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Abstract

Current wet gas meters used by Statoil can detect liquid volume fractions (LVFs) over
5%, but not smaller fractions. This means that there are currently no technologies
capable of monitoring separation performance. It is in Statoil’s interest to measure
and monitor the separation performance, since too high LVFs can damage downstream
process equipment and increase the risk of hydrate formation.

In this master thesis an early study of a new technology for separation performance
monitoring is performed. It is based on sound measurements and the influence of liquid
on sound wave propagation, i.e. acoustic damping. Other studies have showed that
introducing liquid in a gas increase the attenuation of the sound amplitude.

Two different design concepts were investigated: a corrugated pipe and a smooth pipe
with a loud speaker. The corrugated pipe is capable of generating sound without external
sources. When gas flows through a corrugated pipe, it induces vortex shedding in the
cavities. At high enough flow velocities, the frequency of the vortex shedding couples
with the pipe’s natural frequency. This results in a high tonal sound, or whistling. A
phenomenon usually dubbed "singing riser" in the oil and gas industry as it occurs in
the flexible risers transporting hydrocarbons from the seabed to the sea surface. The
smooth pipe, however, has no self-generating sound source and hence a loud speaker is
needed to create sound.

The design concepts are approached theoretically, by modelling and by experiment. A
one-dimensional flow-acoustics model was simulated in COMSOL Multiphysics. The
model failed to return realistic sound pressure levels but captured the physical phenom-
ena occurring in a corrugated pipe well. For instance, it predicted the first mode of the
pipe’s natural frequency accurately.

The two designs concepts were tested experimentally for different gas flow rates and
different liquid rates. The experiments strongly indicated an added acoustic damping
due to liquid, even for LVFs much lower than 1 ·10−4, and thus the main principle of the
technology was supported. However, the experiments could not reveal any significant
advantages in measurement accuracy for either a smooth or a corrugated design.



	  



Sammendrag

Dagens metoder for å måle volumetrisk væskefraksjon (LVF) i Statoil kan ikke detektere
fraksjoner lavere enn 5%. Det betyr samtidig at det ikke eksisterer teknologi for å mon-
itorere ytelsen til separatorer. Ytelsen til separatorer ønkes målt av Statoil på grunn av
de potensielle skadene en for høy væskefraksjon kan påføre nedstrøm prosesseringsutstyr
og den økte risikoen for hydratdannelsen som kan oppstå.

I denne masteroppgaven er det utført en studie av en ny teknologi for å monitorere
ytelsen til separatorer. Denne metoden er basert på måling av lyd og hvordan væske
påvirker dempingen av lydbølgene i et rør. Andre studier har vist at lyden dempes mer
i en gass når den inneholder væske enn når den er helt tørr.

To forskjellige designkonsepter har blitt undersøkt; et korrugert rør og et glatt rør med en
høyttaler. Det korrugerte røret kan generere lyd uten eksterne kilder (som en høyttaler).
Når gass strømmer gjennom et korrugert rør, vil det bli indusert en virvelavløsning
i rørrillene. For høye nok gasshastigheter vil frekvensen til denne virvelavløsningen
samstemme med rørets naturlige frekvens. Resultatet blir lyd i form av en høy tone,
eller synging. Dette fenomenet blir ofte kalt "singing risers" i olje- og gassindustrien
siden det forekommer i de fleksible rørene (risers) som transporterer hydrokarboner fra
sjøbunnen til havoverflaten. Det glatte røret har på sin side ingen intern lydkilde og må
derfor fungere i par med en høyttaler for at lyddemping skal kunne måles.

Designkonseptene er studert teoretisk, gjennom modellering og ved eksperiment. En
én-dimensjonal stømnings-akustisk model ble simulert i COMSOL Multiphysics. Denne
modellen klarte ikke å returnere realistiske verdier for lydamplituden, men modellerte
frekvensene på en mer tilfredsstillende måte. Rørets fundamentale naturlige frekvens ble
presist prediktert.

De to designkonseptene ble testet eksperimentelt for forskjellige gasshastigheter og væskein-
jeksjonsmengder. Eksperimentene indikerte sterkt en økning i den akustiske dempingen
på grunn av væsken i fluidstrømmen, selv for volumetriske væskefraksjoner mye lavere
enn 1·10−4, og støttet dermed hovedprinsippet for teknologien. Ingen betydelige fordeler
relatert til nøyaktighet for hverken det glatte eller det korrugerte røret ble imidlertid
avdekket av eksperimentene.
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Chapter 1

Introduction

Pipes with a corrugated inner surface are widely used in the oil and gas industry. They
are known as flexible pipes, or flexible risers, and facilitate the hydrocarbon flow between
the seabed installations and the surface facilities, as they can withstand both vertical
and horizontal movement. The corrugated inner layer makes the pipes flexible while
making them able to resist collapsing [1]. Such pipes can emit a high tonal sound,
or whistling, when gas flows through. The singing mechanism is due to flow-induced
acoustics. Flow-induced acoustics occur when vortex shedding couples with the acoustic
resonance in the pipe.

Figure 1.1 – Flexible risers and the corrugated inner layer [2, 3].

Singing riser Singing riser is the expression describing the sound-emitting behaviour
of flexible risers under certain conditions. The whistling occurs only in corrugated pipes;
blowing air through a corrugated pipe with sufficient velocity will generate hearable
sound, blowing air through a smooth pipe with the same velocity will not. The sound is
hearable, meaning it has has a frequency within the human hearing range, which is 20
Hz to 20 kHz [4]. The singing, or whistling, mechanism is well-known in the oil and gas
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2 1 Introduction

industry, because it can induce structural vibrations and mechanical stress on the riser,
and eventually lead to fatigue failure of the connected topside or subsea pipe system [5].

Liquid influence on whistling An important issue in natural gas transport is the
liquid volume fraction (LVF) - the ratio of the liquid volumetric flow rate to the gas
volumetric flow rate (see equation 4.11). Current wet gas meters used in Statoil can
detect LVFs over 5%, but not smaller fractions [6]. Precise knowledge of the LVF is
important: if the transported natural gas is too "wet", it can inflict great damage to the
costly topside process equipment as well as giving poor gas quality, increasing the risk
of hydrate formation. It is therefore in Statoil’s interest to measure LVFs downstream
of separators more precisely than current state of the art technology is able to.

A Joint Industry Project called Flexible Risers did experiments with liquid injection in
a flexible pipe at whistling conditions [5]. The experiments showed that a low volume
fraction of liquid (0.03% - 0.25%) eliminates the whistling [7]. Thus, liquid appears to
influence the whistling, and suggests that acoustic measurements in a corrugated pipe
may lead to precise LVF measurements. This idea was proposed by Pablo Matias Dupuy
and Oddbjørn Rekaa Nilssen from Statoil.

The overall objective is to develop a wet gas meter capable of measuring small fractions
of liquid. At this early stage it will be difficult to conclude upon installation requirements
and robustness. The main goal at this stage is to support experimentally that the liquid
in a two phase flow will cause added acoustic damping and find a relationship between
the added acoustic damping and the liquid quantity. To arrive at this goal, the concept
of acoustic damping has to be investigated thoroughly. Another goal of the report
is to document possible advantages in measurement accuracy for two different design
concepts.

1.1 Procedure

The description of the master thesis states the following tasks:

1. Gather design concepts, e.g. active vs. passive (vortex shedding), pipe surface
geometry, diameter, length etc.

2. Assess the concepts experimentally

3. Assess the concepts theoretically

4. Conclude on robustness, reliability, accuracy, development time and considerations
for installation

We start out with a description of two different design concepts in Section 1.2. This is
based on the NTNU project thesis "Early Study of Two New Technologies For Solving
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Separation Challenges" [8]. The important characteristics and differences between the
two concepts are discussed briefly.

In Chapter 2 we present a theoretical study on waves and sound waves in particular.
The main focus is to describe waves mathematically and a general introduction to the
concepts of sound and acoustics. Furthermore, a thorough explanation of resonance and
the influence this has on sound in pipes is given.

Chapter 3 is dedicated to investigate how sound is generated in a corrugated pipe. First,
a mathematical description of a flow over a single cavity is given before this is coupled
with pressure oscillations and consequently acoustics. Then this theory is extended from
a single cavity to a corrugated pipe and the chapter ends with the derivation of Popescu
and Johansen’s one-dimensional model for acoustics in a corrugated pipe [9].

After establishing the sound wave theory and sound generation in a corrugated pipe,
Chapter 4 goes in depth in sound attenuation mechanisms. The acoustic damping in
single phase gas is first discussed before this is augmented to acoustic damping in a pipe.
Then the governing equation for added acoustic damping in two phase mist flow due to
droplets is studied in depth through a sensitivity analysis. This sensitivity analysis
present insight to how various parameters influence the added acoustic damping.

The liquid influence on acoustic dampingis then experimentally investigated in Chapter 5
for both design concepts. The first objective was to verify that more liquid in fact results
in additional damping of the sound waves. Secondly, we sought to find a relationship
between the liquid in the gas flow and the damping of the sound amplitude. Then,
the results from the experiment were compared to the theory from Chapter 4. The
smooth and corrugated pipe were compared throughout the report to identify significant
differences among the two.

In the end, Chapter 6 presents the simulation of Popescu and Johansen’s one-dimensional
model for flow-acoustics in a corrugated pipe is simulated with COMSOLMultiphysics.The
objective was to investigate how well it predicts sound amplitude and frequency and if
it could be used for design purposes.

Supporting material are presented in the appendices. This includes a description of the
Fourier transform and Fourier analysis of periodic signals (Appendix A), the Matlab files
used for the sensitivity analysis and experiment (Appendix B), a risk assessment of the
laboratory work (Appendix C), a work drawing for the experiment setup (Appendix D)
and the simulation setup up and the complete results from COMSOL (Appendix E).

1.2 Design Concepts

In the project thesis, two main concept design were discussed: a smooth pipe and a
corrugated pipe [8]. In the corrugated pipe sound is generated from the vortex shedding
in the corrugations, while for a smooth pipe a loud speaker has be installed to generate
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sound. For subsea applications, the corrugated pipe offers a significant advantage as it
is not subject to the reliability of the loud speaker. On the other hand, the whistling
from the corrugations may be more unstable, meaning that it naturally could vary in
amplitude or frequency. This problem is overcome with the smooth pipe configuration
where the loud speaker can emit a sound with the constant amplitude and frequency.

As further discussed in the project thesis, the sound amplitude could be measured di-
rectly in the pipe or via an extraction tube. The extraction tube would sample a fraction
of the flow, and measure the acoustic damping before re-introducing it in the main pipe.
Another option is an inline installation, i.e. the components of the wet gas meter is
installed directly in the main pipe. The liquid volume fraction might not be constant
over the cross-section of the main pipe. This might make it necessary to a have a ho-
mogenization of the flow upstream of the wet gas meter both for an extraction tube and
an inline installation.

Figure 1.2 – Sketch of an extraction tube to measure the liquid content of the gas.

Figure 1.2 shows a simple sketch of an extraction tube concept. The installation of the
loud speaker is dependent on whether the measurement tube is smooth or corrugated.
For an inline installation concept, the setup will be similar with two microphones used to
measure the acoustic damping and possibly both a loud speaker and flow homogenization.



Chapter 2

Wave And Sound Theory

Several physical phenomena surrounding us in daily life can be described as waves.
Ocean surface waves, radio waves and X-rays are all examples of this. Even the human
voice is transported through air as waves. Waves are a fundamental part of physics and
many phenomena are described with wave theory.

This chapter goes briefly through the basics of waves. First by categorizing and describ-
ing them mathematically, then by investigating sound waves in particular. Finally an
explanation of sound wave propagation in pipes and the concept of resonance frequency
is presented.

2.1 Different Types Of Waves

In general we distinguish between two different types of waves; mechanical waves and
electromagnetic waves. Mechanical waves propagate through a medium and are made
by displacement of the medium’s particles [10]. Sound waves, for example, propagate
by imposing motion on molecules creating pressure oscillations. In a gas, since gas
properties are connected via an equation of state, the propagation can also be described
by density variations.

Electromechanical waves, on the other hand, needs no medium. They are made by
periodic oscillations of the electric or magnetic fields created by charged particles [11].
Electromagnetic waves can hence move through vacuum. Other phenomena are also
described as waves, like particle behaviour in quantum mechanics. The rest of this
chapter focus on the general description of mechanical waves and relates it to sound
waves.

Transverse and longitudinal waves Two different classes of mechanical waves ex-
ist; transverse and longitudinal waves. In the first kind, the particle displacement is

5



6 2 Wave And Sound Theory

Figure 2.1 – Illustration of longitudinal and transverse waves [12].

parallel to the direction of the wave propagation. Sound waves belongs to this class of
mechanical waves. And vice versa for longitudinal waves, where the particle displace-
ment is perpendicular to the direction of wave propagation [13]. Figure 2.1 illustrates
the difference between these two wave types. A combination of the two types can also
be found, e.g. water waves. It causes water particles to undergo circular motions as the
waves propagate [10].

2.2 The Wave Equation

The wave equation can be derived from Newton’s law of motion applied to an elastic
string and describes the propagation of a wave in space and time [14]. The result of the
derivation is given as

∂2u

∂t2
= c2∇2u (2.1)

which in one dimension for cartesian coordinates reduces to

∂2u

∂t2
= c2∂

2u

∂x2 . (2.2)

In equation 2.1 and 2.2, t [s] is time, x [m] is a space variable and ∇ is the del operator
and can be interpreted as a vector of the space differentials. The constant c [m/s] is the
speed of propagation of the wave and u can represent different dependent variables like
displacement, pressure or density [15].

This partial differential equation has the general solution

u(x, t) = F (x− ct) +G(x+ ct). (2.3)



2.3 Frequency And Amplitude Of Sound 7

In equation 2.3, F and G can be any twice differentiable function [16]. Equation 2.3 also
implies that the superposition principle applies, i.e. if F and G both are solutions, then
their sum F +G is also a solution. This can be simply proven. Take first

∂2(F +G)
∂x2 = ∂2F

∂x2 + ∂2G

∂x2 (2.4)

and
∂2(F +G)

∂t2
= ∂2F

∂t2
+ ∂2G

∂t2
. (2.5)

Substituting this into the wave equation (Eq. 2.2) gives

∂2(F +G)
∂x2 − 1

c2
∂2(F +G)

∂t2
=
(
∂2F

∂x2 −
1
c2
∂2F

∂t2

)
+
(
∂2G

∂x2 −
1
c2
∂2G

∂t2

)
= 0. (2.6)

This may seem trivial, but the fact that the superposition principle applies to the wave
equation has some remarkable features. Most notably, it means that two waves travelling
at different speeds can pass through each other without altering each other [16]. It also
means that two waves can constructively or destructively interfere. For example, two
standing waves of opposite amplitudes will cancel each other out. This fact has significant
implications. For instance, it is actually the technology behind active noise cancelling
headphones [17].

Although waves in all kind of forms can exist, many waves, including sound waves, can
be described by trigonometric functions. That is, the dependent variable, u, undergoes
cyclic variations as trigonometric functions. The functions F and G can thus be written
as sine or cosine functions. Hence, the general solution of the wave equation can then
be stated as

u(x, t) = A cos(x− ct) +B cos(x+ ct). (2.7)

For sound waves, the speed of the wave propagation, c [m/s], is simply the speed of sound.
The speed of sound is dependent of the medium through which the wave propagates.

2.3 Frequency And Amplitude Of Sound

When you experience sound, it is common to experience two different aspects; the ampli-
tude and the pitch of the sound. In a purely mathematical sense, pitch is the frequency
of the sound wave, though pitch can be subjective and include the perception of the
sound. Nonetheless, the human hearing is able to distinguish between different sound
pitches (i.e. frequencies) [18].
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The frequency, f [Hz], of the sound wave is the number of full oscillations per unit time
and is given by

f = c

λ
. (2.8)

In equation 2.8, c [m/s] is the speed of sound and λ [m] is the wave length. The wave
length can be measured as the distance between two wave crests.

The amplitude of the sound is the magnitude of the pressure variation around the ambi-
ent condition. A common unit for sound amplitude is the decibel, shortened dB, defined
as

dB = 20 log10

(
prms
pref

)
. (2.9)

In equation 2.9, prms [Pa] is the root mean square of the pressure deviation from the
ambient pressure over the measurement time interval, while pref [Pa] is a reference
pressure dependent on the medium. In air, the reference pressure is set to 20 µPa, and
the value is then usually denoted Sound Pressure Level (SPL). This reference means that
a pressure deviation of only 1 Pa gives a sound amplitude of 94 dB [19]. The reference
pressure is defined such that 0 dB corresponds to approximately the threshold of human
hearing. The decibel level of some common sounds are given in table 2.1.

Event Sound Pressure Level [dB]
Threshold of hearing 0
Country Park 30
Soft whispering at 2 meters 40
Activity in business office 50
Conversation in quiet room 60
Moderate road traffic 70
Diesel freight train at high speed 80
Discotheque 100
Ship’s engine room 120

Table 2.1 – Sound Pressure Level [dB] of some common sounds [20].

2.4 Resonance And Sound In Pipes

Every system has a natural frequency based on its physical properties. The terms natural
frequency and resonance frequency is used interchangeably in this report, even though,
strictly speaking, the latter usually denotes the frequency of an applied force if it is
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equal to the natural frequency of the system. Natural frequency is the frequency a
system tends to oscillate in the absence of damping or driving force [21]. Resonance is a
physical phenomenon that occurs when an oscillating force is applied to a system with
the same (or close to the same) frequency as the natural undamped frequency of the
system itself.

For the simple example of the mass-spring system, the natural frequency is related to
the mass connected to the spring and the stiffness of the spring. If you displace the mass
from equilibrium and then release, the system will oscillate with its natural frequency
and slowly decay towards equilibrium. If an oscillating force is applied to the system, i.e.
if you push the mass with the same frequency as the natural frequency, the displacement
from equilibrium will increase with time [22]. Finally, this may result in a mechanical
breakdown of the system.

Similarly, a pipe open in both ends has a natural frequency. In fact it has a set of different
resonance frequencies. To derive the resonance frequencies of a pipe, first consider a pipe
open in one end and closed in the other. If you "push" the air in the open end with an
oscillating force you will cause oscillating air particle displacements in the pipe. At the
closed end, you will have no displacement of the air particles. Figure 2.2 illustrates this.
The amplitude corresponds to the maximum displacement of the air particles from their
initial condition. The air particles can not move horizontally at the closed end, while
maximum displacement in both directions is possible at the open end.

Figure 2.2 – Displacement amplitude of air particles of the fundamental standing waves in
(a) closed and (b) open pipes [23].

For an open tube, air particle displacement is possible at either end of the pipe. This is
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illustrated in figure 2.2 were we can see that maximum displacement is possible at both
ends of the pipe. Figure 2.2 shows the fundamental mode, that is the lowest resonance
frequency. The result is that half a wavelength can fit in an open pipe, while a quarter
of a wavelength can fit in a closed pipe. Hence, the first (lowest) natural frequency can
be calculated for a closed and open pipe as

f1
closed = c

4L
f1
open = c

2L.
(2.10)

In equation 2.10, f [Hz] is the frequency, c [m/s] is the speed of sound and L [m] is the
length of the pipe. The pressure in the pipe oscillates with a phase shift of π radians with
respect to the displacement as seen in figure 2.3. Consider a point where the air particles
does not move, for instance at the closed end of a pipe. The neighbouring air particles
move towards and away from that point with the frequency of the oscillation. Maximum
pressure occurs when the neighbouring air particles are as close to the point as they
can be. Consequently, minimum pressure occurs when the neighbouring air particles are
furthest away from the point. This is an antinode of the pressure fluctuations, i.e. a
point with the largest pressure variation, but no particle displacement.

Figure 2.3 – Fundamental modes of a standing wave in a tube closed in one end, showing
both (a) the displacement of air and (b) the pressure variations [24].

Similarly, the air particles have the maximum displacement halfway between the pressure
antinodes. But since the immediate neighbouring air particles move with the same
velocity, there will be no variation of pressure at this point. Hence, this is a node of
the pressure fluctuations [24]. This relationship between air particle displacement and
pressure variation is shown in figure 2.3.

Figure 2.3 also highlights a different fact: the pipe has several resonance frequencies.
In addition to the fundamental frequency, all odd integer multiples of this frequency
are also resonance frequencies for a closed pipe. For an open pipe, this is true for all
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integer multiples of the fundamental resonance frequency, it is basically just a question
of matching the boundary conditions. Hence, the resonance frequencies are given as

fclosed = (2n− 1)c
4L

fopen = nc

2L
n = 1, 2, 3...

(2.11)

From equation 2.11 we can observe that for a long pipe (L→∞), all frequencies become
resonance frequencies. The number n [-] is called frequency mode.

2.4.1 Relationship To Experiment

Previous studies have shown that the pressure antinode in the open end is not located
exactly at the end of the pipe, but rather a small distance outside [25]. This end
correction has few references in literature, but is in the area of 0.3 to 0.46 times the
diameter for a closed tube and the double for an open tube [26, 27]. From this we are
able to calculate the expected resonance frequencies with the formulas [27]:

fclosed = (2n− 1)c
4(L+ 0.46D)

fopen = nc

2(L+ 0.92D)
n = 1, 2, 3...

(2.12)

Here, D [m] is the diameter of the pipe. For corrugated pipes, a correction due to the
cavities is needed [15]. This is done by modifying the speed of sound to the effective
speed of sound

ceff = c

√
Vin
Vtot

. (2.13)

In equation 2.13, Vin [m3] is the volume of the pipe without the corrugations, while Vtot
[m3] is the total volume of the pipe with the corrugations. Finally, we get the theoretical
resonance frequencies for our experiment:

fsmooth = (2n− 1)c
4(L+ 0.46D)

fcorrugated = (2n− 1)ceff
4(L+ 0.46D)

n = 1, 2, 3...

(2.14)
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In the experiment, the pipe lengths are given and we can thus calculate a theoretical
resonance frequency. By spanning through all frequencies and identifying amplitude
peaks, we can compare the theoretical value with our experiment. The pipes are sealed
in one end by the loud speaker in the experiment, meaning they are closed pipes, except
for the additional experiment on the open corrugated pipe (see Chapter 5).



Chapter 3

Sound Generation In A
Corrugated Pipe

In this chapter, we present theory related to the sound generated in a corrugated pipe.
We begin with the fundamentals of cavity resonance, continue to cavity resonance due
to a grazing flow and finish with acoustic resonance in a corrugated pipe.

Theory concerning sound generated in corrugated pipes is still an area of research so
few sources are found in literature. The aim in this chapter is therefore to present
the information gathered in various scientific articles in a comprehensive manner, from
fundamentals concepts to specific theory. We present models attempting to quantify the
different phenomena occurring when a medium flows over a cavity or in a corrugated
pipe. As this is still an emerging scientific area, a general, widely accepted theory has
yet to be adopted. Despite this, the models presented in this chapter are valuable in
terms of understanding the phenomena behind sound generation in a corrugated pipe.

3.1 The Helmholtz Resonator

Helmholtz resonance is the phenomenon of resonance in a cavity. The name comes from
a device created by Hermann von Helmholtz (1821-1894) in the 1850s (figure 3.1).

Harmonic oscillator To begin with, we repeat the damped harmonic oscillator in its
simplest form. For a damped harmonic oscillation, the balance of forces becomes:

F = −kx− Ff = −kx− cẋ = mẍ. (3.1)

13
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Figure 3.1 – Helmholtz resonator based on Hermann von Helmholtz original design [28].

It can be rewritten into the form:

ẍ+ 2ζω0ẋ+ ω2
0x = 0 (3.2)

with the damping ratio, η [-], being

η = c

2
√
mk

(3.3)

and the undamped angular frequency ω0 [rad/s] given by

ω0 =
√
k

m
. (3.4)

Here, x [m] is the displacement from equilibrium, c [N · s/m] is the viscous damping
coefficient, m [kg] is the mass and k [N/m] is the force (spring) constant [29].

Acoustical mass-spring system The Helmholtz resonator can be seen as an acous-
tical mass-spring system, because the volume of the bottle acts as a spring, while the
inertia of the flow (mass) is concentrated in the neck [15].

If the neck has a uniform cross section S [m2] and a length L [m] the mass m [kg] is:

m = ρ0SL (3.5)

where ρ0 [kg/m3] is the (reference) density.
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Figure 3.2 – The Helmholtz resonator as an acoustical mass-spring system.

The spring constant k of the system is obtained by starting from the mass conservation
law, assuming a uniform density within the volume:

∆ρ
ρ0

= −∆V
V

= −S∆x
V

(3.6)

where ∆x is the acoustic fluid displacement in the neck. The uniform density assumption
is in agreement with the fact that we neglect inertia in the volume of the resonator,
implying a uniform pressure. This is the same assumption as for a massless spring,
which implies that the tension is uniform over the spring [15]. Assuming an adiabatic
compression, we have the speed of sound c0 =

√
∆p/∆ρ [m/s], thus ∆p = c2

0∆ρ [Pa].
The force acting on the fluid in the neck is therefore:

F = S∆p = −Sρ0c
2
0
S∆x
V

= −k∆x. (3.7)

Hence, the spring constant k [N/m] is

k = ρ0c
2
0
S2

V
. (3.8)

For such a system, it follows that the resonance frequency, ω0 [rad/s], is given by

ω0 =
√
k

m
=

√
ρ0c2

0
S2

V

ρ0SL
= c0

√
S

V L
. (3.9)

The resonance frequency, described in Section 2.4, will be explained further throughout
the chapter.

3.2 Flow Over A Cavity

We now consider the mechanisms related to a flow over a cavity. First, we present Hémon
et al.’s linear resonator model in order to understand cavity resonance theory [30].
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Linear resonator model The Helmholtz resonator has been widely investigated from
an acoustical point of view. The displacement ζ [m] of the air layer in the neck section
can be described by the basic equation (figure 3.3)

ρAcHζ̈ + ρcAc(2R0 +R1 + βHc)ζ̇ + ρc2A
2
c

V
ζ = ξAcpc (3.10)

where the acoustic pressure pc [Pa] acts as the excitation force for the resonator, c [m/s]
is the speed of sound, ξ [-] is a dimensionless parameter and R0 [-], R1 [-] and β [1/m]
are damping parameters. Ac [m2] is the area of the neck section, V [m3] is the volume
of the corrugation and H [m] and Hc [m] are related to the neck thickness as shown in
figure 3.3.

Figure 3.3 – Sketch of the resonator.

The displacement of the air layer ζ [m] is linked to the acoustic pressure pv [Pa] through
the relation

ζ = V

Acρc2 pv. (3.11)

By substituting equation 3.11 into equation 3.10, we obtain the basic equation for the
cavity pressure

V H

Acc2 p̈v + (2R0 +R1 + βHc)
V

Acc
ṗv + pv = ξpc. (3.12)

As seen from figure 3.3, the term H [m] is composed of the thickness of the neck Hc [m]
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increased by the thickness H ′ [m] of the air layers which are entrained. For noncircular
holes, Crighton et al. provide the relation

H ′ = 0.85A0.75
c√
lc

, (3.13)

where lc [m] is the circumference of the opening [31].

