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Preface

This thesis evolved from the NFR funded strategic university programme MODTEQ where a 

submersible model of a Pulse Amplitude Modulated fluorometer was used to detect the 

photosynthetic performance in macro algae (kelp forest), zooxanthellate corals and solar 

powered sea slugs. Collaboration between Geir Johnsen and Heike Wägele resulted in that 

Ingo Burghardt and I were to investigate solar powered opisthobranchs from two different 

functional angles; Ingo was to look at zooxanthellae (photosynthetic endosymbiotic 

dinoflagellates) in nudibranchs and I was to look at chloroplasts in sacoglossans. In regard of 

methodology and preliminary investigations of solar powered sea slugs, very little was known 

on how zooxhantellae or photosynthetic organelles (chloroplasts) function in opisthobranchs. 

The aim of this thesis was therefore to further develop bio-optical methodology to identify 

and describe the photosynthetic functionality of chloroplasts derived from macroalgae in 

Sacoglossa.

The work on this thesis has been carried out at Trondhjem Biological Station, Department of 

Biology, Norwegian University of Science and Technology. Financial support has been 

contributed by the Norwegian Research Council, NFR 153790/120 through the MARE 

programme. My supervisors have been Professor Geir Johnsen (TBS, NTNU) and Professor 

Heike Wägele (Institut für Evolutionsbiologie und Ökologie, Der Rheinischen Friedrich-

Wilhelms-Universität Bonn). 

I am very grateful to have had the opportunity to work with Geir Johnsen. Not only has he 

been an enthusiastic and patient supervisor and friend, but his never ending humour, 

inventiveness and sharp mind has been of great benefit during field work and discussions. 

The results in this work have been acquired in cooperation with many magnificent people. 

Heike Wägele has been invaluable when preparing and interpreting light microscopy sections 

of slugs. Ingo Burghardt at Lehrstuhl für Spezielle Zoologie, Ruhr-Universität Bochum, has 

been a great co-worker and friend during lab work and field trips both in Norway, Germany 

and Australia. Kåre Tvedt and Linh Huoang at the Department of Laboratory Medicine, 

NTNU, have been of great expertise when preparing and studying TEM sections of slugs and 

chloroplasts. Kjersti Andresen at TBS, NTNU has extracted pigments and analysed them with 

the HPLC. I also want to thank directors Lyle Vail and Anne Hoggett, and staff at the Lizard 

Island Research Station (facility of the Australian Museum, Sydney) for fantastic hospitality 

3



during two lengthy field trips to the outer parts of the Great Barrier Reef. I am also grateful to 

Torkild Bakken and a handful of other nudiphile divers during collection of sacoglossans in 

Norwegian waters. Last but not least, my sincere thanks to staff and colleagues at Trondhjem 

Biological Station. 
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1. Introduction 

“Experimental and quantitative studies on several algal-invertebrate symbiosis have suggested or shown directly 

that these associations possess a variety of interacting systems that stabilize and perpetuate them. It is becoming 

evident that host-algal symbiont interactions occur at many levels of biological organisation. Among some 

contemporary workers in algal-invertebrate symbiosis there has been a shift away from “reciprocal benefit”, the 

“who does what for whom”, and the catalog-categorization approaches to symbiosis research. There is a growing 

emphasis on studies probing the underlying mechanisms allowing or causing animals and algae to form stable 

entities that thrive and persist through time. We are becoming aware that algal-animal symbioses have unique 

biological identities. The association is an organism that makes its living in a particular way, in a particular 

ecological context. [ ] I wish to introduce the term phycozoan (phyco, seaweed, zoa animal) to denote the 

compound organism resulting from the intimate association of algae and animals.”  

Pardy – Phycozoans, phycozoology, phycozoologists? 

Here, Pardy (1983) addresses the association between algal cells, organelles and invertebrates, 

which together form a solar powered organism. In the marine environment, solar powered 

organisms are quite common; the best known are tropical octocorals harbouring zooxanthellae 

(dinoflagellate microalgae), but phycozoans occur among a wide range of other invertebrates 

as sponges, foraminiferans, cnidarians, molluscs and tunicates (van Oppen et al 2005). This 

thesis is a product of investigating phycozoan entities represented by solar powered 

opisthobranchs; the association between zooxanthellae and carnivorous nudibranchs, and 

between macroalgal chloroplasts and herbivore sacoglossans, with emphasis on the latter 

association.

The solar powered nudibranchs incorporate zooxanthellae, whole algal cells where the 

majority belong to the genus Symbiodinium, which is usually divided into eight clades 

(Pochon et al 2006). Solar powered nudibranchs are mainly found in æolid taxa (Rudman 

1981, Kempf 1984, Hoegh-Guldberg & Hinde 1986, Rudman 1991, Wägele & Johnsen 2001, 

Paper I). Nudibranchs are carnivorous opisthobranchs that in adult stages completely have lost 

any shell-like structures (Wägele & Willan 2000), where term “æolid” refers to the 

æolidoidean group of nudibranchs that have finger-like extremities dorsally called “cerata”. 

Cerata are blood-filled tubes which contains extensions of the digestive gland and which in 

most æolid nudibranchs contain kleptocnids (the storage of cnidocysts for defence, see Martin 

(2003)). The process of storing cnidocysts in the cerata and using them for defence is 

common within the æolid nudibranchs (Greenwood 1988), and might have been a 

precondition leading to the ability to also retain functional zooxanthellae in similar ways 
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(Rudman 1981). The zooxanthellae are kept inside the cells of the digestive gland, originating 

from the food of the nudibranch, usually hydroids or soft corals (Kempf 1991, Paper I). The 

benefit of retaining zooxanthellae is the photosynthetic products, which allow the nudibranchs 

to tolerate starving conditions for several weeks. In Paper I, nudibranchs like Pteraeolidia

ianthina (Figure 1a in this thesis), were observed to be effective in retaining zooxanthellae; 

after 71 days of starvation, the photosynthetic activity (see Chapter 2.2) had not decreased 

significantly. Other nudibranchs belonging to the genus Phyllodesmium, showed varying 

degrees of photosynthetic activity decreasing as function of time during starvation (Paper I, 

Burghardt et al 2008). The first example indicates that the zooxanthellae in P. ianthina are 

able to divide and keep a stable number of zooxanthellae in the nudibranch digestion. Studies 

on zooxanthellae in corals have shown that a typical doubling time of zooxanthellae in

hospice is low compared to free living dinoflagellates, and is in the order of 70–100 days 

(Hoegh-Guldberg & Hinde 1986). Free living dinoflagellates may often obtain a doubling 

time every third to tenth day depending on irradiance (Johnsen & Sakshaug 1993). The 

second example where the photosynthetic activity decreases as a function of time in species of 

Phyllodesmium, indicates either that the retained zooxanthellae are not able to divide or renew 

their numbers at the same rate as they are digested, or that the functionality of the 

zooxanthellae is arrested (Paper I, Burghardt et al 2008). Zooxanthellae are intact algal cells, 

which should be able to repair themselves and photoacclimate (the ability to adjust their 

photosynthetic activity to changing light climate, see Chapter 2.3). However, species of 

Phyllodesmium are highly adapted to their prey, soft corals, and are in many cases cryptic 

when feeding on the coral because their cerata mimic the coral polyps (Paper I, Burghardt & 

Gosliner 2006). This can indicate a dependence to one particular soft coral species (Paper I), 

and thus an independence of zooxanthellae; if the nudibranch is living most of its lifecycle on 

one coral, the need to tolerate long periods of starvation is not important. In contrast, P.

ianthina has been observed to retain zooxanthellae from at least four different clades (Loh et 

al 2006), indicating a wide range of prey since cnidarians are not known to host more than 

one clade (Toller et al 2001). However, one prey organism may be the stinging hydroid genus 

Aglaophenia, which is know to contain zooxanthellae (Song & Lim 2001), because P.

ianthina also retain kleptocnids that can deliver a bad cnidocyst sting if touched, even to 

humans (pers. obs). However, most P. ianthina were not found near any prey organisms, 

which indicates that this is a very mobile nudibranch which will benefit from tolerating long 

periods searching for food. 
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With the association between zooxanthellae and nudibranchs as a background, this thesis will 

look into the functionality of algal chloroplasts retained by sacoglossans. The sacoglossans 

are herbivore opisthobranchs incorporating photosynthetic chloroplasts in their digestive cells 

after ingesting macroalgal cytoplasm (Jensen 1997). Like the nudibranchs, the sacoglossans 

are opisthobranchs where the presence of hard shell-like structures is highly reduced. 

However, based on the presence or absence of a rudimentary shell-like structure, the 

Sacoglossa can be classified into two subgroups: the Oxynoacea which have an internal 

rudimentary shell, within which the digestive gland also is completely contained, comprising 

of the families Oxynoidae, Juliidae and Volvatellidae. And the non-shelled Plakobranchacea, 

divided into the parapodia-bearing Plakobranchoidea and the cerata-bearing Limapontioidea 

(Jensen 1996, see Figure 1b). The Plakobranchoidea have a pair of flat wing-like appendages 

(parapodia) which are folded up dorsally (see Figure 1c and d). The digestive gland ramifies 

into numerous small tubules which also expand into the parapodia. Plakobranchoidae 

(=Elysiidae) is the largest family with about 120 species (Wägele 2004). The other families 

are Bosellidae and Platyhedylidae. The Limapontioidea have cerata dorsally (except 

Limapontia, the only genus in the cerata-bearing group which does not have cerata), which 

are fused with the digestive gland (in only two genera, Cyerce and Sohgenia, does the 

digestive gland not connect with the cerata). It comprises the families Polybranchiidae, 

Hermaeidae and Limapontiidae.  

Sacoglossans are almost exclusively feeding on coenocytic and siphonous macroalgae (Jensen 

1980), the exception being species which feed on seagrasses, the eggs of other opisthobranchs 

and diatoms (Jensen 1993). The sacoglossan feeding habit is adapted for suctorial feeding of 

algal cytoplasm, with a modified uniseriate radula used for puncturing algal cells. This has led 

to most sacoglossans feeding on algae with a large cytoplasm to cell volume with numerous 

nuclei (coenocytic) where the cell also may contain transverse cell walls (siphonous). 

Coenocytic algae have multinucleate cells but lack cross-walls. In macroalgal physiological 

literature the term siphonous has been synonymous to coenocytic, however, siphonous algae 

have a tubular multinucleate thallus (Grant & Borowtizka 1984). Thus all siphonous algae are 

coenocytinc (e.g. the ulvophycean Bryopsidales), but not all coenocytic algae are siphonous 

(e.g. the rhodophyte Griffithsia). There are also large-celled, non-coenocytic algae such as 

Acetabularia, which in some respect resemble coenocytes. After puncturing the algae, the 

sacoglossans extract the algal cytoplasm with a muscular pharyngeal pump. The digestive 

system is adapted to a fluid diet, with large internal surface area for absorption and a reduced 
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intestine (Taylor 1968). The digestive gland tends to be highly ramified (digestive gland 

tubules extends throughout the body), particularly in sacoglossans that retain functional 

chloroplasts for long time periods (Paper II). They are also able to sequester secondary 

metabolites used defensively in mucus secretions (Marin & Ros 2004). The retention of 

photosynthetic chloroplasts is not an ability unique to sacoglossans, but is also common in 

several mixotrophic species of phytoplankton (Gast et al 2007), ciliates (Dolan & Perez 2000) 

and foraminiferans (Lee 1998). 

The close associations between sacoglossans and their feeding habits have led to suspicions of 

co-evolution between the slugs and the algae, however, no evidence in this respect have yet 

been presented (Jensen 1997). Instead, speciation and diet radiation have been widespread, 

indicating intense competition for food sources and habitat exploitation. This is evident in that 

the oxynoaceans only feed on the algal genus Caulerpa. The diet of sacoglossans seem to 

have radiated out from this food source independently in the plakobranchoid and limpaontoid 

sacoglossans to comprise coenocytic and siphonous algae mostly within the chlorophyte 

macroalgal group Bryopsidales (Caulerpa, Codium, Bryopsis etc) and other siphonous groups 

within xanthophytes and rhodophytes (Jensen 1997). 

The ability to retain chloroplasts in the digestive gland in the sacoglossans has been named as 

“chloroplast symbiosis” (Hinde & Smith 1974), “chloroplast farming” (Hinde 1980), 

“kleptoplasty” (Waugh & Clark 1986, Clark et al 1990) or “chloroplast retention” (Marin & 

Ros 1992). The problem with these definitions is that they either stretch the relationship 

between chloroplast and slug into one being between two autonomous entities (symbiosis, 

here understood as “an association, for significant proportions of the life cycles, of individuals 

that are members of different species”, as defined by Margulis (1981)), or omit the functional 

aspect of photosynthetic chloroplasts altogether. The term “kleptoplasty” seems to be more 

fitting denoting retention of functional chloroplasts in the Sacoglossa. The presence of 

chloroplasts in the sacoglossan digestion system observed by histological methods (Kawaguti 

& Yamasu 1965, Taylor 1968) gave the first suspicion of “symbiotic” organelles. But, 

observations alone can not expose the functionality of the chloroplasts, and in the 1970’s 

investigations were conducted on regarding photosynthetic activity (14C incorporation, 

oxygen production based methods), chloroplast division, and chloroplast synthesis of lipids, 

proteins and pigments inside the sacoglossans digestive cells. The association between an 

algal organelle and animal host does not seem to fall within the general concept of symbiotic 
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relationships, since it is likely that the chloroplasts in the sacoglossan digestive system can not 

divide (Trench & Olhorst 1976), nor synthesise any e.g. chlorophyll a (chl a) or galactolipids 

(Trench & Smith 1970, Trench et al 1973a and b, Trench et al 1974). In this regard, the 

lifespan of the chloroplasts in the digestive cells of sacoglossans was observed to last up to a 

few weeks, and Clark et al (1991) proposed that six types of retention of chloroplasts could be 

attributed to sacoglossans, from retention of non-functional (digested) chloroplasts to 

retention of chloroplasts that fix 14C or show high concentrations of chl a for more than one 

week.

These investigations brought forward the need to find a reliable method which could measure 

the photosynthetic activity in solar powered opisthobranchs. The first aim of this thesis was 

therefore to implement the vivo bio-optic methodology using PAM (Pulse Amplitude 

Modulated Fluorometry), introduced by Wägele & Johnsen (2001) to detect photosynthetic 

activity in opisthobranchs, but not developed further. Paper I-IV uses the PAM to develop 

ways to investigate the functionality of the zooxanthellae and chloroplasts when retained by 

the opisthobranchs. However, the main aim of this thesis is to investigate how chloroplasts 

remain functional in the digestive cells of the sacoglossans. Chloroplast functionality in 

sacoglossans is here defined as the ability to carry on photosynthesis in the sacoglossan 

digestion system. Chloroplast functionality can thus be studied in regard of 

1) Chloroplast lifespan; how are the chloroplasts stored in the sacoglossan digestion 

system, and how long are the chloroplasts able to continue photosynthesis in the 

sacoglossans? What affects the chloroplast photosynthetic processes (chloroplast 

integrity, electron transfer rate in photosynthesis based on PAM measurements)? 

Paper II and III 

2) Chloroplast autonomy; are the chloroplasts able to divide and repair themselves 

(measuring changes in photosynthetic parameters, histological observations)? Are the 

chloroplasts able to acclimate to changes in irradiance (changes in pigment 

composition, function and photosynthetic parameters)? 

Paper III and IV 

3) Chloroplast origin; which algae/plants are potential donors of functional chloroplasts 

to sacoglossans and how do we trace them (pigment composition, chemotaxonomy, 

chloroplast ultrastructure)? 

Paper IV 
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Figure 1. Solar powered opisthobranchs.

