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Introduction 
 

Living organisms have to balance their energy allocation in such a manner that future 

survival and reproduction is ensured (Stearns 1992). This is particularly challenging for 

young birds, because they need to get through the vulnerable developmental period as 

rapidly as possible, while at the same time they should attain a fully developed adult 

size that ensures both survival and future reproduction (Schew & Ricklefs 1998). 

Food availability plays a crucial role during avian development (Martin 1987). 

Variation in food availability may arise from various environmental factors, such as 

weather conditions (Bryant 1975; Konarzewski & Taylor 1989; Velando et al. 1999), 

changes in the stocks of prey species (Barrett & Krasnov 1996), rate of food delivery at 

the nest (Bertram et al. 1991), seasonal variation (Lepage et al. 1998), habitat 

differences (Richner 1989) and sibling competition (Magrath 1990; Ricklefs 1993).  

It is well documented that systematic food shortage during a breeding season has a 

devastating effect on growth and survival in seabird nestlings that are dependent on 

parental provisioning (Barrett et al. 1987; Monaghan et al. 1989; Anderson 1989; 

Chastel et al. 1993; Harris & Wanless 1997) as well as in self-feeding precocial chicks 

(Cooch et al. 1991; Larsson & Forslund 1992). However, little is known about the effect 

of short-term and transient food shortage within a breeding season on the ontogenetic 

development of physiological and morphological characters in birds.  

 

Developmental plasticity 

As birds grow from neonate to adult, they may encounter periods of low food 

availability that cause phenotypic changes from the normal ontogenetic development 

given by their genotype. Such phenotypic changes (arising from variation in food 

availability or other environmental conditions) are known as developmental plasticity 

(Schmalhausen 1949; Bradshaw 1965; Smith-Gill 1983; Schew & Ricklefs 1998; 

Schlichting & Pigliucci 1998). There has been controversy about the genetic 

mechanisms and the way phenotypic and developmental plasticity is affected by natural 

selection (Via et al. 1995), but it is well accepted that developmental plasticity is an 

important life-history-trait that may evolve as a strategy to cope with environmental 
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heterogeneity (Pigliucci 2001). Environmental cues can activate alternative 

developmental programs (Schmalhausen 1949; Smith-Gill 1983). Smith-Gill (1983) 

discussed this in terms of multiple, discrete phenotypic states or developmental stages 

and defined it developmental conversion. Schew & Ricklefs (1998) provided a 

theoretical framework for developmental plasticity in birds, and used the term induced 

responses analogous to Smith-Gill’s developmental conversion. They argued that the 

basic premise, that the organism actively alters development as an adaptive response to 

environmental cues, should apply equally to continuous measures of metabolism and 

growth as compared to discrete phenotypic states.  Alternatively, the organism may 

show a passive response, in which the phenotypic changes are imposed by the physical 

environment. The developmental program is not altered, but the degrees of expression 

of the developmental program may be modified. Such responses were defined as 

imposed responses and developmental modulation by Schew & Ricklefs (1998) and 

Smith-Gill (1983), respectively.  

 

Growth 

The developmental trajectory of chicks involves a co-development of growth and 

maturation. In this thesis I refer to growth as increase in size and to maturation as 

changes through which tissues approaches more closely their mature, or adult, level of 

function.   

If avian nestlings are faced with limited food intake during a period of their 

development, several 'strategies' of energy allocation are possible (Schew & Ricklefs 

1998). First, the chicks may simply not respond at all. They will consequently maintain 

the growth rate and the rate of maturation of the organs, muscles etc. at the maximum 

possible rate, which is allowed with the available food resources and the amount of 

energy stored at the onset of the food-deprivation period (e.g. Konarzewski et al. 1996). 

Secondly, chicks may selectively allocate energy to the growth and development of 

specific parts of the body important for survival. Less 'important' organs, in terms of 

immediate survival, will in consequence have their development stalled (e.g. Øyan & 

Anker-Nilssen 1996). Thirdly, the chicks may react to a temporary food-deprivation 

period by an overall arrest of growth and maturation (e.g. Emlen et al. 1991).  
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The first and the third growth strategy have been classified as imposed and 

induced responses, respectively, by Schew & Ricklefs (1998). They argued that the first 

strategy is passive and merely a consequence of the inability to cope with the 

environmental conditions, whereas the latter is an active and adaptive response. Schew 

& Ricklefs (1998) advocated that an induced response was characterised by a sharp 

arrest of overall growth and maturation, whereas an imposed response was characterised 

by maintained growth within the limits of food intake (usually pathological slowing of 

growth) and continued maturation. From studies on aerial insectivores (Lack & Lack 

1951; Ricklefs 1976; Bryant 1978; Emlen et al. 1991), induced growth responses have 

been characterised as labile development, because the growth and maturation has been 

temporarily stalled. When conditions have improved the nestlings have resumed normal 

growth, extended developmental time, and fully compensated for the growth 

perturbation. Highly variable nestling periods have also been reported in many seabirds 

(Lack 1968; Barrett & Rikardsen 1992; Croxall et al. 1988), but it is not known whether 

these patterns reflect induced growth responses to temporal variation in food 

availability. Also, developmental time should be subject to an evolutionary trade-off 

with time dependent mortality, and it is not fully understood to what degree nestlings 

can increase developmental time to compensate for short-term growth perturbations and 

attain normal fledging body size.   

During realimentation, i.e. the subsequent provisioning of food when conditions 

have improved, growth may follow three different trajectories. That is accelerated 

growth (catch up growth sensu Bohman 1955), parallel growth or retarded growth, 

which refers to whether the growth rate is faster, similar or slower, respectively, 

compared to normal growth relative to chronological age. Among birds, accelerated 

growth has only been reported for body mass growth (e.g. Schew 1995; Negro et al. 

1994), whereas parallel growth (e.g. Morse & Vohra 1971; Lepczyk & Karasov 2000) 

and retarded growth (e.g. Schew 1995;) has been reported for both body mass and 

structural growth. The occurrence of accelerated growth during realimentation would 

suggest that normal growth rate is less than the maximum physiological potential and 

that growth is optimized below a physiological limit rather than maximised. 

From studies on development of avian skeletal muscles, it is proposed that growth 

is inversely related to functional maturation (growth-maturation hypothesis, Ricklefs & 
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Webb 1985; Ricklefs et al. 1994). Thus, the growth of an organ can proceed most 

rapidly when it is less mature. If a period of food shortage therefore results in an overall 

growth reduction, while the maturation of organs at the same time continues unaffected, 

the nestling may be in trouble after normal food supply is restored, because the 

increased level of maturation of the organs will impede the potential for growth. 

 

Development of metabolism and homeothermy 

Throughout development the basal level of energy metabolism constitutes a substantial 

part of the total energy budget of chicks (Weathers 1996). It is generally accepted that 

the energy budgets of chicks have responded to selection, but little consideration has 

been given to the evolution of the chick’s ability to modify the pattern of energy use and 

allocation. Recent studies, however, have revealed that some chicks may show energy 

saving by reducing the resting metabolic rate (RMR) when faced with food shortage 

(Schew 1995; Kitaysky 1999; Brzek & Konarzewski 2001). Modifying the RMR could 

occur as an active response. By reducing the energy expenditure, the chicks could lessen 

the detrimental effects of food shortage and increase survival. Alternatively, any 

reduction in the RMR could be a direct consequence of the lack of sufficient nutrients 

during food shortage, and merely reflect the chick’s inability to cope with the 

environment. 

Modification of RMR could result from several physiological pathways. Slowing 

of structural growth has been regarded as one of the means by which RMR can be 

lowered during food shortage (Schew & Ricklefs 1998). Such a response would 

represent a shift in the energy allocation from growth to maintenance. Visceral organs, 

especially the heart, liver, kidneys and intestine, are believed to consume much of the 

energy used in RMR (Daan et al. 1990).  Changes in body composition by reductions of 

the size of these organs should, therefore, lower RMR. Another response that can affect 

RMR is facultative hypothermia. Regulating the body temperature (Tb) at a lower level 

results in substantial energy saving.  

The chick’s ability to defend its Tb during exposure to low ambient temperatures 

depends on three factors: 1) The peak metabolic rate (PMR), i.e. the capacity for 

maximum heat production, 2) minimal thermal conductance (MTC) and 3) the heat 

capacity of the chick (Visser 1998). The transition from neonate to adult includes 



 10 

substantial changes in PMR and MTC, and these changes depend on the position in the 

altricial-precocial spectrum. I have not taken into account possible changes in heat 

capacity of the chicks. Precocial chicks are covered with insulating down and are able to 

show a metabolic response to low ambient temperatures already at hatching (Koskimies 

& Lahti 1964; Visser & Ricklefs 1993; Starck & Ricklefs 1998a). Altricial nestlings, in 

contrast, hatch without insulating down and do not respond metabolically to low 

ambient temperatures (Marsh & Wickler 1982; Starck & Ricklefs 1998a; Visser 1998). 

Consequently, the degree of homeothermy, measured as the index of homeothermy 

(HI), is very low in altricial neonates and improves substantially during subsequent 

growth and development (Ricklefs 1987). Small altricial birds achieve homeothermy at 

the end of the growth period (Visser 1998), but large altricial birds may develop 

homeothermy during the early part of the growth period (Dunn 1976; Kirkham & 

Montevecchi 1982; Montevecchi & Vaughan 1989; Østnes et al. 2001). 

Food shortage may affect the development of homeothermy for several reasons. 

Chicks may simply fail to sustain the growth and development of the organs most 

important for thermoregulatory ability during food shortage. Chicks may also show 

induced responses to food shortage which involve an overall arrest of growth and 

maturation. As a consequence, the development of homeothermy will be delayed. 

Finally, chicks may reduce the RMR to save energy during food shortage. This may in 

turn negatively affect PMR if RMR is a predictor of PMR.  

It is important to separate hypothermia and the development of homeothermy as 

two distinct features of thermoregulation. The development of homeothermy refers to 

the development of the physiological properties enabling the defence of the Tb. The 

occurrence of hypothermia is not necessarily an indication of a poor development of 

homeothermy. It may occur as a facultative response in concert with a reduction in 

RMR as a means of energy saving during a period of food shortage, even when 

homeothermy is fully developed.  

 

Aims of the thesis 

This thesis investigates effects of short-term food shortage on growth, body 

composition and metabolic development of Pekin ducklings (Anas platyrhynchos 

domesticus) and European shag nestlings (Phalacrocorax aristotelis), two species 
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representing extremes within the altricial-precocial spectrum. The aims of the thesis 

were to 1) characterise patterns of growth and development in response to short-term 

food shortage during early development, 2) examine aspects of energy allocation during 

these responses with special emphasis on the basal level of energy metabolism, 

thermoregulatory ability and body composition and 3) investigate the effect of short-

term food shortage on subsequent growth and fledging body size.  

 

The individual papers included in the thesis attempt to answer the following 

questions: 

 

1) Do chicks exhibit any energy saving that can lessen the detrimental effects of 

short-term food shortage during early development? Paper I and II 

2) How is energy allocated between growth and maintenance during short-term 

food shortage? Paper I and II 

3) Are hypothermia or changes in body composition components of any energy 

saving response? Paper I and II 

4) How is thermoregulatory ability and the development of homeothermy affected 

by short-term food shortage? Paper I and III 

5) Does short-term and transient food shortage affect subsequent growth and 

fledging body size? Paper IV 

 

The introductory part of the thesis aims to summarise the findings of the papers 

and provides a general discussion of the findings. 
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Methods 
 

The corner stone of the experimental approach in this thesis was a diet-restriction 

treatment. This laboratory treatment aimed to mimic a naturally occurring situation of 

short-term (4 or 5 days) food shortage which restricted the chicks from following a 

normal growth trajectory and only allowed a stable body mass (weight-maintenance 

diet). The diet restriction treatment was applied in all the papers. In Paper IV, a 

procedure of realimentation (i.e. subsequent provisioning) was used after the diet 

restriction to monitor the subsequent growth of diet-restricted nestlings in the wild. 

Here, I briefly describe the procedures of the diet restriction treatment and the 

realimentation and give information about the animals and their housing conditions. 

Brief information, relevant for the experimental setup, is provided about metabolic 

measurements and body composition analyses. Detailed information of that as well as 

other experimental conditions is provided in the respective papers. The experimental 

protocols were approved by The National Committee for Animal Research in Norway 

(‘Forsøksdyrutvalget’). 

 

Animals 

European shag nestlings were studied on Sklinna, a small group of islands situated ~50 

km off the coast of central Norway (65o12’N, 11o00’E). In 2001, the year of the data 

collection, the breeding population of European shags consisted of 1750 pairs (N. Røv 

pers. comm.), and it has increased (6.3% annually) in the period 1984-2001 (Lorentsen 

2001). The Norwegian Directorate for Nature Management, Trondheim, gave us 

permission to work in the shag colony. 

The Pekin ducklings were studied at the laboratory of the Department of Biology, 

NTNU-Trondheim. Eggs were obtained from a farmer and hatched in the laboratory.  

 

Diet restriction and housing conditions 

European shag nestlings were collected from their nests in the colony and brought (500 

m) to a nearby laboratory at the age of 12 days for the purpose of diet restriction or 

control-feeding. The nestlings were kept, 4-8 together, in an enclosure (100 x 50 cm) 
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with a heat lamp providing a constant range of operative temperatures (Bakken 1992) of 

22-33oC. The diet-restricted and the control-fed nestlings were hand fed with fillets of 

saithe (Pollachius virens) and cod (Gadus morhua) and were fed for four days, until 

they were 16 days old. The diet-restricted nestlings received small portions of food 8-10 

times a day to maintain a relatively stable body mass, while the controls were fed every 

second hour, allowing them to follow a normal body mass growth trajectory.  

The ducklings were kept in enclosures (60 X 40 cm) with heat lamps and had ad 

libitum access to water and poultry pellets after hatching. They were progressively 

given more space with larger enclosures as they grew bigger. The ducklings were 

randomly assigned to diet restriction or control treatment. Diet restriction consisted of a 

weight-maintenance diet for 5 days, in which pellets were provided in small portions 4-

7 times a day. Two age-groups of ducklings were subject to diet restriction, one at 5-10 

and another at 15-20 days of age. Ducklings subject to control-treatment had ad libitum 

access to food. Both treatments had ad libitum access to water. There was no mortality 

during any of the diet-restriction treatments. 

  

Realimentation experiment 

After the diet restriction treatment, a sample of European shag nestlings at 16 days of 

age was assigned to new nests with foster parents in the colony. In this experiment I 

intended to monitor the growth during realimentation under favourable competitive 

conditions in the wild. They were swapped with the α-nestlings which were moved to 

new nests with foster parents. The α-nestlings were heavier than the diet-restricted 

nestlings whereas the β–nestlings were lighter than the diet-restricted nestlings. With 

this swapping procedure the diet-restricted nestling got the α-position in the nestling 

size hierarchy, the brood size (2 or 3) was unchanged and the work load on the parents 

was presumed to be unchanged.  

As controls to the diet-restricted nestlings I assigned a sample of unmanipulated 

nestlings at 12 days of age to new nests with foster parents. As for the diet-restricted 

nestlings, they were subject to the same swapping procedure that provided favourable 

competitive conditions. The controls were assigned to foster parents at the age of 12 

days because their body mass was almost the same as the diet-restricted nestlings at 16 

days of age. The growth of the controls and the diet-restricted nestlings was monitored 
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until they were 36-48 day old. Growth parameters and fledging body size were 

estimated by a logistic growth model (Ricklefs 1983).  

 

Metabolic measurements and body composition 

Metabolic measurements including measurements of Tb were performed on the diet-

restricted chicks on the last day of the diet restriction treatment and on independent 

groups of controls with ages corresponding to the age of the diet-restricted chicks at the 

start and at the end of the diet restriction periods. Each chick was only subject to one 

metabolic measurement and was sacrificed immediately after the metabolic 

measurement for later analyses of body composition.  
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Results 
 

Metabolism 

Ducklings and European shag nestlings exhibited substantial energy saving in response 

to short-term food shortage. Relative to their body mass, the RMR of 10 and 20 day old 

diet-restricted ducklings was 16.4 and 32.1% lower, respectively, compared to controls 

with ad libitum access to food (Paper I), and the RMR of diet-restricted European shag 

nestlings was 36.5% lower compared to control fed nestlings (Paper II). 

The reductions in RMR were accompanied by moderate hypothermia in the 

youngest-diet restricted ducklings and in the diet-restricted European shag nestlings, but 

hypothermia did not occur in the oldest diet-restricted ducklings. The Tb of the youngest 

diet-restricted ducklings was 1.1 oC lower compared to controls at the same age (Paper 

I), and the Tb of the diet-restricted European shag nestlings was 2.1 oC lower compared 

to controls at the same age (Paper II). Hypothermia accounted for ~50 and ~70% of the 

reduction in RMR in the youngest diet-restricted ducklings and the diet-restricted 

European shag nestlings, respectively. However, calculations, assuming a Q10 between 

2.0-2.5, showed that more than 60% of the reductions in RMR must have been due to 

other physiological processes than just the passive temperature dependence of RMR. 

Analyses were performed to test whether changes in body composition could 

explain the observed reductions in RMR in the diet-restricted chicks. These analyses 

revealed that variation in the size of the liver was a significant predictor of the 

reductions in RMR. However, it was not a strong predictor.  

 

Thermoregulation 

PMR was negatively affected by the diet restriction in both species. PMR was ~10% 

lower in both age-groups of diet-restricted ducklings compared to controls (Paper I), 

and PMR was 16% lower in the diet-restricted European shag nestlings compared to the 

controls (Paper III).  

In contrast to PMR, absolute metabolic scope (PMR-RMR) and mass-specific 

MTC were not negatively affected by the diet restriction (Paper I, III). This shows that 

the portion of PMR available for regulatory thermogenesis and the total insulation 
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developed according to age even though body mass lagged behind during the diet-

restriction. Thus, the overall thermoregulatory ability seemed to be well maintained. 

This was supported by the measurement of an index of homeothermy in European shag 

nestlings. Diet restricted nestlings did not exhibit a significantly lower index of 

homeothermy as compared to controls at the same age (Paper III).   

 

Maturation  

Maturation, measured as the lean dry fraction (LDF), of skeletal muscles increased 

during the diet restriction periods in both species (Paper I, III). Thus, maturation of 

skeletal muscles was similar or higher in diet-restricted chicks compared to controls at 

the same age. Also, the maturation of the other muscle tissues, i.e. the heart and the 

gizzard, was similar or higher.  Further, diet-restriction had no negative effect on 

maturation in any visceral organs, except for the intestine of European shag nestlings 

(Paper II, III) and the liver in the oldest group of ducklings (Paper I). Consequently, 

except for the latter examples, the results on maturation did not indicate any temporarily 

stalled maturation of muscles or organs.  

 

Structural growth 

 Growth of structural elements, i.e. skull (head + bill), tarsus and wings, showed a 

significantly different response to diet restriction in the ducklings in comparison with 

the European shag nestlings. Whereas structural growth was sustained at high rates 

during food shortage in the European shag nestlings (Paper II, IV), slowing of structural 

growth occurred in the Pekin ducklings (Paper I). The structural growth of the ducklings 

depended on the structural element in question and on age. The growth of the skull was 

given the highest priority and increased in size during the diet-restriction period relative 

to body mass. However, the growth of the skull of the diet restricted ducklings was 

lower than that of the controls of the same age. The growth of the tarsus and the wings 

were lower than that of the skull in the diet-restricted ducklings. The tarsus of the diet-

restricted ducklings was maintained in proportion to body mass, and so were the wings 

of the oldest diet-restricted ducklings. However, the wings of the youngest diet-

restricted ducklings were ~16% shorter than predicted from the normal relationship 

between body mass and wing length.   
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Body composition 

Diet restriction had a substantial effect on body composition in both species. A common 

response to the diet restriction was a reduced mass of the liver and the lipid stores 

relative to body mass in both species. In the ducklings, the mass of the leg muscles, the 

heart and the kidneys were maintained in proportion to body mass during the diet-

restriction (Paper I). In contrast, the intestine was the only organ in the European shag 

nestling that was maintained in proportion to body mass during the diet restriction 

(Paper II, III). The intestine mass of the ducklings was substantially reduced during the 

diet restriction (Paper I). The mass of the pectoral muscles were reduced in the oldest 

diet-restricted ducklings but not in the youngest. The mass of the gizzard was heavier 

than predicted from body mass in the youngest diet-restricted ducklings, but not in the 

oldest (Paper I).  

 

Growth during realimentation 

The diet-restricted European shag nestlings resumed normal growth when they were 

assigned to foster parents in the wild (Paper IV). Although different statistical methods 

provided slightly contrasting results for this period of realimentation, it seemed that 

body mass and structural elements grew according to a parallel trajectory compared to 

controls. Developmental time was extended in the diet-restricted nestlings, and the 

asymptotic values for the growth characters did not differ between controls and diet-

restricted nestlings. Growth was monitored until the nestlings were 36-48 days of age, 

and all nestlings had reached or were close to 95% of the asymptotic values for all 

growth characters. Therefore, the asymptotic values were adequate measures of fledging 

body size. Accordingly, fledging body size did not differ between controls and diet-

restricted nestlings (Paper IV). 
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General discussion 
 

Induced vs. imposed growth responses 

Growth of linear measurements and functional maturation defines a pattern of ontogeny. 

The pattern that occurs under normal conditions has been suggested as a crucial 

benchmark for evaluating whether developmental plasticity of growth can be 

characterised as induced or imposed (Schew & Ricklefs 1998). Several traits and 

methods have been used to characterise maturation, i.e. the degree of mature, or adult, 

morphology and level of function. On the tissue level, the lean dry fraction (LDF) is 

found to be a good measure of the functional maturation in skeletal muscles (Ricklefs & 

Webb 1985; Ricklefs et al. 1994), and it is assumed to reflect functional maturity rather 

well in visceral organs as well (Ricklefs et al. 1998). LDF is a measure that is easy to 

obtain by adequate drying of tissue samples. For bones and skeletal elements, different 

histological methods have been used to obtain adequate measures of maturity (Starck 

1998; Starck & Chinsamy 2002; de Margerie et al. 2004). In my studies (Paper I, II, III) 

I obtained measures of the LDF of skeletal muscles and visceral organs. These measures 

should correlate well to overall maturation of the chicks, but I cannot assess how 

precisely they reflect the maturity of the skeleton. The maturation of skeletal muscles 

and most visceral organs increased during the periods of diet restriction in the ducklings 

(Paper I) and in the European shag nestlings (Paper II, III). All the structural elements 

(skull, tarsus, wings) of the European shag nestlings grew at very high rates, almost in 

line with that of controls, and were presumably supported by heavily scavenging 

nutrients from skeletal muscles and visceral organs. The structural growth of the 

ducklings depended on the structural element and age-group in question. In relation to 

body mass of the ducklings, the skull grew at the highest rates, and the tarsus and the 

wings grew at the lowest rates, while the youngest ducklings exhibited higher growth 

rates compared to the oldest ducklings relative to that of controls.   

