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Introduction 
The global aquaculture production has been steadily increasing over the last years. In 

2004 the total production was over 28 million tonnes and valued nearly 37 billion US$. 

The production of marine fish in Europe was 130 thousand tonnes and from this the 

share of turbot was more than six thousand tonnes and the share of Atlantic cod was 

almost four thousand tonnes (FAO). Intensive aquaculture production of marine fish 

larvae has been hampered due to low and unpredictable survival during first-feeding. 

The larvae are reared at high densities and are exposed to substantial bacterial levels 

during first feeding (Olafsen, 2001). The intensive rearing conditions provide an 

environment selecting for opportunistic bacteria (Skjermo et al. , 1997) that may lead to 

reduced growth and survival of the larvae (Salvesen et al. , 1999). Supply of organic 

material during hatching results in growth of opportunistic bacteria in the tanks 

(Vadstein et al. , 2004). In addition, opportunistic bacteria are associated to the live feed 

(Paper 4). Microbial management in marine larviculture involves several measures 

(Skjermo and Vadstein, 1999) (Figure 1). The rearing water can be modified by 

microbial maturation, which reduces the number of opportunistic bacteria (Skjermo et 

al. , 1997), or by water recirculating systems that stabilize the microbial community and 

create a more robust environment that is less susceptible to disturbances (Attramadal, 

2004). The use of immunostimulants can boost the non-specific immune system 

(Vadstein, 1997; Conceicao et al. , 2001) of fish larvae, and enhance the resistance 

against pathogens (Skjermo and Bergh, 2004). In addition, the vitality of fish larvae can 

be improved by the addition of probiotics to the water or the feed, with the objective of 

colonizing larvae with beneficial bacteria (Gatesoupe, 1999; Irianto and Austin, 2002; 

Vine et al. , 2006).
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Figure 1. Factors that can influence the microbial environment experienced by marine 

larvae during first feeding. 

The increasing interest in probiotics for use in aquaculture production has lead to 

investigations of probiotic preparations for live feed, crustaceans, molluscs and fish 

production (Verschuere et al. , 2000). Several definitions of probiotics have been made 

(Gram and Ringø, 2005), and the definition proposed by Fuller (1989) is “live microbial 

feed supplements which beneficially affect the host animal by improving its intestinal 

microbial balance”. To fully understand the effects of probiotic organisms it is 

important to know by which mechanisms they benefit the host. Several mechanisms 

have been put forward as important for probiotic bacteria; 
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Enhancement of immune response 

Production of beneficial compounds, such as digestive enzymes and vitamins 

Antiviral effects 

Improvement of water quality 

These mechanisms are not mutually exclusive. The probiotic organisms should also be 

able to attach and grow in intestinal mucus, and tolerate the gut environment, to be able 

to colonize the host. Probiotic candidates must be tested in experimental exposure tests, 

to assure that they are not detrimental to the host. In vivo information on the host-

microbe interactions, are important to get a better understanding of these mechanisms.  

In the search for probiotic bacteria, different selection strategies have been applied in 

studies on marine fish larvae (Gram and Ringø, 2005). Probiotic candidates are mostly 

chosen because they show in vitro inhibitory activity against a target pathogen. Also, 

the dominant intestinal bacterial flora in larvae from well performing rearing groups has 

been regarded as probiotic candidates (Huys et al. , 2001). The dominant bacterial flora 

is regarded capable of excluding invading bacteria from the adhesion sites of the gut 

wall (Verschuere et al. , 2000). In addition, bacterial adhesiveness to mucus and growth 

properties in mucus has been used as an initial selection strategy of probiotics (Vine et 

al. , 2004a-b).

The aim of this thesis was to make a rational selection of probiotic bacteria and to test 

the candidates in vivo by controlled colonization in first feeding experiments with 

marine larvae. In order to achieve this, the following issues were investigated: 

The dominant and the antagonistic intestinal bacterial flora of cod larvae from 

different rearing conditions were characterized, to obtain a pool of 

isolates.

Bacteria from the pool of isolates were evaluated using several in vitro tests, 

to screen the isolates regarding their potential as probiotics.
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Cod larvae were exposed to the probiotic candidates in a small-scale in vivo

experiment to evaluate if the bacteria were detrimental or beneficial to 

larvae. 

The bioencapsulation of bacteria in live feed was studied to enable effective 

transfer of probiotic bacteria to fish larvae. 

Two first-feeding experiments with different marine fish species were 

conducted to see if controlled colonization could be obtained, and to see 

if the selected probiotic candidates had beneficial effects in vivo.

Methods to characterize microbial communities and to detect and 

quantify added bacteria 

Different methods are used to characterize microbial communities and to detect the 

presence of specific bacteria. Some methods rely on culture techniques and phenotypic 

characterization (Hansen and Sørheim, 1991; Bagge-Ravn et al. , 2003; Paper 1; Paper 

2), others on immunological techniques (Kotani and Mcgarrity, 1986; Adams, 1991; 

Paper 4; Paper 5), and lately DNA based methods are expanding in this area of research 

(Zoetendal et al. , 2004; Dumonceaux et al. , 2006; Paper 1; Paper 6). The two 

immunological methods immunocolony-blot (ICB) and enzyme-linked immunosorbent 

assay (ELISA), and the DNA based method terminal restriction fragment length 

polymorphism (T-RFLP) were applied in this thesis. These methods were used to detect 

the presence of specific bacteria. In addition, culture techniques followed by phenotypic 

characteriazation and sequence analysis of a part of the 16S rDNA, as well as T-RFLP 

were used to characterize bacterial communities in association to marine larviculture 

(water, rotifers and larvae).  

A large number of tests can be used to characterize bacteria phenotypically. In this 

thesis, Gram reaction, oxidase reaction, fermentative ability, motility, shape and several 

other criteria were used to group the bacteria into clusters. The results from phenotypic 

tests can also be used to place the bacteria directly into genera by using identification 

shemes (Bagge-Ravn et al. , 2003). 
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Antibody specific for the added bacteria is used by the immunological methods to detect 

surface structures of specific bacteria. The production of this specific antibody can only 

be done with cultivable bacteria. The bound antibody is made visual through colour 

reactions. The main difference between ICB and ELISA, is that ICB is more laborious, 

however, ELISA has a higher detection level compared to ICB (Paper 4; Paper 5).

T-RFLP was developed to analyse microbial community structure and dynamics (Liu et 

al. , 1997; Osborn et al. , 2000), however it has also been used to track specific bacteria 

in different ecosystems (Jernberg et al. , 2005; Jung et al. , 2005). To run T-RFLP, DNA 

from a sample is the template for the PCR, and one or both of the primers are labelled 

with a fluorescent dye. The amplified products are digested with one or more restriction 

enzymes, and the size of the fluorescent terminal fragment is determined. In this thesis, 

the method was used both to analyze microbial communities (Paper 1; Paper 6) and to 

detect specific bacteria that were added to the rearing system of cod larvae (Paper 6) 

(Figure 2). About 500 bp of the 16S rDNA was amplified with real-time PCR prior to 

the T-RFLP analysis. Real time PCR was used to enable detection of the late 

logarithmic amplification phase. By stopping the DNA amplification in this phase, the 

risk for changing the ratios between different bacterial templates was lowered (Suzuki 

and Giovannoni, 1996; Kanagawa, 2003). To enable detection of specific bacteria, the 

expected and observed terminal restriction fragments (TRF) of the added bacteria was 

determined. The TRF of the added bacteria was defined as the observed TRF±1 bp. This 

variability was included because variation between observed TRF lengths has been 

found in replicate runs of the same sample (Kaplan and Kitts, 2003). The percentage of 

this specific TRF related to the total peak area was calculated by the variable threshold 

method (Osborne et al. , 2006). As the case was for the immunological methods, also T-

RFLP was hampered by “background noise” created by other bacteria in the 

experimental system. 
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Figure 2. Example of a T-RFLP profile from rotifers in a tank that was added the 

antagonistic probiotic candidates Pseudoalteromonas (RA7-14; 239±1 bp) and 

Roseobacter (RA4-1; 249±1 bp). Each peak represents one or several species of 

bacteria.

The dominant and the antagonistic intestinal bacterial flora of 

marine fish larvae 

The intestinal bacterial flora of several species of marine fish larvae has been 

characterized (Muroga et al. , 1987; Hansen et al. , 1992; Blanch et al. , 1997; Nedoluha 

and Westhoff, 1997; Eddy and Jones, 2002; Verner-Jeffreys et al. , 2003), and a shift in 

the bacterial flora, regarding composition and quantity, is found with larval age, 

nutritive status and environmental conditions (Hansen and Olafsen, 1999; Ringø and 

Birkbeck, 1999). Marine larvae drink water one day after hatching (Mangor Jensen and 

Adoff, 1987; Reitan et al. , 1998), thus the intestinal bacterial flora is influenced by 

bacteria in the surrounding water at an early stage. The number of intestinal bacteria 
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increases as the larvae start eating (Huys et al. , 2001; Eddy and Jones, 2002) and the 

composition is influenced by the bacterial flora associated to live feed (Muroga et al. , 

1987; Eddy and Jones, 2002). The functions of the intestinal bacterial flora are nutrient 

processing (Bairagi et al. , 2002), contribution to digestive processes (Rowland, 1992), 

maturation of the innate immune system (Hansen and Olafsen, 1999) and prevention of 

pathogen colonization (Verschuere et al. , 2000). In addition, many genes are up- or 

down-regulated in response to the intestinal bacterial flora (Rawls et al. , 2004) with 

implications that are mostly unknown. Thus, the intestinal bacterial flora is of great 

importance and probably influences development, growth and survival in marine larvae. 

Most studies on the intestinal bacterial flora of fish larvae have used traditional methods 

and culture techniques. However, in the last decade several molecular methods have 

been applied (Zoetendal et al. , 2004). These methods can be used to characterize the 

total bacterial flora as well as the cultivable bacterial flora, and will undoubtedly be 

important to fully understand the ecology of the intestinal bacterial flora.

In order to describe and compare the bacterial flora between individuals and rearing 

groups, the dominant cultivable intestinal bacterial flora of Atlantic cod larvae from 

different rearing groups (Paper 1) was phenotypically characterized (Figure 3). For 

some of these isolates the 16S rDNA was partially sequenced. In addition, the culture 

independent approach T-RFLP was used to characterize the total bacterial flora. The 

bacterial flora varied qualitatively and quantitatively between individuals from the same 

rearing condition and between cod larvae from different rearing conditions. Inter-

individual variation is also found in human beings (Zoetendal et al. , 1998; Hopkins et 

al. , 2002), pigs (Simpson et al. , 2000) and broiler chickens (Zhu et al. , 2002), and may 

be due to stochastic factors occurring during bacterial colonization (Verschuere et al. , 

1997). The inter-individual variation could also be caused by genetic differences 

between individuals (Vaahtovuo et al. , 2003). The cultivable bacterial flora in larvae 

from two hatcheries was dominated by bacteria with 16S rDNA similar to the Gram 

positive Microbacterium. Microbacterium was also found to a less extent in Atlantic 

cod larvae by Korsnes et al. (2006), but is rarely found in the bacterial flora of marine 

fish larvae. All other dominant isolates had 16S rDNA similar to Gram negative bacteria. 

The -Proteobacteria was most common, and represented by Marinomonas, Vibrio,
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Pseudomonas, Pseudoalteromonas, Neptunomonas and Halomonas. In addition, 

Roseobacter within the -Proteobacteria and two isolates probably within the 

Bacteroides and Cytophaga group were detected. The T-RFLP analysis revealed 

considerably higher diversity than the culture based phenotypic characterization. 

However, the detection level of the culture technique was not below 3%, thus if only 

TRFs that represented more than 3% of the total peak area were used in the comparison, 

similar diversity was found.  

Figure 3. Cluster diagram based on phenotypic characterization for all dominant 

isolates using average linkage and percent distance. The isolates were clustered 

at 80% similarity as indicated by the dotted line. Numbers on the left indicate the 

different clusters obtained. 



9

Bacterial antagonism is common among bacteria from the marine environment (Long 

and Azam, 2001; Grossart et al. , 2004) and among bacteria from marine fish larvae 

(Westerdahl et al. , 1991; Sugita et al. , 2002; Makridis et al. , 2005a). Bacteria from 

different genera (Sugita et al. , 1996; Ringo and Gatesoupe, 1998; Long and Azam, 

2001; Hjelm et al. , 2004b; Makridis et al. , 2005a) (Figure 4) produce chemical 

substances that cause antagonistic activity, including antibiotics, organic acids, 

hydrogen peroxide, siderophores and bacteriocins. A few percent of the cultivable 

bacterial flora from fish is usually antagonistic to pathogenic bacteria in vitro (Sugita et 

al. , 1996, 2002; Hjelm et al. , 2004a), although in some cases, higher percentages of 

antagonistic bacteria have been reported (Westerdahl et al. , 1991; Makridis et al. , 

2005a). However, the importance of antagonistic interactions in vivo, are not well 

documented (Atlas, 1999). Under in vitro conditions bacterial antagonism is medium-, 

growth phase- and temperature- dependent (Bizani and Brandelli, 2004; Hjelm et al. , 

2004a; Monteiro et al. , 2005), and can even depend on static growth conditions (Bruhn 

et al. , 2006). Thus, it can be questioned whether conditions suitable for production of 

inhibitory compounds will occur in the intestinal tract of fish. On the other hand, the 

fact that so many marine bacteria have this property, indicates that it involves 

competitive advantages, at least under some circumstances.  
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Figure 4. Phylogenetic tree based on the bacterial 16S rDNA sequences recovered from 

antagonistic bacteria. The scale bar indicates 10% sequence difference. The 16S 

rDNA sequence of Bacillus cereus (AF155952) was used as outgroup reference, 

and accession numbers of reference sequences are indicated. The number after 

the asterisk refers to the cluster where isolates were placed according to the 

phenotypic characterization (Paper 2). 

In this thesis, the cultivable bacterial flora in cod larvae from five rearing groups was 

screened for inhibitory activity against Listonella anguillarum (strain HI610) by using 

the replica plating method (Paper 2). Most of the antagonistic bacteria were members of 

the -Proteobacteria, represented mainly by isolates with 16S rDNA similarity to Vibrio

and Marinomonas, but also isolates with sequence similarity to Pseudoalteromonas and 

Shewanella were found (Figure 4). Vibrio constituted a major part of the antagonistic 

intestinal bacteria in Japanese flounder (Sugita et al. , 2002), and was the only 

antagonistic bacterial genus in the intestines of Senegalese sole (Makridis et al. , 2005a). 

Pseudoalteromonas has shown a broad range of inhibitory activities against both 

bacteria and other organisms (Holmström et al. , 2002). Members of -Proteobacteria 

also inhibited the growth of L. anguillarum, and were represented by Hyphomicrobium

and Roseobacter. The most numerous antagonistic bacteria in a turbot rearing system 

were Roseobacter spp. (Hjelm et al. , 2004b). In addition, the antagonistic Roseobacter
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sp. strain 27-4 has demonstrated probiotic potential in vivo (Hjelm et al. , 2004a; Planas 

et al. , 2006). Both the species composition and the percentage of antagonistic isolates 

in the intestinal bacterial flora (Figure 5) varied considerably between individual cod 

larvae from the same rearing condition and also between rearing conditions. Inter-

individual variation regarding the share of intestinal bacteria with inhibitory activity 

was also found in turbot (Westerdahl et al. , 1991). 

Percentage antagonists

0 20 40 60 80 100

R
ea

rin
g 

gr
ou

p

N

R 2

R 1

I 2

I 1

Figure 5. Percentage antagonistic isolates of total colony forming units in individual 

larva from five different rearing groups. Cicles ( ) indicate individual larvae, the 

boxes show 25th and 75th percentiles and median. The dotted lines are the mean 

values.

The number of cultivable bacteria varied up to 440 times between larvae from the same 

rearing tanks, and variation was also found between larvae from different rearing 

conditions (Figure 6). Quantitative differences regarding cultivable bacteria have also 

been found in rainbow trout (Spanggaard et al. , 2000) and Japanese coastal fish (Sugita 

et al. , 2005). The total number of bacteria associated to the fish larvae was also 

compared between samples. The bacterial DNA from the cod larvae was amplified with 
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real time PCR, and a threshold cycle (Ct) was determined for each sample. The Ct value 

allows for accurate and reproducible quantification of the bacterial DNA. The Ct values 

varied from 22.9 to 27.6 cycles, and with 80% DNA amplification efficiency this 

corresponds to up to 16 times difference between individual larvae. Thus, in quantitative 

terms, both the cultivable and the total number of bacteria varied between individual 

larvae. However, the cultivable bacteria varied far more than the total bacterial numbers. 

In addition, it was found that increasing total numbers of bacteria corresponded to 

decreasing CFU (Figure 7). This can be explained if fish larvae can harbour only a 

certain amount of bacteria. Thus, increasing numbers of uncultivable bacteria will 

displace the cultivable bacteria. 
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Figure 6. CFU in individual cod larvae from five different rearing groups. 
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Ct value
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Figure 7. Ct (Threshold cycle) value found in real time PCR vs colony forming units 

(CFU) in individual larvae. The 95% confidence interval for the slope of the 

fitted line is        -0.018 to 0.643. ( ) larvae from hatchery I, ( ) larvae from 

hatchery N, and ( ) larvae from hatchery R.

In vitro probiotic tests 

A good pool of probiotic candidates is vital when searching for probiotic bacteria 

(Verschuere et al. , 2000). Nearly 500 bacterial isolates from the intestinal bacterial 

flora of cod larvae from different rearing conditions were isolated as a pool of candidate 

bacteria in this thesis. The isolates were obtained by two selection strategies, i.e. the 

dominant and the antagonistic bacterial flora of healthy cod larvae. After the phenotypic 

characterization, about 10% of the isolates were chosen for evaluation of probiotic 

properties. These isolates were chosen based on uniqueness, fermentative ability and 

dominance. An attempt was made to represent the diversity recorded in the phenotypic 

characterization, but with the goal of reducing the total number of isolates. In addition 

we wanted to end up with comparable numbers of dominant and antagonistic isolates. 
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In order to further reduce the number of probiotic candidates it is important to screen 

the isolates for beneficial properties that are important to probiotic bacteria. Screening 

for bacterial antagonism against a target pathogen is the most common method used 

(Gram and Ringø, 2005). However, screening for antagonism against dominant bacterial 

strains, to see if the normal bacterial flora is inhibited, is also relevant. The dominant 

bacteria were found to be less inhibited in the well diffusion agar assay (WDAA), 

compared to the pathogenic bacteria. The abilities of bacteria to attach and grow in 

mucus are also screened for (Olsson et al. , 1992; Vine et al. , 2004a-b; Chabrillon et al. , 

2005). These are important properties to exclude pathogenic bacteria in the gut, and to 

enable colonization and persistence in the intestinal tract. In addition, probiotic bacteria 

may help its host by contributing to digestive processes in the gut (Rowland, 1992), as 

the intestinal bacterial flora in fish produces extracellular enzymes (Bairagi et al. , 2002; 

Ramirez and Dixon, 2003). Probiotic bacteria should also be resistant to bile to persist 

in the digestive tract (Nikoskelainen et al. , 2001), and they should tolerate low pH to 

pass through the acidic environment in the stomach. However, resistance to acid is not 

required for probiotic candidates aimed at marine larvae, as the digestive system is 

alkaline during first feeding (Hoehne-Reitan et al. , 2001). In addition to beneficial 

properties, also detrimental properties should be screened for. Haemolytic bacteria are 

found in large numbers in the rearing of marine larvae (Westerdahl et al. , 1991; 

Salvesen et al. , 1999; Olsen et al. , 2000). Haemolysis is often connected to pathogenic 

bacteria (Austin et al. , 2005), thus it seems wise to avoid the use haemolytic strains as 

probiotics.

