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Abstract

Goldstone’s theorem states that, in presence of Lorentz invariance, the number of massless
modes that appear after spontaneous symmetry breaking coincides with the number of
broken generators. These modes are called Goldstone bosons. In this thesis, we study
spontaneous symmetry breaking in several non-Lorentz invariant theories. This includes
both non-relativistic systems and relativistic systems at nonzero density. In particular for
the latter, we focus on O(N)-symmetric φ4-theories. The method we follow is taking a
Lorentz invariant system and explicitly break this invariance by coupling its Hamiltonian
to its conserved charges through a finite chemical potential. Once the Lorentz invariance
is broken, the remaining symmetry spontaneously breaks, giving rise to massless modes in
the spectrum. We see that the number of Goldstone bosons does not always coincide with
the number of broken generators.
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Conventions and abbreviations

Abbreviations are explicitly explained in the text, but we will also clarify them here. The
following are listed in order of appearance in this thesis.

• QM: Quantum Mechanics.

• QFT: Quantum Field Theory

• SSB: Spontaneous Symmetry Breaking.

• NR: Non-Relativistic.

• vev: Vacuum Expectation Value.

• DR: Dimensional Regularization.

• MS: Minimal Subtraction.

• MS: Modified Minimal Subtraction.

• UV: Ultraviolet.

• IR: Infrared.

• LSM: Linear σ-Model.

Conventions

• Natural units are implied, i.e., } = c = 1

• We use Minkowski space-time: ηµν = diag[1,−1,−1,−1].

• Bold text implies vector.

• Italic text is used to introduce new terms.

• For z ∈ C, z∗ means complex conjugate of z.

• For a matrix M ∈ Cn × Cm, MT means transpose of M and, M†, hermitian
conjugate of M .
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Chapter 1
Introduction

We here present this master thesis as a requirement in order to complete the International
master’s programme in Physics at the Norwegian University of Science and Technology
(Norges teknisk-naturvitenskapelige universitet). This project corresponds to 60 study
points in the European Credit Transfer System (ECTS) and hence, concludes a task per-
formed during the last two semesters of the International master’s programme.

1.1 Symmetries and symmetry breaking in modern Phys-
ics

Symmetries and symmetry groups play a fundamental role in modern Physics. In 1918, the
physicist and mathematician Emmy Noether proved in her Invariante variationsprobleme
that if a system has a continuous symmetry, there exists an associated quantity whose value
is conserved in time [1]. In the following table, we illustrate some examples of this:

Table 1.1: Examples of different symmetries with their corresponding conserved quantity.

Symmetry Conserved quantity
Time-translation Energy
Space-translation Linear momentum

Rotation Angular momentum

In the early 1930s, Noether’s theorem was adapted by Weyl and Wigner into the context
of Quantum Mechanics in what now is known as the Weyl and Wigner realization of a
symmetry. The classical conserved quantity becomes an operator on a Hilbert space and
it receives the name of generator, since it can be proved that it generates the symmetry of
the system. At the quantum level, the condition for the quantity to be conserved in time
would becomes a zero commutator with the Hamiltonian.

1



Chapter 1. Introduction

It is however possible to find systems which show invariance under certain transforma-
tions, and yet their symmetries are not observed in the spectrum. This is called spontan-
eous symmetry breaking (SSB) [2]. This concept was first introduced by Jeffrey Goldstone
in 1961 in his Field Theories with “Superconductor” Solutions [3]. A well-known example
of such systems is the ferromagnet, which is invariant under rotations in spin-space. The
lowest energy configuration, which is described by the ground state of the Hamiltonian,
occurs when all spins are parallelly aligned. This configuration is clearly not invariant
under rotations. We thus say that the ground state breaks the symmetry.

Figure 1.1: Lowest energy configuration for a ferromagnet.

The concept of spontaneous symmetry breaking is used in modern Physics to describe
many different phenomena, from phase transitions or superconductivity in condensed mat-
ter Physics to supersymmetry in Physics beyond of the Standard Model. It is also worth
mentioning that Peter Higgs predicted in 1964 the existence of a massive boson, named
after him, which was the result of a spontaneous breaking of a local gauge symmetry [4].
He received a Nobel prize in 2012, when the particle was detected [5].

Higgs’ prediction could not have been possible without Goldstone’s theorem, which is
the main topic of this thesis. In 1962, Jeffrey Goldstone published a paper with Abdus
Salam and Steven Weinberg, where they stated and proved the now-called Goldstone’s
theorem. This says that if a global continuous symmetry of the Hamiltonian is broken
by the ground state of the system, there will be a number of massless excitations in the
spectrum [6]. These massless modes are known as Goldstone bosons. The theorem re-
quires Lorentz invariance in the system. There will be as many massless modes as broken
symmetries.

1.2 Structure of the thesis
The title of this thesis is Goldstone bosons at finite density. Our goal is to find these mass-
less modes in such systems. We will be studyingO(N)-symmetric theories which are used
as effective field theories in condensed matter and high-energy physics. The concept of
symmetry group will be fundamental in this thesis. We only introduce them in this section,
but all of them are explained in detail in their correspondent chapter.

The thesis is organized as follows: we first, in chapter two, introduce the reader to the
concept of spontaneous symmetry breaking by using the Schrödinger Lagrangian, that is,

2



1.2 Structure of the thesis

an E(2)-symmetric non-relativistic field theory, which is the simplest case where SSB
appears. In chapter three, we study an SO(2)-symmetric theory, focusing on finding
the Goldstone bosons and checking that they remain massless after loop corrections. In
chapter four, we introduce a chemical potential to our SO(2)-theory. In this way, we
explicitly break the Lorentz invariance of the system. The new theory can be used to de-
scribe a Bose-Einstein condensate [7]. We will find the Goldstone modes and then use a
path integral approach to find some thermodynamic properties of the condensate. This is
known as thermal field theory. In chapter five, we study an SO(3)-symmetric Lagrangian
as example of a non-Abelian theory. As in the previous chapters, we will find the Gold-
stone modes and then introduce a chemical potential to see how it affects the number of
massless modes. Finally, in chapter six, we study the linear σ-model (LSM), as example
of an O(4)-symmetric field theory. We will follow the same approach as in the previous
chapters.

3
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Chapter 2
Spontaneous Symmetry Breaking

The goal of this chapter is to familiarize the reader with the concept of spontaneous sym-
metry breaking (SSB). We will start by reminding the reader of some basic concepts from
quantum mechanics (QM), like ground state and coherent state, and the so-called Fock va-
cuum of a Hilbert space. This will lead us to a rigorous definition of spontaneous broken
symmetries. Once we are done with this, we will illustrate this concept using the simplest
example where one finds SSB: a free non-relativistic (NR) field theory, i.e. a NR system
whose Lagrangian only has a kinetic term.

Our discussions in this chapter follow mainly from Refs. 2, 8, and 9.

2.1 Spontaneous breaking of continuous symmetries
In this section we will introduce and define SSB. In order to do this, we will start by
characterizing the Fock vacuum, which will require us to define first the ground state of a
system.

2.1.1 Fock vacuum
In QM, the ground state of a quantum system is defined as the state with the lowest energy.
The ground state of the Fock space is called Fock vacuum. The former is built of tensor
products of single-particle states |n〉, i.e., the Fock space is built from single-particle Hil-
bert spaces [10]. The Fock vacuum then is the state with no particles, |0〉. Any Fock state
can be built from the vacuum using the creation operator, â†k, as

|n1, n2 . . . 〉 =
∏
i

(â†ki)
ni

√
ni!
|0〉, (2.1)

where the index ki labels the i-th state with momentum k. The Hermitian conjugate of
the creation operator is called the annihilation operator, â. These two operators obey the

5



Chapter 2. Spontaneous Symmetry Breaking

commutation relation
[âk, â

†
k′ ] = δkk′ , (2.2)

where δkk′ is the Kronecker delta. This discussion concerning the creation and annihilation
operators leads to the definition of a coherent state. A state |α〉 is a coherent state if it is
an eigenstate of the annihilation operator [11]:

â|α〉 = α|α〉, (2.3)

where the pre-factor α = |α|eiθ ∈ C is a complex number. We are assuming, for conveni-
ence in the notation, single-particle states so that we can drop the momentum index. It is
worth mentioning that the coherent states are normalized to one, that is, 〈α|α〉 = 1. One
can express a coherent state in terms of the Fock vacuum by using the so-called displace-
ment operator D(α) [12]:

|α〉 = D(α)|0〉 = exp[αâ† − α∗â]|0〉 = e
|α|2
2 e−α

∗âeαâ
†
|0〉. (2.4)

If we Taylor expand the exponentials and use a|0〉 = 0, we get

|α〉 = e
|α|2
2

∞∑
n=0

αn√
n!
|n〉, (2.5)

which is equivalent to writing a coherent state |α〉 in the basis of |n〉 [11]. The displace-
ment operator plays an important role in quantum optics but, in the context of this thesis,
it is just a unitary representation of a symmetry transformation. Using an operator analog-
ous to D(α), we will build, later on in this chapter, coherent states for the Fock vacuum
of the theory we will be dealing with. It can be also proved that a coherent state built of
a symmetry transformation of the vacuum has exactly the same energy. We will see this
using the example of the NR-field theory in section 2.2.

As a final comment, if we have a system which is translationally invariant, we can label its
Fock states as eigenstates of the momentum operator. We can then make the substitution
|n〉 → |k〉. The exact discussion we made in this section then holds for the |k〉 states.

2.1.2 Spontaneously broken symmetry
Let us now consider a Lagrangian which is invariant under certain transformation. We then
define this transformation to be a symmetry of the system. Following Noether’s theorem,
if a system has a continuous symmetry, then there is a quantity which is conserved in
time [1]. At the quantum level, this quantity becomes a unitary operator in a Hilbert space
(named here, Q̂), and it is the generator of the symmetry. This is called the standard
Wigner-Weyl realization of a symmetry [13]. Following Heisenberg’s equation [14],

d

dt
Q̂ = i[Ĥ, Q̂] +

∂

∂t
Q̂, (2.6)

if there is no explicit time dependence, the time independence of Q̂ becomes, at the
quantum level, a zero commutator with the Hamiltonian of the system (Ĥ):

[Ĥ, Q̂] = 0 (2.7)

6



2.1 Spontaneous breaking of continuous symmetries

We know from QM that, if an operator commutes with the Hamiltonian, they then share
a complete set of eigenstates. In our discussion above we defined the ground state of a
system to be the eigenstate of the Hamiltonian with the lowest energy. One would thus
expect that, if a system has a symmetry, the ground state would also be an eigenstate of
the operator that generates the symmetry.

This assumption we just made takes us to the definition of spontaneously broken symmetry.
The idea here is that the symmetry generator does not leave the ground state invariant. We
then say that a symmetry is spontaneously broken when the ground state of the system is
not an eigenstate of the charge operator Q̂.1 Let |0〉 be a translationally invariant ground
state (e.g. a Fock vacuum). We assume this ground state to be a discrete, non-degenerate
eigenstate of the Hamiltonian Ĥ . In this way, it can be used as a one-dimensional repres-
entation of the symmetry group that governs the system. The condition for a symmetry to
be spontaneously broken can be then written in terms of the existence of a field operator
ψ̂ such that [2]:

lim
V→∞

〈0|[Q̂, ψ̂]|0〉 6= 0, (2.8)

This vacuum expectation value (vev) is called an order parameter. It follows that if the
ground state were an eigenstate of the charge operator, the vev in Eq. (2.8) would be zero.
Eq. (2.8) also suggests that the ground state is degenerate. Because Q̂ commutes with Ĥ ,
so does a unitary representation of Q̂ of the form Û = exp[iθQ̂]. Û will transform the
ground state into another with equivalent energy and, if we have a continuous symmetry
group, there will be infinitely many ground states with the same energy. Moreover, we are
working here in finite volume V , but, in the limit V →∞, two ground states connected by
a symmetry transformation become orthogonal (We will show this with an example later
in this thesis).

Since we can have infinitely many equivalent ground states, the question on how to make
the proper choice of the ground state arises. We need here to distinguish between systems
with finite and infinite volume. In the latter, the ground state is completely degenerate
since the tunneling transition amplitude from one state to another decreases exponentially.
On the other hand, in a quantum system with finite volume, the ground state is usually
non-degenerate. We would still have infinitely many energy-equivalent ground states, but
the exact degeneracy would be lifted by boundary conditions. The “true” ground state
then is a superposition of all these states. In order to lift the degeneracy, one introduces an
extra symmetry breaking term in the Hamiltonian.2 The new term in the Hamiltonian acts
as a small perturbation, and by choosing the appropriate one, the corresponding ground
state can be selected. Taking then the infinite-volume limit, the splitting of the energy
levels can be neglected since it is much smaller than the energy difference induced by the
perturbation. The explicit symmetry breaking term can then be removed by adiabatically
switching it off. This last step will not disturb the vacuum.

1The notation charge operator comes from Noether’s theorem. The expected conserved quantities are called
currents or charges

2This is equivalent to a system with a non-exact symmetry. Meaning that the symmetry is perturbed by a
small perturbation.
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Chapter 2. Spontaneous Symmetry Breaking

In the following section we will use everything we have explained above in the context
of a non-relativistic field theory. We will find symmetries for a Lagrangian and build a
Hilbert space out of its Fock vacuum. We will then see how two symmetries will be spon-
taneously broken by computing their order parameter. Finally, taking a chemical potential
µ as small perturbation to the Hamiltonian, we will be able to choose the proper ground
state for the system out of the infinitely many there will be.

2.2 The Schrödinger Lagrangian
In this section we will illustrate the simplest case of SSB using the Schrödiger Lagrangian
as an example of a non-relativistic field theory. We first consider the following Lagrangian
for a complex scalar field [15]:

L = − i
2

[
ψ†

∂

∂t
ψ + (− ∂

∂t
ψ†)ψ

]
− 1

2m
(∇ψ)†(∇ψ). (2.9)

Note that there is not a potential in L and thus it is a free theory. Even though we will
work in this simple case of a free theory, adding a potential V (ψ†ψ) would not affect the
derivations that we will perform later on.

Because we are considering a complex field, we can point out that ψ and ψ† are inde-
pendent. The reason behind this is the numbers of degrees of freedom. Here, we are
dealing with a complex field and thus, we must have two degrees or freedom, the real and
the complex part of the field. Then, either we consider

ψ =
1√
2

(ψ1 + iψ2),

treating ψ1 and ψ2 as independent; or, as we are doing here, consider ψ and ψ† to be in-
dependent.

As mentioned before, we are dealing in this section with the Schrödinger Lagrangian.
We expect that by computing the Euler-Lagrange(E-L) equation for this Lagrangian, we
will get Schrödinger’s equation. Let us check this. For a non-relativistic field, its E-L
equation has the following form] [16]:

∂

∂t

∂L
∂(∂tψ†)

= ∇ ∂L
∂(∇ψ†)

+
∂L
∂ψ†

. (2.10)

We now apply this to Eq. (2.9). Because we are working in Minkowski space-time, we
need to remember that there will be an extra minus sign in front of the spatial-derivative
operator, (∇ψ)†(∇ψ) = −(∂iψ

†)(∂iψ). We then have:

∂

∂t

∂L
∂(∂tψ†)

=
i

2

∂

∂t
ψ; ∇ ∂L

∂(∇ψ†)
= −∇

(
1

2m
∇ψ
)
,

∂L
∂ψ†

= − i
2

∂

∂t
ψ.

Plugging this into Eq. (2.10), we obtain Schrödinger’s equation:

i
∂

∂t
ψ = − 1

2m
∇2ψ. (2.11)

8



2.2 The Schrödinger Lagrangian

Lastly, because we will be using it later on, we will derive the Hamiltonian for this system.
We first Legendre transform Eq. (2.9):

H =
∑
i

πiψ̇i − L, (2.12)

where π is the canonically conjugated momentum, π = ∂L/∂ψ̇; i sums for the collection
of fields and ψ̇ stands for derivative with respect to time of the field. We finally have:

H =
1

2m
(∇ψ)†(∇ψ). (2.13)

We will make use the Hamiltonian later in this text to check whether the charge operators
are conserved or not.

2.2.1 Symmetries
Continuing our study of SSB in the Schrödinger Lagrangian case, we proceed to look un-
der which transformations the Lagrangian in Eq. (2.9) is invariant, that is, what symmetries
the system has. The first, and easiest, one to notice is a U(1) transformation of the form:

ψ → eiθψ,

ψ† → e−iθψ†, (2.14)

which corresponds to a rotation in the complex plane. Here θ is a constant. If we plug the
transformations of Eq. (2.14) into the Lagrangian (2.9), we find

L′ = − i
2

[(
e−iθψ†

) ∂
∂t

(
eiθψ

)
− ∂

∂t

(
e−iθψ†

) (
eiθψ

)]
− 1

2m
∇
(
e−iθψ†

)
∇
(
eiθψ

)
,

and because θ is a constant with respect the time and space derivatives, the phases can-
cel and we are left with the Lagrangian (2.9). The next two symmetries we find in the
Lagrangian of Eq.(2.9) are translational transformations of the form:

ψ → ψ′ = ψ + θ, (2.15)
ψ → ψ′ = ψ + iθ, (2.16)

where again θ is a constant. We substitute, for example, Eq. (2.15) into (2.9). Again, since
θ is a constant with respect the time and space derivatives, we do not need to worry about
the terms proportional to 1/2m in Eq. (2.9). We then get the following:

L′ = − i

2

[
(ψ† + θ)

∂

∂t
(ψ + θ)− ∂

∂t
(ψ† + θ)(ψ + θ)

]
= − i

2

[
ψ†

∂

∂t
ψ + (− ∂

∂t
ψ†)ψ

]
− iθ

2

∂

∂t
(ψ − ψ†). (2.17)

Comparing to Eq. (2.9), we notice that we have an extra term proportional to the time
derivative of the fields. This term can be explained if we think of θ as an infinitesimal
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Chapter 2. Spontaneous Symmetry Breaking

translation. By doing this transformation, the Lagrangian changes as well as L → L+δL.
We then see that the extra term in Eq. (2.17) corresponds to δL and, since the ∂t(ψ − ψ†)
term is a total derivative, following the Principle of least action [16], it does not affect the
current associated with the symmetry.

We have thus seen that the Schrödinger Lagrangian is invariant under the transforma-
tions specified in equations (2.14), (2.15) and (2.16). These correspond to a rotation in
the complex plane and two translation in this plane defined by the real and complex part
of the field ψ. All these transformations generate the Euclidean group E(2) of motion in
the plane. This group has as subgroups the group of special rotations in two dimensions,
SO(2), and the group of translations. Eq. (2.15) is an example of an E(2) transformation
taking the identity matrix in two dimensions, I2, as the rotation. Taking for instance

ψ =

(
ψ1

ψ2

)
θ =

(
θ1

θ2

)
,

Eq. (2.15) can be written as:ψ′1ψ′2
1

 =

1 0 θ1

0 1 θ2

0 0 1

ψ1

ψ2

1

 , (2.18)

where the matrix belongs to E(2). The discussion we made here using vectors applies to
the Lagrangian even though we are dealing with scalar fields. The reason behind this is
what we mentioned before about the number of degrees of freedom (we need to have two),
plus the isomorphism between U(1) and SO(2), which will be explained in more detail in
chapter 3.

2.2.2 Conserved currents

From Noether’s theorem, we know that for any symmetry there has to be an associated
conserved Noether current [1], given by:

jµ =
∑
i

∂L
∂(∂µψi)

δψi, (2.19)

where µ sums over the Minkowski metric, ∂µ = (∂t,∇), and i sums over the collection
of fields, so that we take into account the Hermitian conjugate field. Written explicitly, we
have a scalar part of the current and a vector one:

j0 =
∂L

∂(∂tψ)
δψ +

∂L
∂(∂tψ†)

δψ†, (2.20)

j =
∂L

∂(∇ψ)
δψ +

∂L
∂(∇ψ†)

δψ†. (2.21)

The term δψi corresponds to a small variation of the fields. In order to find these small

10



2.2 The Schrödinger Lagrangian

deviations, we take transformations such as ψ → ψ + δψ. We, for instance, take an
infinitesimal U(1) transformation to first order in θ:

ψ → eiθψ ∼ (1 + iθ)ψ,

ψ† → e−iθψ† ∼ (1− iθ)ψ†,

which gives:
δψ = iθψ; δψ† = −iθψ†. (2.22)

Introducing now Eq. (2.22) into equations (2.20) and (2.21), we get the expressions for the
currents associated with the U(1) symmetry. Note that since θ is an arbitrary constant, we
can set it to one without loss of generality. We then have:

j0 = ψ†ψ, (2.23)

j = − i

2m
[(∇ψ†)ψ − ψ†(∇ψ)]. (2.24)

We also saw that the Lagrangian in Eq. (2.9) is invariant under the transformations of
equations (2.15) and (2.16). We thus have two more conserved currents. We need again
to find the expression for δψ and δψ†. If we take an infinitesimal θ ∼ O(ε) and compare
again to ψ → ψ + δψ we find for the transformation (2.15)

δψ = δψ† = θ. (2.25)

Substituting these expressions into equations (2.20) and (2.21), we get:

j0 =
i

2
(ψ − ψ†), (2.26)

j = − 1

2m
(∇ψ +∇ψ†). (2.27)

For the transformation ψ → ψ′ = ψ + iθ, we find

δψ = −δψ† = iθ, (2.28)

which gives the following currents:

j0 =
1

2
(ψ + ψ†), (2.29)

j =
i

2m
(∇ψ −∇ψ†). (2.30)

And again, as we did with the currents associated to the U(1) symmetry, we have set θ to
one without loss of generality.