Schew (1995) suggested that induced responses in structural growth also were 

characterised by a sharp decrease in growth rate instead of a gradual pathological 

decrease. Accordingly, the growth of the structural elements of the European shag 

nestlings should be categorised as an imposed response, rather than an induced 
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response. However, the overall growth response of the European shag nestlings, though, 

does not seem to be ‘passive’. A passive response should presumably correspond to a 

relatively proportional growth, whether growth was sustained or relaxed, in all body 

parts, but this did not occur. The structural elements seemed to have an extreme priority 

at the expense of visceral organs and skeletal muscles. The structural growth of the 

ducklings differed compared to the European shag nestlings. The oldest ducklings, but 

to some degree also the youngest ducklings, seemed to decrease structural growth rates 

immediately at the onset of diet restriction, but the functional maturation was sustained 

(Paper 1; own unpublished data). The ducklings, therefore, seem to exhibit some degree 

of labile development. As Schew & Ricklefs (1998) argued that imposed and induced 

responses represent a continuum rather than discrete options, it might be correct to place 

the growth responses of the ducklings at the induced side of that continuum rather than 

at the imposed side. This is in accordance with a previous study that reports some 

degree of labile development of mallards (Anas platyrhynchos, Street 1978), the species 

from which the Pekin duck is domesticated. 

Although the European shag nestlings did not show an induced growth response in 

the face of food shortage, their growth potential did not seem to be negatively affected. 

When conditions improved, the nestlings seemed to follow a parallel growth trajectory 

to that of controls, and they slightly extended developmental time. Consequently, they 

attained a fledging body size that was similar to that of the controls (Paper IV). An 

impeded growth potential should be expected due to the continued maturation of the 

nestlings during the period of food shortage. Why then, did the nestlings attain normal 

fledging size? One plausible explanation for this is that the changes in LDF of the 

skeletal muscles and the visceral organs do not adequately reflect the maturation of the 

skeleton. If the degree of ossification and the size of the cartilaginous proliferation 

zones were maintained in normal proportions to the growth of the bones, the potential 

for growth should not be impeded. Another explanation is that the growth-maturation 

hypothesis is not valid for the growth of the European shag nestlings. Such an 

interpretation, however, would be controversial, as morphological data generally 

support the growth and functional maturity trade-off (Starck 1998). A third explanation 

is that the food shortage did not last long enough to impose sufficient changes in growth 

and maturation that would impede the growth potential significantly. As the nestlings 
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were able to sustain high structural growth rates during the food shortage period, even a 

limited ability to extend developmental time was sufficient to buffer the growth 

perturbations. 

 

Metabolic responses 

Plasticity of the ontogenetic development of energy metabolism can be an adaptation to 

unpredictable and fluctuating feeding conditions. A reduction in the basal level of 

energy metabolism might reduce the detrimental effects of food shortage and facilitate 

survival. Making firm conclusions about the adaptiveness of developmental responses is 

obviously a dangerous exercise (Gould & Lewontin 1979), but I have argued that the 

observed reductions in energy metabolism in the diet-restricted ducklings and European 

shag nestlings may have an adaptive significance (Paper I, II). The experimental setup, 

however, did not allow tracking of the changes in energy metabolism at the onset of diet 

restriction or at the onset of realimentation. Consequently, I cannot unequivocally judge 

the responses as being active or passive, as suggested by Schew & Ricklefs (1998). 

They proposed that an active response was characterised by a sharp decrease in 

metabolic rate immediately at the onset of diet restriction, and a sharp increase in 

metabolic rate at the onset of realimentation. Tracking of plasma levels of uric acid 

could also be a fruitful measure in assessing possible adaptive energy saving responses. 

This has been done in studies of the physiological adaptations of king penguin 

(Aptenodytes patagonica) chicks (Cherel et al. 1987) and adults (LeMaho 1983; Cherel 

et al. 1988) to fasting during winter and incubation, respectively. Within three days of 

fasting king penguins switch to a nitrogen-sparing physiology, in which lipids are 

metabolised and proteins are saved. The daily mass loss is minimised, enabling survival 

of the chicks through fasting for 5 months during the subantarctic winter. The protein-

sparing metabolism of king penguins has been suggested as a clear example of an 

adaptive metabolic response (Schew & Ricklefs 1998).  

Energy saving in response to experimental food shortage has been reported for 

several species (Table 1). Japanese quail (Coturnix coturnix japonica, Schew 1995) and 

male broilers (Gallus gallus, Zubair & Leeson 1994) respond rapidly to diet restriction 

by decreasing metabolic rate and subsequently increasing it in response to 

realimentation. In contrast, nestling European starlings (Sturnus vulgaris, Schew 1995) 
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and song thrushes (Turdus philomelos, Konarzewski & Starck 2000) did not show any 

metabolic response during short-term diet restriction. Konarzewski & Starck (2000) 

suggested that a lack of frequent, unpredictable fluctuations in food availability or a 

strong selection for uniform adult phenotypes could prevent plasticity of the 

developmental program of nestlings.  

The importance of the ecological settings, determining the degree of predictability 

in the food availability, was tested by Kitaysky (1999). He found that the piscivorous 

horned and tufted puffins (Fratercula corniculata and Lunda cirrhata) which rely on 

fluctuating food resources, showed greater metabolic responses to food shortage 

compared to the planktivorous crested and parakeet auklets (Aethia cristatella and 

Cyclorhinchus psittacula) which rely on continuously available food resources. Sibling 

competition may also be among the selective factors for metabolic responses to short-

term food shortage. Brzek & Konarzewski (2001) demonstrated a reduced RMR in diet-

restricted sand martin nestlings (Riparia riparia), and showed that this response was 

amplified by the presence of hungry siblings. 

 

Table 1. Species known to show energy saving (i.e. reduced resting metabolic rate) in 

response to experimental short-term food shortage during early development. 

Species 
Developmental 

mode 
Reference 

European shag (Phalacrocorax aristotelis) Altricial Paper II, III 

Sand martin (Riparia riparia) Altricial Brzek & Konarzewski 2001 

Horned puffin (Fratercula corniculata) Semi-precocial Kitaysky 1999 

Tufted puffin (Lunda cirrhata) Semi-precocial Kitaysky 1999 

Crested auklet (Aethia cristatella)  Semi-precocial Kitaysky 1999 

Parakeet auklet (Cyclorhinchus psittacula) Semi-precocial Kitaysky 1999 

Broiler (Gallus gallus) Precocial Zubair & Leeson 1994 

Pekin duck (Anas platyrhynchos dom.) Precocial Paper I 

Japanese quail (Coturnix c. japonica) precocial Schew 1995  
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PMR was negatively affected by diet restriction in both of my study species 

(Paper I, III). This could occur as a result of negative effects of diet restriction on the 

capacity for regulatory thermogenesis or as a result of the low RMR, or as a 

combination of both. The absolute scope, i.e. the proportion of PMR available for 

regulatory thermogenesis was not negatively affected in the diet restricted chicks, and I 

revealed that RMR was a significant predictor of PMR. Accordingly, the low PMR 

seemed to occur as a result of the low RMR of the diet-restricted chicks. This indicates 

that chicks seem to face a trade off between reducing the basal level of energy 

metabolism, as an energy saving response, and maintaining the capacity for maximum 

heat production during temporal food shortage. In contrast to PMR, the MTC developed 

in line with that of controls of the same age (Paper I, III), and the isolative properties of 

the diet-restricted chicks were therefore very well developed.  

Despite reductions in RMR and PMR, the abilities of the diet-restricted chicks to 

defend their Tb seemed to be very well developed. This was further supported by 

measurements of an index of homeothermy in the European shag nestlings, which 

showed that the degree of homeothermy was not significantly affected in the diet-

restricted nestlings compared to that of controls at the same age (Paper III). 

The time and energy budgets of chicks and parents are interrelated (Beintema & 

Visser 1989; Moe et al. 2002). If food shortage delays the development of 

homeothermy in chicks, the need for continued brooding would constrain the available 

foraging time of the parents. Continued development of homeothermy even during food 

shortage could therefore be particularly adaptive for species inhabiting harsh 

environments. In contrast, entering a substantial hypothermic state has been regarded as 

an adaptive response to substantial food shortage in unattended chicks of fork-tailed 

storm petrels (Oceanodroma furcata, Boersma 1986). This is a pelagic seabird that may 

experience periods of protracted fasting. Moreover, it nests in burrows with constant 

and predictable cool ambient temperatures. Bech et al. (1991) and Weathers et al. 

(2000), however, found no evidence that Antarctic fulmarine petrels normally 

experience hypothermia in the field, and suggested that the cold and variable climate 

precludes these species from using substantial hypothermia. Ducklings and European 

shag nestlings are not as likely to experience periods of protracted fasting, as are pelagic 

seabirds, and their ambient temperatures are highly variable. Feeding patterns as well as 
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physical and climatic conditions could be important factors for the evolution of different 

developmental strategies of thermoregulation in different species. 

 

Differential developmental plasticity 

The ducklings and the European shag nestlings exhibited a varying degree of plasticity 

of different body parts in response to food shortage. Visceral organs and muscles 

showed generally a higher degree of plasticity compared to that of the structural 

elements (skull, tarsus, wings). Moreover, the physiological systems (including RMR, 

PMR and Tb) also showed a high degree of plasticity.  

One explanation for such differential developmental plasticity could be that 

different body components merely have different nutritional requirements. The observed 

differential developmental plasticity is then merely a product of how the food intake 

meets the different nutritional requirements. Calcium and phosphorus, for example, are 

essential inorganic structural nutrients (Murphy 1996). If these nutrients, rather than 

energy primarily limit the rate of structural growth, it could suggest that the chicks were 

provided in sufficient amount during the food restriction to sustain growth of all parts of 

the skeleton (shags, Paper II, III) or to sustain growth of some parts of the skeleton 

(ducklings, Paper I). 

Different degrees of developmental plasticity of different body components may 

also be due to a competition for nutrients between various growing tissues (O’Connor 

1977; Sedinger 1986). Priority should then be given to those tissues or body parts most 

important for immediate survival. During food shortage, the growth and maturation of 

the brain is reported to be strictly sustained (Schew 1995), and the mass of the heart is 

reported to be maintained in proportion to body mass (Schew 1995; Paper I). Amino 

acids are essential nutrients for energy metabolism and for structural properties of 

visceral organs, muscles and the skeleton. Judging from the substantial reductions in the 

size of some visceral organs and muscles (e.g. pectoral), amino acids appeared to be 

actively scavenged from these organs to support growth or maintenance of the skeleton 

(Paper I, II, III). In the European shag nestlings, sustained growth of the whole skeleton 

was given an extreme priority at the expense of visceral organs and some muscles (i.e. 

pectoral and heart, Paper II, III), whereas the ducklings preferentially allocated 

resources to a slightly sustained growth of the skull (Paper I). The size of the leg 
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muscles as well as the maturation of the skeletal muscles was given high priority in both 

species. These results suggest that thermoregulatory ability was given a high 

developmental priority. However, it could also indicate a high priority of locomotor 

ability and competitive ability for sibling competition (Brzek & Konarzewski 2001). 

Also, the combined effect of sustained overall skeletal growth and maturation of 

skeletal muscles would be particularly beneficial for the competitive abilities of nestling 

European shags. 

Another explanation for differential developmental plasticity is that different body 

parts may have different abilities to recover when conditions improve after a period of 

food shortage. Avian visceral organs and muscle tissue are shown to exhibit a highly 

flexible nature, allowing fast and reversible changes (e.g. Schew 1995; Piersma & 

Lindstrøm 1997; Starck 1999; Starck & Rahman 2003). These organs and tissues are 

therefore likely to fully recover if conditions sufficiently improve during realimentation. 

The skeleton, in contrast, is generally thought to be less flexible compared to visceral 

organs due to internal physical constraints (Schew & Ricklefs 1998; Pigliucci 2001). 

Some species exhibit a very rigid development of the skeleton (e.g. Konarzewski et al. 

1996; Paper II, IV). However, it is evident that other species exhibit a very flexible 

development of the skeleton (e.g. Emlen et al. 1991; Schew 1995). The ability of the 

skeleton to recover during realimentation should therefore also reflect species-specific 

development, and not only general properties or constraints of the skeletal tissues. Also, 

recovery is an integrated process between organ systems. The digestive organs, for 

example, must fully function before other parts of the body can receive sufficient 

resources for subsequent growth and recovery. This could be a possible explanation as 

to why the intestine and the gizzard were given so high priority during food shortage in 

the European shag nestlings (Paper II) and in the ducklings (Paper I), respectively. The 

maintenance of these organs could be of major importance for the ability to immediately 

resume normal growth at the onset of realimentation in both species (Paper IV; 

unpublished data).  

I reported a remarkable example of differential developmental plasticity of the 

European shag nestlings (Paper II, IV), in which structural growth was rigidly sustained 

while RMR and body composition showed highly flexible development during food 

shortage. Lack of flexible development of structural body size has been attributed 
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several evolutionary interpretations. It may evolve if the prevailing environment lacks 

frequent, unpredictable fluctuations in food availability during the development 

(Konarzewski et al. 1996). Also, if there is strong selection for relatively uniform 

fledging or adult body size, developmental flexibility might be suppressed even under 

fluctuating environmental conditions. This may occur if flexibility cannot be 

compensated during later development, and flexible development consequently would 

produce a diversity of fledging and adult body sizes (Konarzewski & Starck 2000). 

Finally, rigid development of body size may evolve as a result of strong selective 

pressure on nestling competitive abilities and of strong time-dependent mortality 

(Schew 1995). 

The flexible development of RMR and body composition of European shag 

nestlings (Paper II, III) does not easily support the first interpretation which predicts an 

overall rigid development. The two latter interpretations are not mutually exclusive. If 

the ability of European shag nestlings to extend developmental time is rather limited, 

the rigid development of body size may have evolved as a result of selection on fledging 

or adult body size, selection on nestling competitive abilities or of strong time-

dependent mortality. 

 

Altriciality vs. precociality  

The evolution of developmental responses is driven by natural selection and limited by 

internal constraints (Starck & Ricklefs 1998a; Ricklefs et al. 1998; Pigliucci 2001), in 

which genetic and developmental constraints are important (Pigliucci 2001). Therefore, 

developmental mode, in the altricial-precocial spectrum, could possibly be a crucial 

determinant for developmental responses to short-term food shortage. Altricial and 

precocial chicks differ substantially in the degree of maturity at hatching (Starck & 

Ricklefs 1998a). Moreover, their thermoregulatory and locomotor abilities, feeding 

patterns and growth trajectories differ throughout postnatal development (Nice 1962; 

Starck & Ricklefs 1998b). 

The European shag and the Pekin duck represent two extremes within the altricial-

precocial spectrum. The responses of structural growth differed between the two study 

species. However, their physiological responses (including energy metabolism and body 

composition of visceral organs) were rather consistent. Energy saving in response to 
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food shortage has been revealed in several other species across the altricial-precocial 

spectrum (Table 1), and labile development of structural growth has also been reported 

in several species of different developmental modes (see Schew 1995). In agreement 

with recent literature (e.g. Emlen et al. 1991; Schew 1995; Konarzewski et al. 1996; 

Kitaysky 1999; Brzek & Konarzewski 2001), the results of the present thesis suggest 

that developmental responses to short-term food shortage are not strictly linked to the 

placement within the altricial-precocial spectrum, but are more likely to be influenced 

by the degree of unpredictability of the food availability in the environment, rates of 

provisioning, and the degree of sibling competition and time-dependent mortality. 
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Conclusions 
 

The following main conclusions can be drawn from the findings of this thesis: 

 

• Pekin ducklings as well as European shag nestlings showed substantial energy 

savings, by lowering RMR, in response to short-term food shortage. Such energy 

savings could lessen the detrimental effects of food shortage and enhance survival. 

• The RMR reductions were partly explained by hypothermia and reductions in 

the size of the liver. Hypothermia (modest reductions in Tb) accounted for a large 

portion of the reductions in RMR in European shag nestlings and in the youngest 

ducklings, but did not occur in the oldest ducklings. A reduction in the size of the liver 

was a significant, but not a major, determinant of the observed reductions in RMR.  

• PMR was negatively affected by food shortage in both study species. It seemed 

that the reductions in RMR rather than any decreased capacity for regulatory 

thermogenesis caused the negative effect on PMR. MTC decreased and absolute scope 

increased during the period of food shortage in both species. These results indicate that 

thermoregulatory abilities were given a high developmental priority during food 

shortage.  

• Short-term food shortage corresponded with a substantial change in energy 

allocation between growth and maintenance, especially in the European shag nestlings. 

They sustained high rates of structural growth at the expense of the size of most visceral 

organs and muscles.  

• Fledging body size was similar between controls and diet-restricted nestlings 

after realimentation. Thus, variation in fledging body size does not seem to arise from 

short-term and transient food shortage during early growth of European shags. 

• The development of metabolic rate, body composition and growth showed 

varying degrees of plasticity in response to short-term food shortage in Pekin ducklings 

as well as in the European shag nestlings. Moreover, the two study species showed 

similar as well as different developmental responses to food shortage, indicating that 

such responses are not strictly linked to the placement within the altricial-precocial 

spectrum. 
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ABSTRACT 

 

We investigated whether Pekin ducklings (Anas platyrhyncos domesticus) exhibited any 

energy saving mechanisms that could lessen the detrimental effects of reduced food 

intake during early development. Further, we evaluated the role of body compositional 

changes behind such potential mechanisms, and the consequences on thermoregulatory 

capacity. 

The ducklings exhibited substantial energy saving mechanisms as a response to 

diet restriction. After 5 days of diet restriction, the resting metabolic rate (RMR) of 10 

and 20 day old ducklings was 16.4 and 32.1% lower, respectively, than predicted from 

body mass, compared to ad libitum fed ducklings (controls). These reductions in RMR 

could have been adaptive responses in anticipation of a lasting food shortage, or they 

could have been consequences of the restricted diet and the lack of essential nutrients. 

We argue that the responses were adaptive. The low RMRs were not a consequence of 

depleted fuel stores, as the diet-restricted ducklings exhibited substantial amounts of 

stored lipids at the end of the diet restriction periods. Hypothermia accounted for ~50% 

of the reduction in RMR in the 10 day old diet-restricted ducklings, but hypothermia did 

not occur in the 20 day old diet-restricted ducklings. Diet restriction resulted in a 

reduced liver and intestine size, an unchanged size of the leg muscles and heart, while 

the length of the skull increased (compared to controls of a given body mass). However, 

changes in body composition were only minor predictors of the observed changes in 

RMR.  

Peak metabolic rate (PMR) was ~10% lower in the diet-restricted ducklings 

compared to the controls. We have interpreted the lower PMR as a consequence of the 

reductions in RMR, rather than a consequence of a decreased function of the 

thermoregulatory effector mechanisms. 
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Introduction 

 

Living organisms have to balance their energy allocation in such a manner that future 

survival and reproduction is ensured (Stearns 1992). This is particularly challenging for 

young birds, because they need to get through the vulnerable developmental period as 

rapidly as possible, while at the same time they should attain a fully developed adult 

size that ensures both survival and future reproduction (Schew and Ricklefs 1998). 

Little is known about the effect of temporal changes in food availability on the 

ontogenetic development in birds. As chicks grow from neonate to adult, they may 

encounter periods of low food availability that can affect their development (Schew and 

Ricklefs 1998). Poor feeding conditions can suppress normal growth, affect adult 

morphology (De Kogel 1997; Birkhead et al. 1999) and result in negative long-term 

consequences (Lindström 1999; Metcalfe and Monaghan 2001; Dufty et al. 2002). 

In order to maximise their survival during poor feeding conditions, chicks should 

optimise the allocation of their ingested energy to growth and maintenance. At reduced 

levels of energy intake, the available energy for growth can be allocated to growth and 

functional maturation of different tissues and organs in the same relative proportions as 

during normal energy intakes (Konarzewski et al. 1996). Alternatively, it can be 

specifically allocated to favoured organs and tissues at the expense of others (Øyan and 

Anker-Nilssen 1996; Schew and Ricklefs 1998).  

Developmental plasticity is regarded as adaptive if the animal actively adjusts the 

ontogenetic processes to a change in the environment (Smith-Gill 1983). Modification 

of the basal level of energy expenditure could occur as an active response in anticipation 

of a lasting food shortage. By reducing the energy expenditure, the chicks could 

increase survival and enable more energy to be allocated to growth. Alternatively, any 

reduction of the basal level of energy expenditure could be a direct consequence of the 

lack of sufficient nutrients during food shortage. Also, the lack of nutrients could 

impose reductions in growth rate and in the size of energy consuming organs which 

consequently could cause reductions in the basal level of energy expenditure, as a non-

adaptive response. However, reductions in the size of energy consuming organs and in 

growth rate could also be an adaptive response in anticipation of a lasting food shortage. 
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Any reduction of the resting metabolic rate (RMR) may be associated with severe 

costs in terms of reduced capacity for peak metabolism (PMR). According to the 

‘aerobic capacity’ hypothesis (Bennett and Ruben 1979; Taigen 1983), the evolution of 

endothermy and high levels of sustained activity in birds and mammals was 

accompanied by an increase in the capacity of aerobic pathways of metabolism and in 

organ systems (digestion, respiration, circulation and excretion) that support this 

capacity. Assuming a close coupling between RMR and PMR, as has been 

demonstrated interspecifically in adult birds (Dutenhoffer and Swanson 1996; Rezende 

et al. 2002) and intraspecifically in chicks (Konarzewski et al. 2000), a decrease in basal 

metabolism should be accompanied by a decrease in peak metabolism (i.e. thermogenic 

capacity). However, the functional relationship between basal metabolism and peak 

metabolism is not yet fully understood (Hayes and Garland 1995; Ricklefs et al. 1996). 

Birds are generally believed to rely mainly on muscular shivering for heat 

production during cold exposure (Hohtola and Visser 1998). In contrast, visceral organs 

(especially the heart, liver, kidneys and intestine) are believed to consume much of the 

energy used in basal metabolism (Daan et al. 1990). However, the specific organs and 

tissues that predict RMR or PMR differ among studies (e.g. Burness et al. 1998; Bech 

and Østnes 1999; Chappell et al. 1999). Hence, it is not fully understood how body 

composition functionally relates to RMR and PMR. 