The term R0 [-] represents radiation damping, which is the power lost to the surroundings
and the cavity. It is proportional to the square of the angular frequency ω [rad/s] and
given by

R0 = ω2Ac
2πc2 . (3.14)

R1 [-] is the power lost due to cavity wall impedance and β [-] is a dissipation factor
due to viscous effects along the wall. These two damping terms are numerically much
smaller than R0 [-] and can be neglected. Eventually, the basic equation for the resonator
becomes

p̈v + ω2Ac
π(Hc + 2H ′)c ṗv + c2Ac

V (Hc + 2H ′)pv = ξ
c2Ac

V (Hc + 2H ′)pc. (3.15)

Rearranging equation 3.15 with the harmonic oscillator in mind, the resonator’s natural
frequency ωr [rad/s] is introduced

ωr = c

√
Ac

V (Hc + 2H ′) . (3.16)

This implies a reduced damping ηr [-], since every element of equation 3.15 must be
maintained:

ηr = ω2ωr
V

2πc3 . (3.17)

Finally, equation 3.15 reduces to

p̈v + 2ηrωrṗv + ω2
rpv = ξω2

rpc. (3.18)

Equation 3.18 is a standard damped oscillator with an excitation term, which readily
can be seen when comparing it to equation 3.2. It is also worth noticing equation 3.16’s
coherence with equation 3.9.
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3.3 Shear Layer Instability And Vortex Shedding

In order to fully grasp the theory of a flow past a cavity, we must account for two physical
phenomenas: shear layer instability and vortex shedding.

Shear layer instability The shear layer describes a region of a flow where the velocity
gradient is significant and the viscous shear stresses are important. For a Newtonian
fluid1, the viscous shear stress is defined by

τ = µ
∂u

∂y
(3.19)

where µ [Pa · s] is the viscosity, u [m/s] the velocity and y [m] is normal to the flow
direction [33].

The shear layer thickness can be defined in several ways. A general definition is the
height from the surface to a point where the flow reaches approximately the "free stream
velocity" [32]. The most common example of a shear layer arises when a fluid passes
over a solid surface and forms a boundary layer. In this case, the velocity distribution
in the shear layer is approximated by a universal velocity profile (figure 3.4) [34].

Another example is the free shear layer, which is not attached to a solid boundary. It
arises in the lee of a structure placed in a flow. The free shear layer develops between
the free stream velocity U0 [m/s] and the near zero velocity region occurring within the
wake region.

Figure 3.4 – a) Shear layer over a solid boundary, b) Free shear layer [33].

In a Helmholtz resonator, the fluid flows past a cavity. The shear layer separated from
the upstream corner can become unstable in the presence of a downstream corner. The
downstream corner is called the impingement edge, meaning it triggers the shear layer
instability, illustrated in figures 3.5 and 3.7 [35]. The instability of the shear layer creates
the shedding of vortices in the cavity.

1Newtonian fluids are defined as having a viscous shear stress proportional to the strain rate (i.e. the
normal velocity gradient) [32].
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Figure 3.5 – Shear layer instability over a cavity.

Vortex shedding Vortex shedding is an oscillating flow pattern. It can occur when a
fluid flows past a cylindrical body, depending on the flow velocity and the shape of the
body. The flow detaches periodically at the back of the body and creates alternating
vortices, as seen in figure 3.6. Vortex shedding is described by the Strouhal number St

St = fL

U
. (3.20)

Here, f [Hz] is the frequency of the vortex shedding (number of vortices per second), L
[m] the characteristic length and U [m/s] the velocity of the fluid. The Strouhal number
is a dimensionless number that describes oscillating flow mechanisms, and depends on
the shape of the body and the Reynolds number. In a cavity the vortex shedding denotes
the cyclic formation and destruction of vortices that occurs.

3.4 Pressure In A Vortex

The Navier-Stokes equations are used to derive the pressure and velocity fields in a fluid
flow [32]. Starting from Newton’s second law of motion applied to a differential fluid
volume under the continuum assumption2 the Navier-Stokes equations for incompressible
Newtonian fluids is given as

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ µ∇2~v + ~f. (3.21)

The expression in the parenthesis on the left hand side of equation 3.21 is often written as
the material derivative of the velocity (D~v/Dt), making the resemblance with Newton’s

2In continuum mechanics the mass is modelled as continuos rather than consisting of discrete particles.
This assumption is generally valid when the distance between particles is small compared to the size of
the system studied [32].
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Figure 3.6 – Vortex shedding in the wake of a cylindrical body [36].

Figure 3.7 – CFD simulation over a single cavity [8].

second law of motion more apparent [32]. In equation 3.21, ρ [kg/m3] is the fluid density,
~v [m/s] is the velocity, p [Pa] is the pressure, µ [Pa · s] is the fluid viscosity, the body
force per unit volume (usually gravitational or centrifugal force) is ~f [N/m3] and ∇ is
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the del operator as in equation 2.1.

In the cavities of a corrugated pipe, the vortices generated can be considered to be
irrotational. This is usually named a free vortex. For a free vortex, the tangential
velocity is inversely proportional to the distance from the centre of the vortex. Physically
this is not possible as the velocity approaches infinity at the centre of the vortex, hence
this model is only valid outside a core region [32].

In two dimensions, the cylindrical Navier-Stokes equation for the radial direction when
assuming no radial velocity becomes

1
ρ

∂p

∂r
= v2

θ

r
− g cos θ. (3.22)

Noting that cos θ = ∂z/∂r, we can integrate equation 3.22 to find the pressure field

∫
∂p

ρ
=
∫ (

v2
θ

r
− g∂z

∂r

)
∂r. (3.23)

Using the assumption that the density variation is negligible and the fact that the tan-
gential velocity of a free vortex is inversely proportional to the distance from the centre,
namely

vθ = Γ
r

(3.24)

with Γ being the constant of proportionality (which can vary in time), we have

∫
∂p

ρ
=
∫ (Γ2

r3 − g
∂z

∂r

)
∂r =

∫ (Γ2

r3

)
∂r −

∫
g ∂z. (3.25)

Neglecting the density variation as this can be assumed to be small relative to the change
in pressure, the integration yields

p(r, z, t)
ρ

= Γ(t)2

2r2 − gz + C(z, t). (3.26)

Notice here the close connection to the Bernoulli equation. In fact we could have derived
equation 3.26 from Bernoulli’s principle [37]. Setting the minimum value of the pressure
to pmin when the circulation, Γ(t), is zero, as well as neglecting the influence of gravity,
we get

p(r, t)
ρ

= pmin
ρ

+ Γ(t)2

2r2 . (3.27)



22 3 Sound Generation In A Corrugated Pipe

The strength of the vortex is generated by the instability in the shear layer above the
corrugation. The vortices in the corrugations varies in strength with time and hence Γ is
also a function of time. As Γ increases, so does the pressure in each point of the vortex,
the frequency of the variation of Γ is then the vortex shedding frequency.

Circulation The relationship between Γ and vorticity can be derived using Stokes’
theorem and circulation of the flow. The vorticity, the curl of the flow, is related to the
velocity as ~ω = ∇×~v. It can be interpreted as the magnitude of the fluid particle’s spin
around its own axis [32]. Denote the circulation Γ, it is defined as

Γ =
∮
C
~v · ~dl. (3.28)

Hence, by Stokes’ theorem we can write the circulation as

Γ =
∮
C
~v · ~dl =

∫∫
S
∇× ~v · ~dS =

∫∫
S
~ω · ~dS. (3.29)

Generally, the average vorticity can be seen as the circulation divided by the area, A,
enclosed by the curve C. As the integration area approaches zero, we get the definition
of the vorticity [38]. It is thus given as

~ω ≡ lim
A→0

( 1
A

∮
C
~v · ~dl

)
. (3.30)

3.5 The Corrugated Pipe

Popescu and Johansen proposed a one-dimensional flow-acoustics model that couples
the acoustics of the pipe with the vortex shedding in the corrugations [9]. We will in the
following sections present the theory behind the model. The model has been simulated
in COMSOL Multiphysics and the results are presented in Chapter 6.

From a cavity to a corrugated pipe When the frequency of the vortex shedding
couples with the natural frequency of the pipe, resonance occurs. For a given geometry
of a corrugated pipe, the Strouhal is approximately constant [9]. Thus, the velocity of
the flow controls the frequency of the vortex shedding (equation 3.20). Higher velocities
induces higher frequencies of vortex shedding. When the frequency of the vortex shed-
ding reaches the next mode of the pipe’s natural frequencies (equation 2.14), a distinct
shift in pitch is heard, and the system now resonates at a higher frequency mode.

Our first interest is the acoustic pressure in the corrugations. The acoustic pressure in
the corrugations couples with the acoustic pressure in the pipe at resonance frequencies,
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enhancing the overall acoustic power. This acoustic power drives the flow, creating a
feed-back system (figure 3.8). Consequently, the regime becomes self-sustained.

Figure 3.8 – Block diagram illustrating the feedback mechanism between the flow and the
acoustic field [35].

We start with Hémon et al.’s equation 3.18 for cavity resonance [30]:

p̈v + 2ηrωrṗv + ω2
rpv = ξω2

rpc. (3.18 revisited)

First of all, the frequency term must be reconsidered. In a corrugated pipe, the acoustic
pressure in the corrugation is no longer controlled by the cavity’s natural frequency ωr.
The main resonator of the system is the pipe itself. At resonance conditions the frequency
of vortex shedding equals the pipe’s natural frequency. Thus, ωr is interchanged with ω
- the frequency at which resonance occurs.

p̈v + 2ηrωṗv + ω2pv = ξω2pc. (3.31)

The excitation force of the oscillator must also be reconsidered. In equation 3.18, the
acoustic pressure in the cavity pv is excited by the acoustic pressure in the neck pc,
which again depends on surrounding pressure. In the corrugated pipe, however, the
acoustic pressure in the corrugations depends on the pressure in the pipe. Popescu
and Johansen propose to replace the acoustic pressure from the neck by the derivative
of acoustic pressure from the pipe. The authors write that this is in accordance with
Howe’s analogy on vortex sound, because the acoustic energy generation can be deduced
based on the acoustic velocity in the source region [9]. For a thorough explanation of
Howe’s analogy, see Hirschberg p. 51-63 [15]. We get then the following equation:

p̈s + 2ηrωṗs + ω2ps = ξωṗ. (3.32)
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where ps [Pa] is the pressure in the corrugation and p [Pa] is the acoustic pressure in the
pipe. We also notice that ω on the right-hand side of the equation is no longer squared.
This makes the units [Pa/s2] on the right-hand side of the equation coherent with the
left-hand side, but no physical explanation is given in Popescu and Johansen’s paper.

Figure 3.9 – Sketch of the corrugation.

Furthermore, we know that the regime is self-sustained due to the feed-back mechanism.
In order to describe a self-sustaining regime, the van der Pol oscillator is introduced.

Van der Pol oscillator The van der Pol oscillator is an oscillator with non-linear
damping. It is governed by the following second order differential equation [39]:

q̈ + ε(q2 − 1)q̇ + q = 0 (3.33)

where q is the dynamic variable and ε is a positive parameter. When q is small, the
quadratic term q2 is negligible and the system becomes a linear differential equation.
When q is large, the quadratic term q2 becomes dominant and the damping becomes
positive.

The equation is credited to Balthazar van der Pol (1889-1959), a dutch physicist. Orig-
inally, it described a simple self-oscillating electrical triode circuit.

Noack et al. proposed a model for the formation of vortex cells behind a slender body
by using the van der Pol oscillator [40]. This is often referred to as the "van der Pol
analogy". By cells, we mean the presence of regions where the shedding of vortices
are constant. For a constant flow velocity, consequently, the Strouhal number becomes
constant as well. In Noack et al.’s model, equation 3.33 is assumed as the equation of
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motion for the displacement of the fluid layer. We multiply the equation with the mass
of the fluid layer ρ0S∆z and introduce ω as the frequency of the vortex shedding:

ρ0S∆z
(
q̈ + εω(q2 − 1)q̇ + ω2q

)
= 0. (3.34)

Note the resemblance with Section 3.1 and equation 3.5. The first term may be inter-
preted as the inertia, i.e mass times acceleration, the last one as Hooke’s restoring force
and the non-linear term as an excitation force.

In a corrugated pipe, one vortex is created in each corrugation, meaning we have one
oscillator for each corrugation. A viscous coupling should be introduced between the
formation of these oscillators. In order to do so, we assume the existence of a weightless
Newtonian fluid with dynamic viscosity µ [Pa · s] between the number of oscillators i.
The force between them can be derived from the Navier-Stokes equation:

fi±1→i = µSi
( q̇i±1 − q̇i

∆z
)
. (3.35)

This is the same force as the force between two moving parallel plates with a Newtonian
fluid between them.

The forces of the right and left neighbors on the ith oscillator have to be added on the
right hand side of equation 3.34. Thus, we get an equation of motion for a system of
coupled oscillators:

ρ0Si∆z
(
q̈ + εω(q2 − 1)q̇ + ω2q

)
= µSi

( q̇i+1 − 2q̇i + q̇i−1
∆z

)
. (3.36)

Dividing this equation by ρ0Si∆z and applying the limit to the central difference

lim
∆z→0

f(z + ∆z)− 2f(z) + f(z −∆z)
∆z2 = d2f

dz2 , (3.37)

we obtain the corresponding continuous equation

∂2q

∂t2
+ εω(q2 − 1)∂q

∂t
+ ω2q = υ

∂3q

∂t∂z2 (3.38)

with the kinematic viscosity υ = µ/ρ [m2/s].

This is a parabolic differential equation for q(z, t) with diffusion of the velocity

u = ∂q

∂t
. (3.39)
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In Popescu and Johansen’s model, the dynamical variable q is replaced by the acoustic
pressure in the corrugations ps. In order to make the units coherent, they divide the
non-linear term by ρ0U

2. Thus, the term remains dimensionless, as in Noack et al.’s van
der Pol oscillator. Using equations 3.32 and 3.38, we get

p̈s + 2ηr
{( ps
ρ0U2

)2 − 1
}
ωṗs + ω2ps − υ

∂3ps
∂t∂z2 = ξωṗ. (3.40)

Popescu and Johansen also introduce two coefficients, A and B, to account for the
dynamics in a corrugated pipe:

p̈s + 2Aηr
{( ps
Bρ0U2

)2 − 1
}
ωṗs + ω2ps − υ

∂3ps
∂t∂z2 = ξωṗ. (3.41)

Coefficient A The authors conclude that in order to have a stronger signal from the
source, the shear layer has to be thinner. The shear layer thickness (in consequence also
the boundary layer) controls the way in which the sound pressure propagates through
the system, which is the role of coefficient A in equation 3.41. Coefficient A is therefore
proportional to the thickness of the boundary layer. Popescu and Johansen propose an
empirical value for A in their work:

A = 0.5 ·BLR (3.42)

where BLR is the ratio between the boundary layer thickness and the radius of the
pipe. If BLR is close to one, we deal with only turbulent flow. In this case, there is no
feedback mechanism and the corrugated pipe does not whistle.

Coefficient B Furthermore, Popescu and Johansen argue that the shape and the vol-
ume of the cavity will affect the acoustic pressure field variations. The role of coefficient
B in equation 3.41 is to incorporate these parameters. The authors admit that they do
not have a very well defined procedure to obtain the value of parameter B. They choose
in their work an empirical value of B as the ratio of the volume of the cavity to the
volume of the pipe (with a length corresponding to the cavity opening).

We propose to use Nakiboglu et al.’s ratio, which is the ratio of the pipe diameter to the
cavity width and the radius of the upstream edge of the cavity [41]:

B = D

W + rup
. (3.43)

Nakiboglu et al. has showed good agreement between theory and experiment when
comparing the Strouhal number to the ratio D/(W + rup).
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Finally, the acoustic pressure in the pipe corrugation can be described by the equation:

p̈s + 2Aηr
{( ps
Bρ0U2

)2 − 1
}
ωṗs + ω2ps − υ

∂3ps
∂t∂z2 = ξωṗ (3.44)

where, in accordance to Hémon et al.’s linear resonator model (equation 3.17), and
accounting for the interchange of ωr and ω, the reduced damping is

ηr = ω2
rω

V

2πc3 . (3.45)

The excitation term in equation 3.44 is defined empirically:

ξ = ω

ωr

|p|
|p+ ps|

. (3.46)

3.6 The Acoustics In The Pipe

Equation 3.44, contains two unknowns, namely ps and ṗ. We need additional equations
to describe the pressure in the pipe, p. In the pipe, the acoustic behavior can be described
as a lossless medium moving with a constant velocity, quantified through a linear wave
equation:


∂(ρ0u)
∂t + U ∂(ρ0u)

∂z + ∂p
∂z = F (z, t),

∂p
∂t + U ∂p

∂z + ρ0c
2
0
∂u
∂z = 0

(3.47)

where u [m/s] is the acoustic velocity, p [Pa] the acoustic pressure, U [m/s] the average
flow velocity, ρ0 [kg/m3] the reference density and c0 [m/s] the speed of sound [9].

The source term not he right hand side is:

F (z, t) = G
∂ps
∂z

(3.48)

where ps [Pa] is the acoustic pressure in the corrugations, from equation 3.44, and G is
a constant coefficient.

Coefficient G The constant coefficient G depends on the mouth area of the cavity.
Popescu and Johansen introduce the coefficient since the feedback mechanism depends
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on the contact area between the cavity flow and the pipe flow. They establish the
empirical value of G to be the ratio of the cavity width to the cavity pitch length:

G = Cavity width
Cavity pitch length . (3.49)

3.7 The Linear Model Of Acoustics In A Corrugated Pipe

Together, equation 3.44 and 3.47 becomes a system of partial differential equations. They
can be solved using a numerical scheme or with a modelling software like COMSOL. A
sophisticated differential scheme has to be used to solve the system numerically, i.e.
central difference does not provide the numerical stability or accuracy required. In
Chapter 6, the results from solving the system using COMSOL with the appropriate
boundary conditions are presented.



Chapter 4

Acoustic Damping

This chapter is dedicated to the concept of acoustic damping, which is the main working
principle of the wet gas meter. First, we state shortly how sound waves are attenuated
in mediums (fluids in particular). Then, we explore the influence liquid has on sound
wave attenuation and present a governing equation for acoustic damping due to droplets
in a flow. A sensitivity analysis of the equation is performed in order to investigate how
the different parameters influence the acoustic damping.

4.1 Acoustic Damping In A Fluid

Since sound waves, or acoustic waves, can be seen as transportation of energy, the energy
is gradually converted from acoustic energy to heat by the viscosity of the medium
[42]. Generally, the acoustic damping is defined as the exponential decay of the sound
amplitude [43]:

A(z) = A0e
−α0z. (4.1)

In equation 4.1 A [dB] is the amplitude of the sound wave, A0 [dB] is the starting (or
maximum) amplitude, α0 [1/m] is the acoustic damping coefficient and z [m] is the
space variable in the direction of the sound wave. As seen in the equation, the damping
coefficient can have values greater than 1.

The value of the acoustic damping coefficient can be estimated by the Stokes’ law of
sound attenuation [42]. The Stokes’ law of sound attenuation applies to a isotropic and
homogenous Newtonian fluid and is given by

α0 = 2µf2

3ρc3 (4.2)

29
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where α0 [1/m] is the damping coefficient, µ [Pa · s] is the viscosity of the fluid, f [Hz]
is the sound frequency, ρ [kg/m3] is the fluid density and c [m/s] the speed of sound. It
should be noted that the formula has later been modified to account for volume viscosity,
which is important when the compressibility of the fluid no longer can be ignored [44].

Sound waves do not travel indefinite, but decay in the medium they travel in. The decay
of the sound waves is dependent of the properties of the fluid. Increased viscosity will for
instance increase the acoustic damping. In addition to damping, sound waves are subject
to other physical phenomena, like absorption and reflection [45]. These phenomena are
not studied further in this chapter.

Acoustic damping in pipes Stokes’ law of sound attenuation is not valid when
describing acoustic damping in pipes. In a smooth pipe with turbulent single phase gas
flow, the main attribution to the acoustic damping is the viscous-thermal effects at the
wall. In Peters et al.’s work, the acoustic damping coefficient α0 for a smooth pipe is
given by the Kirchhoff model [46]:

α0 = πD

2Ac0

√
πfµ

ρ0

(
1 + γ − 1√

Pr

)
(4.3)

where α0 [1/m] is the damping coefficient, f [Hz) the frequency, γ [-] the isentropic
coefficient, D [m] the tube diameter, A [m2] the tube area, µ [Pa · s] the gas viscosity,
ρ0 [kg/m3] the steady state gas density, and Pr [-] is the Prandtl number defined as

Pr = cpµ

κ
(4.4)

where cp [J/kg ·K] is the heat capacity and κ [W/m ·K] the thermal conductivity.

To account for turbulent flow, the damping coefficient is adapted such that:

α0 = α0
δac
δvisc

if δac
δvisc

> 1 (4.5)

where the acoustic boundary layer δac and the viscous boundary layer δvisc are defined
as:

δac =
√

2µ
ρ0ω

and δvisc = 10 µ

ρ0u∗
(4.6)

where the angular frequency is ω [rad/s] and the friction velocity is u∗ =
√

0.5Cf [-]
with the Fanning friction coefficient Cf [-].

The Kirchhoff model can be used to determine acoustic damping for dry gas flow in a
smooth pipe. However, it is not valid for corrugated pipes, since the pressure drop in
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corrugated pipes is primarily due to separation in the corrugations. Furthermore, it is
only valid for single phase gas flow, and can not predict acoustic damping when liquid
is introduced in the gas flow.

4.2 Liquid Influence On Acoustic Damping

In two phase flow consisting of gas and liquid, the sound attenuation is also influenced
by the presence of liquid. Belfroid et al. has performed substantial work on the subject
of liquid influence on the sound generated in a corrugated pipe [1, 7, 47, 48]. In their
articles, they point out three mechanisms that could explain the effect of liquid on the
whistling mechanism:

1. The corrugations are filled up by liquid, meaning that the source strength in the
corrugations decreases with lower cavity depth [49].

2. Additional damping of the sound due to the presence of droplets (mist flow) [50].

3. Reduction of the source strength due to droplets on the wall. The droplets thickens
the shear layer, which results in a lower source strength in the corrugation [47].

The first and third mechanisms are difficult to quantify. The second, however, has been
investigated more in depth. Howe first described the damping due to droplets in the
flow (mist flow), α, [50]. This was adopted by Belfroid et al. to become

α = 2π
λ

αp
2

(
ωτη

1 + (ωτη)2︸ ︷︷ ︸
Viscous

+ cs(γ − 1)
cp

ωτt
1 + (ωτt)2︸ ︷︷ ︸

Thermal

)
(4.7)

where
τη = m

3πµdp
and τt = mcs

2πκdp
. (4.8)

In equations 4.7 and 4.8, λ [m] is the wave length, αp [-] is the liquid/gas mass ratio,
cs [J/kg ·K] the specific heat of the liquid, cp [J/kg ·K] the specific heat of the gas, γ
[-] the isentropic constant, ω [rad/s] the angular frequency, µ [Pa · s] the gas viscosity,
κ [W/m ·K] the thermal conductivity, m [kg] the droplet mass and dp [m] the droplet
diameter. The viscous and thermal effects of the damping are highlighted in the equation.

In the following, we have modified equation 4.7 slightly. The original equation from
Howe was given in terms of damping per wavelength [50]. In addition ω, the sound
frequency was given in Hz. Belfroid et al. modified this to become the damping per
meter by dividing with the wavelength λ and multiplied by 2π to use ω in rad/s instead.
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For convenience we have used a mix of these two with ω in Hz, but the damping given
per meter. The governing equation for damping due to droplets then becomes

α = αp
2λ

(
ωτη

1 + (ωτη)2︸ ︷︷ ︸
Viscous

+ cs(γ − 1)
cp

ωτt
1 + (ωτt)2︸ ︷︷ ︸

Thermal

)
(4.9)

where τη and τt are defined as in equation 4.8.

4.2.1 The Viscous And The Thermal Part Of Acoustic Damping Due
To Droplets

In equation 4.9 two different sources of damping appear: one accounting for the damping
due to viscous effects and the other accounting for the damping due to thermal effects. In
the sensitivity analysis, the ratio of these terms with respect to the changing parameter
has been investigated.

To illustrate the viscous and thermal acoustic damping, consider the sound waves as
pulses of energy. In fact, waves are energy transport without transport of matter. The
energy transported is proportional to the square of the amplitude [51]. The energy in
the sound waves is used to move the particles in the medium. In dry gas, this energy
is used to move the gas particles along the direction of propagation of the sound wave
and consequently create pressure oscillations (see Section 2.4). When liquid droplets
are introduced in the flow, this energy has to be used to displace liquid molecules as
well. The energy losses come from two different effects. The viscosity effects describe
the energy consumed in moving a fluid, while the thermal effects describe the energy
converted to heat at the surface of the droplets [50].

For droplets of small diameters (typically <100 µm) with relative velocity (relative to
the gas velocity) equal to the acoustic velocity, the Reynolds number is small enough
for the drag to be dominated by viscosity [50]. The motion of the particles are hence
governed by Stokes’ drag law. Stokes drag law is stated as

FD = 3πµdpV (4.10)

and is hence the force needed to move a spherical droplet through a fluid at a given
velocity [52]. The Stokes relaxation time, that is the time constant for the exponential
decay of the particle velocity due to drag, is found in the τη-term in equation 4.9.

The pressure fluctuations in the medium created by the sound waves, may in turn cause
temperature fluctuations in the bulk of the gas (if the medium is gas) as these are related
through an equation of state. This means that heat can be transferred from the bulk
of the gas to the droplets. Howe showed how the entropy perturbation is related to the
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net heat flux between the droplets and the gas, the result being the thermal term in
equation 4.9 [50].

4.3 Sensitivity Analysis

The acoustic damping due to liquid droplets present in a gas flow (hereafter added
acoustic damping) was studied in Section 4.2. In the following we present a parametric
study, or sensitivity analysis, of equation 4.9. The objective is to highlight how various
parameters influence the added acoustic damping. The Matlab files used in the analysis
can be found in Appendix B.

Parameter Description Value Unit
cgas Speed of sound in gas 343.3 m/s
µ Gas viscosity 1.802 · 10−5 Pa · s
ρg Gas density 1.225 kg/m3

cp Gas specific heat 1007.0 J/kg ·K
γ Isentropic constant 1.4 -
κ Gas thermal conductivity 2.476 · 10−2 W/m ·K
ρl Liquid density 999.1 kg/m3

cs Liquid specific heat 4188.5 J/kg ·K
ω Sound frequency 200.0 Hz
dp Droplet diameter 1.0 · 10−4 m
dpipe Pipe diameter 3.5 · 10−2 m
Liquid Rate Rate of liquid injected 20.0 ml/min
U Average gas velocity 3.0 m/s

Table 4.1 – Paramteres used in the sensitivity analysis. Air and water at 1 atm and 15◦C
have been used for gas and liquid properties respectively [32, 53].

Gas properties from McGraw & Hill and liquid properties from NIST were used as
baseline [32, 53]. All the fluid properties used are presented in table 4.1. The partial
derivatives of the governing equation (4.9) for added acoustic damping was calculated
using Maple 18. However, the results were rather complex equations of the fifth order,
presenting no real insight in how the different variables changed the equations. They
are therefore out of the analysis.

The air and water properties are coherent with the ones used in the experiment in
Chapter 5. Even so, similar trends are expected for other gases and fluids, as different
properties would only shift or stretch the curves horizontally or vertically. The main
uncertainty regarding equation 4.9 is the droplet size, since the droplet size distribution
is generally unknown in a flow.
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Parameters Belfroid et al. investigated the influence of liquid rate on the acoustic
damping term [1, 54]. The liquid rate only appears in the αp term in equation 4.9, Hence,
it varies linearly with the liquid rate. For other parameters appearing in the equation the
relationship is more complex. By using Matlab, we were able to qualitatively evaluate
the dependence based on graphical plots. The parameters we chose to investigate, in
addition to liquid rate, were:

1. Droplet size

2. Liquid Density

3. Gas Viscosity

4. Sound Frequency

To facilitate the comparison with the experiment, the liquid rate is given in ml/min.
This can easily be related to the liquid volume fraction (LVF), which is widely used in
engineering applications. Part per million by volume (ppmv), which is the equal to the
LVF times 1 · 106, is also used to describe such small quantities. Table 4.2 gives the
relation between liquid rate, LVF and ppmv for the gas density, gas velocity and pipe
diameter used in the sensitivity analysis. LVF is calculated with the simplified formula

LV F = ṁliquid

ṁgas

ρg
ρl
. (4.11)

In equation 4.11, ṁliquid [kg/s] and ṁgas [kg/s] denote the mass flow of liquid and gas
respectively, while ρl [kg/m3] and ρg [kg/m3] are the liquid and gas densities. Note
that the mass of the liquid is considered to be small enough to be neglected in the
denominator.

