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Abstract
In recent years there has been a vast increase in available data with the ad-
vancement of smart cities. In the domain of Intelligent Transportation Systems
(ITS) this modernisation can positively effect transportation networks, thus cut-
ting down travel time, increase efficacy, and reduce environmental impact from
vehicles.

Norwegian Public Roads Administration (NPRA) is currently deploying a new
vehicle detector system named Datainn on all public roads in Norway. Datainn
sends metadata on all detected vehicles in real time. This includes information
about speed, gap between vehicles, weight, and classification of vehicle type.

Many machine learning approaches has been researched in literature on how
to forecast traffic flow information. One such approach is that of using Artificial
Neural Networks (ANNs). In this research ANN based methods have been explored.
This was done by first performing a state-of-the-art Structured Literature Review
(SLR) on ANN methods in literature.

From the review, Stacked Sparse Autoencoder (SSAE) model was compared
with recent advances of Long Short-Term Memory (LSTM) and Deep Neural
Network (DNN) on four different prediction horizons. The data foundation was
the new Datainn system using traffic data from a highway around Norway’s
capitol, Oslo. Further, the model performance was assessed with extended feature
vectors including more metadata from Datainn.

The results found that the LSTM model always outperformed DNN and SSAE,
although in general the performance characteristics was somewhat similar. Ex-
tending the feature vector with more variables had a negative effect on DNN,
while resulting in better performance for Recurrent Neural Network (RNN) on
long-term (60 minute) forecasting horizons. For SSAE it had a slight positive
effect, but not enough get better results than RNN or DNN.
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Sammendrag
I de senere årene har det vært en enorm økning i tilgjengelige data med framskrit-
tene av smarte byer. I feltet for Intelligente Transport System (ITS) kan denne
moderniseringen positivt påvirke transportnettverk, og dermed kutte ned reisetid,
øke effektiviteten og redusere miljøbelastningen fra kjøretøy.

Statens vegvesen er i gang med å ta i bruk Datainn, et nytt system for å
detektere kjøretøy på offentlige veier i Norge. Datainn sender metadata på alle
oppdagede kjøretøy i sanntid. Dette inkluderer informasjon om fart, avstand
mellom kjøretøy, vekt, og klassifisering av kjøretøytype.

Mange maskinlærings metoder har vært utforsket i litteraturen om hvordan å
forutsi trafikkflyt. Et eksempel på dette er med Artifical Neural Networks (Anns).
I denne forskningen har fokuset vært på slike metoder. Dette ble gjort ved å først
utføre et state-of-the-art strukturert litteratur gjennomgang om tidligere brukt
ANN metoder i litteraturen.

Fra gjennomgangen, ble Stacked Sparse Autoencoder (SSAE) modellen sam-
men kombinert med nyere modeller som Long Short-Term Memory (LSTM) og
Deep Neural Network (DNN) utforsket på fire forskjellige prediksjon horisonter.
Datagrunnlaget var det nye Datainn systemet med trafikkdata fra en motorvei
rundt i Norges hovedstad, Oslo. Videre ble modellenes ytelse vurderet med en
utvidete input vektorer fra metadata i Datainn.

Resultatene viser at LSTM modellen alltid er bedre enn DNN og SSAE, selv
om den generelle ytelseskarakteristikken var nokså like. Å utvidet input vektor
med flere variabler hadde en negativ effekt på DNN, men en positiv effekt på
resultene til LSTM modellen for langsiktig (60 minutt) prediksjon. For SSAE
modellen hadde det en svak positiv effekt, men ikke nok til å få bedre resultat
enn RNN eller DNN.
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Chapter 1

Introduction

In this section the study is presented with its background and motivation, and
how the research is conducted.

1.1 Background and Motivation
In recent years there has been a vast increase in available data with the ad-
vancement of smart cities. The big question is how to put this data to good use.
The field of ITS is one where research on the new data combined with Artificial
Intelligence (AI) has started to show interesting results.

ITS is about how to provide innovative and advanced services relating to
modes of transportation and traffic management, and how to enable users to
make smarter choices when using transportation networks. This is in direct effect
to how effective the infrastructure in urban smart cities are. It is not simple
to optimize for faster transportation, reduced environmental impact, and fewer
accidents. There are many factors at play in how the daily traffic changes. Is
there a football game in the local stadium? Are there active build sites that cause
traffic redirection? The list of possible situations altering the traffic flow goes on.

Having a system that can reasonably predict these changes in traffic is of
great value to government, industry, and citizens. Commision of the European
Communities [2001] has stated that ITS can reduce travel time by up to 20%.
This will not only reduce costs for society, but also have a positive effect on the
environment.

The closest solution to a production system in Norway today is a site1 that
gives travel time predictions and congestion information for specific road seg-
ments in a few selected urban cities. This system is built by the NPRA and the

1http://reisetider.no

1

http://reisetider.no
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data source is Norway’s AutoPASS system. AutoPASS is primarily made for toll
stations and uses chips on vehicles to register a drive by.

There are a few issues with this system:

• Privacy concerns because AutoPASS uses chip identification that is unique
for each vehicle.

• Can only collect data on road segments where AutoPASS stations are de-
ployed.

• Travel time is acquired when a vehicle passes two AutoPASS stations. As
there are many stops in between AutoPASS stations advanced filtering must
be done to avoid data from those who have not driven straight from the
start to the destination.

The NPRA is currently deploying a new system named Datainn that uses
inductive coils under the road as detectors. These sensors register each bypassing
vehicle and sends the raw data to their data centres in real time.

The study from Barros et al. [2015] gives a comparison of model and data
driven approaches for traffic prediction. In production systems the most found
models are Autoregressive Integrated Moving Average (ARIMA) and derivatives,
or a hybrid of other techniques. Inductive coil detectors produce lots of data and
it is found that data driven models works best in that case.

The study also suggested that it is worth looking at combining the data driven
models with weather information. Models based on ANNs are also mentioned as
promising. Schimbinschi et al. [2015] gives further insight that ARIMA models
should be avoided in favor of ANN based techniques as ARIMA performs smooth-
ing on the data that might affect the spatiotemporal relationships in the data.
In their experiments ANN outperforms the other models. Another interesting ap-
proach to solving the spatial problem is done by Lv et al. [2014]. They have data
from over 15000 different detectors in California and train by performing sliding
window over all the detectors at the same time. The model that handles this size
is a deep learning model known as Stacked Autoencoder (SAE). By combining all
sensors in a single dataset the model will inherently learn the spatial relationship
between the detectors.

Solving the problem of predicting traffic flow is thus not only beneficial to
society, but the amount of data involved can be used to better understand and
advance the field of Machine Learning (ML). New models based on data from
Datainn might also help the NPRA phase out the AutoPASS system. Based
on these observations my research aims at looking on modern machine learning
models for traffic prediction and how to apply them on the new detectors from
the NPRA. I will also investigate how these models can be further improved and
how they are affected by introducing variables from other data sources.
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1.2 Goals and Research Questions
RQ1 What is state of the art in traffic congestion prediction?

RQ2 What neural network based techniques have been used in traffic congestion
prediction?

RQ3 How can neural networks best be used for traffic congestion prediction?

RQ4 What changes to the data and data sources have impact on the learners’
ability in traffic congestion prediction?

1.3 Research Method
First, a state of the art review based on SLR was performed to answer the two
first research questions. Then the process of this thesis was iterative. The phases
in each iteration started with the design and creation of a model based on a
stated hypothesis. Experiments was then conducted on the model, comparing
it to the baseline and models from previous iterations. These experiments was
then observed and analysed quantitatively. A new hypothesis was then drawn
based on the results. Thereafter, the hypothesis was tested on the next iteration.
Conclusions on these iterations was then made.

1.4 Contributions
The contributions presented in this thesis is a state of the art review of traffic flow
forecasting with ANN models. Based on the review a few select models are then
implemented and tested on traffic data from Oslo, Norway. Then, the performance
of models are evaluated with extra features besides traffic flow.

1.5 Thesis Structure
In Chapter 2 the relevant theory for this thesis will be explained. The resulting
SLR will also be presented. Chapter 3 will present the different models used.
Chapter 4 presents how the experiments are performed and their results. Last
Chapter 5 present the evaluation of the results, discuss them, and present ideas
for further work.
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Chapter 2

Background Theory

First, in Section 2.1 the relevant theory and concepts for this thesis is introduced
and explained. Lastly, Section 2.2 presents the Structured Literature Review (SLR)
process and the findings from the completed process.

2.1 Background Theory
This section presents the necessary theory and background for this thesis. First, the
domain of Intelligent Transportation Systems (ITS) is introduced in Section 2.1.1.
Then, in Section 2.1.4, the necessary machine learning concepts used are described.
This includes the general concepts and the basics of the models implemented.
Further, the concept of data preprocessing is described in Section 2.1.5. Lastly,
in Section 2.1.6 the concept of time series forecasting is explained.

2.1.1 Traffic theory
In this section, the variables traffic flow and density is introduced. The concept
of free flow is also explained.

Traffic flow

Traffic flow (q) is defined as the number of vehicles per time unit in a reference
point.

q = n

∆T (2.1)

5
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Traffic density

The traffic density (k) is the number of vehicles present per length of the road.
For a given road this means that we have kc defined as the critical density. This is
when the road has peak traffic flow. When the density goes further up the traffic
flow will decrease and at some point reach jam density kj . Then max congestion
have peaked.

Free flow

When density k is less than kc the traffic is said to be in a free flow state. Traffic
flow can also be viewed as flow = speed∗density. In that regard, the traffic state
can also be understood by the mean speed of the reference point.

2.1.2 Collecting traffic data
There are many ways to collect traffic data. It can either be located at the vehicle
as an installed GPS sensor or in a phone. The other way is to detect passing
vehicles on a given point. For the last method there are many approaches which
vary from country to country. In this thesis the data is from Norwegian Public
Roads Administration s (NPRAs) new traffic data collection system Datainn.

How Datainn collects data

On strategic locations around Norway the NPRA has installed traffic measurement
equipment. Each such location is called a station and has a given unique id
defined as the measure point number. To detect passing vehicles on the stations,
units known as Roadside Traffic Data Collection Equipment (RTDCE) are used.
RTDCE works by having inductive coils arranged in loops under the road. These
loops read the signature of metal passing over them. Continually this signature is
used to classify the passing vehicles. If a vehicle is classified, then the classification
results with the current time stamp is stored and transmitted over 3G to the
Datainn servers. This system is also used for bicycle traffic. The information
attained by the RTDCE on each vehicle is shown in Table 2.1.

Table 2.1: Variables from Datainn

Variable Explanation
equipment_local_timestamp Time stamp for when vehicle bypassed the

RTDCE unit.
datainn_utc_timestamp Time stamp for when data is stored at

Datainn server.
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Table 2.1: Variables from Datainn (continued)

Variable Explanation
lane_number Corresponds to the lane the vehicle bypassed
speed_(km/h) Speed of the vehicle
speed_quality Quality of the speed measurement
length_(m) Measured length of the vehicle
weight_(kg) Weight of the vehicle (not yet implemented)
time_gap_back_to_front_(s) Gap from last passing vehicle
event_number Monotonically increasing counter for each

passing vehicle that is unique for each
RTDCE unit

vehicle_type Classification of the vehicle type (motorcycle,
car, truck, etc.)

vehicle_type_quality Quality of the vehicle type classification
measure_point_number Identification number for the station on

which the vehicle was registered
contains_all_required_fields True if speed, lane, length, and gap is present

The speed_quality variable is used as an estimate of speed measurement qual-
ity. In reality each RTDCE comes with inductive loops in pairs. The measurement
from both loops are used to assess vehicle information, and speed_quality is the
difference in measured speed from both loops. Using the speed_quality value na-
ively as a measurement for quality can be wrong as the vehicle can be accelerating
or decelerate between them.

2.1.3 Definitions
Rush hour

In Fig. 2.1 the historical average from traffic data in Oslo, Norway on one RTDCE
is plotted for each day in the week over each hour.

According to the hourly traffic flow in the city it is possible to define which
hours can be considered rush hour. When the traffic is in a free flow state it is
typical for forecasting models to give worse prediction as the traffic characteristics
are random. For that reason these definitions will be used filter out hours when
prediction has no purpose. Below are the definitions of rush hour for Oslo city.