 It is generally accepted that the energy budgets of chicks have responded to 

selection, but little consideration has been given to the evolution of the chicks’ ability to 

modify the pattern of energy use and allocation. Precocial birds, like ducklings, are 

likely to encounter variable food availability during early development, due to foraging 

inexperience, fluctuations in resources, adverse weather conditions or 

dominance/sibling interactions. Ducklings are almost thermoregulatory independent of 

their parents, and they depend on their own thermoregulatory capacity. In this study, we 

experimentally imposed short-term diet restriction on Pekin ducklings (Anas 

platyrhynchos domesticus), kept under laboratory conditions, to shed light on the 

relationship between food availability, energy allocation and metabolism during early 

development. 

In this context, we ask whether ducklings exhibit any energy saving mechanisms 

that can lessen the detrimental effects of reduced food intake during early development. 
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Secondly, whether a change in body composition is the physiological mechanism 

behind such a metabolic response and thirdly whether any energy saving mechanisms 

(i.e. lowered RMR) result in a negative effect on the thermoregulatory capacity (PMR) 

of growing chicks. 
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Material and Methods 

 

Animal Housing and Experimental Design 

Pekin duck eggs were obtained from a local farmer and hatched in the laboratory. After 

hatching (day 0), the ducklings were kept for ~12 h in the incubator at a Ta of 38oC. 

Thereafter, they were transferred to an enclosure (60 x 40 cm) with ad libitum access to 

food (poultry pellets) and water. A heat lamp provided a constant range of operative 

temperatures (Bakken 1992) of 24-33oC within the enclosure. As the ducklings grew 

bigger, they progressively gained access to more space. The oldest ducklings (15-20 

days old) were confined in an enclosure of 140 x 125 cm in groups of 5-10 ducklings. 

Ducklings were randomly assigned to either diet restriction or control (ad libitum) 

treatment. Water was provided ad libitum to all ducklings in both groups. Diet 

restriction was imposed for 5-day periods on one group of ducklings from the age of 5 

to 10 days and on a second group from the age of 15 to 20 days. The diet-restricted 

ducklings received small portions of food 4-7 times a day to maintain a relatively stable 

body mass.  

Metabolic measurements were made on each duckling at the end of the diet 

restriction period, at the age of 10 or 20 days, respectively. Ducklings fed ad libitum 

were used as controls, and metabolic measurements were made on four independent 

groups of controls at the age of 5, 10, 15 and 20 days, respectively. In total, we 

measured the metabolic rate (MR) of 55 ducklings, of which 33 were postabsorptive 

and 22 were not (see ‘statistical analyses’). Postabsorptive ducklings did not receive any 

food for >10 h prior to the metabolic measurement. The National Committee for Animal 

Research in Norway (‘Forsøksdyrutvalget’) approved the experimental protocols.  

 

Metabolic Measurements 

O2 consumption rates were measured by open-flow respirometry (Withers 1977). A 

high pressure air outlet in the laboratory facilitated atmospheric air.  After drying over 

silica gel, the actual flow rates (0.85-3.7 l min-1) entering the metabolic chamber were 

measured with a mass flow controller (Bronkhorst Hi-Tec, F-201C-FA-22-V). 

Excurrent air was dried over silica gel, before a fraction of the air was directed to the O2 



 

 7 

analyser (Servomex 1100A). The O2 analyser was calibrated with a) dry atmospheric air 

(20.95%) before every experiment and with b) pure N2 after every ~10 experiments.  

Any changes from the pre- to the post-experiment readings of the O2 content in dry 

atmospheric air, was controlled for by assuming a linear drift. Measurements of the O2 

content in excurrent air (accuracy 0.01%) were stored, along with the temperature 

measurements, on a Squirrel data logger, at 30 sec intervals. 

The metabolic rates (MR) were calculated by using formula (1d) in Withers 

(1977), assuming a constant RQ of 0.79 and corrected for wash-out delays in the system 

by using the method given by Niimi (1978). In this way, we obtained the instantaneous 

O2 consumption rates. Values of the metabolic rates (MR) were calculated from the O2 

consumption rates using 5.5824 W as the caloric equivalent for 1L O2 h-1. 

Resting metabolic rate (RMR) was defined as the lowest MR calculated with 25 

min running average during exposure to thermoneutral conditions. The ambient 

temperature for thermoneutral conditions was set between 33 and 26oC, depending on 

the ducklings’ age (Østnes and Bech 1997). The use of a running average over a 25 min 

interval was justified after plotting the minimum values of the MR, calculated in five 

randomly selected experimental runs using intervals which varied from 2 min to 60 min. 

For a running average lower than 15 min, these curves revealed a very strong positive 

relationship between the minimum values of RMR and the length of the running 

average interval. Short intervals resulted in very low minimum values of RMR, thereby 

underestimating the RMR level. However, at a running average between 15 min and 60 

min, the minimum values of RMR changed relatively little (see Meerlo et al. (1997) for 

a description of this procedure). 

Depending on the ducklings’ age, the metabolic chamber was 9 or 25 L. A 

surrounding climatic chamber (Heraeus Vötsch, type VEM 03/500) regulated the Ta 

inside the metabolic chambers. After 3-6 h exposure to thermoneutral conditions, the Ta 

was lowered at a constant rate of  0.7oC min-1 inside the 9 L and the 25 L chamber, 

respectively. The lowest Ta imposed in the metabolic measurements was –26.2 oC. The 

ducklings’ MR increased with decreasing Ta. After reaching a peak MR, MR and Tb 

showed a consistent decrease to a further decrease in Ta, and the experiment was 

terminated. Peak metabolic rate (PMR) was defined as the highest 10 min running 

average MR during cold exposure. Some of the 20 days old ducklings (4 controls and 4 
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diet-restricted) maintained a relatively stable MR and Tb at the lowest ambient 

temperatures imposed by the climatic chamber. Hence, we can not be sure that they 

reached the true PMR, and they were excluded from the PMR analyses. One 5 day old 

duckling was also excluded, due to a power supply failure during the PMR 

measurement. Each individual was only used once in the experiments. The ducklings 

were sacrificed with ether immediately after the metabolic measurement and stored at –

20oC for subsequent analysis of body composition. Body masses of the ducklings were 

weighed, to the nearest 0.1 g, before and immediately after each experiment. A linear 

decrease in body mass during the experiment was assumed when calculating the body 

mass at the time when RMR and PMR were obtained.  

The ambient temperature (Ta) was measured with a thermocouple mounted inside 

the metabolic chamber. The body temperature (Tb) was measured during the entire 

metabolic measurement in the cloaca with a copper-constantan thermocouple 

(California fine wire, type 0.005) surrounded by a polypropylene tubing (PP 50, Portex 

Ltd.) and secured with adhesive tape over the cloaca. Depending on the duckling’s age, 

the thermocouple was inserted 1.8-4.5 cm into the cloaca. 

The minimal ‘wet’ thermal conductance (MTC) was calculated according to the 

method originally described by Scholander et al. (1950). However, this method is only 

valid when Tb is kept constant. Since the Tb of the ducklings decreased during cold 

exposure, we had to include a correction factor to account for the fall in Tb (see also 

Visser and Ricklefs 1993). Thus, the following formula was used to calculate minimal 

thermal conductance: 

MTC = (PMR + A) / (Tb – Ta)        (1) 

 where A is the correction factor for the decrease in energy content (W kg-1). The 

calculation of the correction factor was based on the rate of fall in Tb recorded during 

the last 10 min period before PMR was attained, and a specific heat of 3.45 J g-1 oC-1 

(Hart 1951). Thermal conductance (TC) during thermoneutral conditions was calculated 

according to the following formula: 

 TC = RMR / (Tb – Ta)        (2) 
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Body Composition 

Dissection was performed on semi-thawed carcasses in order to reduce vaporisation and 

improve organ separation. We removed heart, liver, kidney, gizzard and intestine (small 

and large). The entire right breast muscle (m. supracoracoideus and m. pectoralis) was 

separated from the skeleton. Also, the entire right leg muscle was separated from the 

tibiotarsus-tarsometatarsus joint. Gizzard, intestine and heart atrium were emptied of 

contents, while all organs and muscles were carefully trimmed of fat and weighed (±1 

mg, carcasses to ±0.1 g). They were then dried to a constant mass at 56oC and 

reweighed. Fat content was thereafter removed in baths of petroleum ether, and the 

samples where again dried and reweighed. The lean dry fraction (LDF) of organs was 

calculated as the ratio of lipid free dry organ mass to lipid free fresh organ mass. The 

LDF of most organs and tissues increases during the ontogenetic development due to a 

build-up of proteins and functional components on the cellular level. Hence, the LDF is 

regarded as reflecting the functional maturity of an organ. 

 

Statistical Analyses 

We used a General Linear Model (GLM) procedure with the type III sum of squares to 

perform analysis of covariance and variance. The GLM was performed with the ENTER 

method, in which we excluded insignificant interaction terms, factors or covariates one 

by one from the null modell. We inspected all variables graphically to ensure linearity 

before performing GLM. MR and organ mass show allometric relationships to body 

mass. Hence, log10 –transformation was used to linearize these variables prior to 

examination. 

We analysed the relationship between organ mass and MR, as well as the 

relationship between PMR and RMR by including body mass as a covariate to remove 

the effect of body mass (i.e. body mass is held constant; Hayes and Shonkwiler 1996). 

In order to avoid possible effects of part-whole correlation, we subtracted organ mass 

from the body mass variable, prior to examination, when organ mass and body mass 

were included in the same analysis (Christians 1999). 

Typically for precocial species, the ontogenetic development of RMR follows a 

biphasic pattern in relation to body mass. A biphasic pattern also exists for the 
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ontogenetic development of many organs. Hence, we have defined ‘age-group’ as a 

factor, in which 5-10 day old and 10-20 day old ducklings constitute two different age-

groups. When we have performed statistical analyses on each age-group separately, a 

two-level factor for ‘treatment’ (1 = controls, 2 = diet-restricted ducklings) is used. 

When performing analyses including both age-groups, age-group is included as a factor 

in the model, and the two-level factor treatment or the three-level factor ‘treatment-

group’ (1 = controls, 2 = 10 days old diet-restricted, 3 = 20 days old diet-restricted) is 

included in the model and specified in the text. 

When two regressions (3) with log10 transformed variables (e.g. metabolic rate 

(MR) on body mass (BM)) have the same regression coefficient  (β), but have different 

intercepts (α and α+ γ), we have calculated the percentage difference (X) between the 

non-transformed regressions according to formula (4): 

log10 MR(1) = β log10 BM + α        

log10 MR(2) = β log10 BM + α + γ      (3) 

)10-1(  100 =) 10*BM
10 * 10*BM

-1(  100 =)MR
MR

-1(  100  = γ
αβ

γαβ

(1)

(2)
×××X   (4) 

 

We measured MR on postabsorptive and non-postabsorptive ducklings. In order 

to find any effect of the ‘absorptive status’ (i.e. postabsorptive or non-postabsorptive) 

on MR (and Tb), we used the GLM procedure with MR as the dependent variable, body 

mass as covariate and absorptive status and treatment as factors. This revealed that 

absorptive status and the interactions with body mass and treatment significantly 

affected MR. Consequently, we adjusted the MR of non-postabsorptive ducklings 

downward to the postabsorptive levels. The parameter estimates from the GLM were 

used to make the appropriate equation for the adjustment for each treatment group. The 

log10-transformed MR of each non-postabsortive duckling was subtracted by ∆MR 

which was calculated according to the following equation (5) within each treatment 

group: 

∆MR = predicted log10 MR(1) – predicted log10 MR(0)  

= β(1) log10 BM + α(1) – (β(0) log10 BM + α(0)) 
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= (β(1) - (β(0)) log10 BM + α(1) – α(0)     (5) 

where (1) and (0) denote parameters obtained from non-postabsorptive and postabsorptive 

ducklings, respectively. BM is body mass, and α and β represent the intercepts and 

slopes, respectively. This correction to postabsorptive levels uses an average value (for 

each treatment group and controlled for body mass) for metabolic rates to adjust non-

postabsorptive metabolic rates. A variance in non-postabsorbtive RMR caused by a 

variation in heat increment of feeding will still exist after the correction to postabsortive 

levels.  However, we regard this ‘noise’ as too weak to obscure the conclusions in this 

study.   

 We tested the effect of diet restriction on RMR (and PMR) by GLM models with 

RMR and lean dry body mass as dependent and independent variables, respectively. 

The effect of diet restriction on body composition was analysed separately for each 

organ with lean dry organ mass and lean dry body mass (minus organ mass) as the 

dependent and the independent variable, respectively. Treatment and age-group were 

entered as factors in these models. The null models included the two interactions 

‘treatment x body mass’ and ‘age-group x body mass’. The effect of diet restriction on 

LDF was analysed separately for each organ and for each age-group. 

We analysed the relationship between RMR (and PMR) and organ mass for each 

organ separately. Organ mass and body mass (minus organ mass) were entered as 

covariates, and treatment was entered as a factor. We performed separate analyses for 

each age-group, as well as analyses in which both age-groups were included. In the 

latter analyses we added age-group and treatment-group as factors.  

Biometric measurements (wing length, tarsus length, skull length (head+bill)) 

were made on 5, 10, 15 and 20 day old ducklings. Growth rate was calculated as the 

daily growth during the last 5 days (mm day-1). Hence, growth rates of structural 

elements were obtained for 10, 15 and 20 day old ducklings and were not instantaneous 

growth rates at these specific ages. We used a principal component analysis to extract a 

factor score (PC1) of the growth rate of the wing, the tarsus and the skull. Analyses of 

the relationship between growth rate and RMR were performed separately for each 

growth rate variable (wing, skull, tarsus, PC1, body mass). Body mass was included as a 

covariate, and age-group was included as a factor, while treatment was only included as 
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a factor for the analyses where both controls and diet-restricted ducklings were 

included.  

The Bonferroni method was used for post hoc pairwise multiple comparisons 

(‘pairwise comparisons’ hereafter). It reports adjusted P-values that have been 

multiplied with the number of pairs tested. All statistical analyses were performed with 

SPSS v. 11.5.1 (2002). 

 



 

 13 

Results 

 

Body Mass 

The diet restriction had a substantial effect on body mass growth (Fig.1). The body 

mass of the diet-restricted ducklings was maintained at a relatively stable level during 

the periods of diet restriction, i.e. they only gained 2.9 g d-1 between 5 and 10 days of 

age (P<0.001) and 6.3 g d-1 between 15 and 20 days of age (P<0.001). In contrast, the 

growth of the ad libitum fed ducklings (controls) followed a normal growth curve (Fig. 

1).  

 

Metabolism 

The development of RMR showed a biphasic pattern in relation to body mass (‘age-

group x body mass’ interaction, F1,49=4.49, P<0.05, Fig. 2). RMR of 5-10 day old 

ducklings scaled to body mass by the power of 1.01 (SE=0.08), while RMR of 15-20 

day old ducklings scaled to body mass by the power of 0.82 (SE=0.07). The interaction 

‘treatment x body mass’ was also significant (F1,49=13.21, P<0.001), indicating that 10 

day old diet-restricted ducklings showed a different metabolic response to diet 

restriction compared to 20 day old diet-restricted duckling.  Hence, we removed the 2-

level treatment factor and entered treatment-group as a factor with 3 levels (1 = 

controls, 2 = 10d old diet-restricted, 3 = 20d old diet-restricted). The ‘treatment-group x 

body mass’ interaction was not significant, while the intercepts of the regressions of the 

treatment-groups were highly significantly different (F2,49=56.89, P<0.001, Fig. 2). This 

shows that diet restriction had a substantial effect on RMR. The parameter estimates 

from the GLM and pairwise comparisons showed that the 20 days old diet-restricted 

ducklings exhibited 32.1% lower RMR compared to controls (P<0.001), while the 10 

days old diet-restricted ducklings exhibited 16.4% lower RMR compared to controls 

(P<0.001).  

PMR scaled to body mass by the power of 0.82 (SE=0.03, F1,41=713.19, P<0.001, 

Fig. 2). The ‘age-group x body mass’ interaction was not significant, but for consistency 

with the RMR analysis, we included the 3-level treatment-group factor in the model. 

The main effect of treatment-group was highly significant  (F2,41=10.95, P<0.001), 
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while the interaction with body mass was not significant. Hence, PMR was lower in the 

diet-restricted ducklings compared to the controls. Pairwise comparisons showed that 

the PMR of the 20 day old diet-restricted ducklings was 11.3% lower compared to 

controls (P<0.005), while the PMR of the 10 day old diet-restricted ducklings was 9.2% 

lower compared to controls (P<0.05).  

Tb measured at RMR increased with age (Fig. 3a). The body temperature of 20 

day old diet-restricted and 20 day old controls was both 40.5 oC. In contrast, the body 

temperature of 10 day old diet-restricted ducklings was significantly lower compared to 

10 day old controls (t=-4.55, df=15, P<0.001). The relationship between log10 -

transformed Tb and lean dry body mass revealed that 10 day old diet-restricted 

ducklings exhibited 0.7 oC lower Tb than predicted from controls of the same body mass 

(F2,51=11.03, P<0.001). 

Ambient temperature (Ta) measured at PMR showed a negative relationship to the 

age of the ducklings (F1,40=23.47, P<0.001; Fig. 3b). The ‘age x treatment’ and the ‘age 

x age-group’ interactions were significant. Ta measured at PMR for 10 day old diet-

restricted ducklings was 5.3oC higher compared to 10 day old controls (P<0.05), but not 

significantly different to 5 day old controls. In contrast, Ta measured at PMR was lower 

for 20 day old diet-restricted ducklings than that of 15 day old controls (P<0.05), but not 

significantly different from that of 20 day old controls. Hence, 20 day old diet-restricted 

ducklings attained PMR at a lower ambient temperature than expected from body mass 

(F1,18=9.1, P<0.001), while 10 day old diet-restricted ducklings attained PMR at an 

ambient temperature as expected from body mass (F1,21=0.01, P>0.05). Tb measured at 

PMR was not different between diet-restricted ducklings and controls (F1,42=0.02, 

P>0.05). Average values for Tb at PMR were 37.2 oC (±0.8), 37.4 oC (±0.5), 39.0 oC 

(±0.3), 38.6 oC (±0.4) for 5, 10, 15 and 20 day old controls, respectively, and 37.4 oC 

(±0.4) and 38.1 oC (±0.6) for 10 and 20 day old diet-restricted ducklings, respectively. 

Minimal thermal conductance decreased with increasing body mass (F1,40=15.90, 

P<0.001, Fig. 4a) and age (Fig. 4b). The slopes of the regressions between log10 -

transformed MTC and lean dry body mass were not significantly different between the 

treatment groups (F2,37=0.47, P>0.05, Fig. 4a) or between the age-groups (F1,39=3.46, 

P>0.05). The main effect of treatment-group was significant (F2,40=4.39, P<0.05), and 
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pairwise comparisons showed that the MTC of the 20 day old diet-restricted ducklings 

was lower (by 15%) compared to controls (P<0.05), while the MTC of the 10 day old 

diet-restricted ducklings was not.  

The absolute scope (PMR minus RMR, i.e. the portion of PMR available for 

regulatory thermogenesis) showed no response to the diet restriction treatment (Fig. 5a). 

The slopes of the regressions between log10 -transformed absolute scope and lean dry 

body mass were not significantly different among the treatment groups (F2,39=2.79, 

P>0.05, Fig. 5a), and the intercepts of these relationships were not significantly 

different (F2,41=0.90, P>0.05). Body mass (F1,41=273.93, P<0.001) and age-group 

(F1,41=4.9, P<0.05) were the only significant predictors of absolute scope. In contrast, 

the factorial scope (PMR/RMR) were significantly higher for 20 day old diet-restricted 

ducklings compared to 15 and 20 day old controls (F2,18=22.74, P<0.001, Fig. 5b). The 

factorial scope was also different between 5 and 10 day old ducklings (F2,22=11.00, 

P<0.001, Fig. 5b), but the factorial scope of 10 day old diet-restricted ducklings was 

only significantly higher compared to 10 day old controls (P<0.001) and not to 5 day 

old controls (P>0.05). 

RMR showed a positive relationship to PMR in the 5-10 day old duckling 

(F1,22=4.63, P<0.05, r=0.42) and in the 15-20 day old ducklings (F1,18=15.32, P<0.001, 

r=0.68). Body mass was a significant covariate. Treatment and the ‘treatment x RMR’ 

interaction were included in the null model, but they were not significant. Consequently, 

they were excluded from the final model. RMR also showed a positive relationship to 

PMR (F1,42=16.10, P<0.001, r=0.53) in the analysis where both age groups were 

included.  

 

Body Composition  

Diet restriction affected organ size in three different ways. 1) There was no significant 

effect of the treatment (e.g. Fig. 6a). This was the case for the leg muscles (F1,50=0.46, 

P>0.05, Fig. 6a), the heart (F1,52=0.25, P>0.05) and the kidneys (F1,52=0.30, P>0.05), 

diet-restricted ducklings and controls showed the same allometric relationship between 

organ mass and body mass.  2) There was a significant effect of the treatment, but no 

significant treatment x body mass interaction (e.g. Fig. 6b). Diet-restricted ducklings 
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had significantly lighter liver mass (F1,50=85.76, P<0.001, Fig. 6b) and shorter intestine 

length (F1,51=6.61, P<0.001) compared to controls. 3) There was a significant effect of 

the treatment, but the effect of the treatment depended on the body mass and was 

different between 10 and 20 day old diet-restricted ducklings (i.e. significant ‘treatment 

x body mass’ interaction, e.g. Fig 6c and 6d). In these analyses we entered treatment-

group as a factor in order to do pairwise comparisons between the intercepts (means 

controlled for body mass and age-group) of each treatment group. This revealed that the 

lipid mass of 10 day old diet-restricted ducklings was 30.8% lower compared to 

controls (P<0.001), while the lipid mass of 20 day old diet-restricted was 16.4% lower 

compared to controls (P<0.01). In contrast, the gizzard mass of 10 day old diet-

restricted ducklings was 22.7% heavier compared to controls (P<0.001), while the 

gizzard mass of 20 day old diet-restricted was not significantly different from that of 

controls (P>0.05). The mass of the pectoral muscles for 10 day old diet-restricted 

ducklings was not significantly different compared to controls (P>0.05), while the 

pectoral muscle mass of 20 day old diet-restricted ducklings was 29.2% lighter 

compared to controls (P<0.001). The intestine mass of 20 day old diet-restricted 

ducklings was 21.3% lower compared to controls (P<0.001), while the intestine mass of 

10 day old diet-restricted ducklings was 10.9% lower compared to controls (P<0.05). 