Liquid Rate [ml/min] LVF [-] ppmv [-]
1 5.7743 · 10−6 5.8
2.5 1.4436 · 10−5 14.4
5 3.1759 · 10−5 31.8
10 5.7743 · 10−5 57.7
20 1.1549 · 10−4 115.5
40 2.3097 · 10−4 231.0
100 5.7743 · 10−4 577.4

Table 4.2 – Relationship between liquid rates used in the analysis, LVF and ppmv.

4.3.1 Droplet Size

In a real mist flow numerous droplet sizes will be present. The number of droplets of
a given size will vary, meaning we have a droplet size distribution. Clearly, the added



4.3 Sensitivity Analysis 35

acoustic damping is dependent on the droplet size as it appears in both τt and τn. In
addition it also appears in m, the droplet mass, to the third power since the droplets
are assumed to be spherical.

The droplet size was varied from 0.1 nm to 100 µm and the liquid rate from 1 to 100
ml/min. These ranges are aligned with the experiment conducted and capture graph-
ically the trends of the added acoustic damping when the droplet size is varied. The
other properties were kept constant according to table 4.1.
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Figure 4.1 – Added acoustic damping as a function of droplet size for different liquid rates.

From figure 4.1, we can identify a maximum added acoustic damping for the same droplet
size for all liquid rates. This droplet size was calculated with Matlab to 22.2 µm for the
properties used in this analysis. It should also be noted that the damping is small for
very small droplets as well as for larger droplets (towards 100 µm). The same effects are
also identified in 3D in figure 4.2.

From figure 4.3 we can see that the ratio between the viscous and the thermal part of
the equation is independent of the liquid rate. This because the liquid rate only appears
outside the parenthesis in equation 4.9 and thus only influence the absolute value of the
damping. This can be observed for all the parameters investigated. Furthermore, it
also means that the acoustic damping varies linearly with the liquid rate as shown by
Belfroid et. al. [1, 54].

We observe from figure 4.3 that the ratio between the viscous and thermal part in
equation 4.9 approaches a constant value around 2.75 for droplet sizes larger than ap-
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Figure 4.2 – 3D-plot of acoustic damping as a function of droplet size and liquid rate.
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Figure 4.3 – Ratio between the viscous and thermal term in equation 4.9 as a function of
droplet size and liquid rate.
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proximately 100 µm. Shown mathematically, when the terms ωτη and ωτt grow large,
(1 + ωτη) → ωτη and (1 + ωτt) → ωτt, the ratio between the viscous and the thermal
part approaches the limit

lim
ωτη ,ωτt→∞

 ωτη
1+(ωτη)2

cs(γ−1)ωτt
cp(1+(ωτt)2)

 = ωτtcp
cs(γ − 1)ωτη

= 3µcp
2(γ − 1)κ ≈ 2.7498. (4.12)

4.3.2 Liquid Density

When analyzing the influence of the liquid density, the droplet size was fixed to 100 µm.
The liquid density spanned from 100 kg/m3 to 4000 kg/m3. This range should cover
physical applications and capture the trends in the added acoustic damping.
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Figure 4.4 – Added acoustic damping as a function of liquid density for different liquid
rates.

From figure 4.4, we observe that the added acoustic damping is more or less constant for
liquid densities greater than 600 kg/m3. Since the droplet size was fixed to 100 µm, the
absolute value of the added acoustic damping is not as large as we could see in section
4.3.1.

The same effect can be identified in figure 4.5; the added acoustic damping coefficient is
constant for larger liquid densities. In addition it increases linearly with liquid rate, a
tendency observed throughout the analysis.
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Figure 4.5 – 3D-plot of acoustic damping as a function of liquid density and liquid rate.
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Figure 4.6 – Ratio between the viscous and thermal term in equation 4.9 as a function of
liquid density and liquid rate.
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The ratio between the viscous and the thermal part of the damping approaches the same
constant value of 2.75. This is in accordance with equation 4.12. At densities larger than
about 100 kg/m3, the ratio can be assumed constant with reasonable accuracy.

4.3.3 Gas Viscosity

Similar to the study of liquid density, the droplet size was fixed to 100 µm when investi-
gating the influence of gas viscosity. The gas viscosity was varied from 1 ·10−7 to 1 ·10−4

Pa · s.
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Figure 4.7 – Added acoustic damping as a function of gas viscosity for different liquid rates.

In figure 4.7, we observe a significant increase in damping when there is an increase in
viscosity. Hence, different gases give different values of acoustic damping. Viscosity is
also a function of temperature, implying that the operation conditions affect the added
acoustic damping of a given fluid.

Though it is not evident in figure 4.8, the added acoustic damping varies linearly with
the liquid rate as for the other parameters. The acoustic damping can be relatively large
even for low liquid rates, but the increase in the damping coefficient slows down as the
gas viscosity increases.

As expected, the ratio between the viscous and thermal term in equation 4.9 does not
approach a constant value. Instead, it increases rapidly with increasing gas viscosity.
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Figure 4.8 – 3D-plot of acoustic damping as a function of gas viscosity and liquid rate.
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Figure 4.9 – Ratio between the viscous and thermal term in equation 4.9 as a function of
gas viscosity and liquid rate.
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Higher viscosity means larger drag force, and the viscous term dominates the thermal
term for larger gas viscosities, as discussed in Section 4.2.1.

4.3.4 Sound Frequency

We studied how the sound frequency changed with both liquid rate and droplet size. As
the sound waves can be interpreted as pressure oscillations, the sound frequency denotes
the frequency of these fluctuations. The frequency range investigated was 0 Hz to 2 kHz.
We could also have investigated higher frequencies, but they would suppress the trends
at the lower frequencies, since the added acoustic damping coefficient (for a given liquid
rate) approached a constant value for quite low frequencies.

4.3.4.1 Liquid Rate
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Figure 4.10 – Added acoustic damping as a function of frequency for different liquid rates.

From figure 4.10, we observe that the added acoustic damping is approximately inde-
pendent of sound frequency above 200 Hz. The same relationship is also shown in 3D in
figure 4.11, where the linear relationship between the liquid rate and the added acoustic
damping once again can be seen.

Figure 4.12 shows the ratio between viscous and thermal damping as a function of liquid
rate and frequency. We can see that the ratio again approaches 2.75 as the frequency
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Figure 4.11 – 3D-plot of acoustic damping as a function of frequency and liquid rate.
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Figure 4.12 – Ratio between the viscous and thermal term in equation 4.9 as a function of
frequency and liquid rate.
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increases, coherent to what we have discussed in Section 4.3.1.

4.3.4.2 Droplet Size

Finally, the frequency and droplet size were varied together, keeping the liquid rate fixed
at 20 ml/min. The frequency varied from 0 to 2 kHz while the droplet size spanned from
0.1 nm to 100 µm.
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Figure 4.13 – Added acoustic damping as a function of frequency for different droplet sizes.

It seems difficult to identify any trends in figure 4.13, but the ambiguous result (i.e.
highest added acoustic damping for a middle droplet size) comes from the fact that the
added acoustic damping peaks at a given droplet size. This was established in section
4.3.1. However, as we can see in figure 4.14, the droplet size with the highest damping
coefficient is dependent of the frequency.

The relationship is better seen in the 3D-plot in figure 4.15. In this figure we can see
that the acoustic damping generally increases with frequency, while it varies with the
droplet size in the same manner as seen in figure 4.14.

In figure 4.16 and 4.17 the ratio between viscous and thermal damping is shown. As for
the other parameters, we can see that the ratio approach 2.75 for larger droplet sizes
and frequencies. The horizontal line in figure 4.17 for a droplet size of 1.0001 µm appears
because the absolute variations are very small compared to the other droplet sizes shown
in the same figure.
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Figure 4.14 – Added acoustic damping as a function of droplet size for different frequencies.
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Figure 4.15 – 3D-plot of acoustic damping as a function of frequency and droplet size.
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Figure 4.16 – Ratio between the viscous and thermal term in equation 4.9 as a function of
frequency and droplet size.
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Figure 4.17 – Two-dimensional plot of the ratio between the viscous and thermal term in
equation 4.9 as a function of frequency for different droplet sizes.
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4.4 Discussion

It is apparent that a whole range of different fluid properties strongly influence the
added acoustic damping. Notably, the droplet size had a major influence, with a peak
added acoustic damping coefficient around 22.2 µm. This critical droplet size is further
dependent on the frequency, as seen in figure 4.14. The droplet size distribution is
difficult to estimate and rarely fully known in application. Work is being done in this
area, but not for low LVFs. Opdal et al. used nuclear magnetic resonance to estimate
the size distribution of water droplets in crude oil, but for water cuts from 10% to 40%
[55]. Without knowing the droplet size distribution it could be difficult to predict the
added acoustic damping coefficient theoretically. Such a theoretical prediction would
simplify the making of a wet gas meter, as it would have been possible to compare the
measurement with theory directly.

The acoustic damping coefficient was directly proportional to the liquid rate, as we
can see from equation 4.9. Isolated, neglecting other damping effects, it means that a
measurement of the acoustic damping with all gas and liquid properties known (including
the droplet size distribution) could predict the liquid flow rate (and thus the LVF). Or,
if the droplet size distribution can be assumed to be constant over time, the increase in
LVF can be estimated by measuring the sound attenuation. For the corrugated pipe,
other damping mechanisms are also expected in application, like liquid on the wall and
fill-up of the corrugations, which both decrease the strength of the sound source [49, 47].

In the sensitivity analysis we also saw how the ratio between the viscous and thermal
part of the equation for added acoustic damping approached a constant value. This does
not mean that the added acoustic damping is less prone to temperature variations since
most fluid properties are dependent of temperature. With the viscous term being larger
than the thermal term it means that the added acoustic damping is more sensitive to
changes in the viscous term than in the thermal term. That is, more sensitive to viscosity
changes than changes in thermal conductivity or heat capacity.

The most important result, perhaps, is that changing only one property influences the
added acoustic damping significantly. A precise knowledge of the flow and its properties
is therefore needed to estimate the added acoustic damping for a given operating con-
dition. At the very least, a wet gas meter based on the sound attenuation principle has
to be calibrated with real fluids before being installed. However, since the properties in
a given reservoir may change over time, this may not suffice either.



Chapter 5

Experiment: Liquid Influence On
Sound Waves In Pipes

Only a limited number of experimental results concerning the acoustic damping due
to droplets exist in literature. Belfroid et al. conducted an experiment regarding liquid
influence on acoustic damping and reported promising results [1]. Their results indicated
a close to linear relationship between the liquid injection and the acoustic damping.
However, the results were obtained for LVFs in the range 7.1 · 10−6 to 1.2 · 10−4. In
this experiment we wanted to further investigate the effect of acoustic damping for even
smaller LVFs. The lowest LVF in our experiment was therefore 4.3 ·10−6 and the largest
5.8 · 10−4, with more runs focused in the lower end of the range. The lower limit of
the LVF range was limited by the operational capacity of the rotameters. Finding a
robust relationship between the liquid injection, or the LVF, and the acoustic damping
is fundamental for a wet gas meter to be based upon attenuation of sound waves.

The goal of the experiment was to investigate the relationship between sound amplitude
and frequency and the liquid present in the gas flow. For simplicity, air and water have
been used as fluids. In Section 4.3, we saw that the additional damping due to droplets
in the gas flow was strongly influenced by the properties of the fluid. These relationships
were not linear for all properties and therefore the results can not be transferred to other
fluids directly.

The experiment was carried out in different steps. First, the resonance frequencies of the
pipes were identified. The results were used to determine which frequencies we should
use when measuring the added acoustic damping in the smooth pipe. For the corrugated
pipe, however, the results were used to check whether the whistling jumped in frequency
modes with increasing flow velocities, as described in theory. Then, liquid was injected
with a needle and syringes of different sizes while the amplitude and frequency of the
sound waves were measured.

A simple risk assessment was performed in association with the work in the laboratory.

47
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Due to the relative harmless nature of the experiment, this was not carried out in a
comprehensive matter. The risk assessment can be found in Appendix C.

5.1 Experimental Setup

Two different designs were investigated in the experiment; a smooth pipe and a corru-
gated pipe. For the smooth pipe, a loud speaker was installed in one end to generate
the sound. For the corrugated pipe, the sound was generated by the vortex shedding in
the cavities as described in Sections 3.2 and 3.3. A microphone close to the outlet of
the pipe recorded the sound field in the flow (figure 5.1). The equipment used in the
experiment is listed in table 5.1.

Equipment Description
Smooth pipe Transparent acrylic pipe, 3.5 cm diameter
Corrugated pipe White conduit pipe, 2.5 cm diameter
Microphone Brüel og Kjær 4191 28113972
Loud speaker Kitsound Mini Speaker
Amplifier Norsonic Front End type 336
Sound card Echo Audiofire 4
Liquid injection Terumo syringe and needle (1, 2.5, 5, 10, 20, 40 ml/min)
Rotameter 1 ABB Model D10A11 (6.9 m3/h)
Rotameter 2 Fischer & Porter D-3400 (7.0 m3/h)

Table 5.1 – Equipment used in the experiment.

To account for time variance, each set of conditions were run multiple times. By doing
this, we were able to check the robustness of the experiment, i.e. if the variation for
the independent set of conditions were large. A sketch of the experimental setup can be
seen in figure 5.2 and a picture of the test rig can be seen in figure 5.3.

The section where air and liquid are injected and mixed was made from a solid acrylic
cylinder, a bolt. Air was injected though a bended pipe and the liquid was injected via
needles from the top of the acrylic cylinder (figure 5.4).

We mounted the loud speaker at the upstream end of the acrylic cylinder. A rubber ring
and rubber cover made sure the end was air tight in order to avoid inflow due to the
ejector effect1. At the downstream end of the acrylic cylinder two different pipes were
mounted, one corrugated and one smooth. The work drawing of the acrylic cylinder can
be seen in Appendix D.

1An ejector converts pressure energy to kinematic energy according to Bernoulli’s principle. This
generates a low pressure zone which in turn can create a flow of (another) fluid towards this zone [56]
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Figure 5.1 – The probe microphone was borrowed from the Department of Acoustics at
NTNU and placed at the outlet of the pipe.

Figure 5.2 – Sketch of the experimental setup.

The air flow was controlled by two rotameters with a capacity of 6.9 and 7.0 m3/h.
Pressurized air was taken from the wall outtake and split in two before reaching the two
rotameters operating in parallel. The liquid was injected with needles of different sizes,
ranging from 1 to 40 ml using a stop watch to control the rate (figure 5.5). A dedicated
test bench in the laboratory of the Department of Energy and Process Engineering was
used for the experiment.
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Figure 5.3 – Picture of the test rig. On the lower right hand side the two parallel rotameters
can be seen next to the needle and mixing unit. The microphone can be seen at the outlet
of the pipe, on the left hand side of the picture.

5.2 Test Matrices

Tables 5.2 to 5.4 show the test matrices of the experiment. The flow velocities were, as
mentioned, limited by the operating capacity of the rotameters, setting a restriction for
the lower limit of the LVF. Each set of conditions were run for 20 seconds. The duration
of the runs was somewhat limited by the capacity of the smallest syringe. However,
longer runs could endanger the consistency of the liquid rate injection. Furthermore, we
regarded the duration as long enough to average out noise and other time variant effects.

Air Flow Rates [m3/h] ([m/s]) Liquid Rates [ml/min] Frequencies [Hz]
5.52 (1.59) 0 373
9.70 (2.80) 1 445
11.10 (3.20) 2.5 550
12.50 (3.61) 5
13.90 (4.01) 10

20
40

Table 5.2 – Test matrix for smooth pipe.
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Figure 5.4 – The mixing unit with the bended pipe and the needle.

For the smooth pipe we had three test variables: air flow velocity, liquid rate and
frequency. We tested five different flow velocities together with seven liquid rates and
three frequencies. Each set of conditions were given three runs, making it a total of 305
runs.

Since the loud speaker was not used to generate sound for the corrugated pipe, the
frequency was no longer a free variable. This removed one test variable, but we increased
the number of flow velocities to see if we could identify singing for low flow velocities.
In total, we tested eight different flow velocities and seven liquid rates. Since we could
not control the frequency ourselves, the amplitudes were measured at slightly varying
frequencies and therefore expected to vary more. With this in mind, we increased the
number of runs for each set of conditions to four, making it a total of 224 runs.

The whistling was difficult to identify from the frequency plots for the closed corrugated
pipe, but a small test with both ends open revealed that the whistling was far more
distinct than with one end closed. We therefore investigated the corrugated pipe with
both ends open to see how the liquid influenced the amplitude of the whistling in that
specific case. Unfortunately, due to the ejector effect, we could not determine the exact
flow rate through the pipe. Therefore, the percentage values in table 5.4 indicate the
percentage level in terms of capacity at which rotameter 1 (capacity 6.9 m3/h) was
adjusted to. We tested three different flow rates and four liquid rates. Due to a more
consistent measurement frequency compared to the closed corrugated pipe, we reduced
the number of runs per test condition to three, making it a total of 36 runs.
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Figure 5.5 – Different needle sizes were used to inject different liquid rates. The rubber on
the left hand side of the mixing unit was pulled over the microphone in order to make the
end air tight.

Air Flow Rates [m3/h] ([m/s]) Liquid Rates [ml/min]
4.14 (2.34) 0
5.52 (3.12) 1
6.90 (3.90) 2.5
8.30 (4.70) 5
9.70 (5.49) 10
11.10 (6.28) 20
12.50 (7.07) 40
13.90 (7.87)

Table 5.3 – Test matrix for corrugated pipe with upstream end closed.

Air Flow Rates [%] Liquid Rates [ml/min]
60% 0
80% 1
100% 2.5

5

Table 5.4 – Test matrix for corrugated pipe with both ends open. Air flow rates given in
percentage of 6.9 m3/h.
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5.3 Results

As mentioned in Section 5.2, each test condition were run multiple times to investigate
how repeatable the experiment was. The variance and standard deviation for each set
of conditions could then be calculated to quantify the variation from the mean. Table
5.5 lists the average variance and standard deviation of SPL in the experiment, split up
for each of the different pipe configurations. Note that the values are given in absolute
terms, but since the SPL is in the order of 50-60 dB, all the relative variances and
standard deviations were less than 2%. This indicates that the experiment was robust
and the variation for each test condition was averaged out by running multiple runs.

The absolute values of the amplitude of the sound waves are not considered important.
Both the amplifier and the sound card were set up to maximize the sound (except for low
frequencies) so that amplitude peaks could be identified more easily. The values of the
SPL (or amplitude) are therefore not as they would be perceived in reality, but this was
not considered critical as we were interested in how the amplitude was damped (i.e. the
differences), not its exact value. The most important point was to maintain an identical
setup throughout the whole experiment. In addition the SPL was calculated without a
reference value (see Section 2.3), meaning they are not comparable to the sound pressure
levels given in table 2.1 directly. The Matlab scripts used to generate sound at specific
frequencies and record sound through the microphone are found in Appendix B.2.

Pipe Variance [dB2] Standard Deviation [dB]
Smooth 373 Hz 0.1244 0.3527
Smooth 445 Hz 0.1370 0.3701
Smooth 550 Hz 0.7137 0.8448
Closed corrugated 0.7251 0.8515
Open corrugated 0.9225 0.9605

Table 5.5 – Average variance and standard deviation for the measured SPL [dB] in the
experiments.

5.3.1 Resonance Frequencies

From the equations in section 2.4.1, we can calculate the theoretical resonance frequencies
of the pipes and compare this to experimental values. The test was done with the loud
speaker spanning frequencies from 60 Hz to 1 kHz, with steps of 1 Hz per second at the
upstream end of the pipe. The sound was recorded with a microphone at the downstream
end using Matlab. With a Fourier transform of the recorded sound vector, we were able
to identify the resonance frequencies as peaks in the frequency plot. A short introduction
to the Fourier transform and Fourier analysis of signals are given in Appendix A.
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5.3.1.1 Smooth Pipe

The speed of sound needed for the calculation in equation 2.14 was estimated using the
formula for speed of sound for an ideal gas

c =
√
γRT

M
. (5.1)

In equation 5.1, c [m/s] is the speed of sound, γ [-] is the adiabatic constant (ratio
of specific heats), R [J/mol ·K] is the universal gas constant, T [K] is the absolute
temperature and M [kg/mol] is the molecular mass of air.

Mode Calculated [Hz] Experiment [Hz] Difference
1 73.6 74.2 0.82%
2 220.8 218.5 -1.04%
3 368.0 365.9 -0.57%
4 515.2 516.0 0.16%
5 662.4 666.0 0.54%
6 809.6 816.0 0.79%
7 956.8 963.9 0.74%

Table 5.6 – Resonance frequencies [Hz] of the smooth pipe.

In table 5.6, we observe that the experiment is very well in agreement with the pre-
dicted resonance frequencies for the smooth pipe. Uncertainties in measurements and
the correction factor taken in to account, this agreement clearly underlines the fact that
resonance frequency is a geometrical property (for a constant speed of sound). It should
be noted, as we can see in figure 5.6, that the resonance frequency for the fundamental
mode was not observed in the plot, but the maximum amplitude between 60 Hz and
80 Hz was found at 74.2 Hz. The other resonance frequencies are clearly identified as
peaks in the plot. Significant low frequency noise can be observed between 0 Hz and
approximately 50 Hz. This can safely be neglected from the results as the sound emitted
had a starting frequency of 60 Hz.

The average distance (in Hz) between each resonance frequency was 147.2 Hz and 148.3
Hz for the calculated resonance frequencies and the experiment respectively. A differ-
ence of 0.74%. The average absolute difference between the calculated values and the
experiment was 0.65%.
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Figure 5.6 – Amplitude of the Fourier transform as function of frequency for the smooth
pipe.

5.3.1.2 Corrugated Pipe

As described in Section 2.4.1, Hirschberg proposed to modify the speed of sound to
account for the cavities when dealing with sound propagation in a corrugated pipe [15].
The formula used for the effective speed of sound is

ceff = c

√
Vin
Vtot

(2.13 revisited)

where c [m/s] is the speed of sound of the medium, Vin [m3] is the inner volume of the
pipe without the corrugations and Vtot [m3] is the total volume of the pipe with the
corrugations.

The bolt is added to the end of the pipe and is included in the pipe length for the smooth
pipe. For the corrugated pipe, both the total pipe volume with and without the bolt
were used to calculate the resonance frequencies. The effective speed of sound calculated
without the bolt gave best match with the experimental resonance frequencies.

Data for the corrugated pipe is shown in table 5.7. With these properties, ceff was
calculated to 274.8 m/s and 304.8 m/s with and without the bolt, respectively. The
Fourier transform of the recorded sound in the corrugated pipe is shown in figure 5.8.
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Figure 5.7 – Sketch of a corrugation in
the corrugated pipe.

Property Value [m]
Total pipe length 1.1430
Corrugated pipe length 1.0000
Bolt length 0.1430
Bolt diameter 0.0035
Pipe diameter 0.0250
Pitch length 0.0050
Cavity width 0.0025
Cavity depth 0.0030

Number of corrugations 199

Table 5.7 – Geometric properties of the
corrugated pipe.

The resonance frequencies are easily identified as amplitude peaks and we can also see
similar low-frequency noise as for the smooth pipe.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Frequency [Hz]

A
m

p
lt
iu

d
e

 Periodogram

Figure 5.8 – Amplitude of the Fourier transform as function of frequency for the corrugated
pipe.

The difference in amplitudes in figure 5.6 and 5.8 comes from the fact that the Fourier
transform of the latter is not divided by the time vector length. This does not influence
the identification of the resonance frequencies. See Appendix A for further information



5.3 Results 57

about the Fourier transform.

Calculated [Hz]
Mode (without bolt) Experiment [Hz] Difference
1 66.0 - -
2 198.0 200.0 1.01%
3 330.0 330.1 0.05%
4 462.0 471.1 1.97%
5 594.0 614.9 3.52%
6 726.0 755.7 4.10%
7 858.0 896.2 4.46%
8 990.0 - -

Table 5.8 – Resonance frequencies [Hz] of the corrugated pipe. Speed of sound calculated
without the bolt.

Calculated [Hz]
Mode (with bolt) Experiment [Hz] Difference
1 59.5 - -
2 178.5 200.0 12.02%
3 297.6 330.1 10.95%
4 416.6 471.1 13.08%
5 535.6 614.9 14.80%
6 654.6 755.7 15.44%
7 773.7 896.2 15.86%
8 892.7 - -

Table 5.9 – Resonance frequencies [Hz] of the corrugated pipe. Speed of sound calculated
with the bolt.

We can see from table 5.8 that a reasonable match with theory is made. Although the
relative difference without the bolt is not that significant (in the area of 3-4%), it is still
around 40 Hz for mode 7.

The average distance between the frequency modes was found in the experiment to be
139.2 Hz, while in theory was calculated to be 119.0 Hz and 132.0 Hz with and without
the bolt, respectively. The percentage difference between experiment and theory was
then 16.97% and 5.45%.

5.3.2 Liquid Injection - Smooth Pipe

Liquid was introduced in the gas flow at different liquid rates, ranging from 1 to 40
ml/min. For the smooth pie, a loud speaker was used to play sound. This allowed us to
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decide the frequency of the sound emitted as we wanted. We chose in our experiment
to use the following frequencies: 373 Hz, 445 Hz and 550 Hz. This because they each
represent a different part of the curve in the Fourier transform (figure 5.6). 373 Hz is
a resonance frequency, meaning a local maximum in the Fourier transform. 445 Hz,
on the other hand, is a local minimum, while 550 Hz is approximately in the middle
between a local maximum and a local minimum. These choices allowed us to investigate
if we could find any fundamental differences between a resonance frequency and other
frequencies in terms of added acoustic damping. In addition, to see if we could find
significant differences in variance between the runs for the three frequencies.
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Figure 5.9 – The frequency spectrum of the Sound Pressure Level [dB] for the smooth
pipe. Flow velocity 3.2 m/s, liquid rate 0 ml/min and frequency 550 Hz. This plot is for
run 2.

In figure 5.9 the SPL [dB] as a function of frequency is plotted, i.e. the Fourier transform
of the recorded sound converted to decibel. The frequency of the emitted sound from
the loud speaker is the vertical line at 550 Hz and we can see that it resonates at 1 100
Hz as well. The resonance frequencies of the pipe are seen as local maxima and we can
clearly see that 550 Hz is approximately in the middle between a local maximum and
local minimum.

Variance plots Figures 5.10 to 5.12 show the sound pressure level as a function of
liquid rate for 373 Hz, 445 Hz and 550 Hz respectively. The tendency is the same for
each frequency; the SPL reduces when the liquid rate increases. Interestingly, the lowest
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Figure 5.10 – Sound pressure level [dB] as a function of liquid rate [ml/min] at a frequency
of 373 Hz for different flow velocities. The variance over 3 runs is shown.

flow velocity (1.6 m/s) has approximately the same SPL value for all frequencies, but
regarding the highest flow velocity (4 m/s) we can observe larger differences between the
frequencies. For example, at liquid rate of 10 ml/min the SPL for 373 Hz is approximately
55 dB, while the SPL for 445 Hz is around 50 dB. This underlines the fact that the
amplitude is higher at resonance frequencies, even though the loudspeaker emits the
same sound level for all frequencies.