• Morning rush hour: 06 : 00 ∼ 09 : 00
• Non-rush hour: 09 : 00 ∼ 12 : 00
• Evening rush hour: 14 : 00 ∼ 18 : 00
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Figure 2.1: Average hourly traffic flow for each day from station 300016.

Forecasting horizons

When forecasting time series it is usual to define a set of horizons on which one
focuses on. These definitions vary from study to study but is usually within the
three classes defined below. This study is mostly focused on short-term prediction
on 15 minute horizon.

• Short-term forecast: time span from 5 minutes to 30 minutes.
• Medium-term forecast: from 30 minutes to a few hours.
• Long-term forecast: from one day to several days.

2.1.4 Machine Learning
The definition of machine learning by Russell and Norvig [2009] is “to adapt to
new circumstances and to detect and extrapolate patterns”. This gives information
about what we want to achieve, but a more formal quote from Mitchell [1997]
shown below gives exact definition on how to learn.

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance
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at tasks in T, as measured by P, improves with experience E.

In this thesis the program is trying to learn from historical traffic data (E)
the task of predicting future time horizon (T ) measured in performance by how
well it approximates the future traffic flow (P ).

There are many approaches to model the program in the definition above. In
this section Artificial Neural Network (ANN) and Deep Learning is explained.

Artificial Neural Networks

ANN is a computational unit or network based on approximation of how biological
nervous systems work. These consist of multiple connected neural cells signaling
each other with electric impulses over synapses. For an in depth explanation on
how nervous systems work the reader is referred to Garibay [2010]. The first
published work on understanding and using the nervous system, introduced as
the perceptron, was in 1958 by Rosenblatt [1958].

In software the perceptron is a set of input values x1, . . . , xn and output
activation value y. The sum of a neuron’s weighted input signals xjwij is defined
as the pre-activation ai as shown in Eq. (2.2).

ai =
N∑

j=1
wijxj − ϑi (2.2)

To calculate the activation value an activation function Φ(·) shown in Eq. (2.3)
is used. The input is the pre-activation value with a threshold ϑi known as bias.
A bias value is used since the output value from the activation function can be
above zero for input 0 and thus be considered activated.

yi = Φ(ai) = Φ(
N∑

j=1
wijxj − ϑi) (2.3)

There are many different activation functions Φ(·). Some of the most used
are the binary, linear, hyperbolic tangent (tanh), and sigmoid. For this thesis the
tanh and sigmoid functions are used. The sigmoid function shown in Eq. (2.4)
has the property that for all R the range is {y ∈ R : 0 < y < 1}.

σ(x) = 1
1 + e−x

(2.4)

While the tanh function shown in Eq. (2.5) has the property that the range
is {y ∈ R : −1 < y < 1}.

tanh(x) = 1− e−2x

1 + e−2x
(2.5)
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Figure 2.2: Graphical visualization of a perceptron

Training neural networks

In general two steps are performed when training neural networks. The first step
is the feedforward pass where the training data is passed into the network and an
error estimate is calculated based on the output. Then the error estimate is used
in the backwards pass to alter the weights in the network to perform better on
the training set. There are numerous different algorithms for the backwards pass.
Most of them employ the concept known as gradient descent. The main idea is
to find the minima of a function. This is done by calculating the gradient from
an error function and taking steps that are proportional to the negative of the
gradient.

Given an error function f(·) that is a multi-variable and differentiable in
a point a then the fastest way to decrease f(·) is by stepping in the negative
direction of the gradient ∆f(a).

a = a− γ∆f(a) (2.6)

After performing the gradient decent calculation several steps, the function f(·)
will converge. When f(·) is a convex function, gradient descent will be guaranteed
to find the global minimum. As real world problems are not guaranteed to be
convex, there will most probably be possible local minima gradient descent can
converge to. For this reason the variable γ known as the step size or learning rate
is used. It determines how far each step will go down the gradient. Another factor
is that each step taken down the gradient is not necessary stable meaning that it
can result in taking a step up in another direction.

Training on data is done either in the batch, minibatch, or stochastic way.
Batch training is on the entire data set, while minibatch is on a subset of the
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data set. Stochastic training is done iteratively on every sample. What type of
training one can before depends on the size of the data and training algorithm.
To have a sense of how much training a model has performed it is usual to count
in epochs where one epoch is having trained on all data samples ones.

There are many variations on gradient descent. Some of these are

• Stochastic Gradient Descent
• Momentum
• Adagrad
• RMSProp

One issue when training neural networks is to avoid overfitting. Overfitting
happens when the trained model describes the random noise or error in the
training data while performing badly on the testing data. There are many tricks
that can help avoid this problem. By applying a technique known as regularization
on the model weights and/or bias then higher values will increase the overall loss
of the model. In effect this will help avoid overfitting to certain values. Alone
this is most often not enough. Therefore, it is often in conjecture that the data is
split in different sets. Conceptually the goal is to have an independent data set in
which to test the models on. By doing this one can see how the model generalizes
on data which it has not been trained on. If the error on the training samples
are low but high in the test samples then it is safe to say that there are problems
with overfitting.

Concerning the process of training models repeatedly over the same data set
one will reach the point where the error function has converged. Stopping the
training process when the difference in the error results have started to be less
than a threshold or has started to increase again is useful. However one does not
known if the model is in a state where it will not generalize over the test data.
One way to measure the generalization of the model while training is to use early
stopping as shown in Algorithm 1. This is done by splitting the training data
further into a smaller set of validation data that is not trained on. On a given
interval while training the validation data is used to get the current generalization
error. If the training process is improving the generalization error and the training
error then it is safer to say that the model is trained into a state that has not
been overfitted.

Learning paradigms

There are two different learning paradigms to machine learning algorithms. First
there is supervised learning. Supervised means that it learns a representation
trained on some sorts of labels connected to the training data. A typical example
is of classifying images which has classes depending on what they can. The other
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Algorithm 1: Training with early stopping
Data: Data
Result: Trained model

1 Split data into training, validation and test set;
2 Train model on the training set. Every N steps run the model on the

validation set and get the error;
3 If the validation set error has not improved after E steps then quit;
4 Use the weights from the run with the best validation set result;

type is unsupervised learning. Unsupervised means that the representation is
constructed only on the input data. One example of this is K-Nearest Neigh-
bor (KNN) clustering that creates clusters based on the data in each sample.
Another subclass of unsupervised learning is semi-unsupervised learning which
Autoencoder (AE) is a good example. AE uses its own input data as “labels” to
reconstruct.

Neural network architectures

There are many different ways to construct ANNs. How the network is constructed
gives different trade-off between training time, ease of training, memory require-
ments, and what problems they are able to solve.

Deep Learning The term deep learning can be considered as ANNs where
the model architecture is deep and uses techniques to avoid overfitting. There
definition deep used for a deep model architecture is that the network has multiple
levels of representation that corresponds to different abstractions of the input
features.

Logistic regressor Perceptrons that are using a logistic function like the sig-
moid or tanh activation functions are usually referred to as logistic regressors.

Feed Forward Neural Network A Feed Forward Neural Network (FFNN)
is a multilayer perceptron where each neuron strictly depends on the output of
neurons from the layer below. Usually it is trained in a supervised fashion to
classify or predict a value.

When the hidden layer representation of a FFNN is used in another architec-
ture it is usually referred to as a fully connected layer.
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Figure 2.3: Feed Forward Neural Network architecture

Autoencoder An autoencoder is designed by changing the output layer of a
FFNN to instead represent the original input features. Conditionally the input
neurons and output neurons needs to be the same size. By design an autoencoder
does not use the labels and is therefore a kind of semi-unsupervised learner. As
shown in Figure 2.4 the weights to the hidden layer is called the encoder and
the weights from the hidden layer to the output layer is called the decoder. The
encoding layer will after training represent some alteration of the input space.
Further this can be used as the decomposition of the feature space into another
layer.

The mathematical definition of an autoencoder is shown in Eq. (2.7). Given
a set of m training examples {X0, . . . , Xm−1} ∈ DM = Xi each sample contains
∀{Xi

0, . . . , X
i
n−1} ∈ DM. Then each Xi is the input to the encoder function

y(Xi). The decoder function is z(y(Xi)). For each layer f(·) and g(·) represents
an activation function, and b and c the bias.

y(x) = f(W1x+ b)
z(x) = g(W2y + c)

(2.7)

Notably, one of the issues with autoencoders are the possibility that the in-
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Figure 2.4: Autoencoder architecture

herent representation learned in the encoder layer is the identity function. For
that reason it is important that the hidden encoder layer has fewer nodes than
inputs nodes. Purposefully, this will avoid the possibility that the hidden lay-
ers can represent the identity function. A way to combat this issue is to add a
sparsity constraint to the encoding layer. A sparsity constraint will give a higher
loss correction for values far away from a given constraint value.

Stacked Autoencoder As explained in the last section the encoding layers can
be further used as input to other layers. These layers can be a type of classifier or
regressor, or another layer of an autoencoder. Usually, this is done by taking the
output of fi(·) as the input to the next yi(·) layer. Each layer is trained separately
in order by greedy layer-wise training.

Recurrent Neural Network Recurrent Neural Networks (RNNs) is a neural
network topology for processing sequential data. They have been made popular
from within the community of Natural Language Processing (NLP). This comes
from the fact that RNN work as a generalization across variable length sequential
input. Generally, the concept of RNN comes from dynamic system. Equation (2.8)
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is dynamic system which has the recurrent computation of the state f(st−1.

st = f(st−1) (2.8)

To calculate the dynamic system equation the recurrent computation is un-
folded into a set of steps by repeatedly applying the inner f value. For RNN an
unfolded graph is shown in Fig. 2.5. The computation has the form of X as input
vectors and Y as output vectors, where H is the internal state vector.

y1 y2 y3 y4 y5 y6

h1 h2 h3 h4 h5 h6

x1 x2 x3 x4 x5 x6

Figure 2.5: Unfolded Recurrent Neural Network architecture

More accurately, RNN works by having internal state vectors h where h0 is a
zero vector. Each new computation follows Eq. (2.9). Whh,Wxh, and Why are the
three matrices that computes the internal state and output. Φ is the activation
function used.

As can be seen from the equation, the weight matrices are shared over each
time step, while the h vector keeps track of inner state.

ht = Φ(Whhht−1 +Wxhxt)
yt = Why ∗ ht

(2.9)

For each step t0 to tn the hidden state is passed along one way, computing
the next hidden the state. This process works well for predicting the next step
tn+1, but in the process long term context is lost. One popular alteration to RNN
that addresses the issue of context is the Long Short-Term Memory (LSTM) first
introduced by Hochreiter [1997].

Conceptually, it works in the same way as was shown in Eq. (2.9), except that
the hidden state computation is based on a new cell state C. Each cell decides
whether or not it should update the cell state or keep it as is. This is the long-term
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part of the model name. A visual representation of the LSTM cell is shown in
Fig. 2.6

ct
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Figure 2.6: Long Short-Term Memory cell

Equation (2.10) shows all the computational steps to go from input xt to
hidden state ht. Firstly, U is the input matrix weights and W the recurrent
matrix weights. ft is the result of computing the “forget gate layer”. Then it is
computed as the “input gate layer” that represents how much to scale the actual
state update. Subsequently, the new candidate values C̃t are computed. These
represent what can be added to the next state. Next cell state is then computed as
the combination of what to forget in the previous state Ct−1 and the new scaled
candidate values it ∗ C̃t. Lastly, the hidden state ht is computed similarly to RNN,
except that its also scaled according to the new cell state Ct.

ft = σ(Ufxt +Wfht−1 + bf )
it = σ(Uixt +Wiht−1 + bi)
C̃t = tanh(UCxt +WCht−1 + bC)
Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Uoxt +Woht−1 + bo)
ht = ot ∗ tanh(Ct)

(2.10)
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2.1.5 Data preprocessing
One of the challenges in machine learning is how to prepare the raw data before
trying to fit different models on it. Doing this step correctly requires a good
understanding of the problem domain and how the algorithms work.

Firstly, the data itself contains a lot of noise. There are many signal processing
filtering techniques that can be applied. One such technique is the median filter.
For one discreet signal ofN values it goes through every value and them neighbors
besides it, known as the window size. The values in every window is sorted and
the median one is selected as the positional value.
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Figure 2.7: Plot of station 300225 lane 4 on 2016-04-26. Red dots are the raw
data and the blue line is the results after using a centered median filter with a
window size of 4.