The structural size of the ducklings was also affected by diet restriction. The 

length of the skull (head + bill) of the diet-restricted ducklings was 6.0% longer 

compared to controls for a given mass (F1,45=54.36, P<0.001, Fig 6f). However, the age-

specific growth of the skull was not fully sustained during the diet-restriction. For a 

given age, the diet-restricted ducklings exhibited ~6% shorter skulls compared to 

controls (F1,45=13.39, P<0.001). In the analysis of the length of the tarsus, there was a 

significant ‘treatment x body mass’ interaction (F1,46=4.89, P<0.05), indicating that diet 

restriction affected the tarsus of 10 and 20 day old diet-restricted ducklings differently. 

However, after entering the 3-level treatment factor, pairwise comparisons revealed that 

tarsus length did not vary among diet-restricted and control ducklings in either the 10 or 

the 20 day groups (P>0.05). There was also a significant ‘treatment x body mass’ 

interaction in the analysis of the length of the wing (F1,44=13.18, P<0.001). After 

entering the 3-level treatment factor, pairwise comparisons revealed that the length of 

the wing of 10 day old diet-restricted ducklings was 15.6% shorter compared to controls 
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(P<0.001), while the length of the wing of 20 days old diet-restricted ducklings was not 

different compared to controls (P>0.05). 

The diet restriction also affected the LDF of organs. The LDF of the pectoral 

muscles was higher in 10 day old (F1,22=12.64, P<0.005) and 20 day old diet-restricted 

ducklings (F1,26=69.00, P<0.001) compared to controls (Fig. 7d). The LDF of the 

gizzard was also higher in 10 day old  (F1,23=9.98, P<0.005) and 20 day old diet-

restricted (F1,26=6.17, P<0.05) compared to controls (Fig. 7b). The LDF of the leg 

muscles was higher in the 10 day old diet-restricted ducklings (F1,22=5.31, P<0.05), but 

not in the 20 day old diet-restricted ducklings (F1,24=0.81, P>0.05), compared to 

controls (Fig. 7a). In contrast, the LDF of the liver was lower in 20 day old diet-

restricted ducklings (F1,26=6.75, P<0.05), but not in 10 day old diet-restricted ducklings 

(F1,23=0.89, P>0.05), compared to controls. The LDF of the heart, the kidneys (Fig. 7e) 

and the intestine showed no significant differences between diet-restricted and controls. 

 

Body Composition and RMR 

No organ masses (main effects) were significant predictors of RMR in any of the two 

age groups of ducklings (Table 1). Body mass and treatment were strong predictors of 

RMR in all the analyses of any relationship between organ mass and RMR. However, 

there was a significant interaction with treatment for intestine length (F1,21=6.74, 

P<0.05) and intestine mass (F1,21=4.62, P<0.05) of 5-10 days old ducklings. For the 

controls, the parameter estimates showed a positive relationship between intestine 

length and RMR (B=1.1, r=0.42, P<0.05; B is the partial regression coefficient) and a 

positive, but non-significant, relationship between intestine mass and RMR (B=0.41, 

r=0.31, P=0.16). For the diet-restricted ducklings, the corresponding estimates were 

negative and non-significant (intestine length, B=-0.37, r=-0.49  P>0.4, intestine mass 

B=-0.22, r=-0.42  P>0.3). 

We also performed analyses in which both age-groups were included. These 

analyses were consistent with the analyses in which we separated the age-groups, except 

for one organ. The mass of the liver was a significant predictor of RMR (F1,50=8.54, 

P<0.005, r2=0.15).  
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Growth Rate and RMR 

In the controls (ad libitum fed ducklings), the growth rate of the wings (F1,22=10.20, 

P<0.005) and the growth rate of the body mass (F1,33=10.42, P<0.005) were significant 

predictors of RMR.  When we analysed the controls and the diet-restricted ducklings 

together, the growth rate of the wings was still significant (F1,22=10.20, P<0.005), but 

the growth rate of the body mass was not. PC1, the factor score extracted from a 

principal component analysis with wing, skull and tarsus growth rate, showed a 

tendency towards a positive relationship to RMR in controls (F1,22=3.07, P=0.09) and in 

controls and diet-restricted ducklings (F1,38=3.20, P=0.08).  

 

Body Composition and PMR 

A general trend was apparent for the analyses of any relationship between organ mass 

and PMR. The treatment factor and body mass were strong predictors of RMR in almost 

all the analyses. In addition, some organ masses were significant predictors. In 5-10 day 

old ducklings, the mass of the leg muscles (F1,20=6.53, P<0.05, Table 2) and the total 

lipid mass (F1,21=4.81, P<0.05) were significant predictors of PMR. By using the 

residuals from these analyses, we found that the mass of the leg muscles was positively 

correlated to the total lipid mass (r=0.87, N=24, P<0.01). 

In 15-20 day old ducklings, the mass of the liver (F1,17=9.92, P<0.01) was a 

significant predictor of PMR. For the heart, the ‘treatment x organ mass’ interaction was 

significant (F1,16=7.25, P<0.05).  The parameter estimates showed a positive 

relationship between organ mass and PMR in diet-restricted ducklings (B=0.46, r=0.56, 

P<0.05), but no relationship between organ mass and PMR in controls (B=0.02, r=0.05, 

P>0.05). 

We also performed analyses in which both age-groups were included. With these 

analyses, we found that the mass of the leg muscles was a significant predictor of PMR  

(F1,37=8.20, P<0.01). The total lipid mass was also a significant predictor of PMR 

(F1,41=10.07, P<0.005). Again, using the residuals from this analysis and from the 

analyses of the relationship between the mass of the leg muscles, we found that they 

were strongly correlated (r=0.87, N=45, P<0.01). 
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The Relationship between LDF and MR (PMR and RMR) 

There was a negative and nearly significant relationship between LDF of the leg 

muscles and PMR in 5-10 day old ducklings, (F1,20=4.08, P=0.057). In 15-20 day old 

ducklings, there was no relationship between LDF of the leg muscles and PMR  

(F1,15=0.73, P>0.05). There were no significant relationships between the LDF of any of 

the other organs and PMR in any of the two age-groups. 

In 5-10 day old ducklings, there was a positive and significant relationship 

between LDF of the kidneys and RMR (F1,22=12.89, P<0.005). In 15-20 day old 

ducklings, there was no relationship between LDF of the kidneys and RMR  (F1,25=0.74, 

P>0.05), or between LDF of any of the organs and RMR.  

In 5-10 day old ducklings, the ‘LDF of the leg muscles x treatment’ interaction 

was a significant predictor of RMR  (F1,20=5.15, P<0.05). There was a significant 

positive relationship between LDF of the leg muscles and RMR in the diet-restricted 

ducklings (B=2.6, r=0.45, P<0.05), while a negative significant relationship existed 

between LDF of the leg muscles and RMR in the controls (B=-2.2, r=-0.46, P<0.05). 
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Discussion 

In this study, we asked three main questions. 1) Will ducklings show any energy saving 

mechanisms that lessen the detrimental effects of reduced food intake during early 

development? 2) Are changes in body composition the physiological mechanism behind 

such a metabolic response? 3) Will any energy saving mechanism (i.e. lowered RMR) 

result in a negative effect on the thermoregulatory capacity (PMR) of growing chicks? 

The results of the present study reveal that ducklings exhibit a substantial energy 

saving mechanism as a response to short term diet restriction. After 5 days of diet 

restriction, the RMR of 10 and 20 day old duckling was 16.4 and 32.1% lower, 

respectively, compared to ad libitum fed ducklings (controls). The results revealed that 

diet restriction induced changes in the body composition of the ducklings. The liver, the 

intestine and the lipid mass were substantially lower than predicted from the body mass. 

Our analyses of the relationship between RMR and organ masses suggested that the 

liver mass partly explained the low RMR in diet-restricted ducklings. The results also 

revealed that diet restriction affected PMR. Diet-restricted ducklings (10 and 20 day 

old) exhibited ~10% lower PMR than predicted from the body mass.  

 

Adaptive Metabolic Responses to Food Shortage 

This study clearly demonstrates developmental plasticity in the ontogenetic 

development of the ducklings. Developmental plasticity is regarded as adaptive if the 

animal actively adjusts the ontogenetic processes to a change in the environment 

(Smith-Gill 1983). Schew and Ricklefs (1998) suggested that temporal changes in the 

metabolic processes of chicks in response to variation in food intake could be adaptive 

because it might facilitate survival of chicks during food shortages. We regard the low 

RMR of the diet-restricted ducklings as an adaptive response, because the reductions in 

RMR occurred before the stored lipid mass was severely depleted. After 5 days of diet 

restriction, the ducklings still exhibited substantial amount of stored lipid (lipid 

mass/lean dry mass, 10 days old, 18.4%; 20 days old, 40.9%), indicating sufficient 

amount of stored nutrients to fuel the maintenance metabolism. Alternatively, the low 

RMR could have been non-adaptive. It could have been a consequence of the restricted 

diet, either through pathological changes in chick metabolism while near starvation (e.g. 
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through depletion of other essential nutrients than lipids), or through reduced size of the 

visceral organs or reduced overall growth. Deleterious pathological changes, most 

likely, did not happen. We have unpublished results (from experiments with the same 

diet restriction protocols) which show that the ducklings immediately resumed normal 

growth at the start of realimentation. This also indicates that metabolic rates were 

rapidly increased, and that the cellular structures responsible for the metabolism were 

intact. Visceral organs and overall growth were reduced. These changes could have 

been a consequence of the restricted diet, but they could also have been adaptive 

changes in anticipation of a lasting food shortage. Nevertheless, changes in organ size 

or growth were not major predictors of the low RMR in the diet-restricted ducklings 

(also discussed later). A rapid response upon diet restriction has been proposed to 

characterise an adaptive response to food shortage (Schew and Ricklefs 1998). We did 

not monitor the RMR changes (or the changes in body composition or growth) over the 

course of the diet restriction periods, and therefore, we can not entirely rule out the 

RMR changes being non-adaptive. 

During the last decade, adaptive metabolic responses of chicks to food shortage 

have been the subject of several studies. Schew (1995) demonstrated that Japanese quail 

(Coturnix coturnix japonica) exposed to diet restriction from the age of 3 to 13 days 

old, reduced metabolic rate by 40% already by the second day of diet restriction and 

increased metabolic rate by 87% within the first day of realimentation. Similarly, male 

broilers (Gallus gallus) responded rapidly to diet restriction by decreasing metabolic 

rate and subsequently increasing it in response to realimentation (Zubair and Leeson 

1994). Japanese quails exposed to diet restriction from the age of 20 to 30 days old, also 

showed a rapid metabolic response, but the reduction in metabolic rate was very small 

compared to the response of the younger diet-restricted chicks. In contrast, neither 

young nor old chicks of European starling (Sturnus vulgaris) showed any metabolic 

response to 3 days of diet restriction (Schew 1995). Similarly, nestlings of another 

passerine species, the song thrush (Turdus philomelos), showed no metabolic response 

to diet restriction (Konarzewski and Starck 2000). Konarzewski and Starck (2000) 

suggested that a lack of frequent, unpredictable fluctuations in food availability or a 

strong selection for uniform adult phenotypes could prevent plasticity of the 

developmental program of nestlings.  
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Metabolic responses of chicks to food shortage have also been investigated in 

relation to inherent growth rate. Van der Ziel and Visser (2001) revealed that the level 

of plasticity of the metabolic development was not determined by the maximum 

inherent growth rate. Japanese quail chicks from a line selected for high postnatal 

growth rates did not show a different metabolic response to long-term undernutrition 

compared to chicks from a line not selected for high postnatal growth rates. 

Of the above, it is possible that phylogenetic constraints and the ecological 

settings of the particular species may determine the metabolic responses of chicks to 

food shortage. Kitaysky (1999) conducted an experiment on chicks of 4 closely related 

alcid species, which reduced metabolic rate by 24-47% after 2 days of fasting. He 

highlighted the ecological settings, determining food provisioning, as an important 

selective factor. The piscivorous horned and tufted puffins (Fratercula corniculata and 

Lunda cirrhata) which rely on fluctuating food resources, showed greater metabolic 

responses to food shortage compared to the planktivorous crested and parakeet auklets 

(Aethia cristatella and Cyclorhinchus psittacula) which rely on continuously available 

food resources. However, this could also be a phylogenetic response as the puffins 

behaved more similarly to each other than they did to the auklets. 

Plasticity in the ontogenetic development of metabolism can be an adaptation to 

unpredictable fluctuating feeding conditions. The Pekin duck, the Japanese quail and the 

broiler are domesticated species. It is unlikely that these species have been artificially 

selected for plasticity of the metabolic development. However, the ecological settings of 

their ancestors include factors that could select for such flexibilty. In nature, poor 

weather and foraging inexperience can impose short-term food limitations on self-

feeding precocial chicks, as reported for the willow ptarmigan (Lagopus l. lagopus, 

Erikstad and Andersen 1983; Erikstad and Spidsø 1982), the black-tailed godwit 

(Limosa limosa, Beintema and Visser 1989a) and the northern lapwing (Vanellus 

vanellus, Beintema and Visser 1989b).  

 

Body Composition and Explanations of the Variation in RMR due to Diet Restriction 

The changes in body composition indicated that energy was allocated preferentially to 

parts of the skeletal structure (i.e. head + bill), to promote a higher growth of these parts 
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relative to the growth in body mass. Energy was allocated to the leg muscles, the heart 

and the kidneys in such a manner that these organs maintained normal size-relationships 

to body mass. In contrast, the liver, the intestine and the lipid mass were smaller than 

predicted from their normal allometric relationship to body mass. Liver tissue has a high 

intrinsic MR, while adipose tissue has a low intrinsic MR (Scott and Evans 1992). Our 

results showed that the liver size was a significant predictor of RMR when we analysed 

the data where both age-groups were included.  In addition, the significant interaction 

between intestine mass (and length) and treatment in the RMR comparisons indicates 

that intestine differences might also play a role in the RMR differences. Statistically, the 

liver size (and the intestine size) was not a strong predictor of the variation in RMR. 

Body mass and the treatment-factor were the strong predictors in all the organ mass-

RMR analyses. By using 15.1 W kg-1 for liver- and intestine MR, as measured for liver 

in vitro by Scott and Evans (1992), we calculated that the reductions in the liver and 

intestine size explained 15 and 18 % of the reductions in the overall RMR in 10 and 20 

day old diet-restricted ducklings, respectively. However, such a quantitative value of the 

reduction in RMR should be treated carefully as Scott and Evans (1992) measured the 

MR of liver samples from adult birds and in different species to ours.  

The functioning of tissues may have changed during the diet restriction due to the 

changes in water content, measured as the LDF. The LDF is regarded to relate to the 

functional maturity of tissues, and in skeletal muscles the LDF is postively related to the 

thermoregulatory abilities (Ricklefs et al. 1994). It is less clear how the LDF relates to 

the tissue-RMR (Ricklefs et al. 1998). Despite the fact that the diet restriction treatment 

in this study imposed variation in water content in various tissues, LDF was not a good 

predictor of changes in RMR or PMR.  

As neither organ size or tissue water content were major predictors of RMR in the 

diet-restricted ducklings, other mechanisms related to the intrinsic MR of organs or 

mechanisms related to the central control of the MR should be more important.  

Hypothermia is a well-known energy-saving mechanism in small, adult birds and 

mammals. In this study, we observed that 10 day old diet-restricted ducklings used 

hypothermia (to a low degree), but the 20 day old diet-restricted ducklings did not. They 

regulated their body temperature 0.7oC below the expected value (predicted from body 

mass). By using the measured values for thermal conductance (0.95 W kg-1 oC-1) and 
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ambient temperature (31.5 oC) during thermoneutral conditions, we calculated that the 

hypothermia accounted for ~50% of the observed reduction in RMR of 10 day old diet-

restricted duckling. Furthermore, a Q10 effect (assuming a Q10 of 2.5) explained 76% of 

the energy savings caused by hypothermia. Hypothermia is also reported for diet-

restricted Japanese quail chicks (Schew 1995). They lowered the body temperature by 

2-3 oC during the diet restriction period, and both small and large chicks exhibited 

hypothermia. An extreme example of hypothermia in young birds is reported for the 

fork-tailed storm petrel (Oceanodroma furcata), in which underfed and unattended 

chicks regulated the body temperature at 10 oC (Boersma 1986). 

Organ size changes (15%) and hyporthermia (50%), combined, explained 65% of 

the observed reductions in RMR of 10 day old diet-restricted ducklings.  However, 

organ size changes were the only revealed energy saving mechanism of the 20 day old 

diet-restricted ducklings and explained only 18% of the observed reductions in RMR. 

Although we want to be careful in attributing a quantitative value to the reduction in 

RMR from the organ mass changes, we believe that we are left with a body of 

unexplained mechanisms behind the observed reductions in RMR of the 20 day old diet-

restricted ducklings.  

The growth rate of the wings and the growth rate of the body mass was positively 

related to RMR in the controls (ad libitum fed ducklings). In addition, the factor score 

extracted from a principal component analysis with wing-, skull- and tarsus growth rate 

showed a tendency (P<0.1) towards a positive relationship with RMR. These results 

could support the proposed positive relationship between growth rate and RMR, in 

which RMR include indirect costs of growth, in terms of costs of maintaining organs 

that support growth or represent a potential for growth  (Drent and Klaassen 1989; 

Klaassen and Drent 1991). It could also suggest that variation in the direct costs of 

growth, i.e. the costs of biosynthesis, is a significant source of the variation in RMR. 

However, only the growth rate of the wings (controlled for body mass) was significantly 

related to RMR when the controls and the diet-restricted were included in the analyses. 

Furthermore, the diet restriction only imposed reductions in growth rate of the wings in 

the 10 day old diet-restricted ducklings (and not in the 20 day old). At that age, the 

growth of the wings is very low, and the potential savings in RMR must also be very 



 

 25 

low. Hence, variation in the growth rate did not seem to be important predictors of the 

reductions in RMR of diet-restricted ducklings.  

 

Diet restriction and Thermoregulatory Abilities 

The diet-restricted ducklings (both 10 and 20 days old) exhibited ~10% lower PMR 

compared to controls. In contrast, the absolute scope (PMR minus RMR) was not 

different between diet-restricted ducklings and controls. Hence, the portion of PMR 

available for regulatory thermogenesis was similar between the two groups. The leg 

muscles, which are regarded as the most important organs for shivering thermogenesis 

in young birds (Hohtola and Visser 1998), and the heart, which is important for 

maximum oxygen consumption (Chappel et al. 1999), were maintained at the normal 

size expected from the body mass during the diet restriction. The importance of the leg 

muscles for the regulatory thermogenesis was also indicated by the positive relationship 

between the leg muscle mass and PMR. However, the liver mass showed a positive 

relationship to PMR in 15-20 day old ducklings. The paradigm of muscular shivering as 

the only source of cold induced thermogenesis has been thrown into debate (Duchamp 

et al. 1993; Marsh 1993). However, the skeletal muscles, not the liver, have been 

targeted as the main site of a potential non-shivering thermogenesis. Hence, the 

statistical relationship between the liver mass and PMR is most likely an indirect 

relationship through a correlation with RMR. We showed a positive relationship 

between RMR and PMR and between the liver mass and RMR.  

The lower PMR in diet-restricted ducklings could indicate a negative effect of the 

diet restriction on the thermoregulatory effector mechanisms or it could be a result of 

the lower RMR. The methods of describing the ducklings’ capacity for regulatory 

thermogenesis, absolute scope and factorial scope, are based on different assumptions of 

the relationship between RMR and PMR, and they provide contrasting results (Fig. 5). 

While the absolute scope indicated a conserved capacity (Fig 5a), the factorial scope 

indicated an increased age-specific capacity for regulatory thermogenesis of the diet-

restricted ducklings (Fig. 5b). The calculation of factorial scope assumes a factorial 

relationship between RMR and PMR. In contrast, the calculation of absolute scope 

assumes that RMR is a fixed part of PMR (i.e. PMR = RMR +Thermoregulation). RMR 



 

 26 

is predicted to correlate to PMR if RMR is a fixed part of PMR (Ricklefs et al. 1996), 

and we found such a positive relationship between RMR and PMR. Hence, we regard 

absolute scope to provide a better measure of the capacity for regulatory thermogenesis 

than factorial scope. Consequently, we think that the diet-restricted ducklings have 

conserved their capacity for regulatory thermogenesis, and we think the low RMR has 

entailed the lower PMR. 

 Although the diet-restricted ducklings exhibited a lower PMR, they coped rather 

well with cold ambient temperatures (Fig. 3b) and attained PMR with body 

temperatures not different to that of controls. The 20 day old diet-restricted ducklings 

seemed to compensate for the lower PMR by increasing the insulation (probably 

increased down thickness), as indicated by the lower MTC (Fig. 4a). Consequently, they 

attained PMR at an ambient temperature as expected from age. The 10 day old diet-

restricted ducklings did not compensate for the lower PMR by decreasing the MTC, and 

they attained PMR at an ambient temperature as expected from body mass, i.e. at a 

higher ambient temperature compared to the 10 day old controls (Fig.3b).  

 

Costs of Plasticity 

Even small deviations from the normal growth might be expected to produce fitness 

consequences (Gebhardt-Henrich and Richner 1998). The quantitative and qualitative 

nature of the food restriction, as well as the duration and the timing, determine these 

deviations (Schew and Ricklefs 1998). Generally, food restriction delays the schedule of 

mass and skeleton accretion (Øyan and Anker-Nilssen 1996; Lepczyk and Karasov. 

2000). Premature fledging (Kitasky 1999) and permanent stunting of external 

measurements (Boag 1987; Ohlsson and Smith 2001) have also been reported.  

Plasticity of the developmental trajectory can be adaptive and lessen the 

detrimental effects of food stress during early development. However, plasticity may be 

associated with short- and long-term costs. The reduced PMR of the diet-restricted 

ducklings can be regarded as a short-term cost of the plasticity of the development of 

the RMR. Also, the liver, the intestine and the lipid masses can be energetically costly 

to restore after food stress. However, studies on growing young (Nir and Nitsan 1979; 

Schew 1995) and migrating adults (Piersma and Lindstrøm 1997; Piersma 1998) have 
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reported that these organs and tissues can be rapidly rebuilt during sufficient 

realimentation. However, although body mass, external measurements and visceral 

organs may fully recover during realimentation, long-term fitness consequences may 

appear later in life (Metcalfe and Monaghan 2001).  

