

The re-evolution, see figure 4.6 goes through a somewhat steady climb up to the same
fitness value ceiling as the original evolution when measuring the best individual. The
median fitness score of individuals also tends slowly upwards in score.

34

4.3 An approximately smooth fitness function

Figure 4.6: 50 generation evolutionary run with population size 10, attempting to re-evolve a dis-
criminator for blinking leds, where the frequency difference pair is 200Hz and 1500Hz. Best indi-
vidual from original evolution seeded in and cloned as starting population

Frequency pair: (300Hz, 1800Hz)

The evolutionary run for the frequency pair of 300Hz, 1800Hz experiment, see figure 4.7
generally hits a ’ceiling’(the blue line) on the fitness values early, at 0.46875, with fitness
constituents (3, 5, 0, 2), see appendix

35

Chapter 4. Experiments

Figure 4.7: 150 generation evolutionary run with population size 25, attempting to evolve a dis-
criminator for blinking leds, where the frequency difference pair is 300Hz and 1800Hz.

Tested stability

The test of stability, see figure 4.8 indicates inability to achieve score as good as best
logged score from evolution.

36

4.3 An approximately smooth fitness function

Figure 4.8: Comparison between best individual score from evolution and same individual run
through the fitness function again 10 times.

Re-evolution

The re-evolution, see figure 4.9, goes through a somewhat steady climb upwards in the
fitness value as measured by looking at the best individual and the median individual
throughout the evolution, though the best value is still significantly lower than the best
fitness score of the original evolution despite the original evolution hitting that score almost
immediately.

37

Chapter 4. Experiments

Figure 4.9: 50 generation evolutionary run with population size 10, attempting to re-evolve a dis-
criminator for blinking leds, where the frequency difference pair is 300Hz and 1800Hz. Best indi-
vidual from original evolution seeded in and cloned as starting population

4.4 A discrete fitness function
This round of experiments uses a simple fitness function, see equation 4.2. The values
tp,tn,fp,fn are the same fitness constituents as in the algorithm in figure 3.4.

The domain of the fitness values is simply [0,10] on account of the fitness test being
”1010101010”, meaning at most 5 true positive and 5 true negative values.

Fitness function = tp+ tn (4.2)

4.4.1 Results
First pair: (100Hz, 1000Hz)

The evolutionary run for the frequency pair (100Hz, 1000Hz), see figure 4.10 climbs up to
a ceiling of 8 at fitness constituents (3, 5, 0, 2).

38

4.4 A discrete fitness function

Figure 4.10: 150 generation evolutionary run with population size 25, attempting to evolve a dis-
criminator for blinking leds, where the frequency difference pair is 100Hz and 1000Hz.

Tested stability

The test of stability, see figure 4.11 indicates inability to achieve score as good as best
logged score from evolution. In addition the fitness values are erratic, likely indicating
unstable result.

39

Chapter 4. Experiments

Figure 4.11: Comparison between best individual score from evolution and same individual run
through the fitness function again 10 times.

Re-evolution

The re-evolution, see figure 4.12 finds largely a ceiling on the fitness score 7, though
manages twice to achieve the same fitness score as the original evolution.

40

4.4 A discrete fitness function

Figure 4.12: 50 generation evolutionary run with population size 10, attempting to re-evolve a
discriminator for blinking leds, where the frequency difference pair is 100Hz and 1000Hz. Best
individual from original evolution seeded in and cloned as starting population

Second pair: (200Hz, 1500Hz)

The evolution, see figure 4.13 spends the first 29 generations unable to find a configuration
space that yields a better fitness score than 6. From then until generation 62, the fitness
score erratically climbs up to 8, with the fitness constituents being (3, 5, 0, 2). Though the
8 fitness score is not consistent and regularly drops.

41

Chapter 4. Experiments

Figure 4.13: 150 generation evolutionary run with population size 25, attempting to evolve a dis-
criminator for blinking leds, where the frequency difference pair is 200Hz and 1500Hz.