Figure 2.7 shows a plot comparing the raw data for one station and the results
after using a median filter on it. Some information is lost on the extreme low
peaks, but overall there is less noise in the traffic flow information.

Next, the data must be prepared in a way so the used model can handle it. As
an example Section 2.1.4 gives an overview over different activation functions and
their ranges. If the output of the model is limited based on the inner workings of
the model, then the input data must conform to this restriction. In other words
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the data needs to be scaled appropriately. This must be done on every input
features Xi. One way to do this is to scale the features to have a minimum and
maximum value. Equation (2.11) show how to do that.

xstd = x− xmin

xmax − xmin

x′ = xstd ∗ (xmax − xmin) + xmin

(2.11)

Machine learning algorithms might also take assumptions on the distribution
of the data itself. In that case feature standardization must also be done. Given
a feature x, the mean x̄, and standard deviation σ then Eq. (2.12) does that.

x′ = x− x̄
σ

(2.12)

Another question to ask is about the domain of the data. If it is subject to many
outliers or noise this might affect the performance of the algorithm. Accordingly,
this must either be filtered away before use, scaled appropriately, or be used on a
model that can handle such data.

2.1.6 Forecasting
In the context of machine learning to forecast is to perform prediction of time series
h time steps into unobserved data based on previous observations. In formal terms
given sequential observation X0, . . . , Xn the task is to estimate some unknown
Xn+h. The parameter h for horizon denotes the gap between last observation and
the point in time to estimate.

More robust models like Autoregressive Integrated Moving Average (ARIMA)
and its derivatives needs parameters denoting its seasonality. In the case of traffic
data there is a somewhat clear seasonality regarding the different periods of a
year. Problems are that traffic is dependent on the ever changing dynamics of
urban environments.

Data representation

There are two different ways to represent the data to forecast. Either it can be
the same as the input features. Meaning that the predicted value ŶT +h is the
traffic flow for time T + h. The other way to represent the predicted value is the
change from last observed value YT . Predicted traffic flow on time T + h is then
YT + ŶT +h.
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2.2 Structured Literature Review Protocol
This section discusses the results from the completed SLR process. A detailed
description of the entire process is found in Appendix A. The website used to find
papers is IEEE Xplore1, a digital library for scientific and technical content. In
short the SLR process consists of three steps. First the identification of research
was done by selected a set of predefined keywords to help find relevant papers.
The search statement was built up based on the terms shown in Table 2.2. This
resulted in over 1800 papers and to further reduce this set it was found that many
of the papers were from irrelevant publishers. After narrowing the publishers to
those relevant, there were 500 papers.

Table 2.2: Search terms from the first SLR step

Concerns Search terms
Domain Traffic
Problem Queue Congestion Flow Prediction Forecasting Estimation
Techniques Deep learning Neural networks Machine learning Big data

Second step is to select the primary studies. In this step the papers were
filtered based on the set of inclusion criteria shown in Appendix A.2. After this
step, the amount of papers was reduced to 114.

Third step is assess the quality of the primary study papers. This was done
by assessing the papers based on their quality through three phases. For the first
two phases the inclusion and quality criteria shown in Appendix A.3 were used.
Phase three used the quality criteria shown in Appendix A.3.3. All criteria got a
score and if the papers score was bad then it was not included in the next phase.
In the first phase only the abstracts were read. Then the second phase includes
the conclusion and test results, and lastly the third phase use the entire paper.
The set of reviewed papers is shown in Table 2.3 and consists of 22 papers.

The result of SLR can also be considered conclusions for RQ1 and RQ2. Partial
answers is also given to RQ3 and RQ4 which will further be used in Chapter 4.

1http://ieeexplore.ieee.org/Xplore/home.jsp

http://ieeexplore.ieee.org/Xplore/home.jsp
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Table 2.3: Final set of papers from the SLR process

Papers Title
Tu et al. [2016] Mapping Temporal Variables Into the

NeuCube for Improved Pattern Recogni-
tion, Predictive Modeling, and Understand-
ing of Stream Data

Schimbinschi et al. [2015] Traffic forecasting in complex urban net-
works: Leveraging big data and machine
learning

Fusco et al. [2015] Short-term traffic predictions on large
urban traffic networks: Applications of
network-based machine learning models
and dynamic traffic assignment models

Oh et al. [2015] Urban Traffic Flow Prediction System
Using a Multifactor Pattern Recognition
Model

Hou et al. [2015] Traffic Flow Forecasting for Urban Work
Zones

Huang et al. [2014b] Deep Architecture for Traffic Flow Predic-
tion: Deep Belief Networks With Multitask
Learning

Lv et al. [2014] Traffic Flow Prediction With Big Data: A
Deep Learning Approach

Huang et al. [2014a] Deep process neural network for temporal
deep learning

Moussavi-Khalkhali et al. [2014] Leveraging Machine Learning Algorithms
to Perform Online and Offline Highway
Traffic Flow Predictions

Dunne and Ghosh [2013] Weather Adaptive Traffic Prediction Using
Neurowavelet Models

Jeong et al. [2013] Supervised Weighting-Online Learning Al-
gorithm for Short-Term Traffic Flow Pre-
diction

Chan et al. [2012] Neural-Network-Based Models for Short-
Term Traffic Flow Forecasting Using a Hy-
brid Exponential Smoothing and Leven-
berg–Marquardt Algorithm
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Table 2.3: Final set of papers from the SLR process (continued)

Papers Title
Nguyen and Quek [2012] Traffic prediction using a Generic Self-

Evolving Takagi-Sugeno-Kang (GSETSK)
fuzzy neural network

Affonso et al. [2011] Traffic flow breakdown prediction using fea-
ture reduction through Rough-Neuro Fuzzy
Networks

Yang et al. [2010] Prediction of short-term average vehicu-
lar velocity considering weather factors in
urban VANET environments

Guo et al. [2010] Comparison of modelling approaches for
short term traffic prediction under normal
and abnormal conditions

Gu and Yu [2010] Study on Short-Time Traffic Flow Forecast-
ing Methods

Zhu and Zhang [2009] A Layered Neural Network Competitive Al-
gorithm for Short-Term Traffic Forecasting

Hu et al. [2008] Hybrid Process Neural Network based
on Spatio-Temporal Similarities for Short-
Term Traffic Flow Prediction

Liu et al. [2006] Research on Forecasting Model in Short
Term Traffic Flow Based on Data Mining
Technology

Guan et al. [2005] A practical model of dynamic forecasting
of urban ring road traffic flow

Guozhen Tan et al. [2004] Traffic flow prediction based on generalized
neural network

2.2.1 State of the art review

The literature in traffic prediction can be divided into many segments depending
on what type of problems they try to solve. The underlying infrastructure from
where the data is gathered also vary from every data source, thus there are vastly
different techniques based on the limits or possibilities. Some have access to gap
information, or have added other non-vehicle variables as weather, accidents, and
day time. Another factor is what they are trying to predict. Some try to predict
mean velocity of vehicles or mean traffic flow. Others focus on long term or short
term forecasting. There are also different approaches to how the data is used.
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Certain methods only focus on one station while others incorporate upstream and
downstream stations, or look at the big picture and tries to inherently model the
spatiotemporal relationships between stations.

The different approaches can be divided as being model or data driven. De-
cidedly, this study is focused on data driven models. Additionally, data driven
models can further be defined by the statistical definition as either parametric or
nonparametric. In this definition parametric models makes a priori assumptions
about the data distribution. Notable models are ARIMA, Seasonal Autoregress-
ive Integrated Moving Average (SARIMA), and Kalman Filters which has been
used extensively with great success. However, the focus in this study is on ANN
which can be considered nonparametric. Consequently, this refers to ANNs which
is trying to estimate the underlying function of the data. Other nonparametric
models are support-vector regression (SVR), decision trees, and KNN.

Variable reduction

One problem within traffic prediction is the large number of variables with inher-
ently complex relationships to model. Liu et al. [2006] used genetic algorithms to
successfully reduce the needed variables for Wavelet Neural Network (WNN).

The study from Moussavi-Khalkhali et al. [2014] used Principal Component
Analysis (PCA) to handle many parameters like occupancy, flow, speed, etc. Their
simple Multi-layer Perceptron (MLP) model perform better after this process. In
the conclusion they recommend looking at deep architectures and auto-encoders.

Oh et al. [2015] worked on tackling the issue that variables vary in their value
range. The suggested approach was Multi Factor Pattern Recognition Model
(MPRM) that normalized the input values. Their proposed model used Gaussian
Mixture Model (GMM) for clustering and Levenberg-Marquardt back-propagation
algorithm for learning.

Hou et al. [2015] focused on traffic in work zones with both long-term and
short-term forecasting. Together with traffic flow at one station, they used an
upstream and downstream station as well. In addition to this they included the
workday, hour in day, and speed limit. The results however showed that these
extra parameters had little significance for the models’ accuracy.

Spatiotemporal

Another way to approach the issue of having many variables is to model the inher-
ent spatiotemporal relationship between them. Hu et al. [2008] looked at the issue
in how spatiotemporal stations affect each other. By performing Self-Organizing
MAP (SOM) clustering with Cross-Correlation Function (CCF) they found, for
one station, the other most spatiotemporal similar stations. They theorized an
Hybrid Process Neural Network (HPNN) model and test the assumption that the
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more spatiotemporal stations give better accuracy than the closest upstream and
downstream ones. This assumption was found to be true and the authors suggest
that some stations are effected by the fact that they are closer to ramps that
bias their correlation. Their HPNN model also performed well with upstream and
downstream stations, but best with the most spatiotemporal ones.

Zhu and Zhang [2009] uses Kohonen Self-Organizing MAP (KSOM) to cluster
data and test different models within the clusters. The proposed method performs
better than ARIMA. The model is only tested on one station with a 10 minute
horizon.

With a dataset from Melbourne, Australia spanning six years, Schimbinschi
et al. [2015] has used this to test a few important assumptions regarding traffic
prediction with big data and machine learning. The tests were done with Logistic
Regression (LogReg), ANN, and classification trees. The results show that increas-
ing window size does increase accuracy. This was also proved by getting the same
effect after having removed the biggest source to variance in the data; weekends.
Clustering stations by proximity further improved accuracy. This shows that the
spatial information is more influential than the temporal. It was also found that
prediction accuracy has a significant decrease when using fewer data.

Jeong et al. [2013] addresses the issue that historical data is less significant
than newer data when prediction future states. The proposed method is online
learning weighted support-vector regression (OLWSVR). The proposed method
works much better than regular SVR and a simple Machine Learning (ML) with
four neurons in the hidden layer.

Extending models with other variables

Other research has focused on weather data. Yang et al. [2010] applies a simple
MLP to see the prediction accuracy when introducing weather information. The
results show a marginal increase in prediction accuracy with weather data.

Dunne and Ghosh [2013] takes into account the effect of rainfall when predict-
ing traffic flow. The model uses Stationary Wavelet Transform (SWT) to perform
neurowavelet prediction. Their model outperforms a standard ANN model sub-
stantially.

Guo et al. [2010] looks at how traffic behaves under normal versus abnormal
conditions (accidents, etc.). This is done by making three separate input models
that respectively considers: Current stations, current stations with historical data,
and current station with historical data and error feedback. These three input
models are then tested under two different conditions; normal and abnormal
traffic where the abnormal traffic is traffic data from when a traffic accident
happened. Perhaps unsurprisingly, results show that historical data negatively
impacts prediction under abnormal conditions. However, using error feedback
loops positively helps in these cases.
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Fuzzy

The traffic prediction domain has also been tested with Neuro-fuzzy Networks,
a variation of which use ANN to train the rules. Affonso et al. [2011] tries to
use Rough Neuro Fuzzy Network on MLP and RBF to measure the impact when
performing reduction on the rule set.

Nguyen and Quek [2012] found great results using Self-Evolving Takagi-Sugeno-
Kang (GSETSK) Fuzzy Neural Network.

Artificial Neural Network

Guozhen Tan et al. [2004] perform early experiments with Generalized Neural
Network (GNN) on traffic flow prediction with upstream and downstream stations
in five minute aggregated windows. Guan et al. [2005] makes a practical attempt
to use ANN to forecast traffic in Beijing.

Gu and Yu [2010] shows that chaotic neural networks outperforms traditional
Back Propagation (BP) ANN on road intersection exits.

