
A Context Aware Recommendation
System for movies

Tan Quach Le

Master of Science in Computer Science

Supervisor: John Krogstie, IDI

Department of Computer Science

Submission date: January 2017

Norwegian University of Science and Technology

TDT4900 Computer Science, Master Thesis

Autumn 2016

A Context Aware

Recommendation System

for movies

Tan Quach Le

Supervisor: John Krogstie

Abstract

People like to watch movies, but they do not always know what they want to

see. Although there exist applications that helps people solve this issue, they

are not being used very often (see Appendix A). People tend to do their own

research to decide what to wach. This thesis will be looking into this issue and

provide a proof of concept prototype. Not only does the prototype recommend

movies, but it also introduces an social feature that can be extended to so much

more. This feature were found by doing a round of interviews, while trying to

find the cause of why people do not use the recommendation systems.

The thesis describes some of the state of the art approaches to recommenda-

tion system algorithms and the implementation of the prototype. The prototype

was evaluated by its accuracy and speed using data sets from Movielens.

The results show that the chosen approach to recommendation systems is

viable, and that the accuracy of the recommendation is not the only reason that

recommendation systems are not being used that much. The results show that

a social feature might increase the use of recommendation systems.

2

Sammendrag

Folk liker å se p̊a filmer, men de vet ikke alltid hva de vil se p̊a. Selv om det

finnes programmer som hjelper folk til å løse dette problemet, blir de ikke brukt

veldig ofte (se vedlegg A). Folk har en tendens til å gjøre sine egne undersøkelser

for å finne en film å se. Denne oppgaven skal se nærmere p̊a denne saken og

gi et ”proof of concept” prototype. Ikke bare anbefaler prototypen filmer, men

det innfører ogs̊a en sosial funksjon som kan utvides til s̊a mye mer. Denne

funksjonen ble funnet ved å gjøre en runde med intervjuer, mens det ble prøvd

å finne årsaken til hvorfor folk ikke bruker anbefalingssystemer.

Masteroppgaven beskriver noen av ”state of the art” metoder for anbefal-

ingsalgoritmer og implementering av prototypen. Prototypen ble evaluert av

sin nøyaktighet og hastighet ved hjelp av datasett fra Movielens.

Resultatene viser at den valgte algortimen for anbefaling system er brukbar,

og at nøyaktigheten av anbefalingen er ikke den eneste grunnen til at anbefalin-

genssystemer ikke blir brukt s̊a mye. Resultatene viser at en sosial funksjon kan

øke bruken av anbefalingssystemer.

3

Preface

This is a master thesis and it is my last report as a master student. It has been

written to complete my Master of Science (MSc) degree in Computer Science at

the Department of Computer and Information Science (IDI) at the Norwegian

University of Science and Technology (NTNU).

I would like to thank my supervisor John Krogstie for his guidance through-

out my journey of the last twenty weeks.

Tan Quach Le

4

Contents

Abstract 4

1 Introduction 12

1.1 Motivation . 12

1.2 Previous work . 13

1.3 Contribution . 13

1.4 Report structure . 14

2 Background 15

2.1 Recommendation systems . 15

2.2 Techniques . 15

2.2.1 Content based filtering . 15

2.2.2 Collaborative filtering . 18

2.2.3 Challenges with Collaborative Filtering 25

2.2.4 Hybrid . 26

2.3 Context-aware Recommendation Systems 27

3 Research method 28

3.1 Design Science Research . 28

3.1.1 Design as an Artifact . 30

3.1.2 Problem relevance . 30

3.1.3 Design Evaluation . 30

3.1.4 Research Contribution . 30

5

6 CONTENTS

3.1.5 Research Rigor . 30

3.1.6 Design as a Search Process 31

3.1.7 Communication of Research 31

3.2 Evaluation tools . 31

3.2.1 Mean Squared Error . 31

3.2.2 Python time module . 31

3.3 Evaluation plan . 32

4 Architecture and Implementation 33

4.1 Data set . 33

4.2 Chosen collaborative filtering method 34

4.3 Phase one . 34

4.3.1 Scenarios: . 35

4.3.2 Requirements: . 35

4.4 Phase two . 35

4.4.1 Scenarios: . 35

4.4.2 Requirements: . 36

4.5 Architecture . 36

4.5.1 Model-View-Controller . 37

4.5.2 Back End . 38

4.5.3 Front End . 40

4.6 Implementation approach . 41

4.6.1 Setup . 41

4.6.2 Defining context . 45

4.6.3 Genre . 46

4.6.4 Time . 47

4.6.5 Recommendations . 48

4.7 Prototype . 53

4.7.1 API . 53

4.7.2 GUI . 54

4.8 Technology . 59

CONTENTS 7

4.8.1 PostgreSQL . 59

4.8.2 GitHub . 60

4.8.3 scikit-learn . 60

5 Evaluation 61

5.1 Phase one: The interviews . 61

5.1.1 Anonymous A . 62

5.1.2 Anonymous B . 62

5.1.3 Anonymous C . 62

5.1.4 Anonymous D . 62

5.1.5 Anonymous E . 62

5.1.6 Anonymous F . 62

5.1.7 Anonymous G . 63

5.1.8 Conclusion . 63

5.2 Phase two: Performance . 64

5.2.1 Data set . 64

5.2.2 Environment . 64

5.2.3 User-Based Filtering based on Pearson Correlation 65

5.2.4 Factorization Machine with SGD 65

6 Discussion 67

6.1 Data set . 67

6.2 Factorization machine . 68

6.3 Context . 69

6.3.1 Genre . 69

6.3.2 Time . 69

7 Conclusion and future work 70

7.1 Conclusion . 70

7.2 Future work . 71

Appendices 73

8 CONTENTS

A Interviews 74

B Code 80

B.1 Data set Usage License . 80

C API documentation 82

Bibliography 86

List of Figures

2.1 Illustration of content-based filtering 17

2.2 Example of feature vectors taken from [26]. Each row represents

a feature vector xi with its corresponding target yi. The first row

represents user A who has rated movie TI, has also rated NH and

SW, no last ratings and the rating of movie TI was 5. As one

may see, there are multiple features leading up to the rating of

5 and not only who rated what movie what rating like previous

approaches. This matrix can be used as input to train the model. 24

3.1 Design-Science Research Guidelines, figure taken from [16]. . . . 29

4.1 Illustration of overall architecture 37

4.2 Caption for LOF . 38

4.3 Back end structure. There are individual classes for model and

view, which acts like model and controller in MVC. The templates

folder would have contained html files for rendering purposes if

we wanted Django to do the rendering process (view in MVC). . 40

4.4 Front end structure. Files ending with -view.js acts like con-

trollers, -view.hbs acts like view and -model.js acts like model in

MVC. 41

4.5 Database structure . 45

4.6 Django admin interface . 45

9

10 LIST OF FIGURES

4.7 Dataset in a csv (Comma-separated values) format. The first

value represents userID, second value represents moveID, the

third value represents the rating value and the last value rep-

resents the timestamp. 49

4.8 Feature vector representation of the data set. This kind matrix

has been used as input for training the FM model. 50

4.9 Example of browsable API . 53

4.10 Login page . 54

4.11 Rating page . 55

4.12 Rating San Andreas . 55

4.13 Recommendation page . 56

4.14 Details of a recommended movie 57

4.15 Current user profile . 58

4.16 This page lets you edit your profile, including adding and remov-

ing genres you like . 58

4.17 Search of user bob. We can see what movies he has rated and

other information about him. User tanle and user bob has a

similarity of 5 (between -10 to 10, calculated using the Pearson

Correlation . 59

5.1 Performance of user based filtering 65

5.2 Performance of Factorization Machine 66

List of Tables

11

Chapter 1

Introduction

A Context Aware Recommendation System is a system that recommends a cer-

tain item to a user of that system where not only the user’s taste is considered,

but also the context in that moment. The context could be anything from the

mood of the user to the amount of effort needed to get that item. There are

many approaches to recommend items [23]. There is no single best algorithm

for a recommendation system. There are many approaches available, but a good

recommendation system uses many different algorithms and finds a good com-

bination of those to increase the different strengths and decrease the different

weaknesses of each algorithm. In this thesis we will discuss different approaches

and algorithms to recommend an item. Based on this, a prototype that recom-

mends movies to a user will be created and evaluated.

This chapter is about the motivation for the research, the problems this thesis

is going to discuss and finally the structure of the report.

1.1 Motivation

Recommendation systems have been an important research area since the mid-

1990s [7]. Many recommendation systems already exist. You can find them in

12

1.2. PREVIOUS WORK 13

Netflix, Spotify, Ebay, Amazon etc. They all use different approaches. Some

of them use context (mood filtering in Spotify for instance), others do not use

context at all. However there is one thing most of the big names have in common;

they all recommend products they want to sell. To put it in other words: they

use recommendation system to make the uses browse more items and spend

more money on their sites rather than to make the users aware of what they

want. A movie that isn’t owned by Netflix will never be recommended to the

user by Netflix, no matter how good the movie is. There are a few plattforms,

however, that recommends movies for the sole purpose of helping you, and even

fewer that takes context in to consideration. One such site that was found is

”Jinni”, however, it is not (anymore) open for any user. It is limited as an API,

in business-to-business licensing, where it impacts businesses like Comcast’s

Xfinity product (and others whose capabilities benefit from smart entertainment

search). We will therefore create a platform, free for any user where users will

get movie recommendations and try to identify features that is needed/wanted

to make recommender system more popular. Maybe Netflix is good enough, or

maybe individuals prefer to find movies themselves without any help from an

application.

1.2 Previous work

In the authors specialization project [28] in the course ”Computer Science, Spe-

cialization Project (TDT4501)”, we could see the drawbacks of using memory-

based collaborative filtering. In this thesis, a better approach has been found

and a prototype has been implemented based on different results that were found

during the thesis.

1.3 Contribution

This section describes the main contribution from this thesis.

• State of the art: A review of existing methods to recommend items.

14 CHAPTER 1. INTRODUCTION

• Prototype: A proof of concept prototype to recommend movies.

• Evaluation: Evaluation of the performance, both speed and the accu-

racy of the recommendations. More detailed explenation in section 3.3 :

Evaluation plan.

1.4 Report structure

This report begins with a state of the art of the recommendation systems litera-

ture in Chapter 2. This chapter contains approaches to individual recommenda-

tion Systems and context awareness. Chapter 3 describes the methodology used

for research and evaluation. Chapter 4 describes how the prototype is imple-

mented. Chapter 5 evaluates the prototype. Chapter 6 discusses the evaluation

and the prototype, before the conclusion is made in chapter 7 with ideas for

future work.