From figures 5.10 to 5.12, indications that the SPL decreases the most for the first four
liquid rates can be observed. It is also noticeable how the difference between the four
highest flow velocities decreases as the frequency increases. For 550 Hz, in figure 5.12
they are almost aligned.

Normalized plots Figures 5.13 to 5.15 show the SPL normalized to the non-liquid
SPL as a function of liquid rate. This makes the comparison between different flow rates
easier, since all of them start at the SPL of 1. We can clearly see that the reduction in
SPL is most significant at small liquid rates, from 0 to 5 ml/min. It flattens out for the
larger liquid rates, from 10 to 40 ml/min. This trend is observed for all flow velocities
at all three frequencies, but not that distinct for the lowest flow velocity.

For all three frequencies the reduction in SPL is considerably smaller for the lowest
flow velocity compared to the other four flow velocities. For example, at 373 Hz (figure
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Figure 5.11 – Sound pressure level [dB] as a function of liquid rate [ml/min] at a frequency
of 445 Hz for different flow velocities. The variance over 3 runs is shown.

5.13), the reduction in SPL at flow velocity 1.6 m/s is approximately 2%, while at flow
velocity 4 m/s it is approximately 15%. From the plots, it does not seem as the highest
flow velocity induces the largest added acoustic damping, or vice versa (except for the
lowest flow velocity, which always reduces the least). This contradicts the hypothesis
that higher LVF giver larger added acoustic damping, since that would mean that the
lowest flow rates would have the largest added acoustic damping.

LVF plots SPL as a function of LVF are shown in figures 5.16 to 5.18. Naturally,
we get higher LVF for lower flow rates, as the LVF is a property that describes the
relationship between liquid and gas volume (see Section 4.3), and the volumetric gas
flow rate increases with velocity. Again, it is interesting to see that the SPL reduces
significantly for very small LVFs. For example, at flow rate 4 m/s and frequency 550 Hz,
in figure 5.18, the SPL reduces approximately 7 dB from no-liquid condition to a LVF
equal to 0.25 · 10−4, that is from 0 to 25 ppmv. We also observe in the same figure that
the damping of the SPL for 550 Hz is coherent for all flow rates, except for the lowest
one. That is, the added acoustic damping is merely a function of LVF and independent
of flow velocities (not including the lowest). This relationship is not seen for the other
frequencies.
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Figure 5.12 – Sound pressure level [dB] as a function of liquid rate [ml/min] at a frequency
of 550 Hz for different flow velocities. The variance over 3 runs is shown.
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Figure 5.13 – Normalized sound pressure level [dB] as a function of liquid rate [ml/min]
at a frequency of 373 Hz for different flow velocities, illustrated with lines.
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Figure 5.14 – Normalized sound pressure level [dB] as a function of liquid rate [ml/min]
at a frequency of 445 Hz for different flow velocities, illustrated with lines.
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Figure 5.15 – Normalized sound pressure level [dB] as a function of liquid rate [ml/min]
at a frequency of 550 Hz for different flow velocities, illustrated with lines.
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Figure 5.16 – Sound pressure level [dB] as a function of LVF at a frequency of 373 Hz for
different flow velocities.
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Figure 5.17 – Sound pressure level [dB] as a function of LVF at a frequency of 445 Hz for
different flow velocities.
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Figure 5.18 – Sound pressure level [dB] as a function of LVF at a frequency of 550 Hz for
different flow velocities.
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5.3.3 Liquid Injection - Closed Corrugated Pipe

The experiment for the corrugated pipe was carried out in the same manner as for
the smooth pipe. However, no sound was played from the loud speaker as sound was
expected to be generated from the vortex shedding in the corrugations. The whistling
was disguised by the noise generated in the upstream piping, but was still hearable. This
is illustrated in the frequency plot in figure 5.19 where it is hard to identify a distinct
amplitude maximum.
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Figure 5.19 – The frequency spectrum of the Sound Pressure Level [dB] for the closed
corrugated pipe. Flow velocity 6.28 m/s and liquid rate 5 ml/min. This plot is for run 2.

Although whistling was heard, it was hard to identify in the frequency plots. This is due
to the fact that the noise generated from the upstream piping was amplified at resonance
frequencies and made it difficult to distinguish between whistling and amplified noise.
In figure 5.19, we can see several resonance frequencies with comparable amplitudes.
By measuring the amplitude of the resonance frequency with the highest amplitude, we
were still able to measure the influence of liquid, even though it was unsure whether this
was the whistling frequency or not. In addition, for a given flow velocity, the highest
amplitude did not always occur at the same frequency. In these cases, we measured the
amplitude of the frequency used previously for this flow velocity.

Variance plot Figure 5.20 shows the variance of the four runs at liquid rate. The
average variance for all conditions together was 0.7251 as stated in table 5.5. From
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this plot it is hard to identify any clear trend in the added acoustic damping. For the
six highest flow velocities it looks as if the SPL is more or less constant, while the two
lowest flow velocities have significant decrease in SPL for the lowest liquid rates before
the decrease slows down and the SPL is constant. This is the same trend we saw for the
highest four flow velocities in the smooth pipe.
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Figure 5.20 – Average sound pressure level [dB] as a function of liquid rate [ml/min] for
different flow velocities for closed corrugated pipe. The variance over 4 runs is also shown
as a vertical line.

Normalized plot In figure 5.21, where the sound pressure levels are normalized to
the SPL for no liquid injection, we can observe a small decrease in SPL with respect to
the liquid rate. This was also observed for the smooth pipe, but the decrease is much
less for the closed corrugated pipe. As mentioned, we clearly can see that the SPL for
the two lowest flow velocities decreases sharply for the lower liquid rates and then levels
out for higher liquid rates. This is reversed from the smooth pipe where the highest flow
velocities had the same development.

LVF plot The trend observed for the smooth pipe with sound frequency 550 Hz was
not seen for the corrugated pipe. This can be seen in figure 5.22, where the variation at
similar LVFs is larger than the added acoustic damping in total. Hence, no clear trend
between SPL and LVF could be observed for the corrugated pipe.
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Figure 5.21 – Normalized sound pressure level [dB] as a function of liquid rate [ml/min]
for different flow velocities for closed corrugated pipe.

Frequency plot Figure 5.23 shows the frequencies with the highest amplitude, i.e. the
frequencies where the amplitude was measured, for all runs on all flow velocities. From
this plot we can observe that the results are very well in agreement with the resonance
frequencies from Section 5.3.1.2. Contrary to what we expected, the frequency does not
jump from mode to the next as the flow velocity increases. In fact, the two highest
frequencies were found for the two lowest flow velocities.
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Figure 5.22 – Average sound pressure level [dB] as a function of LVF [-] for different flow
velocities for closed corrugated pipe.
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Figure 5.23 – Frequency [Hz] as a function of liquid rate [ml/min] for different flow velocities
for closed corrugated pipe.
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5.3.4 Liquid Injection - Open Corrugated Pipe

To further investigate how liquid injection influence the whistling amplitude (and pos-
sibly frequency), we conducted an additional experiment with an open corrugated pipe.
By removing the loud speaker, we got an open corrugated pipe and now whistling could
clearly be heard even at low flow rates. Unfortunately, the ejector effect caused addi-
tional air to be sucked in to the pipe. This made the air flow rate and consequently the
velocity an unknown quantity. Furthermore, the LVF could thus not be calculated.
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Figure 5.24 – The frequency spectrum of the Sound Pressure Level [dB] for open corrugated
pipe. Flow rate is equal to 60% of maximum for rotameter 1 and the liquid rate is 1 ml/min.
The plot is for run 2.

In figure 5.24 the whistling is illustrated by the peak of the SPL at 1076.6 Hz. Notice how
the two neighbouring resonance frequencies also can be identified. This indicates that
the whistling consists of more than one frequency, contrary to what has been reported
in literature [1, 9, 54].

Variance plot It can be observed from figure 5.25 that we experienced a larger vari-
ance between the runs for this setup. Even though the relative variance is small, it is of
the same order of magnitude as the total added acoustic damping (between 0 ml/min
and 5 ml/min). However, there were only a few runs that created these relatively large
variances and the overall variance was small. From the plot, indications of a similar
trend as for the smooth pipe can be seen. The SPLs decrease more for the lowest liquid
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Figure 5.25 – Average Sound Pressure Level [dB] as a function of liquid rate [ml/min] for
different flow rates for open corrugated pipe. The variance over 3 runs is also shown as a
vertical line.

rates before the decrease slows down at higher liquid rates.

Normalized plot From figure 5.25 we can observe a similar trend for all flow rates.
This is seen even clearer in figure 5.26 were the SPLs are normalized, The same trend
reported for other pipe configurations can be observed; the SPL decrease sharply for the
lowest flow rates before they tend to flatten out. The flattening of the damping is not
as clearly observed in this case as the maximum liquid rate is 5 ml/min.

Frequency plot In figure 5.27 we notice that the whistling frequency for each flow
rate is constant, except for two runs at 2.5 ml/min and 60% flow rate. The reason for
this is that 60% flow rate was exactly at the border line between two frequencies and just
a small change in the flow rate could change the frequency. This can be seen in figure
5.28, which shows the frequency spectrum of the recorded sound at this flow rate. Here,
two different frequencies (934.3 Hz and 1069.0 Hz) have nearly the same amplitude. This
means that a small decrease in the flow rate would shift the peak frequency from 1069.0
Hz to 934.3 Hz.
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Figure 5.26 – Normalized Sound Pressure Level [dB] as a function of liquid rate [ml/min]
for different flow rates for open corrugated pipe.
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Figure 5.27 – Frequency [Hz] as a function of liquid rate [ml/min] for different flow rates
for open corrugated pipe.
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Figure 5.28 – The frequency spectrum of the Sound Pressure Level [dB] for open corrugated
pipe. Flow rate is equal to 60% of maximum for rotameter 1 and the liquid rate is 2.5 ml/min.
The plot is for run 1.
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5.3.4.1 Interval SPL - Open Corrugated Pipe

For both the corrugated pipes, the measured frequency and amplitude are not exactly
identical for each run. We have therefore investigated how the average SPL for an
interval ±10 Hz around the peak frequency is dampened due to liquid. For the three
flow rates for the open corrugated pipe, the peak frequencies was approximately 1073
Hz, 1214 Hz and 1702 Hz respectively. However, as mentioned in Section 5.3.4, we did
not have a completely consistent frequency mode for the lowest flow rate. I.e. some of
the measurements were taken at a different frequency than the rest, see figure 5.27. This
did not influence the maximum amplitude significantly, but it had a bigger impact when
we calculated the average amplitude around the frequency. Therefore, the lowest flow
rate has been omitted from this part of the results.
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Figure 5.29 – Normalized Sound Pressure Level [dB] as a function of liquid rate [ml/min]
for an interval ±10 Hz around the peak frequency. Open corrugated pipe.

The lines in figure 5.29 represent the average SPLs for each LVF while the circles rep-
resent each run, both normalized to the average SPL for no liquid. We can see that the
damping was much less in percentage for the interval than it was for the single peak fre-
quency. The average SPLs show a close to linear decrease, but we can also observe that
the variation between the runs at each test condition is large compared to this average
decrease in SPL. This means that it would be difficult to estimate the LVF even if the
normalized SPL and the flow rate is known. Also, the variances of these measurement
are not less than the variances of the measurements of the single peak frequency. Hence,
this approach does not seem to offer any advantages regarding robustness.
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5.3.5 Comparision With Theoretical Added Acoustic Damping

In Chapter 4 the acoustic damping and the influence of liquid was investigated. The
acoustic damping was defined in equation 4.1. If we add the acoustic damping coefficient
due to liquid we have two acoustic damping coefficients; α0 and α. The first corresponds
to the damping without liquid and the latter accounts for the damping due to liquid.
Assuming they do not influence each other, the equation for exponential decay of a sound
wave then becomes

A(z) = A0e
−(α0+α)z. (5.2)

Assuming that the damping without liquid is constant for a given flow rate and knowing
that the measuring point is at a fixed distance, z0, we can rearrange to calculate the
additional damping due to liquid in the experiment by the formula:

α = 1
z0

ln
(
Aref
A

)
. (5.3)

In equation 5.3, α [1/m] is the damping coefficient due to liquid, z0 [m] is the distance
from the loud speaker to the microphone, Aref = A0e

−α0z0 [dB] is the reference am-
plitude without liquid and A [dB] is the measured amplitude of the sound. Note that
Aref/A is the inverse of the normalized SPL.

The experimental value of the additional damping was compared to the theoretical value
calculated from equation 4.9. Note that the theoretical value only accounts for the added
acoustic damping due to droplets in the flow. The average values of all runs for each
liquid rate were used to calculate the experimental added damping (A in equation 5.3).
The theoretical value of α was calculated using the frequency, flow rate and liquid rate for
each set of test conditions. However, since the droplet size was unknown, the theoretical
value of α for three different droplet sizes is plotted. These are plotted as lines in figures
5.33 to 5.39. For the smooth pipe and the closed corrugated pipe the droplet sizes shown
are 1 µm, 10 µm and 100 µm. This is changed for the open corrugated pipe to 10 µm,
50 µm and 100 µm to better illustrate the span in the theoretical damping.

5.3.5.1 Added Acoustic Damping - Smooth Pipe

From figure 5.30 to 5.32, we can see that the measured damping exceeds the theoretical
damping for a smooth pipe. This illustrates, that even for a smooth pipe where cor-
rugation fill up does not occur (and attenuate the sound source), we have more effects
influencing the the added acoustic damping than predicted from equation 4.9 (droplets
in mist flow). During the experiments we could observe liquid droplets deposit on the
pipe wall. These droplets could influence the sound field in addition to the mist flow.
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Figure 5.30 – Added acoustic damping coefficient α as a function of LVF at a frequency
of 373 Hz in a smooth pipe.
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Figure 5.31 – Added acoustic damping coefficient α as a function of LVF at a frequency
of 445 Hz in a smooth pipe.
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Figure 5.32 – Added acoustic damping coefficient α as a function of LVF at a frequency
of 550 Hz in a smooth pipe.
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Low LVF Values To further explore the evolution of the added acoustic damping
coefficient, plots for only the lower LVFs are shown in figures 5.33 to 5.35. The plots
covers LVF from 0 to 1 · 10−4, that is from 0 to 100 ppmv.
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Figure 5.33 – Added acoustic damping coefficient α for low LVFs at a frequency of 373 Hz
in a smooth pipe.

From these plots the evolution is seen clearer than in figures 5.30 to 5.32. The added
acoustic damping coefficient from the experiments is a lot larger than the theoretical
value for small LVFs, except for the lowest flow velocity. The lowest flow velocity has
a comparable magnitude to the theoretical added acoustic damping and also develops
more linearly than the other flow velocities. It is seen again how the added acoustic
damping coefficient does not increase linearly with LVF, but that the increase slows
down significantly for LVFs larger than 3 · 10−5.
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Figure 5.34 – Added acoustic damping coefficient α for low LVFs at a frequency of 445 Hz
in a smooth pipe.
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Figure 5.35 – Added acoustic damping coefficient α for low LVFs at a frequency of 550 Hz
in a smooth pipe.
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5.3.5.2 Added Acoustic Damping - Closed Corrugated Pipe

The SPLs for the closed corrugated pipe were measured at different frequencies for
different flow velocities. Since frequency is an input to calculate the theoretical added
acoustic damping, it would hence be different for different flow velocities. The three
highest flow velocities had the measurements at approximately the same frequency and
are therefore presented in figure 5.36. The frequency for these flow velocities was around
320 Hz and this frequency is therefore used as input to calculate the theoretical damping.
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Figure 5.36 – Added acoustic damping coefficient α as a function of LVF for closed corru-
gated pipe. 320 Hz was used as the frequency for the theoretical damping.

Contrary to what we have seen for the smooth pipe, the measured damping is low
compared to the theoretical damping. An important observation is that the acoustic
damping in fact is negative for some of the first LVF values, something that lacks a
reasonable physical explanation. A reason could be that the SPL for no liquid was
measured too low and thus shifted the points downwards.

5.3.5.3 Added Acoustic Damping - Open Corrugated Pipe

For the open corrugated pipe, the sound frequencies measured were significantly larger
than for the closed corrugated and smooth pipe. This meant that the droplet diameter
giving the highest damping coefficient changed (ref. Chapter 4). Therefore the three
droplet sizes used to calculate the theoretical added damping was changed to 10 µm,
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50 µm and 100 µm to better illustrate the span of the theoretical value. In addition, as
the ratio between liquid and gas mass flow appears in equation 4.9, the gas flow rate
has been used as if no ejector effect occurred. The LVFs in the plots are therefore not
aligned with reality. The real LVF is smaller than presented in the plot, meaning that
the experimental values are shifted to the left.
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Figure 5.37 – Added acoustic damping coefficient α as a function of LVF for open corru-
gated pipe and 60% flow rate.

In figures 5.37 to 5.39, we observe a reasonable match with theory. That said, one
should note that the droplet size is unknown and might even change with the LVF.
Thus, the only observation made is that the added acoustic damping is of the same
order of magnitude as theory predicts.



5.3 Results 81

0 1 2 3 4 5 6

x 10
−5

−0.05

0

0.05

0.1

0.15

0.2

0.25

LVF [−]

A
c
o
u
s
ti
c
 d

a
m

p
in

g
 c

o
e
ff
ic

ie
n
t 
[−

]

Added acoustic damping [−] for open corrugated pipe (Theoretical frequency 1214 Hz)

 

 

80%

Theoretical 1e−5m

Theoretical 5e−5m

Theoretical 1e−4m

Figure 5.38 – Added acoustic damping coefficient α as a function of LVF for open corru-
gated pipe and 80% flow rate.
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Figure 5.39 – Added acoustic damping coefficient α as a function of LVF for open corru-
gated pipe and 100% flow rate.
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5.3.6 Evolution Of Resonance Amplitude For Smooth Pipe

To investigate whether the sound amplitude of the smooth pipe increased with time when
a resonance frequency is played, we conducted an additional experiment by playing a
373 Hz sound for 8 minutes to see if we could see any signs of the amplitude increasing
with time. If the feedback mechanism between the acoustics and the pipe geometry
is stronger than the damping of the sound we may experience such an increase of the
amplitude. In figure 5.40 the amplitude is plotted as a function of time. Again, the
absolute value is not of interest.
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Figure 5.40 – Amplitude of sound as a function of time for smooth pipe with sound
frequency playback at 373 Hz.

From the plot we can not observe any increase in the amplitude, and in fact the am-
plitude in the end was calculated in Matlab to be identical to the starting amplitude.
Even though this test was only conducted for 8 minutes, it suggests that playback of a
resonance frequency would not cause the amplitude to increase to infinity. Figure 5.41
shows the Fourier transform where 373 Hz is easily identified. Notice also how other
resonance frequencies are affected.
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Figure 5.41 – SPL as a function of frequency for smooth pipe with sound frequency playback
at 373 Hz.

5.4 Discussion

The experimental results for the smooth pipe revealed no fundamental differences be-
tween the three different frequencies, but the highest frequency (550 Hz) had smallest
variations in SPL between the four highest flow velocities (figure 5.18). Whether this
was due to the frequency being between a local maximum and local minimum in the
frequency plot (figure 5.6), or the frequency being the highest, is difficult to state. But
being a frequency close to the inflection point of the frequency plot means that small
variations in the pipe’s natural frequency, for instance if the temperature rises and change
the speed of sound, will cause larger variation in the amplitude than for the frequencies
close to local maxima and local minima. The reasoning begin that the absolute value
of the derivative here is not close to zero as it will be near a local maxima or minima.
Hence, it points in the direction that higher frequencies give less variation in amplitude
between flow velocities, something that can be investigated further.

The normalized plots for the smooth pipe clearly showed that the added acoustic damp-
ing was increasing sharply (and linearly) with the liquid rate for low liquid rates. This
trend was broken at higher liquid rates where there were basically no added acoustic
damping between the highest liquid rates (the curves flattened out). A possible expla-
nation is that the liquid was not fully entrained as mist flow for the higher liquid rates.
During the experiment we observed droplets deposited on the walls, and at the bottom of
the pipe in particular. This indicates that the real liquid rate, as in the liquid entrained
as droplets in a mist flow, were lower than the liquid rate injected. Liquid droplets on
the wall may attenuate sound differently than liquid droplets present in the gas flow.
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This could be the reason why the sound amplitude did not decrease (as much) for the
higher liquid rates.

The results of the corrugated pipe showed a major difference when compared to the
results of the smooth pipe. For the smooth pipe, the reduction of SPL was largest for
high flow velocities. For the corrugated pipe, however, the reduction of SPL was largest
for low flow velocities (figure 5.21). From Chapter 4, we know that we have more than
one sound-attenuating mechanism for a corrugated pipe. The fill-up of liquid in the
corrugations decreases the vortex shedding in the corrugations and thus dampen the
sound source. In a corrugated pipe, this might be a more powerful sound-attenuating
mechanism than mist flow. When running the experiments for the smooth pipe, which
was transparent, we clearly saw droplets deposited on the wall. Even though the flow
velocities for the corrugated pipe was larger (since the diameter was smaller), this effect
was most probably also present in the corrugated pipe as well, meaning the droplets
filled up in the corrugations and influenced the sound source of the corrugated pipe.
This may have caused the damping to become larger for the lowest flow velocities.

If other means of sound attenuation also have to be taken in to account, i.e. damping
from droplets on the wall or in the corrugations, the two phase flow pattern also have to
be taken in to account. As mentioned in Chapter 1, a homogenization of the flow should
probably happen upstream of the wet gas meter to ensure a uniform LVF over the pipe
cross section. This could be insufficient if liquid is deposited on the wall continuously
even at the low LVFs we tested in the experiment, resulting in a sort of stratified flow.
However, this might not be the case in real world application where the gas and liquid
has been mixed for some time, and the only liquid present would be droplets in a mist
flow. But it has not been investigated what will happen if we experience a sudden
increase in LVF and if all the liquid then still will be present as droplets in mist flow.

For the four highest velocities in the closed corrugated pipe, an increase in the sound
amplitude was seen for the lowest liquid rates (figure 5.21). A reason could be that the
SPL for no liquid was measured too low and hence setting the starting point too low. If
the SPLs were normalized to the values for 1 ml/min liquid rate (and neglecting the one
for no liquid injection), a similar trend would have been seen for all flow velocities. For
the normalized SPLs to be similar for all liquid rates, the SPL for no liquid injection has
to be raised approximately 6 dB. This does not seem reasonable since the variance was
so small for these runs and since all flow velocities had approximately the same SPL for
no liquid injection.

In figure 5.23 the measured frequencies of the peak sound amplitude are shown. We
can observe that the two lowest velocities have the two highest frequencies. This is not
according to theory where we would expect the whistling to start at the lowest resonance
frequency. As the velocity increases, the amplitude of the sound would increase at this
frequency mode before jumping up to the next natural frequency of the pipe. Since the
peak amplitude has higher frequencies for the two lowest flow velocities, it may indicate
that these measurements were of noise rather than whistling.
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To improve the experiments done with the closed corrugated pipe, it would be advisable
to install a muffler upstream of the test pipe in order to attenuate the noise, as done by
Belfroid et al. [54]. This would of course also be beneficial for the smooth pipe, though
there was no problem in measuring the exact frequency from the loud speaker here.
Furthermore, the injection pipe had a small diameter compared to the test pipes and
the expansion at the exit created noise, especially for high flow rates. This could have
been avoided by having an injection tube of the same diameter as the test pipe. Also,
the distance between the air and liquid injection points might not have been sufficient
for the air flow to be uniform over the cross-section. This could have made it more
difficult to entrain all the liquid as droplets. The liquid could also have been injected
with an angle towards the air flow to enhance the entrainment.

In Section 5.3.6 we saw that the results indicated that even if the sound is played at
the resonance frequency, it does not seem to increase towards infinity with time. The
damping mechanisms of the sound waves thus appears to be stronger than the feedback
of the system. If this is in fact the case, it would be possible to have a smooth pipe
wet gas meter continuously emitting the resonance frequency. Or at the very least,
it indicates that the loud speaker can emit the resonance frequency for longer periods
without imposing significant structural stress.

As mentioned, the whistling was not heard easily when testing with the closed corrugated
pipe, but was heard clearly with the open corrugated pipe, even at low flow velocities.
The ejector effect caused more air flow than measured by the rotameter, However, the
reason for the closed corrugated pipe not having the same distinct whistling as the open
one, was most probably not due to a flow velocity that was not large enough. For the
closed corrugated pipe, the maximum flow rate was 13.9 m3/h, while the lowest flow
rate of the open corrugated pipe was 60% of 6.9 m3/h, plus the contribution from the
ejector effect. This contribution was qualitatively measured to be very small, almost
negligible, for the lowest flow rate, but increased significantly with the flow rate. Thus,
there probably exist another explanation to why the closed corrugated pipe did not
have the same distinct whistling. Some further qualitative test indicated that it was
important for the air flow to "hit" the corrugations more directly. For instance, if we
arranged the closed corrugated pipe in a vertical loop the whistling was more apparent.
This was also the case if we put another corrugated pipe at the outlet with a small gap,
then the air flow surely "hit" the first corrugations. This serves as a possible explanation
to why the whistling was louder for the open corrugated pipe. The air sucked in due to
the ejector effect covered the entire cross section of the acrylic cylinder, meaning the air
flow was close to the wall at the inlet. Another improvement of the experiment could
thus be to increase the distance from the air injection point to the inlet of the test pipe,
but this may not have been an issue if the injection pipe had the same diameter as the
test pipe.

At the Department of Acoustics at NTNU some dry gas experiments on corrugated pipes
have been conducted. Ulf Kristiansen used a vacuum cleaner instead of pressurized air
to get air flow in the pipe. This has advantages when it comes to noise generation
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and the air flow could be controlled with a flow meter or even an inline rotameter at
the outlet. With this setup there would be no doubt that the air flow would be over
the entire cross section of the pipe and hence it would interact with the corrugations.
Kristiansen also mentioned that from his experiments, he had experienced that only
the first few corrugations at the inlet were important to generate whistling. Hence, a
possible design of the wet gas meter could be to only have a few corrugations at the inlet
of the pipe to generate sound and then measure the attenuation over a smooth pipe.
This design could however be more prone to the other sound-attenuating mechanisms in
a corrugated pipe, in particular corrugation fill-up. And if the sound source is destroyed,
i.e. the corrugations are completely filled up, the wet gas meter would not work. This
could of course be a case for the corrugated pipe as well, and further research on how
the corrugations fill up over time should be conducted.

5.5 Uncertainties

Some of the uncertainties associated with the experiment have already been mentioned
in the previous sections. In the preceding section the main sources of uncertainties in
the experiment are discussed.

Not all liquid entrained in gas flow For low flow velocities as well as for high liquid
rates we had some indications that not all the liquid was entrained in the gas flow. In the
transparent smooth pipe this was evident with liquid droplets deposited on the wall. We
have reason to believe that this also was the case for the corrugated pipes even though
the flow velocities were larger. This could be due to the liquid exiting the needles at a
certain velocity, making it pass the through the gas flow and down to the bottom of the
pipe. At the bottom of the pipe, the air velocity was smaller since the injection pipe
was approximately in the centre of the pipe. The short distance between the air and
the liquid injection point was not sufficient for the air flow to spread out over the entire
cross section. Of course, due to the no slip boundary condition usually imposed on fluid
flow, the velocity at the walls would be zero anyway.

In the original setup the liquid injection was upstream of the air injection pipe, but this
was difficult to achieve with the final setup. If this have been the case, we might have
had better mixing of the air and water and possibly less liquid droplet deposited on the
wall.