A. Pteraeolidia ianthina from Lizard Island, Great Barrier Reef, the most highly evolved 

nudibranch which hosts zooxanthellae. Specimen 60 mm in length.  
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B. Placida dendritica from Mausundvær in Norway, a limapontoid sacoglossan with cerata. 

This species does not retain functional chloroplasts. Specimen 15 mm in length.  

C. Elysia ornata from Lizard Island, a plakobranchoid sacoglossan with unfolded parapodia. 

Specimen 50 mm in length.  

D. Thuridilla ratna from Lizard Island, another plakobranchoid sacoglossan with convoluted 

parapodia. Specimens 20 mm in length. All photos by Geir Johnsen.
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2. In vivo methods – Pulse Amplitude Modulated Fluorometry and 

chloroplasts

2.1 In vivo chl a fluorescence 
The measurement of in vivo chl a fluorescence has been extensively applied to studies of 

phytoplankton physiology and growth in both laboratory and field setting (Owens 1991, 

Govindjee 1995). The apparent simplicity of conducting fluorescence measurements as a 

window to the physiological state of an algae providing information on pigment complexes, 

their excitation energy transfer among them and the energy transfer reactions in photosystem 

II (PSII) (Govindjee 1995), has brought this method into the realm of opisthobranchs using 

PAM (Wägele & Johnsen 2001, Paper I-IV). 

In a functional chloroplast, or zooxanthellae, light is absorbed by the light harvesting antenna 

pigments, and the absorbed energy can take one of three possible pathways: energy can be 

accepted by reaction centres in PSII (RCPSII) and be used to drive photosynthesis 

(photochemistry), secondly, excess energy can be dissipated as heat, or it can be re-emitted as 

chl a fluorescence. About 95% of in vivo fluorescence arises from PSII, the oxygen evolving 

site, and its corresponding light harvesting complexes (LHCPSII) (Butler 1978, Johnsen et al 

1997). These three processes are in constant competition, so that any increase in the efficiency 

in one will decrease the other (Equation 1). The quantum yield of chl a fluorescence ( ),

which is the number of photons emitted as fluorescence relative to the number of photons 

absorbed, is therefore directly related to the rate constants (k’s) of various pathways of de-

excitation for fluorescence (F), photochemistry (P), and heat dissipation (H) (Govindjee 1995) 

F

F  = kF/(kF + kP + kH)                   (Eq. 1) 

When chloroplasts and zooxanthellae are functional, here defined as being able to perform 

photosynthesis,  is low because photochemistry efficiently uses electrons. When 

irradiances reach saturating levels, meaning that most RC

F

PSII are closed due to QA (primary 

quinone acceptor in PSII) being reduced,  may reach as high as 1-3%. When RCF PSII are 

saturated with high light or by adding DCMU, (dichlorophenylmethylurea, an electron 

transport inhibitor) does in vivo  go as high as 3%. If the chloroplasts are non-functional, 

here understood as digested by the sacoglossans, chl a and associated pigments will be 

F
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detached from their apo-proteins (in vitro), resulting in that PSII and the RCPSII will be non-

functional, and energy may be re-emitted up to 30%  (autofluorescence) and 70% heat 

(Figure 2). 

F

If we want to investigate functional chloroplasts and zooxanthellae any further, we have to 

measure the kinetics of chl a fluorescence, here defined as a variable fluorescence effected 

from RCPSII’s in an open state (ground fluorescence, F0) to a closed state (maximum 

fluorescence, Fm) observed during illumination (Figure 3). This is called fluorescence 

induction, and has been widely used as a tool for studying photosynthetic processes in PSII 

(Krause & Weis 1991, Govindjee 1995). A PAM has the ability to measure the fluorescence 

kinetics before and after applying a saturating pulse of light that will close all functional 

RCPSII. The duration of the saturation pulse (0.8 seconds used in our setup) is long enough to 

close all RCPSII, but short enough to avoid chl a fluorescence quenching processes. To 

measure the photosynthetic electron transfer rate in functional chloroplasts, the maximum 

quantum yield of chl a fluorescence from PSII ( , Eq. 2) can be acquired from dark 

acclimated chloroplasts (this means that a maximum number of RC

PSII

PSII are open (oxidised) and 

ready to process photons) by measuring F0 before and Fm during a saturating pulse of strong 

light (>10 000 μmol photons m-2 s-1) which closes (reduces) all RCPSII with photons (QA is 

reduced, see Figure 2). The operational quantum yield of chl a fluorescence ( ’, Eq. 3) at 

actinic (inducing photosynthesis) irradiances is likewise measured before and after the 

application of a saturation pulse (Figure 3). The quantum yield of PSII (mol e

PSII

- mol photons-1,

either maximum or operational) therefore approaches zero if all RCPSII are non-functional 

(Butler 1978, Dau 1994). 

Chloroplasts/zooxanthellae acclimated in darkness:  

Maximum quantum yield of chl a fluorescence =  (mol ePSII
- mol photons-1)

= Fm-F0/Fm                      (Eq. 2) 

Chloroplasts/zooxanthellae acclimated in actinic light conditions:

Operational quantum yield of chl a fluorescence = ' (mol ePSII
- mol photons-1)

= Fm'-F0'/Fm'                     (Eq. 3) 

Equations 2 and 3 can thus be used to detect photosynthetic activity in chloroplasts and 

zooxanthellae (Paper I-IV). Further,  as a function of time, can be used to measure the PSII
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lifespan of functional chloroplasts and zooxanthellae (Paper I and Chapter 2.2), and ' as 

function of irradiance can reveal changes in photosynthetic parameters (Paper I and Chapter 

2.3).

PSII

Figure 2. In vivo chl a fluorescence ( ).  F

A. In functional chloroplasts or zooxanthellae which are able to do photosynthesis (P), ~27-

29% of the absorbed light may be used in the photochemical process, while approximately 

70% is lost as heat (thermal decay), and about 1-3% is emitted as chl a fluorescence, of which 

~95% originate from PSII.  

B. In non-functional chloroplasts or zooxanthellae, which are destroyed by the sacoglossans 

digestion, RCPSII’s are non-functional due to chl a and other pigments being detached from its 

apo-proteins or digested, and  may increase up to 30%, resulting in autofluorescence. F
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Figure 3. A PAM fluorescence induction curve as measured in chloroplasts or zooxanthellae. 

Chloroplasts incubated for 15 minutes in darkness have all functional RCPSII open, and the 

probe light of the PAM measures the initial fluorescence (F0). After applying a saturating 

flash saturating all RCPSII (~10 000 μmol photons m-2 s-1 for 0.8 seconds) the maximum 

fluorescence is obtained (Fm), and the quantum yield of chl a fluorescence ( , see Eq. 2) 

can be estimated. Under actinic irradiance levels, where the chloroplasts in this example have 

been incubated at 50 μmol photons m

PSII

-2 s-1 for 5 minutes, the F0 signal will rise to F0’ level and 

approach Fm’ when all RCPSII are saturated with photons, used to calculate an operational 

quantum yield of chl a fluorescence ’ (Eq. 3) which always is lower than .

Induction curve copied with permission from Johansen (2002). 

PSII PSII
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2.2 Photosynthetic activity of chloroplasts in sacoglossans as a function 
of time 
The simplest way to characterise the functionality of chloroplasts or zooxanthellae in the 

digestive cells of opisthobranchs, is to estimate their photosynthetic lifespan. The functional 

state of incorporated chloroplasts or zooxanthellae and their survival time in the digestive 

cells of opisthobranchs has previously been measured by methods such as 14C incorporation, 

chl a concentration and oxygen evolution measurements (references in Paper I and II). 

However, chl a concentration does not indicate chloroplast or zooxanthellae functionality, 

because the presence of chl a does not discriminate between photosynthetically active chl a or 

chl a detached from apo-proteins in LHCPSII or digested algal material resulting in 

autofluorescence from chl a (Figure 2). Likewise the use of oxygen electrodes and 14C

incorporation are highly affected by respiration from the slug, together with the presence of 

chloroplasts, mitochondria, and microbes (Falkowski & Raven 1997). Instead, it is more 

practical to ascribe chloroplast and zooxanthellae functionality to photosynthesis and the 

vitality of PSII measured by a PAM, which is relatively insensitive to respiration (Hancke et 

al 2008). If photosynthetic chloroplasts or zooxanthellae are present, the slugs ability to retain 

functional (photosynthetic) chloroplasts or zooxanthellae can be estimated as photosynthetic 

activity as a function of time. This can be achieved by measuring  in slugs kept under 

starving conditions (no new chloroplasts are introduced from food algae) over a period of 

days to months (Paper I and II). For sacoglossans, the Retention ability of Functional 

Chloroplasts is defined as the RFC, which is estimated by plotting  as a function of time 

designating the lifespan of the chloroplasts as a number of days (Paper II, Figure 4 in this 

study). The daily decrease in  can be estimated from a regression line fitted to a plot of 

 as a function of time. By dividing the initial  (measured before any sacoglossans 

are put under starving conditions) by the daily decrease of  (estimated from the slope of 

the regression line) the RFC is expressed as a number of days (Paper II): 

PSII

PSII

PSII

PSII PSII

PSII

RFC (days) = initial  /decrease in  dayPSII PSII
-1                (Eq. 4) 

A decline in  as a function of time will occur because some RCPSII PSII become 

photosynthetically incompetent due either to inefficient excitation transfer from LHC to 

RCPSII, impairment of primary photochemistry, or disruption of electron transport between QA

and the plastoquinon pool (Kolber and Falkowski 1993). Down regulation and closure of 
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RCPSII is firstly attributed to chloroplasts not being able to repair themselves (they gradually 

degrade from age), and secondly from photodamage (here understood as the light induced 

damage resulting in turnover of the D1 protein subunit of the reaction centre of PSII when the 

rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in 

photosynthesis (Demmig & Bjørkman 1987)). All chloroplasts that perform oxygenic 

photosynthesis experience photodamage to PSII under strong light (Adir et al. 2003, Mohanty 

et al 2007). Chloroplasts in a normal algal cell environment are able to repair PSII after 

photodamage (e.g. D1 repair, see Chapter 2.3). But, since chloroplasts in the digestive cells of 

sacoglossans are not able to neither divide nor synthesise pigments, lipids or membrane 

proteins (Paper III), the decrease of  as a function of time will be a result of a balance 

between chloroplasts degrading from age, photoacclimation status, and photodamage to PSII 

modified by key environmental variables (e.g. irradiance and temperature). It must be pointed 

out that sacoglossans studied in laboratory conditions with stable light and temperature 

conditions, have shown surprisingly long RFC values. This is explicit for Elysia timida and

Elysia viridis, both kept under low light conditions not inducing high levels of photodamage 

(Paper II and III). 

PSII

For the nudibranchs, which retain zooxanthellae,  was used as an indication of the ability 

of the zooxanthellae to renew their numbers in the digestive system of the slugs (Paper I). 

 as a function of time in starving nudibranchs, can be investigated with a period of 

darkness; zooxanthellae under dark conditions switch to a heterotrophic state which is a 

burden to the nudibranch. The dark period therefore leads to a reduction in  as a function 

of time, because the slug has started to digest its zooxanthellae. If the zooxanthellae are able 

to recover when brought back into light, the  should increase as a function of time.  

PSII

PSII

PSII

PSII

Observations on the RFC in different sacoglossans in this thesis can be summed up in Figure 

4. Based on Clark et al (1990) and the results in Paper II-IV, our knowledge of the lifespan of 

chloroplasts in sacoglossans can be classified into eight different levels (Table 1). Level 1–3 

represents sacoglossans with non-functional chloroplasts which are digested when they are 

phagocytosed into the digestive cells of the sacoglossans. As shown for Placida dendritica in 

Paper III, no intact chloroplasts are observed after ingestion, but several degradation stages of 

chloroplasts under digestion are present (Chapter 3.2), and this species can be classified under 

level 3. When measured with a PAM, only autofluorescence will be detected (Figure 1, level 

1-3 in Table 1), or as in Ercolania kencolesi, the  signal may be present for some time PSII
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(days) but at such low signals it can not be attributed to photosynthesis but indicating digested 

chloroplasts (see also Chapter 3.2). Level 4–8 represents sacoglossans with functional 

chloroplasts. Intact chloroplasts can be observed surrounded by the phagosome, and the initial 

 is usually the same as for the food algae (Paper III). Level 4 comprises sacoglossans 

where the chloroplasts remain photosynthetically active for less than one day, and when 

measured with a PAM, the chloroplasts will become non-functional within 24 h (  ~ 0). 

Level 5, 6, 7 and 8 comprises sacoglossans retaining functional chloroplasts from 1-7 days, 

from 7-30 days, from 30-90 days and for more than 90 days respectively. Most species 

investigated in this study belong to level 5 and 6 (Figure 4). Only three species are observed 

to retain functional chloroplast for more than three months (Level 8); E. viridis,

Plakobranchus ocellatus and Elysia chlorotica (Table 1).  However, E. viridis has varying 

RFC’s because light- and temperature conditions in different experiments vary greatly (see 

references in Table 1). P. ocellatus retains functional chloroplasts from the chlorophyte 

Caulerpa (Paper IV), and E. chlorotica retains functional chloroplasts from the chromophyte 

Vaucheria (Rumpho et al 2006). Because these two latter sacoglossans retain chloroplasts 

from so different algal groups (see Table 2), it is difficult to compare the functionality of the 

chloroplasts. Since the decrease of [chl a] as a function of time in sacoglossans, which does 

not separate functional chl a from chl a detached from its apo-proteins, is used to estimate the 

RFC in Elysia hedgepethi and Plakobranchus ianthobapsus (Greene 1970), and Elysia cause, 

Elysia tuca, Oxynoe antillabrum, and Tridachia crispata (Clark & Busacca 1978) in Table 1, 

these results must be considered cautiously.  

PSII

PSII
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Figure 4. The decrease of  as a function of time (RFC, Eq. 4) for nine sacoglossans, 

obtained from Norway (E. viridis), the Mediterranean (E. timida), Indonesia (E. tomentosa)

and Australia (the remaining species) used in this thesis (Paper II-IV). Their respective RFC 

numbers are given in Table 1. The regression lines are estimated from the plots by the least 

square method. The point of intersection of the regression line on the y-axis ( ) designates 

the initial  which divided by the slope of the regression line (the daily decrease of )

gives RFC as a function of days. n denotes number of specimens examined. 

PSII

PSII

PSII PSII
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Table 1. The new classification scheme of retention abilities of functional chloroplasts in 

sacoglossans (RFC) as suggested in Paper II, and further summed up from Paper III and IV in 

this study. The table indicates that the majority of sacoglossans retaining functional 

(photosynthetic) chloroplasts belong to the Plakobranchoidae. μg chl a/g fw denotes the 

concentration of chl a per gram fresh weight of slug. 