 

Conclusions 

In the present study, we have shown that ducklings exhibit substantial energy-saving 

mechanisms as a response to short-term food shortage. This physiological response 

entailed a negative effect on the cold induced peak metabolic rate (PMR), but the 

overall thermoregulatory abilities were nevertheless very well maintained. Changes in 

body composition were a minor predictor of the energy saving mechanisms, and in the 

10 day old diet-restricted ducklings, hypothermia was an important mechanism. Still, 

we are left with a body of unexplained mechanisms behind the metabolic responses to 

food shortage, especially for the 20 day old diet-restricted ducklings. We argue that the 

observed energy saving mechanisms are adaptive responses, but we can not entirely rule 

out the responses being non-adaptive. Further investigation of the mechanisms behind 

physiological responses to food shortage as well as investigations of the long-term 

fitness consequences deserve attention in future studies.    
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Tables 

 

 

 

Table 1: Relationships between resting metabolic rate (RMR) and organ masses (and intestine length) in 

controls and diet-restricted ducklingsa.  

 RMR of 5-10 day old ducklings  RMR of 15-20 day old ducklings 

 Main effects  
Interaction  

massb x treatment 
 Main effects  

Interaction  

massb x treatment 

 F df P r2        F df P  F df P r2  F df P 

Breast   0.1 1,21 ns 0.00 1.5 1,20 ns  0.8 1,25 ns 0.03 0.9 1,24 ns 

Leg   0.6 1,21 ns 0.03 2.5 1,20 ns  0.0 1,25 ns 0.00 0.7 1,24 ns 

Heart  0.1 1,22 ns 0.00 1.7 1,20 ns  0.3 1,25 ns 0.01 0.5 1,24 ns 

Liver  1.0 1,22 ns 0.04 0.6 1,21 ns  0.6 1,25 ns 0.02 0.2 1,24 ns 

Gizzard  0.2 1,22 ns 0.01 3.3 1,21 ns  3.8  1,25 0.06 0.13 0.0 1,24 ns 

Kidney  0.8  1,22 ns 0.04 3.8 1,21 ns  1.1 1,25 ns 0.04 0.0 1,24 ns 

Intestine  0.2  1,21 ns 0.01 4.6 1,21 <0.05  0.2 1,25 ns 0.01 0.4 1,24 ns 

Int. length 0.8 1,21 ns 0.04 6.7 1,21 <0.05  1.5 1,24 ns 0.06 0.2 1,23 ns 

Lipid  2.1 1,22 ns 0.41 1.8 1,21 ns  0.0 1,25 ns 0.00 0.6 1,24 ns 

a
The analyses were performed separately on each organ with a GLM on log10 -transformed metabolic rate, lean dry body mass 

(minus organ mass) and lean dry organ mass. Treatment was included as a factor with 2 levels (1=controls, 2= diet-restricted). 

The ‘organ mass x treatment’ interaction was included in the null model. The treatment factor and body mass were strong 

predictors of RMR in all the analyses. In this table, we focus on the relationship between the organ masses and RMR. Hence, the 

statistics for treatment and body mass are not included in this table. 
bMass refers to the organ mass. 
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Table 2: Relationships between peak metabolic rate (PMR) and organ masses (and intestine length) in 

controls and diet-restricted ducklingsa. 

 PMR of 5-10 day old ducklings  PMR of 15-20 day old ducklings 

 Main effects  
Interaction 

massb x treatment 
 Main effects  

Interaction 

massb x treatment

 F df P r2        F df P  F df P r2  F df P 

Breast  0.1 1,20 ns 0.00 2.4 1,19 ns  0.5 1,17 ns 0.03 0.2 1,16 ns 

Leg  6.5 1,20 <0.05 0.25 1.7 1,19 ns  0.3 1,17 ns 0.02 2.7 1,16 ns 

Heart  0.0 1,21 ns 0.00 2.1 1,20 ns  4.0 1,16 0.06 0.20 7.3 1,16 <0.05 

Liver  0.2 1,21 ns 0.01 0.9 1,20 ns  9.9 1,17 <0.01 0.37 0.2 1,16 ns 

Gizzard  0.6 1,21 ns 0.03 0.8 1,20 ns  0.8 1,17 ns 0.04 0.3 1,16 ns 

Kidney  0.3 1,21 ns 0.01 0.2 1,20 ns  3.4 1,17 0.08 0.17 0.2 1,16 ns 

Intestine  1.9 1,21 ns 0.08 0.0 1,20 ns  2.3 1,17 ns 0.12 1.6 1,16 ns 

Int. length 0.0 1,21 ns 0.00 0.0 1,20 ns  0.6 1,17 ns 0.03 1.3 1,16 ns 

Lipid  4.8 1,21 <0.05 0.19 1.1 1,20 ns  0.4 1,17 ns 0.02 2.4 1,16 ns 

aThe analyses were performed separately on each organ with a GLM on log10 -transformed metabolic rate, lean dry body mass 

(minus organ mass) and lean dry organ mass. Treatment was included as a factor with 2 levels (1=controls, 2= diet-restricted). 

The ‘organ mass x treatment’ interaction was included in the null model. The treatment factor and body mass were strong 

predictors of PMR in almost all the analyses. In this table, we focus on the relationship between the organ masses and PMR. 

Hence, the statistics for treatment and body mass are not included in this table. 
bMass refers to the organ mass. 
 

 

 



    

     

Figure legends 

 

Figure 1. Body mass growth (g) of Pekin ducklings (Anas platyrhynchos). Ducklings 

fed ad libitum (controls) are shown as filled squares and diet-restricted ducklings are 

shown as open squares. The grey horizontal bars indicate the time of the diet restriction 

periods. Means ± 1 SE.  

 

Figure 2. Resting and peak metabolic rate (RMR and PMR) of ad libitum fed (controls, 

filled symbols) and diet-restricted ducklings (open symbols). Metabolic rate in watts 

and lean dry body mass in grams. The axes are log10-scaled. Regression lines are shown 

separately for controls and diet-restricted ducklings within each of the two age-groups 

(5-10 day old and 15-20 day old ducklings). The coefficient of determination (r2) was 

0.99 for both the RMR and the PMR model (see the text for details about the statistical 

models). 

 

Figure 3. Body temperature (Tb) measured at RMR (A) and ambient temperature (Ta) 

measured at PMR (B) in ad libitum fed (controls, filled symbols) and diet-restricted 

ducklings (open symbols). Temperature in Celsius (oC) and age in days (d). 

Temperatures are given as means ± 1 SE. 

 

Figure 4. Minimal thermal conductance (MTC) in relation to lean dry body mass (A) 

and age (B) in ad libitum fed (controls, filled symbols) and diet-restricted ducklings 

(open symbols). MTC in watts per kilograms per degree Celsius (W kg-1 oC-1), lean dry 

body mass in grams (g) and age in days (d). In figure A the values are log10 –

transformed, and regression lines are shown separately for controls and diet-restricted 

ducklings within each of the two age-groups (5-10 day old and 15-20 day old 

ducklings). MTC is given as means ± 1 SE in figure B. 

Figure 5. Absolute scope in relation to lean dry body mass (A) and factorial scope in 

relation to age (B) in ad libitum fed (filled symbols) and diet-restricted ducklings (open 

symbols). Absolute scope was calculated as PMR-RMR, and factorial scope was 

calculated as PMR/RMR. In figure A the values are log10 –transformed, and regression 
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lines are shown separately for controls and diet-restricted ducklings within each of the 

two age-groups (5-10 day old and 15-20 day old ducklings). Absolute scope is given in 

watts (W), lean dry (ld) body mass in grams (g) and age in days (d). Factorial scope is 

given as means ± 1 SE. 

 

Figure 6. Body composition of ad libitum fed (controls, filled symbols) and diet-

restricted ducklings (open symbols). The relationship of leg mass (A), liver mass (B), 

lipid mass (C), gizzard mass (D), intestine mass (E) and skull length (head + bill, F) to 

body mass. Regression lines are drawn separately for controls and diet-restricted 

ducklings within each of the two age-groups (5-10 day old and 15-20 day old 

ducklings). Organ and body masses are lean dry masses in grams and lipid mass is dry 

mass in grams. The skull length is given in millimetres. The axes are log10-scaled. 

 

Figure 7. Lean dry fraction (LDF) of the leg muscles (A), the gizzard (B), the heart (C), 

the pectoral muscles (D) and the kidneys (E) in relation to lean dry (ld) organ mass in 

ad libitum fed (controls, filled symbols) and diet-restricted ducklings (open symbols). 

Regression lines are drawn separately for controls and diet-restricted ducklings within 

each of the two age-groups (5-10 day old and 15-20 day old ducklings). LDF was 

calculated as lipid free dry organ mass/lipid free fresh organ mass. Organ masses in 

grams (g). The axes are log10-scaled. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5.  
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Figure 6. 
 
 

 
 
 
 
 
 
 
 
 
 
 

15 25 50 100 150 230

Le
an

 d
ry

 le
g 

m
as

s 
(g

)

1

5

10

20

2

30

15 25 50 100 150 230

Le
an

 d
ry

 li
ve

r m
as

s 
(g

)

2

4

6

10

15

0.8

A. B.

15 25 50 100 150 230

To
ta

l l
ip

id
 m

as
s 

(g
)

15

25

50

100
150
200

5

2.5
15 25 50 100 150 230

Le
an

 d
ry

 g
iz

za
rd

 m
as

s 
(g

)

1

2

4

6

8
10

D.C.

15 25 50 100 150 230

Le
an

 d
ry

 in
te

st
in

e 
m

as
s 

(g
)

1

2

3

5

7

4

0.6

Lean dry body mass (g) Lean dry body mass (g)
15 25 50 100 150 230

S
ku

ll 
le

ng
th

 (m
m

)

50

60

80

105

70

90

E. F.



 

 43 

Figure 7. 
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Abstract 

 
Nestlings seem to face a trade off between reducing the basal level of energy 

metabolism (RMR), as an energy-saving response, and maintaining thermogenic 

capacity during temporal food shortage. In the present study we examined 

developmental responses to short-term diet restriction of 12-16 day old nestling 

European shags kept under laboratory conditions and tested whether temporal food 

shortage delay the development of homeothermy. 

During food shortage the European shag nestlings substantially reduced RMR, 

resulting in significant energy savings. The reduction in RMR corresponded with a 

reduction in peak metabolic rate (PMR). At the same time, the low PMR of diet-

restricted nestlings was offset by a lower mass-specific minimal thermal conductance 

(MTC), and an increased mass-specific absolute scope. Consequently, the insulation and 

the portion of PMR available for regulatory thermogenesis seemed to develop normally, 

as expected from age, during the period of food shortage.  Further, the degree of 

homeothermy, measured as the index of homeothermy (HI), was not significantly lower 

in diet-restricted nestlings compared to controls at the same age. We conclude that 

temporal food shortage did not significantly delay the development of homeothermy in 

the European Shag nestlings despite substantial reductions in RMR and PMR.  

 

KEYWORDS: European shag, Phalacrocorax aristotelis, Development, Homeothermy, 

Metabolic rate, Nestlings, Food shortage, Body composition 
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Introduction 

 

Avian development highly depends on food availability (Martin 1987). As chicks grow 

from neonate to adult, they may face periods of food shortage that can cause phenotypic 

changes from the normal ontogenetic development given by their genotype. Such 

phenotypic changes (arising from variation in food availability or other environmental 

conditions) are known as developmental plasticity (Schew and Ricklefs 1998; 

Schlichting and Pigliucci 1998). A number of recent studies have investigated how 

chicks can modify the pattern of energy use and allocation in response to food shortage 

during growth and development (e.g. Schew 1995; Kitaysky 1999; Konarzewski and 

Starck 2000; Brzek and Konarzewski 2001; Moe et al. in press, b). These studies have 

revealed that growing birds may lower the resting metabolic rate (RMR) in response to 

food shortage. Such an energy saving response is considered to lessen the detrimental 

effects and enhance survival during temporal food shortage (Schew and Ricklefs 1998). 

Moe et al. (in press) demonstrated that a reduction in RMR negatively affected the 

capacity for maximum heat production (i.e. peak metabolic rate [PMR]) in diet-

restricted ducklings, but little is known about how food shortage affects the 

development of homeothermy in birds. 

In this study we investigated the development of homeothermy in nestling 

European shags (Phalacrocorax aristotelis) subject to short-term food shortage. The 

European shag is very well suited for studying developmental responses to temporal 

food shortage because of its life-history characteristics and its ecology. The European 

shag is a large altricial seabird, and nestlings exhibit high growth rates (Østnes et al. 

2001) and compete with siblings for food (Amundsen and Stokland 1988; Velando et al. 

1999, 2000). Consequently, the nestlings are highly dependent on successful food 

provisioning to follow the normal developmental trajectory. In this species, variable 

food provisioning during early development is reported to occur due to adverse weather 

conditions, which affects the foraging success of the parents (Velando et al. 1999). 

The development of homeothermy in European shag nestlings has previously been 

studied by Østnes et al. (2001). They argued that the rapid increase of the European 

shag nestlings’ homeothermic ability during the first 2-3 weeks of development was 

mainly due to a rapid increase in mass-specific RMR. We have performed experiments 
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with nestling European shags subject to diet restriction (Moe et al. 2004), and the 

experiments have revealed that the nestlings substantially reduced the mass-specific 

RMR in response to the diet restriction. Assuming a close coupling between RMR and 

PMR, as has been demonstrated interspecifically in adult birds (Dutenhoffer and 

Swanson 1996; Rezende et al. 2002) and intraspecifically in chicks (Bech and Østnes 

1999; Konarzewski et al. 2000; Moe et al. in press), a decrease in RMR should be 

accompanied by a decrease in PMR. Accordingly, one could expect a delayed 

development of homeothermy in nestlings subject to food shortage. 

The functional relationship between RMR and PMR is not fully understood 

(Hayes and Garland 1995; Ricklefs et al. 1996). Klaassen and Bech (1992) advocated 

that a coupling between RMR and PMR in birds does not always imply causality. In 

arctic tern chicks (Sterna paradisaea) with varying growth rates, they found that RMR 

developed in pace with body mass whereas PMR was more dependent on age. This 

relationship held true if the body mass of the chicks was not lower than 75% of that 

expected from their age. Accordingly, one could expect a sustained development of 

homeothermy in nestlings facing food shortage, if their body masses were not below a 

critical level. 

Østnes et al. (2001) also argued that the homeothermic ability of the European 

shag nestlings was due to a substantial decrease in mass-specific minimal thermal 

conductance (MTC). Further, they argued that the decrease in MTC probably 

represented a passive effect of a decrease in the surface-to-volume ratio (causing an 

increased thermal inertia) rather than an increase in the insulation from growth of a 

down coating. In contrast, nestling European shags subject to diet restriction seemed to 

increase in the surface-to-volume ratio (Moe et al. 2004), due to the combination of a 

rather stable body mass (weight maintenance diet) and a continued structural growth 

(tarsus, wings and skull). Accordingly, one could expect a delayed development of 

homeothermy in nestlings facing food shortage. 

In this study, we experimentally imposed short-term diet restriction on 12-16 day 

old nestling European shags, kept under laboratory conditions, to shed light on the 

relationship between food availability and development of homeothermy during early 

development. In this context we tested the hypothesis that food shortage delays the 

development of homeothermy in altricial nestlings.
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Materials and methods 

 

Study area and animals 

Data were collected during the 2001 breeding season (June and July) on Sklinna, a 

small group of islands situated ~50 km off the coast of central Norway (65o12’N, 

11o00’E). In 2001 the breeding population of the study species, the European shag, 

consisted of 1750 pairs (N. Røv pers. comm.). We measured Ta in the colony with a 

temperature logger placed in the shade of a boulder.  

  

Housing conditions, feeding protocols and treatment groups 

A sample of 34 nestlings was brought to the laboratory at the age of 12 days (day of 

hatching termed day 0) for the purpose of metabolic measurements (RMR and PMR). 

They were kept, 4-8 together, in an enclosure (100 x 50 cm) with a heat lamp providing 

a constant range of operative temperatures (Bakken 1992) of 22-33oC. We randomly 

assigned 12 nestlings to a diet-restriction feeding protocol (hereafter ‘diet-restricted 

nestlings’) and 22 nestlings to a control group (hereafter ‘controls’). Within the 

controls, 12 nestlings were subject to metabolic measurements at the age of 12 days, 

whereas 10 nestlings were subject to a control-feeding protocol. The diet-restricted and 

the control fed nestlings were hand fed with fillets of saithe (Pollachius virens) and cod 

(Gadus morhua), because these gadoids constitute 70% of the diet of shags breeding in 

the study area (Barrett et al. 1990). They were fed for four days, until they were 16 day 

old and metabolic rates were measured. The diet-restricted nestlings received small 

portions of food 8-10 times a day to maintain a relatively stable body mass, while, the 

controls were fed every second hour, allowing them to follow a normal body mass 

growth trajectory (Fig. 1). The daily food intake and the body mass growth of 16 day 

old controls were lower compared to that of the 15 day old controls, because of fasting 

prior to the metabolic measurements.  

This sample of nestlings (N=34) is the same sample of nestlings from which the 

results of RMR are presented in Moe et al. (2004). Consequently, the housing 

conditions, the feeding protocols and the methods for RMR measurements are also 

described in details in Moe et al. (2004).  
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RMR and PMR measurements 

The metabolic measurements were performed on postabsorptive nestlings. The lengths 

of fasting prior to the measurements were 6.4 ± 0.5, 7.3 ± 0.5 and 9.4 ± 0.4 h for 12 day 

old controls, 16 day old diet-restricted and 16 day old controls, respectively. The longer 

length of fasting of the latter group was chosen due to presumed higher gut content. 

Diet-restricted nestlings and controls were randomly measured with respect to time of 

the day, but RMR showed no diurnal cycle. 

O2 consumption rates were calculated by using formula 1d in Withers (1977), 

assuming a constant RQ of 0.72 and corrected for wash-out delays in the system by 

using the method given by Niimi (1978). In this way, we obtained the instantaneous O2 

consumption rates. Values of MR were calculated from the O2 consumption rates using 

5.4611 W as the caloric equivalent for 1 l O2 h-1, using gas exchange conversion factors 

from Schmidt-Nielsen (1990). RMR was defined as the lowest MR calculated with 25 

min running average during exposure to thermoneutral conditions (29-31oC). 

Outside air was dried using silica gel and pumped through a 10-litre temperature 

controlled metabolic chamber with a flow rate of 3.3 l min-1. The actual flow rates 

entering the metabolic chamber were measured with a calibrated mass flow controller 

(Bronkhorst Hi-Tec [Rurlo, Holland], type F-201C-FA-22-V). Excurrent air was again 

dried, before a fraction of the air was directed to the O2 analyser (Servomex 

[Crowborough, East Sussex, UK], type 244A). The O2 analyser was calibrated with dry 

atmospheric air (20.95%) and pure stock nitrogen.  Any changes from the pre- to the 

post-experiment readings of the O2 content in dry atmospheric air, were controlled for 

by assuming a linear drift. Measurements of the O2 content in excurrent air (accuracy 

0.001%) were recorded, along with the measurements of body and ambient 

temperatures (Tb and Ta; accuracy 0.1oC), on a data logger (Grant [Cambridge, UK], 

type Squirrel), at 30 sec intervals. 

The metabolic chamber was a water-jacketed vessel connected to a temperature 

controller (Grant Instruments, type LT D G) that provided control of the Ta in the inner 

metabolic chamber. Ta was measured with a copper-constantan thermocouple mounted 

inside the metabolic chamber, and Tb was measured, during the entire metabolic 
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measurement, in the cloaca with a copper-constantan thermocouple (California fine 

wire, type 0.005) surrounded by a polypropylene tubing (PP 50, Portex Ltd.). 

Depending on the nestling’s size, the thermocouple was inserted 2 to 4 cm into the 

cloaca and secured with adhesive tape.  

The PMR measurements were obtained as a continuation of the RMR 

measurements. After 3-5 h exposure to thermoneutral conditions, the Ta in the metabolic 

chamber was lowered at a constant rate of 0.3oC min-1. The nestlings’ MR increased 

with decreasing Ta. After reaching a peak MR, MR and Tb consistently decreased to a 

further decrease in Ta, and the experiment was terminated. PMR was defined as the 

highest 10 min running average MR during cold exposure. One PMR measurement was 

excluded due to it being disturbed during the cold exposure part of the trial. Body 

masses of the nestlings were weighed, to the nearest 0.1 g, before and immediately after 

each experiment. A linear decrease in body mass during the experiment was assumed 

when calculating the body mass at the time when RMR and PMR were obtained. Each 

individual was only used once in the experiments to obtain independent measurements. 

 

Minimal thermal conductance 

The minimal ‘wet’ thermal conductance (MTC) was calculated according to the method 

originally described by Scholander et al. (1950). However, this method is only valid 

when Tb is kept constant. Since the Tb of the nestlings decreased during cold exposure, 

we had to include a correction factor to account for the fall in Tb (see also Visser and 

Ricklefs 1993). Thus, the following formula was used to calculate mass-specific 

minimal thermal conductance: 

MTC = (PMR + A) / (Tb – Ta)        (1) 

 where A is the correction factor for the decrease in energy content (W kg-1). The 

calculation of the correction factor was based on the rate of fall in Tb recorded during 

the last 10 min period before PMR was attained, and assumed a specific heat of 3.45 J g-

1 oC-1 for the chicks (Hart 1951).  
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Body Composition 

A sample of 28 nestlings were sacrificed immediately after the metabolic measurements 

and stored at –20oC, for subsequent analysis of body composition. These analyses 

produced information on organ masses and the LDF of the organs. The results on body 

composition are partly presented in Moe et al. (2004), and the methods for analysing 

body condition were described therein. However, in the present paper we focus on the 

aspects of body composition which relate to thermoregulatory ability.  

 

Index of homeothermy 

For the purpose of measuring the index of homeothermy (HI), another sample of 27 

nestlings were brought to the laboratory at the age of 12 days. Housing conditions, 

including feeding protocols and fasting prior to the measurements, were identical to that 

of the nestlings subject to the metabolic measurements. The HI characterises the degree 

of homeothermy (Visser 1998), and it was obtained from cooling rates of 12 day old 

control (N=8), 16 day old diet-restricted (N=12) and 16 day old control (N=7) nestlings. 