Not identical frequencies in the measurements For the corrugated pipe, the
frequency with the largest SPL was measured for each run. This frequency was not
identical between each runs and it may have influenced the results. However, it seems
reasonable to measure the frequency at which the whistling occurs instead of always
measuring the same frequency. But the frequency response of the pipe could be different
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even between these almost equal whistling frequencies. Hence, a whistling frequency
closer to the resonance frequency of the pipe would have a larger amplitude than one
further away. This is also true for the smooth pipe, even though we can control the
frequency ourselves, the natural frequencies of the pipe might change in time (due to for
instance temperature changes) and hence produce different results.

Fourier transform The accuracy of the FFT algorithm in Matlab also influence the
measurements and it is questionable how well can it differentiate between frequencies
that are only a fraction of a Hertz apart. If it is unable to distinguish between such
small frequency step it would mean that it is more or less random which frequency the
contribution is counted towards. However, the large sample rate (44 100 Hz) of the
signal from the microphone may have reduced this potential problem significantly.

Low-frequency noise The expansion of the air at the outlet of the injection tube and
also background noise from the surroundings may have influenced the measurements. For
the closed corrugated pipe, where the whistling frequency was difficult to identify it may
have caused measurements of the noise rather than the whistling. The same problem
did not occur for the smooth pipe or the open corrugated pipe where it was easy to
distinguish the noise from the sound (the whistling in the case of an open corrugated
pipe). It could be that measuring the noise works as well as measuring the whistling.
The experiment was inconclusive to whether it affected the damping. For instance, take
the two lowest flow velocities for the closed corrugated pipe: the evolution of the SPL as
a function of liquid rate was similar to those of a smooth pipe, even though we suspect
this to be a measurement of the noise rather than the whistling (or a combination of the
two).



	  



Chapter 6

Simulation Of Flow-Acoustics
Model Using COMSOL

In Chapter 3, Popescu and Johansen’s one-dimensional flow-acoustics model for sound
generation in a corrugated pipe was derived. This model was simulated using COMSOL
Multiphysics. The simulations have been set up to resemble the experiments for the
corrugated pipe as much as possible. For instance, the geometries of the corrugated pipe
and the flow velocities from the experiments were used. The boundary conditions in
COMSOL were set to model an open pipe, that is a corrugated pipe open in both ends.

A probe was placed halfway through the pipe (at 0.5 m) to store the acoustic pressure
and acoustic velocity over time. For a detailed explanation regarding the equations,
boundary conditions and parameters used, see Appendix E.

6.1 The Strouhal Number

The Strouhal number was obtained from Popescu and Johansen’s paper [9]. They per-
formed a CFD simulation of a flow around a singe cavity with similar geometry to the
one used in our experiment (see table 6.1). The Strouhal number remained constant
over a range of velocities. This is in accordance with experimental studies [57]. From
the definition of the Strouhal number given in Section 3.3 we have

St = fL

U
. (3.20 revisited)

where f [Hz] is the frequency of the vortex shedding, L [m] the characteristic length and
U [m/s] the velocity of the fluid, we see that the frequency increases linearly with the
velocity for a constant Strouhal number (and characteristic length). The characteristic
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length in our case is the corrugation pitch length. Popescu and Johansen found the
Strouhal number to be approximately 0.6, which is the number used in the simulation.

Geometry description Modelled [mm] Popescu and Johansen [mm]
Pipe internal diameter 25.00 25.40
Corrugation pitch length 5.00 5.30
Corrugation depth 3.00 3.11
Corrugation length 2.50 3.12

Table 6.1 – Modelled corrugated pipe geometry compared to Popescu and Johansen’s
geometry.

6.2 Simulation Results

The complete set of results for all flow velocities can be found in Appendix E. In table
6.2, the peak frequency for each flow velocity is presented.

Number Velocity [m/s] Peak Frequency [Hz] Fourier Coefficient [-]
1 2.343 45.0 1.28 · 106

2 3.124 59.5 2.79 · 106

3 3.905 74.5 3.7 · 106

4 4.697 89.5 3.9 · 106

5 5.489 104.5 1.506 · 107

6 6.281 752.0 8.95 · 107

7 7.074 135.5 4.72 · 107

8 7.866 150.0 9.73 · 107

Table 6.2 – Frequency results.

The acoustic pressure values seen in figures 6.1, 6.3 and 6.5 are unrealistically high. For
example, a sound pressure variation of 10000 Pa (174 dB) for flow velocity 6.281 m/s
(figure 6.3) is comparable to a stun grenade [58]. At flow velocity 7.866 m/s, the acoustic
pressure averages at 40000 Pa (186 dB), which is extremely loud. The theoretical limit
for undistorted sound at atmospheric pressure is 101325 Pa (194 dB), see Chapter 2.
Thus, the values are too high to be realistic and the model fails to correctly predict the
amplitude of the whistling. In Popescu and Johansen’s paper, they also report very high
SPLs (in the area 150-160 dB) [9]. This further underlines the models’ limited ability to
predict correct SPLs.

However, despite the acoustic pressure values being predicted too high, the plots can
still be compared to each other. Also, the FFT (Fast Fourier Transform) results are
not influenced by the amplitude of the plots, since they can be used merely to illustrate
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the frequency of the pressure oscillations and consequently the frequency of the sound.
Moving on, we discuss some underlying physical phenomena based on the results.

At the five lowest flow velocities, it seems as though there is no feedback system between
the pipe’s internal acoustics and the flow-induced acoustics. One clear peak frequency
is registered in the FFT, and it is obvious that the value of the frequency increases with
the velocity, but the magnitude of the acoustic pressure is still quite low compared to
other values, ranging from 50 to 700 Pa. For example, see figure 6.1 and 6.2 for the
results of flow velocity 4.697 m/s. The overall trend showing the frequency increasing
with the flow velocity was also noted by Popescu and Johansen.

Figure 6.1 – Time evolution of the acoustic pressure at U=4.697 m/s.

Then, at flow velocity 6.281 m/s, there is a significant change in both the magnitude of
the acoustic pressure and the frequency values. The magnitude of the acoustic pressure
averages around 10000 Pa and we can observe several frequency peaks (figure 6.3 and
6.4). The phenomenon of several peak frequencies at near resonance conditions was also
observed in our experiment. Popescu and Johansen also reported this, stating that the
system in these cases goes through a minimum in energy. The system is characterized by
more than one dominant frequency before reaching the next frequency mode. Looking
at figure 6.3, we see that the acoustic pressure decays over time. This indicates that the
whistling cannot be sustained at this velocity and the system is unstable, torn between
two states. We have the same picture at flow velocity 7.074 m/s, an unstable system
with different peak frequencies. The largest frequency peaks at flow velocity 6.281 m/s
and 7.074 m/s are 752 Hz and 135.5 Hz, respectively. However, since the absolute peak
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Figure 6.2 – FFT of the acoustic pressure at U=4.697 m/s.

frequency does not dominate at these flow velocities (figure 6.4), but rather has the same
order of magnitude as many others, it does not give added value to the results or the
physical explanation.

At flow velocity 7.866 m/s, however, we see that the model has reached whistling con-
ditions and that the feedback system is constant and sustainable (figure 6.5). There is
a jump in the acoustic pressure magnitude, now averaging around 40000 Pa. We can
therefore say that the model predicts an on-set velocity of whistling somewhere between
7.074 m/s and 7.866 m/s. This was though not supported by the experiment where
whistling was heard for far lower flow velocities.

Noteworthy, we have only one dominant frequency which has the value of 150 Hz, see
figure 6.6. This closely corresponds to the open corrugated pipe’s first natural frequency
2.10, using the effective speed of sound from equation 2.13 (304.8 m/s) and neglecting
the end corrections used in equation 2.14:

fopen = n · ceff
2 · L = 152 Hz. (6.1)

Thus, we have a lock-in between the pipe’s natural frequency and the vortex shedding
frequency, creating a resonating feedback system. We ran an additional simulation with
a higher flow velocity (8.658 m/s) to check whether the frequency would remain around
150 Hz. This was in fact the case, this time exactly 152 Hz, see figure 6.7.
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Figure 6.3 – Time evolution of the acoustic pressure at U=6.281 m/s.

Figure 6.4 – FFT of the acoustic pressure at U=6.281 m/s.
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Figure 6.5 – Time evolution of the acoustic pressure at U=7.866 m/s.

Figure 6.6 – FFT of the acoustic pressure at U=7.866 m/s.
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Figure 6.7 – FFT of the acoustic pressure at U=8.658 m/s.

Figure 6.8 and 6.9 shows the acoustic pressure and acoustic velocity values, respectively,
across the pipe at 1 and 2 seconds. Again, the values themselves are not realistic. The
shape of the waves, however, are coherent with theory. We clearly have a standing wave,
crossing the pipe with half of a wavelength. The acoustic velocity has a 90◦ shift in
phase compared to the acoustic pressure, which also is in accordance with literature, see
Chapter 2.

6.3 Incorporation Of Added Acoustic Damping

The incorporation of the added acoustic damping α could be very rewarding if further
research is conducted on the wet gas meter. Of course, the current model should first of
all return realistic SPL values. But say a rigid model is in place, the ability to simulate
acoustic damping would be very beneficial in a future design process.

It would seem intuitive to modify the wave equation to account for added acoustic
damping instead of the source equation. This because the added damping from mist flow
in theory influences only the sound propagation, not the source (i.e. the corrugation).
Some work has been done on this matter; Holm and Näsholm published an article on
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Figure 6.8 – Acoustic pressure wave across the pipe at t = 0, 1 and 2 seconds.

Figure 6.9 – Acoustic velocity wave across the pipe at t = 0, 1 and 2 seconds.
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wave equation with lossy media [59]. They proposed the equation

∇2u− 1
c2

0

∂2u

∂t2
+ τασ

∂α

∂tα
∇2u− τβε

c2
0

∂β+2u

∂tβ+2 = 0. (6.2)

In equation 6.2, α and β can be any fraction, hence this is a wave equation containing
fractional derivatives. Fractional derivatives, a branch of fractional calculus, is a newly
emerging part of calculus which can be used to describe anomalous diffusion processes
[60]. The main principle is that it is possible to perform operations like derivation and
integration fractionally and not only discretely at integer values (as in the first, second
and third derivative for instance). It appears in the last two terms of equation 6.2
which are the loss terms. They are interpreted in terms of their effect on absorption and
sound speed dispersion. The first one contains a second order spatial derivative and a
fractional time derivative, whereas the second term contains a higher order fractional
time derivative [59]. As for the general wave equation (equation 2.2), u is the dependent
variable and can represent for instance displacement, pressure or density and c0 [m/s]
is the speed of wave propagation. In addition, in equation 6.2 τσ [s] and τε [s] are the
retardation time and relaxation time respectively [59].

The equation is an example of the research going on in this area and gives insight in
the future possibilities or mathematical modelling of sound attenuation. Combining
this with models of sound generation in corrugated pipe calls for future research and
may make it possible to accurately model the sound generation and attenuation in a
corrugated pipe in the future.



	  



Chapter 7

Discussion

From the theoretical study done in Chapters 2 to 4 strong indications that liquid influence
the amplitude of the sound waves were found. Also, from equation 4.9 the relationship
between LVF and added acoustic damping due to droplets in a gas flow were assumed to
be linear. These hypotheses were tested experimentally. The theoretical study revealed
that this area is still in research and the theories presented are widely accepted but the
phenomenon is still not fully understood. This was further illustrated by the fact that it
currently does not exists mathematical equations capable of precisely describing acoustic
damping in a two-phase flow.

In the sensitivity analysis we revealed that the governing equation for added acoustic
damping due to droplets in the gas flow is highly dependent on the fluid properties. This
means that precise knowledge of the operating conditions as well as the composition
of the gas flow have to been known to estimate this value accurately. However, the
experiment showed that this equation could not predict the acoustic damping alone.
The total added acoustic damping from the liquid injection was found to be significantly
larger than what was predicted in theory. That means that even for a smooth pipe,
most likely more mechanisms than the droplets in mist flow contributed to the acoustic
damping. For a corrugated pipe this has been proposed in literature, but the same result
were not expected for the smooth pipe. This may indicate that the gas velocity were too
low to fully entrain the droplets in the flow and hence some liquid did not travel through
the pipes as mist flow, but were deposited on the wall. This may also explain why the
acoustic damping slowed down as the liquid rate increased, i.e. more liquid were not
entrained and instead it was deposited at the walls or created a kind of stratified flow.
With this in mind, additional experiment can be conducted with higher gas velocities to
see if the same pattern emerges there as well.

The result from the experiment then may indicate that not only is the acoustic damping
dependent on the fluid properties, but also on the flow pattern. Different mechanisms
contribute in different ways to the overall damping. The magnitude of each contribu-
tion have not been investigated, thus the difference in acoustic damping from a droplet

99



100 7 Discussion

suspended in a gas flow and a similar droplet at the wall remains therefore unknown.

The smooth pipe offers an advantage in the form of flexibility to the sound emitted.
We are free to choose at which frequency we want to measure the acoustic damping.
Although no distinct difference between the frequencies were discovered, we still have
the possibility to chose frequencies other than the resonance frequencies. The experiment
described in Section 5.3.6 did not indicate that the amplitude at the resonance frequency
would increase towards infinity, but this should be investigated further as it may cause
structural stress on the pipe. It may, however, be solved by emitted short sound pulses
to measure the LVF at discrete times rather than continuously. However, this again will
decrease the reliability of the wet gas meter. One goal has to be to quickly discover when
the LVF increase beyond certain limits, especially when considering failure of process
components and this may not be done as quickly if not a continuous sound can be emitted
from the loud speaker.

The same problem actually arise for the corrugated design as well; here the whistling
will always be at one of the pipe’s natural resonance frequencies. From the experiments
done with the open corrugated pipe we did not see any increase in the SPL as the flow
rate increase, in fact the highest flow rate had the lowest SPLs. Despite this, we should
not forget that the singing riser phenomenon, which this technology strictly speaking
is based upon, may induce significant mechanical stress on the pipes. Eventually this
means that the whistling of the pipes has to occur in a controlled manner to avoid
this. Whether it is sufficient to reduce the gas velocity and consequently the whistling
amplitude to a low level or if other means have to be imposed have yet to be answered.

Still, even though we could not conclude this from our experiments, it is reported in
literature that the amplitude increases as the flow velocity increases. When the singing
moves from one frequency mode to another a decrease in sound amplitude can be seen
[9]. This comes from the fact that the power transmitted from the wave is proportional
to both the amplitude and frequency squared [61]. Since the singing occurs at one of
the pipe’s natural frequency modes, as more acoustic power is generated (by higher flow
velocity), either the amplitude or the frequency have to increase.

The gas velocity range of the wet gas meter, if an extraction tube is used, can be
controlled with the diameter. This may solve challenges considering the amplitude of
the singing, at least control the problem. Lower gas velocity induces less acoustic power
and less power is transported by acoustic waves. Thus it will take more time before the
threshold of fatal mechanical stress is reached, but still the flow in the wet gas meter
have to controlled with a valve to stop the singing from the corrugated pipe. This
flexibility is only offered with the extraction tube design. However, the smooth pipe
could be installed inline as the imposed mechanical stress can be controlled with the
loud speaker.

COMSOL simulations of the acoustic model for a corrugated pipe yielded only partially
satisfying results. The down side was that the simulation results did not return realistic
values for the acoustic pressure. The model could have been useful for design purposes,
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for example in scaling an eventual wet gas meter. One reason for the failure to return
realistic amplitude values could be the choice of model parameters, which not always had
numerous sources in literature. Another reason could be that COMSOL does not utilize
sophisticated enough numerical schemes for these equations. Popescu and Johansen used
advanced numerical schemes to solve their model, which were partially developed with
this model in mind [9]. It could be that the non-linearity of the model makes COMSOL
too general in this particular case.

However, the up side was that the model seemed to simulate the physical phenomena
in a correct manner. The frequency increased with the flow velocity before reaching the
lock-in frequency of the corrugated pipe. This frequency matched the pipe’s natural
frequency accurately Furthermore, the development of a standing wave could readily be
seen. The acoustic velocity had a shift of 90◦ in phase with the acoustic pressure, also
coherent with theory.

Despite this, if the simulations of the aero-acoustics in a corrugated pipe is to continue,
the model would need a thorough review. If a rigid model is in place, it would very
interesting to incorporate acoustic damping in the simulation. The model described in
Section 6.3 shows that there is work undergoing on the subject and simulations including
acoustic damping might not be that far ahead.

To further pursue this technology an analysis based on the need, the costs and the
prospected accuracy offered should be made. From the experiments we got strong in-
dications that the acoustic damping is increased, even for very low LVFs and the main
principle is thus demonstrated. Whether the technology can be matured to implemen-
tation is still difficult to state, as this is subject to solving the remaining challenges.



	  



Chapter 8

Conclusion

The experiment strongly indicated acoustic damping due to liquid, even for very low
LVFs. The main principle for the technology (wet gas meter) to work is thus supported.
Despite this, the experiment, as well as the sensitivity analysis, also revealed numerous
other parameters influencing the acoustic damping. In particular, the properties may
change considerably over time, influencing the acoustic damping. If a wet gas meter is
to be based on acoustic damping, such issues has to be solved. This calls for precise
knowledge of the flow and the ambient conditions.

Furthermore, the experiment could not reveal any significant advantages for either a
smooth or corrugated design. While the corrugated pipe has an operational advantage
in form of not needing a loud speaker, it may cause the setup to be more vulnerable in
measurement accuracy. However, no such clear difference in accuracy was indicated by
our experiments. The smooth pipe, on the other hand, offers the possibility to choose
the frequency and thus use an exact frequency to measure the damping.

The simulation of the one-dimensional flow-acoustics model was partially satisfying.
Some features of the physical phenomena behind sound generation in a corrugated pipe
were observed. For example, it predicted the first resonance frequency reasonably well.
This can however be predicted from simpler formulas found in literature. The model
did also capture the resonance mechanism, thus predicting the lock-in frequency. The
main drawback was that it failed to give realistic values for the SPL, meaning that it can
not be used to estimate the whistling amplitude. In addition, acoustic damping of two
phase flow has yet to be implemented in the model. This calls for an improvement of the
model with more sophisticated numerical differentiation schemes and a wave equation
taking lossy media into account.

At this early stage of the technology development, there are still several unanswered
questions that needs further research. That said, this study strongly suggests that even
very low liquid contents increase the acoustic damping and therefore a wet gas meter
based upon attenuation of sound waves remains a possibility.
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Appendix A

Fourier Analysis

In analysis of periodic signals, Fourier analysis and the Fourier transformation are of sig-
nificant importance. Fourier series are infinite series replicating general periodic signals
with simple sine and cosine functions [29]. Furthermore, in the digital age we currently
live in, the discrete Fourier transform can analyse the frequencies in digital signals such
as voice or music using the fast Fourier transform algorithm. A brief introduction to the
Fourier transforms is given to support the analysis of the sound signals in the experiment.
The derivation is found in Kreyszig "Advanced Engineering Mathematics" [29].

A.1 Fourier Transform Of Continuous Functions

A periodic function is defined as

f(x+ np) = f(x) for n = 1, 2, 3... (A.1)

meaning that the function repeats itself over a certain distance (or time). Equation A.1
also implies that if the function f(x) had period p it also has period 2p. For a general
function f(x) of period 2L, it can be represented by the Fourier series

f(x) = a0 +
∞∑
n=1

(
an cos nπ

L
x+ bn sin nπ

L
x

)
(A.2)

where the Fourier coefficients are given by the Euler formulas:

a0 = 1
2L

∫ L

−L
f(x) dx (A.3)
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an = 1
L

∫ L

−L
f(x) cos nπx

L
dx (A.4)

bn = 1
L

∫ L

−L
f(x) sin nπx

L
dx. (A.5)

The interpretation of the Fourier coefficients is the magnitude of this frequency (given
as fn = n/2L) in the signal. Figure A.1 shows the first five partial sums of the Fourier
series of a square wave [62]. It can clearly be seen how the Fourier series replicate the
original function.

A.2 Discrete Fourier Transform

In Matlab, a built-in function takes the discrete fast Fourier transform of a vector with
a given sample rate. The sample rate is the time between each value in the vector.
Equations A.2 to A.5 can only be used for a function defined continuously over some
interval. Digital signals on the other hand are given as values at finite many points.
Certain modification has to be done to extend Fourier analysis to this case. The regular
Fourier transform have to be replaced by the discrete Fourier transform and an important
conditions is that the values are sampled with fixed intervals. I.e. at times

tk = 2πk
N

, k = 0, 1, 2,. . . , N − 1 (A.6)

where 2π (for simplicity) is the period of the sampled function, f(t), and N is the number
of measurements. The goal is to determine a complex trigonometric polynomial, q(t)
that interpolates f(t) at the nodes in equation A.6. In other words,

f(tk) = q(tk) =
N−1∑
n=0

cne
intk , k = 0, 1, 2,. . . , N − 1. (A.7)

The object now is to determine the coefficients cn to satisfy equation A.7, then an
analysis of the frequencies spectrum in the discrete signal can be done. To determine
these, sums are used instead of integrals. Equation A.7 is multiplied by e−imtk and the
sum over k from 0 to N − 1 is taken. The order of summation is interchanged and tk is
replaced from equation A.6 to get

N−1∑
k=0

f(tk)e−imtk =
N−1∑
k=0

N−1∑
n=0

cne
i(n−m)tk =

N−1∑
k=0

N−1∑
n=0

cne
i(n−m)2πk/N . (A.8)
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Figure A.1 – The first four partial sums of the Fourier series of a square wave [62].

It can be proven that the right hand side of equation A.8 is equal to cmN . For simplicity
set

ei(n−m)2πk/N =
(
ei(n−m)2π/N

)k
= rk. (A.9)

For integers n = m we get r = e0 = 1, hence the sum of these terms over k equals N
(the number of these terms). On the other hand for n 6= m, r is no longer equal to one,
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but the geometric sum gives

N−1∑
k=0

rk = 1− rN
1− r = 0 (A.10)

because rN = 1. This can be shown by the fact that

rN = ei(n−m)2πk = cos 2πk(n−m) + i sin 2πk(n−m) = 1 + 0 = 1. (A.11)

Hence the right hand side of equation A.8 equals cmN [29]. Since only the terms where
n = m matters, we can write n for m in equation A.8 . The formula for calculating the
discrete complex Fourier coefficients is then given as

cn = 1
N

N−1∑
k=0

f(tk)e−intk , n = 0, 1, 2,. . . , N − 1. (A.12)

Notice the clear resemblance with equations A.4 and A.5. The fast Fourier transform
(FFT) algorithm, used in for instance Matlab, successively halves the problem size N
and hence the factor 1/N is dropped from the definition of the discrete Fourier transform.
This is also the reason why one usually define the window length, N , to be extended
with zeros to become a power of two to increase the speed of the algorithm. And also
the reason why the coefficients have to be divided by the time vector length to get the
"correct" coefficient, as seen in the Matlab files in Appendix B. The discrete Fourier
transform of a discrete signal ~f = [f0 · · · fn−1]T is then the vector ~̂f = [f̂0 · · · f̂n−1] with
the components given as [29]

f̂n = Ncn =
N−1∑
k=0

f(tk)e−intk , n = 0, 1, 2,. . . , N − 1. (A.13)

Each complex coefficient hence corresponds to a given frequency and the vector of the
discrete Fourier transforms gives the frequency spectrum of the signal.
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Matlab Files

B.1 Sensitivity Analysis

B.1.1 Droplet Size

1 %% PARAMETRIC STUDY OF ACOUSTIC DAMPING DUE TO DROPLETS
2 %
3 % Mix: Air and Water
4 % Water properties: http://webbook.nist.gov/chemistry/fluid/
5 % Air properties:
6 %
7 % Parameters studied:
8 % LIQUID INJECTION RATE
9 % DROPLET SIZE

10 %
11 % Frequency fixed to 1000 Hz = 6*pi*1000 rad/s
12 % ===========================================================
13 % ===========================================================
14

15 clear all; close all; clc; % Cleaning up
16

17 gridNumber = 100; % Number of points in the ...
parameter

18

19 %% GAS PROPERTIES (AIR) @1 atm, 15C
20 c_gas = 343.3; % Speed of sound [m/s]
21 my = 1.802e-05; % Gas viscosity [Pa*s]
22 rho_g = 1.225; % Gas density [kg/m^3]
23 gamma = 1.4; % Isentropic constant [-]
24 cp = 1007; % Specific heat of gas [J/kgK]
25 cv = cp/gamma; % Specific heat of gas [J/kgK]
26 kappa = 0.02476; % Thermal conductivity of ...

gas [W/mK]

123
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27

28 %% LIQUID PROPERTIES (WATER) @1 atm, 15C
29 rho_l = 999.10; % Liquid density [kg/m^3]
30 cs = 4.1885e3; % Specific heat of ...

droplets [J/kgK]
31

32 %% GENEREAL PROPERTIES
33 omega = 200; % Frequency [Hz]
34 lambda = (c_gas/omega); % Wave length [m]
35 dp = linspace(1e-10,100e-6,gridNumber); % Droplet diameter [m]
36 pipe_d = 35e-3; % Pipe diameter [m]
37 m = ((4*pi*(dp/2).^3)/3)*rho_l; % Droplet mass [kg]
38 LRStep = 0.5; % Step size in liquid rate ...

vector [ml/min]
39 liquidRate = 0:LRStep:100; % Injected liquid [ml/min]
40 U = 3; % Gas velocity [m/s]
41 gasMass = ((pi*(pipe_d/2)^2))*rho_g*U; % Mass of gas [kg/s]
42 liquidMass = (liquidRate./(60*1000*1000))*rho_l; % Mass of liquid [kg/s]
43 alphaP = liquidMass/gasMass; % Liquid Mass Fraction [-]
44 LVF = alphaP*rho_g/rho_l; % Liquid Volume Fraction [-]
45

46 %% CALCULATING THE ACOUSTIC DAMPING COEFFICIENT
47 % Initialize matrices
48 alpha = zeros(length(liquidRate),length(dp));
49 viscous = zeros(length(liquidRate),length(dp));
50 thermal = zeros(length(liquidRate),length(dp));
51

52 for i=1:length(liquidRate)
53

54 tauN = m./(6*pi*my.*(dp./2));
55 tauT = m.*cs./(4*pi*kappa.*(dp./2));
56

57 % CALCULATING THE VISCOUS AND THERMAL DAMPING
58 viscous(i,:) = (omega.*tauN)./(1+(omega.*tauN).^2);
59 thermal(i,:) = ((gamma-1).*cs.*omega.*tauT)./(cp.*(1+(omega.*tauT).^2));
60

61 alpha(i,:) = ((alphaP(i))./(2*lambda)).*(viscous(i,:) + thermal(i,:));
62 end
63

64 %% PLOTTING
65

66 % Defining plot indices for easier plotting and legend
67 %plotIndices = [1/LRStep floor(length(liquidRate)/4) ...

floor(length(liquidRate)/2)...
68 % floor(3*length(liquidRate)/4) length(liquidRate)];
69 plotIndices = [1/LRStep 2.5/LRStep 5/LRStep 10/LRStep 20/LRStep...
70 40/LRStep length(liquidRate)-1] + 1;
71

72 figure(1)
73 plot(dp,alpha(plotIndices,:))
74 xlabel('Droplet Size [m]')
75 ylabel('Alpha [-]')
76 title('Damping coefficient as function of droplet size')
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77 legend([num2str(liquidRate(plotIndices)'),...
78 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
79 'location','Best')
80

81 figure(2)
82 surf(dp,liquidRate,alpha,'Edgecolor','none');
83 xlabel('Droplet Size [m]')
84 ylabel('Liquid Rate [ml/min]')
85 zlabel('Alpha [-]')
86 title('Alpha as function of liquid rate and droplet size')
87

88 % RATIO BETWEEN VISCOUS AND THERMAL DAMPING
89 visTheRatio = viscous./thermal;
90

91 % Plotting
92 figure(3)
93 surf(dp,liquidRate,visTheRatio,'Edgecolor','none');
94 xlabel('Droplet Size [m]')
95 ylabel('Liquid Rate [ml/min]')
96 zlabel('Ratio Between Viscous and Thermal Damping')
97 title('Ratio of Viscous and Thermal as function of droplet size')
98

99 figure(4)
100 plot(dp,visTheRatio(plotIndices,:))
101 xlabel('Droplet Size [m]')
102 ylabel('Ratio Between Viscous and Thermal Damping [-]')
103 title('Ratio of Viscous and Thermal as function of droplet size')
104 legend([num2str(liquidRate(plotIndices)'),...
105 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
106 'location','Best')
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B.1.2 Liquid Density

1 %% PARAMETRIC STUDY OF ACOUSTIC DAMPING DUE TO DROPLETS
2 %
3 %
4 % Mix: Methane and Water
5 % liquid and gas properties found on: ...

http://webbook.nist.gov/chemistry/fluid/
6 %
7 % Parameters studied:
8 % LIQUID INJECTION RATE
9 % LIQUID DENSITY

10 %
11 % Droplet size set to 100e-6 meter (diameter)
12 % ===========================================================
13 % ===========================================================
14

15 clear all; close all; clc; % Cleaning up
16

17 gridNumber = 100; % Number of points in the ...
parameter

18

19 %% GAS PROPERTIES (AIR) @1 atm, 15C
20 c_gas = 343.3; % Speed of sound [m/s]
21 my = 1.802e-05; % Gas viscosity [Pa*s]
22 rho_g = 1.225; % Gas density [kg/m^3]
23 gamma = 1.4; % Isentropic constant [-]
24 cp = 1007; % Specific heat of gas [J/kgK]
25 cv = cp/gamma; % Specific heat of gas [J/kgK]
26 kappa = 0.02476; % Thermal conductivity of ...

gas [W/mK]
27

28 %% LIQUID PROPERTIES (WATER) @1 atm, 15C
29 rho_l = 100:100:4000; % Liquid density [kg/m^3]
30 cs = 4.1885e3; % Specific heat of ...

droplets [J/kgK]
31

32 %% GENEREAL PROPERTIES
33 omega = 200; % Frequency [Hz]
34 lambda = (c_gas/omega); % Wave length [m]
35 dp = 100e-6; % Droplet diameter [m]
36 pipe_d = 35e-3; % Pipe diameter [m]
37 m = ((4*pi*(dp/2).^3)/3)*rho_l; % Droplet mass [kg]
38 LRStep = 0.5; % Step size in liquid rate ...

vector [ml/min]
39 liquidRate = 0:LRStep:100; % Injected liquid [ml/min]
40 U = 3; % Gas velocity [m/s]
41 gasMass = ((pi*(pipe_d/2)^2))*rho_g*U; % Mass of gas [kg/s]
42

43 tauN = m./(6.*pi.*my.*(dp./2));
44 tauT = m.*cs./(4*pi*kappa.*(dp./2));
45
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46 %% CALCULATING THE ACOUSTIC DAMPING COEFFICIENT
47 % Initialize matrices
48 alpha = zeros(length(liquidRate),length(rho_l));
49 viscous = zeros(length(liquidRate),length(rho_l));
50 thermal = zeros(length(liquidRate),length(rho_l));
51 liquidMass = zeros(length(liquidRate),length(rho_l));
52 alphaP = zeros(length(liquidRate),length(rho_l));
53 LVF = zeros(length(liquidRate),length(rho_l));
54

55 for i=1:length(liquidRate)
56 liquidMass(i,:) = (liquidRate(i)./...
57 (60*1000*1000)).*rho_l; % Mass of liquid [kg/s]
58 alphaP(i,:) = liquidMass(i,:)/gasMass; % Liquid Mass Fraction [-]
59 LVF(i,:) = alphaP(i,:)*rho_g./rho_l; % Liquid Volume ...