2.2.3 Total charges
From Noether’s theorem, we know that there is a quantity which is conserved in time
associated with each symmetry of the system. This quantity is called total charge and can
be defined by integrating the charge density, j0(x) in Eq. (2.20), in a large volume V

Q =

∫
V

d3x j0. (2.31)

11



Chapter 2. Spontaneous Symmetry Breaking

Naming the scalar currents of equations (2.23), (2.26), and (2.29) with subscripts i =
0, 1, 2, we have the following total charges:

Q0 =

∫
V

d3x ψ†ψ, (2.32)

Q1 =
i

2

∫
V

d3x (ψ − ψ†), (2.33)

Q2 =
1

2

∫
V

d3x (ψ + ψ†). (2.34)

Let us check that these charges Qi are conserved in time. Let us take, for example, Q2:

d

dt
Q2 =

1

2

d

dt

∫
V

d3x (ψ + ψ†).

The time derivative is a linear operator which commutes with the spatial integration. We
can thus rewrite this expression as:

d

dt
Q2 =

∫
V

d3x

[
dψ

dt
+
dψ†

dt

]
, (2.35)

where we have dropped the one half factor for convenience. Now we recall that these fields
have to follow Eq. (2.11). We can thus make the substitution −i∂t ↔ 1

2m∇
2. We then

have:
d

dt
Q2 =

i

2m

∫
V

d3x (∇2ψ +∇2ψ†).

Now, the theorem of divergence says [17]:∫
V

d3x∇ · A =

∫
S

d2x A, (2.36)

where A is a vector field. We can apply Eq. (2.36) to (2.35), using that ∇2ψ = ∇ · (∇ψ).
We have:

d

dt
Q2 =

i

2m

∫
S

d2x (∇ψ) + (∇ψ)†. (2.37)

We now look at the continuity equation:

∂µj
µ =

d

dt
j0 + ∂iji = 0

⇒
∫
d3x ∇ · j +

d

dt
Q =∫

S

d2x j +
d

dt
Q = 0. (2.38)

We thus expect that Q2 and its correspondent vector current satisfy this relation. Let us
check this. Substituting equations (2.37) and (2.30) in (2.38) gives:

i

2m

∫
S

d2x (∇ψ) + (∇ψ)† +
i

2m

∫
S

d2x (∇ψ −∇ψ†) =
i

m

∫
S

d2x ∇ψ = 0. (2.39)

Q2 is thus conserved in time. The procedure to show that Q0 and Q1 also are conserved
in time is analogous to the one we have just performed.

12



2.2 The Schrödinger Lagrangian

2.2.4 Second Quantization
Until now, we have been dealing with fields at the classical level. Our goal here is to
quantize the currents we derived above and compute their commutators. In order to do
this, we introduce the representation of the fields in terms of the operators â†k and âk of
creation and annihilation (of particle states), respectively. Our complex field can then be
expressed as3 [18]

ψ̂(r, t) =
1√
V

∑
k

ei(k·r−ωt)âk ; ψ̂†(r, t) =
1√
V

∑
k

e−i(k·r−ωt)â†k, (2.40)

where we restrict ourselves to a system with finite volume V . The field operators obey the
canonical equal-time commutation relations:4

[ψ̂(x), ψ̂†(x′)] = δ(x− x′), (2.41)

where δ(x− x′) is Dirac’s delta function.

Equations (2.40) and (2.41) follow from the second quantization formalism. In this form-
alism, a single particle operator is represented by [18]

B̂ =

N∑
i=1

b̂(xi)⇒
∑
kk’

〈k’|b̂|k〉â†k’âk, (2.42)

where
〈k’|b̂|k〉 =

∫
dr ψ†k’(r)b̂(r)ψk(r).

It now follows to write the Hamiltonian in Eq. (2.13) in this formalism. From Eq. (2.42),
we have:

H =
1

2mV

∑
kk′

∫
dr(kk′)ei(k−k′)râ†k′ âk. (2.43)

We can identify from the expression above as a Kronecker delta [18]:

δkk′ =
1

V

∫
dr ei(k−k′)r. (2.44)

Then, the sum in k′ in Eq. (2.43) gives zero for k 6= k′ and we are then left with:

H =
∑

k

k2

2m
â†kâk. (2.45)

Continuing towards the main point of this section, we proceed to quantize the Noether
currents we calculated before. We start with Q̂0 by inserting the expressions for the fields
in Eq. (2.40) into (2.32):

Q̂0 =

∫
V

d3x ψ̂†ψ̂ ⇒
∫
dr

1

V

∑
kk′

ei(k−k′)râ†k′ âk, (2.46)

3 We are assuming here periodic boundary conditions, that is ψ(x+ L) = ψ(x), where L3 = V
4We are assuming here bosonic fields. If the fields were fermionic, the relation (2.41) would be written in

terms of anti-commutators.
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Chapter 2. Spontaneous Symmetry Breaking

where we again recognize a Kronecker delta. Inserting then Eq. (2.44), we obtain

Q̂0 =
∑

k

â†kâk. (2.47)

Proceeding in the same way with Q̂1 and Q̂2, we have:

Q̂1 =
i

2
√
V

∑
k

∫
dr
[
eik·râk − e−ik·râ†k

]
, (2.48)

Q̂2 =
1

2
√
V

∑
k

∫
dr
[
eik·râk + e−ik·râ†k

]
. (2.49)

Comparing the relations above with the expression for the Kronecker delta in Eq. (2.44),
we can recognize in both equations (2.48) and (2.49) a δk0. The sums then give zero for
all k 6= 0 and we find:

Q̂1 =
i

2

√
V
(
â0 − â†0

)
, (2.50)

Q̂2 =
1

2

√
V
(
â0 + â†0

)
. (2.51)

Now that we have quantized our charges, we are able to compute their commutators. We
will use two identities which follow from Jacobi’s identity. These are [19]:

[A+B,C] = [A,C] + [B,C],

[A,BC] = [A,B]C +B[A,C]. (2.52)

For convenience, we will first explicitly compute the commutators between the charges
Q̂0 and Q̂1. We have:

[â0 − â†0 , â
†
kâk] = [â0, â

†
kâk]− [â†0, â

†
kâk]

= [â0, â
†
k]âk + â†k[â0, âk]

− [â†0, â
†
k]âk − â†k[â†0, âk]

= âkδk0 + â†kδk0

where, in the last step, we used Eq. (2.44) and the fact that δij = δji. We now recover the
constants and the sum over k and all terms with k 6= 0 vanish. Finally:

[Q̂1, Q̂0] =
i

2

√
V
(
â0 + â†0

)
= iQ̂2. (2.53)

The procedure is analogous for the commutator between Q̂0 and Q̂2. Skipping here the
middle steps, we have

[Q̂2, Q̂0] =
1

2

√
V
(
â0 − â†0

)
= −iQ̂1. (2.54)
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2.2 The Schrödinger Lagrangian

Finally, the commutator between the charges Q̂1 and Q̂2 ia given by[
Q̂1, Q̂2

]
=
i

4
V [â0 − â†0, â0 + â†0] =

i

2
V Î. (2.55)

The commutators we have computed here should give the Lie algebra of E(2). If we com-
pare these with the commutators we have in Appendix B.4, we see that the commutators
between Q̂0 and Q̂1,2 are identical to their classical form. The problem arises in Eq. (2.55).
Let us not forget that Q̂1 and Q̂2 generate translations and thus, one would expect that their
commutator vanishes, since two translations commute at the classical level, as we can see
in Appendix B.4. Eq. (2.55) shows that, at quantum level, the algebra of E(2) develops
a central charge, that is, an operator that commutes with any element in the symmetry
group [2].

Before closing this section, let us check that the total charges that we have derived are
the generators of their respective symmetries, as we proved in general in Appendix C.2.
We will follow the derivations we made in the general case. Let us for example check Q0.
We build a unitary representation of this generator through its one-parameter family and
apply it to the field as follows

ψ → ψ′ = UψU−1 = eiQ0ψe−iQ0 . (2.56)

If we expand the exponentials of Eq. (2.56), we find:

ψ → ψ′ = ψ + i[Q0, ψ]. (2.57)

Following the derivations of Appendix C.2. , the commutator of Eq. (2.57) gives

[Q0, ψ] = −iδψ = θψ,

where we used Eq. (2.22). If we now substitute the result of the commutator in Eq. (2.57)
we see that we recover a U(1) infinitesimal transformation.

And finally in this part, since we have seen that some properties of the currents do not
hold at the quantum level, it is worth to check if the currents Q̂i still are conserved in time
after quantization. We recall Heisenberg’s equation, Eq. (2.6), for the time-evolution of an
operator. It follows from it that an operator with no explicit time dependence is conserved
in time if it commutes with the Hamiltonian, Eq. (2.7). Let us, for example, compute
[H, Q̂0], where H and Q̂0 are given by equations (2.45) and (2.47), respectively. Using
that

[AB,CD] = A[B,C]D +AC[B,D] + [A,C]DB + C[A,D]B, (2.58)

and dropping again the sums over k and k′ in the middle steps, we have:

â†k[âk, â
†
k′ ]âk′ + â†kâ

†
k′ [âk, âk′ ] + [â†k, â

†
k’]âkâk′ + â†k′ [â

†
k, âk′ ]âk = (â†kâk′ − â†k′ âk)δkk′ ,

(2.59)
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Chapter 2. Spontaneous Symmetry Breaking

where we again used Eq. (2.44). Recovering the sum, we finally have

[H, Q̂0] =
1

2m

∑
kk′

k2(â†kâk′ − â†k′ âk)δkk′

=
1

2m

∑
k

k2(â†kâk − â†kâk) = 0. (2.60)

And thus, Q̂0 is still conserved in time after quantization. The derivation with the remain-
ing Q1 and Q2 is analogous to the one we have just performed and gives that both are still
conserved at the quantum level.

2.2.5 Spontaneous symmetry breaking
In this part of the thesis we will apply all theory explained in section 2.1 to the Schrödinger
Lagrangian.

Broken generators As we said before, a symmetry is spontaneously broken when the
ground state of the quantum system is not an eigenstate of the symmetry generator. This
is equivalent to having a non-zero order parameter. Let us thus compute it for our three
generators. Let |0〉 be a translationally invariant ground state for our system. We start with
[Q̂0, ψ̂] and, again, we will explicitly compute first the commutator between the creation
and annihilation operators:

[a†kak, ak′ ] = a†k[ak, ak′ ] + [a†k, ak′ ]ak = −δkk’ak,

where we used equations (2.52) and (2.2). We can now compute the order parameter:

lim
V→∞

〈0|[Q̂0, ψ̂]|0〉 = lim
V→∞

−e
−iωt
√
V

∑
kk′

eik
′·r〈0|akδkk′ |0〉

= lim
V→∞

−e
−iωt
√
V

∑
k

eik·r〈0|ak|0〉 = 0, (2.61)

where we used ak|0〉 = 0. Thus, |0〉 is an eigenstate of Q̂0 and, therefore, the generator is
not broken. Let us continue with [Q̂1, ψ̂]. Starting with the commutator:

[â0 − â†0 , âk] = [â0, âk]− [â†0, âk] = δk0

and thus, the order parameter is

lim
V→∞

〈0|[Q̂1, ψ̂]|0〉 = lim
V→∞

i

2
e−iωt

∑
k

eik·r〈0|δk0|0〉

= lim
V→∞

i

2
e−iωt〈0|0〉 =

i

2
e−iωt 6= 0. (2.62)

This shows that Q̂1 is spontaneously broken. The same happens with Q̂2. We thus have
two broken generators. Following Goldstone’s theorem,5 there should be, for each broken

5To be discussed in appendix D.
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2.2 The Schrödinger Lagrangian

generator, a state in the spectrum that couples to the associated current. We must mention
here that this statement only applies to Lorentz invariant theories. In our NR case, which
is not Lorentz-invariant, it is not true. We will still have massless modes, but the number
of modes does not need to coincide with the number of broken generators. In this case, we
only have one mode even though two generators are broken [20].

Coherent States Let us now continue our discussion of SSB by building coherent states
from the vacuum |0〉. In order to do this, we introduce a unitary representation of E(2)
generated by the charges Q̂1 and Q̂2:

U(z) = exp[i(α1Q̂1 + α2Q̂2)]. (2.63)

Introducing the second-quantized expressions for Q̂1 and Q̂2 in equations (2.50) and (2.51)
we have

U(z) = exp
[
i(α1Q̂1 + α2Q̂2)

]
= exp

[
i
√
V

2

(
iα1(â0 − â†0) + α2(â0 + â†0)

)]

= exp

[
i
√
V

2
(−i)

(
â0(α1 − iα2) + â†0(α1 + iα2)

)]

= exp

[√
V

2

(
zâ†0 − z∗â0

)]
, (2.64)

where we introduced the complex number z = α1 + iα2. The representation U(z) trans-
forms the vacuum |0〉 into a coherent state |z〉:

|z〉 = exp

[√
V

2

(
zâ†0 − z∗â0

)]
|0〉. (2.65)

Let us make some comments about Eq. (2.65). First of all, the state |z〉 is an eigenstate of
the annihilation operator â0. Let us check this. We start by splitting U into two separate
exponentials. By doing this, we have a term like exp[−z∗â0], which annihilates the va-
cuum, that is, gives a zero; and another one which we now expand in Taylor series. We
have

â0|z〉 = â0 exp

[√
V

2

(
zâ†0 − z∗â0

)]
|0〉

= â0

∞∑
n=0

(
z
√
V

2

)n
1

n!
(â†0)n|0〉

=

∞∑
n=0

(
z
√
V

2

)n
1

n!
â0(â†0)n|0〉.
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Chapter 2. Spontaneous Symmetry Breaking

By using the commutation relation in Eq. (2.2), it can easily be proved by induction that
a0(a†0)n|0〉 = n(a†0)n−1|0〉. Inserting this result in the sum, we are left with:

∞∑
n=0

(
z
√
V

2

)n
1

n!
â0(â†0)n|0〉 =

z
√
V

2

∞∑
n=0

(
z
√
V

2

)n−1
1

(n− 1)!
(a†0)n−1|0〉.

By making now the substitution m = n − 1, we recover the exponential. We can also
introduce back terms like exp[−z∗â0], since we would only be adding zeros. By doing
this, we recover the operator U(z) and hence, we recover the state |z〉 on the RHS. We
then have

â0|z〉 =
z
√
V

2
|z〉. (2.66)

We have shown that the state |z〉 is an eigenstate of the annihilation operator â0 with eigen-
value z

√
V /2. By performing an analogous procedure, we can show that the state |z〉 has

exactly the same energy as the vacuum |0〉. We would only need to apply the Hamiltonian
in Eq (2.45) to |z〉 and proceed as we just did.

In section (3.5.2), we mentioned that two arbitrary coherent states are orthogonal in the
thermodynamic limit. We will show it here. In order to do this, let us compute the mag-
nitude of the scalar product of two coherent states. We have:

〈z′|z〉 = 〈0| exp

[√
V

2

(
z∗
′
â0 − z′â†0

)]
exp

[√
V

2

(
zâ†0 − z∗â0

)]
|0〉. (2.67)

We start by making use of the Baker-Campbell-Hausdorff formula [19]:

eAeB = exp

[
A+B +

1

2
[A,B] +

1

12
[A, [A,B]] + . . .

]
. (2.68)

Naming e.g. A to the first exponent and B to the second in Eq. (2.67) and by applying
Eq. (2.68), we can write the term inside the bra-ket as two different exponentials.6 The
first one corresponds to the commutator of the two exponents [A,B] whereas the second
is just the sum of the exponents A+B. We then have

〈z′|z〉 = 〈0| exp

[
−V

4
|z − z′|2

]
exp

[√
V

2

(
â0(z′ − z)∗ − â†0(z′ − z)

)]
|0〉.

= exp

[
−V

4
|z − z′|2

]
〈0| exp

[√
V

2

(
â0(z′ − z)∗

)]
exp

[
−
√
V

2

(
â†0(z′ − z)

)]
|0〉

= exp

[
−1

4
V |z − z′|2

]
. (2.69)

This result tells us that any two ground states connected by broken symmetry transforma-
tions become orthogonal if we take the infinite volume limit, V →∞.

6We can restrict ourselves to first order in commutators, since the higher-order will vanish when applying
them to |0〉.
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Choice of ground state We will conclude this chapter by applying the technique we ex-
plained in section 3.5.2 to the Schrödinger field. As we saw before, because the generators
Q̂1 and Q̂2 commute with the Hamiltonian, we can have infinitely many degenerate ground
states. All these are connected through the symmetry transformation U(z) in Eq. (2.64).
This implies that any state |z〉 defined as in Eq. (2.65) can be chosen as ground state. This
will not change the fact that Q̂1 and Q̂2 are spontaneously broken.
We start by introducing an explicit symmetry breaking term in the Hamiltonian in Eq. (2.45).
The new one now is:

Hµ = H− µQ̂0, (2.70)

where µ plays the role of a chemical potential. We can get the energy of a state |z〉 by
computing the expectation value of Hµ in that state. In order to do this, we first compute
the expectation value of Q̂0 in a state |z〉. From its expression in Eq. (2.47), we have

〈z|Q̂0|z〉 =
∑

k

〈z|â†kâk|z〉 =
1

4
V |z|2, (2.71)

where we used Eq. (2.66). This implies that the energy of a state |z〉 is:

〈z|Hµ|z〉 = −1

4
µ|z|2V, (2.72)

which implies that the chemical potential must be negative, in order for the system to have
a ground state. We now take the infinite-volume limit, V → ∞. We can clearly see that
only the state |0〉 becomes the single non-degenerate ground state, whereas any other |z〉
diverges in the thermodynamic limit. We thus conclude that the “true” ground state of
the system is the Fock vacuum |0〉 itself. The last step of this technique is to remove the
explicit symmetry breaking term,−µQ0, by adiabatically switching it off. This can be
achieved by just taking the limit µ→ 0.

2.2.6 Hilbert space

Now that we have found the ground state of the system, we can close this chapter by
building the Hilbert space. Let |ni〉 denote an excited state with momentum ki. The state
|n1, n2, . . . 〉 is then built of tensor direct products of |ni〉 as stated in Eq. (2.1).
We have showed before that two states |z〉 and |z′〉, connected by symmetry transforma-
tions, are orthogonal. Let |n1, n2, . . . 〉 and |n′1, n′2, . . . 〉 be two states in our Hilbert space.
Let us check that they are orthogonal, for n ≥ n′,

(ak′)
n′(a†k)n|0〉 =

n

(n− n′)!
δkk′(a

†
k)n−n

′
|0〉. (2.73)
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Chapter 2. Spontaneous Symmetry Breaking

We then have

〈n′1, n′2, . . . |n1, n2, . . . 〉 = 〈0|
∏
i

(â†ki)
n′i√

n′i!

(â†ki)
ni

√
ni!

|0〉

= 〈0|
∏
i

δnin′i
ni!√
ni!n′i!

|0〉

=
∏
i

δnin′i . (2.74)

We have thus checked that they are orthogonal. As we also stated in section 3.5.2, the states
|n1, n2, . . . 〉 are eigenstates of the Hamiltonian and of the charge operator. Consequently,
in our case, they are eigenstates of the shifted Hamiltonian Hµ. The eigenvalues for H
and Q̂0 can be easily computed by applying equations (2.45) and (2.47) to |n1, n2, . . . 〉.
We skip here the middle steps and jump straight toHµ. We have

Hµ|n1, n2, . . . 〉 =

[(∑
a

k2
a

2m
− µ

)
na

]
|n1, n2, . . . 〉 (2.75)

We finally adiabatically turn off the perturbation, i.e., µ→ 0. This gives us the dispersion
relation for the mode:

E =
k2

2m
. (2.76)

When k→ 0, the energy vanishes. This means that the mode is massless. Hence, we have
checked that the number of broken symmetry generators does not always coincide with
the number of massless modes when the theory is not Lorentz-invariant as we mentioned
in section 2.2.5. In this example, we only get one massless mode after SSB, even though
we have two broken generators.
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Chapter 3
Complex scalar field

In this chapter, we study a charged scalar field as example of an SO(2)-symmetric theory.
We present the Lagrangian and find its symmetries, which we proceed to spontaneously
break. Goldstone’s theorem predicts that there will massless modes associated with the
broken symmetries. We will check that the modes remain massless after loop corrections.

3.1 Introduction

Consider a complex scalar field Φ, described by the following Lagrangian:

L = (∂µΦ†)(∂µΦ)−m2Φ†Φ− λ

6
(Φ†Φ)2, (3.1)

This Lagrangian is invariant under U(1) transformations, which are

Φ→ eiθΦ, Φ† → e−iθΦ†.

If we plug these transformations into the Lagrangian, we notice that it is still invariant:

L = [∂µ(e−iθΦ†)][∂µ(eiθΦ)]−m2e−iθΦ†eiθΦ− λ

6
(e−iθΦ†eiθΦ)2.