Tested stability

The test of stability, see figure 4.14 indicates inability to achieve score as good as best
logged score from evolution. In addition the fitness values are erratic, likely indicating
unstable results.

42

4.4 A discrete fitness function

Figure 4.14: Comparison between best individual score from evolution and same individual run
through the fitness function again 10 times.

Re-evolution

The re-evolution, see figure 4.15 erratically hits the highest fitness score as the original
evolution. This occurs somewhat faster though similarly erratic in dropping to a fitness
score of 7.

43

Chapter 4. Experiments

Figure 4.15: 50 generation evolutionary run with population size 10, attempting to re-evolve a
discriminator for blinking leds, where the frequency difference pair is 200Hz and 1500Hz. Best
individual from original evolution seeded in and cloned as starting population

Third pair: (300Hz, 1800Hz)

The evolutionary run for the frequency pair of 300Hz, 1800Hz experiment, see figure 4.16.
The fitness score undergoes a ’climb’ in the first 63 generations, and then generally hits a
’ceiling’(the blue line) on the fitness values early, at 8, with fitness constituents (3, 5, 0, 2).
Though These scores are erratic and drop quickly to 7.

44

4.4 A discrete fitness function

Figure 4.16: 168 generation evolutionary run with population size 25, attempting to evolve a dis-
criminator for blinking leds, where the frequency difference pair is 300Hz and 1800Hz. Be advised
the y-axis differs from the other graphs in only showing range 6-8 on the fitness function.

Tested stability

The test of stability, see figure 4.17 indicates inability to achieve score as good as best
logged score from evolution.

45

Chapter 4. Experiments

Figure 4.17: Comparison between best individual score from evolution and same individual run
through the fitness function again 10 times.

Re-evolution

The re-evolution, see figure 4.18, spends the first 18 evolutions exploring the configura-
tion space between the fitness scores 6 and 7. Then follows a few generations exploring
between the fitness scores 6, 7, 8, before the last generations where the best fitness score
settles into a run of fitness score 7 with fitness constituents (4, 3, 2, 1) and (2, 5, 0, 3), save
generation 35-39 where configurations getting a fitness score of 8 with fitness constituents
(3, 5, 0, 2) are achieved.

46

4.5 Frequency discriminator: reduced scope

Figure 4.18: 50 generation evolutionary run with population size 10, attempting to re-evolve a
discriminator for blinking leds, where the frequency difference pair is 300Hz and 1800Hz. Best
individual from original evolution seeded in and cloned as starting population

4.5 Frequency discriminator: reduced scope
In response to some of the patterns that emerged from the previous experiments, a set
of experiments were carried out to seek clarification on what was observed. All of the
previously conducted experiments used the fitness input test ”1010101010”. The following
experiments pertain to the case of evolving a blinking tone discriminator for the inputs
”10”, ”1010” The final series of experiments were subject to the parameters in figure
4.2.

4.5.1 ”10” evolution target
A series of 80 evolutionary runs were conducted, attempting to evolve a frequency dis-
criminator on the abstract ”10” fitness test. All 80 evolutionary runs were successful.
Figure 4.19 shows a histogram of the ’final generation’ distribution for the successful evo-
lutions; where the fitness score reached possible maximum score of tp + tn = 1 + 1 = 2
and therefore ended the specific evolutionary run.

47

Chapter 4. Experiments

max generation 30
population size 10
frequency pair (low, high) (100Hz, 1000Hz)
(fitness tests, time) (10, 1sec), (1010, 2sec)
Sampling frequency 100kHz
Configuration pin frequency range [1Hz, 2.5kHz]
Number of input pins 1
Number of configuration pins 6
fitness function tp + tn, see equation 4.2

Table 4.2: General experiment parameters

4.5.2 ”1010” evolution target
A series of 80 evolutionary runs were conducted, attempting to evolve a frequency dis-
criminator on the abstract ”1010” fitness test.