Prior to the measurement of HI the nestlings were kept under a heat lamp to ensure 

normal Tbs, and subsequently, they were placed in a chamber in which Ta was 

maintained at 10oC (range 9.0-11.4 oC), consistent to the mean Ta of the colony during 

June (10.2 oC). The Tb of the nestlings and the Ta of the chamber were measured and 

stored as described above for the metabolic measurements. The nestlings were subject 

to cooling for 45 min, and the HI was calculated according to the formula (3) from 

Ricklefs (1987). 

HI = (Tf - Ta)/(Ti - Ta)        (2) 

where Tf and Ti are final and initial body temperatures, respectively. The HI is 

equal to 1 if a nestling maintains its Tb throughout the entire cooling trial, and the HI is 

0 if the Tb equals the Ta at the end of the cooling trial. After the HI measurements, the 

nestlings were brought back to their nest of origin or to a nest with foster parents where 

they were used for another study. In addition, 6 of the 34 nestlings that were subject to 

metabolic measurements were also brought back to a nest with foster parents.  
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Statistics 

We used a general linear model (GLM) with the type III sum of squares to perform 

analyses of covariance and variance. We manually excluded insignificant interaction 

terms, factors or covariates one by one from the null model (ENTER method). All 

variables were inspected graphically to ensure linearity, and log10 –transformation was 

used to linearize the variables (MR, body mass, organ mass) prior to examination. 

We analysed the relationship between organ mass and MR, as well as the 

relationship between RMR and PMR (and absolute- and factorial scope) by including 

body mass as a covariate to remove the effect of body mass (i.e. body mass is held 

constant; Hayes and Shonkwiler 1996). In order to avoid possible effects of part-whole 

correlation, we subtracted organ mass from the body mass variable, when organ mass 

and body mass were included in the same analysis (Christians 1999). Colinearity 

diagnostics were used to justify that LDF could be included as a covariate (together 

with body mass and organ mass) in the analyses of the relationship between organ mass 

and MR (tolerance > 0.3 for all variables).  

 When two regressions with log10 transformed variables (e.g. metabolic rate on 

body mass) have the same slope, but have different intercepts, we have calculated the 

percentage difference between the non-transformed regressions according to formula (4) 

in Moe et al. (in press). The Bonferroni method was used for post hoc pairwise multiple 

comparisons (‘Post Hoc’ hereafter). It reports adjusted P-values that have been 

multiplied with the number of pairs tested. Means are reported with ±1SE. All statistical 

tests were performed with SPSS v. 11.5.1 (2002). 
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Results 

 

RMR, PMR and Tb 

The RMR was negatively affected by the diet restriction. With respect to body 

mass, the RMR of the diet-restricted nestlings was 36.5% lower than the controls 

(F1,31=90.0, P<0.001) and scaled to body mass by the power of 0.84 (SE=0.12, 

F1,31=51.2, P<0.001). With respect to age, the mass-specific RMR was 11.6 ± 0.36, 11.1 

± 0.34 and 7.4  ± 0.37 W kg-1 for 12 day old controls, 16 day old controls and 16 day 

old diet-restricted nestlings, respectively (for further details, see Moe et al. 2004).  

PMR was substantially affected by the diet restriction. With respect to body mass, 

the PMR of the diet-restricted nestlings was 16.4% lower than the controls (F1,30=11.5, 

P<0.002; Fig. 2). PMR scaled to body mass by the power of 1.3 (SE=0.13, F1,30=99.1, 

P<0.001) in both groups (RMR x body mass interaction, F1,29=0.0, P=0.91, but see 

figure 2 for separate linear regression equations). With respect to age, the mass-specific 

PMR was 14.5 ± 0.5, 17.2 ± 0.4 and 13.0 ± 0.7 W kg-1 for 12 day old controls, 16 day 

old controls and 16 day old diet-restricted nestlings, respectively. 

Diet-restricted nestlings exhibited a lower Tb compared to 16 day old controls 

during thermoneutral conditions at RMR (Post Hoc, P<0.001, Fig. 3A) and during the 

cooling phase at PMR (P<0.001, Fig. 3A). However, they obtained PMR at the same Ta 

(P=1.0, Fig. 3B). 

 

Index of homeothermy (HI) 

HI was measured in a different sample of nestlings (N=27) than the sample of nestlings 

(N=34) subject to the metabolic measurements (see methods). HI increased with body 

mass (F1,24=30.8, P<0.001, Fig. 4A) and age (F2,24=6.7, P<0.005, Fig. 4B). The effect of 

diet restriction on HI contrasted to that on PMR. With respect to body mass, the diet-

restricted nestlings tended to exhibit a higher degree of homeothermy compared to the 

controls (F1,24=64.2, P=0.052, Fig. 4A). The slopes of the regressions of HI on body 

mass were not significantly different (HI x body mass interaction, F1,23=1.0, P=0.32). 

With respect to age, Post Hoc tests showed that the diet-restricted nestlings exhibited a 

HI (0.79 ± 0.02) not significantly different (P>0.1) to 16 day old controls (0.84 ± 0.02), 
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but they tended to exhibit a higher HI (P=0.08) compared to 12 day old controls (0.72 ± 

0.02).  

 

Minimal thermal conductance (MTC) 

Mass-specific minimal conductance (MTC), calculated from the PMR measurements, 

decreased with body mass (F1,27=12.1, P<0.002, Fig. 5A)  and age (F1,27=11.5, P<0.001, 

Fig. 5B). The slopes of the regressions of MTC on body mass were not significantly 

different (F1,26=2.3, P=0.14). With respect to body mass, the diet-restricted nestlings 

showed a 31% lower MTC compared to controls (F1,27=11.2, P<0.002). With respect to 

age, the MTC was not different between controls and diet-restricted nestlings (Post Hoc, 

P=1.0). 

 

Metabolic scope 

The absolute scope (PMR minus RMR, i.e. the portion of PMR available for regulatory 

thermogenesis) scaled to body mass by the power of 2.5 (SE=0.3, F1,30=55.5, P<0.001, 

Fig. 6A) in both groups (interaction, F1,29=0.0, P=0.91, 6A). With respect to body mass, 

the diet-restricted nestlings exhibited a 57% higher absolute scope compared to the 

controls (F1,30=10.2, P<0.003). The allometric scaling exponent of 2.5 demonstrates a 

considerable increase in mass-specific absolute scope as a function of body mass. From 

Fig. 6B it is evident that this relationship was an effect of age. Mass-specific absolute 

scope increased from 2.7 ± 0.3 to 5.6 ± 0.3 W kg-1 in 12 and 16 day old controls (Post 

Hoc, P<0.001, Fig. 6B), and the mass-specific absolute scope was not significantly 

different between 16 day old controls and diet-restricted nestlings (P=1.0).  

The factorial scope (PMR/RMR) increased with age (F2,30=29.6, P<0.001), and the 

diet-restricted nestlings exhibited a higher factorial scope (1.75) compared to that of the 

16 day old controls (1.56; Post Hoc, P<0.05) and the 12 day old controls (1.25; Post 

Hoc, P<0.001).  
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Body composition and organ maturation 

With respect to body mass, the pectoral muscle mass (F1,25=19.9, P<0.001, Fig. 7A) and 

the heart mass (F1,25=18.2, P<0.001, Fig. 7C) of the diet-restricted nestlings was 18.9 

and 17.4 % lower compared to that of the controls, respectively. In addition, the leg 

muscle mass tended to be slightly lower in diet-restricted nestlings compared to controls 

(F1,25=3.8, P=0.06, Fig. 7B). The total lipid mass, the liver mass, the gizzard mass and 

the kidney mass was also negatively affected by the diet-restriction, while the intestine 

mass was strictly maintained with respect to body mass (see Moe et al. 2004). 

The lean dry fraction (LDF) increased significantly with age in all organs (e.g. 

pectoral and leg, F1.25>22.3, P<0.001, Fig. 7D,E) except for the liver, the intestine and 

the heart (e.g. heart, F1.25=0.9, P=0.39, Fig. 7F), indicating that the latter organs had 

already reached a high degree of functional maturation. The lean dry fraction (LDF) was 

not different between 16 day old diet-restricted and 16 day old controls in any organ or 

muscles (e.g. pectoral muscles, leg muscles and heart, Post Hoc, P>0.1, Fig. 7D,E,F), 

except for the intestine. The LDF of the intestine was lower in diet-restricted nestlings 

compared to controls (Post Hoc, P<0.05). 

 

Relationships between RMR, PMR, absolute and factorial scope  

We tested for any relationship between RMR and PMR. RMR was a significant 

predictor of PMR (F1,28=39.8, P<0.001), but the positive correlation between RMR and 

PMR was stronger in the diet-restricted nestlings compared to the controls (interaction, 

F1,28=5.2, P<0.05). In contrast, RMR was not related to absolute scope (F1,29=0.0, 

P=0.87, body mass and treatment were significant covariate and factor, respectively). 

Factorial scope was positively related to PMR within both treatment groups (F1,29=7.0, 

P<0.05). Factorial scope related differently to RMR between the treatment groups 

(interaction, F1,28=6.1, P<0.05). It was negatively related to RMR within the controls 

(r=-0.47, F1,19=5.4, P<0.05), while no significant correlation existed for the diet-

restricted nestlings (r=0.04, F1,8=0.0, P=0.90).  
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Correlations between organ mass, LDF and metabolic rate 

The diet restriction had a substantial effect on body composition. In order to evaluate 

whether changes in body composition could explain any of the differences in metabolic 

rates between the treatment groups, we tested whether organ masses correlated with 

RMR, PMR, absolute scope or factorial scope. In these analyses, we controlled for 

organ LDF, body mass (minus organ mass) and treatment by including them in the 

models. 

The mass of the liver, the pectoral muscle mass and the lipid mass were significant 

predictors of RMR (r>0.4, P<0.05, Table 1). It might be expected that the same organs 

also correlated to PMR, as RMR was a major predictor of PMR. However, for these 

organs and for the heart mass, the interaction term (with treatment) was significant, and 

the organ masses and the intestine length positively correlated to PMR in the diet-

restricted nestlings only (Table 1). No main effects of organ masses were significant 

predictors of absolute or factorial scope, but the leg mass tended to be significantly 

correlated to absolute and factorial scope (r>0.37, P=0.07, Tabel 1). The interaction 

term (with treatment) was significant for the liver mass and the lipid mass, and these 

variables correlated negatively to factorial scope in the controls only. In addition, the 

intestine length was positively correlated to factorial scope in the diet-restricted 

nestlings only. 

We did not reveal any significant statistical relationships between the LDF of the 

thermoregulatory effector organs (e.i., the leg muscles, the pectoral muscles and the 

heart) and PMR, absolute or factorial scope. However, for the LDF of the leg muscles, 

the results depended on how we specified the final model in the GLM analysis. If we 

excluded treatment from the final model, the LDF of the leg muscles tended to be a 

significant predictor of absolute scope (F1,23=4.3, P=0.051). Treatment was not a 

significant factor in the final model (F1,22=0.9, P=0.36), but the fit of the final model 

was slightly better when treatment was included (r2=0.75 vs r2=0.74). However, the 

relationships between LDF of organs and absolute scope seem to depend on age. We 

specified a model, in which only the 16 day old nestlings were included. This model 

indicated that absolute scope was positively related to the LDF of the leg muscles 
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(F1,13=4.3, P=0.059), the leg muscle mass (F1,13=3.9, P=0.071), treatment (F1,13=4.4, 

P=0.057) and body mass (F1,13=5.1, P<0.05). 

 



   

 15 

Discussion 

 

Food shortage and homeothermic abilities 

The diet-restricted nestlings exhibited a lower PMR compared to that of the controls, 

with respect to body mass and age. The low PMR corresponded with a low RMR and 

Tb. In a study of ducklings, Moe et al. (in press) also found that PMR was inferior in 

ducklings subject to food shortage compared to that of ad libitum fed ducklings.  

The absolute metabolic scope was substantially higher in diet-restricted nestlings 

compared to the controls with respect to body mass (Fig. 6a), and the mass-specific 

absolute scope did not differ between the treatments with respect to age (Fig. 6b). This 

indicates that the capacity for heat production at low Ta improved along with age in 

diet-restricted nestlings.  

The mass-specific minimal thermal conductance (MTC) improved during the 

period of diet restriction despite an apparent increase in the surface-to-volume ratio in 

the diet-restricted nestlings (Moe et al. 2004), and MTC was not different between 16 

day old diet-restricted nestlings and controls. Consequently, the improved MTC must 

have occurred as a result of growth of down or improved vasomotor control or both. We 

observed, but did not measure, that the thickness of the down coating grew and that it 

did not seem to differ between controls and diet-restricted nestlings. It is, however, 

difficult to assess whether the growth of the down coating was sufficient, alone, to 

account for the improvement in MTC.  

Despite a substantial reduction in PMR, the food shortage did not significantly 

delay the development of homeothermy in the European Shag nestlings. With respect to 

body mass, the diet-restricted nestlings tended to exhibit a higher index of homeothermy 

(HI) compared to controls, and with respect to age, the HI was not significantly different 

between 16 day old diet-restricted nestlings and controls. To our knowledge, this is the 

first study to measure the index of homeothermy in nestlings subject to food shortage. 

Consequently, comparative data is not available. 

We interpret the lower PMR as a consequence of the lower RMR and Tb, rather 

than a consequence of reduced thermogenic capacity. Moe et al. (in press) also found 

that the low PMR of diet-restricted ducklings corresponded with a low RMR and Tb, 
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and argued that a lowered RMR rather than any decreased function of the mechanisms 

underlying regulatory thermogenesis caused the reduced PMR. RMR constitutes a 

major part of PMR in young shag nestlings, and in the present study we found that 

RMR was a significant predictor of PMR. The idea of Klaassen and Bech (1992) that 

RMR and PMR are uncoupled in chicks with body masses deviating from the normal 

growth trajectory, does not seem to apply to European shag nestlings. The strong 

correlation between RMR and PMR (after controlling for body mass) which we found 

within the controls as well as the diet-restricted nestlings, is not consistent with that 

view.  

The nestlings obtained PMR at a lower Tb compared to the Tb at RMR, and this is 

a common feature of conventional cold-induced PMR measurements on young chicks. 

Ricklefs and Williams (2003) argued that the measured PMR does not represent the true 

thermogenic capacity of a chick, if it is measured at a low Tb. According to a suggested 

procedure of Ricklefs and Williams (2003), we used the simultaneous measurement of 

Tb to adjust every single value of MR during the entire cooling trail to calculate an 

adjusted PMR. This PMR was adjusted to a high reference Tb (40oC) with a Q10 of 2. 

This calculation showed that diet-restricted nestlings exhibited the same adjusted PMR 

as controls with respect to body mass. This finding supports the view that the low PMR 

in the diet-restricted nestlings was a consequence of the low RMR and Tb , rather than a 

consequence of a reduced thermogenic capacity.    

 

Body composition, organ maturation and thermoregulation 

The size of the pectoral muscles was significantly negatively affected by the diet-

restriction, and the leg muscles tended to be slightly smaller in diet-restricted nestlings 

compared to controls of the same body mass. Hence, one could expect the thermogenic 

capacity also to be negatively affected in the diet-restricted nestlings (Hohtola and 

Visser 1998; Chappel et al. 1999). However, it has been shown for neonates that 

muscles are not capable of shivering thermogenesis unless their LDF is higher than 0.15 

(Ricklefs and Webb 1985; Dietz et al. 1997), and the pectoral muscles are not regarded 

to participate significantly in shivering thermogenesis until the European Shag nestlings 

are about 21 day old (Østnes et al. 2001). Therefore, a reduction in the mass of the 
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pectoral muscles should not be crucial for thermogenic capacity in the diet-restricted 

nestlings. The mass of the leg muscles, on the other hand, should be expected to be 

important. A positive relationship between the mass of the leg muscles and PMR has 

been found in ducklings (Moe et al. in press) and chickens (Konarzewski et al. 2000), 

but we found no such relationship in the present study. As the ability to show a 

metabolic response to a low Ta is poor in young altricial birds (i.e. low factorial scope), 

RMR rather than regulatory thermogenesis will constitute the major part of PMR. 

Consequently, the thermoregulatory effector organs should rather show a relationship to 

absolute scope or factorial scope in young altricial birds. In the present study, the mass 

of the leg muscles tended to correlate positively to absolute and factorial scope. 

However, despite the slight reduction in leg muscle mass with respect to body mass in 

the diet-restricted nestlings (Fig. 7B), the absolute scope or the factorial scope was not 

negatively affected of the diet restriction.  

The LDF of the leg muscles increased in line with that of the controls during the 

time of diet restriction (Fig. 7E). The capacity for regulatory heat production during low 

Ta has been found to correlate with functional maturity of the skeletal muscles in 

altricial and precocial chicks (Ricklefs and Webb 1985; Choi et al. 1993; Dietz et al. 

1997). Accordingly, we believe an increase in functional maturity of the leg muscles 

probably resulted in the high absolute scope of the diet-restricted nestlings. 

The present study partly supports the idea of Klaassen and Bech (1992) that ‘the 

maturation of the thermoregulatory system proceeds steadily with time even when body 

mass lags behind’. Our results on the development of the LDF of the leg muscles and on 

the development of the mass-specific absolute scope are consistent with their view. 

However, their idea was based on the finding that PMR was more dependent on age and 

less dependent on body mass in Arctic tern chicks with varying growth rates. Rather 

than PMR per se, we suggest that the mass-specific absolute scope, i.e. the portion of 

PMR available for regulatory thermogenesis, proceeds steadily with time even body 

mass lags behind. Results on diet-restricted ducklings support this view (Moe et al. in 

press). However, the thermoregulatory responses to food shortage could also depend on 

species-specific developmental priorities, but available comparative data is scarce.  

Differences in growth and maintenance of different body components may be due 

to a competition for nutrients between various growing tissues (O’Connor 1977; 
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Sedinger 1986). Resources should be allocated to those tissues where they are most 

needed. During food shortage, the growth and maturation of the brain is reported to be 

strictly maintained (Schew 1995), and the lean dry mass of the heart is reported to be 

maintained in proportion to body mass (Schew 1995; Moe et al. in press). Muscle tissue 

could serve as a crucial source of essential amino acids and energy for maintenance in 

nestlings during food shortage. However, drawing on stores of amino acids may 

negatively influence the function of a muscle. Surprisingly, we found that the mass of 

the heart of the diet-restricted European shag nestlings was 17% lower compared to 

controls with the same body mass. This corresponded with a substantial mass loss of the 

pectoral muscles (and all visceral organs except the intestine mass), while the mass of 

the leg muscles only tended to be lower in diet-restricted nestlings compared to 

controls. This indicates a high developmental priority of the leg muscles. If the leg 

muscles (peripheral organ), rather than the heart (central organ), limit maximum heat 

production in European shag nestlings, this result suggest that thermoregulatory ability 

was given a high developmental priority. However, it could also indicate a high priority 

of locomotor ability and competitive ability for sibling competition (Brzek and 

Konarzewski 2001). 

 

Ecological correlates 

The time and energy budgets of chicks and parents are interrelated (Beintema and 

Visser 1989; Coulson and Johnson 1993; Farner 2000; Moe et al. 2002). The 

development of homeothermy in the nestlings is a prerequisite for the parents to go on 

long foraging trips and leave the nestlings alone in the nest (Clark 1984; Tveraa and 

Christensen 2002). During food shortage, time needed for successful foraging increases. 

If food shortage delays the development of homeothermy in the nestlings, the need for 

continued brooding would constrain foraging time of the parents. In contrast, continued 

development of homeothermy would lessen the constraints on the time for foraging of 

the parents. The mean Ta was 10oC (range 6 to 18oC) in the shag colony in June, and the 

climate was typically windy and rainy. Continued development of homeothermy even 

during food shortage seems particularly adaptive for nestlings inhabiting harsh 

environments. Another explanation, though not mutually exclusive to the above, is that 
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the observed pattern of continued development of homeothermy may be a typical 

pattern for seabird species receiving regular feeds with less probability of facing 

protracted fasting (e.g. inshore feeders). In species receiving more irregular feeds (e.g. 

pelagic feeders), periods of protracted fasting might induce substantial hypothermia of 

unattended nestlings (e.g. Boersma 1986). However, Bech et al. (1991) and Weathers et 

al. (2000) found no evidence that nestling Antarctic fulmarine petrels normally 

experience hypothermia in the field, and suggested that the cold climate precludes these 

species from using substantial hypothermia. More studies are needed to assess whether 

inshore and pelagic feeders exhibit different adaptive patterns of development of 

homeothermy and whether the prevailing climatic conditions interact with these 

patterns. 

 

In conclusion, we have shown that short-term food shortage did not significantly delay 

the development of homeothermy in the European shag nestlings. The PMR was 

negatively affected by the food shortage, but the mass-specific absolute scope (i.e. the 

portion of PMR available for regulatory thermogenesis) and minimal thermal 

conductance were improved during the period of food shortage. However, the duration 

and the magnitude of the food shortage should be a crucial factor. The nestlings in the 

present study seemed to be close to a physiological limit for keeping up the 

development of homeothermy. The functional capacity of the organs most important for 

regulatory thermogenesis could fail during a longer and a more severe food shortage. 

 

Acknowledgements The Norwegian Directorate for Nature Management, Trondheim, 

gave us permission to work in the shag colony. The National Committee for Animal 

Research in Norway (‘Forsøksdyrutvalget’) approved the experimental protocols. We 

are indebted to the Norwegian lighthouse authorities for permission to use the facilities 

on Sklinna, the lighthouse keepers on Sklinna for their hospitality. We thank Carolyn 

Baggerud for improving the English and J. Matthias Starck as well as three anonymous 

referees for providing helpful comments on an earlier version of this paper. CB and BM 

were supported by a grant from the Research Council of Norway (138698/410). 