Since the phases commute with the scalar fields, they cancel and we recover the original
Lagrangian in Eq. (3.1). As we introduced in the previous chapter, the U(1) symmetry is
equivalent, or more accurately isomorphic, to an SO(2) symmetry. This can be understood
by thinking in terms of rotations. On the one hand, a two-dimensional real vector can be
rotated by a two-dimensional matrix R(θ) ∈ SO(2) in the real plane. The most well-
known representation of an SO(2) matrix is given by:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

21



Chapter 3. Complex scalar field

On the other hand, a two-dimensional real vector can be written as a complex scalar since
both have the same number of degrees of freedom. A U(1) transformation, multiplies the
complex scalar by a phase. As a consequence, it rotates it in the complex plane.

Since Φ is a complex scalar field, we can rewrite it as

Φ =
1√
2

(φ1 + iφ2),

where φ1 and φ2 are real scalar fields. When plugging this into Eq. (3.1), we find:

L =
1

2
[(∂µφ1)2 + (∂µφ2)2 −m2(φ2

1 + φ2
2)]− λ

4!
(φ2

1 + φ2
2)2, (3.2)

which corresponds to two λφ4 theories for each real field.1 Here, we recognize the poten-
tial V (φ1, φ2):

V (φ1, φ2) =
1

2
m2(φ2

1 + φ2
2) +

λ

4!
(φ2

1 + φ2
2)2. (3.3)

This potential is called a Mexican hat potential because of its form when we represent it
in the φ1 − φ2 plane. We assume m2 < 0, which will make sense in section 3.3:

Figure 3.1: Mexican-hat potential. In this figure, the parameters m and λ have been set to one

3.2 Feynman rules

Let us now derive the Feynman rules for the modes φ1 and φ2, i.e., we will specify the
propagator for each mode and their vertices.

1Plus an interaction between the fields
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3.2 Feynman rules

Let us first rewrite the Lagrangian (3.2) as LQ + Lint, where

LQ =
1

2
[(∂µφ1)2 + (∂µφ2)2 −m2(φ2

1 + φ2
2)], (3.4)

Lint =− λ

4!
(φ2

1 + φ2
2)2. (3.5)

The propagator can be derived from the action for the Lagrangian:

S =

∫
Ω

d4xLQ =

∫
Ω

d4x
1

2
[(∂µφ1)2 + (∂µφ2)2 −m2(φ2

1 + φ2
2)]. (3.6)

Note that LQ describes two independent real scalar field with the same mass and hence
their propagator will be the same. We can drop the subscripts and just consider an arbitrary
real scalar field φ. The kinetic term 1

2∂µφ∂
µφ can be rewritten as 1

2 [∂µ(φ∂µφ) − φ�φ]),
with � = ∂µ∂

µ. By partial integration, the first term vanishes since it is a total 4-
divergence. We are left with:

S =

∫
Ω

d4x− 1

2
φ(�+m2)φ. (3.7)

The propagator ∆(x, x′) is defined from here as:

− (�+m2)∆(x, x′) = δ(x− x′). (3.8)

By performing a Fourier transformation, we can go to momentum space and find ∆(k):

∆(k) =
1

k2 −m2 + iε
, (3.9)

where we have introduced a factor iε to avoid the divergence at k2 = m2.

We proceed now to find the vertices factors. From the Lagrangian in Eq. (3.5), we can
see that we have a self-interaction for each mode φj and an interaction between the modes
φ1 and φ2. The following Feynman diagrams represent them:

φj(x3)

φj(x1)

φj(x4)

φj(x2)

φ2(y1)

φ1(x1)

φ2(y2)

φ1(x2)

Figure 3.2: Diagramatic representation of the interaction terms in Lint

For the self-interaction, we have 4! equivalent permutations for the fields. This gives a
symmetry factor of 4!. For the remaining diagram, we have 2!×2! equivalent permutations.
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Chapter 3. Complex scalar field

This gives a symmetry factor of 4. The vertex functions are given by iLint:

− iλ

4!
× 4! = −iλ, (3.10)

for the self-interaction of φ1 and φ2, and

− iλ

12
× 4 = − iλ

3
, (3.11)

for the interaction between the two modes.

3.3 Spontaneous symmetry breaking
We now want to find the minimum of the potential in Eq. (3.3). We find, in fact, different
minima whether we consider a positive mass term in the Lagrangian or a negative one.
Independently of the sign of the mass term, the potential (3.3) is spherically symmetric,
which implies that we can choose the vacuum to point in any direction and, every possible
direction is physically equivalent. We choose the vacuum to point in the φ1 direction and
introduce its vacuum expectation value (vev), v, such that:

∂V

∂φ1

∣∣∣∣
φ1=v

= 0 ⇒ v

(
m2 +

λ

6
v2

)
= 0.

For m2 > 0, we find the minimum to be at v = 0, while for m2 < 0, we find

v2 = −6m2

λ
. (3.12)

In Fig. 3.3 we represent the potential V (v, 0) with V defined in Eq. (3.3):

(a) (b)
.

Figure 3.3: Comparison of potential (3.3) for positive (a) and negative (b) mass term. The minimum
v = 0 becomes a maximum when m2 < 0. In order to implement the graphs, we set m2 = ±1.5
and λ = 1

We will now spontaneously symmetry break (SSB) our Lagrangian. This is done by ex-
panding the fields φj as their vacuum expectation value plus quantum fluctuating fields
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3.4 Self-Energy

χj :

φ1 = 〈φ1〉+ χ1 = v + χ1,

φ2 = 〈φ2〉+ χ2 = χ2, (3.13)

with v defined in Eq. (3.12). We now substitute these expression into Eq. (3.2). We get the
following Lagrangian:

L =
3

2

m4

λ
+

1

2
[(∂µχ1)2 + (∂µχ2)2] +m2χ2

1−
λ

6
vχ1(χ2

1 +χ2
2)− λ

4!
(χ2

1 +χ2
2)2, (3.14)

where we can see that there is no mass term for the field φ2. Its propagator is then massless,
and so is the mode. It is a Goldstone boson. Our result agrees with Goldstone’s theorem
since we have a massless mode for one broken symmetry.

3.4 Self-Energy
After SSB, we have two new interaction terms:

− λ

6
vχ1(χ2

1 + χ2
2)− λ

4!
(χ2

1 + χ2
2)2, (3.15)

which are represented by the following Feynman diagrams:

χ2

χ2

χ2

χ2

χ2

χ1

χ2

χ1

χ2

χ2

χ1

χ1

χ1

χ1

χ1

Figure 3.4: Vertices corresponding to interactions like χ4
2, χ1χ

2
2, χ2

1χ
2
2 and χ4

1, respectively. The
massless mode is represented by dashed lines.

The new interaction terms have a contribution to the self-energy of the modes, which
contributes to the mass. In this section we are checking whether the mode φ2 remains
massless after one-loop corrections, or not. In order to do this, we first build the self-
energy diagrams corresponding to the mode φ2 from the vertices in Fig. 3.4. We do this
by introducing two external lines to each one of the diagrams in Fig. 3.4 and restricting
ourselves to one-loop corrections. We get:

+ + (3.16)

Figure 3.5: One-loop self-energy diagrams for the mode φ2
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Chapter 3. Complex scalar field

Let us now evaluate these diagrams. Starting from the left, the first one corresponds to
the self-interaction of the mode φ2. Its contribution is given by

⇒ −iλ
∫

d4k

(2π)4

1

k2
, (3.17)

which is a massless integral. This type of integrals cannot be regularized, but since they
are massless, they give a zero contribution at the UV limit. This diagram vanishes because
we are evaluating it at the minimum of the classical potential, i.e. we are choosing the
minimum of the effective potential to be where the classical minimum is. The second self-
energy diagram is the correspondent to the interaction between φ1 and φ2 (at 1st order).
Its contribution is given by

⇒ − iλ
3

∫
d4k

(2π)4

i

k2 + 2m2
. (3.18)

We see that the integral is quadratically divergent. In order to evaluate this it, we use
dimensional regularization (DR). The reason for this is that DR preserves the symmetries
of the system [21, 22]. DR consists in performing the integral in d = 4 − ε dimensions
and then take the limit ε → 0 in the result. In this way, we isolate the divergent part by
splitting the result into finite and infinite parts. We now proceed to evaluate the integral.
We first write dnk = dΩndk k

n−1, where dΩn is an n-dimensional differential volume.
We have ∫ ∞

0

dnk

(2π)n
1

k2 +M2
=

∫
dΩn

∫ ∞
0

dk

(2π)n
kn−1

k2 +M2
,

where n = 4 − ε. We have also made the substitution
√

2m = M , for convenience.
The first integral gives a n-dimensional surface. In order to evaluate the second one, we
introduce the substitution k = M

√
t. Then:∫ ∞

0

dk

(2π)n
kn−1

k2 +M2
=

1

2
Mn−2 1

(2π)n

∫ ∞
0

dt
t
n
2−1

t+ 1
. (3.19)

Here we recognize the integral to be an Euler’s beta function B(n2 , 1 −
n
2 ) [23]. Our

integral then becomes

1

2
Mn−2 1

(2π)n
2πn/2

Γ(n/2)︸ ︷︷ ︸
Ωn

B
(n

2
, 1− n

2

)
=

M2

(4π)n/2
Mn−4Γ(1− n

2
), (3.20)

where we used that B
(
n
2 , 1−

n
2

)
= Γ(n2 )Γ(1− n

2 ). We want now to substitute n = 4− ε
and expand the expression near the pole. The pre-factor of Eq. (3.20) cannot be expanded
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3.4 Self-Energy

for small ε since it is not dimensionless. In order to solve this problem, we need to multiply
it by a mass scale M̃4−n such that [M̃ ] = [M ]:

M2

(4π)n/2

(
M

M̃

)n−4

Γ(1− n

2
). (3.21)

The Gamma function can be expanded as follows:

Γ(1− n

2
) = Γ(1− 4− ε

2
) = Γ(−1 +

ε

2
) = −2

ε
− 1 + γ +O(ε), (3.22)

where we introduced the Euler-Mascheroni constant γ = 0.57721 . . . [24]. We will also
make use of

Mε = eε lnM ≈ 1 + ε lnM +O(ε2). (3.23)

Before introducing the expansions (3.22) and (3.23), we multiply Eq. (3.21) by a factor of(
eγ−1

4π

) ε
2

. In this way, we get rid of constants which do not affect to the divergence. This

procedure is called modified minimal subtraction (MS), which is a renormalization scheme
that not only removes divergences but also factors proportional to the Euler-Mascheroni
constant γ [21]. We then have

1

12π2ε
λm2

[
1 + ε ln

(
M̃

M

)
+O(ε2)

]
, (3.24)

where we can see that it diverges in the limit ε→ 0.

The last contribution to the self-energy is the one corresponding to the interaction φ1φ2φ2.
By looking at its diagram in Fig. 3.4, we see that we have a symmetry factor of 2. The
contribution is then given by

⇒
(
−ivλ

3

)2 ∫
d4k

(2π)4

i

k2 + 2m2

i

(k + q)2 + 2m2
, (3.25)

with v2 defined in Eq. (3.12) Here we have given momentum k to the external lines of the
diagram and momenta k + q and q to the upper and lower branch of loop, respectively.

In order to evaluate integrals like the one in Eq. (3.25), we need to use the so-called Feyn-
man parameterization [21]:

1

ab
=

∫ 1

0

dz

[az + b(1− z)]2
. (3.26)

We make a = k2 + 2m2 and b = (k + q)2 + 2m2 and find for the denominator

ab = [k2 + 2m2][(k + q)2 + 2m2]

= k2 + q2 + 2m2 + 2kq(1− z) + q2(1− z)
= p2 + 2m2 + q2z(1− z), (3.27)
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Chapter 3. Complex scalar field

where we have introduced the variable p with p2 = [k + q(1− z)]2 in order to cancel the
term linear in k. The integral in Eq. (3.25) reduces to:∫ 1

0

dz

∫
d4p

[p2 + 2m2 + q2z(1− z)]2
, (3.28)

which has an analogous structure to Eq. (3.18) if we make the substitution M2(z) =
2m2 + q2z(1 − z). We perform the integral (in p) in n = 4 − ε dimensions in the same
way as before. We get:∫ ∞

0

dp
pn−1

[p2 +M2]2
=

1

2
Mn−4

∫ ∞
0

dt
t
n
2−1

[t+ 1]2
=

1

2
Mn−4B

(n
2
, 2− n

2

)
. (3.29)

We now recover all the pre-factors and introduce a mass scale and a factor of
(
eγ

4π

)2−n2 .In
this way, as we mentioned before, the pre-factor can be expanded and we cancel all con-
stants proportional to γ. We get:(

eγ

4π

)2−n2 1

(4π)n/2
2πn/2

Γ(n/2)
Γ
(

2− n

2

)∫ 1

0

dz

(
M

M

)n−4

. (3.30)

We plug in the expansions (3.23) and Γ
(
ε
2

)
≈ 2

ε − γ and recover the vertex factor of
Eq. (3.25). This self-energy contribution gives:

− 1

12π2ε
λm2

[
1 + ε

∫ 1

0

dz ln

(
M̃

M

)
+O(ε2)

]
, (3.31)

which, at zeroth order in ε, has the same value as the self-energy contribution in Eq. (3.24)
but with opposite sign and hence the contributions cancel. If we go to first order in ε,
the contribution in Eq. (3.31) depends on the external momentum q. In order for both
contributions to cancel, we need q2 = 0. This is known as an on-shell renormalization
condition. We have checked that loop-corrections do not give mass to the field φ2 and thus
it remains massless after quantum corrections.

In order to complete our discussion on one-loop corrections, we also need to take into
consideration one and two-point amplitudes, also known as tadpole diagrams. We will do
this in section 3.5.3, using a different parameterization for the field Φ.

3.5 Polar parameterization
We now introduce the polar parameterization for our complex scalar field:

Φ = ρeiθ, (3.32)

where ρ and θ are real fields. Substituting Eq. (3.32) into Eq. (3.1), the Lagrangian be-
comes:

L = ρ2(∂µθ)
2 + (∂µρ)2 −m2ρ2 − λ

6
ρ4. (3.33)
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3.5 Polar parameterization

With this parameterization, the U(1) symmetry explained in section 3.1 becomes a shift
θ → θ+α, being α is a constant. We see that the Lagrangian remains invariant by making
this substitution in Eq. (3.33).

Note that there is no mass term for the θ field in the potential. By using the polar paramet-
rization for the complex scalar field, we have made explicit that θ is a Goldstone mode [8].

3.5.1 Feynman rules
We will now derive the Feynman rules for the fields ρ and θ. We first write the Lagrangian
in Eq. (3.33) in three parts, L = Lρ + Lθ + Lint, where

Lρ = (∂µρ)2 −m2ρ2, (3.34)

Lθ = ρ2(∂µθ)
2, (3.35)

Lint =− λ

6
ρ4. (3.36)

The Lagrangian in Eq. (3.34) describes a real scalar massive field. Our discussion in
section 3.2 applies here and hence the propagator for the ρ field is the same as the one in
Eq. (3.9):

∆ρ(k) =
1

k2 −m2 + iε
. (3.37)

The Lagrangian describing the θ field only has kinetic term and thus its propagator is the
one for a real scalar massless field:

∆θ(k) =
1

k2 + iε
. (3.38)

Note that in both Eq. (3.37) and (3.38), we have again added a term iε to avoid the diver-
gence in the limit k2 → 0.

We lastly have Lint, which describes the self-interaction of the ρ field:

ρ(x3)

ρ(x1)

ρ(x4)

ρ(x2)

Figure 3.6: Vertex corresponding to interaction ρ4.

As we saw in section 3.2, the vertex factor is given by iLint times a symmetry factor. In this
case, we again have 4! equivalent permutations for the ρ field and hence, the symmetry
factor is 4!. We find:

− iλ

6
× 4! = −4iλ. (3.39)

Note that the θ field does not have interacting term in the Lagrangian.
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Chapter 3. Complex scalar field

3.5.2 Spontaneous symmetry breaking
The potential of the Lagrangian in Eq. (3.33) has again two minima depending on whether
the mass term is positive or negative. For m2 > 0, we again find the minimum at v = 0.
For m2 < 0, the potential is minimized at v2 = − 3m2

λ . We now proceed as we did in
section 3.3 and choose the vacuum in the ρ direction, i.e., 〈ρ〉 = v and 〈θ〉 = 0 . We
expand ρ around its vev plus quantum fluctuating fields:

ρ = v + h,

and introduce the expansion in the Lagrangian (3.33). We get

L =
3

2

m4

λ
+ (∂µh)2 +h2(∂µθ)

2 + 2m2h2− λ
6
h4− 2λ

3
vh3 + (v2 + 2vh)(∂µθ)

2 (3.40)

As expected, there is no mass term for the mode θ and hence it is a Goldstone boson.

3.5.3 Self-Energy
In this section, we proceed as we did in section 3.4 and compute the self-energy contri-
butions to the mode θ in order to check if it remains massless after loop corrections. The
interacting terms after SSB are:

− λ

6
h4 − 2λ

3
vh3 + (h2 + 2vh)(∂µθ)

2, (3.41)

which are represented in the following Feynman diagrams:

h

h

h

h

∂µθ

h

∂µθ

h

∂µθ

∂µθ

h

h

h

h

Figure 3.7: Vertices corresponding to interactions like h4, h2(∂µθ)
2, h(∂µθ)2 and h3, respectively.

The mode θ is represented with dashed lines.

The only two diagrams contributing to the self-energy of θ are the second and the third in
Fig. 3.7 and, they generate the two following self-energy diagrams:

+ (3.42)

Figure 3.8: One-loop self-energy diagrams for the mode φ2
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3.5 Polar parameterization

Note that the diagrams are exactly the same as in section 3.4 but with χ1 → h and χ2 → θ
and different vertex factor. We know that these contributions cancel each other by demand-
ing an on-shell renormalization condition. Let us thus skip the middle steps in this part and
use the results we obtained in section 3.4 and, consider directly the tadpole contributions.

Two-point and One-point functions

Because the renormalization conditions we have used in the previous sections, new contri-
butions to the self-energy of the modes appear. We need to check that either all contribu-
tions vanish or they cancel each other, so that the mode φ2 (or θ) remains massless.

We can get the one-point contributions are given by:

+ +

Figure 3.9: One-Point amplitudes.

The first diagram in Fig. 3.9 corresponds to the on-shell renormalization condition, which
is equivalent to saying that this first term vanishes and does not have any contribution to
the self-energy.

The second gives the following contribution

⇒ − ivλ
3

∫
d4k

(2π)4

1

k2 + 2m2
, (3.43)

which is the same integral as Eq. (3.18). We computed it, with a different symmetry factor
and we saw it gives a non-zero contribution to the self-energy. We lastly have the third
diagram, which gives a contribution of

⇒ −iλ
∫

d4k

(2π)4

1

k2 + µ2
, (3.44)

where we added a regulator µ2, with [µ] = [m]. In this way we can perform the integral
since otherwise the propagator is massless and we cannot regularize it. Once again, the
integral is of the form of Eq. (3.18). We know that the result is proportional to the regulator
µ2, hence we know that the integral vanishes in the massless limit. We thus have only one
non-zero contribution. Since the mode φ2 (and θ) is massless, we will have to cancel this
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Chapter 3. Complex scalar field

contribution with a counter-term [25].

In a general renormalization scheme,the mass of the fields will be also shifted by two-
point functions [25]. From the diagrams in figure 3.9, we can build the following ones:

+ +

Figure 3.10: Two-Point amplitudes.

We notice that the diagrams in figure 3.10 are essentially the same as the ones in fig-
ure. The only difference between these diagrams and the ones in Fig. 3.9 are the external
momenta lines. But these will only contribute with a symmetry factor. The two-point amp-
litudes are proportional to the one-point ones; and since the former contribution vanishes,
so does this.
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Chapter 4
Spontaneous symmetry breaking in
systems at finite temperature

The goal of this part of the thesis is to study a system described with a charged scalar field.
These type of fields describe bosons with positive and negative charge, that is, bosons
which are each other’s antiparticles [26]. We will consider a complex scalar field with a
λφ4 potential. We will first find the conserved Noether current jµ and then couple them to
the Hamiltonian of the system through a finite chemical potential. We will go back to the
Lagrangian, work out the SSB and compute the mass spectrum of the theory. Once done
with this, we will compute the partition function for the system and derive the thermody-
namic potential from it.

Our discussions in this chapter follow mainly from Refs. 26, 27, 28, 29, 30, 31 and 32.