Sacoglossan RFC Method Reference Level Functionality Time
Ascobulla ulla 14C Clark et al (1990) 1 Direct digestion 0

Elysia catulus 14C Clark et al (1990) 2 Non-functional <2 h
Elysia evelinae 14C Clark et al (1990)
Ercolania coerulea 14C Clark et al (1990)

Placida dendritica PAM Paper III 3 Non-functional >24 h
Ercolania kencolesi PAM Grzymbovski et al (2007)

Alderia modesta <1 14C Clark et al (1990) 4 Functional <24 h
Hermaea cruciata <1 14C Clark et al (1990)

Elysiella pusilla 2 PAM Evertsen (2006) 5 Functional 1-7 days
Mourgona germainea 3-7 14C Clark et al (1990)
Caliphylla mediterranea 7 14C Clark et al (1990)
Bosellia mimetica >7 14C Clark et al (1990)

Elysia ornata 8-18 PAM Paper IV 6 Functional 1-4 weeks
Elysiella pusilla 10 PAM Paper II
Elysia sp.1 10 PAM Paper II
Elysia hedgepethi 10 14C Greene (1970)
Elysia hedgepethi 11 μg chl a/g fw Greene (1970)
Elysia tomentosa 10 PAM Paper II
Thuridilla carlsoni 10 PAM Paper II
Elysia thompsoni 11 PAM Evertsen (2006)
Thuridilla undula 12 PAM Evertsen (2006)
Thuridilla ratna 12-14 PAM Paper IV
Thuridilla lineolata 15 PAM Paper II
Elysia cauze 23 μg chl a/g fw Clark & Busacca (1978)
Elysia sp.2 25 PAM Evertsen (2006)
Elysia tuca 29 μg chl a/g fw Clark & Busacca (1978)

Oxynoe antillabrum 36 μg chl a/g fw Clark & Busacca (1978) 7 Functional 1-3 months
Elysia viridis 42 14C Hinde & Smith (1972)
Plakobranchus ianthobapsus 43 14C Greene (1970)
Elysia timida 45 14C Marin & Ros (1992)
Elysia australis ~56 14C Hinde (1980)
Elysia viridis 62-87 14C Hinde & Smith (1975)
Costasiella lilianae 65 14C Clark et al (1981)
Elysia timida 80 PAM Paper II
Elysia viridis ~84 14C Trench et al (1973b)
Tridachia crispata 84 μg chl a/g fw Clark & Busacca (1978)

Plakobranchus ianthobapsus 108 μg chl a/g fw Greene (1970) 8 Functional >3 months
Elysia viridis 155-273 PAM Paper III
Plakobranchus ocellatus 197-277 PAM Paper IV
Elysia chlorotica 280 O2 Paper IV
Plakobranchus ocellatus 335 PAM Paper II
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2.3 Photosynthetic activity of chloroplast in sacoglossans as a function 
of photoacclimation 
When irradiance increases, the photosynthetic activity in PSII in terms of generating electrons 

in light ( ’), decreases until the RCPSII PSII start to be light-saturated; no matter how much 

higher the irradiance gets, the photosynthetic activity can not work any more efficiently. At 

low irradiances, below the light saturation parameter Ek (see below), the photosynthesis 

response to irradiance is light limited and the photosynthetic activity is linearly proportional 

to irradiance. As irradiance increases (>Ek), the photosynthetic activity becomes increasingly 

non-linear until reaching saturation. ’ (Eq. 3) as function of the incident irradiance (E, 

mol photons m

PSII

-2 s-1) is therefore defined as the relative electron transfer rate (ETR = 

’*E = (mol ePSII
- mol photons-1) mol photons m-2 s-1). Since ETR here denotes how much 

electrons are generated relative to the amount of photons absorbed as a function of the 

incident irradiance, ETR can be used to generate photosynthesis versus irradiance curves (P 

vs. E). A commonly used model for the relationship between photosynthetic activity (P) and 

irradiance (E) is provided by Webb et al. (1974) 

P (ETR) = Pmax(1-exp(- *E/Pmax)                   (Eq. 5) 

The relationship between photosynthesis and irradiance demonstrates a predictable shape with 

the P vs. E curve. The photosynthetic parameter  is denoted as the light utilisation 

coefficient (Sakshaug et al 1997) and is related to ’ multiplied by photons absorbed by 

PSII (  = *

PSII

PSII a PSII (m-2 mg chl a-1)). This means that at the light limited part of the P vs. 

curve, photosynthetic (ETR) response is proportional to irradiance. Ultimately, photosynthesis 

becomes light-saturated (Pmax) and stays the same despite higher irradiances. Pmax denotes the 

maximum photosynthetic rate, and can be described as the ratio of ’ divided by the 

concentration of chl a per photosynthetic unit (q) and the minimum turnover time for 

processing photons ( ) (P

PSII

max = ’/q ) (Dubinsky et al 1986, Sakshaug et al 1997). EPSII k is 

the ratio between Pmax/  and is called the light saturation parameter ( mol photons m-2 s-1)

(Kroon et al. 1993, Sakshaug et al. 1997). Photoacclimation is the algal response to variations 

in light regime, and chloroplasts can photoacclimate by changing the composition of 

photosynthetic and photoprotective pigments, adjusting photosynthetic parameters, changing 

enzymatic activities involved in photosynthesis and respiration, and by changing cell volume, 

respiration rates and chemical composition (Johnsen & Sakshaug 1993). Low light (LL) 
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acclimated chloroplasts have more light harvesting pigments (Chapter 3.1), an  up to 5 

times higher than HL acclimated chloroplasts. Paper III indicates that when sacoglossans are 

allowed to ingest and retain functional chloroplasts from food algae kept at the same LL and 

temperature conditions,  and  remain the same as for the food algae, but PPSII max and 

therefore also Ek increases 2-6 fold. Since both  and Pmax comprise , the former 

parameter can not explain the increase in P

PSII

max and Ek. Since the pigment composition remains 

unchanged (Chapter 3.1, Paper III),  and q should not either change. The increase in Ek may 

therefore be attributed to an increase of , leading to a decreased turnover time of e-,

indicating that chloroplasts in the digestive cells of sacoglossans experience higher irradiances 

than in the food algae (see also Chapter 3.3). This indicates that chloroplasts in the digestive 

cells of sacoglossans may have a partially arrested photoacclimation status; they can not 

divide nor synthesise new pigments, but may partially be able to adjust their turnover time of 

electrons to higher irradiance levels.

The limited functionality of the chloroplasts in the digestive cells of sacoglossans is further 

demonstrated when ,  and PPSII max are monitored as a function of time under sacoglossan 

starving conditions (no fresh chloroplasts are ingested). Here, ,  and PPSII max decreased as 

a function of time similarly (Paper III) indicating a reduction in the number of functional 

RCPSII of the PSU. A lack of functional D1 proteins in PSII, is related to a decrease in 

when the PSU (mainly the D1 reapir cycle) is not repaired (Bjørkmann & Demmig 1987, 

Vasilikiotis & Melis 1994). The corresponding decrease in  and P

PSII

max support the 

observations that the chloroplasts can not synthesise pigments, lipids or membrane proteins 

(Paper III and references therein). This indicates that chloroplasts in the digestive cells of 

sacoglossans will age (Figure 4, Table 1). 

How fast the chloroplasts degrade in the sacoglossans, is linked to the chloroplasts aging as 

pointed out in Chapter 2.2 and above, and to the photoacclimation status of the chloroplasts, 

and photodamage to PSII. Photodamage may occur at daytime and is closely related to the 

requirement to repair PSII, which is linked to the D1 protein. The D1 protein has a rapid 

turnover in vivo, and this turnover increases with increasing light intensity (Baker & Bowyer 

1994). This implies that if the chloroplasts in the digestive cells of the sacoglossans have a 

limited functionality, recovery of PSII activity will be lowered if the chloroplasts are kept at 

high irradiances exceeding their Ek.
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Plakobranchus ocellatus is well adapted to retaining functional chloroplasts. This species is 

found burying in shallow sand flats, and this burying habit could be one way to regulate the 

light conditions its chloroplasts are exposed to at high irradiances. This may explain the high 

RFC values up to 10 months observed for this sacoglossan (Paper II, Paper IV). In most cases, 

LL acclimated chloroplasts are found in this slug (Figure 5), which indicates that this 

sacoglossan mostly feed on shade acclimated algae. But staying in low light conditions may 

result in low photosynthetic activity. The observed solution to this problem is to let the 

digestive gland tubules branch off throughout the slug body, or aggregate them dorsally, 

bringing more light to the chloroplasts and increasing the Ek in the chloroplasts in 

sacoglossans (Chapter 3.2, Paper II). Plakobranchoid sacoglossans also have the option to 

unfold their parapodia (Figure 1c) in low light conditions, thus supplying the chloroplasts 

with more light. Sacoglossans with HL acclimated chloroplasts (as exemplified by Thuridilla 

ratna in Figure 6), can tolerate a wider range of irradiances. However, exposing the retained 

chloroplasts to high irradiances will only increase the rate at which D1 is depleted, resulting 

in a decrease of RFC. This can also be exemplified by Elysia ornata, which has been found in 

a wide variety of habitats and with both LL and HL acclimated chloroplasts. The result is 

RFC values varying from 1-2 weeks (Paper IV). As seen in Figure 4 in this study, most 

sacoglossans seem to not retain functional chloroplasts for more than two weeks, and it might 

be that most sacoglossans are opportunistic, here understood as having the ability to feed on a 

wide range of algal food from a wide range of habitats. 
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Figure 5. Low light acclimated chloroplasts in Plakobranchus ocellatus from Lizard Island 

(Paper IV). The P vs. E plot gives an Ek of 90 μmol photons m-2 s-1, indicating low light 

acclimated chloroplasts. The shaded area denotes light limited and the region of linear 

photosynthesis (at irradiances lower than Ek). At Pmax, most functional RCPSII are saturated 

(light saturated photosynthesis). For a sacoglossan, retaining LL acclimated chloroplasts, 

exposing its retained functional chloroplasts to irradiances exceeding Ek may increase the 

decay rate of D1-protein of PSII, and RFC may be reduced. 
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Figure 6. High light acclimated chloroplasts in Thuridilla ratna from Lizard Island (Paper IV). 

The P vs. E curves gives an Ek of 800 μmol photons m-2 s-1, indicating high light acclimated 

chloroplasts. The shaded area indicates that sacoglossans with HL acclimated chloroplasts are 

acclimated to a wider range of irradiances than LL acclimated chloroplasts. However, 

photosynthesis needs high irradiances to reach saturation and a high photosynthetic activity. 

The decay rate of functional D1-protein in PSII will also be higher at higher irradiances.
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Summary in vivo methods 

The Retention ability to retain functional chloroplasts in the digestive cells of sacoglossans 

can be expressed as RFC. RFC is  as a function of time in starved slugs indicating the 

lifespan of the chloroplasts in the digestive cells of the sacoglossans. RFC in sacoglossans can 

be classified into eight different levels (Table 1), ranging from non-functional chloroplasts 

being digested (Level 1-3) to functional chloroplasts being retained in a functional state from 

days to more than three months (Level 4-8). Results indicate that the majority of sacoglossans 

retaining functional chloroplasts are plakobranchoids. 

PSII

The functionality of chloroplasts can not only be expressed as RFC, but also from the 

chloroplasts ability to photoacclimate. When chloroplasts are removed from their food algae 

and retained in a functional (photosynthetic) state in the digestive cells of sacoglossans, they 

can not divide nor synthesise any new pigments. But, the only indication of a partial 

photoacclimation in the chloroplasts is the increase in Pmax and thus Ek, as a result of the 

chloroplasts speeding up the processing of e- at higher irradiances. 

When sacoglossans with functional chloroplasts are kept under starving conditions, the 

photosynthetic parameters , PPSII max and  decline at similar rates as a function of time. 

This indicates that the chloroplasts are not able to repair themselves, but degrade as a function 

of age. How fast the photosynthetic chloroplasts degrade depends on the chloroplasts 

photoacclimation status (LL or HL), and the rate of photodamage they are exposed to by the 

slug.
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3. In vitro methods – pigment composition, chemotaxonomy and 
histology

3.1 Pigment composition in the chloroplasts 
As pointed out in chapter 2.3, chloroplasts in the digestive cells of sacoglossans do not divide, 

and their ability to photoacclimate is partially arrested because they can not synthesise any 

new pigments. Therefore, the pigment composition observed in the chloroplasts found in the 

sacoglossans should more or less reflect the pigment composition and photoacclimation status 

of the food algae (Paper III and IV).

Green algal chloroplasts from Codium fragile contain only chl a, chl b, siphonaxanthin, 

siphonein, violaxanthin, neoxanthin and -carotene (Paper III). The evidence that any new 

pigments are not synthesised by these chloroplasts when retained in the digestive cells of 

sacoglossans, is seen when they are retained by Elysia viridis in Paper III. Here the ratio of 

chl a: b is the same (2.2) for LL acclimated chloroplasts in Codium as for the same LL 

acclimated chloroplasts retained in the slug, and the ratio of the different carotenoids also 

remains the same. However, when slugs are allowed to feed, there is usually a higher turnover 

of chloroplasts by the slug (up to 75% during 9 days according to Gallop et al 1980), and 

there is less chl a and chl b in the slugs chloroplasts (μg pigment per gram slug) than in 

chloroplasts from Codium, because some of the chl a in the slugs is degraded (12%). This 

gives an indication that chloroplasts in sacoglossans are not able to synthesise any new 

pigments, even though E

,

k in the chloroplasts increased 2-6 fold as a result of branching of the 

digestive gland tubules (see Chapter 2.3 and 3.3). In sacoglossans not able to retain functional 

chloroplasts (e.g. the limapontoid Placida dendritica, Figure 1b in this study, Paper III), the 

pigment composition includes degraded chl a (40%), and the carotenoid neoxanthin is absent. 

However, the total μg pigment per gram slug in P. dendritica remains similar to the total μg 

pigment per gram Codium, indicating that pigments have only been altered. This may explain 

the bright green colour in these slugs even though they do not retain functional chloroplasts. 

The pigment composition observed in sacoglossans collected in situ seems to be indicative of 

chloroplasts retained from different food algae (Paper IV). Plakobranchus ocellatus had a 

ratio of chl a : siphonaxanthin+siphonein that was up to 5 times higher than in Elysia ornata

and Thuridilla ratna, but a chl a: violaxanthin ratio that was 2 times lower than in E. ornata
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and T. ratna. These differences can be explained in the presence of lutein in P. ocellatus,

which was not present in the other two sacoglossans (Paper IV). It has been suggested that in 

the chlorophyte Caulerpa, an interconversion between lutein and siphonaxanthin replaces the 

violaxanthin-antheraxanthin-zeaxanthin cycle. The presence of chloroplasts of Caulerpa in P.

ocellatus is validated in Chapter 3.4. 

One way to assess the photoacclimation status in the chloroplasts is to estimate Ek, but 

significant differences in ratios of pigment relative to chl a, can also be indicative of 

photoacclimation (Johnsen & Sakshaug 1993, Rodriguez et al. 2006). Coenocytic and 

siphonous chlorophytes have lower chl a: b ratios than other algae and higher plants 

(Yamazaki et al 2005). The chl a: b ratios in e.g. seagrasses lie between 3 to 5 (Keast & Grant 

1976). All slugs in this study (Paper III and IV) retain coenocytic and siphonous chlorophytes 

(siphonaxanthin and siphonein is present in all, see Chapter 3.2), and the chl a: b ratios vary 

from 1.2-3.2. The lower chl a: b ratio is the result of marine green algae being more abundant 

in chl b, which absorbs blue-green light more efficiently (Anderson 1983), and further more 

that coenocytic and siphonous chlorophytes also have two unique carotenoids, siphonaxanthin 

and siphonein, which have main absorption bands between 500 and 550 nm making them 

efficient photosynthetic pigments specifically capturing blue-green light (Kageyama & 

Yokohama 1978). However, the chl a: b ratios did not correspond with the observed Ek values. 