In this thesis, the WDAA was used to evaluate antagonism against four pathogenic 

bacteria (Paper 3). In addition, antagonism against three dominant isolates from cod 

larvae was tested. A large proportion (52%) of the isolates that inhibited the growth of L.

anguillarum (strain HI610) in the initial screening (replica plating method), did not 

inhibit the growth of this strain in the WDAA. It was not checked if this was due to the 

loss of antagonistic activity during storing or because of differences in the two tests. A 

pathogenic strain that is used in the initial search for antagonistic bacteria, should 

preferably be inhibited by a wide array of strains. In the WDAA, the pathogenic Vibrio 

logei was inhibited by 23 probiotic candidates, whereas L. anguillarum (strain HI610) 
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was inhibited by 16 candidates. Thus, Vibrio logei might have been more effective in 

finding antagonistic bacteria in the initial screening. The pathogenic Marinomonas sp., 

on the other hand, was only inhibited by five probiotic candidates. Two of the three 

dominant isolates we tested antagonism against had DNA similarity to Microbacterium,

while the third had DNA similarity to Marinomonas. The two dominant 

Microbacterium strains were inhibited by strains with DNA similarity to Marinomonas

(and one Vibrio), whereas the Marinomonas was inhibited by stains with DNA 

similarity to Roseobacter and Vibrio. Thus, the inhibition pattern against the dominant 

strains was strain-specific to some degree. 

The ability of bacteria to attach to intestinal mucus is regarded important for the 

colonization of the intestine (Balcazar et al. , 2006; Vine et al. , 2006), and has been 

used as a selection criterion for probiotic bacteria in previous studies (Olsson et al. , 

1992; Vine et al. , 2004b; Chabrillon et al. , 2005). In the present study (Paper 3), the 

adhesion to intestinal mucus of cod was similar between the bacterial isolates from the 

dominant and from the antagonistic selection strategies (Figure 8). Less than 5% 

adhesion to cod intestinal mucus was found with the majority of the isolates, however, 

isolates with equal to or higher than 5% binding to mucus were a diverse group with 

16S rDNA similarities to Marinomonas, Microbacterium, Pseudoalteromonas,

Pseudomonas, Roseobacter and Vibrio. Highest ability to attach to mucus, considering 

both the dominant and antagonistic bacterial groups, was found among isolates with 16S 

rDNA similarity to Vibrio. Vibrio has also been found to have good adhesive abilities to 

sole mucus (Chabrillon et al. , 2005).  
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adhesion to cod intestinal mucus (%)

0 10 20 30 40

Dominante isolates

Antagonistic isolates

Figure 8. Adhesion to cod mucus for bacterial isolates selected by the dominant or the 

antagonistic selection strategy. 

Bacterial growth characteristics have also been used to screen probiotic bacteria, and it 

has been proposed that an r-selected probiotic bacterium with a short lag phase and a 

fast growth rate in intestinal mucus will be the most competitive in vivo (Vine et al. , 

2004a). Although probiotic bacteria with these growth characteristics might have better 

competitive abilities, it was found that turbot larvae grew better when the proportion of 

fast-growing bacteria in the rearing water was low (Salvesen et al. , 1999). In this thesis, 

the majority of isolates with higher maximum specific growth rates than 0.075 h-1 had 

sequence similarity to Vibrio (eight isolates), but also three isolates with sequence 

similarity to Pseudoalteromonas grew faster than 0.075 h-1 (Figure 9). On the other 

hand, the isolates with 16S sequence similarity to Roseobacter, did not grow at all in 

cod intestinal mucus. 
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Maximum specific growth rate hour-1 in mucus
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Dominante isolates

Antagonistic isolates

Figure 9. Growth rate in cod mucus for bacterial isolates selected by the dominant or 

the antagonistic selection strategy. 

Extracellular enzymes are produced by the intestinal bacterial flora in fish (Bairagi et 

al. , 2002; Ramirez and Dixon, 2003; Paper 3). In bacteria from the intestinal tract of 

cod larvae, the production of constitutive extracellular enzymes varied between bacteria 

from the dominant and the antagonistic selection strategies, but was not significantly 

different between the two groups (Paper 3). Most isolates had high phosphatase and 

leucine arylamidase activity, whereas varying activity was recorded for esterase (C4), 

esterase lipase (C8), valine arylamidase, phosphohydrolase, -galactosidase, -

glucosidase, -glucosidase and glucosaminidase. Atlantic cod larvae probably have 

limited ability to digest carbohydrates (Perez-Casanova et al. , 2006), however, bacteria 

from the intestinal bacterial flora of Atlantic cod larvae produce several extracellular 

enzymes that degrade carbohydrates (Paper 3). In juvenile turbot the bacterial flora is 

involved in protein degradation in the distal segments of the gut (De Schrijver and 

Ollevier, 2000) and production of short chain fatty acids by bacteria can contribute to 

the metabolism of the host (Rowland, 1992). The human microbiome harbours 

significantly enriched metabolism of glycans, amino acids, and xenobiotics (Gill et al. , 

2006), and this could be the case for marine fish as well. 
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Probiotic bacteria must be able to survive the transit to the gastrointestinal tract 

(Balcazar et al. , 2006). In the present study, all the bacterial isolates tolerated exposure 

to cod bile (Paper 3). The physiological concentration of bile in the fish intestine was 

not known, however, the 10% bile concentration that was used in the test is probably 

relatively high compared to what is found in the intestinal tract. The fish bile test 

indicated that all the bacterial isolates may persist in the gut with the presence of bile. 

High proportions of bacteria from both selection strategies were found to be haemolytic 

in the present study. As the case for pathogenic vibrios (Austin et al. , 2005), only -

haemolytic isolates were found. The haemolytic isolates had 16S rDNA similar to 

Marinomonas, Microbacterium, Pseudoalteromonas, Pseudomonas, Shewanella and 

Vibrio, thus a wide range of bacteria have this property. Haemolytic bacteria are often 

found in large quantities in the rearing of marine larvae (Westerdahl et al. , 1991; 

Salvesen et al. , 1999; Olsen et al. , 2000), however, countermeasures may lead to a 

significant reduction in their numbers (Olsen et al. , 2000). Expression of haemolytic 

activity is dependent on bacterial growth phase, temperature and pH (Munn, 1978), and 

it can be differently expressed on blood from different animal species (Austin et al. , 

2005). These factors were not investigated for the isolates in the present study. 

Haemolysin can be a virulence factor, and therefore all isolates with this activity were 

excluded as probiotic candidates. However, one of the seven isolates that were chosen 

for further testing was a case of doubt as a very weak clearing zone on blood agar was 

detected after 10 days of incubation. In the experimental exposure test this isolate (ID4-

29) was detrimental to the fish larvae. 

Based on the in vitro tests presented above, seven bacterial isolates (Table 1) were 

chosen for further evaluation of probiotic properties in in vivo experiments with cod 

larvae. The chosen strains performed well in one or several of the in vitro tests. 

Fermentative ability was found in three of the isolates. Antagonism was only found in 

isolates from the antagonistic selection strategy, and isolates with antagonism against 

several pathogens were preferred. Isolates with high adhesion to mucus were preferred, 

but also isolates with low adhesion were included if they performed well in other tests. 

The production of extracellular enzymes and the growth rate in mucus varied between 
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the chosen isolates. We regarded the production of several extracellular enzymes as a 

positive characteristic, whereas the growth rate in mucus was less emphasized in the 

selection. Bacteria with high growth rates have competitive advantages in habitats with 

surplus of space and food, however, opportunistic bacteria can be detrimental to marine 

larvae (Skjermo et al. , 1997; Salvesen et al. , 1999). 
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Small scale in vivo evaluation of probiotic candidates 

A probiotic candidate bacterium that is promising based on in vitro properties, needs to be 

tested in vivo to confirm positive (or negative) effects on fish larvae (Bergh et al. , 1992; 

Makridis et al. , 2005b). The experimental exposure test is laborious compared to the in vitro

tests, and therefore only a limited number of bacterial isolates can be chosen for testing. 

However, compared to a first feeding experiment, the experimental exposure test is far less 

laborious. Thus, the experimental exposure test is a valuable tool to evaluate probiotic 

bacteria in vivo, and specifically to avoid the use of pathogenic bacteria in first-feeding 

experiments.

In the experimental exposure test, cod eggs were surface disinfected and distributed one by 

one in small wells with autoclaved seawater (Paper 3). The probiotic candidates were added to 

the water at low (104 bacteria ml-1) and high density (107 bacteria ml-1). Surface disinfected 

cod eggs in non-autoclaved seawater served as a positive control, whereas the negative 

control included addition of the pathogenic L. anguillarum (strain HI610) into the water. The 

fish larvae were not fed during the experiment, therefore all larvae eventually died due to 

starvation. The mortality of larvae was different between treatments (Figure 10). L.

anguillarium (HI 610) and two of the probiotic candidates, were detrimental to the cod larvae. 

Both probiotic candidates that were harmful to the larvae had 16S rDNA similarity to Vibrio

ordalii and to the pathogenic L. anguillarum. These two probiotic candidates had in vitro

properties that are considered important for probiotic bacteria, but were both rejected as a 

result of the experimental exposure test. Five probiotic candidates performed significantly 

better than the positive control in the experimental exposure test, both when added at low and 

high density. Thus, these five bacteria were chosen for use in a first feeding experiment. The 

results showed that the bacterial species present, influenced mortality to a large extent, 

whereas the density of bacteria was less relevant. Similar mortality rates, independent of 

bacterial density, was also found for sea bream larvae (Makridis et al. , 2005b). In conclusion, 

the experimental exposure test is a simple test that gives valuable information regarding the 

impact of the added bacteria on fish larvae. In addition, the results indicate that the test might 

be further simplified by testing only one bacterial density. 
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Figure 10. Survival of cod larvae when they were in vivo exposed to seven probiotic 

candidates, a negative and a positive control at high bacterial density (107 ml-1).

Negative control was L. anguillarum HI 610 ( ), positive control was non-sterilized 

rearing water ( ) (5.9 × 102 bact ml-1). Probiotic candidates: RA 3-6 ( , Vibrio), RA 

4-1 ( , Roseobacter), RA 7-14 ( , Pseudoalteromonas), ID 3-10 ( ,

Microbacterium), RD 5-30 ( , Vibrio), ND 2-7 ( , Microbacterium), ID 4-29 ( ,

Vibrio).

Methods to transfer probiotic bacteria to fish larvae 

Effective transfer of probiotic bacteria to fish larvae is vital for the colonization potential of 

the bacteria. The addition of bacteria to the rearing water at an early stage is one method that 

has proven effective (Ringø et al. , 1996; Ringø and Vadstein, 1998; Paper 5). Another way of 

transferring bacteria to fish larvae is by bioencapsulating bacteria in the live feed (Gatesoupe, 

1994; Munro et al. , 1999; Paper 5). This technique also ensures exchange of the possibly 

detrimental flora of the live feed organisms before delivery to fish larvae. Brachionus

plicatilis and Artemia franciscana are both filter feeders (Vadstein et al. , 1993; Makridis and 

Vadstein, 1999) that are commonly used live feed in the intensive rearing of marine larvae. 

In this thesis, it is shown that rotifers grazing in bacterial suspensions were able to 

bioencapsulate added bacteria within 20 minutes (Figure 11). The bioencasulation was more 
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efficient at high bacterial concentrations, and depended on whether bacteria were added alone 

or in mixture (Paper 4). Bioencapsulation efficiency by A. franciscana varied between the two 

bacterial strains that were tested. One of the bacterial strains was effectively bioencapsulated 

within 30 min, whereas the other strain was bioencapulated within 60 min. To promote 

colonisation of the fish larvae with the bioencapsulated bacteria, the bacteria should persist in 

the live feed for some time after transfer to fish tanks. The transfer of B. plicatilis and A. 

franciscana to first feeding conditions resulted in a decrease in the total bacterial numbers, but 

the added bacteria remained a significant part of their bacterial flora (Paper 4). Thus, the two 

live food organisms showed potential as vectors for probiotic bacteria to marine fish larvae. 

Figure 11. The number of added bacteria in rotifers after grazing in bacterial suspensions (0–

60 min) and transfer to first feeding conditions (2 - 24 hours). The added bacteria were 

detected by ICB. The concentrations in bacterial suspensions were 7.8 × 106 4:44 ml-1

( ), 1.7 × 108 4:44 ml-1 ( ), mixture of 4:44 and PB52 (3.5 × 108 bacteria ml-1, ),

and 3.3 × 108 PB52 ml-1 ( ).

Rotifers were used as live feed and for bioencapsulation of bacteria, in the first feeding 

experiments with turbot (Paper 5) and cod larvae (Paper 6). Bacterial suspensions with a 

density of 108 bacteria ml-1 were used during bioencapsulation. In the first feeding experiment 

with turbot larvae (Paper 5), ICB and ELISA were used to detect the added bacteria, whereas 

T-RFLP was used in cod experiment (Paper 6). After the bioencapsulation procedure, the 

added bacteria constituted a considerably lower proportion of the flora of the rotifers when 

analysed with T-RFLP (Paper 6), compared to rotifers that were analysed by ICB (Paper 4 

and 5). This discrepancy could be caused by (1) the different detection methods used, i.e. 

culture based vs. culture independent method; (2) a more thorough washing procedure was 
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used in the cod experiment, which might remove more of the surface associated bacteria 

(Munro et al. , 1993); (3) different bacteria were used, and differences have been observed in 

the ability of bacteria to establish in rotifers (Paper 4). 

First feeding experiments with marine larvae 

Large numbers of bacterial isolates can be effectively screened and evaluated based on in 

vitro properties. However, even if the isolates perform well in the in vitro tests, they must 

have beneficial effects under in vivo conditions to be regarded as probiotics (Gram and Ringø, 

2005). In vivo experiments are also important to verify that fish larvae are in fact colonised by 

the added probiotic candidates. In this thesis, two methods to obtain controlled bacterial 

colonization of fish larvae were tested in a first feeding experiment with turbot larvae (Paper 

5). In addition, probiotic candidates from the dominant and from the antagonistic bacterial 

flora of healthy cod larvae were evaluated under in vivo conditions in a first feeding 

experiment with cod larvae (Paper 6). 

To evaluate methods for controlled colonization of the larval gut in a first feeding experiment 

with turbot larvae, the bacteria were 1) added directly into the rearing water on the day of 

hatching, 2) bioencapsulated in rotifers on day 2 after hatching, or 3) administered by both 

previous methods (Paper 5). The larvae were reared with stagnant rearing water until day 6 

after hatching. The method of addition did not influence the numbers of added bacteria in the 

rearing water on day 3 after hatching, or the colonization of the larvae by the added bacteria. 

Both bacterial strains (4:44 and PB52) colonized the gut of turbot larvae. However, isolate 

PB52 colonized larvae at considerably higher numbers than 4:44. Thus, in this thesis and a 

similar study (Ringø and Vadstein, 1998), it was shown that different bacteria have different 

colonization potential in turbot larvae. In addition, it was found that one of the isolates 

colonized the larvae more efficiently when added in a mixture with the other strain, whereas 

the opposite was found for the other bacterial isolate. This was different from what was found 

when Vibrio pelagius and Aeromonas caviae were added to the rearing water of turbot larvae 

(Ringø and Vadstein, 1998), where both species of bacteria colonized fish larvae at lower 

levels when added in a mixture, compared to when they were added alone. Thus, probiotic 

mixtures of bacteria can have different colonization potential than the individual strains in the 

mixture would have alone. 
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The probiotic candidates that were used in the first feeding experiment with Atlantic cod 

larvae (Paper 6) were selected from the dominant (Paper 1) and from the antagonistic (Paper 2) 

bacterial flora of healthy cod larvae. The bacterial isolates were chosen based on their in vitro

probiotic properties, and finally on performance in the small-scale in vivo test with cod larvae 

(Paper 3). From the dominant bacterial flora one Vibrio (RD5-30) and two Microbacterium

strains (ID3-10 and ND2-7) were selected, whereas from the antagonistic bacterial flora one 

Roseobacter (RA4-1) and one Pseudoalteromonas (RA7-14) were selected (for properties, see 

Table 1). Three treatments were tested; 1. Control with no addition, 2. Addition of dominant 

bacteria, 3. Addition of antagonistic bacteria. The probiotic candidates were added both into 

the rearing water on the day of hatching and bioencapsulated in rotifers on several days (day 2, 

3, 4, 6, 8, 11 and 16). Both methods of addition were used because the cod larvae were reared 

with water exchange from day 0, and thus the added bacteria were constantly washed out of 

the rearing system. Elevated levels, however not significantly elevated, of added bacteria were 

detected in water and rotifers after the addition. However, the added bacteria did not colonize 

the rearing water, the rotifers or the cod larvae at detectable levels over time. Thus, the 

colonization potential of the added bacteria was apparently poor in this experiment. The 

added isolate RA4-1 had considerably better in vitro adhesive ability to mucus, compared to 

the other added bacteria. This was, however, not reflected in the in vivo colonization of cod 

larvae. Pooled samples of 10 cod larvae were analyzed with T-RFLP on all samplings, 

however, on day 17 also individual larvae were analyzed. The T-RFLP data from the 

individual larvae showed variable levels of TRFs corresponding to the added and also for 

other bacteria, implying that different bacteria colonized different individuals in varying 

numbers (Figure 12). This is in accordance with inter-individual variation found in the 

bacterial flora of cod larvae (Paper 1, Paper 2), as well as in pigs (Simpson et al. , 2000) and 

broiler chickens (Zhu et al. , 2002). This profound inter-individual variation adds complexity 

to the microbial management of marine larviculture. Neither the growth nor the survival of 

cod larvae was different in treated tanks, compared to the control. Hence, the added bacteria 

apparently did not improve the vitality of larvae. However, both treated tanks and control 

tanks had high growth rates in the rotifer feeding period, compared to previous studies 

(Browman et al. , 2006; Park et al. , 2006). Moreover, in a first feeding experiment  performed 

in the same rearing system as the present study (Skjermo et al. 2006), the dryweight of cod 

larvae was ± 250 μg on day 17, compared to 497 to 701 μg on day 17 in the present study. A 

relatively high survival of 41.5 - 80.1% was obtained in larvae in the weaning phase in the 

present study, compared to Skjermo et al. (2006). Thus, both growth rate and survival indicate 
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high viability for both treated and control larvae. This implies that the potential for further 

improvement might have been low. Probiotics can also improve stress tolerance and non-

specific immune responses in fish (Taoka et al. , 2006). The transition from live feed to dry 

feed was performed between day 18 and day 21 in the present study. This is an early transfer 

to dry feed, and was assumed to work as a stress test. The growth rates of the cod larvae were 

severely hampered by the transition to dry feed (from 20-30 %SGR day-1 before to 2-6 %SGR 

day-1 after transition), however, a relatively high survival was obtained in the weaning phase. 

Thus, based on growth and mortality of larvae, there were no differences in stress tolerance 

between treated and control larvae. 
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Figure 12. The percentage of terminal restriction fragments obtained from 10 individual 

larvae on day 17 after hatching in the first feeding experiment with cod larvae for 

treatment D (added the dominant bacteria Microbacterium, TRF 71 ± 1 bp, and Vibrio,

TRF 187 ± 1 bp). 
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Conclusions

The dominant intestinal bacterial flora in cod larvae varied both qualitatively and 

quantitatively between individual larvae and between rearing groups. The bacterial flora of 

larvae was dominated by the Gram positive Microbacterium and by Gram negative bacteria 

within the -Proteobacteria.

The antagonistic intestinal bacterial flora in cod larvae varied in composition between 

individual larvae both within and between different rearing groups. In addition, the percentage 

of antagonistic bacteria in larvae varied within and between larvae from different rearing 

groups. The majority of antagonistic bacteria belonged to -Proteobacteria, but also members 

of -Proteobacteria were found to be antagonistic to L. anguillarum.