4.1 U(1) Symmetry and Noether current
Let us consider a complex scalar field described by the Lagrangian

L0 = (∂µΦ)†(∂µΦ)−m2Φ†Φ− λ

6
(Φ†Φ)2, (4.1)

with m2 > 0. We saw in chapter 3 that L0 is invariant under the symmetry group U(1),
i.e., the transformations

Φ→ eiθΦ,

Φ† → e−iθΦ†, (4.2)

where θ is space-time independent.
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Chapter 4. Spontaneous symmetry breaking in systems at finite temperature

Since the system has a continuous symmetry, it follows from Noether’s theorem that there
is a current which is conserved in time. The current is given by:

jµ =
∑
a

∂L
∂(∂µϕa)

δϕa, (4.3)

where the subscript a runs over the collection of fields. The infinitesimal transformations
δϕa’s can be computed from Eq. (4.2) by expanding around θ = 0. To first order in θ, we
have:

Φ→ eiθΦ ∼ (1 + iθ)Φ,

Φ† → e−iθΦ† ∼ (1− iθ)Φ†,

which gives δΦ = iθΦ and δΦ† = −iθΦ†. We then get for the Lagrangian in Eq. (4.1):

jµ =
∂L0

∂(∂µΦ)
δΦ +

∂L0

∂(∂µΦ†)
δΦ† = iθ[(∂µΦ)†Φ− Φ†(∂µΦ)]. (4.4)

Note that we can ignore the θ; the term in the bracket in Eq. (4.4) is still conserved. The
total charge Q can be computed by integrating the charge density ρ = j0 over a large
volume:

Q =

∫
Ω

d3x j0 = i

∫
Ω

d3x [(∂0Φ)†Φ− Φ†(∂0Φ)]. (4.5)

4.2 Adding a chemical potential
We will now compute the Hamiltonian H0 for the Lagrangian in Eq. (4.1). H0 is defined
as the Legendre transformation of L0:

H0 =
∑
a

πaϕ̇a − L0 =
∑
a

∂L0

∂ϕ̇a
ϕ̇a − L0, (4.6)

where πa is the canonical momentum, ϕ̇ means derivative of ϕ with respect to time and,
again, a runs over the collection of fields. From the Lagrangian in Eq. (4.1), it follows that
π = Φ̇† and π† = Φ̇. This gives the following Hamiltonian:

H0(π,Φ) = π†π + (∇Φ)†(∇Φ) + V (Φ†Φ), (4.7)

where V (Φ†Φ) = m2Φ†Φ + λ
6 (Φ†Φ)2.

We can now coupleH0 to the conserved charge. This is done by shifting it asH → H0 − µρ,
where ρ = j0 is the time-component of the Noether current defined in Eq. (4.4) and µ is a
nonzero chemical potential:

H(π,Φ) = π†π + (∇Φ)†(∇Φ)− iµ(πΦ− Φ†π†) + V (Φ†Φ). (4.8)

The next step now is to transform back to the Lagrangian. We first invert Eq. (4.6):

L =
∑
a

πaϕ̇a −H =
∑
a

πa
∂H
∂πa
−H, (4.9)
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4.3 Spontaneous symmetry breaking

where we used the Hamilton equation Φ̇ = ∂H/∂π. For the shifted Hamiltonian we have:

Φ̇ = π† − iµΦ→ π† = Φ̇ + iµΦ,

Φ̇† = π + iµΦ† → π = Φ̇† − iµΦ†. (4.10)

In the following derivation we will, for convenience, omit the potential V (Φ†Φ) since it is
not affected by the transformation. Plugging the expressions for π and π† into Eq. (4.9),
we have:

(Φ̇† − iµΦ†)Φ̇ + (Φ̇ + iµΦ)Φ̇† − π†π − (∇Φ)†(∇Φ) + iµ(πΦ− π†Φ†)
= 2Φ̇†Φ̇ + iµ(ΦΦ̇† − Φ†Φ̇)− Φ̇†Φ̇ + µ2Φ†Φ− (∇Φ)†(∇Φ) + iµ(Φ̇†Φ− Φ̇Φ†)

= (∂0Φ)†(∂0Φ)− iµ[(∂0Φ)†Φ− Φ†(∂0Φ)] + µ2Φ†Φ− (∇Φ)†(∇Φ).

We see that the first three terms of the last line of this derivation can be rewritten as
(∂0 + iµ)Φ†(∂0 − iµ)Φ. Thus, the new Lagrangian is:

L = (∂0 + iµ)Φ†(∂0 − iµ)Φ− (∇Φ)†(∇Φ)− V (Φ†Φ), (4.11)

where we see that adding the chemical potential µ to the Hamiltonian has the same effect
as gauging the 0-component of the field (∂0 → ∂0 + iµ).

4.3 Spontaneous symmetry breaking

For convenience, we write the Lagrangian of Eq. (4.11) as

L = (∂µΦ)†(∂µΦ)− iµ[(∂0Φ)†Φ− Φ†(∂0Φ)]− (m2 − µ2)Φ†Φ− λ

6
(Φ†Φ)2. (4.12)

We can see that the mass term is now shifted by the chemical potential µ. Let us first
compute the lowest energy configuration of the field, that is, the value v of the field that
minimizes the potential V (Φ†Φ):

Φ→ 〈Φ〉 =
v√
2
⇒ ∂V

∂Φ

∣∣∣∣
Φ=v/

√
2

= (µ2 −m2)v +
λ

6
v3 = 0, (4.13)

where the factor 1/
√

2 was added due to normalization. We then find two solutions:

v = 0 (4.14)

v2 =
6

λ
(µ2 −m2). (4.15)

In the Fig. 4.1, we compare the two solutions. Not that the solution v = 0 only occurs
when µ2 < m2:
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Chapter 4. Spontaneous symmetry breaking in systems at finite temperature

(a) (b)
.

Figure 4.1: Comparison between the two solutions for Eq. (4.13). Note that the minimum v = 0
becomes a maximum when µ2 > m2. In order to implement the graphs, we setm = 1, µ = 0, λ =
1 in 4.1a and m = 1, /µ = 2, λ = 1 in 4.1b

4.3.1 Mass spectrum before SSB

Let us recall that m2 > 0. In the shifted Lagrangian of Eq. (4.11), the symmetry spon-
taneously breaks when the mass term of L is positive. We have two phases, a normal
phase, as shown in Fig. 4.1a, with µ2 < m2 and a broken phase, illustrated Fig. 4.1b, with
µ2 > m2. Let us first assume µ2 < m2. We only take the part quadratic in the fields in
Eq. (4.12). The propagator for L can be then found from the action S:

S =

∫
d4x

[
(∂µΦ)†(∂µΦ)− iµ[(∂0Φ)†Φ− Φ†(∂0Φ)]− (m2 − µ2)Φ†Φ

]
=

∫
d4x

[
Φ†
[
−�−m2 + µ2

]
Φ− iµ[(∂0Φ)†Φ− Φ†(∂0Φ)]

]
, (4.16)

where we partial integrated once in order to get � = ∂µ∂
µ. If we now write the integrand

above as a matrix product like (φ1 φ2)D(φ1 φ2)†, we see that the propagator D is not
diagonal:

D =

(
−�−m2 + µ2 −2iµ∂0

2iµ∂0 −�−m2 + µ2

)
. (4.17)

We can compute the dispersion relation for the fields from the propagator. We first Fourier
transform it to momentum space:

Dk =

(
E2 − k2 −m2 + µ2 −2iEµ

2iEµ E2 − k2 −m2 + µ2

)
, (4.18)

where we used ∇ = −ik and renamed the 0-component, k0, of the 4-momentum to E.
The dispersion relation for the normal phase can be computed by demanding detDk = 0.
We will have a 4-degree polynomial and therefore four solutions. Taking only the ones
that have E2 > 0, we find:

(E − µ)2 = k2 +m2. (4.19)

Note that if we set µ = 0, we recover the usual dispersion relation for a massive field of
mass m.
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4.3 Spontaneous symmetry breaking

4.3.2 SSB

As we mentioned before, SSB will occur when the mass term of the Lagrangian is positive.
Let us assume now that µ2 > m2 . We first recall that Φ is a complex scalar field. We can
then express it using its Euclidean parameterization:

Φ =
1√
2

(φ1 + iφ2), (4.20)

where φ1 and φ2 are real fields. It follows that Φ†Φ = 1
2 (φ2

1 + φ2
2), which implies that

(∇Φ)†(∇Φ) = 1
2 [(∇φ1)2 + (∇φ2)2]. Substituting Eq. (4.20) into (4.11), the remaining

term can then be expressed as:

(∂0 + iµ)Φ†(∂0 − iµ)Φ =
1

2
(∂0 + iµ)(φ1 − iφ2)(∂0 − iµ)(φ1 + iφ2)

=
1

2
[∂0φ1 − i∂0φ2 + iµφ1 + µφ2]

× [∂0φ1 + i∂0φ2 − iµφ1 + µφ2]

=
1

2

[
(∂0φ1)2 + (∂0φ2)2

]
+ µ[φ2(∂0φ1)− φ1(∂0φ2)] +

1

2
µ2(φ2

1 + φ2
2).

Rearranging all terms, we write L in terms of φ1 and φ2 as

L =
1

2
[(∂µφ1)2 + (∂µφ2)2] + µ[φ2(∂0φ1)− φ1(∂0φ2)]− V (φ1, φ2), (4.21)

with

V (φ1, φ2) =
1

2
(m2 − µ2)(φ2

1 + φ2
2) +

λ

4!
(φ2

1 + φ2
2)2. (4.22)

The next step towards SSB is to expand the field around the vacuum, v. We choose the it
to be pointing in the φ1 direction:

φ1 → v + χ1,

φ2 → χ2, (4.23)

with v defined in Eq. (4.14). We can now substitute these expressions into the Lagrangian
of Eq. (4.21). After rearranging all terms, we obtain

Lχ =
3

2λ
(m4 − µ4) +

1

2
[(∂µχ1)2 + (∂µχ2)2] + µ

[
χ2(∂0χ1)− χ1(∂0χ2)

]
−(µ2 −m2)χ2

1 −
λ

6
vχ1(χ2

1 + χ2
2)− λ

4!
(χ2

1 + χ2
2)2. (4.24)

Note that we have omitted the term proportional to ∂0χ2. This can be done because it is a
total derivative and therefore, it will not affect the action or the equation of motion.
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Chapter 4. Spontaneous symmetry breaking in systems at finite temperature

4.3.3 Mass spectrum after SSB
We will now proceed to compute the dispersion relation of the modes after SSB. We start
by again taking the quadratic part of the Lagrangian in Eq. (4.24) and writing the action:

Sχ =
1

2

∫
d4x [(∂µχ1)2 + (∂µχ2)2] + 2µ

[
χ2(∂0χ1)− χ1(∂0χ2)

]
− 2(µ2 −m2)χ2

1.

(4.25)

We again partial integrate once, so that we can write (∂µχj)
2 = −χj�χj . The integrand

above can again be written as a matrix product like (χ1 χ2)Dχ(χ1 χ2)†, where Dχ is the
propagator after SSB. In momentum space, it has the form

Dχ(k2) =

(
E2 − k2 + 2m2 − 2µ2 2iEµ

−2iEµ E2 − k2

)
. (4.26)

The dispersion relation condition again is detDχ(k2) = 0

detDχ(k2) = E4 − 2E2k2 + k4 + 2E2m2 − 2k2m2 − 6E2µ2 + 2k2µ2 = 0, (4.27)

and solving for E2, we have

E2 = k2 −m2 + 3µ2 ±
√
m4 + 4k2µ2 − 6m2µ2 + 9µ4. (4.28)

We now expand the square root around k2 = 0

E2 ≈ k2 −m2 + 3µ2 ±
[
m2 − 3µ2 +

2µ2

m2 − 3µ2
k2

]
+O(k4). (4.29)

We thus have two dispersion relations:

E2
+ =

µ2 −m2

3µ2 −m2
k2 +O(k4) (4.30)

E2
− = 6µ2 − 2m2 +

5µ2 −m2

3µ2 −m2
k2 +O(k4) (4.31)

We can see that the dispersion relation in Eq. (4.30) is linear in k. This corresponds to
a Goldstone boson of type-I,1. Note that the mode becomes massless at µ = m. On the
other hand, if we take the limit of k2 → 0 in Eq. (4.31), we see that the mode has a mass
gap. Hence, this dispersion relation corresponds to the mode χ1, which remains massive
after SSB.

In Fig. 4.2, we plot the mass term of L, named here M , as a function of the chemical
potential µ. We see how SSB occurs at a critical value for the chemical potential, µc = m,
and how the mode φ1 acquires mass, while the mode φ2 becomes massless.

1The energy of the mode goes as E ∼ k2n+1.
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4.4 Partition function and thermodynamic potential

Figure 4.2: Mass spectrum of L as a function of µ. We have shaded the phase before SSB. The axes
are normalized by the mass m. After SSB, the mode φ2 becomes a massless mode.

4.4 Partition function and thermodynamic potential
Following now appendix F.1, we write the partition function Z, for the Lagrangian in
Eq. (4.21). Once again, we only take the terms which are quadratic in the fields. The
action, named here SE , can be computed from L by integrating it over space-time volume.
This time though, we integrate over imaginary time τ = it:

SE =
1

2

∫ β

0

dτ

∫
d3x

[
[(∂µφ1)2 + (∂µφ2)2] + 2µ[φ2(∂0φ1)− φ1(∂0φ2)]

−(m2 − µ2)(φ2
1 + φ2

2)

]
. (4.32)

The partition function is then given by:

Z =

∫
D[φ1]D[φ2] exp

[
− SE

]
, (4.33)

where the fields φ1 and φ2 satisfy that φi(x, 0) = φi(x, β). We now take Eq. (4.23) and
Fourier expand the quantum fluctuations of each real field with respect to the vacuum as
follows:

φ1 =
√

2ζ cos θ +

√
β

V

∞∑
n=−∞

∑
k

exp[i(k · x− ωnτ)]φ1n(k), (4.34)

φ2 =
√

2ζ sin θ +

√
β

V

∞∑
n=−∞

∑
k

exp[i(k · x− ωnτ)]φ2n(k), (4.35)

where the parameters ζ and θ are constants which determine the low-energy behavior of
the fields, β = 1/T is the inverse of the temperature and, V is the volume. Comparing
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Chapter 4. Spontaneous symmetry breaking in systems at finite temperature

both Eq. (4.23) and (4.34), we notice that v =
√

2ζ cos θ and
√

2ζ sin θ = 0, which
implies θ = 0. This shows that the U(1) symmetry is broken by choosing a specific
angular direction. We have also introduced as zeroth component of the 4-momentum, the
Matsubara frequencies, ωn. The reason for this is that ωn are periodic and we want to
preserve the boundary condition of periodicity of the fields, φ(x, 0) = φ(x, β) [26]. Given
n ∈ Z, these frequencies are given by:

ωn =

{
2πn/β for bosons,
(2n+ 1)π/β for fermions.

(4.36)

If we partial integrate once Eq. (4.32), we can then express the integrand as:

(
φ1 φ2

)(−�−m2 + µ2 −2iµ∂0

2iµ∂0 −�−m2 + µ2

)(
φ1

φ2

)
. (4.37)

We now substitute the expressions for the fields in equations (4.34) and (4.35). The parti-
tion function then is

Z = exp[ζ2βV (µ2 −m2)]

∫
D[φ1]D[φ2] exp

[
−1

2

∑
n

∑
k

(
φ1 φ2

)
D

(
φ1

φ2

)]
,

(4.38)
where D is:

D = β2

(
ω2
n + ω2 − µ2 −2µωn

2µωn ω2
n + ω2 − µ2

)
, (4.39)

and where we have introduced ω =
√

k2 +m2. In order to perform the integrations over
volume and over τ , we also used that:

δkk′ =
1

V

∫
d3x ei(k−k′)x. (4.40)

The next step is to compute the thermodynamic potential. We make use of Eq. (F.15).
Note that the partition function of Eq. (4.38) is a simple Gaussian integral in two dimen-
sions [13]: ∫

d2x exp

(
−1

2
xiAijx

j

)
=

√
(2π)2

detA
, (4.41)

where A is a symmetric matrix. Putting all together, we express the partition function of
Eq. (4.38) as:

Z = exp

[
ζ2βV (µ2 −m2)

]
exp

[
−1

2

∑
n

∑
k

ln detD

]
. (4.42)

The thermodynamic potential, here named Ω, can be computed from Z by taking the
logarithm:

Ω =
1

β
lnZ =

1

β

[
ζ2βV (µ2 −m2)− 1

2
ln

(∏
n

∏
k

detD

)]
. (4.43)

40



4.4 Partition function and thermodynamic potential

We now proceed to evaluate the last term in Eq. (4.43):

ln detD = ln

[∏
n

∏
k

β4
[
(ω2
n + ω2 − µ2)2 + 4µ2ω2

2

]]

= ln

[∏
n

∏
k

β4
[
ω4
n + ω4 + µ4 + 2µ2ω2

n − 2µ2ω2 + 2ω2ω2
n

]]
.

We now add and subtract 2ωµωn, so we can complete a total square. In this way, the terms
inside the bracket can be rearranged like:

ln detD = ln

[∏
n

∏
k

β4[ω2
n + (ω − µ)2][ω2

n + (ω + µ)2]

]

= ln

[∏
n

∏
k

β2[ω2
n + (ω − µ)2]

]
+ ln

[∏
n

∏
k

β2[ω2
n + (ω + µ)2]

]
, (4.44)

where we used that ln(a · b) = ln a+ ln b. The potential then reduces to:

Ω = ζ2V (µ2 −m2)− 1

2β

k∑
n

ln
[
β2[ω2

n + (ω − µ)2]
]
− 1

2β

k∑
n

ln
[
β2[ω2

n + (ω + µ)2]
]
.

(4.45)

We now recall that ωn = 2πnT and make use of Ref. 26 for the following expressions

ln[(2πn)2 + +β2ω2] =

∫ β2ω2

1

[
dx2

x2 + (2πn)2
+ ln[1 + (2πn)2]

]
, (4.46)

and
∞∑

n=−∞

1

n2 + (x/2π)2
=

2π2

x

[
ex + 1

ex − 1

]
, (4.47)

in order to perform the sum over the Matsubara frequencies. We first make the sub-
stitutions ω − µ → ω and ω + µ → ω in the two last terms of Eq. (4.45). Substi-
tuting then equations (4.46) and (4.47), each logarithm in Eq. (4.45) can be written as
1
2βω − ln(1 − exp[−βω]). Performing the sum over ωn makes ω = Ek, where Ek
are the dispersion relations defined in Eq. (4.28) . We finally take the continuum limit∑

k →
∫
d3k. The thermodynamic potential Ω then is:

Ω = ζ2V (µ2 −m2)− V
∫

d3k

(2π)3

[
Ek + T ln (1− exp[−β(Ek − µ)])

+T ln
(
1− exp[−β(Ek + µ)]

)]
. (4.48)

Note that the first term in the integrand is independent of the temperature and leads to a
divergent integral, which we will proceed to renormalize in the next section. Note also
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Chapter 4. Spontaneous symmetry breaking in systems at finite temperature

that the angular dependence θ does not appear in the result, which makes sense since the
theory is U(1) symmetric. The two other terms in the integrand represent the particle and
antiparticle contribution, respectively. This can be easily seen if we compute the charge
density ρ = Q/V of the condensate. We apply Eq. (F.16) to (4.48) and then divide by the
volume V . We have:

ρ =
1

V

∂

∂µ
Ω = 2µζ2 +

∫
d3k

(2π)3

(
1

exp[β(Ek − µ)]− 1
− 1

exp[β(Ek + µ)]− 1

)
.

(4.49)

The first term of the integrand corresponds to the particle contribution to the condensate,
while the second term corresponds to the antiparticle contribution. Note that for µ = 0,
both terms are the same and thus, they cancel, i.e., both particles and antiparticles make
the same contribution. We thus see that charge condensation requires a nonzero chemical
potential.

As a last comment before closing this section, it is worth mentioning that the free para-
meter ζ, which appears both in Eq. (4.48) and (4.49), is related to the charge carried by
condensed particles and, it can only be computed when |µ| = m since at fixed temperature
and chemical potential, Ω has an extremum with respect to variation of ζ, hence it is zero
otherwise:

∂Ω

∂ζ
∼ (µ2 −m2)ζ. (4.50)

The parameter ζ can then be obtained from Eq. (4.49) by setting |µ| = m.

4.5 Renormalization

Let us now take a closer look at Eq. (4.48). If we take the limit T → 0, the integral corres-
ponds to the 1-loop correction to the classical potential, V . As we mention in section 4.4,
the integral diverges and we therefore need to renormalize it. Instead of renormalizing
Eq. (4.48), which is only evaluated at the minimum v, defined in Eq. (4.14), we want to
renormalize a general expression. We hence go back to the expansions in Eq. (4.23) and,
instead expanding around v, we expand around a background field, φ0, which is equal to
v at the minimum. We make the substitutions φ1 → φ0 + χ1 and φ2 → χ2. The resulting
Lagrangian is

L =
1

2
[(∂µχ1)2 + (∂µχ2)2] + µ

[
χ2(∂0χ1)− χ1(∂0χ2)

]
− 1

2
(m2 − µ2 +

λ

2
φ0)χ2

1 +
1

2
(m2 − µ2 +

λ

6
φ0)χ2

2 + . . . , (4.51)

where we have only included terms quadratic in the fields since they are the ones contrib-
uting to the actions and hence, the terms we need in order to find the dispersion relations.
As usual, we get the propagator from the action by partial integrating once. We skip the
middle steps. In momentum space, the propagator for the Lagrangian in Eq. (4.51) is given
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by:

D =

(
E2 − k2 −m2 + µ2 − λ

2φ
2
0 2iEµ

−2iEµ E2 − k2 −m2 + µ2 − λ
6φ

2
0

)
. (4.52)

Demanding now detD = 0 and solving for E2, we get the general dispersion relation:

E2
± = k2 +m2 + µ2 +

λ

3
φ2

0 ±
1

6

√
144k2 µ2 + 144m2µ2 + 48λµ2φ2

0 + λ2φ4
0. (4.53)

Note that for φ0 = v, we recover the dispersion relations in Eq. (4.28). The whole potential
now looks like

V (φ0) =
1

2
(m2 − µ2)φ2

0 +
λ

4!
φ4

0︸ ︷︷ ︸
tree−level

+
∑
i=±

∫
d3k

(2π)3
Ei.︸ ︷︷ ︸

1−loop

(4.54)

We now proceed to evaluate the integral in Eq. (4.54). Since the dispersion relation is not
analytical, we need to first approximate it. In order to do this, we expand in powers of k
around∞. The easiest way to do this is to define x = 1

k and expand around x = 0. We
first redefine the constants in the integral as

a =
1

144µ2
[144m2µ2 + 48λµ2φ2

0 + λ2φ0
4], (4.55)

b = m2 + µ2 +
λ

3
φ2

0. (4.56)

The expressions to expand then are:

E± =
1

x

√
1 + bx2 ± 2xµ

√
1 + ax2. (4.57)

We expand the two expressions around x = 0 and then perform the sum. The result gives
the contributions to the 1-loop corrections. Let us rewrite k as k for simplicity. We have∫

d3k

(2π)3

[
2k +

(
m2 +

1

3
λφ2

0

)
1

k
−
(
m4

4
+

1

6
m2λφ2

0 +
5 λ2

144
φ4

0

)
1

k3

]
. (4.58)

If we integrate this expression until a cutoff of momentum Λ, in the limit Λ → ∞ the
divergent ultraviolet (UV) behavior of each term appears. We can see that they are quartic,
quadratic and logarithmic, respectively. We now proceed to regularize each integral.