A series of 80 evolutionary runs were conducted, attempting to evolve a frequency
discriminator on the abstract ”1010” fitness test. All 80 evolutionary runs were successful.
Figure 4.20 shows a histogram of the ’final generation’ distribution for the successful
evolutions; where the fitness score reached possible maximum score of tp+ tn = 2+ 2 =
4 and therefore ended the specific evolutionary run.

48

4.5 Frequency discriminator: reduced scope

Figure 4.19: Final generation number for successful evolutions that evolved a ”10” blinking led
frequency discriminator

49

Chapter 4. Experiments

Figure 4.20: Final generation number for successful evolutions that evolved a ”1010” blinking led
frequency discriminator

50

Chapter 5
Analysis

The experiments indicate that it is possible for Evolution-in-Materio style computation to
be developed in amorphous silicon solar panels. Several attempts at evolving a ’blink-
ing led’ frequency discriminator were conducted and a pattern of partial success emerged
across the experiments.

5.1 Viability of approach
The experiment results are mixed in terms of successful evolution of a frequency discrimi-
nator. Most of the experiments see some evolved success over their respective experiment
running time. Some recurring patterns are discussed here.

5.1.1 The fitness functions
The motivation behind the first type of experiments with the ’Approximately smooth’ fit-
ness function, see equation 4.1, was that it might lend itself to gradual improvements in the
fitness score space. It is a modified version on the fitness function used in [8], accounting
for the possibility of tp + fp = 0 or tn + fn = 0, which would have yielded divide by
zero in the original function.

Combined with the clone-and-mutate approach, the idea was that a hill-climbing-like
process might be achieved. A peak could be found, and from there on, the configuration
space could be explored by the rest of the mutated population, in a manner somewhat in-
spired by the general working of the Simulated annealing algorithm[18].

While the first experiments with 100Hz, 1000Hz did not yield much success. However,
both the 200Hz, 1500Hz, experiment and the 300Hz, 1800Hz experiment resulted in best
fitness scores of 0.46875 at fitness constituents: (true positive: 3, true negative: 5, false
positive: 0, false negative: 2). They also found such a configuration almost immediately,
see figures 4.4 and 4.7, hitting this ’ceiling’ erratically for the rest of the evolution.

The same type of results were found with equivalent fitness constituents (3, 5, 0, 2) at
a fitness score of 8 with the discrete version, see equation 4.2. This shows that the idea

51

Chapter 5. Analysis

that the approximate smooth fitness function would yield better ability to climb the fitness
scores might be wrong.

For each of the ’original’ evolutions under the discrete fitness function experiments,
see figures 4.10, 4.13 and 4.16, there is loosely the same pattern. During the approximately
60 first generations in each case are spent with the best individuals staying in the 6-7 fitness
score range. After that they either entirely or mostly pass over to 7-8.

This is somewhat different from the ’smooth’ evolutions where the 100Hz, 1000Hz is
a bit of a comparatively dysfunctional outlier on the whole, and the 200Hz, 1500Hz pair,
and the 300Hz, 1800Hz pair ended up with comparatively similar results as all the discrete
experiments save that they found their solutions much faster.

5.1.2 Apparent Ceiling of computations
The apparent ceiling of fitness constituents is interesting, both in that it is consistent across
all experiments(except the ’smooth’ 100Hz, 1000Hz experiment that did not reach it) and
in that there was typically a movement in the best individuals in the range of the higher fit-
ness scores. One possibility might be that a higher maximum generation number could
have yielded a greater climb. Another possibility however, could be that the best re-
sults ever achieved in the main experiments, were the best possible configuration space
to evolve. While the exact configuration frequencies of the best individuals varied, all best
fitness constituents had the pattern (3, 5, 0, 2). 3 true positives and 5 true negatives.

5.1.3 Computation space
On the topic of whether it is at all possible to develop computation in amorphous silicon
solar panels, the approach undertaken in this project is perhaps the most likely candidate
for success. That is, a frequency discriminator on differing high frequency, low frequency
blinking lights seems a good fit as a foundational structure already exists in the sense that
the material already possesses the ability to generate electricity when light is applied.