The in vitro tests on antagonism, adhesion to mucus, growth in mucus, production of 

extracellular enzymes, bile resistance and haemolytic activity were efficient in screening 

many bacterial isolates for properties considered as important for probiotic bacteria. The test 

results showed large differences between the bacterial isolates. The experimental exposure 

test of yolk sac cod larvae with candidate probiotic bacteria revealed bacterial strains that 

were detrimental to the larvae. The test also revealed that five candidate bacteria gave 

improved survival of cod larvae, compared to the control. 

Bioencapsulation of bacteria in live feed was achieved after short incubations (20 - 60 min) in 

bacterial suspensions. Bioencapsulation was most efficient and predictable when using high 

density bacterial suspensions (108 bacteria ml-1). A decrease in the bioencapsulated bacteria 

occurred after transfer to first feeding conditions. However, the bacteria were still present in 

the live feed 24 hours after transfer. The bioencapsulation efficiency varied between bacterial 

strains, and whether the bacteria were added alone or in mixture. A lower amount of the 

bacterial flora of rotifers seemed to be exchanged when analyzed by T-RFLP, compared to 

experiments analyzed by ICB. Both bacterial species differences and differences between the 

detection methods should be further investigated to assure controlled colonization of the live 

feed.

Controlled colonization of turbot larvae was obtained with bacteria added either in the water 

or bioencapsulated in rotifers, whereas probiotic candidates that were added to a cod rearing 
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system did not persist at detectable levels in water, rotifers or larvae. These differences could 

have several reasons; the two different fish species might respond differently to addition of 

bacteria, different bacteria were added in the two experiments, different methods were used to 

detect the added bacteria, and the turbot rearing was stagnant for 6 days whereas the cod 

rearing had water exchange from day 0. Controlled colonization of the host is crucial when 

adding probiotic bacteria. Our results suggest that the techniques for transfer of bacteria might 

not be directly transferable between different rearing regimes and between different fish and 

bacterial species.  

The probiotic candidates that were added in the cod larvae experiment were selected by two 

screening strategies, i.e. as part of the dominant or the antagonistic intestinal bacterial flora of 

healthy cod larvae. Based on the results obtained from the in vitro and in vivo experiments, 

one of the selection strategies can not be recommended over the other.

Future perspectives 

Understanding the mechanisms of probiotic action, and obtaining further knowledge of the 

microbial ecology in the gut of fish larvae is essential in order to select probiotic bacteria that 

will have beneficial effects on the host in vivo. To achieve this, more studies on host-bacterial 

interactions are needed, and the methods in molecular biology will undoubtedly be of great 

importance. Methods to characterize microbial communities efficiently (e.g. DGGE, T-RFLP), 

and methods to detect and quantify specific bacteria (e.g. real time PCR with Taqman probes) 

should be used to better understand the competition between bacteria in the gut. Microarray 

techniques can be used to detect how the bacterial flora influences gene expression in the host 

and different bacteria have already been shown to influence gene expression in zebrafish 

differently (Rawls et al. , 2004). This can be a powerful method to understand some of the 

host-bacteria interactions. In addition, bacterial quorum sensing might be important in 

determining the species composition in microbial communities. Recently, disruption of 

bacterial quorum sensing has been proposed as a strategy against infections in aquaculture 

(Defoirdt et al. , 2004). 

It is important to select between single- and multiple- strain probiotics based on rational 

criteria. Addition of several bacteria with supplementary properties might have greater 

probiotic potential than addition of single strains, and synergistic effects can be the result 

when using mixtures of bacteria. The individual differences in bacterial flora composition 
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between cod larvae, suggests that in a mixture of several bacterial isolates the probability that 

at least one isolate colonizes the larvae is greater. However, if probiotics are added to protect 

against a specific pathogen, the addition of single - strain probiotics might be relevant. 

The acquisition of a pool of bacterial isolates is the first step towards finding probiotic 

bacteria. Different selection strategies can be used in this initial phase to obtain the best 

possible pool of isolates. In this thesis, the initial selection strategies were selecting dominant 

bacteria and selecting antagonistic bacteria. Also other criteria have been used in the initial 

screening phase, such as screening for isolates with high adhesiveness to mucus. Even though 

it is laborious, a combination of methods is probably the best way to go, especially if a 

mixture of probiotic bacteria with supplementary properties is the final goal. 

In vitro tests of bacterial properties have to be used to lower the number of candidate bacteria. 

Today, bacterial properties on antagonism and mucus adhesion are mostly used. In the future, 

further studies on the nutritive contribution of the intestinal bacterial flora, the antiviral 

activity, quorum sensing activity and the influence on host gene expression should be 

conducted.

Challenge tests with pathogenic bacteria at the end of first feeding experiments can show 

whether the addition of probiotic bacteria cause protection against infection. The use of 

challenge tests might also help explain the mechanisms of probiotic action. 

Non-digestible food ingredients that alter the composition, or metabolism, of the gut bacterial 

flora in a beneficial manner (prebiotics) are also gaining interest. Prebiotics are cheaper and 

carry less risk than probiotics. Prebiotics can be added alone, or in combination with 

probiotics (synbiotics). The concept of synbiotics can assist the colonization of the host with 

added probiotics, by supplying the probiotic bacteria with nutrition. 

The ongoing arms race between the use of antibiotics and antibiotics resistance in bacteria has 

already urged the need for alternative strategies in the fight against disease in animal 

husbandry and in aquaculture. The use of probiotics may be one of several measures to solve 

the problems. Extensive research on the mechanisms of action of the bacteria has to be 

performed to obtain efficient probiotics for all species and all conditions. Other aspects of 

probiotics that have to be regarded are the safety (Anadon et al. , 2006; Silley, 2006) and 
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patenting regulations that make the way towards commercially ready products long and 

expensive.
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Abstract

The intestinal bacterial flora in 27 Atlantic cod larvae from five rearing groups was 

screened for antagonistic activity against Listonella anguillarum. A total of 98 

antagonistic isolates were phenotypically characterized and belonged to 12 clusters at 

the 80% similarity level. The 16S rDNA of representative isolates was partially 

sequenced and compared to sequences in the GenBank database. The majority of 

antagonistic bacterial isolates had high sequence similarity to -Proteobacteria, and the 

rest were members of -Proteobacteria. Antagonistic isolates with sequence similarity to 

Vibrio were found in larvae from all five rearing groups, and was the most numerous 

group of antagonistic isolates. The other antagonistic bacteria had sequence similarities 

to Hyphomicrobium, Marinomonas, Pseudoalteromonas, Roseobacter and Shewanella.

The composition of the antagonistic bacterial flora varied both between individual cod 

larvae from the same rearing group and between larvae from the five different rearing 

groups. Also, the average percentage of antagonistic isolates was significantly different 

in one of the five rearing groups. 

Keywords 

Antagonistic activity, Atlantic cod larvae, Intestinal bacterial flora, Vibrio, Replica-

plating method, Probiotics. 
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Introduction 

The composition of the bacterial flora in the intestinal tract is a result of several 

selecting mechanisms, such as competition for resources (nutrients and space) and 

chemical warfare through production of compounds that are inhibitory for other bacteria. 

In vitro antagonism against one or several bacteria is widely distributed among marine 

pelagic bacteria (Long and Azam, 2001; Grossart et al. , 2004) and in bacteria isolated 

from marine fish larvae (Westerdahl et al. , 1991; Sugita et al. , 2002; Makridis et al. , 

2005). Antagonistic compounds are defined as chemical substances that are produced by 

bacteria and that are toxic or inhibitory towards other microorganisms. They include 

primary and secondary metabolites such as antibiotics, organic acids, hydrogen 

peroxide, siderophores and bacteriocins. 

Several bacterial genera produce antibacterial compounds (Sugita et al. , 1996; Ringø 

and Gatesoupe, 1998; Long and Azam, 2001; Hjelm et al. , 2004b; Makridis et al. , 

2005). Generally, only a few percent of the cultivable bacterial flora from fish shows 

inhibition of pathogenic bacteria in vitro (Sugita et al. , 1996, 2002; Hjelm et al. , 

2004a), but higher percentages have also been reported (Westerdahl et al. , 1991). In 

Senegalese sole the percentage of antagonistic bacteria in the gut bacterial flora 

increased when the fish were fed natural prey, and after six weeks almost 40% of the 

intestinal bacteria inhibited Listonella anguillarum and Photobacterium damselae

(Makridis et al. , 2005). 

The intestinal bacterial flora is important in the prevention of colonization by pathogens 

(Hentges, 1992). The reasons for this protection are not fully understood, but 
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competitive exclusion is a likely factor. Another possible reason for the protective role 

of the intestinal bacterial flora is that bacteria in the gut produce compounds that are 

growth-inhibiting to pathogens. Although antagonism between bacteria is thought to be 

an important factor in the defence against pathogens, it is not known if antagonistic 

activity in an in vitro assay has any effect in vivo (Atlas, 1999). In the study performed 

by Westerdahl et al. (1991) it was shown that a significantly higher proportion of 

intestinal rather than surface associated bacteria displayed inhibitory effects against L.

anguillarum in turbot. This suggests that bacteria with inhibitory abilities were favoured 

in the intestinal tract. 

Over the past years the interest in intensive aquaculture production of Atlantic cod 

(Gadhus morhua L.) has increased. However, the production of cod larvae has been 

problematic owing to low and unpredictable growth and survival during first-feeding. 

Marine larvae experience stress due to high larval densities, and are in constant 

interaction with bacteria during first feeding (Olafsen, 2001; Vadstein et al. , 2004). The 

rearing conditions may enhance the proliferation of opportunistic bacteria, and these 

bacteria can be detrimental to the larvae (Skjermo et al. , 1997). Thus, microbial 

problems are important reasons for the high and unpredictable growth and survival that 

is experienced. The use of probiotic bacteria is one of several methods that have been 

suggested to obtain microbial control in the intensive rearing of marine larvae (Skjermo 

and Vadstein, 1999). Screening for antagonistic bacteria is a widely used method in the 

search for probiotic bacteria (Gram and Ringø, 2005). In this study, we isolated and 

phenotypically characterized the cultivable antagonistic intestinal bacterial flora of 

Atlantic cod larvae reared under variable conditions. Furthermore, a selection of the 
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antagonistic isolates were characterized by 16S rDNA phylogenetic analysis. The 

antagonistic activity was tested in vitro against L. anguillarum (strain HI610). The 

antagonistic bacterial isolates will serve as a pool of probiotics candidates for later 

evaluation.

Materials and methods 

Larval rearing conditions and sampling 

The cod larvae were grown either in flow-through or recirculating tanks, and fed either 

intensively reared rotifers or mainly natural plankton (Table 1). Large and fit looking 

larvae were sampled from tanks with good larval growth and survival.

The intestinal bacterial flora was isolated by starving the sampled cod larvae for 3-4 

hours to empty their guts, before 5-6 individual larvae from each rearing condition were 

anaesthetized (30 sec, metomidate 100 mg/l), surface disinfected (30 sec, 0.1% 

benzalkoniumcloride), and washed twice (2 x 60 sec) in sterile 80% seawater (Munro et 

al. , 1994). The larvae were then homogenized in 1 ml sterile 80% seawater, and serial 

dilutions of the homogenate was plated in duplicate on marine agar 2216 (Difco, USA). 

The agar plates were incubated for at least 12 days at 15°C.

Screening for antagonistic isolates 

The screening for isolates with antagonistic activity against L. anguillarum HI 610 

(kindly provided by Øyvind Bergh, Institute of Marine Research, Bergen, Norway) was 

performed with the replica-plating method (Hjelm et al. , 2004a). Agar plates with no 
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more than 100 colonies were replica-plated onto an agar plate containing 10 ml M9GC-

3 agar. Prior to pouring the agar onto the plates, it was held at approximately 44°C and 

mixed with 10 μl per plate of one day old L. anguillarum HI 610 grown in marine broth 

2216 (Difco, USA). After transferring the colonies using a sterile nitrocellulose 

membrane, the replica-plates were incubated for two days at 15°C, and then visually 

checked for clearing zones indicating antagonistic activity. Colonies with antagonistic 

activity were cultured to purity on marine agar 2216, regrown in marine broth 2216 for 

one day at 22°C and stored in glycerol (40% v/v) at -80°C. To assure that the assay was 

working properly, the two isolates Roseobacter sp. 27-4 (Hjelm et al. , 2004b) and 

Pseudomonas fluorescence AH2 (Gram et al. , 1999), both with strong antagonistic 

activity, were used as positive controls for each test. 

Phenotypic characterization and identification of bacterial isolates 

The isolates were phenotypically characterized on the basis of Gram reaction using both 

Bactident ® aminopeptidase strips (Merck 1.13301) and a 3% KOH solution (Gregersen, 

1978), the ability to ferment and/or oxidize glucose in OF basal medium (Merck 

1.10282) prepared with 80% seawater, oxidase reaction (Oxoid), motility and shape 

after growth for 1 day at 22°C in marine broth 2216 (phase contrast microscopy at 1000 

times magnification), growth in marine broth 2216 with additional NaCl (final conc. 

6%), sensitivity to O/129 (150 μg, Oxoid), and colony morphology (grown on marine 

agar 2216). The isolates were further characterized by some of the methods for 

phenotypical characterization described by Hansen and Sørheim (1991). We tested 

aerobic production of acid from fructose, mannose and glycerol, activity of urease, 

production of indole from tryptophan, methyl red test, and the ability to break down L-
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arginine and L-lysine to alkaline amines under anaerobic conditions. The data was 

recorded in binary form and dendograms were prepared using average linkage and 

percent distance (Systat ver.9). The isolates were clustered at 80% similarity. The 

bacterial diversity in different hatcheries was calculated using the Shannon´s diversity 

index.

Sequencing and phylogenetic analysis 

PCR template was produced by suspending colony material in 20 μl sterile water, 

incubate at 99°C for 10 min to lyse the bacterial cells, and centrifugation for 1 min to 

sediment cell constituents. DNA in the supernatant was amplified using 2 μl as template. 

The primers 8f (5`-AGA GTT TGA TC(AC) TGG CTC AG – 3`) and 517r (5`-ATT 

ACC GCG GCT GCT GG – 3`) were used in the PCR amplification to amplify ~500 bp 

of the 16S rDNA. The 25 μl reaction mixture included PCR-buffer (QIAGEN), dNTP 

mix (200 μM), MgCl2 (0.5 mM), primers (0.4 μM each), 0.2 μl Taq DNA polymerase 

and template amplicon. PCR amplifications were performed using an initial 

denaturation at 95°C for 5 min followed by 25 cycles of denaturation at 94°C for 1 min, 

primer annealing at 55°C for 1 min, and primer extension at 72°C for 1 min. The final 

extension was performed at 72°C for 8 min. Negative control was included in each PCR 

run. Agarose gel electrophoresis was run to verify PCR products and a 100 bp DNA 

ladder was included in each gel. Amplified DNA for sequencing was prepared by 

removing primers and nucleotides using a mix of 1 μl ExoSAP-IT (USB), 1 μl PCR 

product and 3.5 μl water. This mix was incubated at 37°C for 15 min followed by 80°C 

for 15 min. The reaction mix was then added 2 μl Big dye (Ver. 1.1, Applied 

Biosystems), 2 μl buffer (400 mM Tris-HCl pH 9, 10 mM MgCl2) and sequencing 



8

primer (8f, 0.7 μM) and incubated with an initial step at 96°C for 1 min followed by 25 

cycles of 96°C for 1 min, 50°C for 15 sec, and 60°C for 4 min. The products from the 

sequencing reaction were precipitated by adding 2 μl Sodium Acetate (3 M, pH 5.2) and 

100 μl EtOH to a 1.5 ml Eppendorf tube and put at -20°C for 20 min. The tubes were 

centrifuged at 13000 rpm for 30 min at 15°C. After centrifugation the supernatant was 

discarded, 250 μl EtOH was added and vortexed for 10 sec to wash the pellet. The 

mixture was centrifuged at 13000 rpm for 10 min, and the supernatant was carefully 

removed. The pellet was air dried at 50°C and stored at -20°C until sequencing was 

performed using ABI Prism 3100 Genetic Analyzer.  

The DNA sequences were aligned to known sequences in the GenBank database using 

BLAST (Altschul et al. , 1990). Phylogenetic relationships were inferred using the 

neighbour joining method, based on the Kimura two-parameter model, in the 

PhylOgenetic WEb Repeater (Lin et al. , 2005). Reference strains that were obtained 

from the GenBank database were included in the alignment. We used the TreeView 

program to draw the phylogenetic tree. Sequences are deposited in the GenBank 

database under accession numbers DQ 273862 to DQ 273886.

Statistics 

ANOVA and Tukey´s multiple comparison test with arcsin-transformed data were used 

to compare the percentage of antagonistic isolates in larvae from different rearing 

groups.
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Results

Identification of the antagonistic isolates 

The cultivable intestinal bacterial flora of 27 individual cod larvae from the five rearing 

groups was screened for inhibitory activity against L. anguillarum (strain HI 610). 

Antagonistic bacteria were found within 18 of the 27 cod larvae, and 98 antagonistic 

strains were isolated. Based on phenotypical tests, the 98 antagonistic isolates were 

clustered (Figure 1), and at the 80% similarity level 12 bacterial clusters were identified 

(Table 2). The 25 isolates that were partially sequenced and aligned to sequences in the 

GenBank database represented 10 of the 12 bacterial clusters (Table 3). The majority of 

the DNA alignments showed relatedness to bacteria within the Gram negative -

Proteobacteria (Marinomonas, Pseudoalteromonas, Shewanella and Vibrio), but two 

isolates had 16S rDNA similarity to isolates within -Proteobacteria (Hyphomicrobium

and Roseobacter) (Figure 2). 

Comparison within and between rearing groups 

The majority of antagonistic bacteria that were isolated from larvae reared in the two 

flow-through rearing groups (I1 and I2) belonged to cluster 12, causing a low diversity 

index (0.49 and 0.41, respectively) in these groups (Table 2). Bacteria in cluster 12 had 

high sequence similarities to Vibrio (Table 3). In the larvae fed natural plankton (N), the 

antagonistic bacteria in three larvae belonged to cluster 3, whereas the bacteria in the 

other two larvae belonged to cluster 12. The diversity index was higher in this group 

(0.69). In larvae that were reared using water recirculation technology (R1 and R2), the 

antagonistic bacteria were more numerous in one of the groups (R2) and the diversity 
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index was higher in both groups (1.21 and 1.50, respectively), compared to other the 

rearing regimes. The antagonistic isolates found in larvae from the two recirculation 

groups belonged to 10 of the 12 clusters (Table 1). Cluster 12 was represented in three 

larvae, and cluster 7 was represented in two larvae, whereas eight clusters (1, 2, 4, 6, 8, 

9, 10 and 11) were represented only in one larva.

Antagonistic isolates belonging to cluster 12, with DNA similarity to Vibrio, were 

found in cod larvae from all five rearing conditions. The number of isolates that were 

grouped in this cluster was clearly the highest (32). On the other hand, bacterial isolates 

from nine clusters (1, 2, 3, 4, 6, 7, 8, 9 and 10) were only found in larvae from one of 

the rearing groups. They had DNA similarity to Hyphomicrobium, Marinomonas, 

Pseudoalteromonas, Roseobacter and Shewanella. In cod larvae from all five rearing 

groups, we found that one or several larvae (I1:2, I2:2, N:1, R1:3, R2:1) did not harbour 

detectable levels of cultivable isolates with antagonistic activity against L. anguillarum

HI610.

