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Introduction 

 

The sense of smell is crucial for most animal species. It is critical for food-finding, 

reproductive behaviour, predator-prey relationship, kin and mother-infant recognition, 

homing behaviour and nest finding. The importance of the olfactory systems is reflected 

in the proportion of the genome that is devoted to the olfactory receptor proteins, e.g. 

comprising 3-5% in human and mouse (Young and Trask, 2002; Zhang and Firestein, 

2002). For a long time the human sense of smell was considered as the most enigmatic 

of our senses. An intriguing question was; what mechanism could explain our ability of 

recognizing and remembering more than 10 000 distinct odorants (Buck, 2004). Buck 

and Axel (1991) performed a breakthrough by the discovery of the large family of 

olfactory genes in the rat. Buck and Axel were in 2004 honoured with the Nobel Prize 

in physiology and medicine for this study and the following series of pioneering work 

on the subject. The knowledge about the olfactory genes is obviously important for 

studies of the function of the olfactory receptor neurons (RNs), both in solving the 

transduction mechanisms and the specificity of the RNs. In the search for which 

odorants the olfactory receptors are evolved, insects are suitable model organisms. 

Herbivore species are particularly interesting, since many of them share the same plant 

species and their survival depends on olfactory cues in locating their host for feeding 

and reproduction (mating and oviposition). 

 

The insect olfactory system; anatomy of the olfactory pathway  

The numerous olfactory organs in insects, the sensilla, are mainly located on the 

antenna (Schneider and Steinbrecht, 1968). The lepidopteran antenna consists of two 

proximal segments, the scape and pedicel, and the long flagellum. In heliothine moths, 

the flagellum consists of ∼ 80 annuli that carry numerous sensilla mediating information 

about different modalities, including chemo-, mecano- temperature-, and humidity 

sensation (Almaas and Mustaparta, 1990, 1991; Jørgensen, 2003; Kvello, 2003; Lassa, 

2004). Like in other Lepidopterans, the olfactory sensilla of the moth antenna 

outnumber by far those of other modalities. The general classification into various 

morphological types, like sensilla trichodea, s. basiconica, s. auricillia and s. 
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coeloconica also applies to olfactory sensilla of heliothine moths (Jefferson et al., 1970; 

Steinbrecht, 1973; Hallberg, 1981; Keil and Steinbrecht, 1984; Almaas and Mustaparta, 

1990; Almaas et al., 1991; Koh et al., 1995; Færavaag, 1999). Extensive studies have 

been carried out on the structure of s. trichodea and s. basiconica, involved in 

pheromone and plant odour detection, respectively (review Steinbrecht, 1997). The 

cuticle wall of these sensilla is perforated by pores allowing the air-borne volatiles to 

enter the lumen, which is filled with receptor lymph surrounding the dendrites of the 

RNs. The membrane spanned receptor proteins are located in the dendrite of these 

bipolar sensory neurons.  

 The axons of the antennal RNs form the antennal nerve and project directly to 

the deutocerebrum, the first relay station of the antennal sensory pathway (Homberg et 

al., 1989). The bilateral deutocerebrum consist of two distinct regions called the 

antennal lobe (AL) and the antennal mechanosensory and motor centre (AMMC, also 

called the dorsal lobe in other species). The olfactory RNs send their axons into the AL, 

whereas the AMMC receives axons from the mechanosensory neurons (Homberg et al., 

1989). Synapses between the RNs and antennal lobe neurons are located in numerous 

glomerular structures of the antennal lobe. These structures are functional units and 

represent a physical basis for mapping odour qualities. In herbivorous Lepidopterans, 

many studies have shown a separation of the glomeruli involved in the two systems of 

pathways mediating pheromone information and plant odour information. In species of 

Heliothinae, the three male specific glomeruli constitute the macroglomerular complex 

(MGC) dedicated to the pheromone information, and 60-62 ordinary glomeruli 

dedicated to plant odour information (review Mustaparta, 2002). In the AL two major 

morphological types of neurons receive and process the olfactory information from the 

antennal sensory neurons. The local interneurons with arborisation in many glomeruli 

mediate information within the antennal lobe, whereas projection neurons branching in 

one or a few glomeruli have an axon conveying information out of the AL to higher 

order neurons in the protocerebrum. These are located in two areas, the mushroom 

bodies, shown to be important in learning and memory of odours (review Menzel, 

1999), and the lateral horn which is a pre-motoric area (Strausfeld, 1976). In moths, 

including heliothine, the axons of the projection neurons follow three major tracts from 
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the AL to the protocerebrum, the inner-, the outer- and the middle antenno-cerebral tract 

(Homberg et al., 1988; Rø et al., 2003).  

 

Peripheral events  

The binding of and interaction between the odorant and the receptor proteins leads to an 

intracellular cascade reaction (the transduction events), which results in opening of ion 

channels and depolarisation of the membrane. Lancet and Pace (1987) was the first to 

identify G-proteins in the olfactory epithelium of vertebrates, suggesting that activation 

of this protein by the odorant-receptor interaction is the first step of the cascade. In 

insects, the presence of G-proteins in olfactory neurons was demonstrated by Breer and 

co-authors (1988). The cascade leading to production of IP3 (inositol 1,4,5-

trisphosphate) as second messenger is, in insects, considered to be the major excitatory 

pathway, opening the cation channels (Breer et al., 1990; Wegener et al., 1993; Stengl, 

1994). In vertebrates, cAMP (adenosine 3,5-monophosphate) is the second messenger 

for excitation (Nakamura and Gold, 1987; Breer et al., 1990; Breer, 2003b). cAMP has 

also been indicated as a possible second messenger in insects (Krieger et al., 1999). The 

odorants reach the receptors via odorant-binding proteins (OBP) present in the receptor 

lymph. Two major groups of binding proteins are classified in insects, the general 

odorant binding proteins (GOBPs) and the pheromone specific proteins (PBPs), each 

consisting of several sub types (Steinbrecht et al., 1992; Laue et al., 1994; Zhang et al., 

2001). OBPs are assumed to function as transporters of the air born (hydrophobic) 

volatiles that have to pass through the liquid receptor lymph in order to reach the 

receptor proteins. Since OBPs show selective binding to some odorants they may also 

serve as a filter, protecting the receptors from being exposed to all kinds of volatile 

compounds. It has been questioned whether OBPs also contribute in odorant-receptor 

binding and in inactivation of the odorant–receptor complex (Prestwich et al., 1995; 

Steinbrecht, 1998; Kaissling, 1998; Mohl et al., 2002; Pophof, 2004). Another 

hypothesis is that the OBPs release the odorants close to the dendrite membrane due to 

conformational changes caused by the charged membrane (Wojtasek and Leal, 1999). 