P. ocellatus and E. ornata retaining LL acclimated chloroplasts had chl a: b ratios from 2.4-

3.2 (w:w), whereas Thuridilla ratna and E. ornata retaining HL acclimated chloroplasts had 

chl a: b ratios varying from 1.2-2.3 (w:w) (Paper IV). LL acclimated chloroplasts should have 

a lower chl a: b ratios than HL acclimated chloroplasts (Anderson et al 1973). In fact, Keast & 

Grant (1976) observed little consistency in the ratio between chl a and chl b in a number of 

coenocytic and siphonous Ulvophyceae kept in LL and HL conditions, and suggested that the 

chl a: b ratios are characteristic of the algal species themselves. For the sacoglossans this 

implies that variations in chl a: b ratios indicate chloroplasts from different species of algae 

(see Chapter 3.3). It has been suggested this rigidity in pigment composition reflects the habit 

of green macroalgae to use chloroplast movement in response to daily changes in light 

intensity (Takagi 2003, Yamazaki et al 2005). 
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3.2. Chemotaxonomy 
Pigments of marine macro- and microalgae comprise approximately 10 major chlorophylls 

(chl a, chl b and divinyl a and b, and the chl c group), >30 different major carotenoids 

(carotenes and xanthophylls), and three major phycobiliprotein groups (allophycocyanins, 

phycocyanins, and phycoerythrins) (Rowan 1989, Jeffrey et al 1997). In living cells, the 

pigments are bonded to apo-proteins, together forming a variety of pigment–protein 

complexes (Rowan 1989, Johnsen & Sakshaug 2007). Chl a and b, together with 

photosynthetic carotenoids, are the major light harvesting pigments in green algae and higher 

plants, chl a and phycobiliproteins in rhodophytes and chl a, c and phycobiliproteins in 

chromists (Table 2). This reflects the evolution of a green line (chl b) bringing about the green 

algae and higher plants, and the red line evolving into chromists (chl c) via rhodophytes and 

phycobilins (Falkowski et al 2004). In this study (Paper III and IV) all chloroplasts found to 

be functional in the digestive cells of the sacoglossans, belonged to the green algae (they 

contained chl a and chl b and -carotene), and they all also contained the photosynthetic 

carotenoids siphonaxanthin and siphonein. In the green algae, it is the coenocytic and 

siphonous algae of the Bryopsidales which are unique in having LHC containing 

siphonaxanthin and its esterified form siphonein (Yokohama et al 1992). In this regard, all 

sacoglossans observed retaining functional chloroplasts, except for three species, have 

obtained their chloroplasts from this algal group (Jensen 1993). The exception is Elysia timida

from the Mediterranean retaining chloroplasts from the dasycladalean Acetabularia, Elysia

chlorotica retaining chloroplasts from the chromist Vaucheria (cf. Table 1 for their respective 

RFC’s and references), and the limapontoid Hermaea bifida which has been observed to 

retain chloroplasts from the rhodophyte Griffithsia (Kremer & Schmitz 1976). However, the 

latter association must be considered carefully since the 

,

14C assimilation rate in the algae was 

estimated to be a thousand times higher than in the slug. In this regard, observations on 

another limapontoid sacoglossan, Ercolania kencolesi, feeding on the dasycladalean 

Boergesenia, showed  values varying from 0.2-0.1 mol ePSII
- mol photons-1 for 10-15 days, 

with F0 values subsequently measured at below 150 mV for all days (Grzymbovski et al 2007). 

However, such low F0 values are in the range of what is considered too low for the signal to 

noise ratio of the diving-PAM (Schreiber 1986). Other food-sources exploited by the 

sacoglossan which are not known to be a source of functional chloroplasts, include other 

chlorophytes from Cladophorales and Ulvales, and the marine magnoliphyte Zostera, which 

has been suggested to be in the diet of Elysia catulus (Jensen 1980). Also, a chain-forming 
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diatom, the bacillariophyte diatom Biddulphia, has been observed to be the food of Elysia 

evelinae (Jensen 1981). Here the diatom cell walls are pierced and the cell contents sucked 

out, but we do not know if chloroplasts are retained in any functional state. The potential 

pigment information of all these algal food-sources are summed up in Table 2. The diet of 

some sacoglossans as Calliopaea oophaga, C. bellula, Stiliger vesiculosus and Olea

hansinensis feeding on the eggmasses from other opisthobranchs (Jensen 1980, Coelho et al 

2005) is not considered a potential for a chloroplast-sacoglossan association and are omitted 

from Table 2. It is also important to note that diadinoxanthin, diatoxanthin and fucoxanthin, 

noted as pigments from bacillariophytes (Table 2), has also been found in sacoglossans in this 

study (Paper IV), however as pigments from epiphytes on the food algae or imbedded in the 

slug mucus. These three pigments are therefore not specific for bacillariophyte algae only, but 

occur also in other chromists as phaeophytes and xanthophytes. Thus, Table 2 can be used as 

a chemotaxonomic pigment chart to quickly assess the algal food source.  

We can therefore conclude that the most convenient chemotaxonomical pigment markers of 

potential donor algae of functional chloroplasts are siphonaxanthin, siphonein and 

vaucheriaxanthin, all from coenocytic and siphonous macroalgae.  
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Table 2. Chemotaxonomical pigment markers that may be found in Sacoglossa.  

Distribution, functionality and relative magnitude of pigments (CHL: chlorophylls, PC: 

photosynthetic carotenoids and carotenes, PPC: photoprotective carotenoids) in marine algae 

and plants used as food sources by sacoglossan species, and that may represent potential 

donors of photosynthetic chloroplasts (Jensen 1993, Paper IV). Large circles represent major 

pigments, medium are common pigments and small circles are minor trace pigments. This 

table can be used to classify chloroplasts pigments from sacoglossans into major algal groups. 

Pigments marked in red are specific chemotaxonomic markers for functional chloroplasts.  
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3.3 Branching of the digestive gland in sacoglossans 
As pointed out in the introduction, the observation of intact chloroplasts in the digestive cells 

of the sacoglossans is not in itself a proof that the slug retains functional chloroplasts. As 

shown in Chapter 2, the presence of photosynthetic chloroplasts can be detected by measuring 

the chl a fluorescence kinetics in PSII measured by PAM. Histological investigations can give 

information about the conditions the chloroplasts experience inside the slugs, and to some 

degree differentiate between types of chloroplasts (Chapter 3.4). 

An increase in Pmax and thus Ek by a magnitude from 2-6 observed in chloroplasts from 

Codium fragile being ingested and retained into the digestive cells of Elysia viridis, indicated 

that  decreased;  is low at high irradiances, indicating that a decrease in  may be a cause 

of higher irradiances in the digestive system of the slugs than in the cell environment of the 

algae (Chapter 2.3, Paper III). The increase in irradiance in the digestive system of the slug 

relative to the algae can be attributed to the digestive gland tubules in plakobranchoid 

sacoglossans branching throughout the entire body (Figure 7). A high degree of ramification 

of the digestive gland tubules has been proposed as a necessity for the ability to retain 

functional chloroplasts in the Sacoglossa to evolve (Jensen 1997). In the simple cerata bearing 

limapontoids, one large digestive gland tubule extends into each ceratum (Figure 7a). 

However, only one species of limapontoid sacoglossan, Costasiella lilianae, has been 

suggested to retain functional chloroplasts (Table 1). Most other limapontoids seem to retain 

degraded chloroplasts (Chapter 3.4). The branching of the digestive gland into the cerata 

might be advantageous to the slug keeping it in the same colour as the food algae 

(camouflage), since pigments do remain even though retained chloroplasts are found to be 

non-functional (Paper III). 

In the parapodiabearing plakobranchoids Elysia ornata and Elysia viridis (Figure 7b and c), 

the digestive gland tubules ramify throughout the entire body. In Plakobranchus ocellatus 

(Figure 7d), the digestive gland tubules are accumulated into tubules arranged as longitudinal 

furrows dorsally. These examples illustrate different morphological strategies to bring 

chloroplasts to the outer tissue to provide more light. When packing the digestive cells full of 

chloroplasts, the digestive cells and chloroplasts will quickly shade each other (self shading). 

By branching the digestive gland (as in Elysia) or arranging the digestive glands dorsally in 

the parapodia (as in Plakobranchus), this problem is avoided. 
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Figure 7. Light microscopy (LM) sections of Placida dendritica (A), Elysia ornata (B), Elysia

viridis (C) and Plakobranchus ocellatus (D), showing the morphological distribution of 

digestive gland tubules.
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3.4 Integrity of the chloroplasts in the digestive cells in sacoglossans 
The structural integrity of the chloroplasts can also be studied to support observations on the 

functionality of the chloroplasts. Non-functional chloroplasts retained in the digestive cells of 

sacoglossans have a distinct morphology different from functional chloroplasts. The 

chloroplasts from Codium in the limapontoid Placida dendritica are degraded through 

digestion as soon as they are phagocytosed into the digestive cells of the slug and four 

different stages of chloroplast degradation is evident (Paper III). All chloroplasts are enclosed 

by a phagosome (a membrane surrounding the chloroplast as a result of phagocytosis, the 

cellular process of engulfing solid particles), and the thylakoid membranes quickly 

disintegrate. Further degradation involves the phagosome membrane breaking up, and the 

whole “digestive vacuole” containing the chloroplast swelling when the starch grain 

disintegrates (Figure 8a). This is in contrast to the same chloroplasts from Codium kept in the 

digestive cells of Elysia viridis (Paper III). Here all functional chloroplasts are surrounded by 

a phagosome. However, chloroplasts that are being degraded show breaches in the phagosome 

exposing the chloroplast to the cytoplasm. In these degraded chloroplasts the thylakoid 

membrane quickly disintegrates, but the chloroplast double membrane and the starch grain are 

the last to disintegrate. This indicates that chloroplasts in limapontoids and plakobranchoids 

are degraded differently, where the plakobranchoid digestion seems more ineffective on 

chloroplast membranes. Coenocytic and siphonous macroalgae have been described to have 

very robust chloroplasts (DeWreede 2006). When the cell wall is ruptured or in other ways 

damaged, these chloroplasts, or cytoplasts as they are described by Grant & Borowitzka 

(1984), are surrounded by a polysaccharide gelatinous membrane and are extremely resistant 

to changes in seawater osmolarity and pH (Wright & Grant 1978). However, our studies 

indicate that this “robustness” alone can not explain the different efficiency in degrading 

chloroplasts between limapontoids and plakobranchoids. Instead these differences may be 

adaptations in the digestive system of the sacoglossans. 

Functional chloroplasts in the digestive cells of sacoglossans are also distinct from 

chloroplasts being degraded. The structural integrity of the chloroplasts surrounded by the 

phagosome is always intact, as seen in chloroplasts from Codium retained in a functional state 

by the digestive cells of E. viridis (Paper III, Figure 8b in this study). First of all, the thylakoid 

membranes are undamaged. This is very important, since it is here that the photosystems and 

light-harvesting complexes are located and where the light reactions drives the electron 

transport chain creating the chemo-osmotic potential to drive photophosphorylation and dark 
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reactions. Any sign of thylakoid membrane damage would be critical to photosynthetic 

activity. If chloroplasts are not able to synthesise any new galactolipids, as observations by 

Trench et al (1973a, b) imply, thylakoid membranes will gradually degrade. The presence of 

plastoglobuli in chloroplasts retained by sacoglossans, which function as collection sites for 

lipids when thylakoid membranes degrade, support the observation that chloroplasts are not 

able to repair themselves.  

Chloroplast morphology varies greatly between algal groups, and different types of 

chloroplasts can be differentiated based on their outer membranes, thylakoid stacking, 

presence or absence of thylakoid organising bodies (TOB) and the presence or absence of 

pyrenoids (Wise 2006). Based on the observational differences of these structures (Table 3), 

potential donors of functional chloroplasts in sacoglossans can be identified further together 

with their pigment information (see Chapter 3.2). The green line in algal evolution that 

evolved to the higher plants has only one primary symbiotic lineage. This means that the 

chloroplasts in chlorophyte algae and higher plants have only one double membrane. The 

same goes for rhodophytes, the ancestor of the red lineage. However, the heterokont 

chromists are the result of a secondary symbiosis, and the chloroplasts are surrounded by four 

membranes. In the chlorophyte chloroplasts, the thylakoid membranes are stacked side by 

side to form adjoining lamellae traversing the length of the chloroplast (in higher plants the 

thylakoid membranes are organised into discrete granal stacks connected by paired 

membranes in the stroma). However, the number of thylakoid per stack (lamella) varies from 

two to six. In all rhodophytes there is an absence of stacked thylakoid regions, meaning that 

the thylakoids lie free in the chloroplast. However, the thylakoids in the ochrophyte 

Vaucheria, the thylakoids are again stacked side by side as in the chlorophytes. The presence 

or absence of a TOB and pyrenoid is here only used to further differentiate between the 

different groups of the Bryopsidales. The thylakoid organising body (TOB) is a concentric 

lamellar system at the base of chloroplasts only observed in Bryopsidales. The pyrenoid is 

present in many groups of algae, where it in some of them is known to contain Rubisco, or act 

as a site of starch formation. 

The green macroalgal group Bryopsidales, which has in this study been shown to be the 

primary donors of functional plastids, can be further divided into Bryopsidinid chloroplasts 

which lack a TOB, and where a large central pyrenoid is common in the Bryopsidacea and the 

Derbeciacea, but lacking in Codiacea, and into Halimedinae which have a TOB, but where 
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pyrenoids are only sometimes found in the Caulerpacea (van den Hoek et al 1995). Based on 

TEM images of the digestive cells of sacoglossans from Australia, chloroplasts from 

Halimediane have been recognised in Thuridilla ratna (Figure 8c), chloroplasts from 

Caulerpa have been recognised in Plakobranchus ocellatus (Figure 8d), and chloroplasts 

from two different algal donors that belong to the Halimedinae and Bryopsis have been 

detected in Elysia ornata (Paper IV). These observations may explain the interspecific 

differences in ratios of pigments observed in sacoglossans in chapter 3.1. The sacoglossans in 

this study clearly exploit different species of bryopsidalean algae, from Codium in Elysia

viridis, to Caulerpa in Plakobranchus ocellatus, to Bryopsis and Halimeda in Elysia ornata

and Thuridilla ratna. This indicates that sacoglossans retain functional chloroplasts from a 

wide range of chlorophyte coenocytic and siphonous algae. As shown in chapter 2.2 and 2.3, 

this can be reflected in the RFC. Sacoglossans that prefer to explore a wide range of habitats 

and food algae, degrade their chloroplasts much quicker (retention of functional chloroplasts 

lasts only up to 20 days, Figure 4, corresponding to level 4-6 in Table 1). On the other hand, 

sacoglossans that adjust to similar light conditions as found in the same habitat as the food 

algae, or under LL and low temperature laboratory conditions, are able to retain their 

chloroplasts in a functional state up to several months (level 7 and 8 in Table 1). 
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Table 3. Chloroplast morphological characteristics in potential donor-algae of functional 

chloroplasts.  

All functional chloroplasts found in sacoglossans originate from macroalgae with a 

coenocytic and siphonous thallus organisation. In green algae, the chloroplasts are only 

surrounded by a double chloroplast membrane, while in the ochrophyte algae are chromists 

surrounded by four chloroplast membranes. In the red algae, thylakoid membranes lie free in 

the chloroplast, in contrast to the green algae where the thylakoid membranes are banded 

(stacked into several layers, but into grana as in higher plants). The Thylakoid Organising 

Body (TOB) is only present in the halimedinid Bryopsidales. A large central pyrenoid is 

common in the bryopsidinid Bryopsidales (except Codium), and rudimentary pyrenoids are 

only present in a small number of Caulerpa in the halimedinid Bryopsidales. Table based on 

Hori (1974), Calvert et al (1976) and Hoek et al (1995). 

thallus organisation chlp memb thylakoid stacking TOB pyrenoid
CHLOROPHYTA Bryopsidales coenocyt. + sipho. 2 stacked

Bryopsidiniae coenocyt. + sipho. 2 stacked no likely
Bryopsidacea coenocyt. + sipho. 2 stacked no yes

Codiacea coenocyt. + sipho. 2 stacked no no
Derbeciacea coenocyt. + sipho. 2 stacked no yes

Halimedinae coenocyt. + sipho. 2 stacked yes unlikely
Caulerpacea coenocyt. + sipho. 2 stacked yes in some
Halimedacea coenocyt. + sipho. 2 stacked yes no

Udotacea coenocyt. + sipho. 2 stacked yes no
Dasycladales large nucl. +sipho. 2 stacked no no
Siphonocladales coenocyt. + sipho. 2 stacked no yes
Cladophorales coenocyt. + sipho. 2 stacked no yes

RHODOPHYTA Ceramiales coenocytic 2 free no in some
OCHROPHYTA Vaucheriales coenocyt. + sipho. 4 stacked no no
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Figure 8. Transmission Electron Microscopy images of chloroplasts in the digestive cells of 

sacoglossans.