Chapter 2

Background

This chapter will focus on research that is related to this thesis and recom-

mendation systems in general. We will specifically be looking at things like

algorithms, challenges and strengths related to recommendation systems.

2.1 Recommendation systems

”The goal of a recommender system is to generate meaningful recommendations

to a collection of users for items or products that might interest them” [22].

There are is ”state of the art” for recommendation systems in general, because

different platforms has their own data, goals, features and more. Different

approaches are more suited for different recommendation systems. It is however,

important that one know the strengths and weakness of different approaches

when choosing one for implementing a recommendation system.

2.2 Techniques

2.2.1 Content based filtering

An approach when designing recommendation systems is content-based filtering

[21], [25]. Content-based filtering recommends items to a user by matching users

15

16 CHAPTER 2. BACKGROUND

preferences with items. .

Content-based filtering in general has three steps, how to obtain these steps

might be different from system to system.

• Analyzing the content: This step is about representing the content of

the items. Somehow extracting the relevant information and then use this

as an input for the next step.

• Learning the profile: This step takes the data from the previous step

and creates a user profile based on that data.

• Filtering: This steps finds the items that matches the profile and recom-

mends them.

Advantages

• As we can see from previous work, collaborative filtering is depended on

finding similar users to be able to predict ratings. Content based does not

have this requirement. Content-based filtering is capable of recommending

items regardless of others’ ratings. The prediction is based solely on the

user’s preferences and item details. In previous work, we had scenarios

where the algorithm could not find enough similar users, and therefore

failed to predict any movies to the user. This is not a problem for a

content-based filtering.

• It is easier to explain to the user why a certain item got recommended.

This may cause the user to contribute to the system to create better

recommendations. For example: if the user has previously stated that

he likes action movies (on his profile for instance) or if all the movies he

liked so far were action movies, the system would continue to recommend

action movies. However, what if he changed his mind, or if it was just a

coincident that all those movies were action movies? He could now tell

the system that he does not neccessarily like action movies and the system

2.2. TECHNIQUES 17

Figure 2.1: Illustration of content-based filtering

would then take that into consideration and try to recommend other types

of movies.

• When new items gets added to the system, unlike collaborative filtering,

it does not need someone to rate it before it can be recommended to a

certain user.

Drawbacks

• For content-based filtering to be effective, the content needs to have enough

information, so the system can discriminate the items user likes or dislike.

18 CHAPTER 2. BACKGROUND

• Since it only recommends similar items that a user has liked, the rec-

ommendation will never be a surprise. The recommendation is very pre-

dictable. If a user likes an action movie, only action movies will be rec-

ommended. The user might also like comedy movies, but they will never

get recommended, unless the user watches one and likes it.

• Since the recommendation is based on the user’s history, making a rec-

ommendation for a new user without any history will be problematic. A

way around both this and the previous point is to let the users define

what they like during the account creation. However, some might find it

difficult to define what one likes and dislikes.

2.2.2 Collaborative filtering

With content-based filtering we needed to analyze the user profile and the items

to find out what they like. However, sometimes that is not simple and sometimes

the users themselves do not know. What if there was a way to recommend an

item to a user without knowing what he or she likes? Collaborative filtering

deals with this problem. The idea of collaborative filtering is to recommmend a

movie based on similar users. If we look at the interviews (appendix A), we can

see that people tend to ask other people that they know have similar taste for

recommendations. This is the basic concept of collaborative filtering. It looks

through all the ratings to find similar users, and then calculates a prediction

for a certain movie based on what similar users rated that particular movie. It

does not matter what genre you like for a movie. All it knows is that there are

similar users to you, and since they like a certain movie, there is a chance that

you also like that particular movie.

This section will explain different methods of collaborative filtering. [17,

p. 13-23]

2.2. TECHNIQUES 19

Memory-based

Collaborative filtering is divided into two catagories: memory-based and model-

based. Memory-based [9] approaches use the past ratings to predict the ratings,

while a model-based approaches first creates a model based on past ratings

and then uses this model for every recommendation. Here are two examples of

methods of memory-based approaches:

User-based The first approach we are going to talk about is called the User-

Based Nearest Neighbor Recommendation. The idea is to find the K most

similar users, to predict a rating for a certain item. The challenge here is to find

a good value for K. In other words, how many similar users should the system

take into account when predicting a rating for an item? A way to do this is

to define a minimum similarity threshold, which will only take users that have

a higher similarity value then the threshold into account. However, this raises

another problem: How high should this threshold be to give the best accuracy

There are two common ways to calculate the similarities of two users: Cosine-

based and Pearson correlation-based [12]. Cosine-based regards two users as two

vectors, and then calculates the similarity between user u and v by calculating

the cosine of the angle between the vectors:

simUu,v = cos(~u,~v) =
~u · ~v

|~u|2 × |~v|2
=

∑k
i=1 ru,irv,i√∑k

i=1 r
2
u,i

√∑k
i=1 r

2
v,i

(2.1)

Pearson correlation based finds similarities between users by calculating the

Pearson Correlation, which is defined by:

simUu,v = corru,v =

∑
i∈Iu,v

(ru,i − ru)(rv,i − rv)√∑
i∈Iu,v

(ru,i − ru)2
√∑

i∈Iu,v
(rv,i − rv)2

(2.2)

Where ra means the average rating that user a has given among all the ratings

user a has given.

Finally, the prediction for the rating of item i by user u can be calculated

20 CHAPTER 2. BACKGROUND

by using this formula:

pred(u, i) = ra +

∑
b∈N sim(a, b)(rv,i − rv)∑

b∈N sim(a, b)
(2.3)

Where N is the nearest neighbors/most similar users.

Item-based Instead of looking at similar users, the system can look at similar

items. Again, we find similar items through past ratings, not through movie

data. Meaning, it does not look at what type of genre the movie or book is,

but what kind of ratings the item has recieved. Items with similar ratings may

be similar. Therefore, if you like one of those movies, then there is a chance

that you will like the other ones aswell. One can use the Pearson correlation

to calculate the similarity sim(i,j) between items i and j, however, it has been

reported that the cosine similarity measure consistently outperforms the Pearson

correlation metric [17]. The basic cosine measure (formula 2.1), does not take

the differences in the average rating behavior of the users into account. This

can be solved by adjusted cosine measure, which take this into account:

simUi,j =

∑
u∈U (ru,a − ru)(ru,b − ru)√∑

u∈U (ru,i − ru)2
√∑

u∈U (ru,b − ru)2
(2.4)

Finally, we can predict the rating for user u for an item p as follows:

pred(u, p) =

∑
i∈ratedItems(u) sim(i, p) ∗ (ru,i)∑

i∈ratedItems(u) sim(i, p)
(2.5)

Model-based

Memory-based collaborative filtering has one major drawback;scalability. Imag-

ine going through millions of ratings for every prediction. This would take too

much time and would therefore not be viable for big systems. This is where

model-based collaborative filtering [18] comes in. The main idea is to create

a model which the system can base the prediction upon instead of constantly

going through all the ratings. It only looks through the ratings once to cre-

ate the model. This takes much time, but it does not need to be done during

production/live time. There are many different models. Here are some of them::

2.2. TECHNIQUES 21

Bayesian network

It is also possible to predict ratings by using probability. By calculating the

probability of a rating by a certain user to a certain movie, we can then choose

the rating with the highest probability. The first approach we will be looking

at is using the Bayesian network as our model. There are many different ways

of using Bayesian netowrk for collaborative filtering [20][13] [11]. [11] presents

two approaches to collaborative filtering. One is based on clustering. Here the

probability of each rating are conditionally independent given membership in

an unobserved class variable C. Meaning, there are many variables that decide

which class you belong to and therefore decides what items you like. However,

given the class, what you like is no longer depended on those variables. The idea

is that there exist similar users with similar tastes and those should be clustered

in the same group. The probability of an individual being in a particular class

and a complete set of vote values can be expressed as:

Pr(C = c, v1, v2,, vn) = Pr(C = c)

n∏
i=1

Pr(vi|C = c) (2.6)

The other approach is a Bayesian network where each node represents each

individual item. And each item would have different states which represents

the possible ratings, including ”no rating” to represent missing rating. We can

then apply an algorithm for learning Bayesian networks to the training data.

The resulting network would then contain items with associated parent items

that are the best predictors of its votes. Each conditional probability table is

represented by a decision tree encoding the conditional probabilities for that

node.

Matrix factorization/latent factor models

There might be underlying features/factors that make you like certain movies.

These features are called latent factors. You might not know about them, but if

the system is able to find them, it can find other movies with the same features

to recommend to you. For instance, if there are two movies that you really like,

22 CHAPTER 2. BACKGROUND

then they must share a common feature that made you like those two movies.

It is possible to find these hidden features by looking at the rating database

and use a method called matrix factorization. In short, the idea of matrix

factorization is to find latent (hidden) factors based on the rating pattern to

characterize items and users. This section will talk about the SVD (Singular

Value Decomposition), which is one method of matrix factorization.

SVD

In linear algebra, singular value decomposition is a factorization of a real or

complex matrix. This can be used to predict the user’s rating. The theorem

states that: Suppose M is a m × n matrix, then there exists a factorization of

M of the form [8, p.371]:

M = UΣV T (2.7)

where Σ is a m × n diagonal matrix with non-negative real numbers on

the diagonal, and U is an m × m, and V’ is an n × n matrix. However we

can approximate the full matrix by observing only the most important features,

hence picking Σ to only contain the k largest singular values of M. Matrix

V corresponds to the users and matrix U to the items. By projecting these

matrices into a two-dimensional space, one can see what items are similar, and

which users are similar. To predict user A’s rating, one must first find where it

would be in the two-dimensional space. This is done by multiplying A’s rating

vector by the k subset of U and the inverse of the k-column singular value matrix

.

A2D = A× Uk × Σ−1k (2.8)

After finding A’s data point, one can now use different methods to predict A’s

rating. One can for instance use the cosine similarity as described earlier, using

the users that are closest to A.

2.2. TECHNIQUES 23

Factorization machine

Matrix factorization has gained a lot of popularity since the last Netflix com-

petition, because of its performances. However it only works well with specific

data and it is not capable of general prediction tasks. FMs are a general pre-

dictor that can work with any real valued feature and it works really well with

sparsed data vectors[26], [14]. In recommendation system where you have alot

of movies, but each person has only rated a few of them, this can come in handy.