The first two terms, proportional to k and k−1, respectively are massless integrals, i.e.
there is no mass term in the denominator. Such integrals cannot be regularized. In fact
the lack of mass term makes them have zero contribution at the UV limit. A less physical
but more mathematical way of justifying this is the so-called ’t Hooft and Veltman conjec-
ture [33].
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Chapter 4. Spontaneous symmetry breaking in systems at finite temperature

Let us now look at the logarithmic divergent term. The problem with this type of in-
tegral is that it is both UV and infrared2 (IR) divergent. In order to regularize this type of
integrals, we need to use two regulators. The UV divergence can be regulated by using
dimensional regularization (DR) and, by giving mass to the particle and then taking the
massless limit, we can take care of the IR divergence. Let us then make the substitution

1

k3
→ 1

[k2 +M2]
3
2

, (4.59)

which has the same UV behavior and is not IR divergent. Note that the parameter M has
dimensions of mass. We regularize the integral by performing it in n = 3− ε dimensions.
We have ∫

dnk

(2π)n
1

[k2 +M2]
3
2

=
1

(2π)n
1

M3

∫
dΩn

∫
dk

kn−1[
1 + k2

M2

] 3
2

, (4.60)

where we used dnk = dΩndk k
n−1. Making now the substitution k =

√
Mt, we can

rewrite this expression in a way where we can recognize a Beta function [23]:

1

2
Mn−3 Ωn

(2π)n

∫
dt

t
n
2−1

(1 + t)
3
2

=
1

2
Mn−3 Ωn

(2π)n
B

(
n

2
,

3− n
2

)
. (4.61)

We cannot proceed to expand the expression around the pole ε since it is not dimensionless.
In order to fix this, we multiply the expressions by a parameter M̃3−n, such that [M ] =
[M̃ ]. We then have

1

2

(
eγ

4π

) ε
2
(
M

M̃

)n−3
Ωn

(2π)n
B

(
n

2
,

3− n
2

)
=

1

2

(
eγ

4π

) ε
2
(
M

M̃

)n−3
Ωn

(2π)n
Γ
(
n
2

)
Γ
(

3−n
2

)
Γ
(

3
2

) .

(4.62)
where we have added a factor [exp(γ)/4π]ε/2. The reasons behind this is the renormaliz-
ation condition we are using. In the modified minimal substraction scheme (MS), we do
not only subtract the divergent poles but also factors proportional to the Euler-Mascheroni
constant γ. We now make use of:

Mε = eε lnM ≈ 1 + ε lnM +O(ε2), (4.63)

Γ
(ε

2

)
≈ 2

ε
− γ +O(ε2), (4.64)

and the final result including the expansion around ε and the pre-factors is

− 2

4π2ε

(
m4

4
+

1

6
m2λφ2

0 +
5 λ2

144
φ4

0

)[
1 + ε ln

(
M̃

M

)
+O(ε2)

]
. (4.65)

The parameter M was added to fix the IR divergence during the regularization. Since it is
arbitrary we can choose it to be equal to M̃ . In this way, the loop-correction is independent

2 Divergence at k2 → 0
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4.5 Renormalization

of the chosen IR regulator.

We thus have three divergent terms proportional to 1
ε . We need now to find counter-

terms which cancel these three divergences. The term proportional to m4 has no classical
counter part. Thus in order to fix this divergence, we introduce a counter-term, i.e. the
same term ∆ε ∼ m4

ε but with opposite sign. In this way, the divergences cancel. Let us
now look at the other two divergent terms. Let us express the mass and coupling constant
as

m2 = m2
0 + δm2, (4.66)

λ = λ0 + δλ. (4.67)

By dimensional analysis, we can see that the two remaining terms in the result of the
integral correspond to corrections to the mass and coupling constant, respectively:

δm2 =
λ0

24π2ε
m2

0, (4.68)

δλ =
5

72π2ε
λ2

0. (4.69)

Now that we have isolated the divergence, we can write the full effective potential Γ[φ0,m
2
0, λ0]

as:

Γ[φ0,m
2
0, λ0] =

1

2
(m2

0 + δm2−µ2)φ2
0 +

1

4
(λ0 + δλ)φ4

0 +
∑
i=±

∫
d3k

(2π)3
Ei(φ0). (4.70)

The integral part is now finite, but still not analytical. If we were to evaluate it, we would
have to do it numerically.
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Chapter 5
Spontaneous symmetry breaking in
non-Abelian theories

In this chapter, we consider a Lagrangian which is invariant under non-Abelian, i.e. non-
commutative, transformations. We will use the group of proper rotations in 3-dimensional
space SO(3) as an example of a non-Abelian group.

Our discussions in this chapter follow mainly from Refs. 34, 35, 36. In particular, our
discussion about SO(3) follows from Ref. 19.

5.1 The rotation group SO(3)

Let R be a 3 × 3 real matrix. We say that R ∈ O(3), that is, the orthogonal group of
dimension 3, if and only if

RT = R−1, (5.1)

that is, R is orthogonal if its transpose is equal to its inverse. If, in addition, detR = 1,
we say that R ∈ SO(3), that is, the special orthogonal group of dimension 3. Any matrix
in SO(3) can be expressed as expL, where, L is the Lie algebra of the group, so(3). If
RT = R−1, it follows that LT = −L. If we now take the trace of L, we have Tr LT

(
=

Tr L
)

= Tr[−L], which implies that the trace has to be zero. The Lie algebra of SO(3)
then is all 3× 3 traceless antisymmetric matrices. The three linearly independent matrices
fulfilling these conditions are

λ1 =

0 0 0
0 0 −1
0 1 0

 , λ2 =

 0 0 1
0 0 0
−1 0 0

 , λ3 =

0 −1 0
1 0 0
0 0 0

 . (5.2)
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Chapter 5. Spontaneous symmetry breaking in non-Abelian theories

The most general form for L then is

L =

 0 −c b
c 0 −a
−b a 0

 = aλ1 + bλ2 + cλ3. (5.3)

The Lie algebra of SO(3) is 3-dimensional vector space where the matrices λi’s are the
basis. We then call them generators of the SO(3), and they obey the commutation rela-
tions

[λi, λj ] = εijkλk, (5.4)

where εijk is the Levi-Civita tensor. Let us now define ~n = (n1, n2, n3) = 1
θ (a, b, c). We

then have L = θ~n · ~λ. If we apply L to a 3-dimensional vector ~u ∈ R3, we find a useful
result :

L~u = θ~n · ~λ ∼

 0 −n3 n2

n3 0 −n1

−n2 n1 0

u1

u2

u3


= u3n2 − u2n3 + u1n3 − u3n1 + u2n1 − u1n2 = ~n× ~u. (5.5)

Let us finally relate a matrix belonging to SO(3) to rotations in coordinate space. In order
to do this, we start by computing L2 and L3:

L2 = − θ2I +

ab
c

 (a b c), (5.6)

L3 = − θ2L. (5.7)

We now Taylor expand R = expL:

expL = I + (1− θ2

3!
+
θ4

5!
− · · · )L+ (

1

2
− θ2

4!
+
θ4

6!
− · · · )L2

= I +
1

θ
sin θL+

1

θ2
(1− cos θ)L2. (5.8)

Using finally equations (5.5) and (5.8), we can write the action of a matrix R ∈ SO(3) to
a vector u ∈ R3 as

R~u = ~u+ sin θ(~n× ~u) + (1− cos θ)(~n× (~n× ~u)). (5.9)

In terms of rotations, the vector ~n is the rotation axis and θ the rotation angle.

5.2 Noether currents
We now consider the Lagrangian for a real vector field:

L =
1

2
(∂µφi)(∂

µφi)−
1

2
m2φiφi −

λ

4!
(φiφi)

2, (5.10)

48



5.2 Noether currents

where i = 1, 2, 3 and m2 > 0. L is invariant under rotation in 3-dimensional space.
We can see this by performing the transformation φi → Rijφj in Eq. (5.10) with Rij ∈
SO(3):

L′ =
1

2
(∂µRjiφi)(∂

µRijφi)−
1

2
m2RjiφiRijφi −

λ

4!
(RjiφiRijφi)

2

=
1

2
RjiRij(∂µφi)(∂

µφi)−
1

2
m2RjiRijφiφi −

λ

4!
(RjiRijφiφi)

2. (5.11)

Since Rij ∈ SO(3), we have that Rji = R−1
ij and hence RjiRij = I. Therefore L′ = L.

Our theory has a continuous symmetry so, by Noether’s theorem, there is a corresponding
quantity whose value is conserved in time. As we saw in the previous section, SO(3)
has three generators, and thus, we expect to have the same number of conserved Noether
charges. We know from previous chapters that the Noether currents are given by

jµ =
∑
a

∂L
∂(∂µφa)

δφa. (5.12)

We can compute the δφi for our theory by applying transformations like φi → φi + δφi.
If we use vector notation, we have:

~φ→ R~φ ≈ (I + θ~n · ~λ)~φ,

which implies δ~φ = θ(~n · ~λ)~φ = θ(~n × ~φ). We have used here that R = expL =

exp(θ~n·~λ) and the relation in Eq. (5.5). We substitute the expression of δφi into Eq. (5.12)
and we see that we have the following Noether currents:

jµ1 =
(
∂µφ1 ∂µφ2 ∂µφ3

)0 0 0
0 0 −n1

0 n1 0

φ1

φ2

φ3

 = n1(∂µφ2)φ3 − n1(∂µφ3)φ2,

(5.13)

jµ2 =
(
∂µφ1 ∂µφ2 ∂µφ3

) 0 0 n2

0 0 0
−n2 0 0

φ1

φ2

φ3

 = n2(∂µφ1)φ3 − n2(∂µφ3)φ1,

(5.14)

jµ3 =
(
∂µφ1 ∂µφ2 ∂µφ3

) 0 −n3 0
n3 0 0
0 0 0

φ1

φ2

φ3

 = n3(∂µφ2)φ1 − n3(∂µφ1)φ2,

(5.15)

which written in a more elegant way looks like:

jµ = (∂µφa)δφa = εijkni∂
µφjφk. (5.16)

Note that we again can ignore the θ and the current is still conserved. The total (conserved)
charges, Qi, can be computed from Eq. (5.16) by integrating the zeroth component over a
large volume Ω:

Qi =

∫
Ω

d3x j0
i =

∫
Ω

d3x εijkniφ̇jφk, (5.17)
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Chapter 5. Spontaneous symmetry breaking in non-Abelian theories

where we used the notation ∂0φ = φ̇. We recall now that the currents Qi generate the
symmetry and hence, they are a fundamental representation, i.e. irreducible and finite
dimensional, of the Lie algebra of SO(3). We thus expect that the Qi’s follow the com-
mutation relations in Eq. (5.4) after quantization. Let us see this. For this purpose and for
simplicity in the derivation, let us assume that the vector ~n is a unit vector, so that we can
set every component nj to 1. We will compute the commutator for the chargesQ1 andQ2,
which can be computed from equations (5.13) and (5.14), respectively. We will also make
use of the equal-time canonical commutation relations between a field and its conjugate
momentum [

φa(x), φ̇b(x
′)
]

= δab δ
(3)(x− x′). (5.18)

We have:[
Q1, Q2

]
=

∫
Ω

d3x

∫
Ω

d3x′ [φ2(x)φ̇3(x)− φ3(x)φ̇2(x), φ3(x′)φ̇1(x′)− φ1(x′)φ̇3(x′)]

=

∫
Ω

d3x

∫
Ω

d3x′
[
[φ2(x)φ̇3(x), φ3(x′)φ̇1(x′)]− [φ2(x)φ̇3(x), φ1(x′)φ̇3(x′)]

− [φ3(x)φ̇2(x), φ3(x′)φ̇1(x′)] + [φ3(x)φ̇2(x), φ1(x′)φ̇3(x′)]

]
. (5.19)

Making now use of Eq. (5.18) and

[AB,CD] = A[B,C]D + [A,C]BD + CA[B,D] + C[A,D]B, (5.20)

we can compute the commutators of Eq. (5.19) and rearrange terms as

[
Q1, Q2

]
=

∫
Ω

d3x

∫
Ω

d3x′
[
φ1(x)φ̇2(x′)− φ2(x)φ̇1(x′)

]
δ(3)(x− x′)

=

∫
Ω

d3x
[
φ1φ̇2 − φ2φ̇1

]
= Q3. (5.21)

The rest of the commutators can be computed in the same way as we just showed. We thus
check that the charges follow the commutation relations in Eq. (5.4).

5.3 Mass spectrum

Consider now the action S for the Lagrangian in Eq. (5.10):

S =
1

2

∫
d4x L

=
1

2

∫
d4x

[
(∂µφi)(∂

µφi)−m2φiφi

=
1

2

∫
d4x φj

[
−�−m2

]
δijφj . (5.22)
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5.4 Spontaneous symmetry breaking

The last term between brackets in the equation above is the propagator, ∆ij . By writing it
in matrix form, we can see that it is diagonal:

∆ =

−�−m2 0 0
0 −�−m2 0
0 0 −�−m2

 . (5.23)

The dispersion relation for the fields φi can be computed from ∆ by Fourier transforming
to momentum space and demanding det ∆ = 0. The Fourier transformation gives ∆ =
diag[E2 − k2 −m2, E2 − k2 −m2, E2 − k2 −m2]. Solving then for E2, we have:

det ∆ = 0 ⇒ E2 = k2 −m2, (5.24)

for each field φi (i = 1, 2, 3).

5.4 Spontaneous symmetry breaking

Let us now consider the potential V (φiφi) for the Lagrangian in Eq. (5.10):

V (φiφi) =
1

2
m2φiφi +

λ

4!
(φiφi)

2, (5.25)

where we recall that m2 < 0. The potential is minimized for v2 = |〈~φ〉|2 = −6m2/λ. Let
us now choose the direction of the vacuum so that it points along one of the components of
the field. Without loss of generality we can make 〈φ1〉 = 〈φ2〉 = 0 and 〈φ3〉 = v. Written
in vector form, we have 〈φ1〉

〈φ2〉
〈φ3〉

 =

0
0
v

 . (5.26)

This vector is invariant under SO(2) ⊂ SO(3), i.e. rotations around the φ3-axis which ro-
tate φ1 and φ2 . The SO(3) symmetry spontaneously breaks down to SO(2). From Gold-
stone’s theorem, we know that the number of massless modes that will appear after SSB
equals the dimension of quotient group dim[SO(3)/SO(2)] = dimSO(3)− dimSO(2).
Since the latter has one generator and the former three, there will be two massless modes.
Let us see this. As usual, we expand each component of the vector field around their
vacuum expectation value:φ1

φ2

φ3

→
〈φ1〉+ χ1

〈φ2〉+ χ2

〈φ3〉+ χ3

 =

 χ1

χ2

v + χ3

 , (5.27)

where the χi’s are the quantum fluctuating fields. Plugging these expressions in the Lag-
rangian of Eq. (5.10) results into the following:

Lχ =
3

2

m4

λ
+

1

2
(∂µ~χ) · (∂µ~χ) +m2χ2

3 −
λ

6
vχ3(~χ · ~χ) +

λ

4!
(~χ · ~χ)2, (5.28)
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Chapter 5. Spontaneous symmetry breaking in non-Abelian theories

where we can see that the mass terms for the modes φ1 and φ2 have disappeared. Taking
now only the terms which are quadratic in fields, we can compute the new action, Sχ, from
which we can get the new propagator ∆χ:

Sχ =

∫
d4x L =

1

2

∫
d4x

[
(∂µ~χ) · (∂µ~χ) + 2m2χ3

]

=
1

2

∫
d4x

(
χ1 χ2 χ3

)
∆χ

χ1

χ2

χ3

 , (5.29)

with

∆χ =

−� 0 0
0 −� 0
0 0 −�+ 2m2

 . (5.30)

We can compute the dispersion relation after SSB. We Fourier transform the propagator in
Eq. (5.30) to momentum space and demand det ∆χ = 0. We get the following for each
mode:

E2
χ1

= k2, (5.31)

E2
χ2

= k2, (5.32)

E2
χ3

= k2 − 2m2. (5.33)

If we compare these dispersion relations to the one in Eq. (5.24), we can see that the modes
φ1 and φ2 have become massless, whereas the mode φ3 has acquired a mass. We can see
that the dispersion relations for both φ1 and φ2 are linear in momentum. This implies that
they are Goldstone modes of type-I.

5.5 Adding a chemical potential

We now want to couple our SO(3)-symmetric theory to one of its conserved currents
through a chemical potential. Let us fist rename the Lagrangian in Eq. (5.10) as L0. We
can compute the Hamiltonian density,H0 by Legendre transforming L0. We first compute
the conjugated momentum for each field φa:

πa =
∂L0

∂φ̇a
= φ̇a. (5.34)

The usual Legendre transformation of L0 gives the Hamiltonian density

H0 =
1

2

[
~π · π̇ +∇~φ · ∇~φ

]
+ V (~φ · ~φ), (5.35)

where ~π = (π1 π2 π3), and V (~φ · ~φ) is given in Eq. (5.25). We can couple one of the
conserved currents to our theory by making the transformation H0 → H = H0 − µ3j

0
3 ,
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5.5 Adding a chemical potential

where µ3 is a chemical potential and j0
3 is the zeroth component of the Noether current in

Eq. (5.15). We assume n3 = 1 for simplicity in the derivation. The new Hamiltonian is

H =
1

2

[
~π · π̇ +∇~φ · ∇~φ

]
− µ3(π2φ1 − π1φ2) + V (~φ · ~φ). (5.36)

The next step is to Legendre transform H back to a new Lagrangian L. The new φ̇a’s are
given by the following:

φ̇1 =
∂H
∂π1

= π1 + µ3φ2 ⇒ π1 = φ̇1 − µ3φ2, (5.37)

φ̇2 =
∂H
∂π2

= π2 − µ3φ1 ⇒ π2 = φ̇2 + µ3φ1, (5.38)

φ̇3 =
∂H
∂π3

= π3 ⇒ π3 = φ̇3 (5.39)

We now substitute these new πa’s into the Legendre transformation of H. The resulting
Lagrangian is

L =
1

2
(∂µφi)(∂

µφi)+µ3(φ̇2φ1−φ̇1φ2)+
1

2
µ2

3(φ2
1+φ2

2)− 1

2
m2φiφi−

λ

4!
(φiφi)

2, (5.40)

where, again, (i = 1, 2, 3). We can now write the action S for this new Lagrangian density.
As usual, we partial integrate once so that we can express (∂µφa)2 as−φa�φa. The action
can then be expressed as the following matrix product:

S =

∫
d4x L =

1

2

∫
d4x

(
φ1 φ2 φ3

)
∆µ

φ1

φ2

φ3

 , (5.41)

with ∆µ being the new propagator and given by

∆µ =

−�−m2 + µ2
3 2µ3∂0 0

−2µ3∂0 −�−m2 + µ2
3 0

0 0 −�−m2

 . (5.42)

Once again, we can compute the dispersion relation for our new theory by Fourier trans-
forming to momentum space and demanding det ∆µ = 0. We have

det

 E2 − k2 −m2 + µ2
3 2iEµ3 0

−2iEµ3 E2 − k2 −m2 + µ2
3 0

0 0 E2 − k2 −m2

 = 0, (5.43)

which gives three solution, i.e, three dispersion relations for the three modes φa, if we
solve for E2:

(Eφ1
+ µ3)2 = k2 +m2, (5.44)

(Eφ2
− µ3)2 = k2 +m2, (5.45)

E2
φ3

= k2 +m2. (5.46)

We see that the chemical potential shifts the dispersion relations of the modes φ1 and φ2,
whereas the mode φ3 remains decoupled.
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Chapter 5. Spontaneous symmetry breaking in non-Abelian theories

5.6 Spontaneous symmetry breaking
Let us now consider the Lagrangian in Eq. (5.40). We first rewriteL asL = L12 + L3 + Lint,
where:

L12 =
1

2
[(∂µφ1)2 + (∂µφ2)2] + µ[φ2(∂0φ1)− φ1(∂0φ2)]

− 1

2
(m2 − µ2)(φ2

1 + φ2
2) +

λ

4!
(φ2

1 + φ2
2)2, (5.47)

L3 =
1

2
(∂µφ3)2 − 1

2
m2φ3

3 −
λ

4!
φ4

3, (5.48)

Lint = − λ

12
(φ2

1φ
3
3 + φ2

2φ
2
3). (5.49)

By writing L in this way, we notice that it is invariant under SO(2) transformations, that
is, rotations of the φ1φ2-plane around the φ3-axis.1 By having coupled our theory to one
of the currents, we have explicitly broken the previous SO(3) symmetry into SO(2). Our
purpose in this section is to spontaneously break this remaining symmetry and find the
corresponding Goldstone modes. Since SO(N) has 1

2N(N − 1) generators, SO(2) has
only one. Therefore we can only expect one massless mode.