Chan et al. [2012] generalizes ANN by using hybrid exponential smoothening.
Their results show that the generalization power of ANN is increased when the
lumpiness in the data is removed. It was also proved that this method helped
more complex ANN like WNN and BNN.

Fusco et al. [2015] found that ANN and Bayesian Network (BN) had similar
accuracy characteristics.

Deep Learning

Lv et al. [2014] proposes Stacked Autoencoder (SAE) to address the issue of
spatiotemporal relationship. For 15 minute traffic flow prediction they found that
the model with three layers where each layers consists of [400, 400, 400] neurons
performed best. The prediction layer used LogReg. To train this deep learning
architecture they used greedy layer-wise training. The hidden layers are first
trained unsupervised, then the prediction layer was trained supervised.

Huang et al. [2014a] builds on deep learning techniques to propose Deep
Process Neural Network (DPNN) which is a combination of the principles of
building and training AE combined with Process Neural Network (PNN). When
compared against Deep Neural Network (DNN) they found that DPNN has better
accuracy, convergence time, and training time.

Huang et al. [2014b] proposed using Deep Belief Network (DBN) for unsu-
pervised feature learning. This is similar to SAE and the approach taken by Lv
et al. [2014]. For regression a sigmoid layer is applied atop of the unsupervised
hidden layers. This model was compared against many models including ARIMA,
ANN, and SVR. The DBN architecture outperformed all the other models in all
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tests including increasing prediction windows up to one hour. Multi Task Learn-
ing (MTL) was also tested atop the unsupervised DBN model. This clustering
approach helped increase the models’ ability for generalization and performed
better.

Tu et al. [2016] adds graph mapping to temporal data with NeuCube Spiking
Neural Network (SNN) architecture. NeuCubes were originally designed for brain
data. With the addition of mapping, thew new model is proved to work in different
domains, including traffic flow prediction. This model addresses the fact that
spatiotemporal traffic data is inherently complex and changes over time (similar
to RNN, and self-organizing models).
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Chapter 3

Architectures/Models

This sections outlines the implementation details about the models used in the
experiments. First, in Section 3.1, the models and the background for using these
models in the experiments are explained. Then in Section 3.2 the implementation
details on language choice, frameworks, and data pipeline are explained.

3.1 Models
In this section the implemented models are explained. The four models are Histor-
ical Average (HA), Feed Forward Neural Network (FFNN), Stacked Autoencoder
(SAE), and Recurrent Neural Network (RNN). HA is used as the simple baseline
algorithm showing the predictive effectiveness when the model is not making
any assumption besides the previous data. FFNN architecture is selected since it
showed promising predictive results when applied to big data sets in Schimbinschi
et al. [2015]. For the more complex models SAE architecture from Lv et al. [2014]
is selected. Last an RNN architecture is implemented. From the Structured Liter-
ature Review (SLR) results in Section 2.2 no previous implementation of RNN
models were found in the context of traffic data.

3.1.1 Historical Average
The HA model is used as a baseline for the other models. HA calculates the mean
traffic flow for every station on every day and hour in all the weeks. Simplistically,
the error deviation from this model on the test set does also give a certain notion
of the temporal difference in the train/test data split.

The historical data is denoted as y1, . . . , yT , then y̌T +h|T is the estimate of
yT +h based on y1, . . . , yT as shown in Eq. (3.1).

27



28 CHAPTER 3. ARCHITECTURES/MODELS

y̌T +h|T = y = (y1 + · · ·+ yT )
T

(3.1)

3.1.2 Naïve Random Walk
The Naïve Random Walk (NRW) algorithm is the second baseline algorithm and
is perhaps one of the simplest models for forecasting. By Eq. (3.2) it is stated as
taking the last observed value YT as the future value Ŷ , where h is the prediction
horizon.

ŶT +h = YT (3.2)

All the different data representations can easily be misused by the models to
either predict the identity function for the last observed value (thus having the
same predictive power as NRW), or always predicting the value for zero change
(also having the same predictive power as NRW). By comparing the other models
with NRW more confidence will be gained as to not having this issue.

3.1.3 Feed Forward Neural Network
The FFNN model implemented is explained in Section 2.1.4. It is a simple archi-
tecture with one hidden layer and the sigmoid activation function.

3.1.4 Stacked sparse autoencoder
In this section the Stacked Sparse Autoencoder (SSAE) model is introduced. It is
based on the SSAE model from Lv et al. [2014] with some alterations as explained
below. A more detailed explanation of the core theory is found in Section 2.1.4.

For training the model the separate stacked Autoencoder (AE) layers are
trained in a semi unsupervised fashion to recreate the features. This is done in
a greedy layer-wise fashion. Then the prediction layer is trained in a supervised
fashion. The prediction layer is a fully connected layer with the sigmoid activation
function. Conditionally, the sigmoid layer is used because it has a range of {y ∈
R : 0 < y < 1}, which is important in regards to how the data is represented as
is discussed in Section 4.3.1

In the AE layers the encoder f(·) and decoder g(·) functions from Eq. (2.7)
are also the sigmoid function.

The loss function representing the error used for calculating the gradients is the
l2-loss in the reconstruction function L2(Xi, Z ′) and Kullback–Leibler Divergence
(KLD) divergence from y(xi) as shown in Eq. (3.3).
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loss = L2(Xi, Z ′) + γ

HD∑
j=1

KL(ρ||ρ̌j) (3.3)

KLD is used as the sparsity constraint on the encoding layer. HD is the number
of neurons in the hidden layer. ρ̌ is calculated as ρ̌j = 1

N

∑N
i=1 yj(xi). The property

given by using the KLD divergence is that KL(ρ, ρ̌) = 0 if ρ = ρ̌. If ρ̌ approaches
either 0 or 1 then KL will diverge to∞ as plotted in Fig. 3.1 This ensures that the
activations in the encoding layer is kept as sparse as possible. It is important to
note that KLD is only defined for the domain {y ∈ R : 0 < y < 1}. Subsequently,
this is why the sigmoid function is used in the encoding and decoding layers.

L2(Xi, Z ′) = 1
2

N∑
i=1
||xi − y(xi)||2 (3.4)

KL(ρ||ρ̌) = ρlog
ρ

ρ̌j
+ (1− ρ)log 1− ρ

1− ρ̌j
(3.5)
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Figure 3.1: Plot of KL(0.3, ρ̌).

One issue with the KLD implementation is that ρ̌ values of 0 will give not a
number (NAN) values in the gradient and effectively “kill” the neuron. By adding
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a small noise value of 10−9 in the denominator of the log expressions in Eq. (3.5)
this is avoided.

These autoencoders are then stacked in layers. Given a three layered autoen-
coder the last encoding layer will be computed as y3(y2(y1(·))).

To perform prediction on future states the last encoding layer is feed into
the prediction layer with the activation function. This is the same model as
explained in Section 3.1.3. Loss is calculated as the mean square error (MSE) of
the prediction layer result Y ′ and the actual values Y .

MSE(Y, Y ′) = 1
N

N∑
j=1

(yj − y′j)2 (3.6)

In Lv et al. [2014] the weights are initialized with random values. In this model
Xavier initialization is used. Xavier initialization was first introduced in Glorot
and Bengio [2010] and is a normal distribution based on the count of neurons in
and the neurons out of a feed forward network. For the distribution X ∼ N (µ, σ2),
µ and σ2 is shown in Eq. (3.7).

µ =
√

6.0
in+ out

σ2 =
√

3.0
in+ out

(3.7)

The greedy layer wise training of the models is done as shown in Algorithm 2.
Every autoencoder layer is trained one by one where l0 use the features as input
and the next l1 use layer l0 as input. After the pretraining is done then the
prediction layer is trained on the entire network minimizing MSE.

3.1.5 Deep Neural Network
The Deep Neural Network (DNN) model is an extension to the FFNN model.
While having more then one hidden layer, it sets itself apart from FFNN by using
Rectified Linear Unit (ReLU) as activation function and dropout between every
layer. The advantages of using ReLU is that its an linear activation function as
apposed to sigmoid which is nonlinear and can easily blow up the activation values.
The equation for ReLU is shown in Eq. (3.8).

f(x) = max(0, x) (3.8)

Dropout, first introduced by Hinton et al. [2012], is a regularization technique.
Each neuron in a layer with dropout has a specified chance of not being “dropped”.
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Algorithm 2: Training algorithm for SSAE
Data: Training samples X, features Y , and hidden layers l
Result: Trained model

1 let γ be the sparsity weight;
2 let ρ be the sparsity term;
3 Initialize the weights with Xavier initialization;
4 let input be the features X;
5 foreach layer in l do
6 Calculate z′ = zlayer(input);
7 Calculate loss(z′, Y );
8 Minimize the loss and repeat from step 6 until convergence;
9 let input be layer′;

10 Train the prediction layer with MSE until convergence;

A dropped neuron is set to zero. The idea is that the network is forced to learn
observe the data as more noise than it actually is. The internal representation
obtained after training is more general, and in turn perform better on unobserved
data.

3.1.6 Recurrent Neural Networks
From the SLR performed in Section 2.2 no model where found that was based
on RNN. RNNs has been successfully applied to prediction tasks on sequential
data. Given that traffic data also has the characteristics of being sequences where
each step is dependent on the last, an Long Short-Term Memory (LSTM) model
is included in the set of deep learning models. The RNN model with LSTM cells
are explained in Section 2.1.4.

TODO

3.2 Implementation
All development is done the programming language Python 3.5 1. The main ad-
vantage with using the Python language is that it is a interpreted dynamically
typed language with great interoperability with low level C code. Even though in-
terpreted languages often has bad runtime performance, especially when it comes
to number crunching, Python has become widely popular within the field of data

1https://www.python.org/

https://www.python.org/
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science. This is can be attributed to the vast ecosystem of Python interface for
numerical computation implemented in C.

For exploration and analysis of data the Pandas2 library for tabular data is
used. Pandas has efficient tools to work with time series making it possible to
resample, pivot, and plot.

To perform data preprocessing and grid searches on the models the machine
learning library scikit-learn3 is used.

The models are implemented with Tensorflow4. The library is developed by
Google and first introduced 9 November 2015 with the whitepaper by Abadi et al.
[2015]. There are many alternatives to Tensorflow for deep learning but the
advantage is that the main interface for model development is in Python and that
all computation are built up as a graph that can be evaluated on CPU and GPU.
This makes it possible to use high level Python code to built new low level numeric
computations on top of the normal constructs. On the downside the library can
still be considered new and the api, at time of writing, is still in flux.

Tensorflow also ships an interface known as skflow that has an interface
similar to the models in scikit-learn. This makes it easy to build pipelines with
transformations and performing grid search. This interface had some issues when
trying to perform layer-wise training. To support this feature it was necessary to
write a new scikit-learn model interface which had the features necessary for the
models in this thesis.

One of the advantages of using Tensorflow is that it has great features for
logging the training data results and visualise it with the built in Tensorboard
software. Tensorboard is a website run locally which can visualize different para-
meters in the model for each separate step. It can also show all the layers in the
model so it can be visually inspected.

The raw data delivered from Datainn was too large to work on the complete
set in memory. For this reason the raw data was copied over to the database
engine PostgreSQL 5. PostgreSQL was chosen because it has features for working
with time series. The data was aggregated within a specific interval and grouped
on each Roadside Traffic Data Collection Equipment (RTDCE) unit and lane.
This process takes too much time do be done on each run of a model so the results
are cached on disk.

By combining the data caching over PostgreSQL and the model interface of
scikit-learn it was possible to define a JSON formatted file as an experiment which
specifies all model parameters, data parameters, and horizon prediction paramet-
ers. This made it simpler to perform new experiments with small alterations while

2http://pandas.pydata.org/
3http://scikit-learn.org/
4https://www.tensorflow.org/
5https://www.postgresql.org/

http://pandas.pydata.org/
http://scikit-learn.org/
https://www.tensorflow.org/
https://www.postgresql.org/


3.2. IMPLEMENTATION 33

keeping the original information about previous experiments.
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Chapter 4

Experiments and Results

This chapter introduces how the experiments are performed with their respective
results. Firstly, Section 4.1 describes the performance metrics and how they are
evaluated. Then, Section 4.2 describes the experiments performed. Section 4.3
describes the setup of the experiments. Section 4.4 introduces the environment in
which the experiments are performed on. Lastly, the results from the experiments
are introduced in Section 4.5.

4.1 Experimental Plan
In this section the metrics used to evaluate models and methods to compare
between models are introduced.