Later, we will se that it can mimic other models, for instance matrix factoriza-

tion, depending on the input data. The factorization machine model looks like

this:

ŷ(x) := w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

< vi, vj > xixj (2.9)

Where

< vi, vj > (2.10)

is the dot product of two vectors. Where you want to predict a rating ŷ based on

the input variable vector x = [x1,...,xn] where each x is a variable that represents

a certain feature. The features could be time of the day, genre, last movie rated

and so on.

W0, w (one w for each variable), and matrix V are parameters that have to

be learned through training. W0 is a global bias, Wi represents the strength of

the i-th variable and a row vi in V is a vector representing the i-th variable. The

product of two v vectors describes the interaction between those two vectors.

For example, user A can be represented by a vector vA and movie ST can be

represented as a vector vST . This is where collaborative filtering comes in to

the picture for Factorization Machine. If user A has not yet rated movie ST

(see example figure 2.2), then a direct estimation of the interaction between

those two would be 0 (no interaction). However, Factorization Machine uses

collaborative filtering principles to estimate the interaction < vA, vST >. Since

user B rated movie SW and ST with similar ratings (4 and 5), then vST and vSW

must be similar. That must mean that < vA, vST > is similar to < vA, vSW >.

24 CHAPTER 2. BACKGROUND

Intuitively, it looks like the computational time complexity of the model is

quadratic (O(kn2)), because of the nested double sum. However, because of

the factorization method, the formula can be reformulated to give us a linear

time complexity (O(kn)). This reformulation can be found here [26] Below is

an example of what kind of data the Factorization machine can handle.

Figure 2.2: Example of feature vectors taken from [26]. Each row represents a

feature vector xi with its corresponding target yi. The first row represents user

A who has rated movie TI, has also rated NH and SW, no last ratings and the

rating of movie TI was 5. As one may see, there are multiple features leading up

to the rating of 5 and not only who rated what movie what rating like previous

approaches. This matrix can be used as input to train the model.

To learn the parameters needed in the model, one can use gradient descent

methods like stochastic gradient descent, or alternating least squares.

Stochastic Gradient Descent, As one can see, the Factorization Machine

model can be represented as a linear regression with multiple variables (multiple

linear regression). Gradient descent is a known algorithm used to estimate the

weights Wi for each variable. Since a normal (batch) gradient descent iterates

through every single data point before updating the estimation, it will consume

too much time with a big data set. Therefore, stochastic gradient descent, which

2.2. TECHNIQUES 25

updates the estimation after a single data point, is preferred. GD tries to find a

local minimum of a function, in our case, it would be the error of the predicted

rating and the actual rating. Intuitively explained, this is how it works:

1. First initialize the parameters, for example setting them to 0.

2. Predict the rating with the parameters

3. Calculate the difference between the predicted value and the actual value

4. Update the the parameters according to the error

5. Repeat from 2.

The act of iterating through all the data points in a data set (as defined

by step 1-4/ above) is called one epoche. A more detailed and mathematical

explanation can be found here: [24]

2.2.3 Challenges with Collaborative Filtering

Although there are different ways to do collaborative filtering, they all share

some common drawbacks. Those drawbacks will be discussed in this section.

Cold start

Probably the most known and intuitive drawback with collaborative filtering is

the cold start problem. Since collaborative filtering does its predictions based

on the users’history, what will happen when the system tries to predict a movie

without any rating history to a new user? Some solutions to this can be either

asking the user to rate several movies upon account creation and/or the use of

content-based filtering until enough data is gathered to do collaborative filtering.

The long tail

The addition of new items gives rise to another problem; new items have no

ratings and therefore cannot be recommended to anyone. This creates the long

26 CHAPTER 2. BACKGROUND

tail problem with the rich get richer effect. Movies with few ratings will keep

being ignored while movies with many ratings will keep getting more ratings.

The problem is that the long tail of unpopular movies might contain prefer-

able movies to certain users, but they stay unpopular because they never get

recommended and not because it is a bad movie.

Sparse data

In a recommendation system, the user has only rated a few movies out of millions

of movies. Therefore, the data is very sparse. This makes it harder to provide

satisfyingly accurate results. However, Factorization Machine seems to handle

this problem quite well [26].

2.2.4 Hybrid

As you can see, each method has its own weaknesses, therefore it is very common

to combine different techniques to cover these up. This is known as hybrid rec-

ommender systems [10]. In a hybrid recommender system you combine multiple

techniques to gain fewer drawbacks. Most commonly, collaborative filtering is

combined with other techniques to avoid their biggest drawback; the cold start.

There are different ways to implement hybrid recommender systems [27]:

• ”Implementing collaborative and content-based methods separately and

combining their predictions.

• Incorporating some content-based characteristics into a collaborative ap-

proach.

• Constructing a general unifying model that incorporates both content-

based and collaboative characteristics”

.

2.3. CONTEXT-AWARE RECOMMENDATION SYSTEMS 27

2.3 Context-aware Recommendation Systems

Previously, we have been discussing which items match with which user based on

their taste. Either through collaborative filtering or content-based filtering, the

system tries to find data about the users and the items to match them. In this

section we are going to factor in another element: the context. The context is a

factor that has nothing to do with the items or the users, but the environmental

state at the time of recommendation. For example, time of the day, the weather,

the mood and more. Context is important for several recommendation system,

and it is a factor this thesis is going to take into account for, but first we

need to define what context is. This thesis is going to denote it as ”situation

parameters that can be known by the system and may have an impact on the

selection and ranking of recommendation results” [17]. In the previous sections,

we have only been looking at predicting ratings based on the users and items,

where for example here [29], they have taken the location of the current user

into consideration before making the recommendation.

R : User × Items =⇒ Rating (2.11)

Hence, we have only been looking at two-dimensional (2D) systems since they

consider only the User and the Item dimensions in the recommendation process.

This thesis however, wants to take context into consideration as well.

R : User × Items× Context =⇒ Rating (2.12)

Chapter 3

Research method

3.1 Design Science Research

Design science research is a set of analytical techniques and perspectives for

performing research in Information Systems. In short it involves creating an

artifact and evaluating it. This thesis is going to follow seven guidelines provided

by Hevner et al.[16] (figure 3.1).

28

3.1. DESIGN SCIENCE RESEARCH 29

Figure 3.1: Design-Science Research Guidelines, figure taken from [16].

30 CHAPTER 3. RESEARCH METHOD

3.1.1 Design as an Artifact

In this thesis an artifact will be made. A web based proof of concept prototype

of a context-aware recommendation system will be created.

3.1.2 Problem relevance

Watching a movie that you like can be entertaining and fun. Watching a movie

that you do not like is not that fun. How can you find out if you like a movie

or not before even watching it? A recommendation system can help you with

that. It might not be 100% correct, but if the system is good, it will be able to

predict correctly most of the time.

3.1.3 Design Evaluation

The system will be evaluated by its recommendations, how precise they are and

how fast the recommendations are made. It will also be tested by real users

where they will be asked if such systems are useful.

3.1.4 Research Contribution

A prototype of a webapplication for recommending movies will be created. Fac-

torization Machine will be evaluated through that webapplication. Finally, re-

search will be done to see what kind of features are important for a movie

recommendation system to be popular.

3.1.5 Research Rigor

This thesis explains how the system is implemented, thus it should be possible

to reproduce the results. The code is also available for anyone to clone. The

dataset used for training and testing is from Movielens (http://grouplens.

org/datasets/movielens).

http://grouplens.org/datasets/movielens
http://grouplens.org/datasets/movielens

3.2. EVALUATION TOOLS 31

3.1.6 Design as a Search Process

Design as a search process motives us to uses an iterative method. Although this

thesis is about single user recommendation systems and not group recommen-

dation system. This application has been implemented with the results from

the previous work in mind. The application has also been through two different

phases, where the prototype were improved based on interviews.

3.1.7 Communication of Research

This thesis shows both in detail how the algorithms are implemented and also a

more general view of how the prototype works through the use of drawings and

pictures.. The source code will also be available on Github for anyone to see.

3.2 Evaluation tools

3.2.1 Mean Squared Error

To calculate the accuracy of the predictions, the mean squared error has been

used. MSE assesses the quality of the predictor by calculating the mean of the

squared errors.

MSE =
1

n

n∑
i=1

(Ŷi − Yi)
2 (3.1)

To calculate this, mean squared error module from sklearn1 library has been

used.

3.2.2 Python time module

To measure the running time of certain algorithms and certain pieces of the

code, the python ”time” module 2 has been used.

1http://scikit-learn.org/stable/
2https://docs.python.org/2/library/time.html

http://scikit-learn.org/stable/
https://docs.python.org/2/library/time.html

32 CHAPTER 3. RESEARCH METHOD

3.3 Evaluation plan

The prototype will be evaluated in two different ways. The first way will evaluate

different collaborative filtering approaches by their accuracy. The second way

will evaluate our prototype with only core features (phase one) to find out what

features can be added to make the prototype more appealing. To evaluate the

accuracy, MSE will be used. For the second part, a round of interviews will be

held. The main difference between the two is that the evaluation of the accuracy

will give us an idea of how good the predictions are while the evaluation of the

features is for improving our prototype.

Chapter 4

Architecture and

Implementation

This chapter describes how the system was implemented. First it will discuss

the architecture, before it goes into the details of the implementation. The

implementation was done in two phases. One prior to the interviews and one

after. The first prototype contained the absolute core features. Then a round of

interviews were made to seek out more features that could benefit the prototype.

4.1 Data set

The data sets this thesis is using were found at http://grouplens.org/datasets/

movielens/ under ”recommended for education and development”. Note that

they update this data set continuously, therefore the data set will also be in-

cluded with this thesis, with the same license conditions as Movielens. The

license usage can be found in Appendix B. One data set contains the rating,

but does not include the movie name. Another data set contains movie name,

the corresponding movie ID and its genres. We have used them both to connect

each rating to the correct movie before adding them to the database.

33

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/

34 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

4.2 Chosen collaborative filtering method

Before choosing one collaborative filtering method to be used in our prototype,

two methods were implemented and compared. User-based nearest neighbor

and Factorization Machine. After the testing (chapter 5.2 for evaluation and

comparison of those), we decided that Factorization Machine was the way to go.

Not only does it give high accuracy, but also high flexibility. The reason why

factorization machine was picked over other model-based methods is because

of the flexibility. Our prototype would need improvements and changes in the

future before it can go live. Therefore we want something that is able to adapt

easily to changes. Factorization Machine provides us with this because of how

general it is. It is not implemented to a specific input. The model adapts to the

training data. In the future we might get other data sets that we currently do

not know about, and with Factorization Machine, we do not need to change the

implementation for the model to work, only the part where we parse the data,

not the algorithm itself. For example, for this thesis, the data we are using

contains userID, movieID, rating and timestamp, where userID and movieID

are the two features that have been used to predict the rating. However, in the

future we might get data sets with even more featurues, like gender, ”last movie

rated”, ”post code” and so on. Then we will only need to implement a new

way to parse these data, but the implementation of factorization machine stays

untouched.