What else must be built? Evolution-in-Materio evolution develops some manner of
circuitry in the material under test and in this project that would be the pattern of excited
material during the run of the fitness function. The configuration pins causing their re-
spective connected leds to blink and the input pin running its test input, switching its led
between the high frequent blinking and low frequent blinking. Over the course of the run
of the fitness function something seems to be developed in the material.

The results in figures 4.1, 4.3, 4.4, 4.7, 4.12 have a development throughout their evo-
lutions that make it difficult to say that they undergo an actual development rather than a
randomized search in the configuration space. Or perhaps, that the evolutionary algorithm
is not so much of help there, and the ’better’ part of the results merely shows the span of
the mutated populations.

There were some results however, where there seemed to be more grounds for arguing
that actual development occurred. Figure 4.6 shows a clear transition from generation 15
to a consistently better fitness score for the best individuals plot. Furthermore, As the fit-
ness scores for the best individual improves more towards the end, so appears the median
individual score.

52

5.2 Stability of results

Figures 4.9, 4.10, 4.13 and 4.16 shows a consistent first period of a relatively lower
fitness score and then a fitness score climb at generation 33 for the best individuals. This
climb plateaus at a higher fitness score.

The developed circuitry is unknown, but the evolutionary behaviour seems consistent
enough to assert that these ’climbs’ represent some actual change in the circuitry.

Reducing scope

The final experiments, see figure 4.19 and 4.20 represent an effort to understand if the
different evolutions of the ”1010101010” frequency discriminator perhaps built up recog-
nition of the fitness test through development of some memory circuitry. The nebulous
idea being that perhaps a climb in fitness score similar to the aforementioned experiments
would occur, but maybe faster. The actual results were that both cases of 80 evolutionary
runs each saw near instantaneous success. Every single run in both cases reached their
maximum fitness scores. At a population size of 10, the ”10” frequency discriminator, see
figure 4.19, saw 77 out of 80 evolutionary runs hit maximum fitness score on generation
1. The ”1010” frequency discriminator, see figure 4.20, saw 66 out of 80 attempts get
maximum fitness score on generation 1.

One interpretation of that data is that the solar panel is simply very suitable for fre-
quency discrimination. The ”10” case can on its own be viewed as a linear function. ”Out-
put higher signal first, then low.” That it almost instantly found a correct configuration for
satisfying the fft-to-dominating-frequency calculation, see chapter 3.3.1 is slightly less so.
But that the ”1010” frequency discrimination evolutions also gets such a high near-instant
success might indicate that frequency discrimination is in fact a quite simple task for the
solar panel. If that is the case then perhaps the problems with stalled out fitness scores in
the original experiments could be dealt with.

5.2 Stability of results

As is demonstrated in every test of stability, see figures 4.2, 4.5, 4.8, 4.11, 4.14, 4.17, two
things stand out. Number one is that the re-tested individuals never achieve the fitness
score of the original evolution from which they came. Second is that their scores are er-
ratic, fluctuating in a span of scores. This shows that the evolved configurations are highly
volatile.

The re-evolutions, seeding in the best individual and cloning it as the starting popu-
lation shows this very clearly. None of the re-evolutions manage to re-create the fitness
scores from the original evolutions from the beginning(nor supersede the old best fitness
score for that matter). The re-evolutions that managed to re-create the equivalent fitness
score of the original evolution were 4.6, 4.12, 4.15 and 4.18. The discrete fitness function
version of the high frequency 1500Hz, low frequency 200Hz re-evolution, see figure 4.15,
was the fastest re-evolution to re-obtain the equivalent fitness score of the original evolu-
tion at generation 4.

This shows that ’saving’ an individual for reuse garners no advantage in the project as
configurations only seem useful within an evolutionary run.

53

Chapter 5. Analysis

5.2.1 Dependencies between tests

All of the evolutions have a particular oddity about them. The developed evolutionary
algorithm explicitly promotes the best individual of a generation, clones it and mutates ev-
eryone in the new generation save one, see chapter 3.3.3. This should mean that the result
graphs all show the ’best individuals’ plot as stagnant or increasing. Never decreasing.
That is never the case in any of the experiments. This could indicate electrical charge still
remaining in the solar panel between tests, thereby causing one test to affect the next one.