4.1.1 Performance metrics

Models are compared by evaluating their prediction error as given by two error
estimates: The mean relative error (MRE) from Eq. (4.1) gives a relative error for a
given model, and root mean square error (RMSE) from Eq. (4.2) for measurement
of accuracy between models. A problem with MRE is that it is undefined for
target values of 0. Given that the measurements are calculated on traffic flow
then the only data of interest is where traffic flow is above zero. For that reason
the division error can be regarded as not a big issue.

MRE(y, y′) = 1
n

n∑
i=1

|yi − y′i|
yi

(4.1)
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RMSE(y, y′) =

√√√√ n∑
i=1

(yi − y′i)2 (4.2)

It is also relevant to know how the different models perform on each station
between each other. One way to see this is by plotting the empirical distribution
function.

The accuracy of the models is also shown within rush hour times as defined
in Section 2.1.3.

4.1.2 Evaluation

The error metrics explained in Section 4.1.1 gives error over each station and
lane. To correctly assess the accuracy between models the Empirical distribution
function (EDF) is applied. First this section introduce how this is done. Finally, it
is explained how the error estimates are compared when the result data is filtered
on different criteria.

Empirical error distribution

All models output multivariate variables representing the traffic flow for each
station. The information which differentiate the separate models are how well
they predict the flow for every station and lane. Error variations are highlighted
with EDF. EDF is Cumulative distribution function (CDF) with the empirical
measure of a sample. For a measure x ∈ X it tells how much, from 0 up to the
total distribution of 1, how much of the data is distributed with a value under x.
In this case, the sample is MRE over the prediction result for each station.

Comparing error distributions

In the data set applied, there are many variations based on the given time, time
of the year (holidays), events, and other unknown factors. It is important to
investigate how the models behaves on these factors. In order to highlight some of
these factors, the data result set is filtered to only contain data within specified
criteria before the error metrics are computed.

One important factor to note is that the models are more prone to errors
in night time. Another is to filter the data on a certain threshold of traffic flow
volume.
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4.2 Experiments
This section introduces the experiments performed and their rational for doing
them. First the experiment concerns with how the model behaves with different
prediction horizons and what lag that gives the best results. The second experi-
ment will see how the results are affected by using more variables besides the flow
data. Lastly a wide and deep model is tested. It is a combination of the Stacked
Autoencoder (SAE) architecture and Recurrent Neural Network (RNN).

Decidely, the models used are SAE, RNN, Naïve Random Walk (NRW), and
Historical Average (HA). HA and NRW are the naive models that must be out-
performed if the more complex models are too be considered useful. Each of those
represent two different aspects of what is important in a forecasting algorithm
By getting a better result than NRW a model has clearly got some meaningful
understanding of the data. For HA the importance of beating it is a baseline for
having any merit at all.

4.2.1 Experiment: Prediction horizon
The forecasting horizon is the time lag from last observed value to the time
steps one is trying to forecast. In this study is focused on forecasting horizons of
short-term (15 minutes), mid-term (30 minutes), mid-long-term (45 minutes), and
long-term (60-minutes). Hopefully, by testing model performance on the different
horizons, insights into the model performance characteristics will be gained.

4.2.2 Experiment: Introducing other variables
In this experiment the method of adding extra variable on the feature vector
is explored. This is the same method as from Guo et al. [2010] where weather
data was used. But, in this research, the traffic information from Datainn is used
instead. The relevant variables exposed from Datainn per vehicle are shown in
the list below. Within each aggregated interval the mean and standard deviation
is computed.

• Vehicle speed
• Vehicle gap

Other metadata that can be considered relevant for every aggregated time
step is:

• Hour of the day
• Day of the week
• Day of the year
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The question remains which of these are actually related to the traffic flow. This
is computed by the Spearman correlation. This correlation takes no assumption
about the distribution of the data, but assumes that it is ordinal and the different
variables are monotonically related.

The correlation computation takes all variables which includes every Roadside
Traffic Data Collection Equipment (RTDCE) station. This correlation grid is
thus |variables| ∗ |variables| in size. Therefore, the visualization of the Spearman
correlation shown in Fig. 4.1 only contains each vehicle variable. The correlation
values are the mean over every station.

The correlation heatmap clearly shows that relevant variables that should be
used in the model are the ones listed below.

• Hour of the day
• Day of the week
• Average gap
• Variance gap

Negative score implies that the variable will negatively affect the values. In
this regard a higher gap between vehicles means that the traffic flow is more likely
to be lower.

In the last experiment results, outlined in Section 4.5.1, that mid-term and
long-term forecasting gave the most interesting result. Therefore, those were the
only forecasting horizon explored. Only RNN, Deep Neural Network (DNN), and
DNN results were explored.

4.3 Experimental Setup
In this section the setup details are described. Section 4.3.1 describes the specifics
of how the data set is used. Lastly, Section 4.3.2 describes the hyperparameter
tuning performed on the models.

4.3.1 Data set
The data set used is explained in Section 2.1.2. There are three dumps that was
taken from the data set. The data contained in each dump is explained in the list.

Dump 1 From 2016-02-01 00:00:01.79+00 to 2016-09-11 03:47:24.979+00 with
27 stations.

Dump 2 From 2016-01-29 00:00:00.679+00 to 2016-11-03 06:52:09.25+00 with
26 stations.
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Figure 4.1: Spearman correlation heatmap

Dump 3 From 2016-01-28 22:13:17.31+00 to 2016-11-18 22:59:57.72+00 with 26
stations.

Dump 1 has mostly been used with model experimentation and data explora-
tion. Some of the stations included were found to be virtual; they do not contain
any physical RTDCE, but represent an aggregation of other stations. For that
reason another dump was requested without virtual stations. Dump 2 showed
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issues when it was found that traffic was missing at certain times. Therefore a
third and final dump was acquired.

Choice of stations

The amount of stations using the new Datainn system is increasing. To make
sure the stations used had enough data they were filtered by their activation date.
Then the resulting stations were filtered on their location. They had to be within
a rectangle area that covers most of Oslo. This gave the stations shown within
the rectangle in Fig. 4.2. Most of the stations are concentrated around what is
known as ring three which is the main road around Oslo city.

Figure 4.2: Stations in Oslo that is in dump 3. Screen capture from http://
geojson.io/.

Storing the data

For the first data dump received from Datainn the data was formatted as newline
delimited json where each row is one vehicle. In total there was 173,033,934 rows
in the specified time period. Each row contains information about which stations
it corresponds too. This is 7.7GB of zipped (gzip) json and approximately 140GB

http://geojson.io/
http://geojson.io/
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unzipped. Before use the data has to be grouped by station and then aggregated
in specific time intervals. Doing this in memory on the computer in use is not
possible because of lack of memory.

To solve the issue of large data sets, it was decided that it was easier to store
the data in a database. Decidedly, the database needed to handle time series data,
not have a large data storage overhead, and be able to import data from csv.
For these reasons PostgreSQL was selected. The files were converted to CSV and
copied into the database. For further details look in Appendix B.2.

Cleaning the data

There are different suppliers of RTDCE with certain differences in quality and
type of errors they produce. Therefore the data must be cleaned for such errors.
The data that is filtered away is listed below:

• When length is equal to 29
• Vehicles that are classified as 11 (unknown)

The reason for filtering away vehicles that has a length of 29 is that some
of the RTDCE suppliers use that value to show that there is an error in the
registered event. Classification as 11 means that the RTDCE unit also had issues
with classifying vehicle type.

Next, by performing small experiments it was found that there were specific
stations with problematic data. The stations in question were 300047, 300224,
300142, 300145, and 300147. These stations have data in the training set, but no
data in test set. While performing experiments that included these stations it was
found that the models gave residual noise from the test data. The noise had a
pattern respresenting actual traffic data, only with small values. Other stations
that had holes in both training and test data did not have this issue. Conclusively,
the models can learn the concept of stations that have missing data. As this study
is not focused on the issue of missing data, the stations missing data in the test
set were not used.

Aggregating data

From Datainn the data is row based were each row is one vehicle drive by event.
The models used assumes that each row corresponds to one point in time and that
each feature is one lane in one station or some other data relevant to that point
in time. For this reason the raw data set needs to be aggregated into unique bins
for the specified time interval, station, and lane. An Structured Query Language
(SQL) query on the database aggregats the data into this format. A more in depth
explanation of how this is done is presented in Appendix B.3.
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The time interval to aggregate the data into varies between research. Some
must adhere to the lower bound of resolution on the data used. Usually, it varies
between 5 and up to 15 minutes. In this thesis 5 minutes were used because traffic
jams in Norway usually dont last over too much time. If the time interval is too
large then there can be an issue of loosing traffic congestion information.

In those situations were there was no traffic flow on a given point in time, the
traffic flow value was set to zero. For that reason, this was done to make sure that
each row in time increases by the specified time interval.

Splitting

To minimize the issue of overfitting as discussed in Section 2.1.4 the data is split
in a training set, validation set, and testing set. The validation set is used for
training with early stopping. Intentionally, the training set consists of the first
59% of data, the validation set of the next 13%, and test set of the last %33. As
the results on the test set gives a certain degree of confidence on the generalization
of the model, the test set percentage is chosen to be somewhat high. There are
many variations and no exact answers to what numbers that should be selected
for train, validation, and test sets. One of the disadvantage’s with leaving so much
data to the test set is that time series are changing over time. Seasonal changes
from the training set will increase the further one gets through it.

Preprocessing the data

Section 2.1.5 discussed some techniques and the necessities of preprocessing the
data. These techniques are applied to the Datainn data used for experimenation.
Firstly, the data goes through a centered median filter with a window size of 4.

Then, since the layers in the models use the sigmoid function, the data needs to
be within the range of the sigmoid function. Accordingly, Eq. (2.12) and Eq. (2.11)
is used on the filterd data in that order.

Data format

Each distinct data set Dt is then split into feature vectors Xt and target vectors
Yt+h, where h is the prediction horizon. Next, the Yt vectors are tranformed
in representing change from last observed value. This process is explained in
Section 2.1.6.

Then feature vectors Xt represent traffic flow for every station and other
relevant variables for each time step t. Further, the features set is expanded with
the window size r into feature matrice X ′t. In X ′t dimension zero has the features
{Xt−r, ·, Xt}.
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Lastly, the X ′t and Yt+h vectors is split into batchs of batche size b. Now
the dimensions of the feature matrices are [b, r, |Xt|]. For Feed Forward Neural
Network (FFNN), Stacked Sparse Autoencoder (SSAE), and DNN the two last
dimensions are flattened to the matrice [b, r ∗ |Xt|].

4.3.2 Selecting the hyperparameters
As shown in Section 2.1.4, some machine learning algorithms can be described
as a set of mathematical formulas with parameters that is learned on the data
through a training process. The parameters that are not learned through training
are known as the hyperparameters of the model. When training the model, these
parameters must be decided upon a priori. In many models, especially those
used in this study, finding optimal hyperparameters can not be considered an
exact science. The problem of choosing the optimal hyperparameters is known as
hyperparameter optimization. This can either be done through previous experience
or experimentation. One experimental approach is performing grid search. This is
an exhaustive search on a subset of the hyperparameter space. Most parameters
are defined for infinite set of discrete or continuous values and it is therefore
not feasible to search the entire hyperparameter space. This method can thus be
considered an approximation to finding the best parameters.

In this study hyperparameter optimization is done with the module Grid-
SearchCV from Scikit-learn introduced in Section 3.2. Each grid search is done
by training on the training set and cross validated with the validation set intro-
duced in Section 4.3.1. Detailed results from hyperparameter search is found in
Appendix C. Every parameter denoted with * is based on grid search results.

Firstly, in Table 4.1 the hyperparameters and the corresponding values for
SSAE are presented. Then the hyperparameters for RNN, DNN, and FFNN are
presented in Table 4.2.

4.4 Environment
Three different machines have been used. One personal laptop for off campus
working, one desktop station for development, and one GPU server for heavy
model training workloads.

Laptop Machine running Kubuntu 16.10. It has one 4 core Intel(R) Core(TM)
i7-4710HQ CPU @ 2.50GHz, 16 GB RAM, and NVIDIA GeForce GTX
860M with driver version 367.57.