4.3 Phase one

In phase one, only core features were implemented. The prototype met the

requirements below, which resulted in a very basic typical recommendation sys-

tem. This prototype was then used to find other features through interviews.

4.4. PHASE TWO 35

4.3.1 Scenarios:

• Person A is bored, so he wants to watch a movie. However, there is

nothing on the television and he does not know what to watch. He turns

on his computer and googles ”Best movies 2016”, but different entries give

different movies, and he does not know which one to choose. He also has

a meeting at a certain time, therefore is time is limited.

• Person B, like person A, also wants to watch a movie. He does not have

any time limits. However, he is in the mood for a horror movie.

4.3.2 Requirements:

• Recommendation: The system should recommend movies based on user

ratings history (Faster than 0.5 seconds, and at least as accurate as user-

based filtering.)

• Context: There are two contextual features the system should take into

consideration when recommending a movie: the time and the mood of the

user.

4.4 Phase two

Phase two consisted of improving the prototype from phase one based on the

interviews (see Chapter 5: Evaluation for more details). The updated require-

ments will be described here. We will then introduce the architecture and

implementation of the final product.

4.4.1 Scenarios:

• Person A is bored, so he wants to watch a movie. However, there is

nothing on the television and he does not know what to watch. He turns

on his computer and googles ”Best movies 2016”, but different entries give

36 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

different movies, and he does not know which one to choose. He also has

a meeting at a certain time, therefore is time is limited. (From phase one)

• Person B, like person A, also wants to watch a movie. He does not have

any time limits. However, he is in the mood for a horror movie. (From

phase one)

• Person A receives a recommendation from person B, but he is not sure if

he can trust his recommendation.

4.4.2 Requirements:

• Recommendation: The system should recommend movies based on user

ratings history (Faster than 0.5 seconds, and at least as accurate as user-

based filtering.)

• Context: There are two contextual features the system should take into

consideration when recommending a movie: the time and the mood of the

user.

• Manual research: The user should be able to see the plot, actors and the

IMDb rating of the recommended movies.

• Socializing: The user should be able to find other users on the application

and see how similar they are. This requirement can be heavily expanded

upon, which will be described in future work.

4.5 Architecture

This application is divided into two parts: Front End and Back End. The

Front End is also connected to another API, OMDb API1, which is used to get

posters and movie length. In this section we will discuss the architecture of the

application further.

1https://www.omdbapi.com

 https://www.omdbapi.com

4.5. ARCHITECTURE 37

Figure 4.1: Illustration of overall architecture

4.5.1 Model-View-Controller

MVC is a design pattern that divides the modeling of the domain, the presen-

tation, and the actions based on user input into three separate classes [5].

38 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

Figure 4.2: MVC, image from Wikipedia2

Each class has its own purpose. The model manages all the data, while it

is listening to changes from the controller. The controller handles the input

from the user and then changes the state of the view and model accordingly.

The view manages the display of the data. This design pattern has been used

in both the Back End and the Front End of the application. By separating

implementation into different classes we makes it easier to modify in the future,

because one can modify the relevant classes without touching the others. In the

next sections we can see how it has been used in the Back End and Front End.

4.5.2 Back End

The Back End is a Java Representational State Transfer (REST) service written

in Python. It has been created using Django REST Framework3 which is a

toolkit for building Web APIs [3]. It is a framework for Django 4 which is a

free and open source web application framework, written in Python. The Back

2https://en.wikipedia.org/wiki/Model-view-controller
3http://www.django-rest-framework.org
4https://www.djangoproject.com

 http://www.django-rest-framework.org
 https://www.djangoproject.com

4.5. ARCHITECTURE 39

End is responsible for doing all calculations. Python has been chosen because

of its simplicity in syntax, which makes implementing algorithms much simpler.

It also has a lot of good libraries for artificial intelligence like Scikit-Learn 5.

We can then reuse implementations that have already been done, instead of

spending much time doing it from scratch.

Structure

The Back End, following Django’s structure, is divided into three layers. Django

calls these three layers Model, View and Template [1]. However, instead of

looking at the names of each layer, we should be looking at the intent of each

layer. The model manages the data, the view manages the requests from the

user and the template manages the presentation of the data. As one can see,

it is actually following the MVC principles, however, they changed the name of

view to template and controller to view. Remember, our Back End does not

manage the GUI, therefore the view part (template in Django) is non-existent

in the Back End.

5http://scikit-learn.org/stable/

http://scikit-learn.org/stable/

40 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

Figure 4.3: Back end structure. There are individual classes for model and

view, which acts like model and controller in MVC. The templates folder would

have contained html files for rendering purposes if we wanted Django to do the

rendering process (view in MVC).

4.5.3 Front End

The front end was developed using the Backbone.js framework 6. The front end

is responsibe for rendering the data from the back end. It creates a GUI for the

users of the system. It is connected to the back end by sending AJAX calls.

Structure

Backbone also has a MVC framework and just like python, the naming con-

vention is a bit different. Backbone has Models and Collections that acts like

models in MVC, while View acts like Controller and Template acts like View.

The model in the back end is typically connected to the database, the model in

the front end however, is connected to the REST API from the back end.

6http://backbonejs.org

 http://backbonejs.org

4.6. IMPLEMENTATION APPROACH 41

Figure 4.4: Front end structure. Files ending with -view.js acts like controllers,

-view.hbs acts like view and -model.js acts like model in MVC.

4.6 Implementation approach

This section will go through the implementation and explain how the system

recommends a movie in implementation detail. The recommendation consists

of three stages:

• Setup

• Defining context (if any)

• Finding recommendations

4.6.1 Setup

Since our solution is using collaborative filtering to recommend movies it needs

data. This stage consist of two phases: Adding data to the database, and

training the model. Since we only need the training data for training the model,

we did not add the rating data to the database, but just kept the csv file for

when we needed to train the model. When another/better training set is found,

then we only need to swap the old one out with the new one, instead of removing

/adding from/to the database. However, since the system is going to recommend

42 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

movies, the movies and all the* data about them were* added to the database.

Note that although we did not add the ratings from the training set, the new

ratings that are made within the system will be added, because this gives us

data about the users of the system. The different types of genres were added

manually using the Django admin interface (Figure 4.2). After the genres were

added, the movies were also added and connected to their corresponding genres

using Python code. The model was then ready to be trained. A function

getdata(request) was implemented to both upload data to the database and

train the model. It will check whether or not the movies have been uploaded.

If it has, it will train the model, if not, it will upload.

Listing 4.1: Function for either upload data or training the FM depending on

whether the data is uploaded or not

1 def getdata(request):

2 global fm

3 global v

4 if Movie.objects.filter ().count() >0:

5 def loadData(filename ,path="data/"):

6 data = []

7 y = []

8 users =[]

9 items =[]

10 with open(path+filename) as f:

11 for line in f:

12 (user ,movieid ,rating ,ts)=line.split(’,’)

13 data.append ({ "user_id": str(user), "movie_id":

str(movieid)})

14 y.append(float(rating))

15 users.append(user)

16 items.append(movieid)

17

18 return (data , np.array(y), users , items)

19

20 (train_data , y_train , train_users , train_items) = loadData(

"train.csv")

21 (test_data , y_test , test_users , test_items) = loadData("

4.6. IMPLEMENTATION APPROACH 43

test.csv")

22 v = DictVectorizer ()

23 X_train = v.fit_transform(train_data)

24 X_test = v.transform(test_data)

25

26 fm = pylibfm.FM(num_factors =10, num_iter =100, verbose=True ,

task="regression", initial_learning_rate =0.001 ,

learning_rate_schedule="optimal")

27 fm.fit(X_train ,y_train)

28 predictions = fm.predict(X_test)

29 from sklearn.metrics import mean_squared_error

30 print("FM MSE: %.4f" % mean_squared_error(y_test ,

predictions))

31 context ={

32 "text" : "Already uploaded"

33 }

34 return render(request , "getdata.html", context)

35 else:

36 movie_list =[]

37 m = open(’data/movies.csv’, ’r’)

38 for line in reader(m):

39 movie_list.extend(line)

40 m.close

41 for x in range(1,len(movie_list)):

42 if x%3==1:

43 s=movie_list[x]

44 text = s[s.find("(")+1:s.find(")")]

45 count=0

46 while (text.isdigit ()==False and count <15):

47 s=s[s.find(")")+1:]

48 text=s[s.find("(")+1:s.find(")")]

49 count = count +1

50 if count == 15:

51 year=-1

52 else:

53 year=int(text)

54 movie = Movie(movieName=movie_list[x],movieId=

movie_list[x-1], year=year)

44 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

55 movie.save()

56 elif x%3==0:

57 for genre in movie_list[x-1]. split(’|’):

58 if genre != ’(no genres listed)’:

59 movie.movieGenre.add(Genre.objects.get(

genre=genre))

60

61 context ={

62 "text" : "Complete"

63 }

64 return render(request , "getdata.html", context)

To run this code, one may visit yourdomain/getdata. This is for practical

reasons. One may rerun the training just by refreshing this page. However,

this possibility should only exist during testing and not in production. Only

authorized people should be able to rerun the training or upload data.

4.6. IMPLEMENTATION APPROACH 45

Figure 4.5: Database structure

Figure 4.6: Django admin interface

4.6.2 Defining context

The context parameters that have been used in this thesis are genres (mood) and

time length of the movies. Note that this differs from user preference, because

the user might prefer a certain genre, but might want to see something else at

that moment because he for instance saw it too many times last week. The

46 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

mood might also affect what kind of genre he wants to see. However finding

correlation between genre and mood has not been prioritized in this thesis.

Therefore, the user is allowed to directly choose the genre.

4.6.3 Genre

There are two approaches of adding genre to the recommendation. One; filter

out unwanted genres and run the recommendation algorithm on that set. Two;

instead of filtering out unwanted genres , add a higher score to the preferred

genres. The idea is that there might exist one or more movies, that would be

preferred despite its genre. The first approach rules certain genres completely

out, assuming that the user does not want to watch anything else than the chosen

genres, which is not always the case. The problem with approach number two

is to find how much the chosen genre should count in the recommendation.

Factorization machine does have a way to handle this. We could add ”chosen

genre” as a feature to our model. However, we do not have such data. Thus

approach one was chosen because the model can not be trained to handle such

input.