   

 20 

References 

 

Amundsen T, Stokland JN (1988) Adaptive significance of asynchronous hatching in 

the shag- a test of the brood reduction hypothesis.  J Anim Ecol 57: 329-344 

Bakken GS (1992) Measurement and application of operative and standard operative 

temperatures in ecology. Am Zool 32: 194-216 

Barrett RT, Røv N, Loen J, Montevecchi WA (1990) Diet of Shags Phalacrocorax 

aristotelis and Cormorants P. carbo in Norway and possible implications for 

gadoid stock recruitment. Mar Ecol Prog Ser 66: 205-218  

Bech C, Østnes JE (1999) Influence of body composition on the metabolic rate of 

nestling European shags (Phalacrocorax aristotelis). J Comp Physiol B 169: 263-

270  

Bech C, Mehlum F, Haftorn S (1991) Thermoregulatory abilities of nestlings of the 

Antarctic petrel (Thalassoica antarctica). Polar Biol 11: 233-238 

Beintema AJ, Visser GH (1989) The effects of weather on time budgets and 

development of chicks of meadow birds. Ardea 77: 181-192 

Boersma PD (1986) Body temperature, torpor, and growth of chicks of fork-tailed storm 

petrels (Oceanodroma furcata). Physiol Zool 59: 10-19 

Brzek P, Konarzewski M (2001) Effect of food shortage on the physiology and 

competitive abilities of sand martin (Riparia riparia) nestlings. J Exp Biol 204: 

3065-3074 

Chappell MA, Bech C, Buttemer WA (1999) The relationship of central and peripheral 

organ masses to aerobic performance variation in House sparrows. J Exp Biol 

202: 2269-2279 

Choi IH, Ricklefs RE, Shea RE (1993) Skeletal muscle growth, enzyme activities, and 

the development of thermogenesis: A comparison between altricial and precocial 

birds. Physiol Zool 66: 455-473 

Christians JK (1999) Controlling for body mass effects: is part-whole correlation 

important? Physiol Biochem Zool 72: 250-253 

Clark L (1984) Consequences of homeothermic capacity of nestlings on parental care in 

the European starling. Oecologia 65: 387-393 



   

 21 

Coulson JC, Johnson MP (1993) The attendance and absence of adult kittiwakes Rissa 

tridactyla from the nest site during the chick stage. Ibis 135: 372-378 

Dietz MW, Van Mourik S, Tøien Ø, Koolmees PA, Tersteeg-Zijderveld, MHG (1997) 

Participation of breast and leg muscles in shivering thermogenesis in young 

turkeys and Guinea Fowl. J Comp Physiol B 167: 451-460 

Dutenhoffer MS, Swanson DL (1996) Relationship of basal to summit metabolic rate in 

passerine birds and the aerobic capacity model for the evolution of endothermy. 

Physiol Zool 69: 1232-1254 

Farner CG (2000) Parental care: The key to understanding endothermy and other 

convergent features in birds and mammals. Am Nat 155: 326-334 

Hart JS (1951) Calorimetric determination of average body temperature of small 

mammals and its variation with environmental conditions. Can J Zool 29: 224-233 

Hayes JP, Garland T (1995) The evolution of endothermy: testing the aerobic capacity 

model. Evolution 49: 836-847 

Hayes JP, Shonkwiler JS (1996) Analyzing mass-independent data. Physiol Zool 69: 

974-980 

Hohtola E, Visser GH (1998) Development of locomotion and endothermy in altricial 

and precocial birds. In: Starck JM, Ricklefs RE (eds) Avian Growth and 

Development. Oxford University Press, New York, pp 157-173  

Kitaysky AS (1999) Metabolic and developmental responses of alcid chicks to 

experimental variation in food intake. Physiol Biochem Zool 72: 462-473 

Klaassen M, Bech C (1992) Resting and peak metabolic rates of Arctic tern nestlings 

and their relations to growth rate. Physiol Zool 65: 803-814 

Konarzewski M, Starck JM (2000) Effects of food shortage and oversupply on energy 

utilization, histology and function of the gut in nestling Song thrushes (Turdus 

philomelos). Physiol Biochem Zool 73: 416-427 

Konarzewski M, Gavin A, McDevitt R, Wallis IR (2000) Metabolic and organ mass 

responses to selection for high growth rates in the domestic chicken (Gallus 

domesticus). Physiol Biochem Zool 73: 237-248 

Martin TE (1987) Food as a limit on breeding birds: A life-history perspective. Ann Rev 

Ecol Syst 18: 453-487 



   

 22 

Moe B, Langseth I, Fyhn M, Bech C (2002) Changes in body condition in breeding 

Kittiwakes Rissa tridactyla. J Avian Biol 33: 225-234 

Moe B, Stølevik E, Bech C (in press) Ducklings exhibit substantial energy saving 

mechanisms as a response to short-term food shortage. Physiol Biochem Zool 

Moe B, Brunvoll S, Mork D, Brobakk TE, Bech C (2004) Developmental plasticity of 

physiology and morphology in diet-restricted European shag nestlings 

(Phalacrocorax aristotelis). J Exp Biol 207: 4067-4076 

Niimi AJ (1978) Lag adjustments between estimated and actual physiological responses 

conducted in flow-through systems. J Fish Res Board Can 35: 1265-1269 

O’Connor RJ (1977) Differential growth and body composition in altricial passerines. 

Ibis 119: 147-166 

Østnes JE, Jenssen BM, Bech C (2001) Growth and development of homeothermy in 

nestling European shags (Phalacrocorax aristotelis). Auk 118: 983-995 

Rezende EL, Swanson DL, Novoa FF, Bozinovic F (2002) Passerines versus 

nonpasserines: so far, no statistical differences in the scaling of avian energetics. J 

Exp Biol 205: 101-107 

Ricklefs RE (1987) Characterizing the development of homeothermy by rate of body 

cooling. Funct Ecol 1: 151-157 

Ricklefs RE, Webb T (1985) Water content, thermogenesis, and growth rate of skeletal 

muscles in European starling. Auk 102: 369-376  

Ricklefs RE, Williams JB (2003) Metabolic responses of shorebird chicks to cold stress: 

hysteresis of cooling and warming phases. J Exp Biol 206: 2883-2893  

Ricklefs RE, Konarzewski M, Daan S (1996) The relationship between basal metabolic 

rate and daily energy expenditure in birds and mammals. Am Nat 147: 1047-1071 

Schew WA (1995) The evolutionary significance of developmental plasticity in 

growing birds. PhD Thesis, University of Pennsylvania, Philadelphia 

Schew WA, Ricklefs RE (1998) Developmental plasticity. In: Starck JM, Ricklefs RE 

(eds) Avian Growth and Development. Oxford University Press, New York, pp 

288-304  

Schlichting CD, Pigliucci M (1998) Phenotypic Evolution. A Reaction Norm 

Perspective. Sinauer Associates, Sunderland  



   

 23 

Schmidt-Nielsen K (1990) Animal physiology: Adaptation and environment. Cambridge 

University Press, Cambridge 

Scholander PF, Hock R, Walters V, Johnson F, Irving L (1950) Heat regulation in some 

arctic and tropical mammals and birds. Biol Bull 99: 237-258 

Sedinger JS (1986) Growth and development of Canada Goose goslings. Condor 88: 

169-180 

SPSS (2002) SPSS for Windows. Release 11.5.1. SPSS Inc, Chicago 

Tveraa T, Christensen, GN (2002) Body condition and parental decisions in the Snow 

Petrel (Pagodroma nivea). Auk 119: 266-270 

Velando A, Ortega-Ruano JE, Freire J (1999) Chick mortality in European shag 

Stictocarbo aristotelis related to food limitations during adverse weather events. 

Ardea 87: 51-59 

Velando A, Graves J, Freire J (2000) Sex-specific growth in the European shag 

Strictocarbo aristotelis, a sexual dimorphic seabird. Ardea 88: 127-136 

Visser GH (1998) Development of temperature regulation. In: Starck JM, Ricklefs RE 

(eds) Avian Growth and Development. Oxford University Press, New York, pp 

117-156  

Visser GH, Ricklefs RE (1993) Temperature regulation in neonates of shorebirds. Auk 

110: 445-457 

Weathers WW, Gerhart KL, Hodum PJ (2000) Thermoregulation in Antarctic fulmarine 

petrels. J Comp Physiol B 170: 561-572 

Withers PC (1977) Measurement of VO2, VCO2 and evaporative water loss with flow-

through mask. J Appl Physiol 42: 120-123 

 

 

 

 

 



   

 24 

 

Table 1 Correlations (r values) between lean dry organ mass and metabolic 

performance in controls and diet-restricted European shag nestlings. (RMR 

resting metabolic rate, PMR peak metabolic rate) 

 RMR PMR 
Absolute 

scope 

Factorial  

scope 

Pectoral  0.50** a) 0.28 0.04 

Leg -0.05 0.29 0.37 (0.07) 0.38 (0.07) 

Heart 0.17 a) 0.05 -0.08 

Liver 0.64*** a) 0.03 b) 

Gizzard -0.26 -0.20 -0.13 0.12 

Kidney 0.09 -0.05 0.05 -0.13 

Intestine 0.25 0.27 0.08 0.03 

Lipid  0.44* a) -0.09 b) 

* P<0.05, ** P<0.01, *** P<0.001 
For cells with 0.1>P>0.05, the P level is given in parentheses. 
Separate GLM analyses were performed for each organ and each dependent variable 

(RMR, PMR, Absolute scope and Factorial scope). The null models included organ mass, 
lean dry fraction (LDF) and lean dry body mass (minus organ mass) as covariates, treatment 
as factor and the interactions organ mass x treatment and LDF x treatment.   

a) Significant interaction between treatment and organ mass. Significant positive 
correlation between organ mass and PMR in diet-restricted nestlings only. 

b) Significant interaction between treatment and organ mass. Significant negative 
correlation between organ mass and F scope in controls only. 
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Figure legends 

 

Figure 1. Daily food intake (A) and body mass (B) as a function of age in controls 

(black bars and closed symbols) and diet-restricted nestlings (white bars and open 

symbols) of European shags kept in the laboratory. The regression line of a logistic 

growth curve calculated from 1645 body mass measurements of nestlings fed by their 

parents in the colony is shown for comparison in B. Food intake is given as fresh weight 

of gadoid fish fillets in grams per day. Error bars are 1SE. 

 

Figure 2. Peak metabolic rate (PMR) as a function of body mass (BM) in controls 

(closed symbols) and diet-restricted nestlings (open symbols) of European shags. The 

axes are log-scaled, and linear regression lines are shown for each treatment group. (log 

PMR controls = 1.30 (± 0.12) log BM - 2.56 (± 0.30), log PMR diet-restricted = 1.34 (± 

0.45) log BM  – 2.74 (± 1.15)) 

 

Figure 3. Body temperature (Tb) at resting metabolic rate (upward triangles, A) and at 

peak metabolic rate (downward triangles, A) and ambient temperature (Ta) at peak 

metabolic rate (B) as a function of age in controls (closed symbols) and diet-restricted 

nestlings (open symbols) of European shags. Error bars are 1SE. 

 

Figure 4. Index of homeothermy (HI) as a function of body mass (A) and age (B) in 

controls (closed symbols) and diet-restricted nestlings (open symbols) of European 

shags. The axes are log-scaled in A and B, and the linear regression lines are shown for 

each treatment group in A. Error bars are 1SE. 

 

Figure 5. Minimal thermal conductance (MTC) as a function of body mass (A) and age 

(B) in controls (closed symbols) and diet-restricted nestlings (open symbols) of 

European shags. The axes are log-scaled in A and B, and the linear regression lines are 

shown for each treatment group in A. Minimal thermal conductance is given in watts 

per kilo per degree Celsius. Error bars are 1SE. 
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Figure 6. Absolute scope (W) in relation to body mass (A) and mass-specific absolute 

scope (W kg-1) in relation to age (B) in controls (filled symbols) and diet-restricted 

nestlings (open symbols) of European shags. Absolute scope was calculated as PMR-

RMR. The axes in A are log scaled and linear regression lines are shown for each 

treatment group. Error bars are 1SE. 

 

Figure 7. The relationship of lean dry (Ld) pectoral muscle mass (A), leg muscle mass 

(B) and heart mass (C) to lean dry (Ld) body mass, and the relationship of lean dry 

fraction (LDF) of the pectoral muscles (D), the leg muscles (E) and the heart (F) to age 

in controls (filled symbols) and diet-restricted nestlings (open symbols) of European 

shags. The axes are log-scaled, and the linear regression lines are shown for each 

treatment group in A,B,C. LDF was calculated as lipid free dry organ mass/lipid free 

fresh organ mass. Error bars are 1SE. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

 

Body mass (g)

250 300 350 450 550

M
T

C
 (

W
 k

g-1
 o C

-1
)

1.0

1.5

2.0
2.5
3.0

Age (d)

12 16

1.0

1.5

2.0
2.5
3.0

A B

 



   

 32 

Figure 6. 
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Figure 7. 
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Summary 

 

1. Little is known about the effect of short-term and transient food shortage on growth 

and subsequent fledging body size in seabirds. This information is important to 

understand how seabirds are adapted to a stochastic environment. The ontogenetic 

responses to variability in food availability are potentially important for the fitness 

prospect of individuals. 

2. We examined the developmental plasticity of European shag (Phalacrocorax 

aristotelis) nestlings by subjecting them to short-term food shortage (diet restriction) in 

the laboratory between 12-16 days of age and realimentation (subsequent provisioning) 

in the wild (up to 48 days of age) or overfeeding in the laboratory between 16-24 days 

of age. 

3. During the food shortage period, body mass remained rather stable while structural 

elements (skull, tarsus, wings) continued to grow at high rates. 

4. Although different statistical approaches provided slightly contrasting results, body 

mass and structural elements of diet-restricted nestlings seemed to grow according to a 

parallel trajectory compared to controls. The European shag nestlings, thus, showed 

limited capacity for accelerated growth, indicating that growth during natural conditions 

is close to the limits set by physiological or anatomical constraints. As overfed nestlings 

did not grow at faster rates than nestlings in the wild, food quantity did not seem to limit 

growth of the nestlings during realimentation in the wild.  

5. Diet-restricted nestlings extended developmental time to compensate for the early 

growth perturbation. However, for the structural elements, the perturbation was not 

severe, because the structural elements grew at high rates during the period of diet-

restriction.  

6. Fledging body size was similar between controls and diet-restricted nestlings, 

suggesting that variation in fledging body size does not seem to arise from short-term 

and transient food shortage during early growth of European shags.  
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Introduction 

 

The stochastic nature of prey availability within the marine environment frequently 

provides periods of food shortage for breeding seabirds (Ashmole 1971; Suryan et al. 

2002). It is well documented that chronic food shortage has a devastating effect on 

growth and survival in cohorts of seabird nestlings (Barrett et al. 1987; Monaghan et al. 

1989; Anderson 1989; Chastel, Weimerskirch & Jouventin 1993; Harris & Wanless 

1997), but little is known about the effect of short and transient food shortage within a 

breeding season on growth and subsequent fledging body size in seabird nestlings. Even 

small deviations from normal growth might be expected to produce fitness 

consequences (Gebhardt-Henrich & Richner 1998). Consequently, the ontogenetic 

responses to variation in food availability are potentially important for the fitness 

prospects of individuals. In periods where the parents can not adequately provision their 

young, the phenotypic developmental trajectory of the young may deviate from normal 

ontogenetic development. Such phenotypic changes are known as developmental 

plasticity (Schmalhausen 1949; Smith-Gill 1983; Schew & Ricklefs 1998; Schlichting 

& Pigliucci 1998).  

Whether short-term and transient food shortage during growth has an effect on 

subsequent fledging body size, depends on the developmental responses during 1) the 

food shortage period and 2) during the realimentation period (i.e. subsequent 

provisioning).  

In the face of temporary food shortage, avian nestlings may use one of three 

'strategies' of resource allocation (Schew & Ricklefs 1998). First, the chicks may simply 

not response at all. They will consequently maintain the growth rate and the rate of 

maturation of the organs, muscles etc. at the maximum possible rate, which is allowed 

with the available food resources and the amount of energy stored at the onset of the 

food-deprivation period (e.g. Konarzewski et al. 1996; Konarzewski & Starck 2000). 

Secondly, chicks may selectively allocate energy to growth and development of such 

body parts as wings and head, which are important for nestling and post-fledging 

survival (e.g. Øyan & Anker-Nilssen 1996; Kitaysky 1999; Moe et al. in press). Thirdly, 

the chicks may react to a temporary food shortage by an overall arrest of growth and 
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maturation and resume these processes when conditions improve (e.g. Emlen et al. 

1991; Schew 1995; Starck & Chinsamy 2002).  

During realimentation, growth may follow three different trajectories. That is 

accelerated growth (catch up growth sensu Bohman 1955), parallel growth or retarded 

growth, which refers to whether the growth rate is faster, similar or slower compared to 

normal growth relative to chronological age. Among birds, accelerated growth has only 

been reported for body mass growth (e.g. Schew 1995; Negro, Chastin & Bird 1994), 

whereas parallel growth (e.g. Morse & Vohra 1971; Lepczyk & Karasov 2000) and 

retarded growth (e.g. Schew, 1995) have been reported for both body mass and 

structural growth. It has been questioned whether the reported accelerated growth in 

birds is real or is an artefact of how growth data are expressed (Schew & Ricklefs 

1998). The question is important because accelerated growth during realimentation 

would suggest that normal growth rate is less than the maximum physiological potential 

and that growth is optimized below a physiological limit rather than maximised. 

Developmental time is an aspect of growth that is a determinant for subsequent 

fledging body size. A decoupling of chronological and physiological age may occur 

when functional maturation is temporarily stalled. From studies on aerial insectivores 

(e.g. Emlen et al. 1991), such responses have been characterised as labile or flexible 

development, and have been associated with extended developmental time.  Extended 

developmental time is the only means by which a nestling can compensate for previous 

poor growth, unless it can accelerate growth during realimentation. Highly variable 

nestling periods have been reported in many seabirds (Lack 1968; Barrett & Rikardsen 

1992; Croxall et al. 1988). However, developmental time should be subject to an 

evolutionary trade-off with time dependent mortality, and it is not fully understood to 

what degree seabird nestlings can increase developmental time to compensate for short-

term growth perturbations and attain normal fledging body size.  

The different strategies of resource allocation during a period of food shortage 

may have different consequences on subsequent growth during realimentation (Schew 

& Ricklefs 1998). From studies on development of avian skeletal muscles, it is 

proposed that growth is inversely related to the functional maturity (growth-maturation 

hypothesis, Ricklefs & Webb 1985; Ricklefs, Shea & Choi 1994). Accordingly, 

continued maturation during a period of food shortage may enhance functional capacity 
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(e.g. thermoregulation and locomotor activity) but reduce the potential for subsequent 

growth. Therefore, it is suggested that the nestlings slowing both growth and maturation 

during food shortage will have the best probabilities of attaining normal fledging body 

size (Schew 1995), either through accelerated growth or through parallel growth with 

extended developmental time during realimentation. 

Nestling European shags (Phalacrocorax aristotelis) are very well suited for 

studying growth responses to short-term food shortage. They experience variable 

environmental conditions and food availability (Velando, Ortega-Ruano & Freire 1999; 

Rindorf, Wanless & Harris 2000). In contrast to many pelagic seabirds, which raise 

single nestlings with slow growth rates, European shag nestlings exhibit high growth 

rates (Østnes, Jenssen & Bech 2001) and compete with 1-3 other siblings for food 

(Amundsen & Stokland 1988). Consequently, they should depend on successful food 

provisioning rates to follow their normal developmental trajectory. 

Experiments with European shag nestlings subject to diet restriction under 

laboratory conditions (Moe et al. 2004; own unpublished data) have revealed that 

structural growth was maintained at very high rates whereas several visceral organs and 

muscles and resting metabolic rate were substantially reduced. Further, the functional 

maturation of the skeletal muscles and the thermoregulatory ability continued to 

increase during the period of diet restriction (four days on a weight maintenance diet).  

According to the growth-maturation hypothesis the potential for growth during 

realimentation and the ability to extend developmental time should be reduced by such a 

continued maturation of the skeletal muscles. Accordingly, one could expect that 

European shag nestlings facing a short-term food shortage will not be able to recover 

completely during realimentation and will not be able to attain normal fledging body 

size.     

The aim of the present study was to investigate the effect of short-term and 

transient food shortage on subsequent growth and fledging body size in a large altricial 

seabird, the European shag. Specifically, we tested whether nestlings could compensate 

for a growth perturbation by accelerating growth rate during realimentation or extending 

developmental time to attain normal fledging body size. This was done by subjecting 

nestlings to a diet restriction treatment in the laboratory between 12-16 days of age and 



   

 6  

to subsequent realimentation in the wild with foster parents or to overfeeding in the 

laboratory. 
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Materials and methods 

 

STUDY AREA AND ANIMALS 

The study was carried out during the 2001 breeding season (June and July) on Sklinna, 

a small group of islands situated ~50 km off the coast of central Norway (65o12’N, 

11o00’E). In 2001 the breeding population of European shags consisted of 1750 pairs 

(N. Røv pers. comm.), and it has increased (6.3% annually) in the period 1984-2001 

(Lorentsen 2001). Nests (N=355) were marked and visited every second day in order to 

determine the hatching dates of the nestlings (defined as day 0). Each nestling was 

identified with ink on one of its legs on day 0 or day 1. The nestlings were banded with 

standard metal rings at the age of ~18 days.  

 

DIET RESTRICTION AND HOUSING CONDITIONS 

A sample of 26 nestlings was brought to the laboratory (500 m from the colony) at the 

age of 12 days for the purpose of a diet restriction treatment (weight maintenance diet 

for 4 days). The nestlings were kept, 4-8 together, in an enclosure (100 x 50 cm) with a 

heat lamp providing a constant range of operative temperatures (Bakken 1992) of 22-

33oC. The diet-restricted nestlings were hand fed with fillets of saithe (Pollachius 

virens) and cod (Gadus morhua), because these gadoids constitute 70% of the diet of 

shags breeding in the study area (Barrett et al. 1990). They were fed small portions of 

food 8-10 times a day to maintain a relatively stable body mass, until they were 16 day 

old. The daily food intake was ~100 g d-1 which is less than 50% of the food intake for 

hand fed nestlings following a normal growth trajectory (Moe et al. 2004).  

  

REALIMENTATION EXPERIMENT 

After the diet-restriction treatment, 20 of the 26 diet-restricted nestlings at 16 days of 

age were assigned to new nests with foster parents. In this experiment we intended to 

monitor the growth during realimentation of diet-restricted nestlings under favourable 

competitive conditions in the wild. The diet-restricted nestlings could get a competitive 

disadvantage in their broods of origin. Consequently, they were brought to new nests 

with foster parents and swapped with the original α-nestlings which were assigned to 
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new nests with foster parents. The subsequent growth of the original α-nestlings was not 

monitored. Nests were selected in which the original α-nestlings were heavier than the 

diet-restricted nestlings and the original β–nestlings were lighter than the diet-restricted 

nestlings. With this swapping procedure the diet-restricted nestling got the α-position in 

the nestling size hierarchy, the brood size (2 or 3) was unchanged and the work load on 

the parents was presumed to be unchanged.   