Since the OBPs are present in the chemosensory systems of terrestrial vertebrates and 

insects, it is suggested that these proteins may be a molecular adaptation to terrestrial 

life (Breer, 2003a). 
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“The logic of the sense of smell” 

Olfactory receptor genes first identified in the rat by Buck and Axel (1991) is one of the 

largest known mammalian gene families, in rats and mouse comprising nearly 1000 

genes expressed exclusively in the olfactory tissue. In the many molecular biologically 

studies that followed, the general finding was that the olfactory information is handled 

by a large and species-specific number of receptor proteins (Buck and Axel, 1991; 

reviews Mombaerts, 1999, 2004, Keller and Vosshall, 2003, Breer, 2003a). Studies 

conducted over the past decade have shown that one type of olfactory receptor gene is 

expressed in a given subset of RNs (Ressler et al., 1993; Vassar et al., 1993; Clyne et 

al., 1999; Vosshall et al., 1999; Hallem et al., 2004). Candidate receptor proteins have 

also been identified in Heliothis virescens, showing expression of only one type in each 

neuron (Krieger et al., 2002, 2004). The olfactory receptor proteins show low homology 

across phyla. Only one subtype sharing a high degree of sequence identity in several 

species is co-expressed with other receptor proteins (Clyne et al., 1999; Fox et al., 2002; 

Krieger et al., 2003; Breer, 2003a). It is assumed that this particular protein has a role 

other than odorant recognition (Breer, 2003a). Furthermore, molecular biological 

studies of both vertebrates and invertebrates have shown that each subsets of RNs, 

expressing the same type of receptor proteins, projects in one or two specific glomeruli 

of the primary olfactory centres (the antennal lobe in insects and the olfactory bulb in 

vertebrates) (Axel, 1995; Treloar et al., 2002; Keller and Vosshall, 2003; Mombaerts, 

2004). This principle, called “the logic of the sense of smell” suggests a certain 

relationship between the number of RN types and the number of glomeruli in the 

primary olfactory centres (Axel, 1995). In insects, this principle has been demonstrated 

in Drosophila, showing that each subset of RNs projects exclusively in one (or 

sometimes two) homologous glomeruli in each antennal lobe (Gao et al., 2000; Vosshall 

et al., 2000; Keller and Vosshall, 2003).  

 Numerous electrophysiological studies have been performed with the aim to 

functionally classify olfactory RNs (among others, Sicard and Holley, 1984; Ma and 

Shepherd, 2000; Duchamp-Viret et al., 1999; reviews Shepherd, 1984, Masson and 

Mustaparta, 1990, Hildebrand and Shepherd, 1997, Todd and Baker, 1999, Mustaparta, 

2002, Korsching, 2002). These studies of both vertebrates and invertebrates have shown 

a large variation of the molecular receptive ranges, from RNs being narrowly tuned and 
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falling into distinct types, to broadly tuned neurons, often with individually different 

molecular receptive ranges. The pheromone olfactory receptors in heliothine moth are 

particular well studied. Since the first identifications of the female produced sexual 

pheromones in these species, listed in Arn et al. (1992), these biologically important 

odorants and other interesting chemical analogues have been available for detailed 

studies of the RN specificity (Masson and Mustaparta, 1990, Mustaparta 1997). 

Electrophysiological studies have demonstrated a functional classification of three or 

four RN-types tuned to the insect produced signals in each species. These RNs are 

characterised by a narrow tuning to one compound and considerably weaker responses 

to a few chemical analogues. Furthermore, functional tracing of single RNs have 

demonstrated that the axon terminals of each RN type project in one of the three or four 

glomeruli of the male MGC (Hansson et al., 1995; Berg, 1998; Berg et al., 1998). These 

findings have also been supported by optical recordings using Ca2+ imaging (Galizia et 

al., 2000). Thus, the results from studies of pheromone receptors in heliothine moth 

correlate well with the principle of one subset of RNs projecting in one glomerulus. 

 

Chemical aspects of insect-plant interaction 

Plants produce hundreds of compounds that are important in their interaction with 

insects and other organisms. These compounds are termed secondary metabolites, 

whereas those essential for growth and development of the plant are called the primary 

metabolites (Hartmann, 1996). Traditionally, secondary plant metabolites like the 

volatile compounds emitted from flowers and leaves were looked upon as by-products 

with no relevance. Ehrlich and Raven (1964) were among the first to suggest that plant 

produced secondary metabolites are evolved in a co-evolutionary arms race of plant 

defences and herbivore responses. The plants produce and release volatiles, e.g. for 

attracting pollinators. Pollinators might as well be herbivorous using these signals for 

host location (Harborne, 1993). After pollination plants are able to turn off the 

advertisement to pollinators by gene down regulation, which makes the plant less 

exposed to herbivory (Tollsten and Bergström, 1989; Dudareva and Pichersky, 2000). 

Plants may obtain a competitive advantage by producing other specific and reliable 

chemical signals that repel putative herbivores (direct defence) or attract natural 
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enemies of the herbivores (indirect defence) (e.g. Bernays and Chapman, 1994; 

Schoonhoven et al., 1998). Particularly the flowers and seeds, the reproductive parts of 

a plant, important for the plant fitness, need to be defended against herbivory. The 

heliothine larvae, mainly feeding on the growing and reproductive parts of the plants, 

are hazardous to the host plants (Fitt 1989). As defence, the plants produce and 

accumulate toxins that are damaging to the insects. As a reciprocal response, the insects 

may detoxify or excrete the toxins. Generalist feeders, which are exposed to a wide 

spectrum of toxic compounds produced by the plant defence systems, have a well-

developed detoxification system, exemplified by the high activity of the MFO-enzyme 

system (mixed function oxidises) (Brattsten, 1983). Being toxic also to the plant 

themselves, these compounds are often produced as pro-toxins and are constitutively 

accumulated in special organs like vacuoles and glandular trichomes (Hartmann, 1985).  

 Plants are continuously interacting with their surroundings. The profile of 

volatiles varies during exposure of many biotic and abiotic factors, like nutrition access 

(e.g. nitrogen deficits), microbial infestation, exposure to UV light and ozone, high 

temperatures or auto-oxidation by the surrounding air (Janssens et al., 1992; Pichersky 

and Gershenzon, 2002; De Moraes et al., 2004). The profile of emitted volatiles also 

shows diurnal and seasonal variations (Hedin, 1976; Dudareva et al., 1999; Kolosova et 

al., 2001). All these factors might influence the signals exploited by herbivores in their 

host location. This tremendous complexity and variability of plant volatiles is very 

challenging in the investigation of biologically significant odorants used by insects and 

other organisms. 