The average percentage of antagonistic isolates (Figure 3) in individual cod larvae was 

significantly different in larvae from hatchery R2 (mean 41.6%), compared to larvae 

from the other hatcheries (range of means 1.0 - 5.1%, P<0.007). 
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Discussion

The majority of the bacteria with antagonistic abilities that were isolated in this study 

were members of the -Proteobacteria. This was also found by Long and Azam (2001) 

when they investigated the antagonistic interactions among marine pelagic bacteria. 

Within the -Proteobacteria, isolates with 16S rDNA similarity to Vibrio were found in 

larvae from all five rearing groups and it was the most numerous antagonistic genus. 

Vibrio also constituted a major part of the antagonistic intestinal bacteria in Japanese 

flounder (Sugita et al. , 2002), and it was the only bacterial genus with inhibitory 

activity in the intestines of Senegalese sole (Makridis et al. , 2005). In cod larvae from 

one of the recirculation groups (R2), antagonistic isolates with 16S rDNA similarity to 

Marinomonas sp. were found in high numbers and within four different phenotypic 

clusters. In this rearing group high mortality of larvae was observed one week after our 

sampling, and Marinomonas was isolated in large numbers after this incidence. Thus, 

the antagonistic isolates with DNA similar to Marinomonas, could have been the cause 

of this mortality. Pseudoalteromonas and Shewanella were also found among the 

antagonistic intestinal bacterial flora in the cod larvae, but in small numbers. Several 

Pseudoalteromonas species have shown a broad range of inhibitory activities against 

bacteria and other organisms (Holmström et al. , 2002). The non -Proteobacteria 

antagonistic isolates that were isolated in this study were members of -Proteobacteria,

and the isolates had 16S sequence similarity to Hyphomicrobium and Roseobacter. The 

most numerous antagonistic bacteria in a turbot rearing system were Roseobacter spp 

(Hjelm et al. , 2004b), and the antagonistic Roseobacter sp. strain 27-4 showed probiotic 

potential by decreasing the mortality in yolk sac experiments with turbot larvae (Hjelm 

et al. , 2004a).
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Both the composition and the percentage of antagonistic isolates in the intestinal 

bacterial flora varied considerably between individual cod larvae from the same rearing 

condition. Individual variation in the percent of intestinal bacteria with inhibitory 

activity was also found in turbot (Westerdahl et al. , 1991). Stochastic factors may be 

important in the colonization of larvae, and could explain these differences at the 

individual level (Verschuere et al. , 1997). Stochastic factors includes that chance 

favours those bacteria that happen to be in the right place at the right time to colonize 

the intestinal tract and proliferate. Inter-individual variation has also been found in the 

intestinal bacterial flora of broiler chickens (Zhu et al. , 2002), pigs (Simpson et al. , 

2000) and human beings (Zoetendal et al. , 1998; Hopkins et al. , 2002). 

Almost 60% of the antagonistic isolates were found in larvae from one of the hatcheries 

using water recirculation technology (R2). Moreover, the percentage of antagonistic 

bacteria in these larvae was significantly higher and the diversity index was higher 

compared to the other rearing conditions. The percentage of antagonistic isolates in this 

rearing group (average 41.6%) was comparable to the levels found in turbot 

(Westerdahl et al. , 1991) and Senegalese sole (Makridis et al. , 2005). Isolates with 16S 

sequence similarity to Marinomonas sp. was the dominating bacterial genera with 

antagonistic abilities in larvae from this rearing condition. The percentage of 

antagonistic isolates in the other four rearing groups (average 1.0 to 5.1%) was similar 

to what was found in turbot (Hjelm et al. , 2004b) and Japanese flounder (Sugita et al. , 

2002). Within these four rearing groups, bacteria in clusters with sequence similarity to 

Vibrio were dominant. In contrast to the relatively low percentage (average 5.1%) of 
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antagonistic isolates we found in larvae fed natural plankton (hatchery N), the intestinal 

bacteria from Senegalese sole fed natural prey had a high percentage of isolates with 

antibacterial activity (Makridis et al. , 2005). 

Most studies searching for probiotic candidates focus on bacteria that show inhibitory 

activity in an in vitro assay against a target pathogen (Gram and Ringø, 2005). The 

rationale behind this strategy is that when these probiotic bacteria are established in the 

gut, they will produce substances that inhibit growth and thus colonization by 

pathogenic bacteria. An alternative strategy is isolation of the dominant bacterial flora 

in well performing fish (Skjermo and Vadstein, 1999; Huys et al. , 2001). It is assumed 

that the dominant bacteria in the intestinal tract of healthy larvae are good candidates 

due to their high competitive ability in the gut habitat. In a parallel study (Fjellheim et al. 

in prep.) we isolated the dominant bacterial flora of cod larvae from three of the rearing 

groups in this study (I2, N and R2). By comparing the bacteria, and hence pools of 

probiotic candidates, obtained by using both approaches we found two major 

differences. 1) The diversity index for the dominant bacteria was higher than for the 

antagonistic bacteria. The Gram positive Microbacterium which dominated in two of 

the rearing groups, was not antagonistic against L. anguillarum HI610 and was thus not 

in the antagonistic pool of isolates. Other genera that were specific for the dominant 

pool were Halomonas, Neptunomonas and Pseudomonas. The two bacterial genera 

Hyphomicrobium and Shewanella were only found in the antagonistic pool of isolates, 

while isolates with DNA sequence similarities to Marinomonas, Pseudoalteromonas, 

Roseobacter and Vibrio were found in both groups. 2) The total number of bacterial 

isolates that were obtained was different between the two selection strategies. Following 
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the dominant strategy, we isolated 30 bacterial colonies from each cod larva, whereas 

we isolated on average less than 4 antagonistic bacterial colonies from each larvae. 

This study and previous studies (Long and Azam, 2001; Sugita et al. , 2002; Grossart et 

al. , 2004) have shown that a range of marine bacterial genera produce antimicrobial 

compounds in in vitro tests. In vitro test conditions are standardized with regards to 

growth media and temperature, and they usually only test two bacterial isolates against 

each other. The in vivo habitat is far more complex. The growth may be restricted due 

to availability of food, temperatures may change and many bacterial species are usually 

present at the same time. It has been shown that antagonism is differently expressed 

when tested on different growth media (Bizani and Brandelli, 2004; Hjelm et al. , 

2004a). As the available food in the gut of marine fish larvae will change over time, it is 

difficult to predict if the bacteria will produce antimicrobial compounds in the in vivo

situation. Also, antagonistic compounds are often only produced during the stationary 

growth phase in in vitro tests (Bizani and Brandelli, 2004; Monteiro et al. , 2005), which 

raises the question whether the bacteria will ever produce antagonistic compounds in the 

gut of fish larvae. Even though several conditions throw suspicion on the production of 

antimicrobial compounds in vivo by bacteria, it is hard to imagine how this common 

bacterial quality should have evolved and persisted if it did not have ecological 

implications in vivo.
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Table 3. Relationship between sequenced isolates and other sequences in GenBank. 

Cluster Isolate Accession 
number

Closest match Accession 
number

Similarity 
(%) 

Taxon 

2 RA 5-2 DQ273873 Pseudoalteromonas sp. 3041 AM110994 98 -Proteobacteria 
2 RA 5-5 DQ273879 Pseudoalteromonas sp. 7026 AM111027 95 -Proteobacteria 
4 RA 3-4 DQ273866 Shewanella aquimarina AY485225 93 -Proteobacteria 
5 IA 5-3 DQ273886 Marine gamma 

proteobacterium LHFL1 
AF366029 80 -Proteobacteria 

6 RA 6-2 DQ273870 Marinomonas sp. CK16 AM084271 99 -Proteobacteria 
6 RA 6-4 DQ273872 Marinomonas sp. CK16 AM084271 99 -Proteobacteria 
6 RA 6-7 DQ273874 Marinomonas sp. CK16 AM084271 98 -Proteobacteria 
6 RA6-12 DQ273877 Marinomonas sp. CK16 AM084271 99 -Proteobacteria 
7 RA 4-1 DQ273862 Roseobacter sp. JL-126 AY745859 98 -Proteobacteria
7 RA 7-14 DQ273863 Pseudoalteromonas sp. 8050 AM111084 99 -Proteobacteria 
7 RA 7-11 DQ273884 Marinomonas sp. CK16 AM084271 99 -Proteobacteria 
8 RA 9-5 DQ273864 Marinomonas sp. CK16 AM084271 97 -Proteobacteria 
8 RA 9-6 DQ273868 Marinomonas sp. CK16 AM084271 92 -Proteobacteria 
8 RA 9-2 DQ273882 Marinomonas sp. CK16 AM084271 97 -Proteobacteria 
9 RA 5-11 DQ273867 Marinomonas sp. CK16 AM084271 90 -Proteobacteria 

10 RA 5-8 DQ273881 Hyphomicrobium sp. 
YAAJ-4 

DQ200849 95 -Proteobacteria

11 RA 3-6 DQ273869 Vibrio ordalii strain 
2003/09/511-2063 

AY530930 98 -Proteobacteria 

11 RA 3-1 DQ273883 Uncultured bacterium clone 
ISA-7084 

AY911193 92 Unknown 

12 IA 4-3 DQ273865 Vibrio splendidus strain LP1 AY129277 98 -Proteobacteria 
12 IA 5-2 DQ273871 Vibrio ordalii NCMB2168 AY628646 99 -Proteobacteria 
12 IA 8-2 DQ273875 Vibrio sp. 3d clone 3d4 AF388392 98 -Proteobacteria 
12 RA 5-4 DQ273876 Uncultured Vibrio sp. clone 

SIMO-713 
AY712250 97 -Proteobacteria 

12 NA 2-2 DQ273878 Vibrio sp. V051 DQ146974 98 -Proteobacteria 
12 RA 2-3 DQ273880 Vibrio aestuarianus AJ845021 99 -Proteobacteria 
12 IA 5-1 DQ273885 Marine gamma 

proteobacterium LHFL1 
AF366029 83 -Proteobacteria 
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Figure legends: 

Figure 1. Cluster diagram for antagonistic isolates using average linkage and percent distance. 

The isolates were clustered based on phenotypic tests at 80% similarity, as indicated by the 

dotted line. 

Figure 2: Phylogenetic tree showing the positions of bacterial 16S rDNA sequences recovered 

from the five different rearing conditions. Scale bar indicates 10% sequence difference. The 

16S rDNA sequence of Bacillus cereus (AF155952) was used as outgroup reference. 

Accession numbers of reference sequences are indicated. The number after the asterisk refers 

to the cluster where isolates were placed according to the biochemical tests. 

Figure 3. Percentage antagonistic isolates of total colony forming units in individual larvae 

from the five different rearing conditions. Cicles ( ) indicate individual larvae, the boxes 

show 25th and 75th percentiles and median. The dotted lines are the mean values. 
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Abstract

The accumulation of bacteria in Brachionus plicatilis and Artemia franciscana during a
Ž .short-term incubation was quantified using immunocolony blot ICB and an enzyme-linked

Ž .immunosorbent assay ELISA . Four bacterial strains, isolated from turbot and halibut, were
Ž 7 y1.grazed effectively by both species when given at high concentrations G5=10 bacteria ml .

B. plicatilis accumulated 21–63=103 bacteria per rotifer and A. franciscana up to 45=103

bacteria per metanauplius after 20–60 min of grazing. The composition of the bacterial microflora
of the live food organisms changed drastically, as the bioencapsulated strains comprised up to
100% of the total count of colony-forming units. After incubation in the bacterial suspensions, B.

Žplicatilis and A. franciscana were transferred to seawater with added microalgae Tetraselmis sp.,
y1.2 mg C l , to evaluate the persistence of the changed bacterial composition in conditions similar

to those present in a first feeding tank. The bioencapsulated bacteria decreased in numbers, but in
most cases remained present in both live food organisms after 24 h. It is possible, after a

Ž .short-term incubation, to replace opportunistic r-selected bacteria present in the live food
cultures with other bacteria, which persist as a dominant part of the bacterial flora of the live food

Ž .for a relatively long period of time 4–24 h . q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Intensive rearing of marine fish larvae suffers from heavy mortalities, which may be
Žattributed to bacteria introduced in the rearing system with live food Nicolas et al.,

.1989; Keskin et al., 1994 . The high organic load associated with intensive production of
Ž .live food cultures selectively induces an increased proportion of opportunistic r-selected

Ž .bacteria, which may be pathogenic to the fish larvae Skjermo and Vadstein, 1999 .
Disinfection, although beneficial, may not prevent a re-colonization of the live food

Ž .within a short time period Munro et al., 1999 . Replacement of the opportunistic
bacteria with other less-aggressive bacteria may provide a solution.

The rotifer Brachionus plicatilis and the brine shrimp Artemia franciscana are
common live food organisms used for the rearing of marine fish larvae. These have been
considered as possible vectors for the delivery of different substances, such as nutrients
Ž . Ž .Watanabe et al., 1983 , antimicrobial agents Mohney et al., 1990; Dixon et al., 1995 ,

Ž . Ž .vaccines Campbell et al., 1993 , and probiotics Gatesoupe, 1994 . These are live
bacterial additives that may have a positive effect on the host organism by improving the

Ž .properties of the indigenous microflora Havennar et al., 1992 . This positive effect of
Žprobiotics may be attributed to their ability to outcompete other bacteria Austin et al.,

. Ž1995 , or to produce micronutrients important for the development of fish larvae Sugita
.et al., 1991; Ringø et al., 1992 .

The quantitative and qualitative properties of the bacterial microflora of live food
Žmust be adjusted to avoid the negative effects of an overload of bacteria Benavente and

.Gatesoupe, 1988; Nicolas et al., 1989; Skjermo and Vadstein, 1993; Keskin et al., 1994 ,
Žand at the same time accomplish a successful colonization of the larval gut Munro et

.al., 1999 . A short-term incubation of live food organisms in a bacterial suspension
consisting of one or several probiotic strains is a possible approach to replace oppor-
tunists with other less-aggressive bacteria. Live food organisms may reside in the rearing

Ž .tanks for several hours before ingested by the larvae Reitan et al., 1993 . Once the
bacteria have been bioencapsulated in the live food, it is important to determine the rate
of loss of the bioencapsulated bacteria, and whether the changed bacterial composition
persists, as live food organisms may be depleted of the specific bacteria before they are
ingested by fish larvae. The detection of specific bacteria in the live food or the larvae,

Ž . Žhas been accomplished by use of enzyme-linked immunosorbent assay ELISA Ringø
. Ž .et al., 1996 , measuring the amount of lipopolysaccharide Kawai et al., 1989 , or by

Ž . Ž .counting the number of colony-forming units CFU Gomez-Gil et al., 1998 .
Ž .The aims of this study were: i to control the composition of the bacterial flora of

live food by adding specific bacteria to the culture water and letting them feed for a
Ž .short time period, ii to evaluate if the changed bacterial composition was maintained

when the live food organisms were transferred to conditions similar to those in a first
Ž .feeding tank, and iii to compare two types of immunoassays as methods for detecting

specific bacteria in the live food. For comparative purposes, the live food organisms B.
plicatilis and A. franciscana were used, and two bacterial strains were tested for each of
the live food organisms.
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2. Materials and methods

2.1. Bacteria

Ž .In the experiments with rotifers B. plicatilis , we used two bacterial strains isolated
Ž .from the gut of turbot Scophthalmus maximus L. . The bacterial strain 4:44 was

isolated from adult turbot and supplied by Ana Joborn, University of Goteborg, Sweden¨ ¨
Ž . ŽOlsson et al., 1992 , whereas the bacterial strain PB52 an unidentified Gram negative,

.motile, facultative anaerobe was isolated at the SINTEF Center of Aquaculture from the
gut flora of 15-day-old turbot larvae fed successively with B. plicatilis and A.
franciscana.

In the experiments with A. franciscana, we used two Vibrio spp. strains, PB111 and
PB61, which were supplied by Øivind Bergh, Institute of Marine Research, Norway.

ŽThese bacteria were isolated from the gut microflora of halibut larvae Hippoglossus
. Ž .hippoglossus L. fed copepods Bergh, 1995 . All bacterial strains used, except PB52,

Žhave shown in vitro inhibition of pathogenic Vibrio strains Olsson et al., 1992; Bergh,
.1995 . The bacterial strains used were not chosen for their probiotic activity, but were

merely used as model organisms.
Ž . ŽBacteria were cultured at room temperature 20–228C in marine broth 2216 Difco,

.USA under continuous agitation. The total number of cells was determined after
Ž .filtration onto black polycarbonate filters 0.2-mm pore size by pre-staining with either

Ž .DAPI or acridine orange Hobbie et al., 1977; Porter and Feig, 1981 , and observation in
a Nikon Optiphot epifluorescence microscope. Upon harvest, the growth medium was
removed after centrifugation at 5200–5500 rpm, and the cells were re-suspended in
autoclaved seawater.

2.2. Rotifer experiments

Ž .B. plicatilis SINTEF-strain, 250-mm average maximum length were cultured in
Ž200-l cultures in cylindroconical tanks, and fed bakers’ yeast Saccharomyces ceriÕ-

. Ž . Žisiae and DHA-Selco INVE Aquaculture NV, Belgium at a 10:1 weight ratio Olsen
.et al., 1993 . The rotifers were harvested, rinsed with seawater, and starved for 2 h

before the onset of the experiments. The rotifers were incubated at a density of
approximately 200 rotifers mly1 in one-litre suspensions of bacteria for 60 min at
20–228C under continuous aeration. Samples from the bacterial suspensions were plated

Ž .on marine agar 2216 Difco before the onset of the experiments, to determine the
number of CFU mly1. Samples of rotifers were taken before transfer to the bacterial
suspensions and 0, 20, 40 and 60 min after transfer. At each sampling, 5.0 ml of rotifer
culture were sieved on a 50 mm mesh, rinsed with 50 ml autoclaved seawater, and
homogenized under sterile conditions. Serial dilutions of the homogenate were prepared

Ž .in autoclaved 80% seawater, plated in duplicate on marine agar 2216 Difco , and
incubated for 5–7 days at 158C. Samples of rotifer homogenate for detection of bacteria
by ELISA were stored at y208C.

After incubation in the bacterial suspensions, part of the rotifers were transferred for
Ž .24 h 20–228C to one-litre beakers with autoclaved seawater to which Tetraselmis sp.

Ž y1 .had been added 2 mg C l , to simulate the conditions in a fish tank during first
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feeding of turbot larvae. Population density was adjusted to 5 rotifers mly1, and samples
of rotifers were taken, as previously described, 2, 4 and 24 h after transfer.

Ž .In the first experiment, rotifers were incubated in suspensions ns3 of the strain
Ž 7 y1.4:44 1.2=10 CFU ml . In the second experiment, rotifers were incubated in

Ž . Ž 8 y1.suspensions ns2 of the strain 4:44 at a higher concentration 2.1=10 CFU ml .
A part of the rotifers were rinsed and transferred after 40 min of incubation in the
bacterial suspensions to seawater with added algae. In the third experiment, suspensions
Ž . Ž 8 y1.ns2 of the strain PB52 3.3=10 CFU ml were used, and a part of the rotifers
were rinsed and transferred to seawater with added algae after 20 min of incubation in
the bacterial suspensions. In the fourth experiment, rotifers were incubated in a mixture
Ž . Ž 8 y1.ns2 of equal numbers of the two strains total density of 3.5=10 CFU ml ,
where a part of the rotifers was transferred to seawater with added algae after a 20 min
incubation in the bacterial suspensions.

2.3. Artemia experiments

Ž .A. franciscana EG-grade, INVE Aquaculture NV, Belgium cysts were decapsulated,
incubated for 24 h at 288C and 5‰ salinity under strong illumination and aeration, and
fed for 3 days after hatching with Tetraselmis sp. at 288C. Three-day-old A. franciscana
metanauplii were rinsed and transferred to one-litre suspensions of the bacteria for 60
min at 20–228C. Three different concentrations in the range of 107–108 bacteria mly1

were tested for each of the two bacterial strains, and the effect of A. franciscana density
Ž y1 .25 and 50 A. franciscana ml was examined at each of these concentrations.
Samples from the bacterial suspensions were taken at the onset of the experiments and
after 30 min of grazing, diluted in 80% autoclaved seawater and plated on marine agar
to determine the CFU mly1.