Desktop station Machine borrowed from NTNU running Ubuntu 16.04 with
16GB RAM and one 8 core Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz.
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Table 4.1: SSAE hyperparameters for forecasting horizon experiments

Hyperparameters 15 minutes 30 minutes 45 minutes 60 minutes
Φ Sigmoid Sigmoid Sigmoid Sigmoid
AE Φ Sigmoid Sigmoid Sigmoid Sigmoid
ρ 0.09 0.09 0.09 0.09
γ 3 3 3 3
Learning rate 0.001 0.001 0.001 0.001
Optimizer RMSProp RMSProp RMSProp RMSProp
Neurons in layer* 1400 400 400 1000
Number of layers* 2 4 4 3
Batch size 1024 1024 1024 1024

Table 4.2: Hyperparameters for RNN, DNN, and FFNN. Not relevant parameter
values are shown as “-”.

Hyperparameters RNN DNN FFNN
Φ Sigmoid Sigmoid Sigmoid
Learning rate 0.001 0.001 0.001
Optimizer RMSProp RMSProp RMSProps
Neurons in layer 1000 1000 -
Number of layers 3 3 -
Dropout - 0.95 -
Batch size 1024 512 1024

Server Machine borrowed from NTNU running Ubuntu 14.04. It has one 8 core
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 12GB RAM, and NVIDIA
GeForce GTX 745 with driver version 367.57.

AWS EC2 Instance running Amazon Linux AMI on p2.xlarge. It has one NVIDIA
Tesla K80 GPU with 12GB GPU memory and 64GB RAM.

4.5 Experimental Results
In this section the experimental results from Section 4.2 is presented. All of the
results presented in this section is the MRE and RMSE over every station on
all the test data. A more in depth exploration of these results are presented in
Section 5.1 and Section 5.2.
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4.5.1 Experiment: Prediction horizon
In Table 4.3 the 15 minutes forecasting horizon results are presented. Next the
30 minutes forecasting horizon in Table 4.3. Then in Table 4.5 the 45 minutes
forecasting horizon results are presented. Lastly, the 60 minutes forecasting horizon
results are found in Table 4.6

Table 4.3: MRE and RMSE aggregated forecasting results with 15 minute fore-
casting horizon.

Error DNN FFNN HA NRW RNN SSAE
mre mean 0.2641 0.4748 0.3388 0.2860 0.2483 0.2901

std 0.1280 0.2660 0.1298 0.1224 0.1444 0.1366
min 0.0973 0.1459 0.1596 0.1223 0.1033 0.1028
25% 0.1599 0.2349 0.2545 0.1860 0.1698 0.1638
50% 0.2534 0.4137 0.3071 0.2628 0.2096 0.2644
75% 0.3053 0.6694 0.3992 0.3328 0.2734 0.3879
max 0.6927 1.2266 0.9201 0.6733 0.9994 0.6904

rmse mean 6.5889 8.8914 10.5951 7.6483 7.5440 6.8822
std 2.6972 3.8278 5.0222 3.3673 4.1360 2.9851
min 0.4277 0.4721 0.6400 0.4322 0.3249 0.3528
25% 5.1146 6.6620 7.7134 5.8255 5.5873 5.4194
50% 6.7511 8.9703 10.7072 7.6517 7.2716 7.1290
75% 8.3813 11.7552 12.8302 9.7683 9.1450 8.4822
max 12.3442 18.2138 23.9770 14.7042 21.7621 13.2489

4.5.2 Experiment: Introducing other variables
Section 4.2.2. Only RNN, DNN, and SSAE was explored. The same hyperparamet-
ers from Section 4.3.2 were applied on the models with the extra features hour of
day, day of week, average gap, and variance in the gap. Too better highlight how
the models performed with the extra features, the results are presented alongside
the results from Section 4.5.1. Model names highlighted with * are using the extra
features. For each model, the best mean result is highlighted in bold.

First, in Table 4.7 the 30 minutes forecasting horizon results are presented.
Then the long-term 60 minutes forecasting horizon results in Table 4.8.
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Table 4.4: MRE and RMSE aggregated forecasting results with 30 minute fore-
casting horizon.

Error DNN FFNN HA NRW RNN SSAE
mre mean 0.2983 0.5730 0.3388 0.3585 0.2696 0.3110

std 0.1471 0.3694 0.1298 0.1344 0.1456 0.1554
min 0.1130 0.1699 0.1596 0.1718 0.1180 0.1166
25% 0.1855 0.2941 0.2545 0.2487 0.1912 0.1861
50% 0.2604 0.4653 0.3071 0.3338 0.2369 0.2887
75% 0.3584 0.7507 0.3992 0.4399 0.2979 0.3843
max 0.7699 1.9678 0.9201 0.7998 1.1083 0.9003

rmse mean 7.4286 10.7957 10.5951 10.2867 8.0241 7.6657
std 3.1011 4.8913 5.0222 4.8400 4.2761 3.4073
min 0.4423 0.5089 0.6401 0.4291 0.3369 0.4119
25% 5.7436 8.4515 7.7136 7.6425 5.8422 5.5293
50% 7.7808 11.0299 10.7056 10.1987 7.7453 7.8342
75% 9.2916 14.0491 12.8300 13.4575 10.1722 10.2149
max 15.1435 20.1995 23.9781 19.7730 21.7272 16.5223

Table 4.5: MRE and RMSE aggregated forecasting results with 45 minute fore-
casting horizon.

Error DNN FFNN HA NRW RNN SSAE
mre mean 0.3466 0.6708 0.3388 0.4381 0.2828 0.3452

std 0.1771 0.4660 0.1298 0.1561 0.1430 0.1683
min 0.1256 0.2127 0.1596 0.2198 0.1335 0.1306
25% 0.2033 0.3542 0.2545 0.3183 0.2051 0.2116
50% 0.2899 0.5297 0.3071 0.4043 0.2461 0.3102
75% 0.4604 0.8415 0.3992 0.5485 0.3241 0.4314
max 0.9511 3.0395 0.9202 1.0472 1.1019 0.8948

rmse mean 7.7903 12.4444 10.5949 12.7097 8.2042 8.1570
std 3.2684 5.8327 5.0222 6.1333 4.3663 3.5270
min 0.4159 0.4822 0.6401 0.4542 0.3396 0.4206
25% 6.1762 9.4286 7.7137 9.3384 5.8169 6.2176
50% 7.8519 12.5498 10.7018 12.7641 7.9044 8.5284
75% 9.7822 16.2596 12.8300 17.0287 10.3192 10.8573
max 16.9273 24.4469 23.9791 24.6436 21.1953 17.8198
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Table 4.6: MRE and RMSE aggregated forecasting results with 60 minute fore-
casting horizon.

Error DNN FFNN HA NRW RNN SSAE
mre mean 0.3483 0.7645 0.3389 0.5235 0.2978 0.3658

std 0.1649 0.5686 0.1298 0.1809 0.1477 0.1783
min 0.1376 0.2669 0.1596 0.2653 0.1472 0.1417
25% 0.2262 0.4052 0.2545 0.3879 0.2071 0.2177
50% 0.3027 0.5603 0.3071 0.4714 0.2620 0.3297
75% 0.4151 0.9656 0.3993 0.6677 0.3443 0.5001
max 0.9993 4.0492 0.9202 1.2422 1.0796 0.9634

rmse mean 8.5214 14.2305 10.5949 15.0497 8.5575 8.6406
std 3.6643 6.5770 5.0223 7.3668 4.5314 3.8684
min 0.4513 0.5108 0.6401 0.4747 0.3384 0.3639
25% 6.7355 10.3321 7.7138 10.8479 6.0355 6.3065
50% 8.8403 14.9595 10.7003 15.3142 8.4349 8.9021
75% 10.7421 18.6253 12.8302 20.3527 10.6345 11.3757
max 17.8644 27.8113 23.9803 29.2737 22.5929 19.5142

Table 4.7: MRE and RMSE aggregated forecasting results with 30 minute fore-
casting horizon.

Error DNN DNN* RNN RNN* SSAE SSAE*
mre mean 0.2983 0.3113 0.2696 0.2711 0.3110 0.3054

std 0.1471 0.1562 0.1456 0.1448 0.1554 0.1446
min 0.1130 0.1220 0.1180 0.1108 0.1166 0.1179
25% 0.1855 0.1875 0.1912 0.1832 0.1861 0.1919
50% 0.2604 0.2725 0.2369 0.2374 0.2887 0.2877
75% 0.3584 0.3971 0.2979 0.3152 0.3843 0.3691
max 0.7699 0.8252 1.1083 0.9847 0.9003 0.7632

rmse mean 7.4286 7.5893 8.0241 8.0312 7.6657 7.3935
std 3.1011 3.3504 4.2761 4.2164 3.4073 3.0893
min 0.4423 0.4428 0.3369 0.3326 0.4119 0.4234
25% 5.7436 5.9435 5.8422 5.6625 5.5293 5.5874
50% 7.7808 7.9319 7.7453 7.7748 7.8342 7.7005
75% 9.2916 9.3744 10.1722 9.8270 10.2149 9.5871
max 15.1435 15.8012 21.7272 21.5373 16.5223 15.5591
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Table 4.8: MRE and RMSE aggregated forecasting results with 60 minute fore-
casting horizon.

Error DNN DNN* RNN RNN* SSAE SSAE*
mre mean 0.3483 0.3662 0.2978 0.2763 0.3658 0.3590

std 0.1649 0.1736 0.1477 0.1485 0.1783 0.1807
min 0.1376 0.1454 0.1472 0.1222 0.1417 0.1345
25% 0.2262 0.2366 0.2071 0.1892 0.2177 0.2073
50% 0.3027 0.3292 0.2620 0.2499 0.3297 0.3315
75% 0.4151 0.4594 0.3443 0.3186 0.5001 0.4831
max 0.9993 1.0946 1.0796 1.0997 0.9634 0.8953

rmse mean 8.5214 9.2288 8.5575 8.2944 8.6406 8.1595
std 3.6643 4.0991 4.5314 4.4434 3.8684 3.6133
min 0.4513 0.4406 0.3384 0.3370 0.3639 0.3886
25% 6.7355 6.9324 6.0355 5.9781 6.3065 5.9251
50% 8.8403 9.3587 8.4349 8.2904 8.9021 8.4299
75% 10.7421 11.6991 10.6345 10.3885 11.3757 10.6990
max 17.8644 20.2268 22.5929 22.2886 19.5142 17.5592



Chapter 5

Evaluation and Conclusion

Section 5.1 presents the evaluation of the experimental results in Section 4.5.
Further, the results are discussed in Section 5.2. Section 5.3 presents the conclusion
of this study. Then

5.1 Evaluation
In this section the evaluation of the experimental results from Section 4.2 are
presented. First, in Section 5.1.1 the experiment outlining forecasting results on
the models for different horizons is evaluated. Then, in Section 5.1.2 the results
from extending the feature vector with new variables are evaluated.

5.1.1 Experiment: Forecasting horizon
In this section, the experiments for forecasting horizons is evaluated. To evaluate
and better understand the results from Section 4.5.1, the Empirical distribution
function (EDF) method is applied to the results. In Section 4.1.2 EDF is explained
in detail. Compared to the numerical results in Section 4.5.1 the EDF plots gives
a more in depth view to how each model performed.

15 minutes

The short-term (15 minutes) EDF forecasting results are plotted in Fig. 5.1.
Apparently, for all the data, most of the model have comparable, to slightly better
results to Naïve Random Walk (NRW). While that is impressive results, there are
slight differences when only looking at relevant data. In the case of morning rush
hour, then Recurrent Neural Network (RNN), Deep Neural Network (DNN), and

49
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Stacked Sparse Autoencoder (SSAE) beats NRW. For evening rush hours, and
when traffic flow is over certain peaks, then the model performances is somewhat
similar.

30 minutes

For the 30 minute forecasting results in Fig. 5.2 there are more variations in the
results. Feed Forward Neural Network (FFNN) performance drops significantly
in all cases. Also, for NRW the results has begun being worse than Historical
Average (HA).

Interestingly, RNN starts to show a significant difference from the other models
on all the data. The pattern on error difference between morning rush hour and
the other glsedf results are consistant with 15 minutes forecating. Except that
the difference betwen more advanced models (RNN, DNN, and SSAE) and the
other have diverged more. Another distinction is the model performances when
traffic flow is above 100. Surprisingly, DNN show best overall results with SSAE,
while RNN lags behind.