 Many studies have been performed on tritrophic interactions, i.e. between plants, 

herbivores and herbivorous predators or parasitoids. Particularly interesting are the 

findings showing increased production and release of volatiles during caterpillar attack 

(Turlings and Benrey, 1998; Paré and Tumlinson, 1999; Dicke and Van Loon, 2000; 

Schmelz et al., 2003). Furthermore, profiles of compounds systemically induced during 

herbivory show species specificity, as regards quality and quantity, which is also shown 

for attack by heliothine species (Mori et al., 2001; Röse and Tumlinson, 2004; De 

Moraes and Mescher, 2004). Thus, the volatiles released by plants in response to insect 

feeding are directly associated with the feeding herbivore species. This induction is 

caused by activation of a series of genes that up-regulate the specific defence in plants 
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(Halitschke and Baldwin, 2003; Frey et al., 2004). The larval oral secretion contains 

several factors (e.g. volicitin) that induce plant defence responses (Alborn et al., 1997; 

Mori et al., 2001; Spiteller et al., 2001). Various toxins, like the tannins and gossypol, 

present in high amounts in flower buds of cotton (Gossypium hirsutum) are 

enzymatically ignited or induced in response to caterpillar feeding (Bezemer et al., 

2004). These toxins have a negative effect on the development and survival of several 

cotton pest insects (Sharma and Agarwal, 1982; Stipanovic et al., 1990; Hedin et al., 

1991). In Nicotiana species, the content of nicotine increases after herbivory or 

mechanical damage (Euler and Baldwin, 1996). These toxic plant metabolites are 

deterrents (inhibit feeding) to several pest insects and protect plants against predation 

(Bernays and Chapman, 1994).  

 The complex blends of volatiles produced by a plant can be trapped by various 

methods of headspace collection, distillation or extraction (review Silverstein and 

Rodin, 1966). More plant constituents present in nature are identified continuously as 

more sensitive analytical methods are employed. Gas chromatography, which separates 

different molecules, linked to or followed by mass spectrometry is a common method 

used for identifying volatile compounds in plants. These compounds belong to many 

different chemical groups, like short chain alcohols, aldehydes, ketones and esters, 

aromatic compounds (like benzenoids), mono- and sesquiterpenes (reviews Gibbs, 

1974, Smith, 1976, Knudsen et al., 1993, Bernays and Chapman, 1994, McDonough et 

al., 1994, Ohloff, 1994, Schoonhoven et al., 1998). A few compounds are mainly found 

in restricted plant taxa, e.g. the isothiocyanates in Brassicacea (reviews Kjær, 1976, 

Fahey et al., 2001). Others, commonly occurring, are “green leaf volatiles” (mainly six-

carbon alcohols, aldehydes and esters) that are products of the lipid metabolism 

catalysed by the enzyme lipoxygenase present in green leaves (Hatanaka, 1993; Rosahl, 

1996; Croft et al., 1993; Heiden et al., 2003). Some compounds like the terpenoids 

(linalool, geraniol, limonene, myrcene, E-β-ocimene, farnesene, nerolidol and 

caryophyllene, among others), are common constituents of flowers, but are also present 

in vegetative tissues, where they serve as defence compounds (Knudsen et al., 1993).  
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The heliothine moths 

The subfamily Heliothinae (Insecta; Lepidoptera; Noctuidae) constitute a large group of 

herbivore insects, of which the three important agricultural pest species Heliothis 

virescens, Helicoverpa armigera and Helicoverpa assulta were chosen for the present 

studies. H. armigera and H. virescens are both generalist feeders (polyphagous) 

exploiting a wide range of plant species across different families (e.g. Leguminosae, 

Solanaceae, Malvacea and Compositae) (Fitt 1989; Matthews 1991). Many host plants 

exploited by one or both species are economically important agricultural crops, like 

cotton, sunflower, tobacco, maize, chickpeas and sorghums (Zalucki et al. 1986; Fitt, 

1989; Firempong and Zalucki, 1990). H. assulta is considered oligophagous, exploiting 

a more narrow range of plant species, mainly within the family Solanacea (Hill, 1983; 

Matthews, 1991). The two genera Helicoverpa and Heliothis are considered 

monophyletic, i.e. having a common origin (Matthews 1999). For millions of years, the 

American tobacco budworm moth H. virescens has been geographically separated from 

the closely related H. armigera, living at the Eurasian, African and Australian 

continents. The Oriental tobacco budworm H. assulta, partly sympatric with H. 

armigera, is distributed in Asia and Australia. The species, living at different 

continents, have been separated for a long time, and presumably exploited different host 

plant species, at least prior to the introduction of crop hosts they have in common. This 

might have lead to evolutionary changes of the olfactory system. 

 The introduction of non-selective insecticides to control pest species, disrupted 

in many cases the natural balance of herbivore and predator/parasite populations 

(Bottrell and Adkinsson, 1977). Some insect species, like H. virescens, became new 

major pests because of their remarkable capability to quickly evolve resistance to the 

insecticides, which threatens the success of pest control (Fitt, 1989). The increasing 

awareness concerning the ecologically consequences of the wide-spread use of 

insecticides enforces the search for ecologically viable alternative methods in pest 

management programs. Increased knowledge about the sensory receptor system of these 

species, their behaviour and ecology, may help minimize the level of crop damage as 

well as the amounts of insecticides used. This is being tested by combining mating 

disruption by pheromones and precise timing of low level exposures of insecticides. In 
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another attraction-kill strategy, the idea is to use plant odorants to attract the females to 

a gluing material with insecticides.  

 
 

Aims of the thesis 

 

When the study of this thesis was initiated, hardly any work had been carried out on 

how plant odour information was encoded by the olfactory RNs in heliothine moths. 

The method of gas chromatography linked to single cell recordings (GC-SCR) was 

employed and improved for identifying naturally occurring plant odorants that are 

detected by single RNs and can be considered as biologically relevant. Three species of 

the subfamily Heliothinae were included in this work, the two polyphagous H. virescens 

and H. armigera and the oligophagous H. assulta. The American H. virescens is 

geographically separated from the other two species. H. armigera and H. assulta are 

partly sympatric in Asia and Australia. 

 

The aims of the thesis elucidated in Papers I-IV were as follows: 

 

1. To identify plant produced volatiles detected by antennal RNs in the three species of 

the subfamily Heliothinae. 

 

2. To elucidate whether the single RNs can be classified into distinct types according to 

their specificity.  

 

3. To characterise the plant odour RN types by their molecular receptive ranges, 

sensitivity and specificity. 

 

4. To compare the specificity of plant odour RN types across the three related species of 

Heliothinae, with the aim to reveal any differences in the peripheral olfactory system 

that may have evolved through evolution.   
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Survey of the individual papers  

Paper I 

The study of paper I was the first carried out in the heliothine moth, with the aim to 

identify plant odorants by the use of gas chromatography linked to electrophysiological 

recordings from single receptor cells (GC–SCR). Volatiles released by a large number 

of host and non-host plants, intact as well as cut materials, were collected by headspace 

techniques, i.e. by trapping organic molecules from the air surrounding the plants. The 

volatile constituents were led through a tube containing an adsorbent and were 

subsequently eluted with a solvent. These headspace mixtures were then used as test 

samples on the RNs. The gas chromatograph was installed with two columns in parallel, 

each linked to the electrophysiological setup by a split at the outlet. In this way, half of 

the effluent is led to the GC detector and the other half out of the oven and into an air 

stream blowing over the insect antenna. This made it possible to test each single neuron 

with the compounds separated via two columns with different properties. The results 

were obtained as simultaneous recordings of gas chromatograms and neuron activity 

with responses to the active compounds. A large number of RNs were tested for 

numerous mixtures of plants volatiles. One particular type of neuron frequently 

appeared in nearly 80% of the recordings from H. virescens females. The neurons 

responded with high sensitivity and selectivity to one compound present in several hosts 

as well as non-host materials. The active compound was identified as a sesquiterpene 

hydrocarbon by the use of linked gas chromatography–mass spectrometry (GC-MS). 