A) Digested chloroplasts (DG) from Codium in Placida dendritica, where the degraded 

thylakoid membranes (dt) are aggregated towards the border of the phagosome. Degraded 
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starch grains (ds) fill the remains of the digested chloroplast. Microvilli (mv) are lining the 

digestive cells into the lumen (L) of the digestive gland tubule. Scale bar 2 μm.  

B) Functional chloroplasts from Codium in Elysia viridis. All chloroplasts are surrounded by 

the phagosome (ph), and the double chloroplast membrane (cm) is well defined. Starch grains 

(s) and plastoglobuli (pg) are common. The thylakoid membranes fill most of the chloroplast 

as long bands often stacked in several layers. Scale bar 1 μm.  

C) Chloroplasts from a halimedinid algae in Thuridilla ratna have the characteristic TOB. 

Also in these chloroplasts starch grains (s) and plastoglobuli are common. Scale bar 1 μm.  

D) Section through a digestive gland tubule in Plakobranchus ocellatus, which lumen (L) is 

surrounded by digestive gland cells. A large digestive cell nucleus (N) is present. Structurally 

intact chloroplasts (C) are packed into each digestive cell. Small pyrenoids (p) fused with 

starch are commonly found in chloroplasts belonging to the genus Bryopsis. Scale bar 5 μm. 
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Summary in vitro methods

Non-functional chloroplasts in the digestive cells of sacoglossans have up to 40% degraded 

chl a and lack some photosynthetic pigments (e.g. neoxanthin), indicating that chloroplasts 

are degrading. 

Functional chloroplasts retained in the digestive cells of sacoglossans do not change the 

pigment composition compared to chloroplasts from the food algae. 

Functional chloroplasts in the digestive cells of sacoglossans have the same pigment 

composition at the same percentage distribution as the food algae, indicating that they do not 

synthesise new pigments. However, the ratio of chl a to other pigments (chl b, violaxanthin, 

neoxhantin, siphonaxanthin and siphonein) decreases because some chl a is degraded as a 

result of a high turnover of chloroplasts in feeding sacoglossans. 

The pigment composition in functional chlorophyte chloroplasts in the digestive cells of 

different sacoglossans collected in situ, reflect inter-specific differences in pigment ratios in 

coenocytic and siphonous chlorophytes, and indicate that sacoglossans retain chloroplasts 

from different food algae. 

Siphonaxanthin and siphonein are specific carotenoid markers for the chlorophyte 

ulvophycean Bryopsidales. Vaucheriaxanthin is a specific carotenoid marker for the 

chromophyte xanthophycean Vaucheria. These carotenoids are specific chemotaxonomic 

markers for functional chloroplasts in sacoglossans obtained from coenocytic and siphonous 

macroalgae. 

Branching of the digestive gland in sacoglossans has two different advantages: in 

limapontoids with non-functional chloroplasts, pigments give the sacoglossans similar colour 

as the food algae (camouflage). In plakobranchoids with functional chloroplasts, self-shading 

between chloroplasts is reduced and more light is available for photosynthesis. 

The number of chloroplast membranes, stacking of thylakoid membranes, and the 

presence/absence of a TOB or pyrenoid, can be used to further identify algal donors of 

functional chloroplasts in sacoglossans. 
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Chloroplast integrity indicates that sacoglossans retaining non-functional chloroplasts 

disintegrate the whole chloroplast, while sacoglossans retaining functional chloroplasts do not 

effectively degrade the chloroplast membrane. 
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4. Conclusion 
In this study, we can conclude that  as a function of time in starving slugs can be used to 

investigate phycozoan associations with emphasis on the algal component. In nudibranchs 

retaining zooxanthellae, two types of symbiotic relationship is evident (Paper I); the 

nudibranch Pteraeolidia ianthina which is able to maintain zooxanthellae numbers (

does not decrease significantly as a function of time during starvation), and species within the 

nudibranch genus Phyllodesmium, cryptic specialists on soft corals, which are not able to 

maintain zooxanthellae numbers (  decreases significantly as a function of time during 

starvation). This implies that nudibranchs which are highly adapted to their prey and which 

live most of their lifecycle on it may be independent of zooxanthellae, while more mobile 

nudibranchs that will benefit from tolerating long periods searching for food may adapt highly 

symbiotic associations with their zooxanthellae. 

PSII

PSII

PSII

In sacoglossans,  as a function of time under starving conditions can be used to 

determine the ability to Retain Functional Chloroplasts in Sacoglossa (RFC, Paper II). The 

RFC is a measure on chloroplast functionality, and sacoglossans can be classified into eight 

different levels, depending on their RFC. Level 1-3 is used for sacoglossans retaining 

degraded chloroplasts for less than one day (mainly limapontoid sacoglossans), and level 4-8 

denotes retention of functional chloroplasts from one day to more than three months (mainly 

plakobranchoid sacoglossans). 

PSII

Chloroplast functionality can further be expressed by changes in the photosynthetic 

parameters ,  and PPSII max, and the pigment composition (Paper III). Chloroplasts retained 

by limapontoid sacoglossans are not functional, and chloroplast structure and pigment 

composition show different stages of degradation. Functional chloroplasts retained by 

plakobranchoid sacoglossans, degrade as a function of age, because they are not able to repair 

themselves, divide or synthesise any new pigments. They are only able to partially 

photoacclimate by adjusting the turnover time of electrons in PSII ( ).

The degradation of functional chloroplasts as a function of time is not only attributed to age, 

but also to the chloroplast photoacclimation status (Ek) and exposure to photodamage (Paper 

IV). Most sacoglossans in this study do not retain functional chloroplasts for more than two 

weeks (RFC level 4-6), they are found in a wide range of habitats, they feed on several 
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coenocytic and siphonous macroalgae, and they retain chloroplasts with photoacclimation 

statuses ranging from LL to HL. This indicates that sacoglossans moving in a wide range of 

habitats with varying light conditions will have a low RFC. Only sacoglossans inhabiting 

optimal light conditions are observed to have a long RFC. 

The photosynthetic carotenoids siphonaxanthin and siphonein is present in all sacoglossans 

found with functional chloroplasts in this study. All functional chloroplasts retained by 

sacoglossans in this study thus originate from coenocytic and siphonous macroalgae. These 

two specific carotenoid markers, together with vaucheriaxanthin, can be used as 

chemotaxonomic pigment markers for functional chloroplasts.  

Conclusively, to further investigate the association between green algal chloroplasts and 

sacoglossans, the chloroplast functionality in the digestive cells of sacoglossans must be 

investigated for more species of coenocytic and siphonous macroalgae. The results in this 

thesis is based on some groups of Bryopsidales, but as Table 3 in this thesis shows, many 

more macroalgal groups are potential donors of functional chloroplasts to sacoglossans. 

Future studies should switch the emphasis from the algal component, to animal adaptations. 

Chloroplasts seem to be digested differently between limapontoid sacoglossans and 

plakobranchoid sacoglossans (Paper III); in Placida dendritica the entire chloroplast was 

degraded, but in Elysia viridis, the chloroplast membrane remains when the chloroplast was 

degraded. One possible sacoglossan adaptation may be that since coenocytic and siphonous 

chloroplasts are “robust”, the limapontoid digestion has adapted to a more “aggressive” 

digestion able to degrade the cytoplasts. The other possible sacoglossans adaptation is that the 

plakobranchoid digestion is “passive” in regard of lacking digestive enzymes that may 

degrade the cytoplasts.
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Abstract
The photosynthetic functionality in chloroplasts in the two sacoglossan molluscs Placida 
dendritica and Elysia viridis from the Trondheim fjord in Norway was studied. P. dendritica
and E. viridis with no functional chloroplasts in their digestive system were introduced to the 
green macroalgae Codium fragile. Our results showed that P. dendritica was not able to 
retain functional (photosynthetic) chloroplasts. Transmission Electron Microscopy (TEM) 
showed that chloroplasts were directly digested when phagocytosed into the digestive cells. 
Four stages of chloroplast degradation were observed. A corresponding operational quantum 
yield of chl a fluorescence ( ~0) indicated autofluorescence, and the presence of highly 
degraded chl a, supported these observations. In contrast, E. viridis was able to retain 
functional chloroplasts. For this species it took only one week for the chloroplasts inside the 
digestive cells to acquire the same and light utilisation coefficient ( ) as C. fragile kept 
under the same light conditions. Data for 8 days showed a 2-6 fold increase in the maximum 
photosynthetic rate (P

PSII

PSII

max) and light saturation index (Ek) relative to C. fragile. This increase 
in available light was probably caused by a reduced package effect in the digestive gland of 
E. viridis relative to C. fragile, resulting in a partial photoacclimation response by reducing 
the turnover time of electrons ( ). Isolated pigments from C. fragile compared to E. viridis
showed the same levels of photosynthetic pigments (chl a and b, neoxanthin, violaxanthin, 
siphonaxanthin, siphonein and -carotene) relative to μg chl a (w:w), indicating that the 
chloroplasts in E. viridis did not synthesise any new pigments. After 73 day starvation it was 
estimated that chloroplasts in E. viridis were able to stay photosynthetic 5 to 9 months 
relative to the size of the slugs, corresponding to a RFC of level 8 (a retention ability to retain 
functional chloroplasts (RFC) for more than 3 months). The reduction in , P

,

PSII max and  as 
a function of time was caused by a reduction in chloroplast health and number (chloroplast 
thylakoid membranes and PSII are degraded). These observations therefore conclude that 
chloroplasts from C. fragile can not divide or syntehsise new pigments when retained by E.
viridis, but are able to partially photoacclimate by decreasing  as a response to more light. 
This study also points out the importance of siphonaxanthin and siphonein as 
chemotaxonomic markers for the identification of algal sources of functional chloroplasts. 

Keywords: chloroplast functionality, kleptoplasty in Sacoglossa, photoacclimation status, 
chemotaxonomy, histology 

Introduction 
Placida dendritica (Alder & Hancock, 1843) and Elysia viridis (Montagu, 1804) are two 
sacoglossan molluscs (Gastropoda, Opisthobranchia) commonly found associated with the 
coenocytic green macroalgae Codium fragile (Suringar) Hariot, 1889 (Ulvophyceae, 
Bryopsidales) in north Atlantic waters (Trowbridge 2002). Sacoglossans have a specific 
feeding habit feeding almost exclusively on the cytoplasm from coenocytic (multinucleate 
cells lacking transverse cell walls: e.g. chlorophyte macroalgae of the Bryopsidales, and 
xanthophyte macroalgae like Vaucheria) and siphonous (multinucleate cells with transverse 
cell walls: e.g. chlorophytes of the Siphonocladales, and rhodophytes like Griffithsia)
macroalgae (Jensen 1980, Jensen 1997, DeWreede 2006). Some sacoglossans are also able 
to retain functional chloroplasts in the digestive system for several months, and eight 
different levels of retention have been described for sacoglossans retaining non-functional 
chloroplasts (level 1-3) to retaining functional chloroplasts from less than one day for up to 9 
months (level 4-8: Clark et al. 1990, Evertsen et al. 2007). This ability to retain functional 
chloroplasts (RFC) refers to how well a given sacoglossan is able to retain chloroplasts in a 
functional state in their digestive cells as a function of time (Evertsen et al. 2007).  
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Chloroplasts have been observed in the digestive cells of P. dendritica (Taylor 1968, 
McLean 1976) and it has been suggested that these chloroplasts are functional for a short 
time (Taylor 1968, Greene & Muscatine 1972, Hinde 1980). 

On the other hand, E. viridis has been observed to retain chloroplasts inside its digestive 
cells (Taylor 1968, Trench et al. 1973a, Hawes 1979, Hawes & Cobb 1980, Hinde 1980, 
Trench 1980, Williams & Cobb 1989) and the chloroplasts have been observed to be 
functional up to three months (Hinde & Smith 1972, Trench et al. 1973b). Observations of 
whether or not chloroplasts inside the digestive cells of E. viridis divide are inconclusive 
(Trench & Olhorst 1976). It has been observed that the chloroplasts in E. viridis are not 
synthesising any photosynthetic chlorophylls, galactolipids or proteins (Trench & Smith 
1970, Trench et al. 1973b), indicating that chloroplast division is not taking place. As far as 
we know, no studies yet have pursued the pigment composition, chemotaxonomy (specific 
pigment tracers), functionality (RFC, , photosynthetic and photoprotective pigments), 
degradation and photoacclimation status of the chloroplasts inside the sacoglossan digestive 
system, which is necessary if we want to understand which factors that govern the 
functionality of the chloroplasts when retained by sacoglossans. Photoacclimation is 
responsible for minimising variations in growth rate in fluctuating light, and can be 
attributed to three major physiological changes in chloroplasts (Falkowski 1980); active 
changes in the amount and ratios of photosynthetic and photoprotective pigments, changes 
in photosynthetic parameters, and changes in enzymatic activities involved in 
photosynthesis and respiration. Photoacclimation is thus the sum of compensation 
mechanisms which allow the chloroplasts to work under a wide range of irradiances at 
nearly the same optimal cell growth rate, in this regard chloroplast division rate.

PSII

This study investigates the functionality of chloroplasts being ingested by P. dendritica and 
E. viridis feeding on the same green macroalgae C. fragile. The in vivo method is based on 
Pulse Amplitude Modulated fluorometry measurements of living sacoglossans using a 
diving-PAM. Previous investigations by Wägele & Johnsen (2001), Burghardt et al. (2005), 
Evertsen et al. (2007) have shown that the diving-PAM can be used to investigate 
photosynthetic activity of chloroplasts and zooxanthellae in opisthobranchs. The 
diving-PAM measures the quantum yield of chlorophyll a (chl a) fluorescence from reaction 
centres (RCPSII) in photosystem II (PSII) (Eq. 1 and 2), indicating the fraction of functional 
chloroplasts related to the quantum yield of electrons generated relative to the amount of 
photons absorbed. For green macroalgae, most in vivo fluorescence is emitted by chl a in 
PSII. When chloroplasts acclimated in darkness, the chl a fluorescence emitted from 
chloroplasts is minimal when all functional RCPSII are open (F0). However, under saturation 
light conditions, the chl a fluorescence increases until reaching a maximum, Fm, when all 
RCPSII are closed (Eq. 1 and 2). The fraction of open RCPSII is given as the operational (dark 
acclimated chloroplasts) and maximum (in actinic light) quantum yield of PSII estimated as 
defined by Butler (1978) and Dau (1994) with annotations as suggested by van Kooten & 
Snel (1990) 

PSII (mol e- mol photons-1) = Fm-F0/Fm (maximum quantum yield of chl a fluorescence for 
dark acclimated chloroplasts)        (1) 

PSII ' (mol e- mol photons-1) = Fm'-F0'/Fm' (operational quantum yield of chl a fluorescence 
under actinic light)         (2) 

A decline in may be a result of RCPSII PSII becoming photosynthetically incompetent due 
either to inefficient excitation transfer from light harvesting complexes (LHC) to RCPSII,
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impairment of primary photochemistry, or disruption of electron transport between Q and 
PQ (Kroon et al. 1993). The initial , measured on the day of collection, can be divided 
by the reduction of day

PSII

PSII
–1 to estimate a time period in days in which the chloroplasts are 

functional inside the sacoglossans (Evertsen et al. 2007). 