As controls to the diet-restricted nestlings we assigned 12 unmanipulated nestlings 

at 12 days of age to new nests with foster parents. As for the diet-restricted nestlings, 

they were subject to the same swapping procedure that provided favourable competitive 

conditions. The controls were assigned to foster parents at the age of 12 days because 

their body mass was almost the same as the diet-restricted nestlings at 16 days of age. 

All the controls and the diet-restricted nestlings received ~30 g of fish fillets 

before they were assigned to the new nest. All the nestlings were successfully accepted 

by their foster parents. At the time when we terminated the study, all the nestlings had 

reached, or were close to, 95% of the asymptotic value for each growth character. It 

means that we monitored the growth of all the nestlings until they were 36-48 day old, 

except for two diet-restricted nestlings that disappeared under boulders at 22 and 24 

days of age, respectively. The body mass as well as the length of the skull (head + bill), 

the tarsus and the wings were measured every second day during realimentation.  

  

OVERFEEDING EXPERIMENT 

The remaining six of the 26 diet-restricted nestlings at 16 days of age were subject to an 

overfeeding treatment in the laboratory. In this experiment we intended to investigate 

whether growth during realimentation in the wild was limited by food availability. 

Based on previous experience with feeding protocols of shag nestlings (Moe et al. 

2004), the six diet-restricted nestlings (hereafter called overfed nestlings) were hand fed 

with fish fillets every second hour. During the first day, from 16 to 17 days of age, the 

overfed nestlings begged intensively for food. Thereafter, the begging ceased, and they 

were fed with the maximum portions that did not induce regurgitation. This feeding 

regime worked well up to the age of 21 days for all the overfed nestlings. Consequently, 

data are presented for the overfed nestlings up to that age. After day 21, three nestlings 
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started to regurgitate when being fed. As one of these nestlings died, presumably due to 

digestive problems, the other two were anaesthetised and sacrificed. The remaining 

three overfed nestlings were in good condition and were assigned to new nests with 

foster parents. Their subsequent growth was not monitored. The body mass as well as 

the length of the skull (head + bill), the tarsus and the wings were measured every day 

during the overfeeding treatment. 

 

STATISTICS  

For each nestling in the realimentation experiment, data for each growth character (body 

mass, skull, tarsus and wings) were fitted to a logistic growth model (A/[1+e(-k(age-T))]) 

by non-linear least square regressions (Ricklefs 1983). In this equation, A is the 

asymptotic value, k is the growth constant and T is the age at the inflection point. A 

general linear model (GLM) with the type III sum of squares was used to test for 

differences between controls and diet-restricted nestlings for each growth character and 

each parameter (A, k, T) separately. Treatment was entered as a factor, and the value of 

the growth character at the age of 12 days was included as a covariate to control for any 

effect of initial size.   

A mixed linear model with restricted maximum likelihood was used to analyse 

growth data including repeated measures on individuals. The null models included age 

and age2 as covariates, treatment as factor and the interaction age x treatment. Nestling-

id and the interaction nestling-id x age were included as random effects. Akaike’s 

information criteria (AIC) were used to select the appropriate final models (Burnham & 

Anderson 1998). All statistical tests were performed with SPSS 12·0 (SPSS inc., 

Chicago), except for the mixed linear models which were performed with S-PLUS 6·2 

(Insightful Corp., Seattle). Means are reported with ± 1SE. 

 

ETHICS 

The National Committee for Animal Research in Norway (‘Forsøksdyrutvalget’, S-

1278-01) approved the experimental protocols in the present study. The Norwegian 

Directorate for Nature Management, Trondheim, gave us permission to work in the shag 

colony. 
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There was no mortality during the diet restriction treatment. The appearance of the 

nestlings during the diet restriction treatment as well as the successful growth and 

development during realimentation were strong indicators of healthy individuals 

(N=20). Although we carefully aimed to avoid stressing the overfed nestlings (N=6), 

three of these nestlings received higher quantities of fish than they could digest and 

their welfare seemed negatively affected. This encourages restrictive use of overfeeding. 
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Results 

 

DIET RESTRICTION AND SUBSEQUENT REALIMENTATION IN THE WILD 

Body mass and structural elements (skull, tarsus, wings) showed different growth 

trajectories during the four days of diet restriction. Body mass remained virtually stable 

during this period (i.e. an increase of only 5·3 g d-1, mixed linear model, t1,79=8·3, 

P<0·001, Fig. 1a) compared to the body mass growth of the controls (see Fig. 1a). The 

structural elements exhibited high daily growth rates (skull, 2·7 mm d-1, t1,63=33·6, 

P<0·001, Fig. 1b; tarsus, 1·9 mm d-1, t1,63=32·1, P<0·001, Fig. 1c; wings, 3·2 mm d-1, 

t1,63=27·4, P<0·001, Fig. 1d). 

The growth trajectory of the diet-restricted nestlings during realimentation in the 

wild is shown in comparison with controls in Fig. 1 and Table 2. General linear models 

(GLM) revealed that the growth constant (K) was not different between diet-restricted 

nestlings and controls for body mass, skull or wing (Table 1), but it was significantly 

higher in diet-restricted nestlings compared to controls for the tarsus (Table 1). In 

addition to the GLM analyses of the growth constants (Table 1) from the individual 

logistic growth equations, we also used mixed linear models to test for differences in 

growth rates during realimentation. The mixed models included measurements from the 

age of 16-24 days for body mass, skull and wing and 16-22 days for tarsus, which 

corresponded to the start of realimentation and the most linear phases of growth. Results 

from the mixed models were consistent with the GLM analyses of the growth constant 

(K) for body mass, indicating no differences in body mass growth rate (age x treatment 

interaction, F1,126=0·7, P>0·1) . The analyses of the growth rate of the structural 

elements, however, provided contrasting results. The mixed model showed a significant 

higher growth rate of the skull (age x treatment interaction, F1,123=4·8, P<0·05) and a 

tendency for a higher growth rate of the wings (age x treatment interaction, F1,121=2·9, 

P=0·09) in the controls compared to the diet-restricted nestlings during realimentation, 

but no significant difference in tarsus growth rate (age x treatment interaction, F1,85=2·3, 

P>0·1).  

The age at the inflection point (T) of the logistic growth curves of the diet-

restricted nestlings was significantly higher compared to controls for all the four growth 
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characters (Table 2), showing that maximum growth occurred 1·5-2·5 days later in diet-

restricted nestlings. Using the logistic growth equations (Table 1), the diet-restricted 

nestlings reached 95% of their asymptotic values 0·5-3·8 days later compared to 

controls (body mass, 39·4 vs 38·4 d; skull, 47·2 vs 43·4 d; tarsus, 25·7 vs 25·2 d; wing, 

52·4 vs 50·5 d). 

Asymptotic values (A) for body mass, skull, tarsus and wings did not differ 

between controls and diet-restricted nestlings (Table 2). As we monitored the growth 

until the nestlings were 36-48 days of age, all nestlings had reached or were close to 

95% of the asymptotic values for all growth characters. Therefore, the asymptotic 

values were adequate measures of fledging body size. Accordingly, fledging body size 

did not differ between controls and diet-restricted nestlings. 

  

DIET RESTRICTION AND SUBSEQUENT OVERFEEDING 

Body mass growth and food intake of the diet-restricted nestlings (N=6) that were 

subsequently subject to overfeeding is shown in Fig. 2. A mixed linear model showed 

that the body mass growth increased substantially as a response to the overfeeding after 

the diet restriction was lifted (treatment x age, F1,51=118·9, P<0·001, Fig. 2b). In 

contrast, the growth of the skull, the tarsus and the wings did not increase as a response 

to the overfeeding (treatment x age, P>0·1, Fig. 3a,b,c). In these analyses we controlled 

for a significant negative and positive curvature (age2 as a main effect) for the tarsus 

and the wings, respectively.  

 

OVERFEEDING VERSUS REALIMENTATION IN THE WILD 

We compared the growth of the overfed nestlings to the diet-restricted nestlings that 

were subject to realimentation in the wild, from the age of 16 to 21 days. The overfed 

nestlings did not grow at a faster rate (Fig. 2, Fig. 3). On the contrary, a mixed linear 

model showed that their tarsus grew at a significantly lower rate (treatment x age, 

F1,73=12·6, P<0·001, Fig. 3b) while their body mass (F1,77=2·5, P>0·1, Fig. 2b), skull 

(F1,74=1·8, P>0·1, Fig. 3a) and wings (F1,73=2·5, P>0·1, Fig. 3c) grew at slower, but not 

significantly slower, rates.  
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During the diet restriction period, food intake as well as growth of the diet-

restricted nestlings (N=6) that were subsequently subject to overfeeding were similar to 

that of the diet-restricted nestlings (N=20) that were subsequently subject to 

realimentation in the wild. 



   

 14  

Discussion 

 

Although it was not noticeable from the logistic regression line in Fig. 1a, a period of 

accelerated body mass growth appeared within 48 hours of realimentation in the wild 

and overfeeding in the laboratory (Fig. 2b). However, such a response is more likely to 

be attributed to a gut-fill phenomenon rather than to real growth (Wilson & Osbourn 

1960; Lepczyk & Karasov 2000). During the entire course of the realimentation period 

the growth constant of the diet-restricted nestlings was not significantly higher 

compared to controls (Table 1). This result was supported by the analysis with the 

mixed linear model in which repeated individual measurements were included. 

The results for the growth of the structural elements during realimentation were 

not consistent between the two statistical methods that we applied. The mixed model 

indicated a significantly lower growth rate of the skull and a tendency for a lower 

growth rate of the wings in the diet-restricted nestlings, whereas the GLM, including 

individual values of the growth constant, indicated a significantly higher growth rate of 

the tarsus in the diet-restricted nestlings. As these statistical methods showed no 

consistent pattern of accelerated or retarded growth in diet-restricted nestlings compared 

to controls, and the differences in growth rates of structural elements between controls 

and diet-restricted nestlings were anyhow very small, we refrain from characterising the 

observed pattern of growth as either accelerated or retarded. Therefore, we consider the 

pattern of growth as an example of parallel growth. The European shag nestlings, thus, 

showed limited capacity for accelerated growth, indicating that growth during normal 

conditions is close to the limits set by physiological or anatomical constraints. 

Alternatively, growth during realimentation in the wild could have been limited by the 

quantity of food provided by the foster parents. However, the overfed nestlings in the 

laboratory did not grow at faster rates, and, apparently, their digestive capacity limited 

their potential for higher growth. We provided the overfed nestlings with fillets of fish, 

whereas nestlings in the wild received whole-fish from their foster parents. This 

difference in diet quality could possibly confound the comparison. However, we think 

that the difference in diet quality explains why the overfed nestlings tended to grow at 

slower rates compared to the nestlings in the wild. Since food availability seemed to be 

good in 2001, as indicated by a high breeding success, and because the nestlings 
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possessed the competitive α-position within the broods, we do not think that the growth 

of the nestlings in the wild was limited by food availability.  

We did not obtain any measure of body composition at the end of realimentation. 

Hence, we have no data on whether body mass growth was due to true growth, i.e. 

adding of proteins, or due to accumulation of fat. However, there is no doubt that the 

structural elements exhibited true growth. Also, we do not know whether the nestlings 

had recovered from the mass loss of muscles tissue and visceral organs that occurred 

during the diet restriction (Moe et al., in press). However, given the highly flexible 

nature of avian visceral organs and muscle tissue, allowing fast and reversible changes 

(e.g. Schew 1995; Piersma & Lindstrøm 1997, Starck 1999, Starck & Rahman 2003), 

we think it is likely that these organs and tissues fully recovered during the 

realimentation.   

Contrary to the growth-maturation hypothesis, the continued functional 

maturation of skeletal muscles and most visceral organs during the food shortage period 

(Moe et al. 2004; own unpublished data) did not hamper the potential for subsequent 

growth of body mass and structural elements. The European shag nestlings improved 

thermoregulatory abilities during the period of diet restriction, probably due to the 

continued maturation of the skeletal muscles (own unpublished data). The present 

results suggest that the nestlings improved thermoregulatory abilities without paying a 

penalty in terms of a reduced growth potential. However, the mauturation of the skeletal 

muscles may not precisely reflect the maturation of the skeleton. If the the maturation of 

the skeleton, i.e. the degree of ossification and the size of the cartilaginous proliferation 

zones (Starck 1998), was maintained in normal proportions to the growth of the bones, 

the potential for growth of the skeleton should not be impeded.  

Fledging body size was similar between controls and diet-restricted nestlings, 

suggesting that variation in fledging body size does not seem to arise from short-term 

and transient food shortage during early growth of the European shag. Other 

experimental studies have provided contrasting results. Whereas short-term food 

shortage had no effect on final body size in Japanese quails (Coturnix c. japonica, 

Schew 1995) and house sparrows (Passer domesticus, Lepczyk & Karasov 2000), final 

body mass and structural size in European starlings were negatively affected by short-

term food shortage (Sturnus vulgaris, Schew 1995). From field studies of aerial 
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insectivores (Lack & Lack 1951; Ricklefs 1976; Bryant 1978; Emlen et al. 1991), it has 

been found that naturally occurring transient food shortage can be met with a 

characteristic labile development, in which growth and development are temporally 

stalled during the period of food shortage. Developmental time is extended and the 

subsequent growth during realimentation compensates fully for the growth 

perturbations. The benefits of extending developmental time, however, should be 

balanced against the costs arising from time dependent mortality (Bosque & Bosque 

1995; Remes & Martin 2002). Moe et al. (2004) suggested that predation, together with 

sibling competition, could be selective factors for the observed rigid pattern of structural 

growth during food shortage. We have no data on whether the diet restriction treatment 

affected time of fledging, but the present study indicates that sustained structural growth 

during a short period of food shortage prevents an extension of the developmental time 

by as much as the length of the food shortage period. 

Although the present study showed no effect of short-term food shortage on 

fledging body size, long-term food shortage (i.e. >4 d) or variation in diet quality, 

however, could be potential environmental sources of variation in fledging body size. 

Morse & Vohra (1971) elegantly showed that the length of the food shortage period was 

crucial for the ability of Japanese quails to compensate fully for the growth perturbation. 

Poor diet quality, causing poor feeding conditions throughout the growth period, has 

been found to cause stunted fledging body size in wild geese (Cooch et al. 1991; 

Larsson & Forslund 1992) as well as in captive zebra finches (Boag 1987; De Kogel 

1997; Bech, Rønning & Moe in press). 

Further experiments are needed to reveal how long European shag nestlings can 

sustain high rates of structural growth during food shortage. If structural nutrients such 

as calcium and phosphorus (Murphy 1996), rather than energy primarily limit the rate of 

structural growth, it could suggest that the nestlings were provided well in excess during 

normal conditions and still in sufficient amount during the period of diet-restriction, and 

the nestlings could consequently show sustainable high rates of structural growth during 

food shortage. Since the size of most visceral organs and some muscles were 

substantially reduced during diet restriction (Moe et al. 2004), we assume that proteins 

and perhaps also other essential structural nutrients were actively scavenged from these 

tissues.  If it occurred, it suggests that the high rates of structural growth could not be 
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sustained through a long period of food shortage. Notably, in contrast to the growth rate 

of body mass (Fig. 2b) the growth rates of structural elements were not higher during 

overfeeding compared to the diet restriction (Fig. 3). This indicates that structural 

growth was sustained at maximum rates within the limits of the food intake and the 

endogenous reserves. It also indicates that the structural growth during the diet 

restriction and overfeeding was limited by diet quality rather than diet quantity. 

Due to the rigid structural growth during the period of food shortage we refrain 

from characterising the observed growth responses as flexible, although developmental 

time was slightly extended. Lack of flexible development of body size may have several 

evolutionary interpretations. It may evolve if the prevailing environment lacks frequent, 

unpredictable fluctuations in food availability during the development (Konarzewski et 

al. 1996). Also, if there is strong selection for relatively uniform fledging or adult body 

size, developmental flexibility might be suppressed even under fluctuating 

environmental conditions. This may occur if flexibility cannot be compensated during 

later development, and flexible development consequently would produce a diversity of 

fledging and adult body sizes (Konarzewski & Starck 2000). Finally, as already 

mentioned, it may evolve as a result of nestling competition or strong time-dependent 

mortality. The flexible development of resting metabolic rate and body composition of 

European shag nestlings (Moe et al., 2004) does not easily support the first 

interpretation which predicts an overall rigid development. If the ability of European 

shag nestlings of extending developmental time is rather limited, we believe that the 

rigid development of body size may have evolved as a result of selection on fledging or 

adult body size, selection on nestling competitive abilities or of strong time dependent 

mortality. 

For obvious reasons, the knowledge of how fledging body size may affect fitness 

is not extensive for seabirds. Velando (2000) found no effect of fledging body mass on 

dominance rank within juvenile European shags, and Steinen & Brenninkmeijer (2002) 

found no effect of fledging body condition on post fledging survival in Sandwich terns 

(Sterna sandvicensis). In contrast, fledging body mass has been found to relate 

positively to post fledging survival in Cape gannets (Sula capensis, Jarvis 1974), sooty 

shearwaters (Puffinus griseus, Sagar & Horning 1998), Manx shearwaters (Puffinus 

puffinus, Perrins, Harris & Britton 1973) and king penguins (Aptenodytes patagonicus, 
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Olsson 1997). The body of literature is more comprehensive on passerines. The 

suggestion that small differences in the size of morphological characters may have 

consequences for fitness (Boag 1987; Gebhardt-Henrich & Richner 1998) is supported 

by several studies reporting a positive relationship between fledging body size and post 

fledging survival (Garnett 1981; Richner 1989; Tinbergen & Boerlijst 1990; Ringsby, 

Sæther & Solberg 1998).  

Fledging body size could possibly affect a whole array of fitness parameters in 

seabirds, including post fledging survival, mating success and fecundity. Although 

recent literature has questioned whether compensating for growth perturbations or 

nutritional stress during early development might be associated with negative fitness 

consequences that appear later in life (Metcalfe & Monaghan 2001), we believe that the 

ability to attain full fledging body size, even after a short-term food shortage, could be 

of major importance for the fitness prospects of European shag nestlings.  

 

In conclusion, we have shown that European shag nestlings exhibited high rates of 

structural growth as well as continued functional maturation during the period of food 

shortage. This had apparently no negative effect on the subsequent growth potential. 

Developmental time was slightly increased and fully compensated for the growth 

perturbations. Hence, variation in fledging body size does not seem to arise from short-

term and transient food shortage in European shags. Flexible developmental 

programmes have been described in altricial and precocial chicks. The ability to extend 

developmental time represents some degree of flexible development, but this ability 

might be very limited, and we do not characterise the observed structural growth of the 

European shag nestling as flexible development.  
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Table 1. Asymptote (A), growth constant (K) and age at inflection point (T) of 
logistic growth equations (A/[1+e(-K(age-T))]) for different growth characters of controls 
and diet-restricted European shag nestlings during realimentation in the wild. The 
logistic regression lines are shown in Fig. 1. Differences in parameter estimates ( X ) 
between controls and diet-restricted nestlings were tested with GLM a.  
Character Parameter Diet-restricted 

(N=18) 
 Controls 

(N=12) 
   

  X  SE  X  SE  F1, 27 P 
Body mass A 1724 35  1693 44  0·3 0·59 
 K 0·176 0·006  0·161 0·008  2·4 0·13 
 T 22·6 0·36  20·1 0·44  18·4 <0·001
          
Skull A 137·6 0·9  136·0 1·1  1·15 0·29 
 K 0·091 0·03  0·098 0·03  2·31 0·14 
 T 14·8 0·19  13·3 0·23  23·9 <0·001
          
Tarsus A 64·5 0·39  65·4 0·49  1·98 0·17 
 K 0·234 0·007  0·211 0·008  4·42 0·045 
 T 13·0 0·12  11·2 0·15  88·3 <0·001
          
Wing A 253·6 3·0  248·1 3·7  1·35 0·26 
 K 0·116 0·002  0·117 0·002  0·1 0·76 
 T 27·0 0·35  25·3 0·43  9·2 <0·005
a GLM was performed with initial size (i.e. character at the age of 12 days) as a 
covariate. The covariate was significant for most of the parameters, but for consistency 
we included it in all the GLMs. Hence, the parameter estimates are adjusted for the 
covariate.    
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Figure legends 

 

Figure 1. Changes in body mass (A) and in the length of the skull (B), tarsus (C) and 

wings (D) as a function of age in European shag nestlings during diet restriction in the 

laboratory (age of 12-16 days, filled symbols, N=20 for body mass, N=16 for structural 

elements) and subsequent realimentation in the wild (age ≥ 16 d, dashed logistic 

regression line), as well as in controls in the wild (age ≥ 12 d, solid logistic regression 

line). In the wild, controls (N=12) and diet-restricted nestlings (N=18) were raised in 

different nests by foster parents. The equations for the logistic regression lines are 

presented in Table 1. 

 

Figure 2. Daily food intake (A) and body mass (B) as a function of age (days) in 

European shag nestlings (filled bars and symbols) subject to diet restriction (DR) and 

subsequent overfeeding (OF) in the laboratory. Error bars are 1SE. For comparison, the 

logistic regression lines from Fig. 1a are shown in B. The dashed line represents the 

diet-restricted nestlings during realimentation in the wild (age ≥ 16 d), and the solid line 

represents the controls (age ≥ 12 d). See text for statistics. 

 

Figure 3. Length of the skull (A), tarsus (B) and wings (C) as a function of age in 

European shag nestlings (filled symbols) subject to diet restriction (DR) and subsequent 

overfeeding (OF) in the laboratory. Measurements on day 14 are missing. Error bars are 

1SE. For comparison, the logistic regression lines from Fig. 1b,c,d are shown. The 

dashed line represents the diet-restricted nestlings during realimentation in the wild with 

the (age ≥ 16 d), and the solid line represents the controls (age ≥ 12 d). See text for 

statistics. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Cormorant Phalacrocorax carbo carbo. 
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Botany 
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Zoology 
 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes. 
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Zoology 
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 1994 Solveig Bakken Dr. scient 
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 1995 Olav Vadstein Dr. philos 
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 1995 Hanne Christensen Dr. scient. 
Zoology 

Determinants of Otter Lutra lutra distribution in 
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 1995 Svein Håkon Lorentsen Dr. scient. 
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Zoology 
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Zoology 
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 1996 Jorun Skjærmo Dr. scient 
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 1996 Ola Ugedal Dr. scient. 
Zoology 

Radiocesium turnover in freshwater fishes 
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Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
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Zoology 
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