Isolation of the compound from a sesquiterpene fraction of cubebe oil provided enough 

material for identification by NMR (nuclear magnetic resonance). The identification of 

the compounds as germacrene D was verified by retesting the purified compound via the 

gas chromatograph, which showed a significant response to germacrene D. All RNs 

responding to germacrene D showed a weak response to another sesquiterpene 

hydrocarbon. However, due to the lack of reference material, this compound could not 

be identified. Thirteen sesquiterpenes structurally related to germacrene D were found to 

have no effect. The germacrene D neurons presented in this paper was the first example 

of a narrowly tuned plant odour receptor type in a polyphagous moth species shown by 
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the use of GC-SCR, where hundreds of naturally occurring plant volatiles were screened 

on each neuron. 

 

Paper II 

In Paper II, the specificity of three other RN types in H. virescens were identified on the 

basis of results obtained with the methods of GC-SCR and GC-MS. The method with 

two parallel columns was described in detail in this paper. The advantage by testing the 

same neurons with the same sample sequentially via a polar and a non-polar column 

was demonstrated. The various samples collected from host as well as non-host (intact 

and cut) materials were used in the studies of all four papers included in this thesis. The 

headspace techniques used for collecting the volatiles was described in paper II. In this 

study activity of three RNs occurred in the same recordings and these neurons were 

assumed to be co-located in one sensillum. Occasionally, one or two of them occurred 

alone in the recordings, or all three occurred together with a fourth neuron for which the 

compounds were not identified. By screening the neuron for sensitivity to a large 

number of plant samples containing hundreds of volatiles, all three neurons were found 

to have a high sensitivity and selectivity for one odorant (primary odorant) by showing 

weaker responses to a few other compounds with related structures (secondary 

odorants). On the basis of the mass spectra of the GC-MS analyses, the primary and 

secondary odorants were identified for neuron type 1 as E-β-ocimene, β-myrcene, Z-β-

ocimene and DMNT (4,8-dimethyl-1,3,7-nonatriene, named homo-myrcene in Paper II), 

for neuron type 2 as E,E-α-farnesene and E-β-farnesene, and for neuron type 3 as 

TMTT (4,8,12-trimethyl-1,3,7,11-tridecatetraene, named homo-farnesene in Paper II). 

The responses by neuron type 1 to E- and Z-β-ocimene and β-myrcene was verified by 

retesting reference samples. Several of the other primary and secondary odorants were 

retested in the work of Paper III. 

 

Paper III 

The study of paper III, using the same method with two parallel columns linked to 

electrophysiological recordings from single RNs, showed recordings from females of 

the three heliothine moths  H. virescens, H. armigera and H. assulta.  Based on 135 
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tests by GC-SCR from 52 RNs in the three species, the four co-located RNs reported in 

paper II were functionally described and compared in the three related moth species. 

From the study of paper II, the primary and most of the secondary compounds were 

known for three of the RNs in H. virescens. In paper III, the primary and secondary 

odorants of the fourth type were identified in H. virescens, and the same four RN types 

were demonstrated in the other two heliothine species. Additional data on the molecular 

receptive ranges of the former identified RN types were also provided. Thus the primary 

(underlined) and secondary odorants for the four neuron types in the three related moths 

were described as follows: For RN type I, E-β-ocimene, β-myrcene, Z-β-ocimene, 

DMNT and dihydromyrcene, for RN type II E,E-α-, Z,E-α- and E-β-farnesene, for RN 

type III, TMTT, and for RN type IV geraniol, citronellol, (S)-(+)- and (R)-(-)-linalool, in 

addition to one unidentified compound. 

 All neurons of the four types were narrowly tuned, by only responding to these 

odorants out of hundreds naturally occurring plant volatiles tested. Each RN type of the 

three species showed similar ranking of primary and secondary compounds according to 

the response strength, indicating a functional similarity. In addition, all four RN types 

occurred together in the same recordings of the three species, indicating a similar co-

location in the sensilla. These similarities indicate a common evolutionary line of these 

RNs in the heliothine moths. 

 Paper III also provides an attempt to trace the axons of the four co-located plant 

odour RNs into the antennal lobe of the insect brain. The fluorescent dye was applied to 

the base of the sensillum from which the recordings were made. In one successful 

staining of H. assulta four selectively stained axons in the antennae and four axon 

terminals in the antennal lobe were obtained. Three of them were located in different 

areas close to the entrance of the antennal nerve, and the fourth was located in the 

ventro-medial part of the lobe. 

 

Paper IV 

Using the same methods of GC-SCR (with two parallel GC-columns) and GC-MS, 

results obtained in the study of paper IV contribute with identification and classification 

of fourteen out of totally nineteen RN types recorded in the polyphagous heliothine 
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species H. virescens and H. armigera. This paper also provides an overview of the plant 

odour RN types identified so far in the three heliothine species (H. virescens, H. 

armigera and H. assulta). Altogether these results demonstrate that the olfactory RNs in 

heliothine species can be classified into distinct types, which correlate well with the 

principle of one receptor protein type expressed in each neuron of H. virescens females 

(Krieger et al. 2002). The RN types were functionally identified according to the 

compound eliciting the strongest response (the primary odorant) of which the most 

frequently recorded type of neurons in this study showed enantioselective responses to 

the acyclic monoterpene (+)-linalool. The primary odorant for the other RN types were 

(3Z)-hexenyl acetate, (+)-3-carene, E-pinocarveol, E-verbenol, vinylbenzaldehyde, 2-

phenylethanol, methyl benzoate, α-caryophyllene and caryophyllene oxid. 

Five of the RN types were found in the two species H. virescens and H. 

armigera. These types, like the five previously reported RN types (Paper I-III, Stranden 

et al. 2002, 2003), showed similarities that were noteworthy across the heliothine 

moths. Not only in the molecular receptive ranges and relative response strengths of 

primary and secondary compounds, but also the co-locations of RN types corresponded. 

This indicates that genes coding for important plant odorant receptors in the 

monophyletic heliothine species studied are conserved through evolution.  

 All compounds identified were known to be general constituents in several plant 

materials, e.g. floral compounds, oxidation products of the common monoterpenes α- 

and β-pinene, and aliphatic green leaf volatiles. Many of them are known as inducible, 

e.g. by caterpillar attack. Putative biological functions of the various odorants were 

discussed, either as attractants for nectar feeding or oviposition stimulants vs. repellents.  
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Table 1  Survey of the RNs identified in the three heliothine species H. virescens1, H. 
armigera2 and H. assulta3 (for details se Table 2, Paper IV) (* Refers to publications by 
Stranden et al. 2002; 2003). 
 