PSII as function of the incident irradiance (E, μmol photons m-2 s-1) is defined as the relative 
electron transfer rate (ETR = *E = (mol ePSII

- mol photons-1) μmol photons m-2 s-1). Since 
ETR here denotes how much electrons are generated relative to the amount of photons 
absorbed as a function of the incident irradiance, ETR can be used to create photosynthesis 
versus irradiance (P vs. E) curves to obtain information on the photoacclimational state of 
the chloroplasts. P vs. E curve fitting of ETR vs. E (Eq. 3) was done according to Webb et al. 
(1974)

P (ETR) = Pmax(1-exp(- *E/Pmax)       (3) 

, the light utilisation coefficient, is related to light absorbed by PSII, a PSII (m-2·mg chl a-1)
(Johnsen & Sakshaug 2007) and is spectrally dependent (  = *PSII a PSII). Pmax, the 
maximum photosynthetic rate, is dependent on the concentration of chl a in the 
photosynthetic unit (PSU) (q) and the minimum turnover time for processing photons ( )
(Dubinsky et al. 1986), thus obtaining no spectral dependency (Pmax = /q ). EPSII k is the 
ratio between Pmax/  and is denoted as the light saturation parameter (μmol photons m-2 s-1)
(Kroon et al. 1993, Sakshaug et al. 1997). 

The isolation of pigments using High Precision Liquid Chromatography (HPLC) can be 
used to check for taxon specific pigment markers (Jeffrey et al. 1997, Johnsen & Sakshaug 
2007), the functionality of pigments in the sacoglossans food source (coenocytic macroalgae) 
and in the sacoglossan digestive cells in regard of photosynthetic and photoprotective 
pigments, and their corresponding degradation status. The amount of pigment relative to the 
amount of chl a (w:w) can be used to compare the photoacclimation status in the 
chloroplasts in their natural cell environment in the macroalgae relative to the chloroplasts in 
the digestive cells of the sacoglossans. Significant differences in ratios of pigment relative to 
chl a, can be indicative of photoacclimation (Rodriguez et al. 2006). 

Light microscopy studies can be used to investigate the organisation of the digestive gland of 
the sacoglossans. A high degree of ramification of the digestive gland tubules has been 
proposed as a prior condition for the ability to retain functional chloroplasts in the 
Sacoglossa (Jensen 1997). TEM methodology can further be used to investigate the contents 
of the digestive cells, type of organelles and how many functional and degraded chloroplasts 
are present. This will tell us something about the conditions in the digestive cells that the 
chloroplasts are exposed to. It has been suggested that chloroplasts from C. fragile in the 
digestive cells of E. viridis are either directly exposed to the digestive cell cytoplasm, or 
contained within a phagosome (Trench 1980). The structural integrity of the chloroplasts in 
the digestive cells of the sacoglossans will therefore be investigated in regard of the 
phagosome, the chloroplast double membrane, the thylakoid membranes and starch grains. 

Material and methods 
Elysia viridis and Placida dendritica were collected by SCUBA-diving at Mausundvær, 
Frøya (63 52'30N, 08 38'36E) at the Trøndelag coast of Norway in April 2005. No Codium
fragile was found at the sampling site at 5-7 meters depth, and was therefore later obtained 
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from Tautra (63 34'00N, 10 36'52E) in the Trondheimsfjord. The algae and slugs were 
brought back to the laboratory, and kept in running seawater aquaria similar to in situ
conditions at 11 C and under light conditions at 30 μmol photons m-2 s-1 at the surface of the 
aquaria (no background light) under 6 hour day length (09:00-15:00)  for all experiments.  

Two experiments were conducted to investigate the functionality of C. fragile chloroplasts 
in the digestive cells of P. dendritica and E. viridis. Experiment 1 investigated functionality 
of chloroplasts from C. fragile as function of being retained in empty (containing no 
functional chloroplasts before the experiment) digestive cells of P. dendritica and E. viridis.
In vivo measurements of the P vs. E parameters Pmax,  and Ek were conducted as a function 
of 8 days using 8 different irradiance levels (0, 5, 10, 25, 40, 70, 145, and 520 μmol photons 
m-2 s-1) for each curve. In vitro investigation of chloroplast functionality was conducted 
through HPLC pigment extraction and histology using LM and TEM.

Experiment 2 investigated photosynthetic activity of chloroplasts from C. fragile in starving 
E. viridis. In vivo measurements of P vs. E curves were conducted every second or third day 
for 73 days for E. viridis only. To achieve this 15 different irradiance levels (0, 3, 6, 13, 25, 
40, 60, 90, 120, 190, 260, 350, 540, 740 and 1020 μmol photons m-2 s-1) were used to create 
the P vs. E curves. , PPSII max,  and Ek were then investigated as a function of time. The wet 
weight of each slug was measured five times and presented as a mean wet weight to the 
nearest 0.01 g for all experiments. 

The fluorescence induction curve was measured with a diving-PAM (Heinz Waltz GmbH, 
Germany) using a weak non-actinic (non-photosynthetic) probe flash (at 0.15 μmol photons 
m-2 s-1, obtained from a light emitting diode (LED at 650 nm) using a pulse modulated probe 
light sending pulses at a frequency of 0.6 KHz), measuring F0 and F0' (Eq. 1 and 2). A 
change from F0 and F0’to Fm and Fm' was induced by a saturating flash with a peak irradiance 
of ~ 10 000 μmol photons m-2 s-1 of 0.8 seconds duration with the probe light (Halogen, 
white light) obtaining data at a frequency of 20 KHz, corresponding to the plateau level P of 
the Kautsky curve (see Govindjee 1995) before non-photochemical quenching processes 
start to reduce the chl a fluorescence (Kromkamp & Forster 2003). 

P vs. E curves were obtained by placing individual sacoglossans and pieces of C. fragile into 
separate 24 ml glass vials with seawater put next to each other in a white styrofoam box for 
even light distribution. Pieces of black cardboard were put between the vials during PAM 
measurements to prevent the PAM flash from influencing the light acclimation of the 
adjacent slugs. A slide projector with slides with different layers of plankton-net as neutral 
density filters was used to create different irradiances levels. The spectral irradiance from 
each slide was checked with a RAMSES ACC underwater spectroradiometer at 350-800 nm 
(Trios GmbH, Germany), and showed similar spectra. E(PAR) during experiments was 
determined from inside the vials with the PAR 2  light collector (model Diving-LS, Heinz 
Waltz GmbH, Germany) attached to the diving-PAM. Prior to P vs. E curve experiments all 
organisms were dark acclimated for 15 minutes. Exposure to subsequent irradiance levels 
was 2 minutes incubation time. After each P vs. E experiment, all organisms were again dark 
acclimated for 15 minutes to check that recovered, where the after experiments was 
on average 13% lower than initial values. The P vs. E curves were plotted in Sigmaplot 
version 10.0 to estimate the photosynthetic parameters P

PSII PSII

PSII

max and  using equation 3. 

For pigments analysis, all sample preparations were done under subdued light to avoid 
pigment degradation. The slugs were immediately dried with some paper cloth to avoid 
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excess water reducing extraction efficiency. Correspondingly, the C. fragile tissue was 
thoroughly squeezed without rupturing it to get as much water as possible out of the tissue. 
Pigment extraction was done in glass tubes with 2-4 ml pre-cooled methanol bubbled with 
N2 to avoid oxidation. Tissue was grinded with a glass rod allowing 24 hours of extraction in 
darkness at 4 C. After extraction, the samples were filtered through sterile syringes 
equipped with a 0.45 μm Millipore filter to remove debris, and 150 μl extract was then 
injected into the HPLC system (Hewlett-Packard HPLC Series 1100) equipped with a 
quaternary pump system and diode array detector, using the protocol of Rodriguez et al. 
(2006). Chlorophylls and carotenoids were detected by absorbance at 420, 440, 460 and 480 
nm and identified by an absorbance detector (350–750 nm with 1.2 nm spectral resolution). 
HPLC calibration was performed using chl a and -carotene standards from SIGMA 
(Aldrich, UK) and own chlorophyll and carotenoid standards (chl b, chl c1, violaxanthin, 
neoxanthin, siphonaxanthin and siphonein). The extinction coefficient of 250 L g

,

-1 cm-1 at 
445 nm in acetone for -carotene (Jeffrey et al. 1997) was used to quantify 
siphonaxanthin and siphonein, adjusting for differences in molecular weight between 
pigments according to Johnsen & Sakshaug (1993). 

,

For light microscopy (LM), the slugs were preserved in 4% final concentration of 39% 
formaldehyde (Merck, Germany) diluted in seawater. After 24 hours the slugs were dried in 
increasing concentrations of ethanol from 70% for 24 hours, followed by two 1 hour washes 
in 80%, and three 1 hour washes in 90% and 1 hour in 100% ethanol. They were then 
embedded whole in Technovit 7100 (Heraeus Kulzer GmbH, Germany), and cut into 2.5 μm 
thick sections with a powered microtome (Autocut model 1140) and stained with toluidine 
blue (Merck, Germany), before examined in a light microscope (Zeiss Axiovert 200).

For the transmission electron microscopy studies, tissue samples from the slugs were cut in 1 
mm3 pieces and immersed in a final concentration of 2% glutaraldehyde buffered with 0.1 M 
phosphate buffer (pH 7.3) for 12 hours at 4ºC. Samples were then washed in 0.1 M 
phosphate buffer once, and then postfixed in final concentration of 2% osmium tetroxide 
(OsO4) in 0.1 M phosphate buffer for 1 hour. After fixation the samples were rinsed in 0.1 M 
phosphate buffer and dehydrated in increasing concentrations of ethanol at 30, 50, 70 and 
96% twice each at 5 minute intervals and in 100% ethanol with molecular sieve three times 
in 5 minute intervals. Infiltration started with 1 hour embedding in 1:1 solution of Epon 
(Hexion, Amsterdam, Netherlands) and 100% ethanol, followed by two immersions for 1 
hour in pure Epon at room temperature (20ºC). Samples were then embedded in pure Epon 
and polymerised for 24 hours at 60ºC, and stabilised for 24 hours at room temperature (20ºC). 
Thin sections of 70 nm were cut with a diamond knife in a Leica EMU C6 ultramicrotome 
and collected on 200 mesh copper grids. Samples were then poststained for 25 minutes with 
a final concentration of 2% uranyl acetate (UO2(OCOCH3)22H2O) in 50% ethanol, and for 5 
min in a final concentration of 0.1% aqueous lead citrate (Pb(C6H5O7)23H2O) following 
protocols of Reynolds (1963). Samples were then observed and photographed in a Jeol 
NEM-1011 electron microscope. 

Results
Experiment 1, in vivo results 
1 week after in situ collection with no Codium fragile available, both Elysia viridis and 
Placida dendritica showed only autofluorescence ( = 0). This indicated that no 
functional chloroplasts were present inside the digestive cells of the slugs. After this, 3 
specimens of P. dendritica and E. viridis were put in an aquarium containing C. fragile and 
allowed feeding for 8 days. 

PSII

6



The mean wet weight of P. dendritica at the start was 0.095g and 0.105g at the end of the 
experiment. Correspondingly, E. viridis weighed 0.17g at the start and 0.19g at the end of the 
experiment, giving an increase in wet weight of 9.5% for P. dendritica and 10.5% for E.
viridis, relative to the initial wet weight. 

P. dendritica did not show any photosynthetic responses throughout the whole experiment 
( = 0 for all days, indicating autofluorescence, Figure 1 and Table 1).PSII

E. viridis displayed a gradual increase in values over the first four days of the 
experiment (40% lower than C. fragile), and similar values as C. fragile on the last two days 
of the experiment (Fig. 1 and Table 1).  

PSII

 in E. viridis was similar to C. fragile for the whole experiment period. However, Pmax and 
Ek in E. viridis varied significantly compared to C. fragile (Table 1), with values ranging 
from two to six times higher than in C. fragile for the whole experiment. 

Experiment 1, in vitro results 
The extraction of pigments from C. fragile, E. viridis and P. dendritica (Table 2), concluding 
experiment 1, showed the presence of both photosynthetic chlorophylls and carotenoids in 
all samples. In C. fragile, only photosynthetic pigments were found: chl a and b, and the 
carotenoids siphonaxanthin and siphonein, violaxanthin, neoxhanthin and -carotene. 
The percent chl b to chl a (w:w) for both slugs was similar to C. fragile, ranging from 
45-47%. However, there was 8% chl a like and 31% phaeophorbide a pigments in P.
dendritica, and 12% phaeophytin a in E. viridis, indicating degradation of chlorophylls. The 
presence of chl c like pigment in both slugs was not found in C. fragile, indicating remains of 
phaeophytes (brown algae) in the slugs. 

,

Of the photosynthetic carotenoids present in C. fragile, neoxanthin was absent in P.
dendritica. However, the percent violaxanthin and -carotene content relative to chl a
(w:w) was 4% and 15% higher in P. dendritica than in C. fragile. E. viridis contained all 
photosynthetic pigments found in C. fragile, only the percentage of neoxanthin and 
siphonein relative to chl a were 4% and 6% higher in E. viridis compared to C. fragile.

,

The LM sections of P. dendritica showed that the digestive gland extends into the cerata (Fig. 
2a-c). This seemed to be the only extension of the digestive gland from the gut, and no other 
ramifications of the digestive gland tubules were observed. The digestive gland tubule in a 
cerata occupied the whole volume with a very wide lumen. 

The LM sections through the parapodium of E. viridis were perforated with narrow digestive 
gland tubules (Fig. 3a-c). This showed that the digestive gland was extended throughout the 
entire body of the slug and was highly ramified. 

TEM sections of digestive cells in the cerata of P. dendritica showed degraded chloroplasts 
in several stages of digestion (chlp 1-4 in Fig. 4a and b). Some chloroplasts seemed 
structurally compact with a phagosome membrane surrounding the chloroplast (chlp1) 
indicating the first stage of degradation. Chlp1-chloroplasts are characterised by the dense 
stacking of the thylakoid membranes so that they can not be discerned from the chloroplast 
double membrane, and the intact starch grain. As degradation of the chloroplasts progressed 
(chlp2), the phagosome membrane, the chloroplast double membrane, and the thylakoid 
membranes are disintegrating. The starch grain began to break up. At level 3 (chlp3), the 
breaking up of the starch grain doubled the size of the “degrading chloroplast vacuole”. We 
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could still see fragments of the phagosome membrane, the chloroplast double membrane and 
the thylakoid membranes dispersed around the edges of the vacuole. The last stage of 
degradation appeared to be electron dense material occupying the vacuole with 
undifferentiated material dispersed around the edges (chlp4), leaving what seemed to be an 
empty vacuole. These observations showed that in P. dendritica, the phagosome membrane, 
the chloroplast double membrane, the thylakoid membranes and the starch grain degraded 
simultaneously leaving only empty vacuoles. No plastoglobuli were observed in any of the 
degraded chloroplasts in the digestive cells of P. dendritica.

The TEM images of the digestive glands in E. viridis consisted mostly of intact chloroplasts, 
but in some of the chloroplasts, the phagosome membrane and the chloroplast double 
membrane appeared to have burst open, exposing the thylakoid membranes to the digestive 
cell cytoplasm (Fig. 5a). We could see that the phagosome membrane and the thylakoid 
membranes were degraded, leaving only the chloroplast double membrane with a more or 
less intact starch grain inside it (dgc in Fig. 5a and b). All intact chloroplasts were 
surrounded by a phagosome and had a spherical shape with distinct thylakoid membranes, 
and in most the starch grains was visible, and plastoglobuli were present (Fig. 5a and b). The 
digestive cell contained apart from 46-57% chloroplasts, a digestive cell nucleus, 
mitochondria, digestive vacuoles and lots of ribosomes dispersed throughout the digestive 
cell cytoplasm (Fig. 5a).