Listing 4.2: Genre filtering before creating a matrix of unseen movies that need

prediction before sorting it from highest prediction to lowest prediction

1 elif ’filter ’ in request.GET:

2 genre=Genre.objects.get(genre=request.GET.get(’filter ’)

)

3 movies = Movie.objects.filter(movieGenre=genre).exclude

(movieId__in=seenMovies)

4 else:

5 movies = Movie.objects.exclude(movieId__in=seenMovies)

6 predictList =[]

7 for movie in movies:

8 predictList.append ({’user_id ’:str(user.userID),’

movie_id ’:str(movie.movieId)})

9 predict=v.transform(predictList)

10 y=fm.predict(predict)

4.6. IMPLEMENTATION APPROACH 47

11 newlist = sorted(predictList , key=lambda k: k[’rating ’],

reverse=True)

4.6.4 Time

Just like with genres, we have to decide whether or not we want to rule out

movies with undesired time lengths. Because time length is usually important

when there exist a certain time limit for a user, we have decided to go for

approach one. Meaning, the system assumes that it does not matter whether

the movie is 60 minuntes long or 120 minutes long, unless you tell the system

that you are unable to (not only by preference) watch something that lasts

longer than 60 minutes. In that case, everything that last longer will be filtered

out. The main differennce between filtering genre and filtering time is the order

of when it is done. While filtering genre happens before Factorization Machine

does its calculations, time filtering not only happens after the recommendation

calculation has been done, but also from the Front End and not Back End. The

reason for this is simple: we do not have the data of the time length in our

database. We get this data from Omdbapi. This means that the Back End does

its predictions first and responds with the top K rated movies first, before the

front end collects these movies and then filters out too long lasting movies by

checking with Omdbapi. This changes the pagination a bit. The pagination

algorithm is done by the back end. When no time limit has been chosen, each

page will show the top ten (the page size has been arbitrarily chosen) movies

that have been recommended. For each page the front end will request movie

recommendations from the back end and the back end will respond with ten

movies. However, when a time limit has been chosen, the back end will respond

with 100 (also arbitrary chosen) movies for each page, but not all of them will

be shown. The front end will only show the movies that are short enough.

This means that each page has different amounts of movies, ranging from 0-100

movies, depending of how many of those 100 movies fit the criteria.

48 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

Listing 4.3: Finally checks if user has chosen a time limit. If no time limit has

been chosen, a normal page of 10 movies will be returned. If a time limit has

been chosen, a page of 100 movies will be returned where it will be filtered from

the front end

1 if "time" in request.GET:

2 paginator = TimeCustomPaginator ()

3 result_page = paginator.paginate_queryset(newlist ,

request)

4 else:

5 paginator = CustomPaginator ()

6 result_page = paginator.paginate_queryset(newlist ,

request)

7 return paginator.get_paginated_response(result_page)

4.6.5 Recommendations

For recommendations we want to find the top ten movies and show it to the

user. We do this by predicting ratings for each movie and show the top ten high-

est rated movies. As shown in section 4.2, Factorization Machine is the chosen

approach to predict movies. When Steffen Rendle introduced the Factorization

Machine to the world, he also showed us an implementation which can be found

at https://github.com/srendle/libfm. Although it is not in Python there exists a

Python wrapper for it (created by someone else) https://github.com/jfloff/pywFM.

However, it does not separate training and predicting. Meaning, everytime the

module wants to predict a new rating it will have to retrain the model, which

is time- consuming and not ideal for our prototype. Another Python Factoriza-

tion Machine module was found and used: PyFM7 . Although it has some flaws

(more about this in evaluation), it was good enough for our proof of concept

prototype.

7https://github.com/coreylynch/pyFM

https://github.com/coreylynch/pyFM

4.6. IMPLEMENTATION APPROACH 49

Factorization Machine

We have earlier seen how Factorization Machine works. This section will de-

scribe how it works with our data sets, and how the chosen Python module has

been used in our prototype.

Figure 4.7: Dataset in a csv (Comma-separated values) format. The first value

represents userID, second value represents moveID, the third value represents

the rating value and the last value represents the timestamp.

This is how our data set looks like, which then needs to be parsed to create a

matrix that will be used as input for training the Factorization Machine model.

When the model is done training, it is then ready to predict ratings. PyFM

uses stochastic gradient descent to estimate the missing model parameters: w0,

matrix V, and w.

50 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

Figure 4.8: Feature vector representation of the data set. This kind matrix

has been used as input for training the FM model.

In this case, where we only have userID and movieID, the Factorization

Machine would actually mimic a matrix factorization model [19], because the

only non-zero feature xi is xu (userID) and xm (movieID). Formula 2.9 then

becomes:

ŷ(x) := w0 + wu + wm+ < vu, vm > (4.1)

When Factorization Machine uses this as input for the training (Listing 4.1),

values for w0, wu, wm, and < vu, vm > will be stored and then used to predict

a rating whenever fm.predict() is called .

User based with Pearson correlation

Although this approach is not used in the prototype, it was implemented to

compare it with Factorization Machine. This section will describe how it was

implemented.

Listing 4.4: First, a dictionary is created to store information about who rated

what

1 ratingDictionary= {}

2 movieSets =[]

4.6. IMPLEMENTATION APPROACH 51

3 for x in range(0,len(train_data)):

4 movieSets.append ((str(train_data[x][’user_id ’]),str(

train_data[x][’movie_id ’])))

5 if train_data[x][’user_id ’] in ratingDictionary:

6 ratingDictionary[train_data[x][’user_id ’]]. append ({

train_data[x][’movie_id ’]: y_train[x]})

7 else:

8 ratingDictionary[train_data[x][’user_id ’]] = [{

train_data[x][’movie_id ’]: y_train[x]}]

Listing 4.5: Second, similar users are found by iterating through every user and

comparing common movies and using the Pearson Correlation

1 countIndex =0;

2 predictions =[]

3 for user in test_users:

4 userratings =[]

5 similarusers= {}

6 for userrating in ratingDictionary[user]:

7 for key in userrating:

8 userratings.append(userrating[key])

9 for userTwo in ratingDictionary:

10 if str(user) != userTwo and (userTwo ,str(test_items

[countIndex])) in movieSets:

11 movieListOne= []

12 movieListTwo =[]

13 for rating in ratingDictionary[user]:

14 for movieId in rating:

15 for ratingTwo in ratingDictionary[

userTwo]:

16 for movieTwo in ratingTwo:

17 if movieId == movieTwo:

18 movieListOne.append(rating[

movieId])

19 movieListTwo.append(

ratingTwo[movieTwo])

20 continue

21 if (len(movieListOne) >3):

22 similarity=pearson(movieListOne ,

52 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

movieListTwo)

23 if similarity >0.6:

24 similarusers[userTwo]= similarity

25 similarusers[userTwo+’list’]=

movieListTwo

Listing 4.6: Finally, the rating for the current movie by the current user of the

current data point in the test set is predicted using the formula (2.3). The

prediction is then added to a list of predictions. The prediction list will then

contain all the predicted ratings in the same order as the data sets in the test

set. It is then ready to be evaluated

1 teller = 0

2 nevner = 0

3 for simuser in similarusers:

4 if isinstance(similarusers[simuser],int):

5

6 nevner = nevner + similarusers[simuser]

7 for movie in ratingDictionary[simuser]:

8 if test_items[countIndex] in movie:

9

10 teller=teller+similarusers[simuser]*(

movie[test_items[countIndex]]-

average(similarusers[simuser+’list’

]))

11 continue

12 if nevner ==0:

13 predictions.append(average(userratings))

14 else:

15 predictions.append(average(userratings)+teller/

nevner)

16 countIndex=countIndex +1;

4.7. PROTOTYPE 53

4.7 Prototype

4.7.1 API

Django rest framework gives us a browsable API, which makes it easier to test

our API. Here is an example of an API response when a recommend request

has been done to the back end. To be able to get this response, the user has

to be logged in. The recommendation is of course personalized accordingly to

the Factorization Machine model. All new users without any rating history

will therefore get the same recommendations until ratings have been done and

updated in the model. A document of API details is provided in the appendix.

Figure 4.9: Example of browsable API

54 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

4.7.2 GUI

Previously, we have been looking at the architecture of the system. In this

section, the GUI of the system will be presented. The GUI is a web-based

recommendation system, where each page of the site has its own functionality

where it gets the data from the mentioned API.

Login

The login page is the first page the user is introduced to, because to get access

to any of the other features the user has to log in. To log in, the user has to

create an account first.

Figure 4.10: Login page

Rate

When the user is logged in, they will be redirected to a page where they can

rate movies. They can either search for a movie by name specifically or browse

until an interesting movie is found. By clicking on the poster a screen to rate

the movie will be presented.

4.7. PROTOTYPE 55

Figure 4.11: Rating page

Figure 4.12: Rating San Andreas

56 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

Recommendation

This page will give the user recommendations of movies. The user can filter

by either year, time length, genre, or time length and genre. More detailed

explanation of the filtering is already explained in section 4.5.2. Clicking on a

particular recommended movie will present the user a window containing more

details about the movie. The information that is given to the user is main

actors, plot, IMDb8 rating and the estimated rating personalized for the user.

This feature was added in phase two when we learned that many people actually

prefer to do their own research. This includes finding out which actors are in

the movie and the plot of the movie.

Figure 4.13: Recommendation page

8http://www.imdb.com

http://www.imdb.com

4.7. PROTOTYPE 57

Figure 4.14: Details of a recommended movie

Profile

Initially, the profile page was created to provide the user a even more person-

alized (adding more features to Factorization Machine) recommendation if we

were to get a data set with the relevant features. It could also be used to cre-

ate the data set with the relevant features. However, after the interviews, we

learned that socializing was a feature that was wanted. Therefore, the profile

page became more than we initially intended it to be. It became a page where

you could search for other users. You can find out if a certain user is similar

to you and look at their ratings. This feature lets you recommend yourself a

movie. This feature has potential to grow to something even bigger. More of

this will be discussed in Chapter 7: Conclusion and future work.

58 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

Figure 4.15: Current user profile

Figure 4.16: This page lets you edit your profile, including adding and removing

genres you like

4.8. TECHNOLOGY 59

Figure 4.17: Search of user bob. We can see what movies he has rated and

other information about him. User tanle and user bob has a similarity of 5

(between -10 to 10, calculated using the Pearson Correlation

4.8 Technology

So far, Python, Django, Django REST Framework, OMdb API and Backbone

have been mentioned. However, there are some other noteworthy technologies

that have been used. They will be described here.