 INDIVIDUAL PAPERS 

Primary odorant I * II III IV 

(-)-Germacrene D 1 2,3    

E-β-Ocimene  Type 11 Type I1,2,3  

E,E-α-Farnesene  Type 21 Type II1,2,3  

E-TMTT (4,8,12-trimethyl-

1,3,7,11-tridecatetraene)   Type 31 Type III1,2,3  

Geraniol  Type 41 (unidentified) Type IV1,2,3  

(+)-Linalool    Type 11,2 

(+)-3-Carene    Type 21,2 

E-Pinocarveol    Type 31 

E-Verbenol/verbenone    Type 41(2) 

α-Caryophyllene    Type 51,2 

Caryophyllene oxid    Type 61 

Cadinane-type    Type 71 

Vinylbenzaldehyde    Type 81(2) 

Methyl benzoate    Type 92 

2-Phenylethanol    Type 101 

(3Z)-Hexenol/ 

(3Z)-Hexenyl acetate    Type/group 111 

Unidentified    Types 12-141,2 
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Discussion 

Through the history of olfactory research, a central question has been which compounds 

activate the single RNs and can be considered as biologically relevant odorants in the 

various species. Even today, with the knowledge about the genes coding for olfactory 

receptor proteins, this question is still unresolved in most vertebrate and invertebrate 

species for food and plant odour information. When this study started, there was 

virtually no knowledge on how plant odour information is encoded in the RNs of 

heliothine moths. Many electrophysiological studies on insect olfactory RNs had been 

made by direct stimulation with synthetic compounds (review Masson and Mustaparta, 

1990; Dickens, 1990). Also in parallel with the present study results on RN tuning 

obtained by direct stimulation with selected odorants were made (Anderson et al., 1995; 

Jönsson and Anderson, 1999; De Bruyne et al., 1999; De Bruyne et al., 2001; Shields 

and Hildebrand, 2001, among others).  Altogether, the various studies have reported 

broadly tuned RNs as well as RNs responding specifically to one or a few compounds. 

However, tests with selected compounds are restrictive in it self, leaving the question 

open whether other compounds not tested might in fact be the biologically relevant 

odorants for the neuron. The method of GC-SCRs was used to test a single neuron for a 

large number of compounds, for instance sampled from the host plants by headspace 

collections. The method of GC-SCR, first used in studies of the pheromone RNs 

(Wadhams, 1982; Löfstedt et al., 1982), were later employed for examining plant odour 

RNs (Tømmerås and Mustaparta, 1989; Wibe and Mustaparta, 1996; Blight et al., 1995; 

Stensmyr et al., 2001, 2003; Barata et al., 2002). The improved GC-SCR method with 

two parallel columns, used in the studies of this thesis, allowed each neuron to be tested 

for the same mixture via two columns with different properties. This was an important 

upgrading since the active odorants often were found among the minor constituents, 

sometimes having overlapping retention times with other components. Thus, the shift of 

retention times in the polar- and the non-polar columns was important for identifying 

the active constituents in the GC-MS analyses. After the successful use of the GC-SCR 

method, a further important step was made by exchanging one of the two columns with 

a column exhibiting chiral separation properties (Stranden et al., 2002). This was made 

to study the effect of pure enantiomers on the RNs, as shown in Paper III. The results 

presented in the papers I-IV, as well as results of other studies in our laboratory, have 
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demonstrated the importance of using this method of GC-SCR with two parallel 

columns for identifying biologically relevant plant odorants in insects (Stranden et al. 

2002, 2003; Bichão et al., 2003; Bichão et al. in Press; Ulland et al., 2003).  

Comparative aspects  

Comparative studies of the RNs in related species are important, since the results can 

provide information about conservation or changes of the functional properties through 

evolution. The results also become strengthened when the same RN types appear in 

more than one species. The plant odour receptor system in heliothines is particular 

interesting, since these species are considered as a monophyletic insect group, i.e. 

having a common origin (Matthews, 1999). The two species H. virescens and H. 

armigera, living on different continents, have been geographically separated for a long 

time and presumably exploited different host plant species, at least prior to the 

introduction of crop hosts they have in common. This suggests that changes between the 

species in sensitivity to plant odours might have evolved. However, the present studies 

have shown similarities of RN specificity that is noteworthy. All RN types found in 

more than one species showed remarkable similarities in molecular receptive ranges as 

well as in the relative sensitivity to the primary and secondary odorants as demonstrated 

by the dose-response relationships (Paper III, IV, Stranden et al. 2003). The germacrene 

D RN type first classified in H. virescens (Paper I) and later in the other species 

(Stranden et al. 2002, 2003), showed striking similarities across the species, both 

concerning the response properties and as the most frequently occurring type. For all of 

them (-)-germacrene D had 10 times stronger stimulatory effect than the (+)-

enantiomer, and the other compounds like (-)-α-ylangene elicited weaker responses 

(Stranden et al. 2002; 2003). Also the other RN types identified in two or three species 

were similar (Papers III-IV). Another interesting feature was the co-location of the same 

RN types in the three species, shown for the four types presented in paper II and III. 

Similarities of the olfactory system within and between the heliothine species have also 

been found in the antennal lobe, by the invariance of number, size, form and position of 

the ordinary glomeruli (Berg et al., 2002; Skiri HT, Berg BG and Mustaparta H, 

submitted). Altogether, these studies suggest that both peripheral and some central 
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features of the olfactory system are conserved in the three species of Heliothinae 

studied.  

 It is hypothesised that the species of the subfamily Heliothinae are evolved in a 

close relationship to agricultural host plants. Thus, the RNs might have been challenged 

by similar volatiles from the cultivated plants, which may have influenced RN 

specialisation during evolution. The question of which mechanisms make the heliothine 

species choose different host plants remains to be answered. Possibly this rely on 

species-specific olfactory RNs not yet identified or on differences in the central 

processing of odour information, if not, solely based on the contact chemoreception. In 

addition to the innate responses, the olfactory system has the capacity of plasticity as 

shown in experiments on olfactory learning and memory (e.g. reviews Menzel, 2001, 

Davis, 2004). It is hypothesised that previous experience might induce changes in the 

host preferences and thereby influence host-selection behaviour in heliothine moth, 

which could increase the utilization of abundant plants, like in monocultures 

(Firempong and Zalucki, 1991; Schoonhoven et al., 1998; Cunningham et al., 1999; 

West and Cunningham, 2002; Jallow et al., 2004). In studies combining appetitive 

olfactory learning and dual-choice wind tunnel tests, Cunningham et al. (2004) showed 

that H. armigera females trained on a certain odour preferred plants that were enhanced 

with the particular odour. However, olfactory learning does not seem to be the only 

mechanism influencing the different host plant choices. Laboratory experiments carried 

out with virgin females have shown that H. armigera and H. assulta choose different 

plants when given equal options (Wang et al., 2004).   