Experiment 2, in vivo results 
Three individuals of E. viridis were kept without the possibility to feed on C. fragile and 
ingest fresh chloroplasts. The starving conditions as a function of time resulted in a loss of 
33-49% wet weight in the largest to the smallest slugs during 73 days of starvation (Fig. 6a). 
The photosynthetic activity also decreased as a function 73 days of starvation and size of the 
slugs. First of all, decreased 28-29% for the two larger slugs, and by 47% for the 
smallest slug (Fig. 6b). In this regard, a RFC of 155 days could be estimated for the smallest 
slug, and a RFC of 261 and 273 days for the larger slugs. 

PSII

Secondly, plotting the photosynthetic parameters as a function of time, gave a decrease in 
Pmax of 49-74% from the smallest to the largest slug (Fig. 7a), and a decrease in  of 70% to 
20-29% from the smallest to the largest slugs (Fig. 7b). However, Ek as a function of time 
varied differently (Fig. 7c), where the smallest slug showed Ek to increase by 68%, and 
decrease by 22-57% in the two larger slugs. 

Discussion
Placida dendritica 
In experiment 1, the in vivo results indicate that the chloroplasts in the digestive cells of 
Placida dendritica feeding on Codium fragile are not functional ( = 0) (Fig.1, Table 1). 
This is in contrast to Taylor (1968), Greene & Muscatine (1972) and Hinde (1980) who 
observed photosynthetic 

PSII

14C incorporation in P. dendritica. In this regard, Greene and 
Muscatine explained a low uptake of 14C in chloroplasts from C. fragile in P. dendritica as a 
result of passive uptake of 14C in slugs (which they defined as “heterotrophic fixation”) and 
not by photosynthesis. In fact, structural damage to the chloroplasts in P. dendritica were 
observed within minutes after ingestion by McLean (1976), suggesting a quick loss of 
photosynthetic activity. McLeans’s observations still show structurally intact chloroplasts 
when they are in the process of being phagocytosed into the digestive cell. The thylakoid 
membranes are still clearly visible and it is easy to discern their organisation into layers. 
However, as soon as the chloroplasts are truly incorporated into the digestive cell, the 
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thylakoid membrane structure becomes indistinct. The two first degradation stages 
described in this study (chlp 1 and 2 in Fig. 4b) are therefore also found in McLean’s study, 
as well as in Hinde (1980) and Taylor (1968).

The pigment composition in P. dendritica compared to the food source suggested a mix of 
photosynthetic and degraded chloroplasts (Table 2). However, the presence of highly 
degraded chlorophylls in P. dendritica, with 31% of phaeophorbide a and 8% of chl a like 
pigment relative to chl a, indicates that chloroplasts are being digested as soon as they enter 
the digestive cells. The digestive gland branches into each ceratum, where it appears 
wrinkled but seems to occupy the ceratum as a single tubule (Fig. 2b). In this regard long 
main ducts and rather wide lumina of the digestive gland tubules are associated with reduced 
functional kleptoplasty (Clark et al. 1990). The presence of functional chloroplasts have 
been observed by means of by 14C uptake in related limapontid species like Hermaea bifida
and Costasiella lilianae (Kremer & Schmitz 1976, Clark et al. 1981) and by
measurements in Ercolania kencolesi (Grzymbowski et al. 2007). The observation of 

PSII
14C

uptake in H. bifida and C. lilianae needs further study, since Green & Muscatine (1972) 
suggested that the presence of 14C in P. dendritica was caused by passive uptake of 14C; in H.
bifida, 14C assimilation rate in the algae was estimated to be a thousand times higher than in 
the slug, and in E. kencolesi, values were lower than 0.2 mol ePSII

- mol photons-1 in all 
measurements (Grzymbowski et al. 2007), indicating that low values are attributed to 
degraded chloroplasts. This implies that most limapontid sacoglossans can be designated to 
RFC level 1-3, retention of non-functional chloroplasts (Clark et al. 1990, Evertsen et al. 
2007).

PSII

Elysia viridis 
During the 8 days that Elysia viridis was allowed to feed on C. fragile, photosynthetic 
activity appeared as a gradual increase and stabilisation of and  values (Table 1). This 
is probably a result of E. viridis filling the digestive cells with functional chloroplasts (Fig. 
5a and b). The similarity of and  between E. viridis and C. fragile indicates that the 
photoacclimation status of the chloroplasts in the digestive cells of E. viridis is the same as 
for chloroplasts in C. fragile. However, P

PSII

PSII

max and Ek varied greatly in E. viridis, and were 2-6 
times higher than in C. fragile (Table 1). Since  was constant as a function of time in E. 
viridis from the first day, Ek varies as a function of Pmax. The variations indicate a high 
turnover of chloroplasts when E. viridis is feeding on C. fragile, and reflects the 
photoacclimation status of C. fragile. Gallop et al. (1980) observed that feeding animals 
replaced 75% of their chloroplasts during a 9 day period, while starving animals only lost 
15% in the same period. This implies that with the constant replacement of chloroplasts 
throughout the whole digestive gland system, the threshold where all RCPSII are saturated 
with photons will also vary as a function of [functional chloroplasts] in the digestive system. 
The 2-6 times higher values of Pmax and Ek also indicate that the chloroplasts in the digestive 
cells of E. viridis receive more light than chloroplasts in C. fragile, e.g. as high light 
acclimation. We find this to be unlikely since chloroplasts in the slugs need to divide to 
actively photoacclimate (Cran & Possingham 1974). Instead, the higher Ek values probably 
reflects the morphological adaptations in plakobranchiid (= Elysiidae) sacoglossans, where 
an increased branching of the digestive gland provides larger surface areas for retention of 
photosynthetic chloroplasts (Jensen 1997). This implies that the package effect, which is an 
effect of intracellular self-shading dependent on cell size and shape, cellular pigment 
composition, chloroplast size, shape, number and morphology, and thylakoid stacking 
(Johnsen et al. 1994), is less for chloroplasts in E. viridis than for chloroplasts in C. fragile,
inducing higher Ek values in the former. Since both  and Pmax comprise , the former PSII
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parameter can not explain the increase in Pmax and Ek. Since the pigment composition 
remains unchanged,  and q should not either change. The increase in Ek may therefore be 
attributed to an increase of , leading to a decreased turnover time of e-, indicating that 
chloroplasts in the digestive cells of sacoglossans experience higher irradiances than in the 
food algae. The LM images of the parapodium of an E. viridis support these results, where 
we observed that the digestive gland tubules are evenly distributed throughout the slug tissue 
(Fig. 3b). 

The amount of photosynthetic pigments relative to chl a (w:w) of the chloroplasts in E. 
viridis were overall the same as for C. fragile, which support the observations for that
all light harvesting pigments are present compared to the food source, and that the 
photosynthetic chloroplasts in E. viridis do not photoacclimate in regard of synthesising new 
pigments, because of arrested chloroplast division in the digestive cells (Table 2). The 
presence of 12% pheophytin a relative to chl a in E. viridis indicates that some degradation 
of chloroplasts is present, reflecting the turnover of up to 75% of the chloroplast as observed 
by Gallop et al. (1980). 

PSII

The degradation of the C. fragile chloroplasts in E. viridis seems different from P. dendritca.
In P. dendritica, the phagosome membrane, the chloroplast double membrane, the thylakoid 
membranes and the starch grain disintegrate at the same rates (Fig. 4b). In E. viridis, only the 
phagosome and the thylakoid membranes seem to be degraded, leaving only the chloroplast 
double membrane containing an intact starch grain (Fig. 5b). These observations may 
explain the confusion whether the phagosome membrane envelops the chloroplast 
throughout the existence of the chloroplast or not (Trench et al. 1973b, Hawes 1979, Hawes 
& Cobb 1980), where the former suggested that the phagosome membrane is re-absorbed so 
that functional chloroplasts lie free in the cytoplasm of the digestive cell. What we see, is in 
fact only damaged chloroplasts exposed to the cytoplasm of the digestive cell, leading to 
degradation. The functional chloroplasts are still enveloped in the phagosome in this study. 
In this regard these cytoplasm-exposed and degraded chloroplasts are related to the turnover 
of chloroplasts in feeding E. viridis explained by Gallop et al. (1980). It is also important to 
note that a large number of ribosomes were dispersed in clusters all over the digestive cell 
cytoplasm. It is possible that they are linked to the leakage and utilisation of photosynthetic 
products from the chloroplasts (Gallop 1974). Plastoglobuli were present inside most of the 
chloroplasts (Fig. 5c). They function as lipid storage sites outside the thylakoid membranes 
and contain the lipophilic quinones functioning as the oxidation-reduction catalysts in the 
photochemically active thylakoid membranes (Tevini & Steinmuller 1985), indicating that 
the thylakoid membranes of the chloroplasts are not being repaired, but showing a sign of 
beginning senescence. This indicates that the synthesis of thylakoid membranes in the 
chloroplasts is arrested, which is supported by Hawes & Cobb (1980) who observed an 
increase in the number of plastoglobuli per chloroplast in the digestive cells of E. viridis
after 28 days of starvation. 

In experiment 2, the starving experiment with E. viridis removed from C. fragile for 73 days, 
the observations indicate an arrested chloroplast division and no active photoacclimation in 
the chloroplasts. The decline in (Fig. 6a) can be related to chloroplast health status 
(Bjørkmann & Demmig 1987), as a result of a reduction in the number of functional RC

PSII

PSII
of the PSU. A lack of functional D1, one of the reaction centre proteins of PSII, is related to 
a decrease in when the PSU is not repaired (Vasilikiotis & Melis 1994). This is also 
supported by the decrease of  in our results (Fig. 7b).  Since the chloroplasts are not able to 
rebuild their membranes, repair damaged PSU’s or synthesise new pigments, the 

PSII
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chloroplasts will degrade as function of time. This is also correlated with the decrease in Pmax
in our study (Fig. 7a), which is related to the chl a content in the PSU and the enzymatic 
processes related to the electron transport chain (Dubinsky et al. 1986). The varying 
responses in Ek (Fig. 7c) may be attributed to Pmax and  whose decrease is related to a 
reduction in PSII functionality (non-functional D1, arrested pigment synthesis and PSU 
repair) and declining enzyme activity caused by arrested chloroplast division. Related 
studies have observed that chloroplasts from C. fragile in the digestive cells of E. viridis can 
not synthesise chl a, galactolipids or membrane proteins (Trench & Smith 1970, Trench et al. 
1973b, Trench & Olhorst 1976). This implies that chloroplasts from C. fragile when they are 
sucked out of the algal cell environment and phagocytosed into the digestive cells of E.
viridis, are not able to neither renew thylakoid membranes nor replace pigments. Hawes & 
Cobb (1980) observed in their experiments on the effects on starvation of the chloroplasts 
from C. fragile in E. viridis, still intact chloroplasts present in the digestive cells of E. viridis
after 40 days of starvation, displaying increased swelling and disintegration of the thylakoid 
membranes indicating a progressive degradation of the chloroplasts.

The gradual degradation and overall decrease of 28-47% in of the chloroplasts in E.
viridis can also be linked to the loss of 33-49% wet weight in this study (Fig. 6a and b). The 
two larger slugs with relatively more chloroplasts per animal lost only 33% of their wet 
weight, and had an estimated RFC up to 9 months. The smaller slug lost 49% of its wet 
weight, and had an estimated RFC of up to 5 months. Our observations on the changes in 
weight in starving E. viridis are similar to Hinde & Smith’s (1975) observations where E.
viridis fed on C. fragile lost 40% of initial weight after 10 weeks starvation.  

PSII

The estimated RFC values of 5-9 months for E. viridis in this study, corresponds to level 8, 
characterised by retention of functional chloroplasts for more than 3 months according to 
Evertsen et al. (2007). In this regard, our results far exceed previous studies on RFC for E.
viridis. Hinde & Smith (1972 and 1975) observed continuous CO2 fixation for up to three 
months in E. viridis using 14C assimilation methods. But, there are some important 
differences in the experimental setup that might explain the discrepancies: in this study the 
slugs were kept under irradiances at 30 μmol photons m-2 s-1 at 11° C. In Hinde & Smith 
(1972 and 1975) the sacoglossans were kept at 18° C and 440 μmol photons m-2 s-1, inducing 
high light conditions that cause a relatively higher respiration to photosynthetic rates 
compared to our cool and low light conditions. High light conditions result in a rapid 
turnover of the D1 protein in RCPSII which plays a major role in maintaining PSII integrity in 
high light (Franklin & Larkum 1997).  

The presence of siphonaxanthin and siphonein in green macroalgae is variable, however, 
among the Ulvophyceae, siphonaxanthin and siphonein is present in the Bryopsidales 
(=Caulerpales) no matter their depth or habitat distribution (Yokohama 1981). For the other 
ulvophyceaean taxa, siphonaxanthin, but not siphonein, is present in the Ulvales, 
Siphonocladales and Cladophorales in deep water or shaded habitats. Siphonaxanthin and 
siphonein is lacking in the Dasycladales. For details considering the phylogeny of the 
ulvophyceaean taxa, confer Lam & Zechman (2006), Hayden & Waaland (2002), Leliaert et 
al (2007) and Zechman (2003). The presence of siphonaxanthin and siphonein together in a 
sacoglossan with photosynthetic chloroplasts can therefore be used as chemotaxonomic 
markers to indicate Bryopsidales as a food source. This is important since sacoglossans are 
not only reported to feed on coenocytic and siphonous green algae, but also red algae, brown 
algae and seagrasses (Jensen 1980), and only a handful of sacoglossans species with 
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photosynthetic chloroplasts have been associated with a chloroplast donor algae (Clark et al 
1990, Evertsen et al 2007). 

Conclusion
The chloroplasts from Codium fragile seem to be retained differently in Placida dendritica
compared to Elysia viridis. In P. dendritica the membranes of the phagosomes, the 
chloroplast, the thylakoides, and the starch grain, is degraded as soon as the chloroplasts are 
phagocytosed into the digestive cells. In E. viridis, chloroplasts exposed to the digestive cell 
cytoplasm are all in the process of being degraded, but the chloroplast double membrane and 
the starch grain remain throughout degradation. These differences reflect that the 
“robustness” that has been described for coenocytic chlorophytes (Grant & Borowitzka 1984) 
may not be enough to explain retention of functional chloroplasts in the Sacoglossa. Instead 
it appears to be adaptations in the digestive system of the sacoglossans that render the slugs 
able to keep the chloroplasts in a functional state. Functional chloroplasts from C. fragile in 
the digestive cells of E. viridis are always kept within the phagosome, and have a capacity to 
maintain photosynthesis for 5-9 months. Even though the chloroplasts are able to maintain 
photosynthesis for long time periods, this study indicates that chloroplast division is arrested 
and that the chloroplasts are not able to photoacclimate regarding pigment synthesis, but 
may partially be able to adjust their turnover time of electrons ( ) to higher irradiance levels. 
This implies that the functionality of retained chloroplasts in various sacoglossans must also 
be investigated in regard of synthesis of pigments, lipids, proteins, nucleic acids, and starch 
formation. In this regard, it has been observed that the sacoglossan Elysia chlorotica from 
the East coast of North America which feeds on the siphonous xanthophyte Vaucheria
litorea, retains chloroplasts that not only have a photosynthetic capacity up to 10 months, but 
which are also capable of synthesising several photosynthetic proteins like the carbon 
fixating enzyme RuBisCO, the D1, D2, and CP43 core complexes of PSII, and electron 
transport chain proteins like cyt f and others (Pierce et al. 1996, Mujer et al. 1996, Green et al. 
2000). This demonstrates that chloroplasts have different functional capabilities depending 
on which algae the sacoglossan has collected chloroplasts from, and on the type of 
sacoglossan. It is therefore very important to use chemotaxonomical markers, as 
siphonaxanthin and siphonein in this study, to identify groups of potential coenocytic algae 
that they harvest functional chloroplasts from. 
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Table 1. Experiment 1, the P vs. E parameters measured in Codium fragile and in Elysia
viridis and Placida dendritica introduced to C. fragile for a period of 8 days. 