Fraction [-]
60

61 % CALCULATING THE VISCOUS AND THERMAL DAMPING
62 viscous(i,:) = (omega.*tauN)./(1+(omega.*tauN).^2);
63 thermal(i,:) = ((gamma-1).*cs.*omega.*tauT)./(cp.*(1+(omega.*tauT).^2));
64

65 alpha(i,:) = ((alphaP(i,:))./(2*lambda)).*(viscous(i,:) + thermal(i,:));
66 end
67

68 %% PLOTTING
69

70 % Defining plot indices for easier plotting and legend
71 plotIndices = [1/LRStep 2.5/LRStep 5/LRStep 10/LRStep 20/LRStep...
72 40/LRStep length(liquidRate)-1] + 1;
73

74 figure(1)
75 plot(rho_l,alpha(plotIndices,:))
76 xlabel('Liquid Density [kg/m3]')
77 ylabel('Alpha [-]')
78 title('Damping coefficient as function of liquid density')
79 legend([num2str(liquidRate(plotIndices)'),...
80 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
81 'location','NorthEast')
82

83 figure(2)
84 surf(rho_l,liquidRate,alpha,'Edgecolor','none');
85 xlabel('Liquid Density [kg/m3]')
86 ylabel('Liquid Rate [ml/min]')
87 zlabel('Alpha [-]')
88 title('Alpha as function of liquid rate and liquid density')
89

90 %% RATIO BETWEEN VISCOUS AND THERMAL DAMPING
91 visTheRatio = viscous./thermal;
92

93 % Plotting
94 figure(3)
95 surf(rho_l,liquidRate,visTheRatio,'Edgecolor','none');
96 xlabel('Liquid Density [kg/m3]')
97 ylabel('Liquid Rate [ml/min]')



128 B Matlab Files

98 zlabel('Ratio Between Viscous and Thermal Damping')
99 title('Ratio of Viscous and Thermal as function of liquid rate and ...

liquid density')
100

101 figure(4)
102 plot(rho_l,visTheRatio(plotIndices,:))
103 xlabel('Liquid Density [kg/m3]')
104 ylabel('Ratio Between Viscous and Thermal Damping [-]')
105 title('Ratio of Viscous and Thermal as function of liquid density')
106 legend([num2str(liquidRate(plotIndices)'),...
107 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
108 'location','Best')
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B.1.3 Gas Viscosity

1 %% PARAMETRIC STUDY OF ACOUSTIC DAMPING DUE TO DROPLETS
2 %
3 % Mix: Air and Water
4 % Water properties: http://webbook.nist.gov/chemistry/fluid/
5 % Air properties:
6 %
7 % Parameters studied:
8 % LIQUID INJECTION RATE
9 % GAS VISCOSITY

10 %
11 % Droplet size set to 100e-6 meter (diameter)
12 % ===========================================================
13 % ===========================================================
14

15 clear all; close all; clc; % Cleaning up
16

17 gridNumber = 100; % Number of points in the ...
parameter

18

19 %% GAS PROPERTIES (AIR) @1 atm, 15C
20 c_gas = 343.3; % Speed of sound [m/s]
21 my = 1e-7:1e-06:1e-4; % Gas viscosity [Pa*s]
22 rho_g = 1.225; % Gas density [kg/m^3]
23 gamma = 1.4; % Isentropic constant [-]
24 cp = 1007; % Specific heat of gas [J/kgK]
25 cv = cp/gamma; % Specific heat of gas [J/kgK]
26 kappa = 0.02476; % Thermal conductivity of ...

gas [W/mK]
27

28 %% LIQUID PROPERTIES (WATER) @1 atm, 15C
29 rho_l = 999.10; % Liquid density [kg/m^3]
30 cs = 4.1885e3; % Specific heat of ...

droplets [J/kgK]
31

32 %% GENEREAL PROPERTIES
33 omega = 200; % Frequency [rad/s]
34 lambda = (c_gas/omega); % Wave length [m]
35 dp = 100e-6; % Droplet diameter [m]
36 pipe_d = 35e-3; % Pipe diameter [m]
37 m = ((4*pi*(dp/2).^3)/3)*rho_l; % Droplet mass [kg]
38 LRStep = 0.5; % Step size in liquid rate ...

vector [ml/min]
39 liquidRate = 0:LRStep:100; % Injected liquid [ml/min]
40 U = 3; % Gas velocity [m/s]
41 gasMass = ((pi*(pipe_d/2)^2))*rho_g*U; % Mass of gas [kg/s]
42 liquidMass = (liquidRate./(60*1000*1000))*rho_l; % Mass of liquid [kg/s]
43 alphaP = liquidMass/gasMass; % Liquid Mass Fraction [-]
44 LVF = alphaP*rho_g/rho_l; % Liquid Volume Fraction [-]
45

46 %% CALCULATING THE ACOUSTIC DAMPING COEFFICIENT
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47 % Initialize matrices
48 alpha = zeros(length(liquidRate),length(my));
49 viscous = zeros(length(liquidRate),length(my));
50 thermal = zeros(length(liquidRate),length(my));
51

52 for i=1:length(liquidRate)
53

54 tauN = m./(6.*pi.*my.*(dp./2));
55 tauT = m.*cs./(4*pi*kappa.*(dp./2));
56

57 % CALCULATING THE VISCOUS AND THERMAL DAMPING
58 viscous(i,:) = (omega.*tauN)./(1+(omega.*tauN).^2);
59 thermal(i,:) = ((gamma-1).*cs.*omega.*tauT)./(cp.*(1+(omega.*tauT).^2));
60

61 alpha(i,:) = ((alphaP(i))./(2*lambda)).*(viscous(i,:) + thermal(i,:));
62 end
63

64 %% PLOTTING
65

66 % Defining plot indices for easier plotting and legend
67 plotIndices = [1/LRStep 2.5/LRStep 5/LRStep 10/LRStep 20/LRStep...
68 40/LRStep length(liquidRate)-1] + 1;
69

70 figure(1)
71 plot(my,alpha(plotIndices,:))
72 xlabel('Gas Viscosity [Pa*s]')
73 ylabel('Alpha [-]')
74 title('Damping coefficient as function of viscosity')
75 legend([num2str(liquidRate(plotIndices)'),...
76 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
77 'location','Best')
78

79 figure(2)
80 surf(my,liquidRate,alpha,'Edgecolor','none');
81 xlabel('Gas Viscosity [Pa*s]')
82 ylabel('Liquid Rate [ml/min]')
83 zlabel('Alpha [-]')
84 title('Alpha as function of liquid rate and viscosity')
85

86 % RATIO BETWEEN VISCOUS AND THERMAL DAMPING
87 visTheRatio = viscous./thermal;
88

89 % Plotting
90 figure(3)
91 surf(my,liquidRate,visTheRatio,'Edgecolor','none');
92 xlabel('Gas Viscosity [Pa*s]')
93 ylabel('Liquid Rate [ml/min]')
94 zlabel('Ratio Between Viscous and Thermal Damping')
95 title('Ratio of Viscous and Thermal as function of liquid rate and ...

viscosity')
96

97 figure(4)
98 plot(my,visTheRatio(plotIndices,:))
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99 xlabel('Gas Viscosity [Pa*s]')
100 ylabel('Ratio Between Viscous and Thermal Damping [-]')
101 title('Ratio of Viscous and Thermal as function of viscosity')
102 legend([num2str(liquidRate(plotIndices)'),...
103 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
104 'location','Best')
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B.1.4 Sound Frequency

B.1.4.1 Liquid Rate

1 %% PARAMETRIC STUDY OF ACOUSTIC DAMPING DUE TO DROPLETS
2 %
3 %
4 % Mix: Methane and Water
5 % liquid and gas properties found on: ...

http://webbook.nist.gov/chemistry/fluid/
6 %
7 % Parameters studied:
8 % FREQUENCY
9 % LIQUID RATE

10 %
11 % Droplet size set to 100e-6 m (diameter)
12 % ===========================================================
13 % ===========================================================
14 clear all; close all; clc; % Cleaning up
15

16 gridNumber = 100; % Number of points in the ...
parameter

17

18 %% GAS PROPERTIES (AIR) @1 atm, 15C
19 c_gas = 343.3; % Speed of sound [m/s]
20 my = 1.802e-05; % Gas viscosity [Pa*s]
21 rho_g = 1.225; % Gas density [kg/m^3]
22 gamma = 1.4; % Isentropic constant [-]
23 cp = 1007; % Specific heat of gas [J/kgK]
24 cv = cp/gamma; % Specific heat of gas [J/kgK]
25 kappa = 0.02476; % Thermal conductivity of ...

gas [W/mK]
26

27 %% LIQUID PROPERTIES (WATER) @1 atm, 15C
28 rho_l = 999.10; % Liquid density [kg/m^3]
29 cs = 4.1885e3; % Specific heat of ...

droplets [J/kgK]
30

31 %% GENEREAL PROPERTIES
32 omega = linspace(0,2000,gridNumber); % Frequency [Hz]
33 lambda = (c_gas./omega); % Wave length [m]
34 dp = 100e-6; % Droplet diameter [m]
35 pipe_d = 35e-3; % Pipe diameter [m]
36 m = ((4*pi*(dp/2).^3)/3)*rho_l; % Droplet mass [kg]
37 LRStep = 0.5; % Step size in liquid rate ...

vector [ml/min]
38 liquidRate = 0:LRStep:100; % Injected liquid [ml/min]
39 U = 3; % Gas velocity [m/s]
40 gasMass = ((pi*(pipe_d/2)^2))*rho_g*U; % Mass of gas [kg/s]
41 liquidMass = (liquidRate./(60*1000*1000))*rho_l; % Mass of liquid [kg/s]
42 alphaP = liquidMass/gasMass; % Liquid Mass Fraction [-]
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43 LVF = alphaP*rho_g/rho_l; % Liquid Volume Fraction [-]
44

45 %% CALCULATING THE ACOUSTIC DAMPING COEFFICIENT
46 % Initialize matrices
47 alpha = zeros(length(liquidRate),length(omega));
48 viscous = zeros(length(liquidRate),length(omega));
49 thermal = zeros(length(liquidRate),length(omega));
50

51 for i=1:length(liquidRate)
52

53 tauN = m./(6*pi*my.*(dp./2));
54 tauT = m.*cs./(4*pi*kappa.*(dp./2));
55

56 % CALCULATING THE VISCOUS AND THERMAL DAMPING
57 viscous(i,:) = (omega.*tauN)./(1+(omega.*tauN).^2);
58 thermal(i,:) = ((gamma-1).*cs.*omega.*tauT)./(cp.*(1+(omega.*tauT).^2));
59

60 alpha(i,:) = ((alphaP(i))./(2*lambda)).*(viscous(i,:) + thermal(i,:));
61 end
62

63 %% PLOTTING
64

65 % Defining plot indices for easier plotting and legend
66 plotIndices = [1/LRStep 2.5/LRStep 5/LRStep 10/LRStep 20/LRStep...
67 40/LRStep length(liquidRate)-1] + 1;
68

69 figure(1)
70 plot(omega,alpha(plotIndices,:))
71 xlabel('Frequency [Hz]')
72 ylabel('Alpha [-]')
73 title('Damping coefficient as function of droplet size')
74 legend([num2str(liquidRate(plotIndices)'),...
75 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
76 'location','NorthEast')
77

78 figure(2)
79 surf(omega,liquidRate,alpha,'Edgecolor','none');
80 xlabel('Frequency [Hz]')
81 ylabel('Liquid Rate [ml/min]')
82 zlabel('Alpha [-]')
83 title('Alpha as function of liquid rate and droplet size')
84

85 % RATIO BETWEEN VISCOUS AND THERMAL DAMPING
86 visTheRatio = viscous./thermal;
87

88 % Plotting
89 figure(3)
90 surf(omega,liquidRate,visTheRatio,'Edgecolor','none');
91 xlabel('Frequency [Hz]')
92 ylabel('Liquid Rate [ml/min]')
93 zlabel('Ratio Between Viscous and Thermal Damping')
94 title('Ratio of Viscous and Thermal as function of droplet size')
95
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96 figure(4)
97 plot(omega,visTheRatio(plotIndices,:))
98 xlabel('Frequency [Hz]')
99 ylabel('Ratio Between Viscous and Thermal Damping [-]')

100 title('Ratio of Viscous and Thermal as function of frequency')
101 legend([num2str(liquidRate(plotIndices)'),...
102 kron(ones(size(liquidRate(plotIndices)')),' ml/min ')],...
103 'location','Best')
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B.1.4.2 Droplet Size

1 %% PARAMETRIC STUDY OF ACOUSTIC DAMPING DUE TO DROPLETS
2 %
3 % Mix: Air and Water
4 % Water properties: http://webbook.nist.gov/chemistry/fluid/
5 % Air properties:
6 %
7 % Parameters studied:
8 % FREQUENCY
9 % DROPLET SIZE

10 %
11 % Liquid Injection Rate set to 20 ml/min
12 % ===========================================================
13 % ===========================================================
14

15 clear all; close all; clc; % Cleaning up
16

17 gridNumber = 101; % Number of points in the ...
parameter

18

19 %% GAS PROPERTIES (AIR) @1 atm, 15C
20 c_gas = 343.3; % Speed of sound [m/s]
21 my = 1.802e-05; % Gas viscosity [Pa*s]
22 rho_g = 1.225; % Gas density [kg/m^3]
23 gamma = 1.4; % Isentropic constant [-]
24 cp = 1007; % Specific heat of gas [J/kgK]
25 cv = cp/gamma; % Specific heat of gas [J/kgK]
26 kappa = 0.02476; % Thermal conductivity of ...

gas [W/mK]
27

28 %% LIQUID PROPERTIES (WATER) @1 atm, 15C
29 rho_l = 999.10; % Liquid density [kg/m^3]
30 cs = 4.1885e3; % Specific heat of ...

droplets [J/kgK]
31

32 %% GENEREAL PROPERTIES
33 omega = linspace(0,2000,gridNumber); % Frequency [Hz]
34 lambda = (c_gas./omega); % Wave length [m]
35 dp = linspace(1e-10,100e-6,gridNumber); % Droplet diameter [m]
36 m = ((4*pi*(dp/2).^3)/3)*rho_l; % Droplet mass [kg]
37 pipe_d = 35e-3; % Pipe diameter [m]
38 liquidRate = 20; % Injected liquid [ml/min]
39 U = 3; % Gas velocity [m/s]
40 gasMass = ((pi*(pipe_d/2)^2))*rho_g*U; % Mass of gas [kg/s]
41 liquidMass = (liquidRate./(60*1000*1000))*rho_l; % Mass of liquid [kg/s]
42 alphaP = liquidMass/gasMass; % Liquid Mass Fraction [-]
43 LVF = alphaP*rho_g/rho_l; % Liquid Volume Fraction [-]
44

45 %% CALCULATING THE ACOUSTIC DAMPING COEFFICIENT
46 % Initialize matrices
47 alpha = zeros(length(dp),length(omega));
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48 viscous = zeros(length(dp),length(omega));
49 thermal = zeros(length(dp),length(omega));
50 tauN = zeros(length(dp),1);
51 tauT = zeros(length(dp),1);
52

53 for i=1:length(dp)
54

55 tauN(i) = m(i)./(6*pi*my.*(dp(i)./2));
56 tauT(i) = m(i).*cs./(4*pi*kappa.*(dp(i)./2));
57

58 % CALCULATING THE VISCOUS AND THERMAL DAMPING
59 viscous(i,:) = (omega.*tauN(i))./(1+(omega.*tauN(i)).^2);
60 thermal(i,:) = ...

((gamma-1).*cs.*omega.*tauT(i))./(cp.*(1+(omega.*tauT(i)).^2));
61

62 alpha(i,:) = ((alphaP)./(2*lambda)).*(viscous(i,:) + thermal(i,:));
63 end
64

65 %% PLOTTING
66

67 % Defining plot indices for easier plotting and legend
68 plotIndices = [2 floor(length(dp)/4) floor(length(dp)/2)...
69 floor(3*length(dp)/4) length(dp)];
70

71 figure(1)
72 plot(omega,alpha(plotIndices,:))
73 xlabel('Frequency [Hz]')
74 ylabel('Alpha [-]')
75 title('Damping coefficient as function of frequency for different ...

droplet sizes')
76 legend([num2str(dp(plotIndices)'),...
77 kron(ones(size(dp(plotIndices)')),' m ')],...
78 'location','Best')
79

80 figure(2)
81 plot(dp,alpha(:,plotIndices))
82 xlabel('Droplet Size [m]')
83 ylabel('Alpha [-]')
84 title('Damping coefficient as function of droplet size for different ...

frequencies')
85 legend([num2str(omega(plotIndices)'),...
86 kron(ones(size(omega(plotIndices)')),' Hz ')],...
87 'location','Best')
88

89 figure(3)
90 surf(omega,dp,alpha,'Edgecolor','none');
91 xlabel('Frequency [Hz]')
92 ylabel('Droplet Size [m]')
93 zlabel('Alpha [-]')
94 title('Alpha as function of frequency and droplet size')
95

96 % RATIO BETWEEN VISCOUS AND THERMAL DAMPING
97 visTheRatio = viscous./thermal;
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98

99 % Plotting
100 figure(4)
101 surf(omega,dp,visTheRatio,'Edgecolor','none');
102 xlabel('Frequency [Hz]')
103 ylabel('Droplet Size [m]')
104 zlabel('Ratio Between Viscous and Thermal Damping')
105 title('Ratio of Viscous and Thermal as function of frequency and ...

droplet size')
106

107 figure(5)
108 plot(omega,visTheRatio(plotIndices,:))
109 xlabel('Frequency [Hz]')
110 ylabel('Ratio Between Viscous and Thermal Damping [-]')
111 title('Ratio of Viscous and Thermal as function of frequency')
112 legend([num2str(dp(plotIndices)'),...
113 kron(ones(size(dp(plotIndices)')),' m ')],...
114 'location','Best')
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B.2 Experiment

B.2.1 Creating Sound

1 %% MAKING SOUND
2 %
3 % This script produces sounds at given freqeuncies
4 % ==================================================
5 % ==================================================
6

7 clear all; close all; clc;
8

9 sampleRate = 44100; % Sample rate [Hz]
10 time1 = 20*60; % Time [s]
11 freq = 373;
12

13 t=0:1/sampleRate:time1 - 1/sampleRate;
14 y1 = sin(2*pi*freq*t);
15

16 audiowrite('373Hz.flac',y1,sampleRate)

1 %% FREQUENCY SPAN
2 %
3 % Creating a sound file that spans frequencies for the experiment
4 % ==================================================
5 % ==================================================
6

7 clear all; close all; clc;
8

9 sampleRate = 44100; % Defining sound sample rate [hz]
10 ∆Time = 1; % Time step between frequency steps [s]
11 frequencyStep = 1; % Frequency step [Hz]
12 startFrequency = 60; % Starting frequency [Hz]
13 endFrequency = 1000; % End frequency [Hz]
14

15 % Creating a time vector for each frequency based on the sample rate
16 t=0:1/sampleRate:∆Time - 1/sampleRate;
17

18 % Initializing the sound vector
19 y = zeros(1,((endFrequency - startFrequency)/frequencyStep + ...

1)*length(t));
20

21 start = 1; % Starting point for the frequency step
22

23 % For-loop going through all the frequencies and adding them to the
24 % y-vector
25

26 for i=1:(endFrequency-startFrequency)/frequencyStep + 1
27 y(start:length(t)*i) = sin(2*pi*(startFrequency + ...
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(i-1)*frequencyStep)*t);
28 start = start + length(t);
29 end
30

31 % Writing the sound to file
32 audiowrite('60to1000Hz.flac',y,sampleRate)
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B.2.2 Recording Sound

1 %% SOUND RECORDING WITH MATLAB
2 %
3 % This script records input from audio input
4 %
5 % ==================================================
6 % ==================================================
7

8 clear all; close all; clc; % Cleaning up
9

10 % Experiment code (expCode)
11 % C = corrugated, S = smooth
12 % <underscore>
13 % (F)x = Flow Rate 1,2,3,...,10
14 % (L)x = Liquid Rate 1,2,3...,7
15 expCode = 'S_F4L3H1';
16 numRun = '1'; % Experiment run no.
17

18 soundFrequency = 373; % The frequency of the sound (only for ...
smooth pipe)

19 % Used to calculated average dB around this
20 % frequency
21

22 sampleRate = 44100; % Sample rate [Hz]
23 bits = 8; % Record quality [bits]
24 monoStereo = 1; % Mono = 1, Stereo = 2
25 time = 20; % Record time [s]
26 deviceID = 0; % Device ID of microphone (Check audiodevinfo)
27

28 % Create an audiorecorder object that records sound
29 recObj = audiorecorder(sampleRate,bits,monoStereo,deviceID);
30

31 disp('Starting recording...');
32 recordblocking(recObj,time); % <time> seconds recording
33 disp('Recording stopped');
34

35 % Play back the recording
36 %play(recObj);
37

38 % Store the audio data in an array
39 y = getaudiodata(recObj);
40

41 % Plot the audio sample
42 t = 0:1/sampleRate:time-1/sampleRate;
43 plot(t,y);
44

45 %
46 % Frequency transfom
47 m = length(y); % Window length
48 n = pow2(nextpow2(m)); % Transform length
49 fourier1 = fft(y,n)/m; % DFT
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50 f = (0:n-1)*(sampleRate/n); % Frequency range
51 amplitude = 2*abs(fourier1); % Amplitude of Fourier transform
52

53 h(1) = figure(2);
54 plot(f,amplitude)
55 xlim([0 2000]) % Limits the plotting range to ...

interesting frequencies
56 xlabel('Frequency [Hz]')
57 ylabel('Ampltiude')
58 title('{\bf Periodogram}')
59

60 %% Decibel plot
61 % USE TOGETHER WITH AMPLITUDE
62 decibelFourier = 20*log10(abs(amplitude));
63 h(2) = figure(3);
64 %semilogx(f,decibelFourier)
65 plot(f,decibelFourier)
66 xlim([0 2000]) % Limits the plotting range to ...

interesting frequencies
67 xlabel('Frequency [Hz]')
68 ylabel('Amplitude [dB]')
69 title('{\bf Sound Pressure Levels}')
70

71 %% Calculate the maximum amplitude and its frequency
72 % Have to be double checked against plot
73

74 [maxDecibel, maxFrequency] = ...
resonanceMax(decibelFourier,900,2000,sampleRate);

75 maxAverageDecibel = resonanceAverage(decibelFourier,soundFrequency-10,...
76 soundFrequency+10,sampleRate);
77

78 %% SAVE WORKSPACE AND FIGURES
79 %
80 saveDirectory = ...

strcat('/Users/rtungen/Desktop/MATLAB_Experiment/SMOOTH/NEW/',...
81 expCode,'/Run',numRun,'/');
82

83 % Make the folders
84 mkdir(saveDirectory);
85

86 workspaceName = strcat('workspace',expCode,'_',numRun);
87 figureName = strcat('frequencyPlots',expCode,'_',numRun);
88

89 savefig(h,strcat(saveDirectory,figureName));
90 save(strcat(saveDirectory,workspaceName));
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B.2.2.1 Supporting Functions

1 %% FIND RESONANCE FREQUENCIES
2 %
3 % This function returns the frequency and amplitude of the maximum value
4 % of a Fourier transform within a given range.
5 %
6 % The input is the amplitude (or decibel amplitude) vector and the
7 % frequency range we are interested in, in addition to the sample rate.
8 %
9 % ==================================================

10 % ==================================================
11

12 function [value, frequency] = resonanceMax(y,minFreq,maxFreq,sampleRate)
13

14 % Convert frequency to index
15 indexToFreq = sampleRate/length(y);
16

17 minIndex = floor(minFreq/indexToFreq); % Start index for max function
18 maxIndex = ceil(maxFreq/indexToFreq); % End index for max function
19

20 % Finding the maximum within the range
21 % Index is the index of the maximum with minIndex equal to 1
22 [value, index] = max(y(minIndex:maxIndex));
23

24 % Converting back from index to frequency and return this
25 frequency = (index+minIndex-1)*indexToFreq;

1 %% FIND RESONANCE FREQUENCIES
2 %
3 % This function returns the average amplitude
4 % of a Fourier transform within a given range.
5 %
6 % The input is the amplitude (or decibel amplitude) vector and the
7 % frequency range we are interested in, in addition to the sample rate.
8 %
9 % ==================================================

10 % ==================================================
11

12 function value = resonanceAverage(y,minFreq,maxFreq,sampleRate)
13

14 % Convert frequency to index
15 indexToFreq = sampleRate/length(y);
16

17 minIndex = floor(minFreq/indexToFreq); % Start index for mean ...
function

18 maxIndex = ceil(maxFreq/indexToFreq); % End index for mean function
19

20 % Finding the mean of the range
21 value = mean(y(minIndex:maxIndex));
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B.2.3 Plotting Experimental Values

B.2.3.1 Smooth Pipe

1 %% READ EXCEL DATA TO MATLAB
2 %
3 % [ === SMOOTH PIPE === ]
4 %
5 % This script imports data from the excel sheet for the experiment
6 % and plots the results.
7 %
8 % ==================================================
9 % ==================================================

10

11 close all; clear all; clc;
12

13 filename =...
14 '/Users/rtungen/Dropbox/NTNU/Masteroppgave/Experiment/Testmatrix.xlsx';
15 sheet = 'SmoothNEW';
16

17 % Number of liquid rates, frequencies and air flows
18 numFreq = 3;
19 startMatrix = [1,22,29,36,43;...
20 116,137,144,151,158;...
21 232,253,260,267,274]; % The row where each flow rate start in ...