 To resolve the questions about the mechanisms underlying host plant selection, 

more studies are required. We know from studies of pheromone receptions in heliothine 

moths that RNs with similar specificity mediate different behavioural response in 

different species. According to this, the first step is to find out whether the identified 

plant odorants elicit similar or different behavioural responses in the females of the 

three species. So far, the primary odorant (-)-Germacrene D activating functionally 

similar RNs in all three species (Paper I, Stranden et al. 2002; 2003), has been shown to 

mediate attraction both of H virescens and H. armigera females (Mozuraitis et al., 2002; 

Gregg, personal communication). The aliphatic leaf odorant (3Z)-hexenyl acetate, which 

is the primary odorant of RN type 11 in H. virescens (Paper IV), is one of the 
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compounds released by tobacco plants at night when infested with H. virescens larvae. 

Thus, it might be involved in host repellence of H. virescens, preventing egglaying on 

plants already occupied by conspecific caterpillars (De Moraes et al. 2001). The 

presence of (3Z)-hexenyl acetate responding RNs in H. armigera is indicated by 

electroantennographic responses (Burguiere et al., 2001). In this species, (3Z)-hexenyl 

acetate mediate attraction to unmated H. armigera females when presented as a single 

compound in wind tunnel experiments (Gregg and Del Socorro, 2002). The opposite 

behavioural response observed in the two studies might either be due to species-specific 

differences of responses by different neurones to (3Z)-hexenyl acetate. Alternatively, 

mated and unmated females may respond differently. Possibly the repellence shown in 

H. virescens may in fact have been caused by other compounds. An interesting 

comparison of neuron specificity and behavioural responses across species has been 

made for the taste system of heliothine caterpillars. The deterrent sensitive neurons of 

the taste sensilla (sensilla styloconica) of two heliothine caterpillars (Heliothis subflexa 

and H. virescens) showed no differences, neither in firing rate nor in adaptation to the 

taste stimuli tested (Bernays and Chapman, 2000). However, the behavioural threshold 

for rejection of toxic plant compounds (selected deterrents) during feeding was found to 

be lower in caterpillars of the monophagous H. subflexa than in those of H. virescens 

(Bernays et al., 2000). This implies a loss through evolution in the polyphagous H. 

virescens larvae to detect the compounds, after overcoming the toxicity. These results 

led to the conclusion that the different feeding behaviour of the two species were caused 

by different coding in the CNS rather than by differences in the peripheral sensory 

system. A similar principle may apply to the olfactory system.   

When comparing RNs specificity in related species, one question is whether the 

same types are also present in unrelated species, which may point to a convergent 

evolution of the receptor proteins. RNs specialized for the same primary odorants as 

those found in heliothine species are also found in distantly related species. For instance 

RNs detecting E-β-ocimene has been shown in Spodoptera moths as well as in the two 

weevils Anthonomus grandis (cotton weevil) and Anthonomus rubi (strawberry weevil) 

(Dickens, 1990; Jösson and Anderson, 1999; Stensmyr et al., 2001; Bichão et al., in 

press). In some cases it is difficult to make a complete comparison of RN specificity 

because different test protocols have been used. In the studies of the strawberry weevil 
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A. rubi (Coleoptera: Curculionidae) and the lepidopteran moth Mamestra brassica 

similar test protocols as for the heliothine species were used (Bichão et al., in press; 

Ulland et al., 2003). Both similarities and differences of the RNs molecular receptive 

ranges appeared across these species. RNs tuned to linalool that were identified in all 

species (except H. assulta) responded secondarily to dihydrolinalool (Ulland et al. 

2004). In contrast, other RNs tuned to the same primary odorants showed differences in 

sensitivity to the secondary odorants. The (-)-germacrene D RN type in the weevil (A. 

rubi) showed response to β-caryophyllene and no response to α-ylangene, whereas the 

opposite was the case for the (-)-germacrene D RNs of the heliothine moths (Stranden et 

al., 2002, 2003; Bichão et al., in press). The differences in molecular receptive ranges 

observed for some of the RN types in the distantly related species may reflect an 

independent evolution of the RN specificity during the adaptation to similar compounds 

of different host plants, or to chance mutation of common ancestral genes.  

 

Coding of odour quality 

The basis for recognition and discrimination of odour qualities in animals is the 

presence of RNs with different specificities for the odorants. In contrast to the visual 

system, operating with only three types of cones as bases for colour vision, the olfactory 

system is equipped with a much larger number of receptor protein types (Buck and Axel 

1991). Each type is expressed in subsets of RNs, which projects to one or two glomeruli 

in the primary olfactory centre (reviewes Axel, 1995, Breer, 2003b). This implies a 

certain ratio between the number of glomeruli and the number of sensory neurons. 

Whereas important processing of the visual information occurs in the retina, the 

olfactory information in vertebrates and insects is directly conducted by the RN axons 

to the primary olfactory centre of the brain. Certain principles of information processing 

typical in vision, like convergence on higher orders of neurons and lateral inhibition, is 

also important in the olfactory system, particularly studied in the primary olfactory 

centre (the AL of insects and the olfactory bulb of vertebrates). In insects, a large 

number of olfactory RNs converge on a smaller number of AL neurons (with a ratio of 

∼ 1000:1). Local AL inter-neurons provide lateral inhibition between glomeruli, which 

seems to be important in enhancing the contrast between active and inactive glomeruli 
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(Smith and Shepherd, 1999). Thus, activation of specific glomeruli by an odorant 

represents the code of the odour quality. This is particularly studied by optical 

recordings in honeybees, heliothine moths and the fruit fly (Galizia et al., 1999; Galizia 

et al., 2000; Galizia and Kimmerle, 2004; Skiri et al., 2004; Hallem and Carlson, 

2004b). For interpreting results from this kind of studies, knowledge about the RN 

specificity is important and is in the present study provided for several RN types in 

heliothine moths.    

 The papers I-IV present 19 types of distinctly classified olfactory RNs in 

heliothine moths. However, a larger number is expected to be present, both indicated by 

the present electrophysiological data, and by the number of about 60 ordinary glomeruli 

in the antennal lobe of the three heliothine species studied (Berg et al., 2002; Skiri HT, 

Berg BG and Mustaparta H, submitted). With a ratio of 1:1 or 1:2 between the number 

of RNs and the ordinary glomeruli the heliothine antenna is expected to comprise in the 

range of 30-60 RN types. In future GC-SCR studies, we expect that additional RN types 

are recorded and classified according to their molecular receptive ranges. From the 

results of RNs so far obtained, the sharp tuning to one primary odorant and the low 

overlap of the molecular receptive ranges give the impression that the information about 

each odorant is mainly mediated by one RN type, similar to the pheromone system in 

these and other moth species. This correlates well with the expression of one receptor 

protein type in each RN, as also indicated by the molecular biological study of olfactory 

gene expression in H. virescens (Krieger et al., 2002; 2004). Thus, the plant odour 

system in the heliothine moths seems to operate according to the principle of “labelled-

line” system, at least at low concentrations. However, this principle does not hold true 

for all the identified primary and secondary odorants. For instance (+)-linalool is the 

primary odorant for one RN type and a secondary odorant for another type (papers III 

and IV). A second example of overlap is between secondary odorants of two RN types 

responding to oxygenated bicyclic monoterpenes (Paper IV). Whether overlapping 

molecular receptive ranges is an important feature in the coding of plant odour 

information in heliothine moths remains to be seen in future studies, when the 

molecular receptive ranges of more RN types are identified. The relatedness of the few 

molecules out of hundreds tested, which activates the same type of RNs, support the 

principle that structurally similar molecules have a higher probability to bind to the 
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same receptor proteins. This also explains the few cases of overlapping molecular 

receptive ranges within the same chemical group. This has also been shown in other 

studies of moths and weevils. Typical in all studies is that RNs of different chemical 

groups show no, or only minimal, overlap (Wibe and Mustaparta, 1996; Wibe et al., 

1997; Stensmyr et al., 2001; Barata et al., 2002; Bichão et al., 2003). These results 

appear different from what is discussed according to results obtained in Drosophila, 

where a larger degree of overlap is found between the olfactory RNs (De Bruyne et al. 