A part of A. franciscana that had grazed in the bacterial suspensions for 60 min was
incubated for 24 h at 10–128C, at a density of 1–2 A. franciscana mly1 in autoclaved

Ž y1 .seawater with added Tetraselmis sp. 2 mg C l , to simulate first feeding conditions of
halibut larvae. Samples of A. franciscana were taken, before the transfer to the bacterial
suspensions, after 0, 30 and 60 min of incubation in the bacterial suspensions, and 1, 2
and 24 h after transfer to seawater with added algae.

During sampling, 10 A. franciscana metanauplii were rinsed with autoclaved seawa-
ter and homogenized in 5.0 ml autoclaved seawater. Serial dilutions of the homogenate
in 80% seawater were plated on marine agar, and incubated at 158C for 5–7 days.
Samples of homogenate for the detection of bacteria by ELISA were stored at y208C.

2.4. Antisera

Rabbit polyclonal antisera were prepared against the bacterial strains after immuniza-
Ž .tion with whole cells, which had been fixed 0.5% formaldehyde , and washed twice in

PBS. The antiserum against strain 4:44 showed no cross-reactions with strain PB52 and
Žvice versa. Cross-reactions of the antisera against the other two bacterial strains PB111
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.and PB61 were removed by incubating the antisera in a PBS solution with formalin-fixed
whole cells of the cross-reacting bacteria for 3 h. The bacteria and the cross-reacting
fraction of the antibodies were removed from the solution by centrifugation at 5000–5500
rpm for 15 min. The primary antisera were purified by use of a protein A purification

Ž .column Ey et al., 1978 . A part of the purified antisera was biotinylated with
Ž .NHS-LC-biotin Pierce, USA .

2.5. ICB

ICB was used to detect colonies of the specific bacteria samples in seawater, and in
Ž .B. plicatilis and A. franciscana homogenates Kotani and McGarrity, 1986 . Nitrocellu-

lose membranes were placed on marine agar plates, and impressions of the colonies
grown on the agar surface were made. The nitrocellulose membranes were successively

Ž .incubated in primary polyclonal antibody 1:3000–4000 , secondary goat anti-rabbit
Ž . Ž .antiserum 1:2000 conjugated to horseradish peroxidase Biorad, USA , and in HRP

Žcolour development reagent 0.05% wrv 4-chloro 1-naphthol, 0.16% vrv ethanol in
.ice-cold Tris-base saline .

2.6. ELISA

Ž .A sandwich-ELISA was used Adams, 1991 , where polystyrene Nunc Maxisorb
plates were sensitized against the bacteria to be detected with purified rabbit antiserum
Ž y1 .10 mg ml in 0.05 M bicarbonate buffer, pH 8.5 . We added 100 ml of each sample in

Ž .two-fold dilutions in PBS and incubated for 2 h. Biotinylated rabbit antiserum 1:1000
in PBS was applied for 1 h, and thereafter neutravidine conjugated with horse radish

Ž . Ž y1 .peroxidase was added 1:1000 for 30 min. o-Phenylenediamine 0.4 mg ml was
Ž .used as a substrate in a phosphate–citrate buffer 0.5 M added urea hydrogen peroxide

Ž y1 .0.4 mg ml . The reaction was stopped with 100 ml of 3 M HCl, and was quantified
Ž .by measuring OD . Three washings PBS with 0.5% vrv Tween-20 were applied492

Ž .between each incubation step of the assay 20–228C .
Standard curves at OD were established for the four bacterial strains. Bacterial492

densities were determined by plating diluted samples on marine agar, and by counting
the total number of cells by epifluorescent microscopy. In the standards used, the
numbers obtained by epifluorescent microscopy and colony counts were approximately
equal.

3. Results

3.1. Rotifers

No positive reaction was shown between plated homogenate of control rotifers and
antiserum against strain 4:44 in the first two experiments. In the third and fourth
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experiments, the percentage of colonies from control rotifer homogenate reacting with
the antisera against the strains 4:44 and PB52 was 17% and 15%, respectively. Total
count of CFUs in rotifers that grazed suspensions of strain 4:44 at low concentrations
Ž 7 y1. 3 Ž1.2"0.5=10 CFU ml was 1.1"0.3=10 CFU per rotifer after 20–60 min Fig.
. Ž .1 , where 28–52% of the colonies were identified as 4:44 by ICB Table 1 . The

Ž 3numbers of strain 4:44 accumulated after 20, 40 and 60 min of grazing 0.5"0.2=10
.bacteria per rotifer were not significantly different from the number measured at the 0

Ž .min sample Ps0.17, 0.08, 0.07, respectively , but strain 4:44 as a percentage of total
Ž .CFU was significantly higher after 40 min than after 0 min P-0.03 .

ŽGrazing of bacteria was more efficient at higher bacterial concentrations 1.8–3.5=
8 y1. 310 CFU ml , where 32–71=10 CFU of the bacterial strains per rotifer were

Ž .accumulated within 20–60 min Fig. 1 . The number accumulated was significantly
Ž .higher than in the 0-min sample P-0.02 . The bacterial strains, as a percentage of the

Ž .total CFU in the rotifers, increased to 94–98% after the short-term enrichment Table 1 .
Strain 4:44 was more effectively accumulated in the rotifers when given together with
strain PB52, whereas strain PB52 was more effectively accumulated when given alone.
In three out of four experiments with concentrated bacterial suspensions, the number of
the specific bacteria per rotifer was lower after 60 min of enrichment than after 20 min
of enrichment, when analysed by ICB. This tendency was not observed when the same

Ž .samples were analysed by ELISA Fig. 2 . In general, the values obtained by ELISA
during the enrichment phase, were higher than the values obtained by ICB. After
transfer to seawater with added algae, the values obtained by the two methods were
similar. The detection limit of bacteria using ELISA was 2–5=103 bacteria mly1.

After transfer to seawater with added algae, the rotifers lost most of their bacterial
Ž .content Figs. 1 and 2 . The total CFU decreased on average for all experiments to 10.5,

4.6, and 3.4=103 CFU per rotifer after 2, 4, and 24 h, respectively. The percentage of

Ž .Fig. 1. Content of the bacterial strains 4:44 and PB52 avg"SEM in rotifers as measured by ICB after 20, 40,
and 60 min in suspensions of bacteria, and after transfer to seawater with added algae for 2, 4 and 24 h,
indicated as 2A, 4A and 24A, respectively. The concentrations of bacteria were: ' 7.8=106 4:44 mly1 , v

8 y1 Ž 8 y1.1.7=10 4:44 ml , I mixture of equal numbers of 4:44 and PB52 totally 3.5=10 bacteria ml , and l

3.3=108 PB52 mly1.
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Table 1
Ž .The bacterial strains 4:44 and PB52 as a percentage of the total CFU avg"SEM in B. plicatilis after 20, 40

and 60 min of grazing in the bacterial suspensions, and after transfer to seawater with added algae for 2, 4 and
24 h, indicated as 2A, 4A, 24A, respectively. The average concentration of the specific bacteria in the bacterial

Ž y1 .suspensions CFU ml is also given

Concentration 4:44 PB52 Mixture
7 8 81.7=10 1.8=10 3.3=10 4:44 PB52

8 81.7=10 1.7=10

20 min 28"5 98"1 87"4 62"1 50"7
40 min 52"7 94"1
60 min 52"22 90"6 88"7 44"7 42"8
2A 60"15 60"16 43"24 66"5
4A 65"5 44"4 26"14 41"2

24A 36"19 16"1 13"4 26"8

the specific bacteria, after 2, 4, and 24 h in seawater with added algae, decreased on
average to 72%, 60% and 32%, respectively. Even after the rotifers had grazed for 24 h
in a suspension of algae, the composition of their bacterial flora was different from the
one in non-treated rotifers, where colonies giving a positive reaction in the ICB assay
was F17% of the total CFU.

3.2. Artemia experiments

No positive reaction was observed between plated homogenate of control metanauplii
and the antisera against the strains PB111 and PB61. The population density of

Ž .Fig. 2. Content of the bacterial strains 4:44 and PB52 avg"SEM in rotifers as measured by ELISA after 20,
40, and 60 min in suspensions of bacteria, and after transfer to seawater with added algae for 2, 4 and 24 h,
indicated as 2A, 4A and 24A, respectively. The concentrations of bacteria were: ' 7.8=106 4:44 mly1 , v

8 y1 Ž 8 y1.1.7=10 4:44 ml , I mixture of equal numbers of 4:44 and PB52 totally 3.5=10 bacteria ml , and l

3.3=108 PB52 mly1.
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Ž y1 .metanauplii tested 25 or 50 ind ml had no effect on the amount of bacteria
Ž .accumulated PG0.14 . Experiments which differed only in the density of A. francis-

cana were therefore treated as replicates. The CFU values in the water at the onset of
Ž .the experiments and after 30 min of grazing were not significantly different P)0.6 ,

indicating that the accumulation of bacteria in A. franciscana was not limited by the
number of bacteria in suspension. The amount of bacteria accumulated in A. francis-

Ž .cana was dependent on the concentration of bacteria in the suspension Figs. 3 and 4 .
PB61 was accumulated in A. franciscana in higher numbers than PB111, and the
bacterial composition of A. franciscana was not affected to a large degree after

Ž .incubation in suspensions of PB111 Table 2 .
The amount of accumulated bacteria present in the metanauplii after grazing for 24 h

in seawater with added algae varied in the experiments with the two bacterial strains.
After transfer to seawater with added algae, PB61 represented, on average, 65% of the

Ž .Fig. 3. Content of the strain PB61 avg"SEM present in A. franciscana metanauplii as measured by ICB
Ž . Ž . Žtop and ELISA bottom after incubation in bacterial suspensions for 30 and 60 min three different

.concentrations , and after transfer to seawater with added algae for 1, 2, and 24 h, indicated as 1A, 2A, and
24A, respectively.
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Ž .Fig. 4. Content of the strain PB111 avg"SEM present in A. franciscana metanauplii as measured by ICB,
Ž .after incubation in bacterial suspensions for 30 and 60 min three different concentrations , and after transfer to

seawater with added algae for 1, 2, and 24 h, indicated as 1A, 2A, and 24A, respectively.

Ž . 3total CFU Table 2 , and the total CFU was reduced to an average of 7.5=10 per
metanauplius. In contrast, PB111 comprised F8% of the total CFU, in all but one
sample, and the total CFU was on average 2.8=103 per A. franciscana. After transfer
to seawater with added algae, the amount of PB111 in the metanauplii, as measured by

Ž . ŽELISA, was not significantly different P)0.05 from the detection level results not
.shown .

Table 2
Ž .The bacterial strains PB61 and PB111 as a percentage avg"SEM of the total CFU in A. franciscana after

30 and 60 min of grazing in the bacterial suspensions, and after transfer to seawater with added algae for 1, 2
and 24 h, indicated as 1A, 2A, 24A, respectively. The concentration of the bacteria strains in the bacterial

Ž y1 . Ž .suspensions CFU ml is also given nd: not detected

Concentration PB61 PB111
6 7 8 6 7 78.7=10 6.4=10 3.2=10 1.7=10 1.2=10 5.6=10

30 min 67"17 88"11 79"21 nd 6"3 9"6
60 min 37"8 93"7 86"14 11"9 4"1 9"1
1A 44"3 78"9 89"1 nd 8"7 8"6
2A 34"13 99"4 100 4"2 8"6 nd

24A 25"4 88"8 94 20"10 nd 3"3
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4. Discussion

Bacteria were effectively accumulated in both B. plicatilis and A. franciscana within
20–30 min, which is a time period comparable to the gut passage time of the two

Ž .species Coutteau, 1991; Vadstein et al., 1993 . Both B. plicatilis and A. franciscana
Ž 7 y1.were more efficient grazers at high bacterial densities G5=10 bacteria ml , where

they accumulated about 10% of the total amount of bacteria present in solution during
short-term incubation. These findings are in agreement with the clearance rates of B.

Ž .plicatilis and A. franciscana Vadstein et al., 1993; Makridis and Vadstein, 1999 . At
Ž 7 y1.lower concentrations of bacteria -5=10 bacteria ml , only about 1% of the total

amount of bacteria present was accumulated in B. plicatilis, whereas in A. franciscana,
the number of grazed bacteria was variable. The saturation kinetics observed at high

Ž .bacterial densities ELISA results and the constant CFU values in the water before and
Ž .after grazing A. franciscana experiments , indicated that the accumulation of bacteria

was not limited by the number of bacteria present in the medium, but most probably by
the capacity of the grazers’ gut and their efficiency to filter bacteria. B. plicatilis
accumulated an equal or higher number of bacteria than A. franciscana despite its
smaller size. In the rotifer experiments where two bacterial strains were mixed, the
interactions between the two strains had an effect on the bioencapsulation of bacteria.

The number of bacteria accumulated by A. franciscana was dependent on the
bacterial strains used, as PB61 was grazed by A. franciscana more effectively than

Ž .PB111 Figs. 3 and 4 . This variability is also apparent in results from earlier studies,
where the values of bioencapsulated bacteria in A. franciscana reported range from

3 5 Ž2.4=10 to 1.2=10 CFU per A. franciscana Campbell et al., 1993; Gomez-Gil et
.al., 1998 . The difference obtained in our study may be partly explained by the fact that

the concentration of PB111 was lower than 6=107 CFU mly1, whereas PB61 was
grazed at concentrations up to 3.21=108 CFU mly1.

ICB is suitable for measurements related to the delivery of live bacteria, such as
probiotics, whereas ELISA is suitable in relation to the delivery of vaccines. The
number of live bacteria is appropriate when it comes to measurement of doses needed to
accomplish a successful colonization of the fish gut. The ICB assay was more sensitive
Ž y1 . Ž 3 y1.10 bacteria ml than ELISA 3–5=10 bacteria ml . The problem of low
sensitivity of ELISA could be solved if live food was homogenized at a high density as
it occurred in the case of rotifer samples. In the experiments with rotifers, values
obtained with ELISA after 60 min of grazing were equal or higher than values obtained
after 20 min of grazing, whereas the corresponding values obtained by ICB were lower
after 60 min than after 20 min in three out of four cases. This indicated that a part of the

Žbacteria was digested in the gut of the grazing animals during this time interval Figs. 1
.and 2 .

The number of bacteria accumulated in the grazers in suspensions with high density
of bacteria was probably too high and might induce decreased feeding by the larvae
Ž .Benavente and Gatesoupe, 1988 . Grazing in seawater with added microalgae, reduced
the total CFU in the live food, as the microalgae replaced the bacteria in the gut of the
grazers. The percentage of the specific bacteria remained, however, at a level higher
than in non-treated animals, so incubation in bacterial suspensions had influenced the
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Ž .bacterial microflora of live for a longer period Tables 1 and 2 . Addition of microalgae
in first feeding tanks can eliminate problems related to overloading of the live food with
bacteria. Another possible solution would be to adjust the concentration of the bacterial
suspensions in order to allow bioencapsulation of a relatively low number of bacteria per

Ž 3 y1.live food organism around 5=10 bacteria ind . Optimization of the bioencapsula-
tion procedure should be done individually for each strain under specific culture
conditions, as these factors may have an effect on the process. Bioencapsulation of lactic
acid bacteria in rotifers fed to first feeding turbot larvae gave best results when the

7 y1 Ž .bacterial density was around and 1–2=10 bacteria ml Gatesoupe, 1994 .
In conclusion, bacteria were effectively bioencapsulated within 20–30 min in both

rotifers and A. franciscana after incubation in the bacterial suspensions. This process is
compatible with other practices in commercial aquaculture as the nutritional value of the
live food does not decrease during this short period. The specific bacteria were present
in the live food organisms 4–24 h after transfer to seawater with added algae. It is
possible, after a short-term enrichment, to replace the opportunistic bacteria present in
the live food cultures with less-aggressive bacteria, which persist as a dominant part of
the bacterial flora of the live food.

Acknowledgements

We thank Øivind Bergh, Institute of Marine Research, Norway and Ana Joborn,¨
University of Goteborg, Sweden, for supplying the bacterial strains, Odd Gunnar¨
Brakstad, SINTEF Applied Chemistry, and Sigrun Espelid, Norwegian Institute of
Fisheries and Aquaculture, for their advice in the use of ELISA. We also thank Tony
Makridis for review of the manuscript. Finally, we thank the Norwegian Research
Council for the financial support of the study throughout the project «Development of
techniques for microbial control of live food cultures for marine fish larvae».

References

Adams, A., 1991. Detection of Vibrio parahaemolyticus biotype alginolyticus in penaid shrimp using an
amplified enzyme-linked immunosorbent assay. Aquaculture 93, 101–108.

Austin, B., Stuckey, L.F., Robertson, P.A.W., Effendi, I., Griffith, D.R.W., 1995. A probiotic strain of Vibrio
alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and
Vibrio ordalii. J. Fish Dis. 18, 93–96.

Benavente, G.P., Gatesoupe, F.J., 1988. Bacteria associated with cultured rotifers and Artemia are detrimental
to larval turbot, Scophthalmus maximus L. Aquacult. Engin. 7, 289–293.

Bergh, Ø., 1995. Bacteria associated with early stages of halibut, Hippoglossus hippoglossus L., inhibit
growth of a pathogenic Vibrio sp. J. Fish Dis. 18, 31–40.

Campbell, R., Adams, A., Tatner, M.F., Chair, M., Sorgeloos, P., 1993. Uptake of Vibrio anguillarum vaccine
by Artemia salina as a potential oral delivery system to fish fry. Fish Shellfish Immunol. 3, 451–459.

Coutteau, P., 1991. Baker’s yeast as substitute for micro-algae in the culture of filter-feeding organisms. PhD
Thesis Univ. Ghent, pp. 178–181.

Dixon, B.A., Van Poucke, S.O., Chair, M., Demasque, M., Nelis, H.J., Sorgeloos, P., De Leenheer, A.P.,
1995. Bioencapsulation of the antibacterial drug sarafloxacin in nauplii of the brine shrimp Artemia
franciscana. J. Aquat. Anim. Health 7, 42–45.



( )P. Makridis et al.rAquaculture 185 2000 207–218218

Ey, P.L., Prowse, S.J., Jenkin, C.R., 1978. Isolation of pure IgG , IgG and IgG immunoglobulins from1 2a 2b

mouse serum using protein A-sepharose. Immunochemistry 15, 429–436.
Gatesoupe, F.J., 1994. Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus,

against pathogenic vibrio. Aquat. Living Resour. 7, 277–282.
Gomez-Gil, B., Herrera-Vega, M.A., Abreu-Grobois, F.A., Roque, A., 1998. Bioencapsulation of two different

Ž .Vibrio species in nauplii of the brine shrimp Artemia franciscana . Appl. Environ. Microbiol. 64,
2318–2322.

Havennar, R., Ten Brink, B., Huis in’t Veld, J.H.J., 1992. Selection of strains for probiotic use. In: Fuller, R.
Ž .Ed. , Probiotics, The Scientific Basis. Chapman & Hall, London, pp. 209–224.

Hobbie, J.E., Daley, R.J., Jasper, S., 1977. Use of nuclepore filters for counting bacteria by fluorescence
microscopy. Appl. Environ. Microbiol. 33, 1225–1228.

Kawai, K., Yamamoto, S., Kusuda, R., 1989. Plankton-mediated oral delivery of Vibrio anguillarum vaccine
to juvenile ayu. Nippon Suisan Gakkaishi 55, 35–40.