The potential density ofL12 is minimized for ρ2 = 6
λ (µ2

3−m2). Without loss of generality
let us choose the vacuum in the φ1 direction.〈φ1〉

〈φ2〉
〈φ3〉

 =

ρ0
0

 . (5.50)

In order for the symmetry to be spontaneously broken, we need to have a positive “mass
term”, which implies that m2 < µ2

3. We now make the substitutions φi → 〈φi〉 + χi,
where χi are, once again, quantum fluctuating fields. The resulting Lagrangian is

Lχ =
3

2λ
(m4 − µ4) +

1

2
(∂µ~χ) · (∂µ~χ) + µ3(χ̇2χ1 − χ̇1χ2)

+ (m2 − µ2
3)χ2

1 −
1

2
µ2

3χ
2
3 −

λ

6
vχ1(~χ · ~χ) +

λ

4!
(~χ · ~χ)2. (5.51)

which is analogous to the Lagrangian that we obtained in the previous chapter in the case
of a U(1) symmetry. This is expected since SO(2) ∼= U(1).

From this new Lagrangian we can write the new action, and from it, compute the new
dispersion relations after SSB. Taking once again only the terms quadratic in the fields,
the action is

S =

∫
d4x L =

1

2

∫
d4x

(
χ1 χ2 χ3

)
∆µ1

χ1

χ2

χ3

 , (5.52)

1The charge operator Q3 generates rotation around the φ3-axis.
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5.6 Spontaneous symmetry breaking

where ∆µ1 is the new propagator, defined as

∆µ1 =

−�+ 2m2 − 2µ2
3 2µ3∂0 0

−2µ3∂0 −� 0
0 0 −�− µ2

3

 . (5.53)

The new dispersion relations are obtained by Fourier transforming ∆µ1 to momentum
space and demanding det ∆µ1 = 0. We then have the following three relations:

E2 = k2 + µ2
3, (5.54)

E2
± = k2 −m2 + 3µ2

3 ±
√
m4 + 4k2µ2

3 − 6m2µ2
3 + 9µ4

3. (5.55)

We see that, in the limit µ3 → 0, we recover the dispersion relation in equations (5.31), (5.32)
and (5.33). Let us finally expand the dispersion relations in Eq. (5.55) for small momenta.
The square root gives, to fourth order in k,√

m4 + 4k2µ2
3 − 6m2µ2

3 + 9µ4
3 ≈ m2 − 3µ2

3 +
2µ2

m2 − 3µ2
k2 +O(k4). (5.56)

The two resulting dispersion relations hence are:

E2
+ =

µ2 −m2

3µ2 −m2
k2 +O(k4) (5.57)

E2
− = 6µ2 − 2m2 +

5µ2 −m2

3µ2 −m2
k2 +O(k4) (5.58)

We see that only one of the modes has become massless. This was expected since SO(2)
only has one generator that can be spontaneously broken. We also see that the dispersion
relation (5.57) is linear in momentum, this implies a type-I Goldstone mode. In addition,
we see that if we take the limit k2 → 0 in Eq. (5.58), we have a mass gap.
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Chapter 6
The linear σ-model

In this chapter, we will study the linear σ-model (LSM) introduced by Gell-Mann and
Lévy in 1960 [37]. The model was originally introduced to describe pions and nucleons
and, in addition, a scalar meson σ-field. Gell-Man [38] and Zweig [39] would (inde-
pendently) introduce the quark model in 1964. The LSM would later be modified so that it
would include the quark contribution. It would also be renamed as the linear σ-model with
quarks (LSMq) or just quark-meson model (QM). In this chapter, we will not consider the
fermion terms and only focus on the LSM, which consists of the σ and the three πk-fields.
Our model is then constructed in terms of four real scalars σ and π = (π1, π2, π3).

Our discussions in this chapter is based on Refs. 7, 28, 31, 40 and 41. In particular, the
discussion on SU(2) follows from Ref. 19.

6.1 The complex group SU(2)
Let U be a 2× 2 complex matrix, (

α β
γ δ

)
.

We say that U ∈ SU(2), i.e., the special unitary group of dimension two, if and only if,

U† = U−1 and detU = 1. (6.1)

The condition detU = 1 implies αδ − βγ = 1, while U† = U−1 implies(
α∗ γ∗

β∗ δ∗

)
=

(
δ −β
−γ α

)
.⇒ δ = α∗,

γ = −β∗.

The general form for U then is

U =

(
α −β∗
β α∗

)
with |α|2 + |β|2 = 1. (6.2)
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Chapter 6. The linear σ-model

In order to find the generators of SU(2), we proceed as in the previous chapter and express
U as expN , where N is the Lie algebra of the group. By imposing the conditions of
Eq. (6.1), we find that N are 2 × 2 anti-Hermitian traceless matrices. The three linearly
independent matrices fulfilling these conditions are the Pauli matrices, τi:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
, (6.3)

which follow the commutation relations

[τi, τj ] = εijkτk. (6.4)

Defining an axis vector ~n = (n1, n2, n3), we find the most general expression for the
matrix U :

U = expN = exp[− i
2
θ (~n · ~τ)]. (6.5)

If we compare the algebras of SO(3) and SU(2), we see that they look similar. We
can actually make a correspondence between the generators λj of SO(3) and iτj . This
correspondence is an isomorphism between the algebras of the two groups. Following the
Campbell-Baker-Hausdorff theorem, the two groups are locally isomorphic within a finite
region around the identity [19].

6.2 Lagrangian density and symmetries

Let us consider the Lagrangian for an O(4)-multiplet field ΦT = (φ1, φ2, φ3, φ4):

L =
1

2
(∂µφi)(∂

µφi)−
1

2
m2φiφi −

λ

4!
(φiφi)

2, (6.6)

with i = 1, 2, 3, 4 and let us rename the components of the multiplet as Φ = (σ,π), so that
we can identify them with the scalar σ meson and the pion fields. The Lagrangian above
can then be rewritten as the known one for the linear σ-model.

L =
1

2
(∂µσ)2 +

1

2
(∂µπ)2 − 1

2
m2(σ2 + π2)− λ

4!
(σ2 + π2)2. (6.7)

The σ-model is invariant under O(4). Let R ∈ O(4), i.e. R is a 4× 4 real matrix such that
RT = R−1. If we apply the transformation Φ → RΦ and ΦT → ΦTRT in Eq. (6.6), we
have

L′ =
1

2
[∂µ(RΦ)]T [∂µ(RΦ)]− 1

2
m2(RΦ)T (RΦ)− λ

4!
[(RΦ)T (RΦ)]2

=
1

2
[∂µΦ]TRTR[∂µΦ]− 1

2
m2(ΦTRTRΦ)− λ

4!
[ΦTRTRΦ]2. (6.8)

Since RT = R−1, we see that L remains invariant.
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6.3 Noether currents

Another way of seeing this O(4) symmetry in the Lagrangian is to use that local iso-
morphism between O(4) and SU(2) × SU(2). In order to do this we redefine Φ as a
complex doublet in terms of the complex scalar fields χi as follows

Φ =

(
χ1

χ2

)
=

1√
2

(
σ − iπ3

π2 − iπ1

)
. (6.9)

If we apply transformations like Φ→ UΦ, with U = exp exp[− i
2θ (~n · ~τ)], we have:

L′ =
1

2
[∂µ(UΦ)]†[∂µ(UΦ)]− 1

2
m2(UΦ)†(UΦ)− λ

4!
[(UΦ)†(UΦ)]2

=
1

2
[∂µΦ]†U†U [∂µΦ]− 1

2
m2(Φ†U†UΦ)− λ

4!
[Φ†U†UΦ]2, (6.10)

and since U ∈ SU(2), we have U† = U−1. We then see that L still remains invariant.
The SU(2) ⊂ O(4) symmetry of the Lagrangian is clear.1 The next step to obtain the full
O(4) symmetry is to define the Σ matrices as

Σ =
1√
2

(σ − i~τ · π) =

(
χ1 −χ†2
χ2 χ†1

)
, (6.11)

which fulfill Tr[Σ†Σ] = 1
2 (σ2 + π2). Note that the original fields can be expressed in

terms of the trace of Σ:

σ =
1√
2

TrΣ, πk =
i√
2

Tr[τkΣ]. (6.12)

The Lagrangian for the σ-model in terms of these matrices is:

LΣ =
1

4
Tr[∂µΣ†∂µΣ]− 1

4
m2Tr[Σ†Σ]− λ

16
(Tr[Σ†Σ])2. (6.13)

LΣ is invariant under transformations like Σ → UΣV †, with U, V ∈ SU(2) and U 6= V .
We then have a SU(2)× SU(2) invariance, which is essentially the same as O(4).

NB Since U and V are independent, each matrix has a set of generators which are in-
dependent of each other. As we saw in section 6.1, U and V have three generators each.
SU(2) × SU(2) then has six; two independent sets of three generators each. This is
expected since SU(2)× SU(2) is isomorphic to O(4) which also has six generators [19].

6.3 Noether currents

Since our theory is symmetric under transformations like Σ → UΣV †, Noether’s the-
orem predicts that there are associated conserved currents. Let U, V ∈ SU(2) be now

1 L is now, in fact, invariant under U(2) ⊂ O(4).
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infinitesimal transformations. We have:

Σ→ UΣV † ≈
(
I− i

2
ε1~n · ~τ

)
Σ

(
I +

i

2
ε2 ~m · ~τ

)
≈ Σ +

i

2
ε2(~m · ~τ)Σ− i

2
ε1(~n · ~τ)Σ +O(ε2), (6.14)

which comparing to Σ → Σ + δΣ gives δΣ = i
2ε2(~m · ~τ)Σ − i

2ε1(~n · ~τ)Σ. We can
explicitly see her that the matrices U and V have each an independent set of generators. It
is possible from here to get the corresponding infinitesimal transformations for the σ and
πk-fields. For the former, we just need to multiply the last term of Eq. (6.14) by a factor
1√
2

and take the trace. We have:

1√
2

TrΣ +
1

2
~mTr[

i√
2
~τ Σ] = σ +

1

2
~m · π. (6.15)

For each πj field, we multiply the last term of Eq. (6.14) by i√
2
τj and make use of τjτk =

δjk + iεjklτ l and then take the trace. We find:

i√
2

Tr[τjΣ] +
i

2
mkTr

[
i√
2
τjτk Σ

]
= πj − i

2
mkTr

[
i√
2

[δjk + iεjklτ l] Σ

]
= πk − 1

2
~mj

1√
2

TrΣ− 1

2
mkε

jklTr
[
i√
2
τ lΣ

]
= πj − 1

2
~mjσ −

1

2
εjklmkπ

l. (6.16)

Note that we have performed the derivation using ~m but the same applies for ~n. We thus
have contributions from both ~m and ~n to the infinitesimal transformations for the fields σ
and πk:

δσm =
1

2
~m · π, (6.17)

δσn = − 1

2
~n · π, (6.18)

δπm = − 1

2
[~mσ + ~m× π] , (6.19)

δπn =
1

2
[~nσ + ~n× π] . (6.20)

We now have all we need in order to compute the Noether currents. Each infinitesimal
transformation gives rise to a current. From the general expression, we have:

jµM =
1

2
(~m · ~π)∂µσ − 1

2
σ(∂µπ · ~m)− 1

2
(∂µπ) · (~m× π), (6.21)

jµN = − 1

2
(~n · ~π)∂µσ +

1

2
σ(∂µπ · ~n)− 1

2
(∂µπ) · (~n× π). (6.22)

Note that the vectors ~m and ~n are arbitrary. As we did in previous chapters, we can choose
them to be unit vectors, and the currents will still be conserved. We will identify each
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6.3 Noether currents

of them with axis vectors. We find a total of six currents by combining equations (6.21)
and (6.22); one set of three conserved currents like

V µk = jMµ
k + jNµk = εklmπl∂

µπm, (6.23)

and another set currents like

Aµk = jMµ
k − jNµk = πk∂

µσ − σ∂µπk, (6.24)

which give the total conserved charges

QAk =

∫
Ω

d3x A0
k =

∫
Ω

d3x[πk∂
0σ − σ∂0πk], (6.25)

QVk =

∫
Ω

d3x V 0
k =

∫
Ω

d3x[εklmπl∂
0πm]. (6.26)

We have then checked that each of the six generators of SU(2) × SU(2) give rise to one
Noether current. Another way of understanding the reason for which we have gotten six
conserved charges is thinking in terms of O(4)-rotations. In 4 dimensions, we have 4 axes
{ŵ, x̂, ŷ, ẑ}, which implies that we have six different planes, {wx,wy,wz, xy, xz, yz}.
We can perform rotations in each of these planes, and the system will remain invariant.
In fact we can see that the currents QAk generate rotations in the σπk-planes, while QVk
generate rotations in the πiπj-planes. We can also check that these transformations are
independent of each other by checking whether they commute or not. Let us see this. We
first explicitly compute the commutator of the integrands:[

πk∂
0σ − σ∂0πk, εabcπb∂

0πc
]

= ∂0σ
[
πk, εabcπb∂

0πc
]
− σ

[
∂0πk, εabcπb∂

0πc
]

=

[
∂0σ (εabcδkbπc) + σ

(
εabcδkb∂

0πc
) ]
δ(x− x′),

(6.27)

where we have used
[πi(x), ∂0πj(x

′)] = δijδ(x− x′). (6.28)

The rest of the commutators vanish. Performing the integral, we have

[QAk (x), QVa (x′)] =

∫
Ω

d3x

∫
Ω

d3x′
[
∂0σπk + σ∂0πk

]
δ(x− x′)

=

∫
Ω

d3x
[
∂0σπk + σ∂0πk

]
=

∫
Ω

d3x ∂0[σπk] = 0. (6.29)

The last integral vanishes since the integrand is a surface term. We thus have checked that
the charges commute. This agrees with the fact that in O(2N)-symmetric theories there is
a maximum of N commuting charges [7, 31].
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Chapter 6. The linear σ-model

6.4 Spontaneous symmetry breaking

Consider now the potential for the σ-model, V (σ,π):

V (σ,π) =
1

2
m2(σ2 + π2) +

λ

4!
(σ2 + π2)2. (6.30)

As usual, the potential is minimized for different values depending on the sign of m2.
The vacuum can be chosen in any direction, since all of them are physically equivalent.
Without loss of generality, we make

〈σ〉 = v 〈πk〉 = 0. (6.31)

For m2 > 0, we find the minimum at v = 0, while for m2 < 0, the minimum is at
v2 = − 6m2

λ . We now proceed to break the symmetry.

With this choice of vacuum, the O(4) ∼= SU(2) × SU(2) symmetry is broken down
to SU(2). SU(n) has n2 − 1 generators [19], which implies that SU(2) has three. Since
O(4) has six generators, we expect to have three broken and three unbroken ones. Perhaps
a more intuitive way of understanding this symmetry breaking is to again think in terms of
rotations. O(4) generates 4-dimensional rotations. By choosing the vacuum in a specific
direction, we are making 3-dimensional rotations around an axis. The O(4) symmetry
then breaks into O(3), which also has three generators, as we saw in the last chapter. This
is related to the homomorphism between SU(2) and SO(3). Following then Goldstone’s
theorem, we expect to have three massless modes. Let us see this. As usual, we expand
the fields around their minimum:

σ → 〈σ〉+ α πk → βk, (6.32)

where α and βk are the respective quantum fluctuating fields. Plugging these expansions
in the Lagrangian in Eq. (6.7) results in

L =
1

2
(∂µα)2 +

1

2
(∂µβ)2 +m2α2 − λ

6
vα(α2 + β2)− λ

4!
(α2 + β2)2. (6.33)

We see that the mass term related to the π-fields has disappeared. Taking only the terms
quadratic in the fields, we can write down the action and compute the dispersion relations
for our modes α and β. Defining χ = (α,β):

S =

∫
d4x χ†∆αβχ, (6.34)

with

∆αβ =


−�+ 2m2 0 0 0

0 −� 0 0
0 0 −� 0
0 0 0 −�

 . (6.35)
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6.5 Adding a chemical potential

Fourier transforming to momentum space and demanding det ∆αβ = 0 gives the disper-
sion relations:

E2
α = k2 + 2m2, (6.36)

E2
βk

= k2. (6.37)

These dispersion relations show that the three πk-fields have become massless after SSB.
We thus have, as Goldstone’s theorem predicted, three Goldstone bosons.

6.5 Adding a chemical potential
In this section we will couple the conserved charges that we derived in section 6.3 to our
theory through a chemical potential. As we mentioned before, for O(4)-symmetric theor-
ies, the maximum number of commuting charges is two. For each conserved charge, we
can introduce a nonzero chemical potential. We will couple the Lagrangian to, in particu-
lar,QA3 andQV3 through two chemical potentials µA and µV and study the cases µA = µV
and µA 6= µV . This corresponds to the third component of the isospin chemical potential.

We know from previous chapters that coupling the charge density to the Hamiltonian by
shifting it like H → H − µj0, has the same result as “gauging” the kinetic term in the
Lagrangian, ∂0Φ→ (∂0 + iµ)Φ. When coupling the currents QA3 and QV3 , the gauging in
the Lagrangian is made as ∂0Φ → (∂0 + iµδ03)Φ for QA3 and ∂0Φ → (∂0 + iµδ12)Φ for
QV3 , where Φ = (σ,π) is implied. Let us then skip the Hamiltonian part of the derivation
and directly consider the following Lagrangian.

L =
1

2
(∂µσ)2 +

1

2
(∂µπ)2 − 1

2
m2(σ2 + π2)− λ

4!
(σ2 + π2)2

−iµA[π3∂
0σ − σ∂0π3]− µV [π1∂

0π2 − π2∂
0π1]. (6.38)

We will get a different number of massless modes depending on whether µA = µV or not.
Let us assume first that both chemical potentials are equal, µA = µV = µ. We can write
the Lagrangian of Eq. (6.38) in terms of the complex doublets Φ defined in Eq. (6.9) as

L = (∂µΦ)†(∂µΦ)− iµ[(∂0Φ)†Φ− Φ†(∂0Φ)]− (m2 − µ2)Φ†Φ− λ(Φ†Φ)2. (6.39)

As in the SO(2) and SO(3) cases, the new kinetic term breaks the global symmetry of the
system. The breaking of O(4) is clearer if we express the Lagrangian in terms of the Σ
matrices:

LΣ =
1

2
Tr[∂µΣ†∂µΣ]− 1

2
(m2 − µ2)Tr[Σ†Σ]− λ

4
(Tr[Σ†Σ])2

+
i

2
µ Tr

[
Σ†∂0Σ

I + τ3
2
− Σ

I + τ3
2

(∂0Σ)†
]
. (6.40)

From here we can see that the first three terms still are SU(2) × SU(2) invariant, while
the last term is not. The symmetry is broken by the last term to SU(2)× U(1).
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Note that once again, we deal with a symmetric normal phase for m2 > µ2 and a broken
phase for m2 < µ2. The global symmetry of the Lagrangian now is SU(2) × U(1).
After SSB, the symmetry will break down to U(1). SU(2)×U(1) is isomorphic to U(2).
U(n) has n2 generators [19]. This implies that U(2) has four and U(1) has one. We thus
have three broken generators. Note that our theory is not Lorentz invariant anymore. This
implies that we cannot ensure that the number of broken generators will be equal to the
number of massless modes [42].