1999; 2001; Stensmyr et al. 2003; review Hallem and Carlson, 2004a).  

 The structure-activity relationships of the various RNs presented in this thesis 

indicate several molecular features of importance in receptor-ligand interaction. These 

are chirality, carbon chain length, electron dense parts and the flexibility of the 

molecules, which are reflected by enantiomers, number of C-atoms, double bounds and 

open vs. cyclic structures. These features are considered universal among receptor-

ligand interactions in the olfactory system (Kafka, 1974; Priesner, 1977, 1979; 

Schneider et al., 1977; Bengtsson et al., 1990; Ohloff, 1986, 1994; Masson and 

Mustaparta, 1990, Mustaparta, 2002; Leal, 2001; Wibe et al., 1997, 1998; Borg-Karlson 

et al., 2003; Bichão et al., 2003; Bichão et al., in press; Laska, 2004, among others).  

 The results obtained in this thesis have been, and are currently, used in various 

other studies. This includes the use of optical recordings to study the representation of 

plant odorant qualities in the antennal lobe (Galizia et al., 2000; Skiri et al., 2004). 

Specific activity in distinct areas of the AL, mainly covering one or two glomeruli, has 

been shown for single odorants (Skiri et al., 2004). In addition, attempts have been 

made to trace the olfactory RN axons in the antenna lobe of heliothine females. These 

results show some correlation with the results from optical recordings (Paper III and 

Stranden et al. 2003). Thus, these preliminary results indicate that RNs responding to 

the same primary odorant project in one or a few glomeruli in the antennal lobe similar 

to what is found for the pheromone system in heliothine males (Berg et al., 1998; Berg, 

1998). This is also in accordance with the current knowledge particularly from 

molecular studies in vertebrates and insects. For instance in Drosophila, the projections 

in one or two glomeruli are determined for RNs with identified genes coding for 

receptor proteins and described molecular receptor ranges (Keller and Vosshall, 2003; 

Hallem and Carlson, 2004a). 
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 Ultimately, determining how odour information is coded in the brain requires 

linking a specific olfactory input with a behavioural output and correlating this with a 

measure of synaptic activity in the brain. This can be done in tests showing the ability of 

animals to discriminate between biologically relevant odorants, for instance by the use 

of the proboscis extension reflex in nectar feeding insects. In H. virescens, this reflex 

has been used to test some of the identified primary and secondary odorants (Skiri et al., 

in press), and these kind of studies are continuing for the other odorants identified in the 

present studies. As expected, Skiri and co-authors showed that H. virescens females, in 

a dose-dependent manner, were able to learn and to discriminate between linalool and 

both β-ocimene and β-myrcene, identified as primary and secondary odorants in paper 

III-IV. Surprisingly, the moths also showed the ability to discriminate between β-

ocimene and β-myrcene, which in our experiments always activated the same RNs 

(Papers II, III). These findings, which were supported by results from Ca2+-imaging 

experiments (Skiri et al., 2004) were explained by the possible presence of other RN 

types not yet identified, which responded to only one of the two odorants. In addition, 

impurities present in the samples at the relatively high concentrations tested might 

influence the discrimination. Also further processing of the olfactory information in AL 

projection neurons as well as higher orders of neurons (in the mushroom bodies and 

lateral protocerebrum) are important and may account for the discrimination of the two 

similar odorants (review Davis, 2004). For instance, in one study of the honeybee, 

synchronisation and temporal coding is suggested to be important in the discrimination 

of similar odorants (Stopfer et al., 1997).  

 

Coding of odour intensity 

The olfactory system seems to have the capacity to give information about odour 

intensity over several orders of magnitudes. The mechanisms involved in the coding of 

intensity can be ascribed to different response strengths of each RN to increased 

concentrations, to different sensitivity of each RN, as well as to central nervous 

mechanisms. The present studies present information about plant odour RNs types that 

is very sensitive to the primary odorants. In addition, the RNs within each type also 

show some variation in sensitivity. The best example comes from the frequently 

recorded (-)-germacrene D RNs, of which the most sensitive neurons responded to 
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concentrations lower than the GC-detection limit, i.e. 1-10 pg (see Paper I) whereas 

higher concentrations are needed to activate other (-)-germacrene D RN. The dose-

response relationship showed that these neurons increase firing rates over 4-5 log units 

(Paper I, Stranden et al., 2003). Obviously, this intensity range can be transmitted 

directly to the AL neurons. Further increase of intensity might be provided by 

recruitment of RNs with lower sensitivity. This mechanism has previously been 

suggested for detection of the major pheromone compound Z-11-16: AL in heliothine 

moths, having numerous sensilla along the antenna with RNs showing the same 

selectivity but different sensitivity to the same compounds. AL projection neurons of 

these moths respond with different sensitivity to antennal stimulation with the major 

component. This may be due to direct input from RNs with different sensitivity or to 

different numbers of RNs converging on each AL neuron. For the plant odour system 

the data that correlate sensitivity of the RNs to the sensitivity of the projection neurons 

are scarce. In general, a low sensitivity is observed for the projection neurons 

responding to antennal stimulation with plant odorants (Roche King et al., 2000; Anton 

and Hansson, 1995; Greiner et al., 2002; Masante-Roca et al., 2002; Reisenman et al., 

2004). This may be due to down regulation of the neurone sensitivity, by modulation of 

serotonin or octopamin (Kent et al., 1987; Sun et al., 1993; Kloppenburg and 

Hildebrand, 1995; Mercer et al., 1996). Alternatively, the responses recorded from the 

projections neurons are not ascribed to stimulation with the primary odorant of the RNs 

giving the input. Results from optical recordings experiments (Ca2+-imaging) in various 

species, including heliothine, shows that an increasing number of glomeruli were 

recruited with increasing odour concentrations (Sachse and Galizia, 2003; Carlsson and 

Hansson, 2003; Skiri et al., 2004). In the honeybee, this increase seems to be due to 

overlapping molecular receptive ranges of the RNs. A general assumption is that both 

RN sensitivity and the total number of RNs tuned to a particular odorant are important 

for the distance over which the odorant is detected. The large number of very sensitive 

RNs responding to germacrene D in H. virescens indicates that this compound may play 

a significant role over a long distance, probably in attraction (Mozuraitis et al., 2002). 