Excel sheet
22 numAir = 5;
23 numLiq = 7;
24

25 [¬, expID] = xlsread(filename,sheet,'A36:A315');
26 flowRate = xlsread(filename,sheet,'B36:C315');
27 flowVelocity = xlsread(filename,sheet,'D36:D315');
28 liquidRate = xlsread(filename,sheet,'G36:G315');
29 LVF = xlsread(filename,sheet,'I36:I315');
30 SPL = xlsread(filename,sheet,'J36:Q315');
31 frequency = xlsread(filename,sheet,'R36:X315');
32 peakInterval = xlsread(filename,sheet,'Y36:AE315');
33 alpha = xlsread(filename,sheet,'AH36:AH315');
34

35 %% PLOTTING 373 Hz
36

37 flowrateColor = ['b','g','r','c','m','y','k','b'];
38

39 % SCATTER PLOT OF THE AVERAGE dB-LEVELS FOR 373 Hz
40 fig3 = figure(3);
41 hold on
42 for i=1:numAir
43 scatter(LVF(startMatrix(1,i):startMatrix(1,i)+numLiq-1),...
44 SPL(startMatrix(1,i):startMatrix(1,i)+numLiq-1,6),flowrateColor(i))
45 end
46 xlabel('LVF [-]')
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47 ylabel('SPL [dB]')
48 title('Sound Pressure Level [dB] for smooth pipe at 373 Hz')
49 flowVelocityLegend = legend('1.6 [m/s]','2.8 [m/s]','3.2 [m/s]','3.6 ...

[m/s]',...
50 '4.0 [m/s]','Location','Best');
51 hold off
52

53 % Copy the legend for use in the scatter plot with error bars
54 copyLegendFlowVel1 = copyobj(flowVelocityLegend,fig3);
55 copyLegendFlowVel2 = copyobj(flowVelocityLegend,fig3);
56 copyLegendFlowVel3 = copyobj(flowVelocityLegend,fig3);
57

58 % Figure 1 plots the normalized average of frequency 1 (373 Hz)
59 fig1 = figure(1);
60 hold on
61 for i=1:numAir
62 plot(liquidRate(startMatrix(1,i):startMatrix(1,i)+numLiq-1),...
63 SPL(startMatrix(1,i):startMatrix(1,i)+numLiq-1,8),flowrateColor(i))
64 end
65 xlabel('Liquid Rate [ml/min]')
66 ylabel('SPL [dB]')
67 title('Normalized Sound Pressure Level [dB] for smooth pipe at 373 Hz')
68 legend('1.6 [m/s]','2.8 [m/s]','3.2 [m/s]','3.6 [m/s]',...
69 '4.0 [m/s]','Location','Best');
70 hold off
71

72 % AVERAGE SPL FOR 373 Hz WITH ERROR BARS EQUAL TO VARIANS
73 fig2 = figure(2);
74 hold on
75 for i=startMatrix(1,1):startMatrix(1,end)
76 plot([liquidRate(i) liquidRate(i)],...
77 [(SPL(i,6) - SPL(i,7)) (SPL(i,6) + SPL(i,7))], 'Color', 'k');
78 end
79

80 for i=1:numAir
81 scatter(liquidRate(startMatrix(1,i):startMatrix(1,i)+numLiq-1),...
82 SPL(startMatrix(1,i):startMatrix(1,i)+numLiq-1,6),flowrateColor(i))
83 end
84 hold off
85 xlabel('Liquid Rate [ml/min]')
86 ylabel('SPL [dB]')
87 title('Sound Pressure Level [dB] for smooth pipe at 373 Hz')
88 axis([-0.5 40.5 40 85])
89 legend('Varians of 3 runs','Location','Best')
90 set(copyLegendFlowVel1,'Parent',fig2,'Position',[0.6651 0.4 0.1572 ...

0.1810]);
91

92 %% PLOTTING 445 Hz
93

94 % Figure 1 plots the normalized average of frequency 1 (373 Hz)
95 fig4 = figure(4);
96 hold on
97 for i=1:numAir
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98 plot(liquidRate(startMatrix(2,i):startMatrix(2,i)+numLiq-1),...
99 SPL(startMatrix(2,i):startMatrix(2,i)+numLiq-1,8),flowrateColor(i))

100 end
101 xlabel('Liquid Rate [ml/min]')
102 ylabel('SPL [dB]')
103 title('Normalized Sound Pressure Level [dB] for smooth pipe at 445 Hz')
104 legend('1.6 [m/s]','2.8 [m/s]','3.2 [m/s]','3.6 [m/s]',...
105 '4.0 [m/s]','Location','Best')
106 hold off
107

108 % AVERAGE SPL FOR 445 Hz WITH ERROR BARS EQUAL TO VARIANS
109 fig5 = figure(5);
110 hold on
111 for i=startMatrix(2,1):startMatrix(2,end)
112 plot([liquidRate(i) liquidRate(i)],...
113 [(SPL(i,6) - SPL(i,7)) (SPL(i,6) + SPL(i,7))], 'Color', 'k');
114 end
115 for i=1:numAir
116 scatter(liquidRate(startMatrix(2,i):startMatrix(2,i)+numLiq-1),...
117 SPL(startMatrix(2,i):startMatrix(2,i)+numLiq-1,6),flowrateColor(i))
118 end
119 hold off
120 xlabel('Liquid Rate [ml/min]')
121 ylabel('SPL [dB]')
122 title('Sound Pressure Level [dB] for smooth pipe at 445 Hz')
123 axis([-0.5 40.5 40 85])
124 legend('Varians of 3 runs','Location','Best')
125 set(copyLegendFlowVel2,'Parent',fig5,'Position',[0.6651 0.4 0.1572 ...

0.1810]);
126

127

128 % SCATTER PLOT OF THE AVERAGE dB-LEVELS FOR 445 Hz
129 fig6 = figure(6);
130 hold on
131 for i=1:numAir
132 scatter(LVF(startMatrix(2,i):startMatrix(2,i)+numLiq-1),...
133 SPL(startMatrix(2,i):startMatrix(2,i)+numLiq-1,6),flowrateColor(i))
134 end
135 xlabel('LVF [-]')
136 ylabel('SPL [dB]')
137 title('Sound Pressure Level [dB] for smooth pipe at 445 Hz')
138 legend('1.6 [m/s]','2.8 [m/s]','3.2 [m/s]','3.6 [m/s]',...
139 '4.0 [m/s]','Location','Best')
140 hold off
141

142 %% PLOTTING 550 Hz
143

144 % Figure 1 plots the normalized average of frequency 1 (373 Hz)
145 fig7 = figure(7);
146 hold on
147 for i=1:numAir
148 plot(liquidRate(startMatrix(3,i):startMatrix(3,i)+numLiq-1),...
149 SPL(startMatrix(3,i):startMatrix(3,i)+numLiq-1,8),flowrateColor(i))
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150 end
151 xlabel('Liquid Rate [ml/min]')
152 ylabel('SPL [dB]')
153 title('Normalized Sound Pressure Level [dB] for smooth pipe at 550 Hz')
154 legend('1.6 [m/s]','2.8 [m/s]','3.2 [m/s]','3.6 [m/s]',...
155 '4.0 [m/s]','Location','Best')
156 hold off
157

158 % AVERAGE SPL FOR 445 Hz WITH ERROR BARS EQUAL TO VARIANS
159 fig8 = figure(8);
160 hold on
161 for i=startMatrix(3,1):startMatrix(3,end)
162 plot([liquidRate(i) liquidRate(i)],...
163 [(SPL(i,6) - SPL(i,7)) (SPL(i,6) + SPL(i,7))], 'Color', 'k');
164 end
165

166 for i=1:numAir
167 scatter(liquidRate(startMatrix(3,i):startMatrix(3,i)+numLiq-1),...
168 SPL(startMatrix(3,i):startMatrix(3,i)+numLiq-1,6),flowrateColor(i))
169 end
170 hold off
171 xlabel('Liquid Rate [ml/min]')
172 ylabel('SPL [dB]')
173 title('Sound Pressure Level [dB] for smooth pipe at 550 Hz')
174 axis([-0.5 40.5 40 85])
175 legend('Varians of 3 runs','Location','Best')
176 set(copyLegendFlowVel3,'Parent',fig8,'Position',[0.6651 0.4 0.1572 ...

0.1810]);
177

178 % SCATTER PLOT OF THE AVERAGE dB-LEVELS FOR 445 Hz
179 fig9 = figure(9);
180 hold on
181 for i=1:numAir
182 scatter(LVF(startMatrix(3,i):startMatrix(3,i)+numLiq-1),...
183 SPL(startMatrix(3,i):startMatrix(3,i)+numLiq-1,6),flowrateColor(i))
184 end
185 xlabel('LVF [-]')
186 ylabel('SPL [dB]')
187 title('Sound Pressure Level [dB] for smooth pipe at 550 Hz')
188 legend('1.6 [m/s]','2.8 [m/s]','3.2 [m/s]','3.6 [m/s]',...
189 '4.0 [m/s]','Location','Best')
190 hold off
191

192 %% COMPARING alpha WITH THEORY
193 %
194 dropletSize = [1e-6,1e-5,1e-4]; % Calculate theoretical ...

value for
195 % three droplet sizes [m]
196 pipeDiameter = 35e-3; % Pipe diameter [m]
197

198 % Initialize matrices
199 alphaTheory = zeros(length(frequency),length(dropletSize));
200 theoryLegend1 = zeros(1,length(dropletSize));
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201 theoryLegend2 = zeros(1,length(dropletSize));
202 theoryLegend3 = zeros(1,length(dropletSize));
203 expLegend1 = zeros(1,length(numAir));
204 expLegend2 = zeros(1,length(numAir));
205 expLegend3 = zeros(1,length(numAir));
206

207 for j=1:length(dropletSize)
208

209 for i=1:length(frequency)
210 alphaTheory(i,j) = ...

alphaAirWater(frequency(i,6),dropletSize(j),liquidRate(i),...
211 flowVelocity(i),pipeDiameter);
212 end
213 end
214

215 % Comparison between expermient and theory of acoustic damping for 373 Hz
216 fig10 = figure(10);
217 hold on
218 for j=1:length(dropletSize)
219 for i=1:numAir
220 expLegend1(i) = ...

scatter(LVF(startMatrix(1,i):startMatrix(1,i)+numLiq-1),...
221 alpha(startMatrix(1,i):startMatrix(1,i)+numLiq-1),...
222 flowrateColor(i));
223

224 theoryLegend1(j) = ...
plot(LVF(startMatrix(1,i):startMatrix(1,i)+numLiq-1),...

225 alphaTheory(startMatrix(1,i):startMatrix(1,i)+numLiq-1,j),...
226 flowrateColor(j));
227 end
228 end
229 xlabel('LVF [-]')
230 ylabel('Acoustic damping coefficient [-]')
231 title('Added acoustic damping [-] for smooth pipe for 373 Hz')
232 legend([expLegend1 theoryLegend1],'1.6 [m/s]','2.8 [m/s]',...
233 '3.2 [m/s]','3.6 [m/s]','4.0 [m/s]','Theoretical 1e-6m',...
234 'Theoretical 1e-5m','Theoretical 1e-4m','Location','Best')
235 axis([0 4.5e-4 -0.05 0.3])
236 hold off
237

238 % Comparison between expermient and theory of acoustic damping for 445 Hz
239 fig11 = figure(11);
240 hold on
241 for j=1:length(dropletSize)
242 for i=1:numAir
243 expLegend2(i) = ...

scatter(LVF(startMatrix(2,i):startMatrix(2,i)+numLiq-1),...
244 alpha(startMatrix(2,i):startMatrix(2,i)+numLiq-1),...
245 flowrateColor(i));
246

247 theoryLegend2(j) = ...
plot(LVF(startMatrix(2,i):startMatrix(2,i)+numLiq-1),...

248 alphaTheory(startMatrix(2,i):startMatrix(2,i)+numLiq-1,j),...
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249 flowrateColor(j));
250 end
251 end
252 xlabel('LVF [-]')
253 ylabel('Acoustic damping coefficient [-]')
254 title('Added acoustic damping [-] for smooth pipe for 445 Hz')
255 legend([expLegend2 theoryLegend2],'1.6 [m/s]','2.8 [m/s]',...
256 '3.2 [m/s]','3.6 [m/s]','4.0 [m/s]','Theoretical 1e-6m',...
257 'Theoretical 1e-5m','Theoretical 1e-4m','Location','Best')
258 hold off
259

260 % Comparison between expermient and theory of acoustic damping for 550 Hz
261 fig12 = figure(12);
262 hold on
263 for j=1:length(dropletSize)
264 for i=1:numAir
265 expLegend3(i) = ...

scatter(LVF(startMatrix(3,i):startMatrix(3,i)+numLiq-1),...
266 alpha(startMatrix(3,i):startMatrix(3,i)+numLiq-1),...
267 flowrateColor(i));
268

269 theoryLegend3(j) = ...
plot(LVF(startMatrix(3,i):startMatrix(3,i)+numLiq-1),...

270 alphaTheory(startMatrix(3,i):startMatrix(3,i)+numLiq-1,j),...
271 flowrateColor(j));
272 end
273 end
274 xlabel('LVF [-]')
275 ylabel('Acoustic damping coefficient [-]')
276 title('Added acoustic damping [-] for smooth pipe for 550 Hz')
277 legend([expLegend3 theoryLegend3],'1.6 [m/s]','2.8 [m/s]',...
278 '3.2 [m/s]','3.6 [m/s]','4.0 [m/s]','Theoretical 1e-6m',...
279 'Theoretical 1e-5m','Theoretical 1e-4m','Location','Best')
280 hold off



B.2 Experiment 149

B.2.3.2 Closed Corrugated Pipe

1 %% READ EXCEL DATA TO MATLAB
2 %
3 % [ === CLOSED CORRUGATED PIPE === ]
4 %
5 % This script imports data from the excel sheet for the experiment
6 % and plots the results.
7 %
8 % ==================================================
9 % ==================================================

10

11 close all; clear all; clc;
12

13 filename =...
14 '/Users/rtungen/Dropbox/NTNU/Masteroppgave/Experiment/Testmatrix.xlsx';
15 sheet = 'Corrugated';
16

17 % Number of liquid rates, frequencies and air flows
18 numFreq = 1;
19 startMatrix = [1,8,15,22,29,36,43,50]; % The row where each flow ...

rate start in Excel sheet
20 numAir = 8;
21 numLiq = 7;
22

23 %% READ EXCEL SHEET
24 [¬, expID] = xlsread(filename,sheet,'A25:A80');
25 flowRate = xlsread(filename,sheet,'B25:C80');
26 flowVelocity = xlsread(filename,sheet,'D25:D80');
27 liquidRate = xlsread(filename,sheet,'G25:G80');
28 LVF = xlsread(filename,sheet,'I25:I80');
29 SPL = xlsread(filename,sheet,'J25:Q80');
30 frequency = xlsread(filename,sheet,'R25:X80');
31 peakInterval = xlsread(filename,sheet,'Y25:AE80');
32 alpha = xlsread(filename,sheet,'AH25:AH80');
33

34 %% PLOTTING
35

36 %flowrateColor = ['b','g','r','c','m','y','k','b'];
37 flowrateColor = [[0 0 1];[0 1 0];[1 0 0];[0 1 1];[1 0 1];...
38 [1 1 0];[0 0 0];[1 0.5 0.2]];
39 % SCATTER PLOT OF THE AVERAGE dB-LEVELS
40 fig3 = figure(3);
41 hold on
42 for i=1:numAir
43 scatter(LVF(startMatrix(i):startMatrix(i)+numLiq-1),...
44 SPL(startMatrix(i):startMatrix(i)+numLiq-1,6),36,flowrateColor(i,:))
45 end
46 xlabel('LVF [-]')
47 ylabel('SPL [dB]')
48 title('Sound Pressure Level [dB] for closed corrugated pipe')
49 flowVelocityLegend = legend('2.34 m/s','3.12 m/s','3.90 m/s',...
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50 '4.70 m/s','5.40 m/s','6.28 m/s','7.07 m/s','7.87 m/s',...
51 'Location','Best');
52 hold off
53

54 % Copy the legend for use in the scatter plot with error bars
55 copyLegendFlowVel1 = copyobj(flowVelocityLegend,fig3);
56 copyLegendFlowVel2 = copyobj(flowVelocityLegend,fig3);
57 copyLegendFlowVel3 = copyobj(flowVelocityLegend,fig3);
58

59 % Figure 1 plots the normalized SPL average
60 fig1 = figure(1);
61 hold on
62 for i=1:numAir
63 plot(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
64 SPL(startMatrix(i):startMatrix(i)+numLiq-1,8),'Color',...
65 flowrateColor(i,:))
66 end
67 xlabel('Liquid Rate [ml/min]')
68 ylabel('SPL [dB]')
69 title('Normalized Sound Pressure Level [dB] for closed corrugated pipe')
70 legend('2.34 m/s','3.12 m/s','3.90 m/s',...
71 '4.70 m/s','5.40 m/s','6.28 m/s','7.07 m/s','7.87 m/s',...
72 'Location','Best')
73 hold off
74

75 % AVERAGE SPL WITH ERROR BARS EQUAL TO VARIANS
76 fig2 = figure(2);
77 hold on
78 for i=1:numAir
79 for j=0:numLiq-1
80 plot([liquidRate(startMatrix(i)+j) liquidRate(startMatrix(i)+j)],...
81 [(SPL(startMatrix(i)+j,6) - SPL(startMatrix(i)+j,7))...
82 (SPL(startMatrix(i)+j,6) + SPL(startMatrix(i)+j,7))], 'Color', ...

'k');
83 end
84 end
85

86 for i=1:numAir
87 scatter(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
88 SPL(startMatrix(i):startMatrix(i)+numLiq-1,6),36,flowrateColor(i,:))
89 end
90 hold off
91 xlabel('Liquid Rate [ml/min]')
92 ylabel('SPL [dB]')
93 title('Sound Pressure Level [dB] for closed corrugated pipe')
94 axis([-0.5 40.5 35 65])
95 rune = legend('Varians of 4 runs','Location','Best');
96 set(copyLegendFlowVel1,'Parent',fig2,'Position',[0.6651 0.6 0.1286 ...

0.1119]);
97

98 fig4 = figure(4);
99 hold on

100 for i=1:numAir
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101 for j=1:3
102 scatter(LVF(startMatrix(i):startMatrix(i)+numLiq-1),...
103 SPL(startMatrix(i):startMatrix(i)+numLiq-1,j),36,...
104 flowrateColor(i,:))
105 end
106 end
107 hold off
108 xlabel('LVF [-]')
109 ylabel('SPL [dB]')
110 title('Sound Pressure Level [dB] for all runs on closed corrugated pipe')
111 set(copyLegendFlowVel2,'Parent',fig4,'Position',[0.6651 0.6 0.1286 ...

0.1119]);
112

113

114 fig5 = figure(5);
115 hold on
116 for i=1:numAir
117 for j=1:3
118 scatter(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
119 frequency(startMatrix(i):startMatrix(i)+numLiq-1,j),36,...
120 flowrateColor(i,:))
121 end
122 end
123 hold off
124 xlabel('Liquid Rate [ml/min]')
125 ylabel('Frequency [Hz]')
126 title('Sound Frequency [Hz] for closed corrugated pipe')
127 set(copyLegendFlowVel3,'Parent',fig5,'Position',[0.6651 0.6 0.1286 ...

0.1119]);
128

129 %% COMPARING alpha WITH THEORY
130 %
131 dropletSize = [1e-6,1e-5,1e-4]; % Calculate theoretical ...

value for
132 % three droplet sizes [m]
133 pipeDiameter = 25e-3; % Pipe diameter [m]
134

135 frequencyTheory = 320; % Frequency used to calculate
136 % theoretical damping [Hz]
137 % Because using the
138 % experimental gives messy
139 % plots
140

141 % Initialize matrices
142 alphaTheory = zeros(length(frequency),length(dropletSize));
143 theoryLegend1 = zeros(1,length(dropletSize));
144 expLegend1 = zeros(1,length(numAir)-5);
145

146 for j=1:length(dropletSize)
147

148 for i=1:length(frequency)
149 alphaTheory(i,j) = ...

alphaAirWaterCorrugated(frequencyTheory,dropletSize(j),...
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150 liquidRate(i),flowVelocity(i),pipeDiameter);
151 end
152 end
153

154 % Comparison between expermient and theory of acoustic damping
155 fig6 = figure(6);
156 hold on
157 for j=1:length(dropletSize)
158 for i=6:numAir
159 expLegend1(i-5) = ...

scatter(LVF(startMatrix(i):startMatrix(i)+numLiq-1),...
160 alpha(startMatrix(i):startMatrix(i)+numLiq-1),36,...
161 flowrateColor(i,:));
162

163 theoryLegend1(j) = ...
plot(LVF(startMatrix(i):startMatrix(i)+numLiq-1),...

164 alphaTheory(startMatrix(i):startMatrix(i)+numLiq-1,j),...
165 'Color',flowrateColor(j,:));
166 end
167 end
168 xlabel('LVF [-]')
169 ylabel('Acoustic damping coefficient [-]')
170 title('Added acoustic damping [-] for closed corrugated pipe')
171 legend([expLegend1 theoryLegend1],'6.28 m/s','7.07 m/s','7.87 m/s',...
172 'Theoretical 1e-6m','Theoretical 1e-5m','Theoretical ...

1e-4m','Location','Best')
173 axis([0 2.5e-4 -0.05 0.3])
174 hold off
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B.2.3.3 Open Corrugated Pipe

1 %% READ EXCEL DATA TO MATLAB
2 %
3 % [ === OPEN CORRUGATED PIPE === ]
4 %
5 % This script imports data from the excel sheet for the experiment
6 % and plots the results.
7 %
8 % ==================================================
9 % ==================================================

10

11 close all; clear all; clc;
12

13 filename =...
14 '/Users/rtungen/Dropbox/NTNU/Masteroppgave/Experiment/Testmatrix.xlsx';
15 sheet = 'CorrugatedOpen';
16

17 % Number of liquid rates, frequencies and air flows
18 numFreq = 1;
19 startMatrix = [1,8,15]; % The row where each flow rate start in ...

Excel sheet
20 numAir = 3;
21 numLiq = 4;
22

23 %% READ EXCEL SHEET
24 [¬, expID] = xlsread(filename,sheet,'A25:A42');
25 flowRate = xlsread(filename,sheet,'B25:C42');
26 flowVelocity = xlsread(filename,sheet,'D25:D42');
27 liquidRate = xlsread(filename,sheet,'G25:G42');
28 LVF = xlsread(filename,sheet,'I25:I42');
29 SPL = xlsread(filename,sheet,'J25:Q42');
30 frequency = xlsread(filename,sheet,'R25:X42');
31 peakInterval = xlsread(filename,sheet,'Y25:AF42');
32 alpha = xlsread(filename,sheet,'AH25:AH42');
33

34 %% PLOTTING
35

36 flowrateColor = [[0 0 1];[0 1 0];[1 0 0];[0 1 1];[1 0 1];...
37 [1 1 0];[0 0 0];[1 0.5 0.2]];
38

39 % SCATTER PLOT OF THE AVERAGE dB-LEVELS
40 fig3 = figure(3);
41 hold on
42 for i=1:numAir
43 scatter(LVF(startMatrix(i):startMatrix(i)+numLiq-1),...
44 SPL(startMatrix(i):startMatrix(i)+numLiq-1,6),36,flowrateColor(i,:))
45 end
46 xlabel('LVF [-]')
47 ylabel('SPL [dB]')
48 title('Sound Pressure Level [dB] for open corrugated pipe')
49 flowVelocityLegend = legend('60%','80%','100%','Location','Best');
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50 hold off
51

52 % Copy the legend for use in the scatter plot with error bars
53 copyLegendFlowVel1 = copyobj(flowVelocityLegend,fig3);
54 copyLegendFlowVel2 = copyobj(flowVelocityLegend,fig3);
55 copyLegendFlowVel3 = copyobj(flowVelocityLegend,fig3);
56 copyLegendFlowVel4 = copyobj(flowVelocityLegend,fig3);
57

58 % Figure 1 plots the normalized average of frequency 1 (373 Hz)
59 fig1 = figure(1);
60 hold on
61 for i=1:numAir
62 plot(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
63 SPL(startMatrix(i):startMatrix(i)+numLiq-1,8),'Color',...
64 flowrateColor(i,:))
65 end
66 xlabel('Liquid Rate [ml/min]')
67 ylabel('Normalized SPL [-]')
68 title('Normalized Sound Pressure Level [dB] for open corrugated pipe')
69 legend('60%','80%','100%','Location','Best');
70 hold off
71

72 % AVERAGE SPL FOR 373 Hz WITH ERROR BARS EQUAL TO VARIANS
73 fig2 = figure(2);
74 hold on
75 for i=1:numAir
76 for j=0:numLiq-1
77 plot([liquidRate(startMatrix(i)+j) liquidRate(startMatrix(i)+j)],...
78 [(SPL(startMatrix(i)+j,6) - SPL(startMatrix(i)+j,7))...
79 (SPL(startMatrix(i)+j,6) + SPL(startMatrix(i)+j,7))], 'Color', ...

'k');
80 end
81 end
82

83 for i=1:numAir
84 scatter(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
85 SPL(startMatrix(i):startMatrix(i)+numLiq-1,6),36,flowrateColor(i,:))
86 end
87 hold off
88 xlabel('Liquid Rate [ml/min]')
89 ylabel('SPL [dB]')
90 title('Sound Pressure Level [dB] for open corrugated pipe')
91 legend('Varians of 3 runs','Location','Best')
92 axis([-0.5 5.5 38 56])
93 set(copyLegendFlowVel1,'Parent',fig2,'Position',[0.6651 0.6 0.1286 ...

0.1119]);
94

95 fig4 = figure(4);
96 hold on
97 for i=1:numAir
98 for j=1:3
99 scatter(LVF(startMatrix(i):startMatrix(i)+numLiq-1),...