The potential in Eq. (6.38) is minimized for v2 = 6
λ (µ2 − m2). As usual, all choices

for the direction of the vacuum are physically equivalent. So for convenience we take it in
the σ-direction: (

σ
π

)
→
(
〈σ〉+ h
〈π〉+ π

)
=

(
v + h
π

)
. (6.41)

Substituting these expansions in the Lagrangian of Eq. (6.38) gives

L =
1

2
(∂µh)2 +

1

2
(∂µπ)2 − iµ[π3∂

0h− h∂0π3 − π1∂
0π2 + π2∂

0π1]

+
3

2λ
(m4 − µ4) + (m2 − µ2)h2 − λ

6
vh(h2 + π2)− λ

4!
(h2 + π2)2. (6.42)

We see that there is no mass term for the π-fields. The action for this Lagrangian is

S =

∫
Ω

d4x
(
h π

)
∆h

(
h
π

)
, (6.43)

where ∆h is in momentum space given by

∆h =


E2 − k2 + 2m2 − 2µ2 0 0 2iEµ

0 E2 − k2 2iEµ 0
0 −2iEµ E2 − k2 0

−2iEµ 0 0 E2 − k2

 . (6.44)

Note that we may now find two different conditions for the spectrum of the sectors (σ, π3)
and (π1, π2). For the former, we have:

∆σπ3
=

(
E2 − k2 + 2m2 − 2µ2 2iEµ

−2iEµ E2 − k2

)
. (6.45)

Demanding its determinant to vanish and solving for E gives the following dispersion
relations:

E2
σπ3

= k2 −m2 + 3µ2 ±
√
m4 + 4k2µ2 − 6m2µ2 + 9µ4. (6.46)

We can now proceed to expand these dispersion relations for small momenta. Since the
relation (6.46) is already known from previous chapters, let us use those results. We have

E2
σπ3+

=
µ2 −m2

3µ2 −m2
k2 +O(k4), (6.47)

E2
σπ3−

= 6µ2 − 2m2 +
5µ2 −m2

3µ2 −m2
k2 +O(k4). (6.48)
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And for the (π1, π2) sector, we have

∆π1π2 =

(
E2 − k2 2iEµ
−2iEµ E2 − k2

)
, (6.49)

which, again demanding det ∆π1π2
= 0 and solving for E2, gives the four following

dispersion relations:

E2
π1π2

=

(
µ±

√
k2 + µ2

)2

. (6.50)

Expanding for small momenta to the first not-vanishing order gives:

E2
π1π2+

= 4µ2 + 2k2 +O(k4), (6.51)

E2
π1π2−

=
k4

4µ2
+O(k6). (6.52)

The first dispersion relations are the same as for the SO(2) cases. We see that we have one
massive mode and a massless one which is linear in momentum. In the second case, we
again have one massless mode and one massive. In this case though, the massless mode is
quadratic in momentum, which implies that it is a type-II Goldstone boson.2 This agrees
with having three broken generators.

We also want to point out that even though the fields π1 and π2 do not have mass terms
in the Lagrangian (6.42), i.e. they correspond to two flat directions of the potential, they
only describe one massless mode. We may explain this by taking the limit of very small
frequencies. In this limit, the terms (∂0πk)2 are much smaller than π1∂

0π2 − π2∂
0π1 and

thus we can neglect their contribution. We then notice that π1 and π2 are, in fact, two ca-
nonically conjugate variables, which describe one massless field and its time-derivative [28].

We will now check the case µA 6= µV . In general, in theories O(2N)-symmetric, introdu-
cing k chemical potentials breaks the global symmetry group to [O(2)]k×O(2N−2k) [7].
We have an O(4)-symmetric theory. By coupling it to QA3 and QV3 , the global symmetry
will then be broken down to O(2) × O(2), which has two generators, one for each O(2).
The Lagrangian in Eq. (6.38) can now be written in three parts, L = Lπ1π2 +Lσπ3 +Lint,
with:

Lπ1π2 =
1

2
[(∂µπ1)2 + (∂µπ2)2] + µV [π2(∂0π1)− π1(∂0π2)]

− 1

2
(m2 − µ2

V )(π2
1 + π2

2)− λ

4!
(π2

1 + π2
2)2, (6.53)

Lσπ3
=

1

2
[(∂µσ)2 + (∂µπ3)2] + µA[π3(∂0σ)− σ(∂0π3)]

− 1

2
(m2 − µ2

A)(σ2 + π2
3)− λ

4!
(σ2 + π2

3)2, (6.54)

Lint = − λ

12

[
σ2π2

1 + σ2π2
2 + π2

1π
2
3 + π2

2π
2
3

]
. (6.55)

2The energy as E ∼ k2n.
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Lπ1π2 and Lσπ3 describe the π1π2-sector and σπ3-sector, respectively. Lint describes the
interaction between the two sectors. The O(2) × O(2) symmetry is now clear. The Lag-
rangian in Eq. (6.53) is invariant under rotations in the π1π2-plane, whereas Lσπ3

remains
invariant under rotations in the σπ3-plane. As we mentioned before, each O(2) has only
one generator. Thus when breaking the symmetry, we can only expect one massless mode
from each O(2). We also expect that the dispersion relations for the modes should be the
same ones as in equations (6.47) and (6.48) because of the local isomorphism between
SO(2) and U(1).

Now, not only the σ-field, but also either the π1 or π2-field acquires a non-zero vacuum
expectation value. The potentials for the Lagrangians in equations (6.53) and (6.54) have
their minimum at ρ2

V = 6
λ (µ2

V −m2) and ρ2
A = 6

λ (µ2
A −m2), respectively. As usual, we

will expand the fields around their vev, and all choices for the direction of the vacuum are
physically equivalent. Our choices will be in the π1 and σ-directions, respectively:

(
π1

π2

)
→
(
ρV + hV

π2

)
and

(
σ
π3

)
→
(
ρA + hA
π3

)
(6.56)

Substituting these expansions in equations (6.47) and (6.48) gives

Lπ1π2 =
3

2λ
(m4 − µ4

V ) +
1

2
(∂µhV )2 +

1

2
(∂µπ2)2 − iµV [π2∂

0hV − hV ∂0π2]

+ (m2 − µ2
V )h2

V −
λ

6
ρV hV (h2

V + π2
2)− λ

4!
(h2
V + π2

2)2, (6.57)

Lσπ3
=

3

2λ
(m4 − µ4

A) +
1

2
(∂µhA)2 +

1

2
(∂µπ3)2 − iµA[π3∂

0hA − hA∂0π3]

+ (m2 − µ2
A)h2

A −
λ

6
ρAhA(h2

A + π2
3)− λ

4!
(h2
A + π2

3)2. (6.58)

We see that there is no mass term for the modes π2 and π3. As usual, the propagator for
each Lagrangian can be obtained from the action. We skip this step and directly write the
two propagators in momentum space:

∆π1π2
=

(
E2 − k2 + 2m2 − 2µ2

V 2iEµV
−2iEµV E2 − k2

)
, (6.59)

∆σπ3 =

(
E2 − k2 + 2m2 − 2µ2

A 2iEµA
−2iEµA E2 − k2

)
. (6.60)

We see that both propagators have the same form as the one in Eq. (6.45). The dispersion
relations for the modes will thus be the same as in Eq. (6.46). Let us, for completeness,
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write them , already expanded for small momenta:

E2
σπ3+

=
µ2
A −m2

3µ2
A −m2

k2 +O(k4), (6.61)

E2
π1π2+

=
µ2
V −m2

3µ2
V −m2

k2 +O(k4), (6.62)

E2
σπ3−

= 6µ2
A − 2m2 +

5µ2
A −m2

3µ2
A −m2

k2 +O(k4), (6.63)

E2
π1π2−

= 6µ2
V − 2m2 +

5µ2
V −m2

3µ2
V −m2

k2 +O(k4). (6.64)

As predicted, we have gotten one massless mode for each broken O(2)-symmetry. As we
saw in previous chapters, the modes described in equations (6.61) and (6.62) are linear in
momentum, which implies a type-I Goldstone boson. Note that we have broken the same
symmetry as in chapters 4 and 5 and thus, the same discussion applies here. We see that
for both equations (6.63)and (6.64), we have a massless gap in the limit k2 → 0.
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Chapter 7
Conclusions and outlook

7.1 Conclusions

In this thesis, we have studied in detail the concept of spontaneous symmetry breaking
in several O(N)-symmetric theories. We focused on those theories that are not Lorentz
invariant since in such theories we cannot ensure that the number the massless modes,
which are predicted to appear after SSB, coincide with the number of broken generators.
Our goal has been to find and describe these massless modes.

We started by considering the simplest case where one can find SSB. This was a non-
relativistic E(2)-symmetric theory. We found that the ground state of the Hamiltonian
was not an eigenstate of the symmetry generator and thus broke the symmetry. The group
E(2) has three generators, two of which were spontaneously broken, yet we only found
one massless mode which was quadratic in momentum.

Once we had understood the concept of SSB, we started applying it to relativistic O(N)-
symmetric theories. We started, in chapter two, with an SO(2)-symmetric Lagrangian.
Because of its Lorentz invariance, we expected that the number of massless modes would
coincide with the number of broken generators. We found one massless mode which
agreed with the number of broken symmetries. In this chapter we focused on checking
that the mode remained massless after loop corrections. We then, in chapter four, broke the
Lorentz invariance by coupling the conserved charge to the Lagrangian through a chem-
ical potential. Even though the theory is not Lorentz invariant, there was only one possible
symmetry to be spontaneously broken. We thus found one massless mode which was linear
in momentum. We then derived some thermodynamic properties using the formalism of
thermal field theory and renormalized afterwards the thermodynamic potential at one loop.

In chapter five, we applied the techniques we introduced in the previous chapter to an
SO(3) non-Abelian symmetric theory. We saw that SO(3) spontaneously breaks to SO(2).
The former has three generators while the latter has only one. We thus expected, and
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then confirmed, two massless modes which were linear in momentum. We then explicitly
broke SO(3) down to SO(2) by coupling one of the three conserved charges to the theory
through a chemical potential. After SSB, we again got one massless mode. This agreed
with our result in chapter four, since the Lagrangian is invariant under the same symmetry
group. We got the same result as in the SO(2) case with an extra massive decoupled mode,
which agreed with having an extra degree of freedom.

Finally, in chapter six, we studied the LSM, which is described by an O(4)-symmetric
Lagrangian. We made use of the local isomorphism between O(4) and SU(2) ⊗ SU(2),
in order to find the conserved charges of the theory and in order to predict the remaining
symmetry after SSB. We saw that the O(4) symmetry spontaneously broke down to O(3).
Since the former has six generators and the latter three, we checked that after SSB, we
got three massless modes. We also saw that O(4) has six conserved charges. Since only
two of them commute, we could only couple a maximum of two currents through chem-
ical potentials. We then studied two cases: i) coupling the two currents through the same
chemical potential and ii) through different chemical potentials. In the former case, the
O(4) symmetry was broken down to SU(2) ⊗ U(1), which spontaneously broke down
to U(1). Since SU(2) ⊗ U(1) has four generators and U(1) one, we would expect three
massless modes. But, again, because of a lack of Lorentz invariance, we could not en-
sure this. We got in fact two massless modes, one quadratic and one linear in momentum.
We then study the case when we couple the Lagrangian to two currents through different
chemical potentials. The O(4) symmetry was then broken down to O(2) ⊗ O(2). We
could thus expect only one massless mode from each O(2). In fact, this was the same case
as in the previous chapters, so we could expect two linear modes.

7.2 Outlook

In this thesis we have discussed the process of SSB and Goldstone’s theorem in systems
at finite density, but we have not gone into further detail in its applications in condensed
matter Physics. We have given the basis for the interested reader to further investigate.
In chapter four for instance, we briefly discussed thermal field theory, but one could go
deeper. As we can see in appendix F, more thermodynamic properties, as entropy or pres-
sure, can be derived from the thermodynamic potential. We have also restricted ourselves
to one-loop corrections. Higher order corrections and more detailed discussions can be
found, for example, in Ref. 43.

It is also interesting to further study the characterization and number of massless modes
which appear in non-Lorentz invariant systems after spontaneous symmetry breaking. We
have seen in this thesis that while the number of broken generators coincide with the num-
ber of massless modes in Lorentz invariant systems, as Goldstone’s theorem states, this
does not necessarily happen otherwise. Nielsen and Chadha found an inequality between
the number of massless bosons and the number of broken symmetry generators [42]. They
distinguish two types of Goldstone bosons: type-I with their energy going as E ∼ k2n+1

and type-II, where the energy goes as E ∼ k2n. They formulated a theorem, which states
that one has to count each type-II Goldstone mode type twice. This theorem also explains
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our final result in chapter 2. There are several examples where this inequality can be more
precise, and a improved relation has been proposed, leading to a different classification of
Goldstone bosons [20].

In chapter 6 we provided an introduction for the reader to further investigate when study-
ing the LSM. One of the first things one can do in order to continue the study of the LSM
is to explicitly break the O(4) symmetry by introducing a term L = −hσ. The minimum
of the potential is then shifted, which will make the pions acquire a mass [41].

In chapter 6, we considered the bosonic part of the model and ignored the quark con-
tribution. When the fermion terms are also considered, the LSM is called LSMq. The
Lagrangian would become:

L = iψ̄γµ∂µψ + gψ̄[σ + iγ5(~τ · π)]ψ +
1

2
(∂µσ)2 +

1

2
(∂µπ)2

−1

2
m2(σ2 + π2)− λ

4!
(σ2 + π2)2, (7.1)

where ψ̄ = (ū d̄), being u and d the up and down quarks, respectively. In this case, in
order to take into account the left and right-handed fermions (chirality), the symmetry
group would be O(4) ' SUL(2) × SUR(2). The term gψ̄[σ + iγ5(~τ · π)]ψ in the Lag-
rangian affects the conserved currents that we computed in chapter 6. In particular, the
transformations δσ and δπk include change of parity. This results in vector current becom-
ing a pseudovector (or axial vector) and, its corresponding conserved charge becoming a
pseudoscalar [41].

LSMq has several applications in modern and condensed matter Physics. Because of the
local isomorphism between O(4) and SUL(2) × SUR(2), the LSMq is of particular in-
terest in high-energy quantum field theory, since it is used as low-energy effective field
theory of quantum chromodynamics [7]. LSMq can also be used as a toy model for the
description of kaon condensates [7, 28, 44]

71



Chapter 7. Conclusions and outlook

72



Bibliography

[1] E. Noether. Invariante variationsprobleme. nachrichten von der gesselschaft der wis-
senschaften zu göttingen, mathematisch-physikalische klasse 1918, 235–257, eng-
lish translation by ma tavel, transport theory and statistical mechanics 1 (3), 183-207
(1971). arXiv preprint physics/0503066, 1918.

[2] T. Brauner. Spontaneous symmetry breaking and nambu–goldstone bosons in
quantum many-body systems. Symmetry, 2(2):609–657, 2010.

[3] J. Goldstone. Field theories with �superconductor� solutions. Il Nuovo Cimento
(1955-1965), 19(1):154–164, 1961.

[4] P. W. Higgs. Broken symmetries and the masses of gauge bosons. Physical Review
Letters, 13(16):508, 1964.

[5] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A.A. Abdelalim,
O. Abdinov, R. Aben, B. Abi, M. Abolins, et al. Observation of a new particle
in the search for the standard model higgs boson with the atlas detector at the lhc.
Physics Letters B, 716(1):1–29, 2012.

[6] J. Goldstone, A. Salam, and S. Weinberg. Broken symmetries. Physical Review,
127(3):965, 1962.

[7] J. O. Andersen. Pion and kaon condensation at finite temperature and density. Phys-
ical Review D, 75(6):065011, 2007.

[8] C. P. Burgess. Goldstone and pseudo-goldstone bosons in nuclear, particle and
condensed-matter physics. Physics Reports, 330(4):193–261, 2000.

[9] I. Arraut. The nambu-goldstone theorem in non-relativistic systems. arXiv preprint
arXiv:1607.01252, 2016.

[10] V. Fock. Konfigurationsraum und zweite quantelung. Zeitschrift für Physik A Had-
rons and Nuclei, 75(9):622–647, 1932.

[11] J. W. Negele and H. Orland. Quantum many-particle systems. Westview, 1988.

73
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Appendix A
Group theory

In this appendix, we review some introductory concepts on group theory in order. Discus-
sions about these topics can be found in several algebra books, e.g. Refs. 19, 45 or 46.

A.1 Group axioms
Let G be a nonempty set of elements and · : G × G → G a binary operation. The
combination (G, ·) is called a group if for all element in G the following properties are
satisfied, under the action of ·:

Closure : ∀ x, y ∈ G → x · y ∈ G. (A.1)
Associativity : x · (y · z) = (x · y) · z ∀x, y, z ∈ G. (A.2)

Existence of identity : ∃ e ∈ G | ∀ x ∈ G : x · e = x. (A.3)
Existence of inverse : ∀ x ∈ G ∃ x−1 | x · x−1 = e (A.4)

One example of a group is the set of real numbers excluding , under multiplication,
(R− {0}, ·). Let us check the four properties written above using this example. Obvi-
ously, the multiplication of two real numbers gives another real number, and this mul-
tiplication law is associative. The identity element for the multiplication of real num-
bers is the number 1. Finally every non-zero real number has an inverse defined as
g−1 = 1/g, g ∈ R− {0}.

A.2 Maps and homomorphisms
LetA andB be (in general) two different sets. A map betweenA andB implies that every
element a ∈ A is related to, at least, one element b ∈ B:

f : A → B

a → f(a). (A.5)
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An element b ∈ B | b = f(a) is called an image of a under f . We can define different

Figure A.1: Graphical representation of a map

types of maps depending on how we associate the elements of two sets. Let f : A → B
be a map between the sets A and B. We will say that f is,

• Injective: if different elements in A have different images in B. This is equivalent
to say that if f(a) = f(b) then a = b.

• Surjective: if every element b ∈ B is the image of at least one element in A. This
is equivalent to f(A) = B.

• Bijective: if the map is injective and surjective. That is, every element in B is the
image of one and only one element in A, ∀b ∈ B ∃!a ∈ A | f(a) = b.

(a) Injective map (b) Surjective map (c) Bijective map

Figure A.2: Graphical representation of maps.

A map between two group (G, ·) and (H, ∗), f : G → H , is called a homomorphism
between G and H if the following is satisfied:

f(g · h) = f(g) ∗ f(h) ∀g, h ∈ G. (A.6)

An injective homomorphism is called a Monomorphism, a surjective homomorphism is
called an Epimorphism, and a bijective homomorphism is called a Isomorphism.

A.3 Lie groups and Lie algebras
Formally, a Lie groupG of dimension n is characterized by the property that it has a group
structure and a differentiable manifold [19]. Going on in this direction would require to
introduce and define terms such as Topological space or smoothness. Since that is not our
purpose here, let us give a user-friendly definition for Lie group. A Lie group is a group
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whose group elements depend on continuous parameters. In this way, the group multiplic-
ation and the inversion operation become continuous and differentiable. An example of a
Lie group is the group of proper rotations, SO(3). This is formed by all 3 × 3 matrices,
with determinant equal to 1, which fulfill that ATA = I.

Let us now define Lie algebra. In order to do this, let us consider a matrix group called a
one-parameter subgroup. A matrix A(t) belonging to this group is defined as

A(t) = exp[tL], (A.7)

where the matrix L is interpreted here as a tangent vector at the identity. We say that L
belongs to the tangent spaces of A(t), L ∈ T (I).

Consider the parameter t to be infinitesimal, t = ε, then we can Taylor expand A(ε)
as

A(ε) ≈ I + εL, (A.8)

where we have used d
dtA(t) = LA(t). If we take another matrix B(t) = exp[εM ], the

product can be expanded by applying Leibniz’ rule:

C(t) = A(t)B(t)⇒ Ċ = ȦB +BḂ, (A.9)

where we have used the notation Ȧ = d
dtA(t). We then have:

A(ε)B(ε) ≈ I + ε(L+M) +O(ε2). (A.10)

Recall that we are dealing with a matrix group. The non-commutative part of the group
product arises when we expand to second order in ε. It is described by a commutator
product between the generators. This turns the n-dimensional tangent space T (I) into the
Lie algebra of the group.

The linear action of a Lie group on its tangent space is called adjoint action and it is
defined as [19]

Ad(A)L = ALA−1. (A.11)

Let us see what happens when an element L of the tangent space T (I) acts onto another
element M ∈ T (I). Using that L = Ȧ(t = 0), we have

Ad(L)M = LML−1

=
d

dt
exp[tL]

∣∣∣∣
t=0

M
d

dt
exp[−tL]

∣∣∣∣
t=0

=
d

dt

[
exp[tL]M exp[−tL]

]
t=0

. (A.12)

Applying again Leibniz’ rule, D = ABC → Ḋ = ȦBC +AḂC +ABĊ, we find:

d

dt

[
exp[tL]M exp[−tL]

]
t=0

= LM −ML. (A.13)
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We conclude from here that L acts on M by commutation. Moreover, if L and M belong
to the Lie algebra, so does [L,M ]. This commutation product defines the Lie algebra of
the group. Every commutator satisfies the following three properties:

[L,M ] = − [M,L], (A.14)
[L, aM + bN ] = a[L,M ] + b[L,N ], (A.15)

[L, [M,N ]]+ [M, [N,L]] + [N, [L,M ]] = 0. (A.16)

The relation in Eq. (A.16) is called Jacobi’s Identity.
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Appendix B
The Euclidean group E(n)

In this appendix, we will define the Euclidean group. Aiming for this, we first introduce
the concept of isometry. After that, we will give a proper definition and work with some
of its properties.

Our discussions in this appendix follow from Refs. 47, 48, 49 and 50.

B.1 Isometries

A metric space is a set M together with a distance function d:

d : M ×M → R, (B.1)

such that d satisfies the following properties:

• d(p, q) ≥ 0, ∀p, q and only d(p, p) = 0 for p = q.

• It is symmetric, that is d(p, q) = d(q, p).

• The triangle inequality, d(p, r) ≤ d(p, q) + d(q, r), is satisfied ∀q, p, r ∈M .