Recruitment of (-)-germacrene D RNs with lower sensitivity may be activated closer to 

the odour source, and give additional information about the intensity at short range. 
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Behavioural implications  

During recent years, attention has been given to induction of compounds emitted by a 

plant. Both biotic and abiotic factors influence the production and release of volatiles. 

Interesting biotic factors are volicitin and structural analogue compounds present in 

caterpillar salvia (Alborn et al., 1997; Mori et al., 2001, 2003). During feeding, these  

are suggested to induce production and release of certain compounds like (3Z)-hexenyl 

acetate, (3Z)-hexenol, E-β-ocimene, linalool, E-4,8-dimethyl-1,3,7-nonatriene, E-β-

farnesene, and E,E-α-farnesene (Loughrin et al., 1994; McCall et al., 1994; Röse et al., 

1996; De Moraes et al., 2001; Heiden et al., 2003; Röse and Tumlinson, 2004). It is also 

assumed that the induced release of volatiles is partly due to the constant cutting of leaf 

tissue during feeding. However, both qualitative and quantitative differences of the 

induced volatile profiles appear by feeding of different moth species, including the 

heliothines (Mori et al., 2001; Röse and Tumlinson, 2004; De Moraes and Mescher, 

2004). This indicates that species specific factors in the salvia influence the induction. 

Compounds induced by H. virescens caterpillars have been suggested to mediate host 

repellence, preventing mated conspecific females to lay eggs on infested plants (De 

Moraes et al., 2001). This repellence behaviour might be mediated by several of the RN 

types identified in this study (Papers II-IV); detecting E-β-ocimene [secondary odorant 

E-4,8-dimethyl-1,3,7-nonatriene], (3Z)-hexenyl acetate and (3Z)-hexenol, E,E-α-

farnesene [secondary odorant E-β-farnesene], (+)- and (-)-linalool, respectively. The 

enantiomeric ratio of linalool emitted during caterpillar feeding is not reported.  

To become an insect repellent signal, the compound produced by the direct 

defence mechanisms in infested plants might be associated with increased 

concentrations of toxins or a lower nutrition value, having a negative effect on the 

development and survival of the offspring (Mori et al., 2001). The fitness advantages to 

herbivores avoiding oviposition on induced plants are obvious, as these plants are likely 

to host not only larvae that represent potential competitors for the offsprings, but may 

also attract natural enemies. Parasitoids and predators of the heliothines have the ability 

to learn to discriminate between plant emitted volatiles that are induced by different 

species of caterpillars (Meiners et al., 2002, 2003). Two of the compounds commonly 

induced by heliothine caterpillars (e.g. H. virescens), linalool and β-ocimene, are 

attractive to various parasites and predators (De Moraes et al., 1998; De Moraes and 
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Mescher, 2004, Röse and Tumlinson 2004). The two compounds are not induced in the 

host plant Physalis angulata when attacked by caterpillars of the monophagous 

Helicoverpa subflexa (De Moraes and Mescher, 2004). This is explained by the 

adaptation of H. subflexa to monophagy on Physalis fruits, lacking linolenic acid. Other 

plant species contain this acid, which is required both for development and 

morphogenesis of most insects, and important for the induction of linalool and β-

ocimene in plants (De Moraes and Mescher, 2004). In this way, H. subflexa caterpillars 

feeding of Physalis fruits exhibit a clear competitive advantage as compared with H. 

virescens, by overcoming the lack of linolenic acid and not inducing attraction to the 

predators (De Moraes and Mescher 2004).  

 Plants emit blends of volatiles that vary both qualitatively and quantitatively in 

different parts of the plant, as well as with age or during the diurnal or seasonal cycles. 

Herbivore insects might exploit signals specific for these conditions when searching for 

a host. In nocturnal emission of flowering tobacco plants, it is found a four-fold increase 

in the amount of aromates like 2-phenylethanol, methyl benzoate and benzaldehyde 

(Raguso et al., 2003). It was suggested that these floral compounds are produced for 

attracting night active pollinators and may also serve as cues for the noctuid herbivorous 

moths in their search for nectar (Raguso et al., 2003). This is for instance shown for 2-

phenylethanol tested in a two-choice olfactometer (Gregg and Del Socorro, 2002). 

Many other compounds identified as primary and secondary odorants for the heliothine 

species are shown to be attractive to mated or unmated females in various behavioural 

bioassays. These include linalool, 3-carene, geraniol, α-caryophyllene, β-caryophyllene 

and (-)-germacrene D, which were either tested as single compounds or constituents 

added to blends (Rembold and Tober, 1985; Rembold et al., 1991; Jallow et al., 1999; 

Bruce and Cork, 2001; Hartlieb and Rembold, 1996; De Moraes et al., 2001; Mozuraitis 

et al., 2002; Gregg and Del Socorro, 2002; Robert Heath, personal communication). (-)-

Germacrene D is particularly interesting because of the numerous RNs found on the 

antenna of the three heliothine species. This compound, tested in two independent 

studies, has been indicated to act as an oviposition stimulant and/or attractant for mated 

H. virescens, and as an attractant for virgin H. armigera females (Mozuraitis et al., 

2002; Peter Gregg, personal communication). 
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Concluding remarks and directions for future work 

Striking similarities were found when comparing the RN specificity of the three 

heliothine species. Furthermore, the RNs were tuned to general plant constituents of 

which many seems to be related to certain condition of the plant e.g. caterpillar attack. 

Because these species are able to utilize a broad range of host plants, it is possible that 

other RN-types might be revealed when including more plant species. More 

electrophysiological data, in particular on the less studied oligophagous H. assulta, is 

required for detailed comparisons of the RN types. In addition, other species of the 

subfamily heliothine may be included in future studies. H. subflexa is particularly 

interesting because of its specialisation on Physalis fruits. Although our results are 

complementary to other studies showing behavioural significance of some of the 

odorants identified, more behavioural studies are required to elucidate the biological 

role of the various odorants. Interesting objectives are studies concerning the ability of 

the moths to learn and to discriminate single components and mixtures of the identified 

odorants. 

 The results obtained in the present studies have shown 19 types of olfactory RNs 

of which primary and several secondary odorants are identified for 16 of them (Paper I-

IV, Stranden et al. 2002, 2003). These data may be used in future studies of the 

peripheral olfactory events, including odorant-receptor interactions and transduction 

mechanisms. This requires molecular biological characterisations of olfactory genes and 

receptor proteins in heliothine moths, studies that are in progress by Krieger et al. 

(2002; 2004). The identified odorants are also used in studies of the central processing 

of olfactory information and olfactory learning, carried out in our laboratory. In 

addition, the use of plant odorants in integrated control of heliothine moths makes the 

present results interesting also for applied research.  
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