45 minutes

In the case of 45 minute forecasting horizon in Fig. 5.3 there is significant change
in the model performances for all the data and morning rush hour. Only RNN is
able to get better results than HA. For evening rush hour and data from certain
thresholds the same pattern as previous is repeated. All the advanced models
have performance bundled together.

60 minutes

Lastly, the 60 minutes forecasting horizon EDFs are presented in Fig. 5.4. Except
for a slight increase in forecasting error, these results give the same insights as
for 45 minute forecasting horizon

5.1.2 Experiment: Introducing other variables
In this section the experiment from Section 4.2.2 regarding extra features in
the feature vector is evaluated. This experiment was applied to the for RNN,
DNN, and SSAE model on mid-term (30 minutes) and long-term (60 minutes)
forecasting horizons. The results were presented in Section 4.5.2.

Based on the preliminary analysis by using spearman correlation on the fea-
ture vectors, it was found that there were correlation between traffic flow and the
variables representing hour of day, day of the week, average gap between vehicles,
and variance in the gap between vehicles. Surprisingly, the results did not show
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(d) Error when traffic flow is above 50.
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(e) Error when traffic flow is above 100.

Figure 5.1: Empirical CDF of the MRE on the forecast result with 15 minute
horizon.
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(d) Error when traffic flow is above 50.
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(e) Error when traffic flow is above 100.

Figure 5.2: Empirical CDF of the MRE on the forecast result with 30 minute
horizon.



5.1. EVALUATION 53

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

dnn
ffnn
ha
nrw
rnn
ssae

(a) Error on all test data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

dnn
ffnn
ha
nrw
rnn
ssae

(b) Error in time of day between 06:00 to
10:00.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

dnn
ffnn
ha
nrw
rnn
ssae

(c) Error in time of day between 14:00 to
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(d) Error when traffic flow is above 50.
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(e) Error when traffic flow is above 100.

Figure 5.3: Empirical CDF of the MRE on the forecast result with 45 minute
horizon.
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(d) Error when traffic flow is above 50.
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(e) Error when traffic flow is above 100.

Figure 5.4: Empirical CDF of the MRE on the forecast result with 60 minute
horizon.
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much promise. For mid-term forecasting horizon only SSAE got improved predic-
tion results. RNN and DNN results got worse, and yet better results than the
improved SSAE results.

Subsequently, long-term forecasting displayed a related pattern to mid-term
forecasting. The only discrepancy was with RNN which got 0.02 lower mean
relative error (MRE) mean score.

5.2 Discussion
Consistently, from sec:4:exp:horizon it was found that RNN always gave the best
mean MRE on all the station and DNN gave the best root mean square error
(RMSE). To get a better understanding of the error distribution over the stations
Section 5.1 applied and plotted EDF.

From the EDFs it was found that, the only model able to give better forecasting
results on all the data was RNN. Further, the test data set results was filtered
based rush hour and peak traffic flow volume thresholds.

Looking at the different test data filters revealed overall similar patterns in
the performance of RNN, DNN, and SSAE over the different forecasting horizons.
In some cases DNN got better results than RNN for traffic flow over 100. Since
this was not a pattern over all the prediction horizons this might be the case of
one badly trained instance of RNN.

The analysis also showed that error EDF gap between the advanced models
(RNN, DNN, and Stacked Autoencoder (SAE)) and HA increased with a higher
traffic volume threshold filter. This pattern is also found in Lv et al. [2014]. While
Lv et al. [2014] had a threshold for traffic flow volume over 450 for 15 minutes,
the highest threshold in this research was 100 for 5 minutes. Given that the traffic
data used in that research was from California, and it can be assumed that traffic
volume in Norway is lower, then this was a reasonable change. Filtering on rush
hour times was also introduced to be sure that the data with the most traffic was
included.

Interestingly, morning rush hour and evening rush hour have vastly different
EDF error patterns. NRW results are much worse in the morning than the evening.
Decidedly, this shows that morning rush hour has more variance. The advanced
models results in respect to this also worse in the morning rush hour.

Since RNN has better results when the test data is not filtered, but comparable
results when looking at filtered data, the model shows a better understanding of
traffic flow characteristics when there is less traffic. This might be attributed to
the fact that RNN is a recurrent model.

By extending the feature vector with further traffic variables, the prediction
results for SSAE slightly improved, while RNN got improved results for long-term
forecasting. DNN prediction result worsened for both mid-term and long-term
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forecasting. These results are somewhat comparable to Yang et al. [2010] that
found found slight performance increases by extending the model with weather
data. Despite not having success on DNN the results show that with more feature
engineering on the data can be applicable to get better prediction results. To
make sense of why extra features helped SSAE and RNN, but not DNN is not
easy. It might be addressed to the fact that the greedy layerwise training of the
SSAE autoencoder layers combined with the sparsity constraint, helps preserve
the input vector information while improving the representation of the traffic flow.
For the RNN models, the Long Short-Term Memory (LSTM) cells are trained
to understand the context through the “forget gates” and “input gates”. The Ct
vector in the LSTM cell is modified only when the weights in the gates deem it
appropriate. Such mechanism’s is not found in the DNN model.

5.2.1 Limitations
To make the research doable given the available time, decisions about data pro-
cessing had to be made based on intuition and analysis. Some of these aspects
are on the choices of aggregating interval on the raw data, keeping each lane
from every station as separate features, and how many time steps that is in each
feature vector. It was also, in contrast to other research, decided to not filter away
weekends. Lastly, the training data set consists of the first 60% of the data. Since
the data set trained on is from January to December, the trained model have
not seen the seasonal changes in the test set. These are all decisions that can be
further explored to get better model performance.

Further, all the models have been tested on forecasting multiple stations for
each time step. To get a further intuition at how applicable these models are, then
they should be further assessed against models forecasting each station separately.

Next is the issue of how the models are trained. Because of time constraints,
DNN and RNN did not get thorough hyperparameter searches. Each models
results should also have been assessed over multiple runs.

Lastly, the domain of Intelligent Transportation Systems (ITS) should have a
few sets of data that researches could reuse to make it easier to compare research.

5.3 Conclusion
From Section 1.2 the following research questions were outlined:

RQ1 What is state of the art in traffic congestion prediction?

RQ2 What neural network based techniques have been used in traffic congestion
prediction?
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RQ3 How can neural networks best be used for traffic congestion prediction?

RQ4 What changes to the data and data sources have impact on the learners
ability in traffic congestion prediction?

In order to answer research question 1 and 2 the Structured Literature Review
(SLR) in Section 2.2 was performed. From the review it was found that a lot
of different models have been explored. One key issue was clear; most of the
different research was not done on the same dataset. Necessarily, this is a key
problem when assessing the merit of the different models. The more classical
forecasting algorithm Autoregressive Integrated Moving Average (ARIMA) and
its derivatives are always mentioned as a choice depending on the forecasting
horizon and accuracy needed. In general, because of the data comparison issue it
is hard to assess what models can be constituted as the state-of-the-art. Although,
more recent works has shown an increase in interest for deep learning based models.

From the SLR different variations on neural network models was found. Firstly,
some models combining other Artificial Intelligence (AI) methods were used.
Besides more standard FFNN, Neuro-fuzzy networks that is a variation of Fuzzy
Logic with Artificial Neural Network (ANN) had been applied with success. On the
deep learning side of neural networks, methods like Deep Belief Network (DBN),
SAE, SSAE, and Spiking Neural Network (SNN) have been applied.

From the SLR a lot of research was found to focus on the issue of spatiotem-
poral data. Schimbinschi et al. [2015] found that spatial information have more
influence on the result than temporal data. While Hu et al. [2008] found that
he got better results by using station that were closer in actual data similarity.
For these reasons it was assessed, to try and answer research question 3, that
models using multiple features from many different stations was of interest. Once
such model was SSAE from Lv et al. [2014]. Further, more recent advance with
RNN with LSTM cells was included in the set of models. LSTM has shown good
results on temporal data, especially in the field of Natural Language Processing
(NLP). Last of the more advanced models were DNN with dropout and Rectified
Linear Unit (ReLU) activation function. HA, NRW, and FFNN were included as
baseline.

One of the main differences compared with previous work was that the traffic
data was from Norway’s capitol, Oslo. Other research has used traffic data from
cities with higher traffic volume compared to Oslo.

It was found that the error distribution pattern with SSAE from Lv et al. [2014]
was to a certain degree reproducible. Unfortunately, the models in this research
was not tested on the same dataset as the one used in Lv et al. [2014] as some
details were missing to reproduce the same data set. To get a better understanding
of the error distribution over the stations, EDF was used on the test data filtered
on criteria as rush hour and traffic volume thresholds. Conclusively, the results
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showed that RNN outperformed every model in most cases. More interestingly,
RNN had much better results with all the test data. This might be attributed to
that RNN is the only model that inherently models data over time.

Lastly, the experiment in Section 4.2.2 was conducted to answer research
question 4. The experiment found differing result on the performance of RNN,
DNN, and SSAE. Extending the feature vector with information about each time
stamp and vehicle gap negatively impacted the performance of DNN, while it had
a positive effect for SSAE and RNN for long term forecasting. In Section 5.2 it
was discussed that this might be an effect based on how those models work.

During the process of writing this thesis, a lot of different choices were made
in how the data was processed. These details are outlines in Section 4.3.1. Based
on this experience, more detailed research focused on how these choices effect
model performance should be done.

Conclusively, this study found that deep learning based methods are applicable
to traffic data from Datainn and Norwegian Public Roads Administration (NPRA).
Since traffic flow on highways are inherently coupled with average vehicle speed,
these methods can prove useful for new models designed to replace the Autopass
system used by NPRA to predict travel time.

5.4 Contributions
There are two main contributions presented in this work. First, the contribution
of this work presents a literature review focused on ANN based models applied to
the domain of ITS.Last, this work has compares the performance of RNN, DNN,
and SSAE on traffic flow forecasting in Norway. To the authors knowledge, this
is the first work where RNN with LSTM cells has been applied to the domain of
ITS.

5.5 Future Work
From the discussion of limitations on Section 5.2.1 in this research, there are more
topics left to explore on the choices of preprocessing and data representation.

Subsequently, previous work has demonstrated that extending the feature
vector with weather data should be further explored for deep learning and ITS
data.

Furthermore, the RNN results showed great promise and should be further
researched. While SSAE results did not show promise, there are other variations
on Autoencoder (AE) that might be worth researching for ITS

While this work represents traffic flow prediction with aggregated data, systems
like Datainn has made it possible to use individual traffic events. This approach,
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unlike aggregated data, can avoid the issue of loosing time sensitive details in
the traffic data. Possible models to explore are Convolutional Neural Networks
(CNNs) or dynamic length RNNs.
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Appendix A

Structured Literature
Review Protocol

This section describes a structured literature process based on Kofod-petersen
[2014]. The papers are gathered from IEEE Xplore1.

A.1 Identification of research
When building the search term one needs to identify the concepts in which
one needs information based on the research questions explained in Section 1.2.
Table A.1 shows the concepts used for the search terms.

Table A.1: Search terms used for identification of research

Concerns Search terms
Domain Traffic
Problem Queue Congestion Flow Prediction Forecasting Estimation
Techniques Deep learning Neural networks Machine learning Big data

Based on these concepts a search string was build were each concept are AND
statements and the terms within a concept are OR statements. The result is
shown below:

traffic AND

1http://ieeexplore.ieee.org/Xplore/home.jsp
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(queue OR congestion OR flow OR prediction OR forecasting OR
estimation) AND

("deep learning" OR "neural networks" OR "machine learning" OR "
big data")

Listing A.1: Search statement

The given search statement gave over 1800 results over different publications.
Looking at the publication titles on the result gave hint to those of relevance.
Therefore, to reduce the list to a comprehensible amount, the search string was
extended with:
("Publication Title":"big data" OR
"Publication Title":"intelligent systems" OR
"Publication Title":"computational intelligence" OR
"Publication Title":"machine learning" OR
"Publication Title":"data science" OR
"Publication Title":"neural")

Listing A.2: Search statement for publication titles

A.2 Selection of primary studies
The search was performed on 02. March 2016 and resulted in 500 papers. The
amount of papers was too much to reasonably handle. Selection of these papers
was thus done by the criteria described in the list below based on the papers
respective titles.

Inclusion criteria 1 The study main concern is Intelligent Transportation Sys-
tems (ITS)

Inclusion criteria 2 The study utilizes machine learning techniques.

Inclusion criteria 3 The study predicts traffic variables

The paper selection filtering process resulted in 114 probably relevant papers.