5.2.2 Environmental effects

The hardware for the experiments was situated in a laboratory in which, several experi-
ments were conducted and all manners of electrical work was performed. The solar panel
might have been insufficiently shielded from other light sources, such as additional light
slipping in through the holes were the leds were situated. And with a lot of computers
and occasional soldering occurring in the lab, varied heat might be a factor that affected
results.

5.3 Using the Mecobo system
The Mecobo platform is a research project and some issues were had with the operational
stability of the system while running. It was on account of this that the maximum 150
generation number was set, as it became somewhat common for the system to crash beyond
that point.

5.4 Design constraints
By the time the main experiments were conducted, the decision had been made to simplify
the workings of individuals. The original setup for an individual, see figure 3.3, would
create individuals as having more complex configuration pins then the final design. The
current state has a configuration pin having one frequency over the course of the entire
fitness function run, and this frequency value is subject to randomization if it is selected
for mutation.

The original design would see a configuration pin be assigned a list of chronologically
non-overlapping, potentially differing frequencies in a given time-slice over the course
of the fitness function run. The duration of a particular frequency could vary. Mutation,
should the given configuration pin be selected, would then be that a [time-slice,frequency]
pair would be selected at random. Then, both the frequency, and the duration could be
mutated. That is, the time-slice could be extended or contracted(subject to the global time
constraint of how long the fitness function runs), and the frequency value could be altered
just as in the final design.

The reason for going with a simpler design was that a more complex design might
make it difficult to interpret results. However, the stalling-out fitness scores and fitness
score climbs observed in the results might mean it would be prudent to try it, as it might

54

5.4 Design constraints

be able to provide more fine-grained resources for the evolutionary algorithm instead of
time-wise global frequencies on the configuration pins.

55

Chapter 5. Analysis

56

Chapter 6
Conclusion

This thesis has explored the idea of developing computation in an amorphous silicon solar
panel through the means of Evolution-in-Materio. The goal was to study the capacity
for developing computation in the material using light. The experiments presented in the
thesis show that repeatable and functional, though unstable frequency discriminators can
be successfully evolved in an amorphous silicon solar panel using controlled exposure
of light. This means that there might be some viability to the material/controlled light
exposure scheme as an approach to developing computation.

6.1 Future work
Evolution-in-Materio can be a powerful field when done correctly, using an evolutionary
algorithm to configure a physical material for computation. A path one could take to take
this work further could be to re-create the fitness function as consisting of a fitness score
as used in this thesis and a test of reproducibility. A persistence-of-result test that seeks to
reward stable configurations.

A scheme used in the project is to take the fast-fourier-transformed voltage buffers3.3.1,
seek out the dominating frequency and then merely checking if that frequency is smaller
than the average value of the current experiment frequency pair or not. Assigning a logic
value accordingly. Another way could be to take the spectral centroid[25] of the fast-
fourier-transformed voltage buffers, thereby calculating a value based on the whole fre-
quency spectrum, not just which one is dominating.

As is mentioned in section 5.4, implementing a more complex setup for the individuals
could be worthwhile in order to hand more fine-grained control over to the evolutionary
algorithm.

Evolution-in-Materio might be showing a glimpse of a future where perhaps part of the
computer design process comes to include an evolutionary process complementing the
human design thinking strengths. Serving particular constraints as the input and having

57

Chapter 6. Conclusion

the evolutionary algorithm seek out a configuration, or possibly configuration space which
the designers can take and work with.

58

Bibliography

[1] , 2007. Apache software foundation. thrift.

[2] , 2010. Python software foundation and guido van rossum, python 2.7.

[3] , 2012. Canonical ltd. and ubuntu community, ubuntu 12.10.

[4] , 2016. NASCENCE project website. http://nascence.no [Accessed: 2016-
11-13].