Keskin, M., Keskin, M., Rosenthal, H., 1994. Pathways of bacterial contamination during egg incubation and
larval rearing of turbot, Scophthalmus maximus. J. Appl. Ichthyol. 10, 1–9.

Kotani, H., McGarrity, G.J., 1986. Identification of mycoplasma colonies by immunobinding. J. Clin.
Microbiol. 23, 783–785.

Makridis, P., Vadstein, O., 1999. Food size selectivity of Artemia franciscana at three developmental stages.
J. Plankton Res. 21, 2191–2201.

Mohney, L.L., Lightner, D.V., Williams, R.R., 1990. Bioencapsulation of therapeutic quantities of the
antibacterial Romet-30 in nauplii of the brine shrimp Artemia and in the nematode Panagrellus rediÕiÕus.
J. World Aquacult. Soc. 21, 186–191.

Munro, P.D., Henderson, R.J., Barbour, A., Birkbeck, T.H., 1999. Partial decontamination of rotifers with
ultraviolet radiation: the effect of changes in the bacterial load and flora of rotifers on mortalities in
start-feeding larval turbot. Aquaculture 170, 229–244.

Nicolas, J.L., Robic, E., Ansquer, D., 1989. Bacterial flora associated with a trophic chain consisting of
microalgae, rotifers, and turbot larvae: influence of bacteria on larval survival. Aquaculture 83, 237–248.

Olsen, Y., Reitan, K.I., Vadstein, O., 1993. Dependence of temperature on loss rates of rotifers, lipids, and v3
fatty acids in starved Brachionus plicatilis cultures. Hydrobiologia 255–256, 13–20.

Olsson, J.C., Westerdahl, A., Conway, P.L., Kjelleberg, S., 1992. Intestinal colonization potential of turbot
Ž . Ž .Scophthalmus maximus - and dab Limanda limanda -associated bacteria with inhibitory effects against
Vibrio anguillarum. Appl. Environ. Microbiol. 58, 551–556.

Porter, K.G., Feig, Y.S., 1981. The use of DAPI for identification and counting of aquatic microflora. Limnol.
Oceanogr. 25, 943–948.

Reitan, K.I., Rainuzzo, J.R., Øie, G., Olsen, Y., 1993. Nutritional effects of algal addition in first feeding tanks
Ž .of turbot Scophthalmus maximus L. larvae. Aquaculture 118, 257–275.

Ringø, E., Birkbeck, T.H., Munro, P.D., Vadstein, O., Hjelmeland, K., 1996. The effect of early exposure to
Ž .Vibrio pelagius on the aerobic bacterial flora of turbot, Scophthalmus maximus L. larvae. J. Appl.

Bacteriol. 81, 207–211.
Ž .Ringø, E., Sinclair, P.D., Birkbeck, H., Barbour, A., 1992. Production of eicosapentaenoic acid 20:5 n-3 by

Ž Ž ..Vibrio pelagius isolated from turbot Scophthalmus maximus L. larvae. Appl. Environ. Microbiol. 58,
3777–3778.

Skjermo, J., Vadstein, O., 1993. Characterization of the bacterial flora of mass cultivated Brachionus
plicatilis. Hydrobiologia 255–256, 185–191.

Skjermo, J., Vadstein, O., 1999. Techniques for microbial control in the intensive rearing of marine fish
larvae. Aquaculture 177, 333–343.

Sugita, H., Miyajima, C., Deguchi, Y., 1991. The vitamin B -producing ability of the intestinal microflora of12

freshwater fish. Aquaculture 92, 267–276.
Vadstein, O., Øie, G., Olsen, Y., 1993. Particle size dependent feeding by the rotifer Brachionus plicatilis.

Hydrobiologia 255–256, 261–267.
Watanabe, T., Kitajima, C., Fujita, S., 1983. Nutritional values of live organisms used in Japan for mass

propagation of fish: a review. Aquaculture 34, 115–143.



Paper V
 
Is not included due to copyright 
 





Paper VI





1

An in vivo test of probiotic candidates from the dominant and the antagonistic 

bacterial flora of cod larvae (Gadhus morhua L.). Evaluation of colonization 

efficiency and viability of larvae. 

Anders Jòn Fjellheim1, Jorunn Skjermo2, Mari-Ann Østensen1 and Olav Vadstein4*.

1Department of Biology, Norwegian University of Science and Technology (NTNU), 

7491 Trondheim, Norway. 

2SINTEF Fisheries and Aquaculture, Department of Marine Resources Technology, 

7465 Trondheim, Norway 

3Department of Biotechnology, Norwegian University of Science and Technology 

(NTNU), 7491 Trondheim, Norway 

* Corresponding author. Fax: 73591283, Phone: +47 73594058, e-mail: 

olav.vadstein@biotech.ntnu.no.



2

Abstract

A first feeding experiment with Atlantic cod larvae was conducted to evaluate in vivo

effects of probiotic candidate bacteria. The experiment included three conditions: 1. 

Control with no addition. 2. Addition of a mixture of three bacteria from the dominant 

bacterial flora of cod larvae. 3. Addition of a mixture of two bacteria from the 

antagonistic bacterial flora of cod larvae. The five candidate bacteria were isolated from 

healthy cod larvae, and characterized with respect to antagonistic activity, adhesion to 

and growth in mucus, extracellular enzyme production, haemolytic activity, and bile 

tolerance. The candidate bacteria were added directly to the rearing water on the day of 

hatching, and bioencapsulated in rotifers that were fed to the larvae. The culture 

independent method terminal restriction fragment length polymorphism (T-RFLP) was 

used to detect the added bacteria in water, rotifers and larvae. The CFU in the rearing 

water increased 76 and 164% in treated tanks compared to the control after the direct 

addition of the bacteria on the day of hatching. However, only one of the added bacteria 

was detected in the water by T-RFLP. The added bacteria were successfully 

bioencapsulated in rotifers, but at lower percentages than studies using culture based 

methods for detecting the bacteria. A non-significant increase of the added bacteria was 

detected in rotifers taken from the rearing tanks on day 5, whereas the added bacteria 

were not detected in the rotifers on later stages. The added bacteria were not detected in 

cod larvae, implying low colonisation potential of the added bacteria. This was in 

contrast to the in vitro test results of the added bacteria, where one of the bacteria 

showed high adhesiveness to mucus and two of the bacteria showed high growth rates 

in mucus. However, in individual larvae on day 17, the T-RFLP data showed individual 

differences within the same rearing tanks, both regarding TRFs corresponding to the 
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added and to other bacteria. Although larvae in treated tanks did not perform better than 

larvae in the control tanks, high growth rates were obtained in the rotifer feeding period, 

and high survival was experienced in the weaning phase. Thus the lack of positive 

effects of the probiotic candidates may have been due to the fact that the potential for 

further improvement was low. 

Keywords 

T-RFLP, Probiotic, Atlantic cod (Gadhus morhua L.), Dominant bacterial flora, 

Antagonistic bacterial flora, First-feeding. 

Introduction 

The intensive rearing conditions during production of Atlantic cod larvae (Gadhus 

morhua L.) provide an environment suited for opportunistic bacteria (Skjermo et al. , 

1997), and the production of larvae has been hampered by low and unpredictable 

growth and survival during first-feeding. Several strategies have been proposed to 

improve the control of microbial conditions in the production of marine fish larvae 

(Skjermo and Vadstein, 1999). The use of microbially matured rearing water is a 

strategy that reduces the number of opportunistic bacteria (Skjermo et al. , 1997) and 

may enhance growth of the larvae (Salvesen et al. , 1999), while the use of water 

recirculating systems stabilizes the microbial community in the rearing water compared 

to flow-through systems (Attramadal, 2004). Reduction or exchange of the bacterial 

load of live feed (Munro et al. , 1999; Makridis et al. , 2000a; Olsen et al. , 2000), 

addition of immunostimulants to boost the non-specific immune system (Vadstein, 1997; 

Conceicao et al. , 2001; Skjermo and Bergh, 2004) and the use of probiotics (Gatesoupe, 



4

1999; Skjermo and Vadstein, 1999; Irianto and Austin, 2002) are other promising 

strategies that have been applied.

Probiotics was defined by Gram and Ringø (2005) as “live microbial cultures added to 

feed or environment (water) to increase viability (survival) of the host”. In most studies, 

probiotic candidates for marine fish larvae are chosen because they show in vitro

inhibitory activity against a target pathogen, although it has not been shown that in vitro

antagonism is actually effective in vivo (Atlas, 1999). The dominant bacterial flora from 

marine larvae in well performing rearing groups, have more rarely been evaluated as 

probiotic candidates (Skjermo and Vadstein, 1999; Huys et al. , 2001). It is assumed 

that bacteria showing a dominant colonization of the intestinal mucus are capable of 

excluding pathogens from the adhesion sites of the gut wall through competition 

(Verschuere et al. , 2000). Bacteria are often screened for several in vitro properties, 

before they are proposed as probiotic candidates and tested in vivo. It is important to 

know how the in vitro properties are reflected under in vivo conditions to enable 

efficient selection of probiotic candidate bacteria. The bacterial colonisation potential is 

regarded as an important property for probionts, and bacterial isolates can be screened 

in vitro for this property (Vine et al. , 2004; Fjellheim et al. in prep. c). Colonisation can 

be defined as the ability of an organism to establish and remain in a niche after 

exogenous supply has stopped (Gram and Ringø, 2005). The colonisation resistance of 

the existing bacterial flora, makes colonisation by introduced bacteria more difficult. 

Thus, colonisation by added bacteria can most easily be done in the early stages of host 

colonisation. 
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Terminal restriction fragment length polymorphism (T-RFLP) is a culture independent 

molecular method that has been used to characterize the microbial composition in 

several habitats (Liu et al. , 1997; Osborn et al. , 2000). DNA from a sample is used as 

the template for the PCR and at least one of the primers is labelled with a fluorescent 

dye when running T-RFLP. Amplified products are digested with one or more 

restriction enzymes separately and the size of the fluorescent terminal fragment is 

determined. DNA extraction efficiency and PCR bias, as well as the choice of primers 

and restriction enzymes, can influence the T-RFLP results (Osborn et al. , 2000).

In this study we wanted to evaluate probiotic candidate bacteria in a first-feeding 

experiment with cod larvae. The probiotic candidates were found using two different 

selection strategies, i.e. from the dominant- and the antagonistic- intestinal bacterial 

flora of cod larvae (Fjellheim et al. in prep. a and b). The bacteria were selected from a 

library of nearly 500 bacterial isolates, based on several in vitro characteristics 

(Fjellheim et al. in prep. c). In the first feeding experiment we monitored the bacterial 

composition in the rearing water, the live feed and the cod larvae using traditional 

methods and T-RFLP. In addition, the presence of the added bacteria was detected by T-

RFLP (Jernberg et al. , 2005), and T-RFLP was used to quantify the relative abundance 

of the added bacteria. 
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Materials and methods 

First feeding experiment 

The first feeding experiment included two experimental treatments (D and A) and a 

control (C). Treatment D received three probiotic candidates that had previously been 

isolated from the dominant intestinal bacterial flora of Atlantic cod larvae (Fjellheim et 

al. in prep. a). Treatment A received two probiotic candidates that had been isolated 

after screening for antagonistic isolates among the intestinal bacterial flora in cod larvae 

(Fjellheim et al. in prep. b). Three replicate rearing tanks were used for the two 

treatments and the control. 

The seawater was sandfiltered, run through a maturation unit (Skjermo et al. , 1997) and 

vacuum aerated before entering the 160-l conical rearing tanks. The cod eggs were 

disinfected for 8 min in 1600 mg glutaraldehyde l-1 (Salvesen and Vadstein, 1995), 

distributed in the tanks (40 eggs l-1) and kept in darkness until two days after hatching. 

The water temperature was gradually increased from 7°C at the start of the experiment 

to 12°C on day 7 after hatching, and then kept at this temperature. The water exchange 

rate was initially 1 exchange day-1 and increased to 2 day-1 on day 4, 3 day-1 on day 12, 

5 day-1 on day 18 and maximum exchange rate of 8 day-1 on day 21 after hatching. The 

tanks were aerated moderately with airstones. 

Microalgae (Isochrysis galbana) were added on the day of hatching to a final 

concentration of 1 mg algal C l-1, and maintained at this concentration by addition of 

algae once daily until day 3 after hatching and twice daily thereafter. The microalgae 
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were cultivated in 200-l cylindrical tanks with F/2 medium (Guillard and Ryther, 1962) 

prepared from sandfiltered seawater. The algal cultures were grown semi-continuously 

(30% dilution day-1) and illuminated with fluorescent tubes.  

The rotifers (Brachionus sp. Nevada, SINTEF strain) (Gomez et al. , 2002; Papakostas 

et al. , 2006) were cultured in 250-l conical tanks in brackish water (20‰) at 20°C and 

fed fresh baker`s yeast (1.2 μg ind-1), marol E (7.5% of yeast weight) and Chlorella (0.5 

ml/mill rotifers). The cultures were grown semi-continuously by 20% dilution day-1.

Before use, the rotifers were harvested and washed with brackish water (20‰, 17°C) on 

a plankton net (70 μm). Rotifers were added to the rearing tanks at a final density of 

5000 rotifers liter-1 and maintained at this concentration by addition of rotifers two or 

three times a day. The rotifer density in the tanks was monitored by an automatic rotifer 

counter (Alver et al. in prep.).

Rotifers and formulated dry feed (Gemma micro 150) were co-fed on days 18 to 21 

after hatching, and the larvae were only fed dry feed thereafter. This was an early 

transition to dry feed compared to other rearing protocols (Brown et al. , 2003; Korsnes 

et al. , 2006), and was considered to be a stress test for the larvae. Dead larvae and 

debris was removed from the tanks 1, 2, 6, 9, 12, 14 and 18 days after hatching, and 

every day thereafter. Dead larvae were counted daily from the introduction of dry feed 

and to the end of the experiment. At the termination of the experiment all live larvae 

were counted. 
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Probiotic candidates 

The three probiotic candidates that were added in treatment D (ID3-10, ND2-7 and 

RD5-30), were isolated from the dominant intestinal bacterial flora in Atlantic cod 

larvae from three different well-performing rearing groups (Fjellheim et al. in prep. a). 

The dominant candidates had 16S rDNA similarity to Microbacterium sp. (ID3-10 and 

ND2-7) and to Vibrio gallicus (RD5-30). The two probiotic candidates that were added 

in treatment A (RA4-1 and RA7-14), were isolated after screening the intestinal 

bacterial flora in cod larvae for antagonism against Listonella anguillarum (strain HI 

610). Both isolates were from the same rearing group and had DNA sequence similarity 

to Roseobacter sp. (RA4-1) and to Pseudoalteromonas sp. (RA7-14) (Fjellheim et al. in 

prep. b). These probiotic candidates were selected from an initial pool of 370 dominant 

and 98 antagonistic isolates. The isolates were chosen after in vitro evaluation of 

antagonism against four pathogens and three dominant isolates, adhesion to mucus, 

growth rate in mucus, production of extracelluar enzymes, haemolytic activity, and fish 

bile resistance. In addition a small scale in vivo test with exposure of cod yolk sac stage 

larvae was performed to evaluate probiotic and detrimental effects of the isolates on the 

larvae (Fjellheim et al. in prep. c). Observed TRFs were found by running pure cultures 

of the five bacteria through the T-RFLP analysis, while the expected TRFs were 

calculated from the DNA sequence. The properties of these five isolates are given in 

Table 1. 

Addition of probiotic candidates in water and in rotifers 

The probiotic candidate bacteria were grown in light for 2-3 days at 20°C in M-65 broth 

(0.5 g peptone, 0.5 g tryptone, 0.5 g yeast extract, 800 ml seawater, 200 ml distilled 
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water) before they were added to the water or bioencapsulated in the rotifers. The 

density of bacteria was determined by measuring absorbance (660 nm) and converted to 

cells ml-1 by the use of strain specific calibration. The probiotic candidates were added 

directly to the rearing water on the day of hatching to a final concentration of 105

bacteria ml-1 (i.e 3.3 × 104 of each candidate in treatment D and 5 × 104 of each 

candidate in treatment A). This was verified by plate counts. The probiotic candidates 

were bioencapsulated in rotifers and given to cod larvae on day 2, 3, 4, 6, 8, 11 and 16 

after hatching. Suspensions of bacteria were prepared in seawater for the two treatments 

with a final concentration of approximately 108 bacteria ml-1. Equal numbers of the 

three dominant candidates were used in one suspension and likewise in the antagonistic 

suspension. The rotifers (1000 ind ml-1) grazed in the bacterial suspensions for 30 min 

with aeration, were rinsed with brackish water (20‰) for 5 min, and then added to the 

rearing tanks. Rotifers fed to control tanks were treated in the same way, but bacteria 

were not added. 

Sampling procedures 

The number of colony forming units (CFU) on M-65 agar (0.5 g peptone, 0.5 g tryptone, 

0.5 g yeast extract, 15 g agar, 800 ml seawater, 200 ml distilled water) was determined 

for water, rotifers and for cod larvae. Agar plates were incubated at 15°C and counted 

after 2 and 20 days to determine the percent of visible colonies on day 2 (PV2) 

(Salvesen and Vadstein, 2000). Selected agar plates from larvae were replica-plated 

onto blood-agar (cattle blood, added 2% NaCl) to determine the proportion of 

haemolytic bacteria. Water samples were taken from all tanks on day 0 to verify that the 

probiotic candidates were added to the intended concentrations. Samples of rotifers 
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were taken from all tanks on day 5 and 17 after hatching. At each sampling, the rotifers 

in approximately 400 ml of tank water were rinsed and concentrated in 40 ml of 

autoclaved seawater. The number of rotifers in this suspension was determined by 

counting the samples in a microscope. Then the rotifers were concentrated to 1 ml 

samples, homogenized, diluted, and plated on M-65 agar plates. Samples of cod larvae 

were also taken 5 and 17 days after hatching. At each sampling 10 larvae from each 

tank were starved for 3-4 hours, anaesthetized (30 sec, metomidate 100 mg/l), surface 

disinfected (30 sec, 0.1% benzalkoniumcloride) and washed twice (2 x 60 sec) in sterile 

80% seawater. The larvae were then homogenized in 1 ml sterile 80% seawater and 

serial dilutions of the homogenate were plated in duplicate on M-65 agar plates. 

DNA samples of bacteria were taken from water, rotifers and cod larvae. Water samples 

were taken on day 0, 5, 10, 17, 24 and 31 after hatching by prefiltering rearing water to 

remove rotifers, and then filtering 50 ml rearing water through 0.2 μm filters (Dynagard, 

Microgon Inc.). Samples of rotifers were taken from all tanks on day 5, 10 and 17 after 

hatching. At each sampling, the rotifers in approximately 400 ml of tank water were 

rinsed using 200 ml autoclaved seawater and 50 ml DNA free water (Eppendorf). The 

rotifers were concentrated in 40 ml of DNA free water. The rotifer density in the 

suspension was determined by counting the samples in a microscope. Then the rotifers 

in the suspension were separated from the water using a 0.2 μm filter (Dynagard). 

Samples of 10 cod larvae were taken from all tanks on day 5, 10, 14, 17, 24 and 31 after 

hatching. The larvae were starved for 3-4 hours, anaesthetized (30 sec, metomidate 100 

mg/l), washed with distilled and with DNA free water, and then they were transferred to 
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180 μl ATL buffer (provided in the Qiagen DNeasy Tissue Kit). All samples were 

stored at -20°C until further processing. 