100 SPL(startMatrix(i):startMatrix(i)+numLiq-1,j),36,...
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101 flowrateColor(i,:))
102 end
103 end
104 hold off
105 xlabel('LVF [-]')
106 ylabel('SPL [dB]')
107 title('Sound Pressure Level [dB] for all runs open corrugated pipe')
108 set(copyLegendFlowVel2,'Parent',fig4,'Position',[0.6651 0.3 0.1286 ...

0.1119]);
109

110

111 fig5 = figure(5);
112 hold on
113 for i=1:numAir
114 for j=1:3
115 scatter(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
116 frequency(startMatrix(i):startMatrix(i)+numLiq-1,j),36,...
117 flowrateColor(i,:))
118 end
119 end
120 hold off
121 xlabel('Liquid Rate [ml/min]')
122 ylabel('Frequency [Hz]')
123 title('Sound Frequency [Hz] for open corrugated pipe')
124 set(copyLegendFlowVel3,'Parent',fig5,'Position',[0.6651 0.6 0.1286 ...

0.1119]);
125

126 %% PLOTTING PEAK INTERVAL WITH ERROR BARS
127 % Neglecting the lowest flow rates which have some abnormal values
128 legend1 = zeros(1,length(numAir)-1);
129 legend2 = zeros(1,length(numAir)-1);
130

131 fig9 = figure(9);
132 hold on
133 for i=2:numAir
134 legend1(i-1) = ...

plot(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
135 peakInterval(startMatrix(i):startMatrix(i)+numLiq-1,8),'Color',...
136 flowrateColor(i,:));
137

138 for j=1:3
139 legend2(i-1) ...

=scatter(liquidRate(startMatrix(i):startMatrix(i)+numLiq-1),...
140 peakInterval(startMatrix(i):startMatrix(i)+numLiq-1,j)...
141 /peakInterval(startMatrix(i),6),36,flowrateColor(i,:));
142 end
143 end
144 xlabel('Liquid Rate [ml/min]')
145 ylabel('Normalized SPL [-]')
146 title('Normalized Sound Pressure Level [dB] for an interval +/- 10 Hz ...

from peak frequency for open corrugated pipe')
147 legend([legend1 legend2],'80%','100%','80%','100%','Location','Best');
148 hold off
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149

150 %% COMPARING alpha WITH THEORY
151 %
152 dropletSize = [1e-5,5e-5,1e-4]; % Calculate theoretical ...

value for
153 % three droplet sizes [m]
154 pipeDiameter = 25e-3; % Pipe diameter [m]
155

156 % Initialize matrices
157 alphaTheory = zeros(length(frequency),length(dropletSize));
158 theoryLegend1 = zeros(1,length(dropletSize));
159 expLegend1 = zeros(1,length(numAir));
160 frequencyTheory = zeros(1,length(frequency));
161

162 averageExpFreqs = [1075 1214 1702];
163 % Frequency used to calculate theoretical damping [Hz]. Because using the
164 % experimental gives messy plots
165 for i=1:numAir
166 frequencyTheory(startMatrix(i):startMatrix(i)+numLiq-1) = ...

averageExpFreqs(i);
167 end
168

169 % Calculating the theoretical damping
170 for j=1:length(dropletSize)
171

172 for i=1:length(liquidRate)
173 alphaTheory(i,j) = ...

alphaAirWaterCorrugated(frequencyTheory(i),dropletSize(j),...
174 liquidRate(i),flowVelocity(i),pipeDiameter);
175 end
176

177 end
178

179 % Comparison between expermient and theory of acoustic damping 60% flow
180 % rate with theoretical frequency set to 1075
181 fig6 = figure(6);
182 hold on
183 for j=1:length(dropletSize)
184 expLegend1 = scatter(LVF(startMatrix(1):startMatrix(1)+numLiq-1),...
185 alpha(startMatrix(1):startMatrix(1)+numLiq-1),36,...
186 flowrateColor(1,:));
187

188 theoryLegend1(j) = ...
plot(LVF(startMatrix(1):startMatrix(1)+numLiq-1),...

189 alphaTheory(startMatrix(1):startMatrix(1)+numLiq-1,j),'Color',...
190 flowrateColor(j,:));
191 end
192 xlabel('LVF [-]')
193 ylabel('Acoustic damping coefficient [-]')
194 title('Added acoustic damping [-] for open corrugated pipe ...

(Theoretical frequency 1075 Hz)')
195 legend([expLegend1 theoryLegend1],'60%',...
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196 'Theoretical 1e-5m','Theoretical 5e-5m','Theoretical ...
1e-4m','Location','NorthEast')

197 axis([0 0.8e-4 -0.05 0.3])
198 hold off
199

200 % Comparison between expermient and theory of acoustic damping 60% flow
201 % rate with theoretical frequency set to 1214
202 fig7 = figure(7);
203 hold on
204 for j=1:length(dropletSize)
205 expLegend1 = scatter(LVF(startMatrix(2):startMatrix(2)+numLiq-1),...
206 alpha(startMatrix(2):startMatrix(2)+numLiq-1),36,...
207 flowrateColor(2,:));
208

209 theoryLegend1(j) = ...
plot(LVF(startMatrix(2):startMatrix(2)+numLiq-1),...

210 alphaTheory(startMatrix(2):startMatrix(2)+numLiq-1,j),'Color',...
211 flowrateColor(j,:));
212 end
213 xlabel('LVF [-]')
214 ylabel('Acoustic damping coefficient [-]')
215 title('Added acoustic damping [-] for open corrugated pipe ...

(Theoretical frequency 1214 Hz)')
216 legend([expLegend1 theoryLegend1],'80%',...
217 'Theoretical 1e-5m','Theoretical 5e-5m','Theoretical ...

1e-4m','Location','NorthEast')
218 axis([0 0.6e-4 -0.05 0.3])
219 hold off
220

221 % Comparison between expermient and theory of acoustic damping 60% flow
222 % rate with theoretical frequency set to 1702
223 fig8 = figure(8);
224 hold on
225 for j=1:length(dropletSize)
226 expLegend1 = scatter(LVF(startMatrix(3):startMatrix(3)+numLiq-1),...
227 alpha(startMatrix(3):startMatrix(3)+numLiq-1),36,...
228 flowrateColor(3,:));
229

230 theoryLegend1(j) = ...
plot(LVF(startMatrix(3):startMatrix(3)+numLiq-1),...

231 alphaTheory(startMatrix(3):startMatrix(3)+numLiq-1,j),'Color',...
232 flowrateColor(j,:));
233 end
234 xlabel('LVF [-]')
235 ylabel('Acoustic damping coefficient [-]')
236 title('Added acoustic damping [-] for open corrugated pipe ...

(Theoretical frequency 1702 Hz)')
237 legend([expLegend1 theoryLegend1],'100%',...
238 'Theoretical 1e-5m','Theoretical 5e-5m','Theoretical ...

1e-4m','Location','NorthEast')
239 axis([0 0.5e-4 -0.05 0.3])
240 hold off
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B.2.3.4 Supporting Functions

1 function alpha = alphaAirWater(omega,dp,liquidRate,U,pipe_d)
2 % Mix: Air and Water
3 % liquid and gas properties found on: ...

http://webbook.nist.gov/chemistry/fluid/
4 %
5 % Function to return alpha_0 for given properties
6 %
7 % ===========================================================
8 % ===========================================================
9

10 gridNumber = 100; % Number of points in the ...
parameter

11

12 %% GAS PROPERTIES (AIR) @1 atm, 15C
13 c_gas = 343.3; %Speed of sound [m/s]
14 c_eff = 1; % Effective speed of sound
15 % for corrugated pipe
16 my = 1.802e-05; %Gas viscosity [Pa*s]
17 rho_g = 1.225; %Gas density [kg/m^3]
18 gamma = 1.4;
19 cp = 1007; %Specific heat of gas [J/kgK]
20 cv = cp/gamma; %Specific heat of gas [J/kgK]
21 kappa = 0.02476; %Thermal conductivity of ...

gas [W/mK]
22

23 %% LIQUID PROPERTIES (WATER) @1 atm, 15C
24 rho_l = 999.10; %Liquid density [kg/m^3]
25 cs = 4.1885e3; %Specific heat of droplets ...

[J/kgK]
26

27 %% GENEREAL PROPERTIES
28 %omega = 200; %Frequency [Hz]
29 lambda = (c_gas/omega); %Wave length [m]
30 %dp = linspace(1e-10,100e-6,gridNumber); %Droplet diameter [m]
31 %pipe_d = 35e-3; %Pipe diameter [m]
32 m = ((4*pi*(dp/2).^3)/3)*rho_l; %Droplet mass [kg]
33 %liquidRate = 0:50:2000; %Injected liquid [ml/min]
34 %U = 3; %Gas velocity [m/s]
35 gasMass = ((pi*(pipe_d/2)^2))*rho_g*U; %Mass of gas [kg/s]
36 liquidMass = (liquidRate./(60*1000*1000))*rho_l; %Mass of liquid [kg/s]
37 alphaP = liquidMass/gasMass; %Liquid Mass Fraction [-]
38 LVF = alphaP*rho_g/rho_l; %Liquid Volume Fraction [-]
39

40 %% CALCULATING THE ACOUSTIC DAMPING COEFFICIENT
41

42 tauN = m./(6*pi*my.*(dp./2));
43 tauT = m.*cs./(4*pi*kappa.*(dp./2));
44

45 % CALCULATING THE VISCOUS AND THERMAL DAMPING
46 viscous = (omega.*tauN)./(1+(omega.*tauN).^2);
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47 thermal = ((gamma-1).*cs.*omega.*tauT)./(cp.*(1+(omega.*tauT).^2));
48

49 alpha = ((alphaP)./(2*lambda)).*(viscous + thermal);

1 function alpha = alphaAirWaterCorrugated(omega,dp,liquidRate,U,pipe_d)
2 % Mix: Air and Water
3 % liquid and gas properties found on: ...

http://webbook.nist.gov/chemistry/fluid/
4 %
5 % Function to return alpha for given properties for corrugated pipe
6 % Using effective speed of sound instead of regular speed of sound
7 %
8 % ===========================================================
9 % ===========================================================

10

11 %% GAS PROPERTIES (AIR) @1 atm, 15C
12 c_gas = 343.3; %Speed of sound [m/s]
13

14 my = 1.802e-05; %Gas viscosity [Pa*s]
15 rho_g = 1.225; %Gas density [kg/m^3]
16 gamma = 1.4;
17 cp = 1007; %Specific heat of gas [J/kgK]
18 cv = cp/gamma; %Specific heat of gas [J/kgK]
19 kappa = 0.02476; %Thermal conductivity of ...

gas [W/mK]
20

21 %% LIQUID PROPERTIES (WATER) @1 atm, 15C
22 rho_l = 999.10; %Liquid density [kg/m^3]
23 cs = 4.1885e3; %Specific heat of droplets ...

[J/kgK]
24

25 %% GENEREAL PROPERTIES
26 %omega = 200; %Frequency [Hz]
27 pipeLength = 1; % Length of corrugated ...

pipe [m]
28 pitchLength = 5e-3;
29 cavityWidth = 2.5e-3;
30 cavityDepth = 3e-3;
31 numCorr = floor(pipeLength/pitchLength); % Number of corrugations [-]
32 totalCavityVolume = numCorr*(pi*((pipe_d/2+cavityDepth)^2 -...
33 (pipe_d/2)^2)*cavityWidth); % Total volume of the ...

corrugations [m^3]
34 innerVolume = pipeLength*pi*(pipe_d/2)^2;
35 totalVolume = totalCavityVolume + innerVolume; % Total volume of pipe ...

[m^3]
36

37 c_eff = c_gas*sqrt(innerVolume/totalVolume); % Effective speed of ...
sound [m/s]

38 % for corrugated pipe
39 lambda = (c_eff/omega); %Wave length [m]
40 %dp = linspace(1e-10,100e-6,gridNumber); %Droplet diameter [m]
41 %pipe_d = 35e-3; %Pipe diameter [m]
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42 m = ((4*pi*(dp/2).^3)/3)*rho_l; %Droplet mass [kg]
43 %liquidRate = 0:50:2000; %Injected liquid [ml/min]
44 %U = 3; %Gas velocity [m/s]
45 gasMass = ((pi*(pipe_d/2)^2))*rho_g*U; %Mass of gas [kg/s]
46 liquidMass = (liquidRate./(60*1000*1000))*rho_l; %Mass of liquid [kg/s]
47 alphaP = liquidMass/gasMass; %Liquid Mass Fraction [-]
48 LVF = alphaP*rho_g/rho_l; %Liquid Volume Fraction [-]
49

50 %% CALCULATING THE ACOUSTIC DAMPING COEFFICIENT
51

52 tauN = m./(6*pi*my.*(dp./2));
53 tauT = m.*cs./(4*pi*kappa.*(dp./2));
54

55 % CALCULATING THE VISCOUS AND THERMAL DAMPING
56 viscous = (omega.*tauN)./(1+(omega.*tauN).^2);
57 thermal = ((gamma-1).*cs.*omega.*tauT)./(cp.*(1+(omega.*tauT).^2));
58

59 alpha = ((alphaP)./(2*lambda)).*(viscous + thermal);



Appendix C

Risk Assessment Of Laboratory
Work

A risk assessment were used to evaluate the risk concerning the laboratory work. This
comes in addition to the mandatory HSE course that is required to get access to the
lab. To evaluate the risks we used the standard setup from The Department of Energy
and Process Engineering at NTNU as template [63]. The laboratory work were initially
classified as harmless and hence the risk assessment presented is therefore not as com-
prehensive as it would have been if the experiment involved for instance high pressure,
high temperature or toxic gases.

Nonetheless, an identification of the potential hazardous accidents is valuable as it clearly
states a variety of potential threats to humans, environment and equipment. This is as
valid for more harmless work that it is for experiments involving higher consequences
should something fail. NTNU and SINTEF’s laboratory and workshop handbook were
used as reference regarding both the risk assessment and if we were unsure how to handle
a specific incident [64].
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Appendix D

Work Drawings For The
Experiment

The experimental setup was made in cooperation with Martin Bustadmo and his work
drawings for the acrylic cylinder are presented here. The first drawing shows all the
components and their corresponding dimensions. To connect the acrylic cylinder to the
test pipe, i.e. the smooth of the corrugated pipes, O-rings were made.

In the second drawing, a 3D picture of the finished bolt and the loud speaker is shown.
Here, the two O-rings connecting the acrylic cylinder and the test pipe is clearly shown.
Between them, a rubber ring is placed to make the connection as air tight as possible.
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Appendix E

COMSOL Simulation Setup And
Results

The simulation of Popescu and Johansen’s one-dimensional flow-acoustics model was
done using COMSOL Multiphysics. COMSOL Multiphysics is a software platform based
on advanced numerical methods, for modeling and simulating physics-based problems
[65]. We used Equation Based Modeling in COMSOL in order to solve the system
consisting of three PDE’s. In COMSOL, built-in equations were modified to replicate
the equations given in Popescu and Johansen’s model.

E.1 Equations

E.1.1 General Equations

Popescu and Johansen’s model is a system of three coupled partial differential equations.
The derivation is found in Chapter 3. The following set of equations account for the
sound propagation in the pipe:


∂(ρ0u)
∂t + U ∂(ρ0u)

∂z + ∂p
∂z = F (z, t),

∂p
∂t + U ∂p

∂z + ρ0c
2
0
∂u
∂z = 0

(3.47 revisited)

where u [m/s] is the acoustic velocity, p [Pa] the acoustic pressure, U [m/s] the velocity,
ρ0 [kg/m3] the reference density and c0 [m/s] the speed of sound.

The source term is:

F (z, t) = G
∂ps
∂z

(3.48 revisited)
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where ps [Pa] is the acoustic pressure in the corrugations and G is a coefficient defined
in Section 3.6.

The third equation accounts for the acoustic pressure in the corrugations:

p̈s + 2Aηr
{( ps
Bρ0U2

)2 − 1
}
ωṗs + ω2ps − υ

∂3ps
∂t∂z2 = ξωṗ (3.44 revisited)

where the reduced damping ηr [-] is

ηr = ω2
rω

V

2πc3 (3.45 revisited)

and the excitation term ξ [-] is

ξ = ω

ωr

|p|
|p+ ps|

. (3.46 revisited)

A and B are coefficients defined in Section 3.5.

E.1.2 COMSOL Equations

To account for equation 3.47, two Convection-Diffusions equations are used in COMSOL.
They have the following form:

 da
∂u
∂t +∇(−c∇u) + β∇u = f,

da
∂p
∂t +∇(−c∇p) + β∇p = f

(E.1)

where u is the acoustic velocity, p the acoustic pressure and

∇ = ∂

∂x
. (E.2)

Table E.1 and table E.2 show how equation E.1 is manipulated in COMSOL to match
equation 3.47 for u and p.

To account for equation 3.44, a Coefficient Form PDE is used. It has the following form:

ea
∂2ps

∂t2
+ da

∂ps

∂t
+∇(−c∇ps − αps + γ) + β∇ps + aps = f (E.3)

where ps is the acoustic pressure and ∇ defined as in equation E.2.

Table E.3 shows how the Coefficient Form PDE equation with variable ps is manipulated.
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Convection-Diffusion equation COMSOL script General form

Source term f −px+G ∗ psx −dp
dz +Gdps

dz
Diffusion coefficient β 0 0
Convection coefficient c U ∗ rho Uρ0
Damping or mass coefficient da rho ρ0

Table E.1 – Convection-Diffusion equation with variable u.

Convection-Diffusion equation COMSOL script General form

Source term f −rho ∗ (c2) ∗ ux −ρ0c
2 du

dz
Diffusion coefficient β 0 0
Convection coefficient c U U
Damping or mass coefficient da 1 1

Table E.2 – Convection-Diffusion equation with variable p.

Coefficient form PDE COMSOL script General form
Diffusion coeff. c 0 0
Absorption coeff. a w2 ω2

Source term f (w/wcavity) ∗ (abs(p)/abs(p+ ps)) ∗ w ∗ pt ω
ωr

|p|
|p+ps|ω

dp
dt

Mass coeff. ea 1 1
Damping or mass coeff. da 2 ∗ eta ∗A ∗ ((ps/(B ∗ rho ∗ U2))2 − 1) ∗ w 2ηrA

{( ps
Bρ0U2

)2 − 1
}
ω

Conserv. flux conv. coeff. α 0 0
Convection coeff. β 0 0
Conservative flux source γ −v ∗ d(psxx, t) −υ ∂3ps

∂t∂z2

Table E.3 – Convection-Diffusion equation with variable u.
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E.2 Boundary Conditions

The boundary conditions we use in COMSOL are strongly linked to the wave theory
presented in Chapter 2. For an open pipe, which we are modeling, there exist pressure
nodes at each end of the pipe. Mathematically, with a pipe of length L, the acoustic
pressure boundary condition is given by

p(0, t) = p(L, t) = 0. (E.4)

The velocity of the air particles (acoustic velocity) has the same shape and phase as
the displacement. At the antinode, the air particles undergo a displacement equal to
two times the amplitude of the graph in figure E.1, while at the node, no displacement
occurs.

Figure E.1 – Fundamental modes of a standing wave in a tube closed in one end, showing
both the displacement of air and the pressure variations [24].

All of the other points have less displacement than the antinode. Since the velocity is
equal to the derivate of the displacement with respect to time, the velocity of the air
particles is directly proportional to the displacement. This because the time for one
oscillation (i.e. the frequency) is constant. Hence, the graph of the displacement and
the velocity of the air particles are equal. At the open ends of the pipe, i.e. an antinode,
the derivative of the velocity (and also the displacement) with respect to space is equal
to zero. Thus,

∂u

∂x
(0, t) = ∂u

∂x
(L, t) = 0. (E.5)

In addition to the four boundary conditions for the pressure and velocity, four initial
conditions should be specified as well. At the starting point we have no displacement of
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the air particles and no pressure oscillations:

p(x, 0) = u(x, 0) = 0. (E.6)

The derivative of the pressure oscillation at the starting point is also equal to zero:

∂p

∂t
(x, 0) = ∂u

∂t
(x, 0) = 0. (E.7)

In addition to the boundary conditions for the wave propagation quantified by equation
3.47, we need boundary conditions for equation 3.44. Since equation 3.44 describes
acoustic pressure as well, we apply the same boundary conditions as for the acoustic
pressure in equation 3.47:

ps(0, t) = ps(L, t) = 0. (E.8)

Concerning the initial condition, COMSOL requires a starting value other than zero to
launch the simulation. We choose

ps(x, 0) = 1. (E.9)

as initial condition. The exact value of the initial condition is irrelevant since the values
of ps grow well beyond the value of 1.

The boundary condition for the acoustic pressure (variables p and ps) used in COMSOL
is the Dirichlet Boundary Condition, which in COMSOL is quantified in the form

p = r
ps = r

greaction = −µ
(E.10)

The Dirichlet Boundary condition specifies a value of p at the boundaries of the domain:
p = r and ps = r [66]. We set p = 0 and ps = 0.

For the acoustic velocity (variable u), we used the Zero Flux boundary condition, which
in COMSOL is quantified in the form

~n · (c∇u+ αu− γ) = 0 (E.11)

The Zero Flux boundary condition is a Neumann boundary condition equal to zero,
meaning the derivative of the acoustic velocity is equal to zero. In COMSOL, the Zero
Flux boundary condition is the default boundary condition and prescribes a zero flux
(insulation) across the boundary [66].
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E.3 Parameters

The geometry used in COMSOL is a one-dimensional interval of 1 m, corresponding to
the length of the corrugated pipe used in our experiment. The properties for air at 15 ◦C
and atmospheric pressure is obtained from McGraw and Hill [32]. The Strouhal number
is obtained from Popescu and Johansen’s CFD simulation of a flow over a single cavity
with geometry almost equal to the one used in our experiment [9]. Table E.4 and E.5
show the script used in COMSOL and the value of the variables, respectively.

Name COMSOL script
U 3[m/s]
rho 1.225[kg/m3]
my 1.802e− 5[Pa ∗ s]
v my/rho
c 343.3[m/s]
ceff c ∗ sqrt(volpipeSmooth/volpipeCorr)
correctionfac 0.46
lambda ceff/w
wcavity ceff ∗ sqrt((Ac)/(volcorrugation ∗ (2 ∗Hmark +Hc)))
St 0.6
w (St ∗ U)/pitchLength
eta (w2

cavity ∗ w ∗ volpipeP itch)/(2 ∗ pi ∗ c3
eff )

A 0.5 ∗ (boundaryLayer/pipeRadius)
B piped/(cavWidth+ 0.00125)
G cavWidth/pitchLength
pipeLength 1[m]
pipeRadius piped/2
piped 25[mm]
volpipeSmooth pi ∗ (pipeRadius2) ∗ PipeLength
corrpipeLength 1[m]
numbercorr corrpipeLength/pitchLength
volpipeCorr volpipeSmooth + (numbercorr ∗ volcorrugation)
volpipeP itch (pi ∗ (pipeRadius2) ∗ cavWidth) + volcorrugation
pitchLength 5[mm]
Hc 3[mm]
Hmark Hc/10
cavWidth 2.5[mm]
Ac 2 ∗ pi ∗ (((pipeRadius+Hc)2 − (pipeRadius)2) + (cavWidth ∗ (pipeRadius+Hc)))
V olcorrugation pi ∗ cavWidth ∗ ((pipeRadius+Hc)2 − pipeRadius2)
boundaryLayer pipeRadius/10

Table E.4 – COMSOL script.
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Name Value Description
U 3 [m/s] Velocity
rho 1.225 [kg/m3] Air density
my 1.802e-5 [Pa · s] Air viscosity
v 1.4710e-5 [m2/s] Air kinematic viscosity
c 343.3 [m/s] Speed of sound
ceff 304.77 [m/s] Effective speed of sound
correctionfac 0.46 [-] Correction factor
lambda 0.84659 [m] Wave length
wcavity 1.7368e5[1/s] Natural frequency cavity
St 0.6 [-] Strouhal number
w 360.0 [1/s] Resonance frequency
eta 0.11519 [-] Reduced damping
A 0.05 [-] Coefficient A
B 6.6667 [-] Coefficient B
G 0.5 [-] Coefficient G
pipeLength 1 [m] Pipe length
pipeRadius 0.0125 [m] Pipe radius
piped 0.025 [m] Pipe diameter
volpipeSmooth 4.9087e-4 [m3] Volume of smooth pipe
corrpipeLength 1 [m] Corrugated pipe length
numbercorr 200 [-] Number of corrugations
volpipeCorr 6.2282e-4 [m3] Volume corrugated pipe
volpipeP itch 1.8869e-6 [m3] Volume pipe w/ pitch length
pitchLength 0.005 [m] Pitch length
Hc 0.003 [m] Corrugation height
Hmark 3.0e-4 [m] Added height
cavWidth 0.0025 [m] Corrugation width
Ac 7.7126e-4 [m2] Area of corrugation
volcorrugation 6.5973e-7 [m3] Volume of corrugation
boundaryLayer 0.00125 [m] Boundary layer thickness

Table E.5 – COMSOL values.
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E.4 Solvers

The PARDISO solver was used for our simulations. The PARDISO solver is a fully
coupled, direct solver which uses LU decomposition. LU decomposition factors a matrix
as the product of a lower triangular matrix and an upper triangular matrix. The LU
decomposition can be viewed as the matrix form of Gaussian elimination [67].

COMSOL offers the choice between three direct solvers; MUMPS, PARDISO and SPOOLES.
They differ primarily in their relative speed, where PARDISO tends to be the fastest
[68]. MUMS is cluster-capable, but this was unnecessary for our simulations.

We tightened the relative tolerance of the solver from 0.01 to 0.001, which allowed us to
get more accurate results. The mesh refinement was set to "normal".

The computer used for the simulations is a stationary HP PC with 16 GB of RAM. It was
borrowed from the Department of Energy and Process Engineering at NTNU. We used
remote computing to control the stationary PC, in order to manage the simulation from
our own laptops (Apple MacBook Pro). One simulation took approximately 6 hours.

E.5 Results

The time evolution of the acoustic pressure in the pipe for all the simulated velocities
and the associated Fourier transforms are shown in figure E.2 to E.19.
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Figure E.2 – Time evolution of the acoustic pressure at U=2.343 m/s.

Figure E.3 – FFT of the acoustic pressure at U=2.343 m/s.
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Figure E.4 – Time evolution of the acoustic pressure at U=3.124 m/s.

Figure E.5 – FFT of the acoustic pressure at U=3.124 m/s.
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Figure E.6 – Time evolution of the acoustic pressure at U=3.905 m/s.

Figure E.7 – FFT of the acoustic pressure at U=3.905 m/s.
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Figure E.8 – Time evolution of the acoustic pressure at U=4.697 m/s.

Figure E.9 – FFT of the acoustic pressure at U=4.697 m/s
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Figure E.10 – Time evolution of the acoustic pressure at U=5.489 m/s.

Figure E.11 – FFT of the acoustic pressure at U=5.489 m/s.
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Figure E.12 – Time evolution of the acoustic pressure at U=6.281 m/s.

Figure E.13 – FFT of the acoustic pressure at U=6.281 m/s.
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Figure E.14 – Time evolution of the acoustic pressure at U=7.074 m/s.

Figure E.15 – FFT of the acoustic pressure at U=7.074 m/s.
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Figure E.16 – Time evolution of the acoustic pressure at U=7.866 m/s.

Figure E.17 – FFT of the acoustic pressure at U=7.866 m/s.
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Figure E.18 – Time evolution of the acoustic pressure at U=8.658 m/s.

Figure E.19 – FFT of the acoustic pressure at U=8.658 m/s.
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