4.8.1 PostgreSQL

For the database we had a couple of choices. Since our web framework of

choice is Django, we’ve found that MySQL, PostgreSQL and SQLite are the ones

that are most relevant as they are best documented on their offcial web page

[2]. SQLite however, is not viable because it does not work with applications

where multiple clients share the same database. Both MySQL and PostgreSQL

would have worked fine. PostgreSQL was chosen due to the known limitation

60 CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

of MySQL and we want a prototype that is open for any feature in the future.

4.8.2 GitHub

GitHub9 is a web-based Git repository hosting service. This is used mainly for

sharing the prototype to anyone who wants to use it.

4.8.3 scikit-learn

scikit-learn is a free software machine learning library for the Python. This

library comes in handy when doing recommendation calculations. PyFM uses

it, we also use it to create the needed matrices for our Factorization Machine

model and evaluate the accuracy of the recommendations with its mean squared

error function.

9https://github.com

https://github.com

Chapter 5

Evaluation

This section contains the evaluation of the prototype. The evaluation consists of

two phases. Interviews were made in phase one to improve our prototype. Then

an evaluation of the accuracy and speed of our approach was done in phase two.

A comparison of a user-based collaborative filtering and Factorization Machine

will also be described.

5.1 Phase one: The interviews

In phase one of the evaluation we did a round of interviews. There were seven

participants in total. The original interview can be found in the appendix. In

this section we will briefly go through each participant’s answer. The anonymous

participant is be called A, and the interviewer is called I (in the original interview

that has been included with this thesis). The goal of this phase is to collect

ideas that will help improve our prototype. The questions were made as the

participant answered. Only the first question ”Bruker du anbefalingssystem

slik som denne (our phase one prototype) for å f̊a anbefalt filmer? For eksempel

Netflix?” was predefined.

61

62 CHAPTER 5. EVALUATION

5.1.1 Anonymous A

Anonymous A trusts people more than computers. Uses trusted websites like

IMDb to get an overall idea of the movie.

5.1.2 Anonymous B

Anonymous B uses recommendation systems. B also trusts recommendations

made by friends over those made by computers/algorithms.

5.1.3 Anonymous C

Anonymous C uses recommendation systems (Netflix) , but does not rate movies.

This can cause bad recommendations. C trust friends more, but only those who

have the same taste. C thought the idea of social feature would be cool.

5.1.4 Anonymous D

Uses recommendation systems (Netflix), but does not rates movies often. This

can cause bad recommendations. Trusts friends more, but only those who have

the same taste. D likes to do some research on their own, like finding out the

actors of the recommended movie before actually watching it.

5.1.5 Anonymous E

Anonymous E does not use recommendation systems because they does not

trust them at all. E trusts friends more. E usually chooses interesting movies

she randomly finds.

5.1.6 Anonymous F

Anonymous F uses Netflix recommendations to get exposed to movies, then do

research with IMDb. Like many others, F also trust friends more, depending

on their taste.

5.1. PHASE ONE: THE INTERVIEWS 63

5.1.7 Anonymous G

Anonymous G mainly gets recommendations from YouTube reviews from a

known youtuber. Also likes the “Next” funksjon of youtube, where they recom-

mend you more movies based on what you are watching now and have watched

in the past.

5.1.8 Conclusion

From the interviews, we can see that most people do not trust algorithms.

Although they do not know how the algorithms work they do not trust it. It does

not matter if the recommendation algorithms has been improved significantly

the last decade, they still do not trust them The reason could be that they

think of algorithms as machines without feelings, and can not replicate the

human brain and therefore prefer recommendations from friends, because it feels

more personal. Recommendation algorithms based on collaborative filtering also

requires a good amount of ratings for it to be accurate. Many might try the

recommendation system with too few ratings and therefore get disappointed

with the recommendation. There are also several cases where people want to

do the research themselves, by using sites like IMDb. Based on this conclusion,

two new functions were added to our prototype. Instead of having the user first

get the recommendation from the application, then do ther own research from

IMDb, we chose to include the data about actors involved, plot and ratings from

IMDb in the recommendation. Since people prefer to get recommendations from

people that have the same taste as them, the profile page was extended to a

page where you can search for other users. When you have found a user, the

similarity will be calculated and you can see what the other person has rated.

You can then pick a movie with high ratings if the similarity is high enough for

you. For the final product see section 4.7: Prototype.

64 CHAPTER 5. EVALUATION

5.2 Phase two: Performance

This is the second phase of our evaluation. The final prototype has been eval-

uated by its speed and accuracy. This section will describe those results. In

previous work we experienced how slow memory-based filtering was, and there-

fore wanted to use a model-based filtering. The reason why specifically Factor-

ization Machine were chosen is explained in section 4.2: Chosen collaborative

filtering method. However, if Factorization Machine was not fast or accurate

enough, then another approach would have been considered. The upper limit

of how many seconds the approach should take was chosen to be 0.5 seconds.

The reason can be found here [4]. The article describes how slow a page should

load. Slow loading time can of course be caused by other things like upload-

/download speed. However, we do no not want the slow loading to be caused

by the algorithm itself. For the accuracy we want something that is at least as

accurate as memory-based filtering.

5.2.1 Data set

The data set we are using was made available on Movielens webpage the 11.

January of 2016. It contains 105339 ratings, which were split into a training

set and a test set. 85% of the data became training and the last 15% became

tests. The reason behind the low percentage of test sets (15800 tests) is because

memory-based filtering could spend a couple of seconds or more to predict one

rating, which could take days if the amount of test cases became too big. In

fact, with 15800 tests, it took roughly 29 hours (105610.86 seconds) to compute

all 15800 predictions. The original data set (ratings.csv), training set (train.csv)

and test set (test.cs) are all being included with the thesis.

5.2.2 Environment

The environment of the tests has an effect on the evaluation, especially the

speed of the algorithms. The tests have been done on a macOS Sierra with 1,6

5.2. PHASE TWO: PERFORMANCE 65

GHz Intel Core i5 processsor and 4 GB 1333 MHz DDR3 memory.

5.2.3 User-Based Filtering based on Pearson Correlation

As you can see in figure 5.1, the MSE of Pearson User-based filtering using

the data set mention above, is 0.9024. This is the accuracy that Factorization

Machine has to beat.

Figure 5.1: Performance of user based filtering

5.2.4 Factorization Machine with SGD

Factorization Machine was both fast and accurate. It did spend some time to

train the model, depending on how many epoches we wanted it to do. For our

prototype and test we chose to do 100 epoches, which means that SGD iterates

through the whole training set 100 times. This training took 341 sesconds. How-

ever, this waiting time is not something that the user needs to be experiencing.

This should be done when the server is down and periodically (for example once

a week). The speed of the actual prediction is much faster. To predict all 15800

test cases, it needed 0.1 seconds. The accuracy, the MSE with this training og

66 CHAPTER 5. EVALUATION

tests, was 0.74. These results show that Factorization Machine is more accurate

than user-based biltering and faster than the limit we had set. It is therefore

viable for our prototype.

Figure 5.2: Performance of Factorization Machine

Chapter 6

Discussion

Evaluating recommendation systems and their algorithms is not easy. Different

algorithms may be better or worse on different data sets. Some algorithms work

well when the data set contains many more users than items. However, they

might not be appropriate in a domain where there are many more items than

users. There also exist other properties for data sets, like rating density, rating

scale, and more [15]. This section will discuss the system, the results and their

validity.

6.1 Data set

Movielens keeps updating the data set that has been used in this thesis. They

do not archieve all versions, and that is why the data set has been incuded

with the thesis, with the same license usage. There are many ways to split a

data set into training- and test set. The way it has been done here includes

adding a random data point from the data set to either training or test. A

problematic scenario (although unlikely) would be that a certain user ID is not

in the training set, meaning there will be at least twenty test cases of a user

without any training. Those predictions will be inaccurate because of the cold

start problem mentioned earlier in this thesis. Different kinds of splits can be

67

68 CHAPTER 6. DISCUSSION

done to have a more varied evaluation. We will discuss this matter further in

Chapter 7: Conclusion and future work.

6.2 Factorization machine

Factorization Machine has only been evaluated with two features, userID and

movieID. This does not reflect the strength and potential of FM. FM with a

data set that contains more features needs to be evaluated to see if that actually

makes the predictions more accurate. One obvious drawback with the current

data set is that even if users rate new movies, these ratings will not affect new

predictions before new training has been done. This means that ratings done

between two training sections, will not be considered during that period. A

possible solution to this is to have a feature called ”last movie rated”. Although

this is not as efficient as retraining the model, it might suffice.

The approach we used has an accuracy of MSE: 0.7391, giving RMSE of

0.8597. The value itself is very closed to the winning algorithm of the Netflix

competition in 2009, which has a RMSE of 0.8567 [6]. However, this does not

mean that they are equally good. The data sets that has been used are so dif-

ferent that they are not comparable. However, the value itself is good. If this

evaluation had used the same data sets as the netflix contest, and got the same

value then they would have been equally good. A bigger data set needs to be

used to compare the approach with the bigger movie recommendation systems

like Netflix. From the results in this thesis the only conclusion regarding the

accuracy we can make is that it is more accurate than our implementation of

user-based collaborative filtering. However, choosing different values for simili-

raty threshhold can also impact the accuracy of the algorithm. Factorization

machine also has different ways to train the model and each way will make the

model predict different ratings. We do not know if SGD is the best way (both

in speed and accuracy) to train the model.

6.3. CONTEXT 69

6.3 Context

6.3.1 Genre

When a user adds a genre that they are tired of, then all movies that contain

that genre will get removed from the recommendations completely. This is not

always appropriate. Sometimes the user might still want to watch a movie of a

genre they are tired of if they think the movie is good enough. However, finding

a good way to weigh it is not easy. An alternative way of doing it, is to allow

the user to set a minimum threshold, where only movies with genres the user is

tired of with a lower predicted rating than this threshold is discarded.

6.3.2 Time

If a user does not have more time than 90 minues, then all movies longer than

90 minutes should not be considered. However, factoring in time in the rec-

ommendation has another issue. We will describe this issue with an example.

Imagine a scenario where the user has set the time limit to 120 minutes. There

exist movies A, B, C with time lengths 60 minutes, 60 minutes and 100 minutes

respectively. The recommendation system predicts the rating of movie A: 4,

movie B:4 and Movie C: 5. The question now is whether it is better to watch

the best movie, but only one or to watch two good movies. By adding time to

the context it can be interesting to not only find the best fit, but also the best

combination of movies to watch within the time limit.

Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, a proof of concept prototype of a Context Aware Recommendation

System was created. The prototype tested the Factorization Machine in prac-

tice and contained a social feature that is uncommon to most recommendation

systems. The main goal of the thesis was not to improve the accuracy of the

state of the art algorithms, but to improve the recommendation system by find-

ing what people think it lacks. Interviews were held to find out these features

and added to the prototype. These features were relevant data from IMDb and

social feature where users can find each other. Data from IMDb were added

because the interviews showed that people tend to go there to do their own

research. The social feature was added to increase the trust of the prototype.

The interviews showed that the main reason of why people did not use recom-

mendation systems was because they did not trust computer recommendations.

They trust their friends more. A social feature was therefore created.

The goal of the prototype was to recommend movies to a user taking mood/-

genre and time into account. To evaluate the accuracy of the system, MSE was

used. To evaluate the speed of the recommendation, Python time module were

used. The evaluations showed that Factorization Machine gave accurate and

70

7.2. FUTURE WORK 71

fast predictions. It beats user-based filtering both in speed and accuracy with

a good margin.

7.2 Future work

From this point, there are many directions one can take. These are some of

them:

Better GUI

The prototype needs a better design and the GUI needs to be responsive. Which

means that the GUI should change and adapts to the device, so it looks nice

independent of the screen of the device.

Factorization Machine

Evaluating Factorization Machine with data with more features to see if it gives

better predictions. We have not yet seen the full potential of FM.

Social feature

The social feature that was added to the prototype can be extended further.

More research needs to be done to find out how and what should be extended.

Should it be able to add friends, like on Facebook? Or follow an user like

Instagram or Twitter? There are many social platforms out there that have

features that can added to the prototype.

Evaluation

A more comprehensive evaluation of the accuracy of the algorithms should be

done. Like it was described earlier, only one randomized 85/15 split were made

of a data set of approximately 100 000 ratings to evaluate its accuracy. A larger

data set would most likely give a more correct MSE/RMSE value. Splitting it

72 CHAPTER 7. CONCLUSION AND FUTURE WORK

up in several ways and evaluate each of them should also provide higher validity

of the results.

Appendices

73

Appendix A

Interviews

Anonymous A

I - Bruker du anbefalingssystem slik som denne (our phase one prototype) for

å f̊a anbefalt filmer? For eksempel Netflix?

A- Sjeldent. Føler ikke at slike systemer ”treffer” riktig noe særlig ofte.

I - S̊a du stoler mer p̊a vennene dine enn datamaskiner? Eller hva gjør du for å

finne en film? Beskriv et par scenarior

A - Dersom jeg blir anbefalt en film av en venn (deg, Lars, etc.) er det mye mer

sannsynlig at jeg vil se p̊a den/sjekke den ut enn om jeg skulle blitt anbefalt en

film av en eller annen algoritme.

For å se filmer hjemme pleier jeg å sjekke topp 100 p̊a torrent sites. Ser jeg noe

som ser interessant ut s̊a sjekker jeg filmen p̊a IMDB for å sjekke plot/rating/et

par reviews for å forsikre meg at det ikke er helt katastrofe.

For filmer p̊a kino er det ofte reklamer (TV/YouTube) som f̊ar meg til å g̊a.

F.eks. Arrival og Inferno atm vil jeg se. Hadde ikke hørt om noen av de to

filmene om det ikke var for reklame p̊a TV/YouTube.

I - Hva er det du ser p̊a n̊ar du sjekker imdb?

A - Plot/rating/reviews/skuespillere

74

75

Anonymous B

I - Bruker du anbefalingssystem slik som denne (our phase one prototype) for

å f̊a anbefalt filmer? For eksempel Netflix?

A - Tror den st̊ar p̊a automatisk (Netflix recommendation) og har ikke manuelt

tatt den av, s̊a ja bruker den p̊a en m̊ate da.

I - Men syns du det er en viktig funksjon av netflix?

A - Synes det er veldig greit at de har den funksjonen egentlig, fordi det ikke

alltid er s̊ann at jeg vet hva jeg vil se p̊a og da er det greit å f̊a en anbefaling p̊a

hva jeg kanskje kan komme til å like. Stemmer ikke nødvendigvis alltid, men av

og til har de noen gode anbefalinger.

I - Hvem stoler du mest p̊a? Anbefalingssystem eller venner?

A - Det kommer helt an p̊a, men g̊ar for en film jeg har f̊att anbefalt av venner

som regel. Men har jeg ingen spesifikke anbefalinger fra venner s̊a bruker jeg

anbefalingssystemet for å finne noe

I - Rater du filmer p̊a netflix?

A - Ja, det gjør jeg

I - Hva syntes du om anbefalingene p̊a netflix?

A - De er greie nok. Noen er anbefalinger av filmer som jeg alt har sett og det

synes jeg er litt teit da, vil jo ha anbefalinger p̊a andre filmer. Men utover det

s̊a er de greie nok. Noen ganger anbefaler de noen bra og andre ganger ikke

Anonymous C

I - Bruker du anbefalingssystem slik som denne (our phase one prototype) for

å f̊a anbefalt filmer? For eksempel Netflix?

A – Ja, ganske ofte

I – Hva bruker du?

A - Pleier å se p̊a flere nettisider, siden en side fort kan bli subjektivt IMBd.

Ogs̊a søker jeg bare reviews av filmer p̊a net, men det er mest IMBd og netflix

det g̊ar p̊a

I - S̊a du bruker imbd til å se reviews? Beskriv en scenario der du bruker imdb.

76 APPENDIX A. INTERVIEWS

A - Jeg søker filmen, ser p̊a stjerner den har f̊att. ogs̊a g̊ar det an å se p̊a

katogorisering. S̊ann om hvor mange menn og kvinner som har stemt osv Eller

aldersgrupper.

I - Stoler du anbefaling fra slike systemer (som netflx) eller fra venner mest?

A - Det spørs litt. Jeg stoler jo ikke p̊a alle venner sine anbefalinger. Jeg velger

jo å stole p̊a de som har samme type smak som meg. Har mye med preferanse

å gjøre og det samme gjelder vel ogs̊a nettet.

I - Men du har venner som har samme smak som deg? als̊a det finnes folk som

du heller spør enn å bruke netflix?

A - Det finnes et par venner som jeg heller spør ja og om de ikke har noen ideer,

s̊a sjekker jeg ut nettet.

I - Hva hvis det fantes en anbefalingssystem som hadde en s̊ann sosial feature,

type du kan se hva dine venner liker og f̊a film tips utifra det.

A - Det hadde jo vært kult

I - Rater du filmer p̊a netflix?

A – Nei, ganske sjeldent

Anonymous D

I - Bruker du anbefalingssystem slik som denne (our phase one prototype) for

å f̊a anbefalt filmer? For eksempel Netflix?

A - Yes jeg bruker som regel ”nylig lagt til” hvis jeg ser p̊a filmer som er gitt

ut, ellers s̊a ser jeg p̊a hva som g̊ar p̊a kino hvis det er nye filmer.

I - Hva er det som f̊ar deg til å veelge en spesifikk film?

A - At den virker spennende, gjerne kjente gode skuespillere

I - Rater du p̊a netflix?

A - Kun hvis det er superbra bra/serie

I - Stoler du mer p̊a anbefalingssystemer eller p̊a folk?

A - Spørs om man har samme smak, s̊a spørs veldig hvilken type film og person.

Har vi samme smak s̊a tar jeg venn-tips fremfor anbefalingssystemer. Sjekker

imbd noen ganger

77

I – Beskriv et scenario der du skal finne en film å se

A - Bladde gjennom mye rart, s̊a først p̊a bildet av filmen/Serien, s̊a sjangeren,

s̊a stjerner, s̊a kjente skuespillere! Det er film med bra stjerner og gerhard butler

- han var grunnen til jeg valgte s̊a der har du den!

Anonymous E

I - Bruker du anbefalingssystem slik som denne (our phase one prototype) for

å f̊a anbefalt filmer? For eksempel Netflix?

A - Jeg bruker som regel popcorn time

I - Anbefaler den filmer til deg? eller velger du selv

A - Det dukker opp bare nye filmer, s̊a bare blar jeg, jeg har aldri trykket p̊a

anbefalt, tror ikke det finnes

I - Ok. S̊a synes du at det er nyttig med anbefalingssystemer? Eller foretrekker

du heller anbefalinger fra venner?

A - Anbefalinger av venner

I - Hva er grunnen til at du ikke bruker anbefalingssystemer? Stoler ikke p̊a

dem eller? A – Føler ikke den treffer min smak

I - S̊a du stoler ikke p̊a den alts̊a. S̊a du hadde brukt anbefalingsfunksjonen hvis

du hadde trodd at de treffer smaken din?

A – Ja

Anonymous F

I - Bruker du anbefalingssystem slik som denne (our phase one prototype) for

å f̊a anbefalt filmer? For eksempel Netflix?

A - Ja, noen ganger

I - Hva syns du om det? hva er det som er s̊a bra med det?

A - Si jeg har sett thrillere en periode, fordi jeg har f̊att dilla p̊a trillere. S̊a

dukker det opp en triller jeg aldri har hørt om før. S̊a ser jeg at den har bra

rating kanskje. Og da tar jeg sjansen og ser den Andre ganger bare fordi jeg

ikke orker å lete s̊a lenge etter en film p̊a nett. Men ser den har anbefalt en del

78 APPENDIX A. INTERVIEWS

filmer. S̊a ser jeg en av dem

I - Rater du p̊a netflix?

A - Jeg gjorde det før, men ikke s̊a mye n̊a lenger. Men jeg rater p̊a imdb.

Grunnen til at jeg sluttet å gjøre det p̊a Netflix var nok fordi jeg stoler mest p̊a

IMDB av en eller annen grunn. S̊a begynte å g̊a dit for å se p̊a ratings og rate.

Jeg hadde en extension til Netflix i Chrome som gjorde at jeg kunne se IMDB

rating p̊a filmer i netflix. S̊a å stole p̊a rating-kilden betyr en del for meg.

I - S̊a n̊ar du bruker anbefalingen til Netflix s̊a g̊ar du ikke etter ratings, men

du bruker det for å f̊a oversikt over poteinsielle filmer ogs̊a sjekker du ratings

p̊a imdb? Eller hvordan er et typisk scenario?

A - Akkurat s̊ann egentlig

I - Stoler du mer p̊a anbefalinger fra venner eller fra systemet?

A - Tror jeg stoler mer p̊a venner. Men det spørs nok hvem det kommer fra.

Anonymous G

I - Bruker du anbefalingssystem slik som denne (our phase one prototype) for

å f̊a anbefalt filmer? For eksempel Netflix?