Between two metric spaces M and N , we define isometry as a map f : M → N which
preserves the distance between two points, that is:

dN (f(p), f(q)) = dM (p, q) ∀p, q ∈M. (B.2)

If we can find a bijective isometry between two metric spaces, we will call them isometric;
and the set of bijective isometries from a metric space to itself has group structure. This
is called the isometry group. Two isometry groups have particular relevance in the field
of Physics; these are the Poincaré group (isometry group of Minkowski space) and the
Euclidean group.
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B.2 Definition of the Euclidean Group

We introduce the Euclidean space En, as the metric space with distance function defined
as:

∀ x, y ∈ Rn d(x, y) = ||x− y||, (B.3)

where we introduced the notation ||x|| =
√

x · x as the norm of the vector x.1 The Euc-
lidean group E(n) is just the isometry group of an n-dimensional Euclidean space. We
define the elements of E(n) as a pair (R, a) with R ∈ O(n) and u ∈ Rn. As we said
before, the Euclidean group is an example of an isometry group. That means that any
element on E(n) can be seen as a map f(R,a) : Rn → Rn on a Euclidean space built from
an orthogonal transformation and a translation:

f(R,a)(x) = Rx+ a. (B.4)

Using the fact thatE(n) is a set of maps, we can easily define the group multiplication and
inversion operation. Let us look first at the group multiplication. Let f(R,a) and f(R′,a′)

be two elements of E(n). Based on the group axioms, the group multiplication � of two
elements of a group must give another element of this group (so that we want to ensure
closure):

f(R,a) � f(R′,a′) = f(R, a)(R′x+ a′)

= R(R′x+ a′) + a

= RR′x+Ra′ + a. (B.5)

Note that the last line of eq. (B.5) has the same form as eq. (B.4) by rewriting RR′ =
R′′ ∈ O(n) and Ra′ + a = a′′ ∈ Rn, and thus the closure property is satisfied.

It comes straightforward from here to define the identity element inE(n); that is, the iden-
tity In×n in O(n) and no translations. In the pair notation, introduced before, it would be
written like (I, 0).
Having the identity in E(n), we can easily find the inverse element f(R′,a′), defined as:

f(R′,a′) | f(R,a) � f(R′,a′) = f(I,0). (B.6)

Doing a simple calculation, analogous to the one we did for the multiplication law, we get
the inverse element of an arbitrary (R, a): (RT ,−RTa).

Note that by having done these simple derivations, we have almost shown that the Eu-
clidean group is, in deed, a group. Only the associativity of � is left to prove.

As an example of this we look to the Euclidean group of R3, E(3). We rewrite as
f(R,a)(x) = Rx + a = x′. In a 3-dimensional space, the map f(R,a) has a 4 × 4 matrix

1Here, we used the standard inner product of Rn.
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form. Eq. (B.4) is then rewriten for R3 as:
x′

y′

z′

1

 =


R11 R12 R13 a1

R21 R22 R23 a2

R31 R32 R33 a3

0 0 0 1

 ·

x
y
z
1

 . (B.7)

B.3 Rigid-body motions
In this section, we will focus on two of the most important Lie groups in classical mechan-
ics. Let us introduce a subgroup ofE(n), the Special Euclidean group, SE(N), consisting
of all rigid body transformations, in n-dimensional Euclidean space, which preserve the
distance between points. A matrix which belongs to SE(N) has the following form:

A =

(
R z
~0T 1

)
, (B.8)

where R ∈ SO(N), z ∈ Rn and ~0 is an n-dimensional column vector whose elements are
zero. Note that eq. (B.8) has the same form as eq. (B.7).
It is of particular interest to look closer at the cases n = 2 and n = 3. Those are the
Euclidean motions in 2 (plane) and 3 (space) dimensions. In the case of, for example,
SE(2), R ∈ SO(2) is a well-known (and used) common rotation matrix:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (B.9)

Obviously, a ∈ R2 and ~0T is 2-dimensional row vector. Thus, SE(2) is the group of 3×3
matrices of the form: cos θ − sin θ a1

sin θ cos θ a2

0 0 1

 , (B.10)

where a1 and a2 are the elements of a.
In the case if SE(3),R ∈ SO(3) is a common rotation matrix in 3 dimensions and a ∈ R3

is a translation in 3 dimensions.

B.4 The Euclidean group E(2)
In the past section, we introduced in Eq. (B.10) one of the possible representations for
SE(2). In this section, we will justify this representation from the perspective of group
theory and representation theory. It is worth mentioning before going into detail, that
Eq. (B.10) is what is called a matrix representation of SE(2). It is not unique but we will
focus and work with this one.

From group theory, we know that SO(n) has n(n − 1)/2 generators. Roughly speak-
ing, SE(2) is a combination of SO(2) and translations in two dimensions. Thus, it has
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three generators, one corresponding to rotations in the plane and two translations. We will
name this generator of rotations as J3 and the generators of translations as T1 and T2.
These generators commute as follows:

[J3, T1] = T2 (B.11)
[J3, T1] = − T1 (B.12)
[T1, T2] = 0. (B.13)

These three commutators define the Lie algebra of E(2) and an element g of it can be
expressed as:

g = θJ3 + a1T1 + a2T2, (B.14)

where θ, ai ∈ R. Now we take the following representation:

ρ(J3) =

0 −1 0
1 0 0
0 0 0

 , ρ(T1) =

0 0 1
0 0 0
0 0 0

 , ρ(T2) =

0 0 0
0 0 1
0 0 0

 . (B.15)

These matrices correspond to infinitesimal rotations about an axis perpendicular to the
two-dimensional plane and translations along two axes, respectively. This can be seen by
taking the exponential map:

exp[θρ(J3)] =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , exp[a1ρ(T1)] =

1 0 a1

0 1 0
0 0 1

 ,

exp[a2ρ(T2)] =

1 0 0
0 1 a2

0 0 1

 . (B.16)

As a final comment, one can extend this representation to the complex plane by redefining
the generators as J ′3 = −iJ3 and T± = T1 ∓ iT2. The commutators now satisfy:

[J ′3, T±] = ±T± , [T+, T−] = 0. (B.17)
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Appendix C
Noether’s theorem

In this section we will introduce and prove Noether’s theorem. The version of the theorem
that we consider in this section applies to fields. The theorem was first introduced in Ref. 1,
while the proof, for fields, can be found in several QFT books, such as Refs. 13, 21 or 51.

C.1 Noether currents and total conserved charges
Noether’s theorem can be stated as follows: If a system has a continuous symmetry, then
there exist associated quantities whose values are conserved in time. [1]

In practice, this means that if we find a Lagrangian to be invariant under a certain trans-
formation, there has to be a conserved quantity. This quantity is called Noether’s current
or simply current. We will show now how to derive a mathematical expression for this
current. Let us consider a Lagrangian that does not depend explicitly on space-time co-
ordinates but only on a collection of fields ψi and their derivatives ∂µψi, L(ψi, ∂µψi) .
We start by considering an infinitesimal change of this Lagrangian, δL. By Hamilton’s
principle, we have the following:

0 = δL =
∑
i

∂L
∂ψi

δψi +
∂L

∂(∂µψi)
δ(∂µψi), (C.1)

where the subindex i runs over the collection of fields. Now by using the Euler-Lagrange
equation we can identify the first term in eq. (C.1) with ∂µ[∂L/∂(∂µψi)]. If we now
exchange δ∂µ by ∂µδ, we are able to identify the result as a total derivative:

0 =
∑
i

∂µ

(
∂L

∂(∂µψi)

)
δψi +

∂L
∂(∂µψi)

∂µ(δψi) =
∑
i

∂µ

(
∂L

∂(∂µψi)
δψi

)
. (C.2)

The last term between brackets in eq. (C.2) is thus constant and it is what we will call
Noether’s current:

jµ =
∑
i

∂L
∂(∂µψi)

δψi (C.3)
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The total charge can be computed from jµ by integrating the zeroth component j0 over a
large volume:

Q =

∫
V

d3x j0. (C.4)

The total charge Q is the quantity which is conserved in time. This can be seen by integ-
rating Eq. (C.2):

0 =

∫
V

d3x ∂µj
µ = ∂t

∫
V

d3x j0 −
∫
V

d3x ∇ · j. (C.5)

The last term in Eq. (C.5) is a volume integral which can be rewritten as a surface integral,∫
S
d2x j by applying Gauss’ theorem. By assuming now that j(x) = 0 on the surface, this

term vanishes and we are left with:

∂t

∫
V

d3x j0 =
d

dt
Q = 0. (C.6)

And, thus, the total charge Q is conserved in time.

C.2 Noether charges as symmetry generators

In general, when we perform an infinitesimal transformation like ψ → ψ + δψ for a field
ψ under a group G, what we are actually doing is applying an element of this group to the
field: ψ → gψ, g ∈ G. More precisely, we apply a unitary representation of the group
element acting under conjugation on the field. In this section we will clarify this statement
and give a connection between this and total conserved charges.

Let G be a Lie group and let g ∈ G be an element of this group. We build a unitary
representation like U = exp[tX], where X is the generator of the group and t is a para-
meter (this is called a one-parameter family). Now we apply U to a field:

ψ → gψ : UψU−1 = etXψe−tX . (C.7)

Since the transformation is infinitesimal, we can expand the exponentials to first order as
exp[tX] ∼ 1 + tX . Having in mind that ψ and X do not necessarily commute, this leads
to:

ψ → ψ + t[X,ψ]. (C.8)

And thus, we can relate
δψ = t[X,ψ]. (C.9)

On the other hand, let us look at the expression of the total charge in Eq. (C.4). From the
explicit form of j0, we can identify the canonical conjugated momentum π:

Q =

∫
V

d3x j0 =

∫
V

d3x
∂L
∂ψ̇

δψ =

∫
V

d3x πδψ. (C.10)
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If we now compute the commutator between the charge Q and the field ψ, we get the
following:

[Q,ψ] =

∫
V

d3x [ψ̇(x)δψ(x), ψ(x′)] = −iδψ, (C.11)

where we used the canonical equal-time commutation rules:

[ψ(x, t), ψ(x′, t)] = 0 (C.12)
[π(x, t), ψ(x′, t)] = −iδ(x− x′). (C.13)

Thus, we can relate the total conserved charges to the generators of the symmetries. In
fact, the charges generate the symmetry transformations and they form a representation of
the generators of the symmetry group.
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Appendix D
Goldstone’s theorem

D.1 Classical level

Let L be a Lorentz-invariant Lagrangian of the form L = T (φj) − V (φj), where T and
V are the kinetic and potential part of the Lagrangian, respectively. Assume that L is in-
variant, i.e. symmetric, under a certain set of transformations. Let G denote the symmetry
group of the Lagrangian with nG generators, and H ⊆ G the subgroup with nH gener-
ators which leaves the ground state invariant after spontaneous symmetry breaking. For
each generator which does not annihilate the vacuum one obtains a massless Goldstone
boson, i.e., the total number of Goldstone bosons equals the dimension of the quotient
group G/H , dimG/H = nG − nH .

Proof. Let us denote the collection of fields that minimize the potential V (φi) as φ0 =
{φi}0. The Taylor expansion of V around its minimum is

V (φi) ≈ V (φ0) +
1

2
(φi − φ0)(φj − φ0)

∂2V

∂φi∂φj

∣∣∣∣
φ0︸ ︷︷ ︸

Mij

+ . . . , (D.1)

which shows that the mass matrix elements Mij are given by the second derivative of the
potential with respect to the fields.

Let us in addition denote U(g) as a representation of G acting on the fields φi and U(h)
to the representation of H ⊆ G. The invariance of V under G implies that.

V (U(g)φi) = V (φi). (D.2)

Let us now substitute this invariance, for an infinitesimal group action, in the expansion of
the potential around its minimum:

V (φ0) = V (U(g)φ0) ≈ V (φ0) +
1

2
Mijδφiδφj , (D.3)
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which by comparison with Eq. (D.2) gives

Mijδφiδφj = 0. (D.4)

The variation δφk depends on whether the transformation belongs to U(h) or not.

1. If g ∈ H , then the vacuum remains invariant, i.e., δφj = 0. The generators of G are
then unbroken. The condition (D.4) is satisfied.

2. If g /∈ H , then δφj 6= 0. The generators are broken, and we say that the symmetry
has been spontaneously broken. Eq. (D.4) then is an eigenvalue equation which
shows that the mass matrix M has a zero eigenvalue.

In the latter case, g must be in the left coset (or quotient) G/H . The number of massless
modes is equal to the dimension of G/H .
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Appendix E
Functional integrals

A functional is a mapping from a vector space V to a field of scalars (either R or C). V
is usually a space of functions and thus, a functional is usually referred to as a function
of functions [52]. A deeper discussion about functional integrals in QFT can be found in
several books, e.g. Refs 13, 21 or 51

E.1 Quantum Mechanics

Consider the transition amplitude, A, from an initial state |xi〉 at initial time ti to a final
state |xf 〉 at time tf :

A = 〈xf | exp[−i(tf − ti)H(p̂, x̂)]|xi〉, (E.1)

where H(p̂, x̂) is the Hamiltonian of a one-particle system.

Figure E.1: Graphical representation of a transition amplitude from a state |x0〉 to |xt〉.

Let us first split the time interval into N subintervals of length ε. Eq. (E.1) becomes:

〈xf | exp[−iεH(p̂, x̂)] . . . exp[−iεH(p̂, x̂)]|xi〉. (E.2)

The states |x〉 form a complete set, that is,
∫
dx|x〉〈x| = 1 and thus, we can insert it

between each exponential. This gives

A =

∫ N−1∏
j=1

dxj

 〈xf | exp[−iεH(p̂, x̂)]|xN−1〉 · · · 〈x1| exp[−iεH(p̂, x̂)]|xi〉. (E.3)
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We now insert between each element a complete set of momentum eigenstates,
∫
dp|p〉〈p| = 1.

For each element, we have:

〈xj | exp[−iεH(p̂, x̂)]|xj−1〉 =

∫
dpj〈xj |pj〉〈pj | exp[−iεH(p̂, x̂)]|xj−1〉, (E.4)

with
〈x|p〉 =

1√
2π

exp[ipx]. (E.5)

Substituting this scalar product into Eq. (E.4) and computing to first order in ε, we have

〈xj | exp[−iεH(p̂, x̂)]|xj−1〉 =
1

2π

∫
dpj exp [ipj(xj − xj−1)− iεH(pj , xj−1)] .

(E.6)
We now assume a non-relativistic particle and plug H = p2

2m + V (x) into Eq. (E.6):

〈xj | exp[−iεH(p̂, x̂)]|xj−1〉 =
1

2π

∫
dpj exp

[
ipj(xj − xj−1)− iε

p2
j

2m
− iεV (xj−1)

]
,

(E.7)
which is a Gaussian integral in pj . The result is:

〈xj | exp[−iεH(p̂, x̂)]|xj−1〉 =

√
m

2iπε
exp

[
iε

(
m2

2ε2
(xj − xj−1)2 − V (xj−1)

)]
.

(E.8)
We finally substitute Eq. (E.8) into (E.3) and take the limit of N →∞ subintervals, which
is equivalent to taking the limit ε→ 0:

A = lim
N→∞
ε→0

∫ N−1∏
j=1

dxj

√
m

2iπε

 exp

iεN−1∑
j=1

(
m2

2ε2
(xj − xj−1)2 − V (xj−1)

) .
(E.9)

Using now that

lim
ε→0

1

ε
(xj − xj−1) =

d

dt
x,

lim
ε→0

ε

N−1∑
j=1

=

∫ tf

ti

,

we can identify the exponent of Eq. (E.9) as the action S[x(t)]:

S[x(t)] =

∫ tf

ti

dt

[
1

2
m

(
d

dt
x

)2

− V (x(t))

]
=

∫ tf

ti

dt L[x(t)], (E.10)

where L[x(t)] is the Lagrangian of the system. Lastly, we introduce the notation∫ N−1∏
j=1

dxj

√
m

2iπε

 =

∫ tf

ti

D[x(t)]. (E.11)
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Rearranging all terms together, we express the transition amplitude A as

A =

∫ tf

ti

D[x(t)] exp[iS[x(t)]]. (E.12)

Because L[x(t)] and S[x(t)] are functionals of x(t), the transition amplitude A is called
functional integral and it integrates over all possible paths that the particle can take.

E.2 Quantum field theory
The path integral formalism we have presented in the previous section can be extended to
field theory. We now consider the transition amplitude from an initial state |φi〉 at time ti
to a final state |φf 〉 at time tf :

Aφ = 〈φf | exp[−i(tf − ti)H]|φi〉. (E.13)

The same discussion we made in section E.1 can be used here by replacing the paths
x(t) with the fields φ(x, t). In the context of field theory “integrating over all possible
paths” translates into integrating over all possible field configurations of the system during
the transition. The action S[φ(x, t)] is now expressed in terms of the Lagrangian density
L[φ(x, t)] as

S[φ(x, t)] =

∫ tf

ti

dt L =

∫
d4x L[φ(x, t)], (E.14)

where we took the limits ti,f → ±∞. The transition amplitude Aφ, for a real scalar field
φ can then be written as a functional integral

Aφ = 〈φf | exp[−i(tf − ti)H]|φi〉 =

∫ φf

φi

D[φ] exp[iS[φ]], (E.15)

where the theory is described by a Lagrangian

L[φ] =
1

2
(∂µφ)(∂µφ)− V (φ), (E.16)

where V (φ) is a potential density.
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Appendix F
Functional integral representation
of the partition function

In this appendix we will use the path integral approach explained in appendix E to in-
troduce thermal field theory, that is, quantum field theory including the effects of finite
temperature and density. Our discussion in this appendix is mainly based on Ref. [26].

F.1 Partition function
Consider the partition function Z for a canonical ensemble:

Z = Tr exp[−βH], (F.1)

where H is the Hamiltonian of the system and β = 1/T is the inverse of the temperature.
Let us assume a single-particle system. Because the trace is independent of the choice of
basis, we can express Eq. (F.1) in a position-state basis:

Z = Tr exp[−βH] =

∫
dx 〈x| exp[−βH]|x〉. (F.2)

The integrand of Eq. (F.2) can be interpreted as a functional integral. This can be done
because both Eq. (F.2) and (E.12) are similar if we integrate the latter over imaginary time
τ = it from 0 to β. This is called Wick rotation:

Z =

∫
dx 〈x| exp[−βH]|x〉 =

∫
dx

∫
x(0)=x(β)

D[x(τ)] exp

[
−
∫ β

0

dτ LE

]
, (F.3)

where the states |x〉 satisfy periodic boundary conditions and where the subscript LE
stands for Euclidean Lagrangian and is defined as LE = −L(t → −iτ).1 The expo-
nent is then called Euclidean action, SE . Recalling now the periodicity of the states, i.e.

1We have Wick rotated from Minkowski to Euclidean space
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x(0) = x(β) = x, we have:

Z =

∫
D[x(τ)] exp

[
− SE [x(τ)]

]
. (F.4)

Here, we made use of the Quantum Mechanics formalism and, once again, we can go to
field theory by replacing the states |x〉 by the fields φ(x, t). For a scalar field theory, we
have:

Z =

∫
D[φ] exp [−SE [φ]] , (F.5)

where the fields satisfy φ(x, 0) = φ(x, β). Here the Euclidean action is again defined in
terms of the (Euclidean) Lagrangian density:

SE [φ(x, τ)] =

∫ β

0

dτ

∫
d3x LE [(x, τ)], (F.6)

where, as in the QM case, LE = −L(t→ −iτ).

Until now, we have considered the canonical ensemble, which does not consider exchange
of particles and energy with a heat bath. In order to take this into account, we need to make
use of the grand canonical ensemble. For this ensemble, the partition function is defined
as

Z = Tr exp[−β(H − µiNi)], (F.7)

where the µi are chemical potentials and the Ni are number operators. Each Ni has a µi
associated. In general, instead of using Ni, we can couple each chemical potential to each
conserved charge Qi of the system. Eq. (F.7) becomes:

Z = Tr exp[−β(H − µiQi)]. (F.8)

The way of introducing the grand canonical ensemble in field theory is just coupling the
Hamiltonian densityH0 of the system to the charge density j0

i = ρi of the Noether current:

H = H0 − µiρi, (F.9)

and one can then compute the new Lagrangian from it. Note that by introducing a chemical
potential, the Lorentz invariance of the theory is broken.

F.2 Thermodynamic quantities
In the following we only consider the grand canonical ensemble. The partition function
plays a essential role in statistical mechanics because all thermodynamic properties can be
computed from it. For instance, the thermal average of an operator Â is defined as:

〈A〉 =
1

Z
Tr
[
Â exp[−β(H − µiQi)]

]
, (F.10)

which can be also expressed, using the path integral approach, as

〈A〉 =
1

Z

∫
D[φ] Â exp [−S[φ]] . (F.11)
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Other thermodynamic properties such as pressure, particle number and entropy can also
be computed from the partition function as follows:

P =
∂

∂V
(T lnZ), (F.12)

Ni =
∂

∂µi
(T lnZ), (F.13)

S =
∂

∂T
(T lnZ). (F.14)

We see that the quantity T lnZ is present in all three equations. Let us then define the
thermodynamic potential as:

Ω(T, V, µi) = − 1

β
lnZ, (F.15)

where again T = 1
β . Let us take the partition function of Eq. (F.8), then every conserved

charge of the system can be computed from the thermodynamic potential as

Qi = − ∂

∂µi
Ω(T, V, µi). (F.16)
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