Pmax α Ek R2 ΦPSII
Codium 25 0.82 30.4 0.99 0.763
Elysia1 45 0.55 82.0 0.98 0.454
Elysia2 77 0.65 118.3 0.99 0.520
Elysia3 69 0.66 103.9 0.99 0.563
Placida 0 0 0.0 0 0.000

Pmax α Ek R2 ΦPSII
Codium 19 0.82 23.2 0.99 0.732
Elysia1 49 0.74 66.2 0.95 0.566
Elysia2 93 0.82 113.4 0.99 0.663
Elysia3 66 0.84 78.6 0.98 0.639
Placida 0 0 0.0 0 0.000

Pmax α Ek R2 ΦPSII
Codium 45 0.91 49.5 0.99 0.791
Elysia1 92 0.95 96.8 0.99 0.739
Elysia2 93 0.8 116.3 0.99 0.741
Elysia3 73 0.96 76.0 0.97 0.713
Placida 0 0 0.0 0 0.000

Pmax α Ek R2 ΦPSII
Codium 24 1.04 23.1 0.97 0.743
Elysia1 22 0.78 28.2 0.85 0.746
Elysia2 62 0.99 62.6 0.99 0.730
Elysia3 37 0.98 37.8 0.92 0.752
Placida 0 0 0.0 0 0.000

Pmax α Ek R2 ΦPSII
Codium 22 1.02 21.6 0.91 0.707
Elysia1 78 0.95 82.1 0.99 0.741
Elysia2 55 0.89 61.8 0.98 0.680
Elysia3 45 0.79 57.0 0.98 0.781
Placida 0 0 0.0 0 0.000

Pmax α Ek R2 ΦPSII
Codium 15.8 0.96 16.5 0.9 0.727
Elysia1 102.8 0.94 109.4 0.99 0.735
Elysia2 113.2 0.82 138.0 0.99 0.778
Elysia3 141.5 0.91 155.5 0.99 0.788
Placida 0 0 0.0 0 0.000
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Figure 2.
a) The cerata-bearing sacoglossan Placida dendritica. The square denotes where the light 
microscope sections were taken. 
b) Light microscope sections showing the wide lumina of the digestive gland extending into 
the cerata (lu = lumen). 
c) Close up of the tip of the ceratum (indicated by the square in b) showing the digestive cells 
lining the inside of the lumen. 





Figure 3.
a) The parapodia-bearing plakobranchid sacoglossan Elysia viridis. The square indicates the 
light microscopy sections cut from the parapodium. 
b) A light microscopy section through the parapodium of E. viridis which clearly shows the 
digestive gland tubules (dgt) perforating the most of the tissue. 
c) A close up of the square indicated in b, showing the digestive gland tubues as doughnut 
shaped bodies surrounding a lumen. 



Figure 4.  
a) The digestive cells in Placida dendritica with microvilli (mv) showing retained degraded 
chloroplasts (dgc). 
b) A close up of the degraded chloroplasts reveals four stages of degradation (chlp1-4): chlp1 
are chloroplasts surrounded by an intact phagosome membrane, thylakoid membranes are not 
distinct surrounding a starch grain, chlp2 also have a phagosome membrane but thylakoide 



membranes are beginning to disintegrate and the starch grain is still visible, chlp3 are only the 
remnants of the starch surrounded by fragments of the thylakoide membranes, chlp4 are 
totally disintegrated chloroplasts only appearing as electron dense (empty) vacuoles.



Figure 5.
a) Digestive cell in Elysia viridis with intact chloropasts (it), broken chloroplasts exposed to 
the digestive cell cytoplasm (bc), digested chloroplasts where only the chloroplast membrane 
and starch grain (sg) are left (dgc), a nucleus (nu), lumen (lu). The square indicates the close 
up of chloroplasts shown in b. The estimated area covered by chloroplast ranging from 2-2.5 
μm in diameter is 110-137 μm2 covered by the 35 chloroplasts counted in this digestive cell. 



The area of this digestive cell is estimated to 240 μm2. The area covered by the chloroplasts 
amounts to 46-57% of the digestive cell. 

b) Close up of intact chloroplasts surrounded by the phagosome membrane (phm) and 
digested chloroplasts with a starch grain (sg) and a double chloroplast membrane (dcm). Note 
the presence of distinct thylakoid membranes (tm) and plastoglobuli (pg) in the intact 
chloroplasts. The cytoplasm surrounding the chloroplasts is filled with ribosomes (rb), some 
mitochondria (m) and vacuoles (va). 
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Figure 6. Experiment 2, starving experiment with Elysia viridis removed from Codium fragile,
showing and change in wet weight as a function of days.PSII

a) The initial wet weight in the smallest slug (Elysia1) was 0.242 g, and 0.268 and 0.280 g in 
the two larger slugs (Elysia2 and3), giving a daily decrease in wet weight of 0.0015, 0.0016 
and 0.0012 g day-1 respectively from the smallest to the largest slug. 
b) The daily decrease in in the three specimens of E. viridis is calculated to 0.0032
day

PSII PSII
-1 for the smallest slug (Elysia1) and 0.0052 dayPSII

-1 for the two larger slugs (Elysia2 and 
3). The respective RFC values for each specimen are then estimated to 155 days estimated for 
the smallest slug based on an initial of 0.797 mol ePSII

- mol photons-1, 261 and 273 days for 
the two larger slugs estimated from initial of 0.826 and 0.855 mol ePSII

- mol photons-1 

respectively. 
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Figure 7. Experiment 2, starving experiment with Elysia viridis removed from Codium fragile,
showing the P vs. E paramters Pmax,  and Ek as a function of days.
a) The daily decrease in Pmax is calculated to 1.73, 2.20 and 1.92 ((mol e- mol photons-1)(μmol 
photons m-2 s-1)) day-1 from the smallest (Elysia1) to the smallest slug (Elysia3). 
b) The daily decrease in  is calculated to 0.00960 to 0028 and 0.0040 ((mol e- mol photons-

1)(μmol photons m-2 s-1)2) day-1 from the smallest (Elysia1) to the two larger slugs (Elysia2 
and 3). 
c) In the smallest of the three specimens (Elysia1), the Ek increased by 1.27 μmol photons m-2

s-1 day-1, whilst for the two larger specimens Ek decreased by 2.25 and 1.07 μmol photons m-2

s-1 day-1 (Elysia2 and 3). 
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mammalian cells 

1993 Tor Fredrik Næsje Dr. scient. 
Zoology 

Habitat shifts in coregonids. 

1993 Yngvar Asbjørn Olsen Dr. scient. 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

1993 Thrine L. M. 
Heggberget 

Dr. scient. 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra.

1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach.

1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the 
lek. 

1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae

1994 Nils Røv Dr. scient. 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo.

1994 Annette-Susanne 
Hoepfner

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.)

1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 



1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 

1994 Morten Bakken Dr. scient. 
Zoology 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes.

1994 Arne Moksnes Dr. philos. 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo. 

1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions. 

1995 Hanne Christensen Dr. scient. 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition with 
mink Mustela vision.

1995 Svein Håkon Lorentsen Dr. scient. 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition.

1995 Chris Jørgen Jensen Dr. scient. 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

1995 Martha Kold Bakkevig Dr. scient. 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport. 

1995 Vidar Moen Dr. scient. 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations. 

1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden. 

1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae. 

1996 Ola Ugedal Dr. scient. 
Zoology 

Radiocesium turnover in freshwater fishes 

1996 Ingibjørg Einarsdottir Dr. scient. 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines. 

1996 Christina M. S. Pereira Dr. scient. 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation. 

1996 Jan Fredrik Børseth Dr. scient. 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics. 

1996 Gunnar Henriksen Dr. scient. 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region. 

1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae.

1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters. 

1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming. 

1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture.



1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher. 

1997 Torgeir Nygård  Dr. scient. 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors. 

1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway. 

1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry. 

1997 Rolv Lundheim  Dr. scient. 
Zoology 

Adaptive and incidental biological ice nucleators.     

1997 Arild Magne Landa Dr. scient. 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation. 

1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius.

1997 Jarle Tufto  Dr. scient. 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

1997 Trygve Hesthagen  Dr. philos. 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

1997 Trygve Sigholt  Dr. philos. 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar)
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

1997 Jan Østnes  Dr. scient. 
Zoology 

Cold sensation in adult and neonate birds 

1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins. 

1998 Thor Harald Ringsby Dr. scient. 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity. 

1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro. 

1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach. 

1998 Bente Gunnveig Berg Dr. scient. 
Zoology 

Encoding of pheromone information in two related moth 
species

1999 Kristian Overskaug Dr. scient. 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 



1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway. 

1999 Ingvar Stenberg Dr. scient. 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos

1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis. 

1999 Trina Falck Galloway Dr. scient. 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.)

1999 Torbjørn Forseth Dr. scient. 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes.

1999 Marianne Giæver Dr. scient. 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua)
in the North-East Atlantic 

1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus.

1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient. 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces

1999 Stein-Are Sæther Dr. philos. 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

1999 Katrine Wangen Rustad Dr. scient. 
Zoology 

Modulation of glutamatergic neurotransmission related 
to cognitive dysfunctions and Alzheimer’s disease 

1999 Per Terje Smiseth Dr. scient. 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica)

1999 Gunnbjørn Bremset Dr. scient. 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences 
and competitive interactions 

1999 Frode Ødegaard Dr. scient. 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

2000 Ingrid Salvesen, I Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

2000 Ingar Jostein Øien Dr. scient. 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

2000 Pavlos Makridis Dr. scient 
Botany

Methods for the microbial econtrol of live food used for 
the rearing of marine fish larvae 

2000 Sigbjørn Stokke Dr. scient. 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana)

2000 Odd A. Gulseth Dr. philos. 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 



2000 Pål A. Olsvik Dr. scient. 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

2000 Sigurd Einum Dr. scient. 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

2001 Jan Ove Evjemo Dr. scient. 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine 
cold water fish species 

2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 

2001 Ingebrigt Uglem Dr. scient. 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.)

2001 Bård Gunnar Stokke Dr. scient. 
Zoology 

Coevolutionary adaptations in avian brood parasites and 
their hosts 

2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus)

2002 Mariann Sandsund Dr. scient. 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

2002 Frank Rosell Dr. scient. 
Zoology 

The function of scent marking in beaver (Castor fiber)

2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 

2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms.  Studies of RAC GTPases in Arabidopsis 
thaliana and

2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

2003 Åsa Maria O. Espmark 
Wibe

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L.

2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species (Helicoverpa 
armigera, Helicoverpa assulta and Heliothis virescens)

2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 



2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

2003 Eldar Åsgard Bendiksen Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein complex 
in Arabidopsis thaliana 

2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 

2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta).

2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the natural 
environment 

2004 Emmanuel J. Gerreta Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by 
Botrytis cinerea 

2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

2005 Matilde Skogen 
Chauton 

Dr.scient
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

2005 Tonette Røstelien PhD
Biology 

Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus
grypus) pups and their impact on plasma thyrid hormone 
and vitamin A concentrations. 

2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 



2005 Lasse Mork Olsen PhD
Biology 

Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

2005 Åslaug Viken PhD
Biology 

Implications of mate choice for the management of small 
populations 

2005 Ariaya Hymete Sahle 
Dingle 

PhD
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

2005 Anders Gravbrøt 
Finstad 

PhD
Biology 

Salmonid fishes in a changing climate: The winter 
challenge

2005 Shimane Washington 
Makabu 

PhD
Biology 

Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.)
species complex: historical contingency and adaptive 
radiation 

2006 Kari Mette Murvoll PhD
Biology 

Levels and effects of persistent organic pollutans (POPs) 
in seabirds 
Retinoids and -tocopherol –  potential biomakers of 
POPs in birds?

2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

2006 Nils Egil Tokle Phd
Biology 

Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus

2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

2006 Johanna Järnegren PhD
Biology 

Acesta Oophaga and Acesta Excavata – a study of 
hidden biodiversity 

2006 Bjørn Henrik Hansen PhD
Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in 
Central Norway 

2006 Vidar Grøtan PhD
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

2006 Jafari R Kideghesho phD
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

2006 Anna Maria Billing PhD
Biology 

Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

2006 Henrik Pärn PhD
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

2006 Anders J. Fjellheim PhD
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

2006 P. Andreas Svensson phD
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

2007 Sindre A. Pedersen PhD
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-essential 
amino acid cysteine 

2007 Kasper Hancke PhD
Biology 

Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae

2007 Tomas Holmern PhD
Biology 

Bushmeat hunting in the western Serengeti: Implications 
for community-based conservation 



2007 Kari Jørgensen PhD
Biology 

Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens

2007 Stig Ulland PhD
Biology 

Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, /Mamestra Brassicae/ L. 
(Lepidoptera, Noctuidae). Gas Chromatography Linked 
to Single Cell Recordings and Mass Spectrometry 

2007 Snorre Henriksen PhD
Biology 

Spatial and temporal variation in herbivore resources at 
northern latitudes 

2007 Roelof Frans May PhD
Biology 

Spatial Ecology of Wolverines in Scandinavia  

2007 Vedasto Gabriel 
Ndibalema

PhD
Biology 

Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 

2007 Julius William 
Nyahongo

PhD
Biology 

Depredation of Livestock by wild Carnivores and Illegal 
Utilization of Natural Resources by Humans in the 
Western Serengeti, Tanzania 

2007 Shombe Ntaraluka 
Hassan

PhD
Biology 

Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

2007 Per-Arvid Wold PhD
Biology 

Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

2007 Anne Skjetne 
Mortensen 

PhD
Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and Profiling 
of Gene Expression Patterns in Chemical Mixture 
Exposure Scenarios 

2008 Brage Bremset Hansen PhD
Biology 

The Svalbard reindeer (Rangifer tarandus 
platyrhynchus) and its food base: plant-herbivore 
interactions in a high-arctic ecosystem 

2008 Jiska van Dijk PhD
Biology 

Wolverine foraging strategies in a multiple-use 
landscape

2008 Flora John Magige PhD
Biology 

The ecology and behaviour of the Masai 
Ostrich ( Struthio camelus massaicus) in the 
Serengeti Ecosystem, Tanzania 

2008 Bernt Rønning PhD
Biology 

Sources of inter- and intra-individual variation 
in basal metabolic rate in the zebra finch, 
/Taeniopygia guttata/

2008 Sølvi Wehn PhD
Biology 

Biodiversity dynamics in semi-natural mountain 
landscapes.
- A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

2008 Trond Moxness Kortner PhD
Biology 

"The Role of Androgens on previtellogenic 
oocyte growth in Atlantic cod (Gadus morhu/):
Identification and patterns of differentially 
expressed genes in relation to Stereological 
Evaluations" 

2008 Katarina Mariann 
Jørgensen

Dr.Scient
Biology 

The role of platelet activating factor in 
activation of growth arrested keratinocytes and 
re-epithelialisation 

2008 Tommy Jørstad PhD
Biology 

Statistical Modelling of Gene Expression Data 



2008 Anna Kusnierczyk PhD
Bilogy 

Arabidopsis thaliana Responses to Aphid 
Infestation
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