[5] , 2017. Flexible amorphous silicon thin film solar panel 2 v / 0.5 W solar cell flex-
ible DIY solar panels. https://www.alibaba.com/product-detail/
Flexible-amorphous-silicon-thin-film-solar_60477318002.
html, [Accessed: 2017-02-13].

[6] , 2017. MECOBO software and harware development project site. https://
github.com/NASCENCE/mecobo, [Accessed: 2017-02-10].

[7] , 2017. NASCENCE materials. http://nascence.no/index.php/
materials, [Accessed: 2017-02-13].

[8] Broersma, H., Miller, J. F., Nichele, S., 2017. Computational Matter: Evolving
Computational Functions in Nanoscale Materials. Springer International Publishing,
Cham, pp. 397–428.
URL http://dx.doi.org/10.1007/978-3-319-33921-4_16

[9] David Patterson, J. H., 2012. Computer Organization and Design. Computer
Organization and Design.
URL http://scholar.google.com/scholar?hl=en{&}btnG=
Search{&}q=intitle:No+Title{#}0

[10] Farstad, S., 2015. Evolving cellular automata in-materio[Accessed: 2016-03-08].
URL http://arkt.is/evolving-cellular-automata-in-materio-preproject.
pdf

59

http://nascence.no
https://www.alibaba.com/product-detail/Flexible-amorphous-silicon-thin-film-solar_60477318002.html
https://www.alibaba.com/product-detail/Flexible-amorphous-silicon-thin-film-solar_60477318002.html
https://www.alibaba.com/product-detail/Flexible-amorphous-silicon-thin-film-solar_60477318002.html
https://github.com/NASCENCE/mecobo
https://github.com/NASCENCE/mecobo
http://nascence.no/index.php/materials
http://nascence.no/index.php/materials
http://dx.doi.org/10.1007/978-3-319-33921-4_16
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0
http://arkt.is/evolving-cellular-automata-in-materio-preproject.pdf
http://arkt.is/evolving-cellular-automata-in-materio-preproject.pdf

[11] Fernando, C., Sojakka, S., 2003. Pattern Recognition in a Bucket. In: Advances in
Artificial Life. pp. 588–597.
URL http://www.springerlink.com/content/xlnymhf0qp946rce

[12] Gentleman, W. M., Sande, G., 1966. Fast fourier transforms: For fun and profit. In:
Proceedings of the November 7-10, 1966, Fall Joint Computer Conference. AFIPS
’66 (Fall). ACM, New York, NY, USA, pp. 563–578.
URL http://doi.acm.org/10.1145/1464291.1464352

[13] Harding, S., Miller, J., 2005. Evolution In Materio: Evolving logic gates in liq-
uid crystal. Unconventional Computing 2005: From Cellular Automata to Wetware
2005, 133–148.

[14] Harding, S., Miller, J. F., 2004. Evolution in materio: A tone discriminator in liquid
crystal. Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004
2, 1800–1807.
URL http://www.scopus.com/inward/record.url?eid=2-s2.
0-4444334719{&}partnerID=tZOtx3y1

[15] Harding, S., Miller, J. F., 2005. Evolution in materio: A real-time robot controller in
liquid crystal. In: Evolvable Hardware, 2005. Proceedings. 2005 NASA/DoD Con-
ference on. IEEE, pp. 229–238.

[16] Hornby, G. S., Lohn, J. D., Linden, D. S., 2011. Computer-automated evolution of an
X-band antenna for NASA’s Space Technology 5 mission. Evolutionary computation
19 (1), 1–23.

[17] Iannucci, R. A., 1988. Toward a dataflow/von Neumann hybrid architecture. ACM
SIGARCH Computer Architecture News.

[18] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., 1983. Optimization by simulated an-
nealing. SCIENCE 220 (4598), 671–680.

[19] Lykkebø, O. R., Harding, S., Tufte, G., Miller, J. F., 2014. Mecobo: A hardware and
software platform for in materio evolution. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 8553 LNCS. pp. 267–279.