DNA extraction 

DNA was extracted using a DNA purification kit (Qiagen, DNeasy Tissue Kit). Filter 

samples (water and rotifers) were centrifuged to remove excess water, prior to DNA 

extraction. The ATL buffer (180 μl) and the proteinase K (20 μl) were incubated in the 

filters, and the content was centrifuged into eppendorf-tubes. The larvae were stored in 

the ATL buffer in eppendorf-tubes and thus proteinase K (20 μl) was added directly, 

and the mix was incubated for 1-2 hours at 55°C to lyse the samples. From there on the 

extraction followed the procedure given by the manufacturer. Water and rotifer samples 

were eluted twice in 50 μl Buffer AE and samples with larvae were eluted once in 100 

μl of Buffer AE. DNA content in the extracts was measured with a NanoDrop ® 

spectrophotometer. 

Real Time PCR and T-RFLP 

The target region of the 16S rDNA was amplified in the real time PCR assay using the 

fluorescence-labeled forward primer 8f (5`-FAM-AGA GTT TGA TC(AC) TGG CTC 

AG – 3`) and the reverse primer 517r (5`-ATT ACC GCG GCT GCT GG – 3`). The 25 

μl reaction mixture included Power SYBR®Green PCR Master mix (Applied 

Biosystems), primers (0.2 μM each), 7.5 μg bovine serum albumin (Sigma) and 5 μl 

DNA template. PCR amplification was performed with the 7500 Real Time PCR 

System (Applied Biosystems). To keep the fluorescent detection non-selective, we used 

the non-specific intercalating dye SYBR Green I as the reporter dye. The PCR 
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amplifications were performed using an initial denaturation at 95°C for 10 min followed 

by variable number of cycles of denaturation at 95°C for 15 sec, and primer annealing 

and extension at 60°C for 1 min. The samples were run the required number of cycles to 

end the PCR in the late logarithmic DNA amplification phase (17 to 31 cycles). A 

negative control was included in each PCR run.  

The PCR products were digested with the restriction enzyme AluI at 37°C for one hour. 

Some samples were also digested with Hinf I (data not shown). The digestion mixture 

(30 μl) contained 5 μl PCR product, 10 U AluI and 10 × buffer. Digested PCR products 

were precipitated with ethanol (96%) and 3 M NaAc and the DNA pellet was then 

washed with 70% ethanol. The pellet was air dried at 50°C and stored at -20°C. The 

samples were prepared for analysis by adding 12 μl of formamide and 0.15 μl of 

GenescanTM 500 LIZTM Size standard (Applied Biosystems) to the digested PCR 

product. Samples were denatured at 95°C for 6 min and then rapidly chilled on ice. The 

lengths of TRFs were determined with an ABI Prism 3130xl Genetic Analyzer (Applied 

Biosystems), and the peak area data were standardized by the variable percentage 

threshold method (Osborne et al. , 2006). The divisor that resulted in the weakest 

relationship between the number of peaks remaining and the initial total area was used 

for each of the sample types (water, enriched rotifers, rotifers in tanks, and larvae). 

Dry weight 

The growth of the larvae was determined by measuring dry weight. Twelve larvae from 

each tank were washed in freshwater, and transferred to separate tin capsules on day 0, 

2, 5, 10, 17, 24 and 31 after hatching. The capsules were dried at 60°C for 3-5 days 
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before the dry weight of larvae was determined. The specific growth rate (SGR) was 

calculated as: 

SGR = ln (Wt/W0) / t 

Where Wt is mean final dry weight, W0 is initial dry weight, and t is the time between 

initial and final sampling. Percentage daily specific growth rate was calculated from 

SGR as: 

% SGR = (expSGR – 1) × 100 

Statistics 

ANOVA and Tukey´s multiple comparison test were used to compare treatments 

regarding weight, survival and the presence of added bacteria in water, rotifers and 

larvae (T-RFLP data). Prior to the statistical tests, data in percentages were arcsin-

transformed and data on the dry weight of the larvae were log transformed to stabilize 

variation. Differences in the total bacterial flora (T-RFLP data) within and between the 

different groups was tested using the vegan package in the R project statistics (Clarke, 

1993; Oksanen et al. , 2005; R Development Core Team, 2005).
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Results

Rearing water 

The five probiotic candidate bacteria were added directly to the rearing water on the day 

of hatching. After addition of the bacteria, the CFU increased significantly (Table 2) in 

tanks receiving treatment A compared to the control tanks (p=0.002). The CFU in tanks 

receiving treatment D increased, but not significantly, compared to the control tanks 

(p=0.059). The percentage of fast-growing colonies visible on day 2 on agar (PV2), was 

not significantly different between treatments on day 0 (p=0.073). The T-RFLP data 

showed that the TRFs corresponding to the antagonistic probiotic candidate RA4-1 

increased significantly (p<0.001) in the rearing water on day 0 (Table 3). In addition, 

the probiotic candidates RA7-14 and RD5-30 were detected at higher levels compared 

to the control on day 0, although the increase was not significant. However, the total 

bacterial flora detected by T-RFLP was significantly different between treatments and 

the control on day 0 (p=0.01). Other bacteria in the rearing system had the same TRFs 

as the added probiotic candidates. Treated tanks therefore had to show increased levels 

compared to the control to demonstrate the presence of the added bacteria. As the water 

exchange rate was increased in the rearing tanks, the presence of the added bacteria 

could not be detected at significantly higher levels in treated tanks, compared to the 

control. In addition, the total bacterial flora of the water was not affected by the addition 

of probiotic candidates with higher flow through rates (day 5: p=0.238 and day 10: 

p=0.589).
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Rotifers 

The five probiotic candidates were bioencapsulated in rotifers to change the bacterial 

flora of the rotifers and to facilitate transfer to the larvae. The level of added bacteria in 

rotifers after bioencapsulation, but before the rotifers were fed to the larvae was checked 

twice (Table 4). In rotifers receiving treatment D, the TRFs corresponding to the two 

Microbacterium strains was detected at higher levels on day 4, but only slightly higher 

on day 11, compared to the control. The third probiotic candidate that was added in the 

dominant treatment (Vibrio) constituted about 5% of the total peak area in the T-RFLP 

data on both samplings, while it was not found in the control. In rotifers receiving 

treatment A, a higher level of the TRFs corresponding to the probiotic candidate RA7-

14 (Pseudoalteromonas) was found on day 11, but the level was not higher on day 4, 

compared to the control. The TRF corresponding to the Roseobacter, also added in the 

antagonistic treatment, was detected at higher levels on both samplings compared to the 

control. Thus the percentage of added bacteria ranged from 6 to 53% in the rotifers after 

the bioencapsulation procedure. Moreover, variable levels of added bacteria were found 

in the rotifers between the two samplings. High numbers of cultivable bacteria were 

found in rotifers from the rearing water on day 5 compared to day 17 (Table 2), but the 

numbers of bacteria in rotifers were not significantly different between treatments. 

Moreover, the percentage of fast-growing bacteria (PV2) was lower in rotifers on day 

17 compared to day 5. T-RFLP data showed that the TRFs corresponding to the added 

bacteria were detected at higher levels, although not significantly higher, in treated 

rotifers on day 5 compared to the control (Table 5). The added bacteria were not 

detected in rotifers from the rearing water on day 10 and 17.
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Cod larvae 

The average CFU in cod larvae varied between the rearing tanks both on day 5 and day 

17, as shown by the high standard deviations (Table 2). The percentage of fast-growing 

bacteria (PV2) was reduced in larvae from treatment D and the control, during the 

rotifer period, whereas in larvae from treatment A the PV2 value was similar. The 

percentage of haemolytic bacteria was reduced in larvae from all tanks, whereas the 

percentage of Vibrio was similar, based on comparisons of cod larvae on day 5 and 17. 

We did not detect significant levels of the added bacteria in larvae with the culture 

independent method T-RFLP for pooled samples of larvae (Table 6). Moreover, the 

composition of the total bacterial flora was not significantly different when comparing 

treated larvae and larvae in the control on day 5 (p=0.417), day 10 (p=0.514) or day 31 

(p=0.187). However, the TRFs corresponding to the added Vibrio (RD5-30) was found 

at a low level in treated larvae on day 17 after hatching, whereas it was not found at all 

in the control. In addition to pooled samples of larvae, four individual cod larvae from 

each tank were analyzed with T-RFLP on day 17 after hatching (Figure 1). These T-

RFLP data showed large individual differences within the same rearing tanks, both 

regarding TRFs corresponding to the added bacteria and other bacteria. In two of the 

larvae from treatment D, the TRFs corresponding to the added Vibrio (187 ± 1 bp) 

constituted 3.4 and 1.5%, whereas it was not found in any other larvae. Also, the share 

of the TRFs corresponding to the two Microbacterium strains (71 ± 1 bp) was highly 

variable (0.0-32.5%) in larvae from treatment D. In the individual larvae receiving 

treatment A, we also found variable levels of the TRFs corresponding to the added 

Roseobacter (249 ± 1 bp: 1.6-8.4%) and the added Pseudoalteromonas (239 ± 1 bp: 2.4-

47.9%). The bacterial flora was significantly different between the 12 individual larvae 
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from the three tanks receiving treatment A (p=0.001) and treatment D (p=0.047) 

according to T-RFLP data, whereas significant differences were not found between the 

larvae in the control tanks (p=0.578). When the bacterial flora from individual larvae 

was compared between the two treatments and the control, despite the differences 

within treatments, significant differences were found (p<0.001). 

Growth and survival 

The increase in individual dry weight of cod larvae was high in all tanks, and the dry 

weight ranged from 497 to 701 μg larva-1 after the rotifer feeding period (Table 7). No 

significant differences were found between treatments or the control on day 5 (p=0.142), 

day 10 (p=0.900) or day 31 (p=0.861). However, on day 17 larvae from treatment A 

were significantly smaller than larvae from treatment D and from the control (p<0.05). 

Relatively high survival was recorded during the weaning phase (41.5 - 80.1%), and no 

significant differences were observed between treatments and the control on any days 

(Figure 2). However, cod larvae in one of the tanks within treatment A had increased 

mortality from day 12. Dead larvae and rotifers turned pink within 12 hours in this tank. 

Discussion

The culture independent method T-RFLP (Liu et al. , 1997; Osborn et al. , 2000) was 

used to characterize the bacterial flora in water, rotifers and larvae. In addition, the 

added bacteria were detected with T-RFLP (Jernberg et al. , 2005). As DNA samples for 

T-RFLP analysis were amplified with real-time PCR in order to detect the late 

exponential amplification phase for each sample, the number of PCR cycles was 

reduced to a minimum, and the risk for changing the ratios between different DNA 
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templates minimized (Suzuki and Giovannoni, 1996; Kanagawa, 2003). The added 

bacteria were detected by calculating the percentage of TRFs corresponding to these 

bacteria in treated tanks compared to the control tanks. The TRFs of the added bacteria 

was defined as the observed TRF ± 1 bp. This variability was included because 

variation between observed TRF lengths has been found in replicate runs of the same 

sample (Kaplan and Kitts, 2003).

Atlantic cod and other marine larvae drink water after hatching to keep the osmotic 

balance (Mangor Jensen and Adoff, 1987; Reitan et al. , 1998). At this stage the 

clearance rate of bacteria is considerably higher than the drinking rate, indicating 

selective uptake of bacteria (Reitan et al. , 1998). Bacteria added to the rearing water 

have been shown to colonize turbot larvae (Ringø et al. , 1996; Ringø and Vadstein, 

1998; Makridis et al. , 2000b). In the present study we added the probiotic candidates to 

the rearing water on the day of hatching to facilitate an early colonization of the larvae. 

The CFU counts confirmed higher levels of bacteria in the water after addition of the 

probiotic candidates (Table 2). The T-RFLP data indicate a significant increase in the 

TRFs corresponding to one of the added bacteria (Roseobacter, treatment A) on day 0, 

but elevated levels were also detected of the added Pseudoalteromonas (treatment A) 

and the added Vibrio (treatment D) in the water. The cultivability of bacteria in 

seawater is often <1% (Nair et al. , 1994; Attramadal, 2004), thus even if the added 

bacteria constituted 50% of the cultivable bacteria, this might correspond to <0.5% of 

the total number of bacteria. This fact might explain why we had difficulties in 

detecting the added bacteria on day 0 when using the culture independent method. 
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The T-RFLP data for rotifers after bioencapsulation of bacteria, showed that the 

bioencapuslation efficiency varied between the five added bacterial strains as well as 

between the two samplings (Table 4). The percentage of the added bacteria in the 

rotifers was considerably lower than observed earlier (Makridis et al. , 2000a). The 

difference could be explained by the different detection methods used, i.e. culture based 

vs. non-culture based method. Also, a more thorough washing procedure was used in 

the present study, which might remove more of the surface associated bacteria. A large 

percentage of bacteria are associated to the outside of rotifers (Munro et al. , 1993). 

Finally, different bacteria were used, and species differences in the encapsulation 

efficiency have been observed (Makridis et al. , 2000a). These observations indicate that 

the bioencapsulation efficiency of bacteria in rotifers should be tested when using new 

bacterial species and new mixtures. The fact that significant incorporation of bacteria 

was observed in rotifer cultures but not in rotifers from the first feeding tanks, 

emphasize the importance of rotifers being eaten shortly after transfer to rearing tanks if 

efficient transfer of added bacteria to larvae is to be obtained (Makridis et al. , 2000a). 

The added bacteria were not detected by T-RFLP in treated- compared to the control- 

larvae in the pooled samples on any days (Table 6). The detection limit for the added 

bacteria was not determined, but the fact that other bacteria in the system had the same 

TRFs as the added bacteria, makes detection of low levels of the added bacteria difficult 

with this method. Thus it seems as if the colonisation potential in vivo of these five 

probiotic candidates was low. However, the in vitro tests on adhesion to mucus and 

growth in mucus (Fjellheim et al. in prep. c) indicate that at least one of the added 

bacteria (Roseobacter) had high adhesion to mucus (20%) and that the two bacteria 



20

Pseudoalteromonas and Vibrio had high growth rates in mucus (0.097 and 0.075 h-1,

respectively).Thus, the in vitro properties of the added bacteria could not be verified 

under in vivo conditions. Bacteria with antagonistic activity in vitro, were added in 

treatment A. We could, however, not detect a decrease in the bacterial diversity or 

composition in the larvae because of this addition. The bacteria were added to the 

rearing water on the day of hatching to facilitate early colonisation of the larvae, but our 

results indicate that this might be too late. Possibly, the tank water should be 

conditioned with the probiotic candidates even earlier and at higher density. The 

percentage of haemolytic bacteria in the cod larvae was lower both on day 5 and 17, 

compared to turbot (Salvesen et al. , 1999). However, a similar decrease in the 

percentage of haemolytic bacteria was observed in both studies when the water flow-

through was increased. None of the added probiotic candidates were haemolytic, as 

haemolysis is often associated to pathogenic bacteria (Austin et al. , 2005). However, 

the addition of the probiotic candidate bacteria did not lead to a significant decrease in 

the percentage of haemolytic bacteria, compared to the control.  

The total bacterial flora of individual cod larvae was analyzed with T-RFLP on day 17 

after hatching (Figure 1). Individual differences were found between larvae from the 

same tanks, which is in agreement with the individual differences found in the dominant 

bacterial flora of cod larvae from different hatcheries (Fjellheim et al. in prep. a). This 

suggests that the colonisation potential of bacteria varies between individuals. These 

individual differences might be due to stochastic factors occurring during colonisation 

(Verschuere et al. , 1997) or to genetic differences between individuals (Vaahtovuo et 
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al. , 2003). These individual differences complicate the task of selecting appropriate 

probiotic candidates. 

The development in the weight and the survival of larvae in the weaning phase were not 

significantly different in the treated tanks, compared to the control. Thus, the added 

bacteria did not improve viability at this level. However, larvae in both the treated tanks 

and the control had high growth rates during the rotifer feeding period compared to 

previous studies (Browman et al. , 2006; Park et al. , 2006). Moreover, in a study 

performed in the same rearing system as the present study (Skjermo et al. accepted, 

2006), the dry weight of larvae was ± 250 μg on day 17, compared to 497 to 701 μg on 

day 17 in the present study. In addition, a relatively high survival of 41.5 - 80.1% was 

obtained in the weaning phase in the present study. The survival of cod larvae in the 

weaning phase (day 18 – 30) in the study performed by Skjermo et al. (accepted 2006) 

was ± 40%. Thus, both growth rate and survival indicate high viability for both treated 

and control larvae. This implies that the potential for further improvement might have 

been low in the present study. In addition to improving growth and survival, probiotics 

can improve stress tolerance and non-specific immune responses (Taoka et al. , 2006). 

The transition from live feed to dry feed was done early in the present study (day 18 to 

day 21) to work as a stress test. The growth rates of the larvae were considerably 

lowered after transition to dry feed (from 20-30 %SGR day-1 to 2-6 %SGR day-1), but a 

relatively high survival was maintained. However, the results indicated no differences in 

stress tolerance between treated and control larvae. 
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The probiotic candidates that were used in the present study were selected by two 

different screening strategies and resulted in enhanced survival of yolk sac stages of cod 

(Fjellheim et al. in prep. c). We can not, based on the results obtained in the first feeding 

experiment, recommend one of the selection strategies over the other. Probiotic bacteria 

have to compete in a complex and changing ecological environment, and mixtures of 

bacterial strains with diverse properties could therefore have better chances of success 

than the addition of single strains of bacteria (Freter, 1992). Also, the individual 

differences observed in the bacterial flora of cod larvae (Fjellheim et al. in prep. a and 

b), could imply that a mixture of several bacterial isolates has a higher probability of 

colonizing larvae at the individual level with positive effects on viability. Synergistic 

effects can be the implication when mixtures of bacteria are used, with the result that the 

positive effect of the mixture exceeds the summed effect of the individual strains 

(Douillet, 2000). Several characteristics are thought of as important for probiotic 

bacteria. The bacteria added in this study were evaluated in vitro according to 

antagonism, adhesion to mucus, growth in mucus, and other criteria (Table 1). In these 

in vitro tests, the five added bacteria showed profound differences in adhesive abilities 

to mucus and in growth rates in cod mucus. However, the differences in the in vitro

tests do not seem to be directly transferable to in vivo conditions, as none of the added 

isolates were detected at substantial levels in the bacterial flora of larvae. This 

emphasises the importance of establishing in vitro methods that can be used to predict 

in vivo properties of bacteria with certainty. 
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Table 2. CFU (×103) in water (ml-1), rotifers (ind-1) and cod larvae (ind-1, n=10). PV(2) 

indicates the percentage of fast-growing bacterial colonies. TCBS agar is selective for growth 

of Vibrio. Mean values for the 3 replicate tanks ± SD are given (NA: not analyzed). 

Treatment 

Sample D A C 
CFU water day 0 179.8±30.4 269.3±44.0 102.0±16.7 
PV(2)% 52.3±5.1 73.2±6.5 49.4±18.1 

CFU rotifers day 5 7.2±3.9 32.2±28.4 16.8±5.5 
PV(2)% 17.7±5.3 35.8±6.2 38.7±30.7 
CFU rotifers day 17 1.2±0.6 0.9±0.3 0.8±0.2 
PV(2)% 12.3±2.7 10.1±6.1 24.7±13.5 

CFU larvae day 5 35.5±39.7 26.4±30.0 11.0±12.2 
PV(2)% 35.4±21.0 48.7±26.3 40.2±15.8 
Haemolytic % NA 37.9±12.4 33.2±26.1 
TCBS % 18.7±21.0 45.6±16.5 31.0±25.3 
CFU larvae day 17 95.5±25.0 170.1±200.0 15.1±3.2 
PV(2)% 13.1±4.8 58.9±46.8 11.8±11.5 
Haemolytic % 8.3±0.6 15.1±22.7 13.7±19.1 
TCBS % 11.0±2.1 53.1±43.1 23.0±30.7 
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Table 3. Percentage of observed TRF±1 for the added probiotic candidates in tank water. 