A - Imdb og youtube

I - Men før du bruker IMDb s̊a m̊a du jo vite hva du skal søke om hvordan f̊ar

du vite om filmen?

A - Bare youtube, trailere som f̊ar mange views, og reviewers like jeremy jahns

og chris stuckman.

I - Men er du subscriba p̊a en channel eller bare dukker det opp recomenddations

A - S̊ann “P̊a vei opp” greie p̊a youtube iblant

I - Foretrekker du anbefaling fra et system eller fra venner?

A - Youtube er best for meg.

I - Hvorfor er det s̊a bra

A - Det er bare det mest populære som dukker opp. Generelt youtube er best

fordi du bare kan høre p̊a en video liksom.

I - S̊a egentlig anbefaling av en youtube bruker?

79

A – Ja, alt ligger p̊a et sted liksom

I - S̊a det er ikke youtube sin anbefalingsalgoritme du liker, men en spesifikk

kanal p̊a youtube som anbefaler filmer

A- Eller jo ,det ogs̊a. Den “anbefalte” funksjonen p̊a høyresida er nice.

Appendix B

Code

All the code produced while developing the prototype presented in this thesis

is available at https://github.com/tanql/RecommendApi for the back end and

https://github.com/tanql/RecSystem for the front end. It is released under a

MIT License. The data set is also provided in the back end repository. See

below for the usage license of the data set. The code will also be uploaded as

an attachment to the thesis.

B.1 Data set Usage License

”Neither the University of Minnesota nor any of the researchers involved can

guarantee the correctness of the data, its suitability for any particular purpose,

or the validity of results based on the use of the data set. The data set may be

used for any research purposes under the following conditions:

The user may not state or imply any endorsement from the University of

Minnesota or the GroupLens Research Group. The user must acknowledge the

use of the data set in publications resulting from the use of the data set (see be-

low for citation information). The user may redistribute the data set, including

transformations, so long as it is distributed under these same license conditions.

The user may not use this information for any commercial or revenue-bearing

80

B.1. DATA SET USAGE LICENSE 81

purposes without first obtaining permission from a faculty member of the Grou-

pLens Research Project at the University of Minnesota. The executable software

scripts are provided ”as is” without warranty of any kind, either expressed or

implied, including, but not limited to, the implied warranties of merchantabil-

ity and fitness for a particular purpose. The entire risk as to the quality and

performance of them is with you. Should the program prove defective, you as-

sume the cost of all necessary servicing, repair or correction. In no event shall

the University of Minnesota, its affiliates or employees be liable to you for any

damages arising out of the use or inability to use these programs (including but

not limited to loss of data or data being rendered inaccurate).”

Appendix C

API documentation

api/register

• Type: POST

• Data: Username (string) , password (string) and repeated password (string)

• Description: Creates a new user to the database with the required data

(username, password and repeated password)

api/login

• Type: POST

• Data: Username (string) and password (string)

• Description: Log in the user if username and password is correct.

api/logout

• Type: GET

• Description: Log out the current user.

82

83

api/users

• Type: PUT

• Data: Interests (array, optional), age (int, optional) and postCode (string,

optional)

• Description: Edit the user and updates in the database according to the

data.

api/users

• Type: GET

• Data: User: username (string) and email (string), userID (int), age (int),

postCode (string), interests (Array of genres) and ratedMovies (Array of

rated movies)

• Description: Return the profile of the current logged in user.

api/users/?user={id}

• Type: GET

• Data: User: username (string) and email (string), userID (int), age (int),

postCode (string), interests (Array of genres), similarity (float) and rat-

edMovies (Array of rated movies)

• Description: Return the profile of id.

api/rate

• Type: POST

• Data: MovieID (int) and ratingValue (int)

• Description: Add a rating to the database

84 APPENDIX C. API DOCUMENTATION

api/rate/?page={id}

• Type: GET

• Data: count (int, amount of movies in total) and movies (Array of movies,

the name and genres, movieID and release year)

• Description: Return a list of movies.

api/movies

• Type: GET

• Data: Movies (array)

• Description: Return a list of movies rated by the current logged in user.

api/recommend/?{filtertype(optional)}/?page={page}

• Type: GET

• Data: Array of recommended movies

• Description: Return a list of recommended movie based on filtering type.

Glossary

AJAX Asynchronous JavaScript And XML. 40

GUI Graphical user interface. 39, 40, 54, 71

MSE Mean Squared Error. 31, 70

SGD Stochastic Gradient Descent. 65, 68

85

Bibliography

[1] Django. https://docs.djangoproject.com/en/1.10/. Accessed: 2016-

12-20.

[2] Django database. https://docs.djangoproject.com/en/1.10/ref/

databases/. Accessed: 2016-12-20.

[3] Django rest framework. http://www.django-rest-framework.org. Ac-

cessed: 2016-12-20.

[4] How slow is too slow in 2016? http://www.webdesignerdepot.com/2016/

02/how-slow-is-too-slow-in-2016/. Accessed: 2016-11-10.

[5] Model-view-controller. https://msdn.microsoft.com/en-us/library/

ff649643.aspx. Accessed: 2016-12-20.

[6] Netflix winner. http://www.netflixprize.com/community/topic_1537.

html. Accessed: 2017-01-10.

[7] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next gener-

ation of recommender systems: A survey of the state-of-the-art and possi-

ble extensions. Knowledge and Data Engineering, IEEE Transactions on,

17(6):734–749, 2005.

[8] Sudipto Banerjee and Anindya Roy. Linear algebra and matrix analysis for

statistics. CRC Press, 2014.

86

https://docs.djangoproject.com/en/1.10/
https://docs.djangoproject.com/en/1.10/ref/databases/
https://docs.djangoproject.com/en/1.10/ref/databases/
http://www.django-rest-framework.org
http://www.webdesignerdepot.com/2016/02/how-slow-is-too-slow-in-2016/
http://www.webdesignerdepot.com/2016/02/how-slow-is-too-slow-in-2016/
https://msdn.microsoft.com/en-us/library/ff649643.aspx
https://msdn.microsoft.com/en-us/library/ff649643.aspx
http://www.netflixprize.com/community/topic_1537.html
http://www.netflixprize.com/community/topic_1537.html

BIBLIOGRAPHY 87

[9] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis

of predictive algorithms for collaborative filtering. In Proceedings of the

Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI’98,

San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[10] Robin Burke. Hybrid recommender systems: Survey and experiments.

[11] JohnS Breese DavidHeckerman CarlKadie. Empirical analysis of predictive

algorithms for collaborative filtering. Microsoft Research Microsoft Corpo-

ration One Microsoft Way Redmond, WA, 98052, 1998.

[12] Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative

filtering recommender systems. Human–Computer Interaction, 4(2):81–

173, 2010.

[13] Shengbo Guo. Bayesian Recommender Systems: Models and Algorithms.

PhD thesis, Australian National University, 2011.

[14] By Brad Harris. Factorization machines: A new way of looking at machine

learning, Nov 2015.

[15] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T

Riedl. Evaluating collaborative filtering recommender systems. ACM

Transactions on Information Systems (TOIS), 22(1):5–53, 2004.

[16] Alan R Hevner. Design science in information systems research. MIS

Quarterly, 28(1):75–105, 2004.

[17] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard

Friedrich. Recommender systems: an introduction. Cambridge University

Press, 2010.

[18] Yehuda Koren. Factorization meets the neighborhood: a multifaceted col-

laborative filtering model. 2008.

[19] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization

techniques for recommender systems. Computer, 42(8):30–37, 2009.

88 BIBLIOGRAPHY

[20] Helge Langseth. Bayesian networks for collaborative filtering. In Proceed-

ings of Norwegian Artificial Intelligens Symposium, pages 67–78, 2009.

[21] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-

based Recommender Systems: State of the Art and Trends, pages 73–105.

Springer US, Boston, MA, 2011.

[22] Prem Melville and Vikas Sindhwani. Recommender systems. In Encyclo-

pedia of machine learning, pages 829–838. Springer, 2010.

[23] Frank Meyer. Recommender systems in industrial contexts, 2012.

[24] Andrew Ng. Supervised learning, lecture notes. http://cs229.stanford.

edu/notes/cs229-notes1.pdf, Fall 2012. Accessed: 2017-01-04.

[25] Michael J. Pazzani and Daniel Billsus. Content-Based Recommendation

Systems, pages 325–341. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007.

[26] Steffen Rendle. Factorization machines. In 2010 IEEE International Con-

ference on Data Mining, pages 995–1000. IEEE, 2010.

[27] Nafiseh Shabib. Novel Approaches to Group Recommen- dation. PhD thesis,

NTNU, 1 2015.

[28] Le Tan. A context aware group recommendation system for movies. Spe-

cialization project in Computer Science, Department of Computer and In-

formation Science, Norwegian University of Science and Technology, 2016.

[29] Wolfgang Woerndl, Christian Schueller, and Rolf Wojtech. A hybrid recom-

mender system for context-aware recommendations of mobile applications.

http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cs229.stanford.edu/notes/cs229-notes1.pdf

	Abstract
	Introduction
	Motivation
	Previous work
	Contribution
	Report structure

	Background
	Recommendation systems
	Techniques
	Content based filtering
	Collaborative filtering
	Challenges with Collaborative Filtering
	Hybrid

	Context-aware Recommendation Systems

	Research method
	Design Science Research
	Design as an Artifact
	Problem relevance
	Design Evaluation
	Research Contribution
	Research Rigor
	Design as a Search Process
	Communication of Research

	Evaluation tools
	Mean Squared Error
	Python time module

	Evaluation plan

	Architecture and Implementation
	Data set
	Chosen collaborative filtering method
	Phase one
	Scenarios:
	Requirements:

	Phase two
	Scenarios:
	Requirements:

	Architecture
	Model-View-Controller
	Back End
	Front End

	Implementation approach
	Setup
	Defining context
	Genre
	Time
	Recommendations

	Prototype
	API
	GUI

	Technology
	PostgreSQL
	GitHub
	scikit-learn

	Evaluation
	Phase one: The interviews
	Anonymous A
	Anonymous B
	Anonymous C
	Anonymous D
	Anonymous E
	Anonymous F
	Anonymous G
	Conclusion

	Phase two: Performance
	Data set
	Environment
	User-Based Filtering based on Pearson Correlation
	Factorization Machine with SGD

	Discussion
	Data set
	Factorization machine
	Context
	Genre
	Time

	Conclusion and future work
	Conclusion
	Future work

	Appendices
	Interviews
	Code
	Data set Usage License

	API documentation
	Bibliography