[20] Marcus, M., Akera, A., 1996. Exploring the architecture of an early machine: The
historical relevance of the ENIAC machine architecture. IEEE Annals of the History
of Computing 18 (1), 17–24.

[21] Miller, J. F., Downing, K., 2002. Evolution in materio: Looking beyond the silicon
box. In: Proceedings - NASA/DoD Conference on Evolvable Hardware, EH. Vol.
2002-January. pp. 167–176.

[22] Miller, J. F., Harding, S. L., Tufte, G., 2014. Evolution-in-materio: Evolving compu-
tation in materials.

60

http://www.springerlink.com/content/xlnymhf0qp946rce
http://doi.acm.org/10.1145/1464291.1464352
http://www.scopus.com/inward/record.url?eid=2-s2.0-4444334719{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-4444334719{&}partnerID=tZOtx3y1

[23] Mohid, M., Miller, J. F., 2015. Evolving robot controllers using carbon nanotubes.
In: Proceedings of the European Conference on Artificial Life. pp. 106–113.

[24] Pask, G., 1959. The natural history of networks. Proceedings of International Tracts
In Computer Science and Technology and their Application 2, 232–263.

[25] Peeters, G., 2004. A large set of audio features for sound description (similarity
and classification) in the CUIDADO project, (section 6.1.1). CUIDADO IST Project
Report 54 (0), 1–25.
URL http://www.citeulike.org/group/1854/article/1562527

[26] Snow, E. S., Novak, J. P., Campbell, P. M., Park, D., 2003. Random networks of
carbon nanotubes as an electronic material. Applied Physics Letters 82 (13), 2145–
2147.

[27] Thompson, A., 1997. An evolved circuit, intrinsic in silicon, entwined with physics.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics). Vol. 1259. pp. 390–405.

[28] Wolfram, S., 1983. Statistical mechanics of cellular automata. Reviews of Modern
Physics 55 (3), 601–644.

[29] Wolfram, S., 2002. A new kind of science. Vol. 5. Wolfram media Champaign.

61

http://www.citeulike.org/group/1854/article/1562527

62

Appendix

6.2 Fitness function smoothness curve

Figure 6.1: Distribution of theoretically obtainable fitness scores given a fitness test with binary
representation ”1010101010” and the fitness function F where F is F = tp∗tn

(tp+fp+1)∗(tn+fn+1)
. The

beginning left side of the plot shows all the instances where the numerator is zero and then the plot
climbs all the way up to a maximum score where the correctness buckets look thusly: tp : 5, tn :
5, fp : 0, fn : 0 making the fraction 5∗5

(5+0+1)∗(5+0+1)
→ 25

36
≈ 0.7 as can be seen on the right

side of the curve. The curve is not smooth, but possibly smooth enough to allow for somewhat fluid
fitness score movement.

63

6.3 Code repository and experiment results
The zip file uploaded with the thesis contains the code repository and the experiment
results.

64

	Summary
	Sammendrag
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Assignment Text
	Thesis Overview

	Background
	Novel avenues of computing
	Evolutionary computation
	Evolutionary algorithms as tools

	Evolution-in-Materio
	Eim experiment approaches
	History
	Nascence
	Material substrates

	Frequency discriminator

	Methodology
	Mecobo
	Material under test

	Individual
	Pins

	Evolutionary algorithm
	Fitness function
	mutation
	Generation selection

	Exploration of strategies
	Logic gates
	Crossing rate experiment

	Experiments
	Experiment setup
	Evolutionary algorithm overview
	Timing

	Experiment goals
	Experiment layout
	Representation of results

	An approximately smooth fitness function
	Results

	A discrete fitness function
	Results

	Frequency discriminator: reduced scope
	"10" evolution target
	"1010" evolution target

	Analysis
	Viability of approach
	The fitness functions
	Apparent Ceiling of computations
	Computation space

	Stability of results
	Dependencies between tests
	Environmental effects

	Using the Mecobo system
	Design constraints

	Conclusion
	Future work

	Bibliography
	Appendix
	Fitness function smoothness curve
	Code repository and experiment results