Mean values for the 3 replicate tanks ± SD are given (ND: not detected).

  Added to dominant treatment Added to antagonistic treatment 
 Treatment 71±1 bp 

(ID3-10/ND2-7) 
187±1 bp 
(RD5-30) 

239±1 bp 
(RA7-14) 

249±1 bp 
(RA4-1) 

D 47.0±3.6 0.3±0.2 2.4±1.1 1.2±0.4
A 34.5±3.7 ND 13.2±10.7 22.8±5.9

Day 0 

C 55.1±14.8 ND 2.2±1.0 1.3±0.5
D 3.7±1.1 0.2±0.3 0.5±0.1 2.8±0.7
A 5.2±0.6 ND 1.6±2.5 3.7±0.7

Day 5 

C 7.5±3.8 ND 0.3±0.3 2.7±1.2
D 12.9±5.2 ND 2.5±1.8 4.1±0.8
A 9.7±1.4 ND 1.7±1.2 6.9±2.0

Day 10 

C 13.8±4.8 ND 2.0±0.5 5.4±1.6
D 6.7±2.8 ND 2.3±0.9 11.6±5.0
A 12.4±6.9 ND 2.6±4.1 10.8±1.8

Day 17 

C 22.3±5.3 ND 2.8±1.0 12.3±1.7
D 79.2±6.3 ND 0.3±0.3 0.4±0.5
A 62.4±7.3 ND 0.8±1.0 1.5±1.7

Day 31 

C 65.8±5.6 ND 1.1±1.1 0.3±0.6
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Table 4. Percentage of observed TRF±1 of the added probiotic candidates in rotifers after 30 

min in bacterial suspensions and 5 min wash with brackish water.

  Added to dominant treatment Added to antagonistic treatment 
 Treatment 71±1 bp 

(ID3-10/ND2-7) 
187±1 bp 
(RD5-30) 

239±1 bp 
(RA7-14) 

249±1 bp 
(RA4-1) 

D 18.5 5.4 38.1 6.5 
A 8.0 0.6 27.9 31.4 

Day 4 

C 9.7 0.0 34.6 12.0 
D 2.2 5.1 2.5 14.7 
A 1.7 1.4 36.4 29.5 

Day 11 

C 0.9 0.0 2.4 10.8 
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Table 5. Percentage of observed TRF±1 of the added probiotic candidates in rotifers from the 

tank water. Mean values for the 3 replicate tanks ± SD are given (ND: not detected). 

  Added to dominant treatment Added to antagonistic treatment 
 Treatment 71±1 bp 

(ID3-10/ND2-7) 
187±1 bp 
(RD5-30) 

239±1 bp 
(RA7-14) 

249±1 bp 
(RA4-1) 

D 48.0±9.1 4.5±5.5 14.0±11.9 3.5±1.9
A 20.7±11.7 ND 19.1±6.6 6.2±1.8

Day 5 

C 27.5±7.0 ND 13.7±10.7 4.4±0.2
D 23.7±26.6 ND 5.1±3.5 2.9±0.6
A 34.2±5.7 ND 8.2±0.4 3.4±1.2

Day 10 

C 33.3±13.8 ND 5.6±5.0 2.6±2.5
D 34.2±5.3 ND 7.8±2.6 7.7±5.0
A 34.2±30.0 ND 4.3±0.7 6.4±8.2

Day 17 

C 27.3±15.0 ND 5.8±5.8 5.7±4.2
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Table 6. Percentage of observed TRF±1 of the added probiotic candidates in cod larvae. Mean 

values for the 3 replicate tanks ± SD are given (ND: not detected). 

  Added to dominant treatment Added to antagonistic treatment 
 Treatment 71±1 bp 

(ID3-10/ND2-7) 
187±1 bp 
(RD5-30) 

239±1 bp 
(RA7-14) 

249±1 bp 
(RA4-1) 

D 17.8±11.2 ND 35.5±21.1 3.6±2.7
A 17.7±19.1 ND 26.4±26.0 2.7±4.0

Day 5 

C 38.8±22.3 ND 32.6±26.2 3.9±5.4
D 5.9±7.7 ND 69.3±8.0 0.3±0.5
A 26.7±36.9 ND 29.0±41.9 0.5±0.9

Day 10 

C 4.4±0.2 ND 34.6±31.9 3.4±4.5
D 13.2±6.5 1.0±1.0 37.9±18.9 3.5±2.3
A 23.6±12.1 ND 32.1±27.6 3.6±1.0

Day 17 

C 5.9±8.3 ND 32.6±12.2 0.8±1.2
D 47.6±12.9 ND 21.7±18.8 1.9±2.3
A 39.0±35.8 ND 0.9±1.2 ND

Day 31 

C 51.3±23.5 ND 17.1±14.9 2.0±2.7
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Figure legends: 

Figure 1. Distribution of different TRFs in four individual cod larvae from each of the three 

tanks in treatment D, A and C on day 17 after hatching. To the right the average in larvae 

from each treatment is shown. TRF 71±1 corresponds to ID3-10 and ND2-7 added in 

treatment D, TRF 187±1 corresponds to RD5-30 added in treatment D, TRF 239±1 

corresponds to RA7-14 added in treatment A, and TRF 249±1 corresponds to RA4-1 added in 

treatment A. 

Figure 2. Survival during weaning for larvae in the treated tanks and the control, error bars 

show standard deviation. ( ) Treatment D, ( ) treatment A, ( ) control. 
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Doctoral theses in Biology 

Norwegian University of Science and Technology 

Department of Biology 

Year Name Degree Title
 1974 Tor-Henning Iversen Dr. philos 

Botany 
The roles of statholiths, auxin transport, and auxin 
metabolism in root gravitropism 

 1978 Tore Slagsvold Dr. philos. 
Zoology 

Breeding events of birds in relation to spring temperature 
and environmental phenology. 

 1978 Egil Sakshaug Dr.philos 
Botany 

"The influence of environmental factors on the chemical 
composition of cultivated and natural populations of 
marine phytoplankton" 

 1980 Arnfinn Langeland Dr. philos. 
Zoology 

Interaction between fish and zooplankton populations 
and their effects on the material utilization in a 
freshwater lake. 

 1980 Helge Reinertsen Dr. philos 
Botany 

The effect of lake fertilization on the dynamics and 
stability of a limnetic ecosystem with special reference to 
the phytoplankton 

 1982 Gunn Mari Olsen Dr. scient 
Botany 

Gravitropism in roots of Pisum sativum and Arabidopsis 
thaliana

 1982 Dag Dolmen Dr. philos. 
Zoology 

Life aspects of two sympartic species of newts (Triturus, 
Amphibia) in Norway, with special emphasis on their 
ecological niche segregation. 

 1984 Eivin Røskaft Dr. philos. 
Zoology 

Sociobiological studies of the rook Corvus frugilegus.

 1984 Anne Margrethe 
Cameron 

Dr. scient 
Botany 

Effects of alcohol inhalation on levels of circulating 
testosterone, follicle stimulating hormone and luteinzing 
hormone in male mature rats 

 1984 Asbjørn Magne Nilsen Dr. scient 
Botany 

Alveolar macrophages from expectorates – Biological 
monitoring of workers exosed to occupational air 
pollution. An evaluation of the AM-test 

 1985 Jarle Mork Dr. philos. 
Zoology 

Biochemical genetic studies in fish. 

 1985 John Solem Dr. philos. 
Zoology 

Taxonomy, distribution and ecology of caddisflies 
(Trichoptera) in the Dovrefjell mountains. 

 1985 Randi E. Reinertsen Dr. philos. 
Zoology 

Energy strategies in the cold: Metabolic and 
thermoregulatory adaptations in small northern birds. 

 1986 Bernt-Erik Sæther Dr. philos. 
Zoology 

Ecological and evolutionary basis for variation in 
reproductive traits of some vertebrates: A comparative 
approach. 

 1986 Torleif Holthe Dr. philos. 
Zoology 

Evolution, systematics, nomenclature, and zoogeography 
in the polychaete orders Oweniimorpha and 
Terebellomorpha, with special reference to the Arctic 
and Scandinavian fauna. 

 1987 Helene Lampe Dr. scient. 
Zoology 

The function of bird song in mate attraction and 
territorial defence, and the importance of song 
repertoires. 

 1987 Olav Hogstad Dr. philos. 
Zoology 

Winter survival strategies of the Willow tit Parus 
montanus.



 1987 Jarle Inge Holten Dr. philos 
Bothany 

Autecological investigations along a coust-inland 
transect at Nord-Møre, Central Norway 

 1987 Rita Kumar Dr. scient 
Botany 

Somaclonal variation in plants regenerated from cell 
cultures of Nicotiana sanderae and Chrysanthemum 
morifolium

 1987 Bjørn Åge Tømmerås Dr. scient. 
Zoology 

Olfaction in bark beetle communities: Interspecific 
interactions in regulation of colonization density, 
predator - prey relationship and host attraction. 

 1988 Hans Christian 
Pedersen 

Dr. philos. 
Zoology 

Reproductive behaviour in willow ptarmigan with 
special emphasis on territoriality and parental care. 

 1988 Tor G. Heggberget Dr. philos. 
Zoology 

Reproduction in Atlantic Salmon (Salmo salar): Aspects 
of spawning, incubation, early life history and population 
structure. 

 1988 Marianne V. Nielsen Dr. scient. 
Zoology 

The effects of selected environmental factors on carbon 
allocation/growth of larval and juvenile mussels (Mytilus
edulis).

 1988 Ole Kristian Berg Dr. scient. 
Zoology 

The formation of landlocked Atlantic salmon (Salmo 
salar L.). 

 1989 John W. Jensen Dr. philos. 
Zoology 

Crustacean plankton and fish during the first decade of 
the manmade Nesjø reservoir, with special emphasis on 
the effects of gill nets and salmonid growth. 

 1989 Helga J. Vivås Dr. scient. 
Zoology 

Theoretical models of activity pattern and optimal 
foraging: Predictions for the Moose Alces alces.

 1989 Reidar Andersen Dr. scient. 
Zoology 

Interactions between a generalist herbivore, the moose 
Alces alces, and its winter food resources: a study of 
behavioural variation. 

 1989 Kurt Ingar Draget Dr. scient 
Botany 

Alginate gel media for plant tissue culture, 

 1990 Bengt Finstad Dr. scient. 
Zoology 

Osmotic and ionic regulation in Atlantic salmon, 
rainbow trout and Arctic charr: Effect of temperature, 
salinity and season. 

 1990 Hege Johannesen Dr. scient. 
Zoology 

Respiration and temperature regulation in birds with 
special emphasis on the oxygen extraction by the lung. 

 1990 Åse Krøkje Dr. scient 
Botany 

The mutagenic load from air pollution at two work-
places with PAH-exposure measured with Ames 
Salmonella/microsome test 

 1990 Arne Johan Jensen Dr. philos. 
Zoology 

Effects of water temperature on early life history, 
juvenile growth and prespawning migrations of Atlantic 
salmion (Salmo salar) and brown trout (Salmo trutta): A 
summary of studies in Norwegian streams. 

 1990 Tor Jørgen Almaas Dr. scient. 
Zoology 

Pheromone reception in moths: Response characteristics 
of olfactory receptor neurons to intra- and interspecific 
chemical cues. 

 1990 Magne Husby Dr. scient. 
Zoology 

Breeding strategies in birds: Experiments with the 
Magpie Pica pica.

 1991 Tor Kvam Dr. scient. 
Zoology 

Population biology of the European lynx (Lynx lynx) in 
Norway. 

 1991 Jan Henning L'Abêe 
Lund 

Dr. philos. 
Zoology 

Reproductive biology in freshwater fish, brown trout 
Salmo trutta and roach Rutilus rutilus in particular. 

 1991 Asbjørn Moen Dr. philos 
Botany 

The plant cover of the boreal uplands of Central Norway.
I. Vegetation ecology of Sølendet nature reserve; 
haymaking fens and birch woodlands 

 1991 Else Marie Løbersli Dr. scient 
Botany 

Soil acidification and metal uptake in plants 



 1991 Trond Nordtug Dr. scient. 
Zoology 

Reflctometric studies of photomechanical adaptation in 
superposition eyes of arthropods. 

 1991 Thyra Solem Dr. scient 
Botany 

Age, origin and development of blanket mires in Central 
Norway 

 1991 Odd Terje Sandlund Dr. philos. 
Zoology 

The dynamics of habitat use in the salmonid genera 
Coregonus and Salvelinus: Ontogenic niche shifts and 
polymorphism. 

 1991 Nina Jonsson Dr. philos. Aspects of migration and spawning in salmonids. 
 1991 Atle Bones Dr. scient 

Botany 
Compartmentation and molecular properties of 
thioglucoside glucohydrolase (myrosinase) 

 1992 Torgrim Breiehagen Dr. scient. 
Zoology 

Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the Temminck's 
stint and the Pied flycatcher. 

 1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate assimilation and 
nitrogen status in timothy (Phleum pratense L.) 

 1992 Tycho Anker-Nilssen Dr. scient. 
Zoology 

Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica

 1992 Bjørn Munro Jenssen Dr. philos. 
Zoology 

Thermoregulation in aquatic birds in air and water: With 
special emphasis on the effects of crude oil, chemically 
treated oil and cleaning on the thermal balance of ducks. 

 1992 Arne Vollan Aarset Dr. philos. 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism in 
polar crustaceans. 

 1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
mammalian cells 

 1993 Tor Fredrik Næsje Dr. scient. 
Zoology 

Habitat shifts in coregonids. 

 1993 Yngvar Asbjørn Olsen Dr. scient. 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

 1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

 1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

 1993 Thrine L. M. 
Heggberget 

Dr. scient. 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra.

 1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

 1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

 1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the
lek. 

 1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae 

 1994 Nils Røv Dr. scient. 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo.

 1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.) 

 1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 



 1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 

 1994 Morten Bakken Dr. scient. 
Zoology 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes.

 1994 Arne Moksnes Dr. philos. 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo. 

 1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

 1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions. 

 1995 Hanne Christensen Dr. scient. 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition with 
mink Mustela vision.

 1995 Svein Håkon Lorentsen Dr. scient. 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition.

 1995 Chris Jørgen Jensen Dr. scient. 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

 1995 Martha Kold Bakkevig Dr. scient. 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport. 

 1995 Vidar Moen Dr. scient. 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations. 

 1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden. 

 1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae. 

 1996 Ola Ugedal Dr. scient. 
Zoology 

Radiocesium turnover in freshwater fishes 

 1996 Ingibjørg Einarsdottir Dr. scient. 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines. 

 1996 Christina M. S. Pereira Dr. scient. 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation. 

 1996 Jan Fredrik Børseth Dr. scient. 
Zoology 

The sodium energy gradients in muscle cells of Mytilus
edulis and the effects of organic xenobiotics. 

 1996 Gunnar Henriksen Dr. scient. 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region. 

 1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae. 

 1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters. 

 1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming. 

 1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture. 



 1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher. 

 1997 Torgeir Nygård  Dr. scient. 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors. 

 1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway. 

 1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry. 

 1997 Rolv Lundheim  Dr. scient. 
Zoology 

Adaptive and incidental biological ice nucleators.     

 1997 Arild Magne Landa Dr. scient. 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation. 

 1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius.

 1997 Jarle Tufto  Dr. scient. 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

 1997 Trygve Hesthagen  Dr. philos. 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

 1997 Trygve Sigholt  Dr. philos. 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar)
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

 1997 Jan Østnes  Dr. scient. 
Zoology 

Cold sensation in adult and neonate birds 

 1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins. 

 1998 Thor Harald Ringsby Dr. scient. 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

 1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

 1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity. 

 1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro. 

 1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach. 

 1998 Bente Gunnveig Berg Dr. scient. 
Zoology 

Encoding of pheromone information in two related moth 
species 

 1999 Kristian Overskaug Dr. scient. 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

 1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 



 1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway. 

 1999 Ingvar Stenberg Dr. scient. 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos

 1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis. 

 1999 Trina Falck Galloway Dr. scient. 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

 1999 Torbjørn Forseth Dr. scient. 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

 1999 Marianne Giæver Dr. scient. 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua)
in the North-East Atlantic 

 1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus.

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient. 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

 1999 Stein-Are Sæther Dr. philos. 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

 1999 Katrine Wangen Rustad Dr. scient. 
Zoology 

Modulation of glutamatergic neurotransmission related 
to cognitive dysfunctions and Alzheimer’s disease 

 1999 Per Terje Smiseth Dr. scient. 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica)

 1999 Gunnbjørn Bremset Dr. scient. 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences 
and competitive interactions 

 1999 Frode Ødegaard Dr. scient. 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

 1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

 2000 Ingrid Salvesen, I Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

 2000 Ingar Jostein Øien Dr. scient. 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

2000 Pavlos Makridis Dr. scient 
Botany

Methods for the microbial econtrol of live food used for 
the rearing of marine fish larvae 

 2000 Sigbjørn Stokke Dr. scient. 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana)

 2000 Odd A. Gulseth Dr. philos. 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 



 2000 Pål A. Olsvik Dr. scient. 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

 2000 Sigurd Einum Dr. scient. 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

 2001 Jan Ove Evjemo Dr. scient. 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine 
cold water fish species 

 2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 

 2001 Ingebrigt Uglem Dr. scient. 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.)

 2001 Bård Gunnar Stokke Dr. scient. 
Zoology 

Coevolutionary adaptations in avian brood parasites and 
their hosts 

 2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus)

 2002 Mariann Sandsund Dr. scient. 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

 2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

 2002 Frank Rosell Dr. scient. 
Zoology 

The function of scent marking in beaver (Castor fiber)

 2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

 2002 Terje Thun Dr. philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 

 2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

 2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

 2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms.  Studies of RAC GTPases in Arabidopsis 
thaliana and 

 2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

 2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

 2003 Åsa Maria O. Espmark 
Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L.

 2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

 2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

 2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

 2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species (Helicoverpa 
armigera, Helicoverpa assulta and Heliothis virescens)

 2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 



 2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

 2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

 2003 Eldar Åsgard Bendiksen Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

 2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

 2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

 2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein complex 
in Arabidopsis thaliana 

 2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 

 2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta).

 2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the natural 
environment 

 2004 Emmanuel J. Gerreta Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

 2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

 2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by 
Botrytis cinerea 

 2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

 2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

 2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

 2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

 2005 Tonette Røstelien PhD 
Biology 

Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

 2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

 2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid hormone 
and vitamin A concentrations. 

 2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 



 2005 Lasse Mork Olsen PhD 
Biology 

Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

 2005 Åslaug Viken PhD 
Biology 

Implications of mate choice for the management of small 
populations 

 2005 Ariaya Hymete Sahle 
Dingle 

PhD 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

 2005 Ander Gravbrøt Finstad PhD 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 

 2005 Shimane Washington 
Makabu 

PhD 
Biology 

Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

 2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 

 2006 Kari Mette Murvoll PhD 
Biology 

Levels and effects of persistent organic pollutans (POPs) 
in seabirds 
Retinoids and -tocopherol –  potential biomakers of 
POPs in birds?

 2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

 2006 Nils Egil Tokle Phd 
Biology 

Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus

 2006 Jan Ove Gjershaug Dr.scient 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

 2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

 2006 Johanna Järnegren PhD 
Biology 

ACESTA OOPHAGA AND ACESTA EXCAVATA – 
A STUDY OF HIDDEN BIODIVERSITY 

 2006 Bjørn Henrik Hansen PhD 
Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in 
Central Norway 

 2006 Vidar Grøtan phD 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

 2006 Jafari R Kideghesho phD 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Tanzania 

 2006 Anna Maria Billing phD 
Biology 

Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

 2006 Henrik Pärn phD 
Biology 

Female ornaments and reproductive biology of the 
bluethroat 
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