A.3 Study quality assessment
This step is performed in three phases. Every paper will be reviewed in accordance
to the criteria described in Appendix A.3. The first two inclusion criteria is
regarded as primary criteria and the remaining as secondary. The inclusion criteria
is rated as either fail, not answerable, or approved. The quality criteria can get a
score from 0 to 1.
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Inclusion criteria 1 The main concern of the study is prediction of traffic data.

Inclusion criteria 2 The study is a primary study presenting empirical results

Inclusion criteria 3 The study focuses on Artificial Neural Network (ANN)
models.

Inclusion criteria 4 The study describes the models in a way clearly reprodu-
cible.

Inclusion criteria 5 The study describes traffic prediction in context to other
data sources e.g. weather data near stations.

Quality criteria 1 There is a clear statement of the aim of the research

Quality criteria 2 The study is put into context of other studies and research

A.3.1 Phase 1: Abstract inclusion criteria screening
Only the abstracts was read in this phase. Reading the abstract gives some idea
to whether the different criteria are fulfilled or not. Getting a decisive answer was
not prioritized. The criteria that had to be fulfilled was the first three. This phase
reduced the amount of papers to 94.

A.3.2 Phase 2: Full text inclusion criteria screening
In this phase the papers were read backwards. By reading the conclusions, test
results, and model explanation conclusions were made whether they fulfilled the
inclusion criteria. The primary criteria had to be fulfilled and the secondary could
not fail in more than one. The quality criteria had to get at least more than 1.5
in score.

After this step was completed there was 21 approved papers.

A.3.3 Phase 3: Full text quality screening
The papers left in this phase had a full text read. They were reviewed according
to the quality criterion described in Appendix A.3.3. Each quality criterion is
answered from 0 to 1.

Quality criterion 1 Are design decisions justified?

Quality criterion 2 Is the method thoroughly explained?

Quality criterion 3 Is the experiment procedure thoroughly explained?
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Quality criterion 4 Is it clearly stated what the method/algorithm has been
compared against?

Quality criterion 5 Has the performance and performance metrics been dis-
cussed?

Quality criterion 6 Have the results been thoroughly analysed?

Quality criterion 7 Are the experiments quantitative?

Quality criterion 8 Are the findings supported?

A.3.4 End result

Table A.2: The papers and their respective scores after phase 3

Paper QC1QC2QC3QC4QC5QC6QC7QC8
Tu et al. [2016] 1 1 1 1 1 1 1 1
Schimbinschi et al. [2015] 1 1 1 1 0.5 1 1 1
Fusco et al. [2015] 1 0.5 1 1 1 1 1 0.5
Oh et al. [2015] 1 1 1 1 1 1 1 1
Hou et al. [2015] 1 1 1 1 1 1 1 1
Huang et al. [2014b] 1 1 1 1 1 1 1 1
Lv et al. [2014] 1 1 1 1 0 1 1 1
Huang et al. [2014a] 1 1 1 1 1 1 1 1
Moussavi-Khalkhali et al. [2014] 0.5 1 1 1 0.5 0.5 1 1
Dunne and Ghosh [2013] 1 1 1 1 1 1 1 1
Jeong et al. [2013] 1 1 1 1 1 1 1 1
Chan et al. [2012] 1 1 1 1 1 1 1 1
Nguyen and Quek [2012] 1 1 1 1 0.5 0.5 1 1
Affonso et al. [2011] 1 0.5 0 1 0.5 0.5 1 1
Yang et al. [2010] 1 1 1 1 1 0.5 1 1
Guo et al. [2010] 1 1 1 0.5 1 1 1 1
Gu and Yu [2010] 0.5 1 0.5 0.5 0.5 1 1 1
Zhu and Zhang [2009] 1 1 1 1 0.5 0.5 1 1
Hu et al. [2008] 1 1 1 1 1 1 1 1
Liu et al. [2006] 0.5 1 0.5 1 0.5 0.5 1 1
Guan et al. [2005] 1 1 1 1 1 0.5 1 1
Guozhen Tan et al. [2004] 1 1 1 1 0 0.5 1 1



Appendix B

Data

In this appendix all the metadata from the data set is presented and the respective
code to preprocess it from the database.

B.1 Data dumps from Datainn
Table B.1 lists all the dumps taken from the Datainn system with the respective
date interval and format. Each station contained in the data dumps is listed in
Table B.2.

Table B.1: Data dumps and meta data

Dump Date interval Format
Dump 1 2016-02-01 00:00:01.79+00 - 2016-09-11 03:47:24.979+00 JSON
Dump 2 2016-01-29 00:00:00.679+00 - 2016-11-03 06:52:09.25+00 CSV
Dump 3 2016-01-28 22:13:17.31+00 - 2016-11-18 22:59:57.72+00 CSV

Table B.2: Data dumps and stations

Dump Stations
Dump 1 300055, 300108, 300142, 300152, 300107, 300160, 300140, 300072,

300153, 300164, 300165, 300224, 300030, 300163, 300162, 300166,
300155, 300167, 300051, 300093, 300151, 300049, 300016, 300154,
300156, 300139, 300047

Dump 2 -
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Table B.2: Data dumps and content (continued)

Dump Stations
Dump 3 300001, 300016, 300030, 300047, 300083, 300093, 300099, 300139,

300140, 300141, 300142, 300144, 300145, 300147, 300148, 300151,
300152, 300153, 300154, 300160, 300162, 300163, 300166, 300224,
300225, 300233

B.2 Importing data to PostgreSQL
PostgreSQL supports file content importing from CSV. The first data dump was
given in JSON format and had to be preprocssed to CSV.

Finally when the data is ready to be copied into the database table a named
pipe file is created by the command mkfifo namedpipe. This is done since the
files are zipped, and unzipping them will take too much space. Subsequently in
a PostgreSQL console one must run Listing 1. After that is done then CSV data
can be piped into the named pipe as so zcat filepath/filename.csv.gz >
namedpipe.

B.3 Aggregate data
Before the data is aggregated based on an interval start s, end e, and interval gap
∆ the interval end is recalculated to make sure that there is no remainder that
does not fit the ∆. Given Eq. (B.1) the interval used to get the aggregated data
from PostgreSQL is (s, e′).

e′ =
⌊
e− s

∆

⌋
∗∆ + s (B.1)
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COPY oslo_traffic(
region_id,
county_id,
speed,
vehicle_number,
timestamp,
qspeed,
eventd_date_time,
gap,
measure_point_number,
vehicle_type,
event_number,
lane,
vehicle_type_quality,
contains_all_required_fields,
length

)
FROM '/home/jovyan/work/namedpipe'
WITH csv header;

Listing 1: SQL for copying CSV data
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SELECT
oslo_traffic.measure_point_number||'-'||oslo_traffic.lane

AS mpn,
windows.start::TIMESTAMP WITH TIME ZONE as timestamp,
count(oslo_traffic) as flow,
avg(oslo_traffic.speed) as avg_speed,
var_samp(oslo_traffic.speed) as var_speed,
avg(oslo_traffic.gap) as avg_gap,
var_samp(oslo_traffic.gap) as var_gap

FROM (
-- generates a list from start to end with delta interval
SELECT

generate_series(start, end - delta, delta) AS start
) AS windows

LEFT JOIN
oslo_traffic

ON
timestamp >= windows.start AND timestamp < windows.start

+ delta
WHERE

oslo_traffic.deleted ISNULL
AND contains_all_required_fields IS TRUE
AND length != 29

GROUP BY oslo_traffic.measure_point_number, oslo_traffic.lane,
windows.start

ORDER BY oslo_traffic.measure_point_number, oslo_traffic.lane,
windows.start

Listing 2: SQL code that aggregates time series within intervals per station and
lane. Correct table name, start interval, end interval, and interval delta must be
set.
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Hyperparameters

In this appendix the results from the hyperparameter searches are presented.

C.1 Experiment: Forecasting horizon
Hyperparameter searches were performed on the Stacked Sparse Autoencoder
(SSAE) model for each forecasting horizon. To restrict the search space the only
parameters searched over was the amount of layers and how many neurons each
layer had. Search method was grid search which means that the model is trained
and evaluated the crossproduct over all search parameter times. The parameter
values search on are listed in Table C.1.

Table C.1: Grid search parameters that were searched over and the values used
for each parameter.

Neurons in layer Number of layers
2 400
3 800
4 1000

1400

Subsequently, the other parameter values were selected based on previous
experiments and simple tests. These values are listed in Table C.2.

For training, the early stopping algorithm was used. For each 20th step the
test error was evaluated and if the test error had not improved over 500 checks,
then that was used as the final result.
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Table C.2: Default parameters for SSAE.

Parameter Value
Activation function in prediction layer Sigmoid

Activation function in AE Sigmoid
ρ 0.09
γ 3

Learning rate 0.001
Optimizer RMSProp

C.1.1 15 minutes

For 15 minute forecast horizon a batch size of 1024 was used. Results are shown
in Table C.3.

Table C.3: SSAE grid search results for 15 minute forecasting horizon.

Neurons in layer Number of layers Test score
1400 2 -0.001152
1400 3 -0.001157
800 2 -0.001158
400 3 -0.001166
1400 4 -0.001179
800 3 -0.001193
400 4 -0.001197
1000 3 -0.001199
800 4 -0.001201
1000 4 -0.001210
400 2 -0.001229
1000 2 -0.001287

C.1.2 30 minutes

For 30 minute forecast horizon batch size of 512 was used. Results are show in
Table C.4.
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Table C.4: SSAE grid search results for 30 minute forecasting horizon.

Neurons in layer Number of layers Test score
400 4 -0.001048
800 2 -0.001055
1400 3 -0.001056
1400 4 -0.001065
400 2 -0.001070
1000 4 -0.001070
1000 3 -0.001084
1000 2 -0.001095
1400 2 -0.001110
800 3 -0.001114
400 3 -0.001121
800 4 -0.001130

C.1.3 45 minutes

For 45 minute forecast horizon batch size of 512 was used. Results are show in
Table C.5.

Table C.5: SSAE grid search results for 45 minute forecasting horizon.

Neurons in layer Number of layers Test score
400 4 -0.001439
800 4 -0.001447
800 2 -0.001471
400 3 -0.001484
1400 3 -0.001488
400 2 -0.001493
1400 4 -0.001504
800 3 -0.001508
1000 2 -0.001521
1400 2 -0.001536
1000 4 -0.001552
1000 3 -0.001558
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C.1.4 60 minutes
For 60 minute forecast horizon batch size of 512 was used. Results are show in
Table C.6.

Table C.6: SSAE grid search results for 60 minute forecasting horizon.

Neurons in layer Number of layers Test score
1000 3 -0.001580
800 4 -0.001590
400 4 -0.001596
800 2 -0.001599
1400 4 -0.001600
800 3 -0.001606
400 2 -0.001609
1400 3 -0.001632
400 3 -0.001641
1000 4 -0.001666
1000 2 -0.001668
1400 2 -0.001670


	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Background Theory
	Traffic theory
	Collecting traffic data
	Definitions
	Machine Learning
	Data preprocessing
	Forecasting

	Structured Literature Review Protocol
	State of the art review


	Architectures/Models
	Models
	Historical Average
	Naïve Random Walk
	Feed Forward Neural Network
	Stacked sparse autoencoder
	Deep Neural Network
	Recurrent Neural Networks

	Implementation

	Experiments and Results
	Experimental Plan
	Performance metrics
	Evaluation

	Experiments
	Experiment: Prediction horizon
	Experiment: Introducing other variables

	Experimental Setup
	Data set
	Selecting the hyperparameters

	Environment
	Experimental Results
	Experiment: Prediction horizon
	Experiment: Introducing other variables


	Evaluation and Conclusion
	Evaluation
	Experiment: Forecasting horizon
	Experiment: Introducing other variables

	Discussion
	Limitations

	Conclusion
	Contributions
	Future Work

	Bibliography
	Appendices
	Structured Literature Review Protocol
	Identification of research
	Selection of primary studies
	Study quality assessment
	Phase 1: Abstract inclusion criteria screening
	Phase 2: Full text inclusion criteria screening
	Phase 3: Full text quality screening
	End result


	Data
	Data dumps from Datainn
	Importing data to PostgreSQL
	Aggregate data

	Hyperparameters
	Experiment: Forecasting horizon
	15 minutes
	30 minutes
	45 minutes
	60 minutes



